libjpeg-turbo-1.4.2/0000755000076500007650000000000012600050447011274 500000000000000libjpeg-turbo-1.4.2/jchuff.c0000644000076500007650000010101712600050400012612 00000000000000/* * jchuff.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1991-1997, Thomas G. Lane. * libjpeg-turbo Modifications: * Copyright (C) 2009-2011, 2014-2015 D. R. Commander. * For conditions of distribution and use, see the accompanying README file. * * This file contains Huffman entropy encoding routines. * * Much of the complexity here has to do with supporting output suspension. * If the data destination module demands suspension, we want to be able to * back up to the start of the current MCU. To do this, we copy state * variables into local working storage, and update them back to the * permanent JPEG objects only upon successful completion of an MCU. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" #include "jchuff.h" /* Declarations shared with jcphuff.c */ #include /* * NOTE: If USE_CLZ_INTRINSIC is defined, then clz/bsr instructions will be * used for bit counting rather than the lookup table. This will reduce the * memory footprint by 64k, which is important for some mobile applications * that create many isolated instances of libjpeg-turbo (web browsers, for * instance.) This may improve performance on some mobile platforms as well. * This feature is enabled by default only on ARM processors, because some x86 * chips have a slow implementation of bsr, and the use of clz/bsr cannot be * shown to have a significant performance impact even on the x86 chips that * have a fast implementation of it. When building for ARMv6, you can * explicitly disable the use of clz/bsr by adding -mthumb to the compiler * flags (this defines __thumb__). */ /* NOTE: Both GCC and Clang define __GNUC__ */ #if defined __GNUC__ && (defined __arm__ || defined __aarch64__) #if !defined __thumb__ || defined __thumb2__ #define USE_CLZ_INTRINSIC #endif #endif #ifdef USE_CLZ_INTRINSIC #define JPEG_NBITS_NONZERO(x) (32 - __builtin_clz(x)) #define JPEG_NBITS(x) (x ? JPEG_NBITS_NONZERO(x) : 0) #else #include "jpeg_nbits_table.h" #define JPEG_NBITS(x) (jpeg_nbits_table[x]) #define JPEG_NBITS_NONZERO(x) JPEG_NBITS(x) #endif #ifndef min #define min(a,b) ((a)<(b)?(a):(b)) #endif /* Expanded entropy encoder object for Huffman encoding. * * The savable_state subrecord contains fields that change within an MCU, * but must not be updated permanently until we complete the MCU. */ typedef struct { size_t put_buffer; /* current bit-accumulation buffer */ int put_bits; /* # of bits now in it */ int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ } savable_state; /* This macro is to work around compilers with missing or broken * structure assignment. You'll need to fix this code if you have * such a compiler and you change MAX_COMPS_IN_SCAN. */ #ifndef NO_STRUCT_ASSIGN #define ASSIGN_STATE(dest,src) ((dest) = (src)) #else #if MAX_COMPS_IN_SCAN == 4 #define ASSIGN_STATE(dest,src) \ ((dest).put_buffer = (src).put_buffer, \ (dest).put_bits = (src).put_bits, \ (dest).last_dc_val[0] = (src).last_dc_val[0], \ (dest).last_dc_val[1] = (src).last_dc_val[1], \ (dest).last_dc_val[2] = (src).last_dc_val[2], \ (dest).last_dc_val[3] = (src).last_dc_val[3]) #endif #endif typedef struct { struct jpeg_entropy_encoder pub; /* public fields */ savable_state saved; /* Bit buffer & DC state at start of MCU */ /* These fields are NOT loaded into local working state. */ unsigned int restarts_to_go; /* MCUs left in this restart interval */ int next_restart_num; /* next restart number to write (0-7) */ /* Pointers to derived tables (these workspaces have image lifespan) */ c_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS]; c_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS]; #ifdef ENTROPY_OPT_SUPPORTED /* Statistics tables for optimization */ long * dc_count_ptrs[NUM_HUFF_TBLS]; long * ac_count_ptrs[NUM_HUFF_TBLS]; #endif } huff_entropy_encoder; typedef huff_entropy_encoder * huff_entropy_ptr; /* Working state while writing an MCU. * This struct contains all the fields that are needed by subroutines. */ typedef struct { JOCTET * next_output_byte; /* => next byte to write in buffer */ size_t free_in_buffer; /* # of byte spaces remaining in buffer */ savable_state cur; /* Current bit buffer & DC state */ j_compress_ptr cinfo; /* dump_buffer needs access to this */ } working_state; /* Forward declarations */ METHODDEF(boolean) encode_mcu_huff (j_compress_ptr cinfo, JBLOCKROW *MCU_data); METHODDEF(void) finish_pass_huff (j_compress_ptr cinfo); #ifdef ENTROPY_OPT_SUPPORTED METHODDEF(boolean) encode_mcu_gather (j_compress_ptr cinfo, JBLOCKROW *MCU_data); METHODDEF(void) finish_pass_gather (j_compress_ptr cinfo); #endif /* * Initialize for a Huffman-compressed scan. * If gather_statistics is TRUE, we do not output anything during the scan, * just count the Huffman symbols used and generate Huffman code tables. */ METHODDEF(void) start_pass_huff (j_compress_ptr cinfo, boolean gather_statistics) { huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; int ci, dctbl, actbl; jpeg_component_info * compptr; if (gather_statistics) { #ifdef ENTROPY_OPT_SUPPORTED entropy->pub.encode_mcu = encode_mcu_gather; entropy->pub.finish_pass = finish_pass_gather; #else ERREXIT(cinfo, JERR_NOT_COMPILED); #endif } else { entropy->pub.encode_mcu = encode_mcu_huff; entropy->pub.finish_pass = finish_pass_huff; } for (ci = 0; ci < cinfo->comps_in_scan; ci++) { compptr = cinfo->cur_comp_info[ci]; dctbl = compptr->dc_tbl_no; actbl = compptr->ac_tbl_no; if (gather_statistics) { #ifdef ENTROPY_OPT_SUPPORTED /* Check for invalid table indexes */ /* (make_c_derived_tbl does this in the other path) */ if (dctbl < 0 || dctbl >= NUM_HUFF_TBLS) ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, dctbl); if (actbl < 0 || actbl >= NUM_HUFF_TBLS) ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, actbl); /* Allocate and zero the statistics tables */ /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */ if (entropy->dc_count_ptrs[dctbl] == NULL) entropy->dc_count_ptrs[dctbl] = (long *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, 257 * sizeof(long)); MEMZERO(entropy->dc_count_ptrs[dctbl], 257 * sizeof(long)); if (entropy->ac_count_ptrs[actbl] == NULL) entropy->ac_count_ptrs[actbl] = (long *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, 257 * sizeof(long)); MEMZERO(entropy->ac_count_ptrs[actbl], 257 * sizeof(long)); #endif } else { /* Compute derived values for Huffman tables */ /* We may do this more than once for a table, but it's not expensive */ jpeg_make_c_derived_tbl(cinfo, TRUE, dctbl, & entropy->dc_derived_tbls[dctbl]); jpeg_make_c_derived_tbl(cinfo, FALSE, actbl, & entropy->ac_derived_tbls[actbl]); } /* Initialize DC predictions to 0 */ entropy->saved.last_dc_val[ci] = 0; } /* Initialize bit buffer to empty */ entropy->saved.put_buffer = 0; entropy->saved.put_bits = 0; /* Initialize restart stuff */ entropy->restarts_to_go = cinfo->restart_interval; entropy->next_restart_num = 0; } /* * Compute the derived values for a Huffman table. * This routine also performs some validation checks on the table. * * Note this is also used by jcphuff.c. */ GLOBAL(void) jpeg_make_c_derived_tbl (j_compress_ptr cinfo, boolean isDC, int tblno, c_derived_tbl ** pdtbl) { JHUFF_TBL *htbl; c_derived_tbl *dtbl; int p, i, l, lastp, si, maxsymbol; char huffsize[257]; unsigned int huffcode[257]; unsigned int code; /* Note that huffsize[] and huffcode[] are filled in code-length order, * paralleling the order of the symbols themselves in htbl->huffval[]. */ /* Find the input Huffman table */ if (tblno < 0 || tblno >= NUM_HUFF_TBLS) ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); htbl = isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno]; if (htbl == NULL) ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); /* Allocate a workspace if we haven't already done so. */ if (*pdtbl == NULL) *pdtbl = (c_derived_tbl *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, sizeof(c_derived_tbl)); dtbl = *pdtbl; /* Figure C.1: make table of Huffman code length for each symbol */ p = 0; for (l = 1; l <= 16; l++) { i = (int) htbl->bits[l]; if (i < 0 || p + i > 256) /* protect against table overrun */ ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); while (i--) huffsize[p++] = (char) l; } huffsize[p] = 0; lastp = p; /* Figure C.2: generate the codes themselves */ /* We also validate that the counts represent a legal Huffman code tree. */ code = 0; si = huffsize[0]; p = 0; while (huffsize[p]) { while (((int) huffsize[p]) == si) { huffcode[p++] = code; code++; } /* code is now 1 more than the last code used for codelength si; but * it must still fit in si bits, since no code is allowed to be all ones. */ if (((INT32) code) >= (((INT32) 1) << si)) ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); code <<= 1; si++; } /* Figure C.3: generate encoding tables */ /* These are code and size indexed by symbol value */ /* Set all codeless symbols to have code length 0; * this lets us detect duplicate VAL entries here, and later * allows emit_bits to detect any attempt to emit such symbols. */ MEMZERO(dtbl->ehufsi, sizeof(dtbl->ehufsi)); /* This is also a convenient place to check for out-of-range * and duplicated VAL entries. We allow 0..255 for AC symbols * but only 0..15 for DC. (We could constrain them further * based on data depth and mode, but this seems enough.) */ maxsymbol = isDC ? 15 : 255; for (p = 0; p < lastp; p++) { i = htbl->huffval[p]; if (i < 0 || i > maxsymbol || dtbl->ehufsi[i]) ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); dtbl->ehufco[i] = huffcode[p]; dtbl->ehufsi[i] = huffsize[p]; } } /* Outputting bytes to the file */ /* Emit a byte, taking 'action' if must suspend. */ #define emit_byte(state,val,action) \ { *(state)->next_output_byte++ = (JOCTET) (val); \ if (--(state)->free_in_buffer == 0) \ if (! dump_buffer(state)) \ { action; } } LOCAL(boolean) dump_buffer (working_state * state) /* Empty the output buffer; return TRUE if successful, FALSE if must suspend */ { struct jpeg_destination_mgr * dest = state->cinfo->dest; if (! (*dest->empty_output_buffer) (state->cinfo)) return FALSE; /* After a successful buffer dump, must reset buffer pointers */ state->next_output_byte = dest->next_output_byte; state->free_in_buffer = dest->free_in_buffer; return TRUE; } /* Outputting bits to the file */ /* These macros perform the same task as the emit_bits() function in the * original libjpeg code. In addition to reducing overhead by explicitly * inlining the code, additional performance is achieved by taking into * account the size of the bit buffer and waiting until it is almost full * before emptying it. This mostly benefits 64-bit platforms, since 6 * bytes can be stored in a 64-bit bit buffer before it has to be emptied. */ #define EMIT_BYTE() { \ JOCTET c; \ put_bits -= 8; \ c = (JOCTET)GETJOCTET(put_buffer >> put_bits); \ *buffer++ = c; \ if (c == 0xFF) /* need to stuff a zero byte? */ \ *buffer++ = 0; \ } #define PUT_BITS(code, size) { \ put_bits += size; \ put_buffer = (put_buffer << size) | code; \ } #define CHECKBUF15() { \ if (put_bits > 15) { \ EMIT_BYTE() \ EMIT_BYTE() \ } \ } #define CHECKBUF31() { \ if (put_bits > 31) { \ EMIT_BYTE() \ EMIT_BYTE() \ EMIT_BYTE() \ EMIT_BYTE() \ } \ } #define CHECKBUF47() { \ if (put_bits > 47) { \ EMIT_BYTE() \ EMIT_BYTE() \ EMIT_BYTE() \ EMIT_BYTE() \ EMIT_BYTE() \ EMIT_BYTE() \ } \ } #if !defined(_WIN32) && !defined(SIZEOF_SIZE_T) #error Cannot determine word size #endif #if SIZEOF_SIZE_T==8 || defined(_WIN64) #define EMIT_BITS(code, size) { \ CHECKBUF47() \ PUT_BITS(code, size) \ } #define EMIT_CODE(code, size) { \ temp2 &= (((INT32) 1)<free_in_buffer < BUFSIZE) { \ localbuf = 1; \ buffer = _buffer; \ } \ else buffer = state->next_output_byte; \ } #define STORE_BUFFER() { \ if (localbuf) { \ bytes = buffer - _buffer; \ buffer = _buffer; \ while (bytes > 0) { \ bytestocopy = min(bytes, state->free_in_buffer); \ MEMCOPY(state->next_output_byte, buffer, bytestocopy); \ state->next_output_byte += bytestocopy; \ buffer += bytestocopy; \ state->free_in_buffer -= bytestocopy; \ if (state->free_in_buffer == 0) \ if (! dump_buffer(state)) return FALSE; \ bytes -= bytestocopy; \ } \ } \ else { \ state->free_in_buffer -= (buffer - state->next_output_byte); \ state->next_output_byte = buffer; \ } \ } LOCAL(boolean) flush_bits (working_state * state) { JOCTET _buffer[BUFSIZE], *buffer; size_t put_buffer; int put_bits; size_t bytes, bytestocopy; int localbuf = 0; put_buffer = state->cur.put_buffer; put_bits = state->cur.put_bits; LOAD_BUFFER() /* fill any partial byte with ones */ PUT_BITS(0x7F, 7) while (put_bits >= 8) EMIT_BYTE() state->cur.put_buffer = 0; /* and reset bit-buffer to empty */ state->cur.put_bits = 0; STORE_BUFFER() return TRUE; } /* Encode a single block's worth of coefficients */ LOCAL(boolean) encode_one_block (working_state * state, JCOEFPTR block, int last_dc_val, c_derived_tbl *dctbl, c_derived_tbl *actbl) { int temp, temp2, temp3; int nbits; int r, code, size; JOCTET _buffer[BUFSIZE], *buffer; size_t put_buffer; int put_bits; int code_0xf0 = actbl->ehufco[0xf0], size_0xf0 = actbl->ehufsi[0xf0]; size_t bytes, bytestocopy; int localbuf = 0; put_buffer = state->cur.put_buffer; put_bits = state->cur.put_bits; LOAD_BUFFER() /* Encode the DC coefficient difference per section F.1.2.1 */ temp = temp2 = block[0] - last_dc_val; /* This is a well-known technique for obtaining the absolute value without a * branch. It is derived from an assembly language technique presented in * "How to Optimize for the Pentium Processors", Copyright (c) 1996, 1997 by * Agner Fog. */ temp3 = temp >> (CHAR_BIT * sizeof(int) - 1); temp ^= temp3; temp -= temp3; /* For a negative input, want temp2 = bitwise complement of abs(input) */ /* This code assumes we are on a two's complement machine */ temp2 += temp3; /* Find the number of bits needed for the magnitude of the coefficient */ nbits = JPEG_NBITS(temp); /* Emit the Huffman-coded symbol for the number of bits */ code = dctbl->ehufco[nbits]; size = dctbl->ehufsi[nbits]; EMIT_BITS(code, size) /* Mask off any extra bits in code */ temp2 &= (((INT32) 1)<> (CHAR_BIT * sizeof(int) - 1); \ temp ^= temp3; \ temp -= temp3; \ temp2 += temp3; \ nbits = JPEG_NBITS_NONZERO(temp); \ /* if run length > 15, must emit special run-length-16 codes (0xF0) */ \ while (r > 15) { \ EMIT_BITS(code_0xf0, size_0xf0) \ r -= 16; \ } \ /* Emit Huffman symbol for run length / number of bits */ \ temp3 = (r << 4) + nbits; \ code = actbl->ehufco[temp3]; \ size = actbl->ehufsi[temp3]; \ EMIT_CODE(code, size) \ r = 0; \ } \ } /* One iteration for each value in jpeg_natural_order[] */ kloop(1); kloop(8); kloop(16); kloop(9); kloop(2); kloop(3); kloop(10); kloop(17); kloop(24); kloop(32); kloop(25); kloop(18); kloop(11); kloop(4); kloop(5); kloop(12); kloop(19); kloop(26); kloop(33); kloop(40); kloop(48); kloop(41); kloop(34); kloop(27); kloop(20); kloop(13); kloop(6); kloop(7); kloop(14); kloop(21); kloop(28); kloop(35); kloop(42); kloop(49); kloop(56); kloop(57); kloop(50); kloop(43); kloop(36); kloop(29); kloop(22); kloop(15); kloop(23); kloop(30); kloop(37); kloop(44); kloop(51); kloop(58); kloop(59); kloop(52); kloop(45); kloop(38); kloop(31); kloop(39); kloop(46); kloop(53); kloop(60); kloop(61); kloop(54); kloop(47); kloop(55); kloop(62); kloop(63); /* If the last coef(s) were zero, emit an end-of-block code */ if (r > 0) { code = actbl->ehufco[0]; size = actbl->ehufsi[0]; EMIT_BITS(code, size) } state->cur.put_buffer = put_buffer; state->cur.put_bits = put_bits; STORE_BUFFER() return TRUE; } /* * Emit a restart marker & resynchronize predictions. */ LOCAL(boolean) emit_restart (working_state * state, int restart_num) { int ci; if (! flush_bits(state)) return FALSE; emit_byte(state, 0xFF, return FALSE); emit_byte(state, JPEG_RST0 + restart_num, return FALSE); /* Re-initialize DC predictions to 0 */ for (ci = 0; ci < state->cinfo->comps_in_scan; ci++) state->cur.last_dc_val[ci] = 0; /* The restart counter is not updated until we successfully write the MCU. */ return TRUE; } /* * Encode and output one MCU's worth of Huffman-compressed coefficients. */ METHODDEF(boolean) encode_mcu_huff (j_compress_ptr cinfo, JBLOCKROW *MCU_data) { huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; working_state state; int blkn, ci; jpeg_component_info * compptr; /* Load up working state */ state.next_output_byte = cinfo->dest->next_output_byte; state.free_in_buffer = cinfo->dest->free_in_buffer; ASSIGN_STATE(state.cur, entropy->saved); state.cinfo = cinfo; /* Emit restart marker if needed */ if (cinfo->restart_interval) { if (entropy->restarts_to_go == 0) if (! emit_restart(&state, entropy->next_restart_num)) return FALSE; } /* Encode the MCU data blocks */ for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { ci = cinfo->MCU_membership[blkn]; compptr = cinfo->cur_comp_info[ci]; if (! encode_one_block(&state, MCU_data[blkn][0], state.cur.last_dc_val[ci], entropy->dc_derived_tbls[compptr->dc_tbl_no], entropy->ac_derived_tbls[compptr->ac_tbl_no])) return FALSE; /* Update last_dc_val */ state.cur.last_dc_val[ci] = MCU_data[blkn][0][0]; } /* Completed MCU, so update state */ cinfo->dest->next_output_byte = state.next_output_byte; cinfo->dest->free_in_buffer = state.free_in_buffer; ASSIGN_STATE(entropy->saved, state.cur); /* Update restart-interval state too */ if (cinfo->restart_interval) { if (entropy->restarts_to_go == 0) { entropy->restarts_to_go = cinfo->restart_interval; entropy->next_restart_num++; entropy->next_restart_num &= 7; } entropy->restarts_to_go--; } return TRUE; } /* * Finish up at the end of a Huffman-compressed scan. */ METHODDEF(void) finish_pass_huff (j_compress_ptr cinfo) { huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; working_state state; /* Load up working state ... flush_bits needs it */ state.next_output_byte = cinfo->dest->next_output_byte; state.free_in_buffer = cinfo->dest->free_in_buffer; ASSIGN_STATE(state.cur, entropy->saved); state.cinfo = cinfo; /* Flush out the last data */ if (! flush_bits(&state)) ERREXIT(cinfo, JERR_CANT_SUSPEND); /* Update state */ cinfo->dest->next_output_byte = state.next_output_byte; cinfo->dest->free_in_buffer = state.free_in_buffer; ASSIGN_STATE(entropy->saved, state.cur); } /* * Huffman coding optimization. * * We first scan the supplied data and count the number of uses of each symbol * that is to be Huffman-coded. (This process MUST agree with the code above.) * Then we build a Huffman coding tree for the observed counts. * Symbols which are not needed at all for the particular image are not * assigned any code, which saves space in the DHT marker as well as in * the compressed data. */ #ifdef ENTROPY_OPT_SUPPORTED /* Process a single block's worth of coefficients */ LOCAL(void) htest_one_block (j_compress_ptr cinfo, JCOEFPTR block, int last_dc_val, long dc_counts[], long ac_counts[]) { register int temp; register int nbits; register int k, r; /* Encode the DC coefficient difference per section F.1.2.1 */ temp = block[0] - last_dc_val; if (temp < 0) temp = -temp; /* Find the number of bits needed for the magnitude of the coefficient */ nbits = 0; while (temp) { nbits++; temp >>= 1; } /* Check for out-of-range coefficient values. * Since we're encoding a difference, the range limit is twice as much. */ if (nbits > MAX_COEF_BITS+1) ERREXIT(cinfo, JERR_BAD_DCT_COEF); /* Count the Huffman symbol for the number of bits */ dc_counts[nbits]++; /* Encode the AC coefficients per section F.1.2.2 */ r = 0; /* r = run length of zeros */ for (k = 1; k < DCTSIZE2; k++) { if ((temp = block[jpeg_natural_order[k]]) == 0) { r++; } else { /* if run length > 15, must emit special run-length-16 codes (0xF0) */ while (r > 15) { ac_counts[0xF0]++; r -= 16; } /* Find the number of bits needed for the magnitude of the coefficient */ if (temp < 0) temp = -temp; /* Find the number of bits needed for the magnitude of the coefficient */ nbits = 1; /* there must be at least one 1 bit */ while ((temp >>= 1)) nbits++; /* Check for out-of-range coefficient values */ if (nbits > MAX_COEF_BITS) ERREXIT(cinfo, JERR_BAD_DCT_COEF); /* Count Huffman symbol for run length / number of bits */ ac_counts[(r << 4) + nbits]++; r = 0; } } /* If the last coef(s) were zero, emit an end-of-block code */ if (r > 0) ac_counts[0]++; } /* * Trial-encode one MCU's worth of Huffman-compressed coefficients. * No data is actually output, so no suspension return is possible. */ METHODDEF(boolean) encode_mcu_gather (j_compress_ptr cinfo, JBLOCKROW *MCU_data) { huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; int blkn, ci; jpeg_component_info * compptr; /* Take care of restart intervals if needed */ if (cinfo->restart_interval) { if (entropy->restarts_to_go == 0) { /* Re-initialize DC predictions to 0 */ for (ci = 0; ci < cinfo->comps_in_scan; ci++) entropy->saved.last_dc_val[ci] = 0; /* Update restart state */ entropy->restarts_to_go = cinfo->restart_interval; } entropy->restarts_to_go--; } for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { ci = cinfo->MCU_membership[blkn]; compptr = cinfo->cur_comp_info[ci]; htest_one_block(cinfo, MCU_data[blkn][0], entropy->saved.last_dc_val[ci], entropy->dc_count_ptrs[compptr->dc_tbl_no], entropy->ac_count_ptrs[compptr->ac_tbl_no]); entropy->saved.last_dc_val[ci] = MCU_data[blkn][0][0]; } return TRUE; } /* * Generate the best Huffman code table for the given counts, fill htbl. * Note this is also used by jcphuff.c. * * The JPEG standard requires that no symbol be assigned a codeword of all * one bits (so that padding bits added at the end of a compressed segment * can't look like a valid code). Because of the canonical ordering of * codewords, this just means that there must be an unused slot in the * longest codeword length category. Section K.2 of the JPEG spec suggests * reserving such a slot by pretending that symbol 256 is a valid symbol * with count 1. In theory that's not optimal; giving it count zero but * including it in the symbol set anyway should give a better Huffman code. * But the theoretically better code actually seems to come out worse in * practice, because it produces more all-ones bytes (which incur stuffed * zero bytes in the final file). In any case the difference is tiny. * * The JPEG standard requires Huffman codes to be no more than 16 bits long. * If some symbols have a very small but nonzero probability, the Huffman tree * must be adjusted to meet the code length restriction. We currently use * the adjustment method suggested in JPEG section K.2. This method is *not* * optimal; it may not choose the best possible limited-length code. But * typically only very-low-frequency symbols will be given less-than-optimal * lengths, so the code is almost optimal. Experimental comparisons against * an optimal limited-length-code algorithm indicate that the difference is * microscopic --- usually less than a hundredth of a percent of total size. * So the extra complexity of an optimal algorithm doesn't seem worthwhile. */ GLOBAL(void) jpeg_gen_optimal_table (j_compress_ptr cinfo, JHUFF_TBL * htbl, long freq[]) { #define MAX_CLEN 32 /* assumed maximum initial code length */ UINT8 bits[MAX_CLEN+1]; /* bits[k] = # of symbols with code length k */ int codesize[257]; /* codesize[k] = code length of symbol k */ int others[257]; /* next symbol in current branch of tree */ int c1, c2; int p, i, j; long v; /* This algorithm is explained in section K.2 of the JPEG standard */ MEMZERO(bits, sizeof(bits)); MEMZERO(codesize, sizeof(codesize)); for (i = 0; i < 257; i++) others[i] = -1; /* init links to empty */ freq[256] = 1; /* make sure 256 has a nonzero count */ /* Including the pseudo-symbol 256 in the Huffman procedure guarantees * that no real symbol is given code-value of all ones, because 256 * will be placed last in the largest codeword category. */ /* Huffman's basic algorithm to assign optimal code lengths to symbols */ for (;;) { /* Find the smallest nonzero frequency, set c1 = its symbol */ /* In case of ties, take the larger symbol number */ c1 = -1; v = 1000000000L; for (i = 0; i <= 256; i++) { if (freq[i] && freq[i] <= v) { v = freq[i]; c1 = i; } } /* Find the next smallest nonzero frequency, set c2 = its symbol */ /* In case of ties, take the larger symbol number */ c2 = -1; v = 1000000000L; for (i = 0; i <= 256; i++) { if (freq[i] && freq[i] <= v && i != c1) { v = freq[i]; c2 = i; } } /* Done if we've merged everything into one frequency */ if (c2 < 0) break; /* Else merge the two counts/trees */ freq[c1] += freq[c2]; freq[c2] = 0; /* Increment the codesize of everything in c1's tree branch */ codesize[c1]++; while (others[c1] >= 0) { c1 = others[c1]; codesize[c1]++; } others[c1] = c2; /* chain c2 onto c1's tree branch */ /* Increment the codesize of everything in c2's tree branch */ codesize[c2]++; while (others[c2] >= 0) { c2 = others[c2]; codesize[c2]++; } } /* Now count the number of symbols of each code length */ for (i = 0; i <= 256; i++) { if (codesize[i]) { /* The JPEG standard seems to think that this can't happen, */ /* but I'm paranoid... */ if (codesize[i] > MAX_CLEN) ERREXIT(cinfo, JERR_HUFF_CLEN_OVERFLOW); bits[codesize[i]]++; } } /* JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure * Huffman procedure assigned any such lengths, we must adjust the coding. * Here is what the JPEG spec says about how this next bit works: * Since symbols are paired for the longest Huffman code, the symbols are * removed from this length category two at a time. The prefix for the pair * (which is one bit shorter) is allocated to one of the pair; then, * skipping the BITS entry for that prefix length, a code word from the next * shortest nonzero BITS entry is converted into a prefix for two code words * one bit longer. */ for (i = MAX_CLEN; i > 16; i--) { while (bits[i] > 0) { j = i - 2; /* find length of new prefix to be used */ while (bits[j] == 0) j--; bits[i] -= 2; /* remove two symbols */ bits[i-1]++; /* one goes in this length */ bits[j+1] += 2; /* two new symbols in this length */ bits[j]--; /* symbol of this length is now a prefix */ } } /* Remove the count for the pseudo-symbol 256 from the largest codelength */ while (bits[i] == 0) /* find largest codelength still in use */ i--; bits[i]--; /* Return final symbol counts (only for lengths 0..16) */ MEMCOPY(htbl->bits, bits, sizeof(htbl->bits)); /* Return a list of the symbols sorted by code length */ /* It's not real clear to me why we don't need to consider the codelength * changes made above, but the JPEG spec seems to think this works. */ p = 0; for (i = 1; i <= MAX_CLEN; i++) { for (j = 0; j <= 255; j++) { if (codesize[j] == i) { htbl->huffval[p] = (UINT8) j; p++; } } } /* Set sent_table FALSE so updated table will be written to JPEG file. */ htbl->sent_table = FALSE; } /* * Finish up a statistics-gathering pass and create the new Huffman tables. */ METHODDEF(void) finish_pass_gather (j_compress_ptr cinfo) { huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; int ci, dctbl, actbl; jpeg_component_info * compptr; JHUFF_TBL **htblptr; boolean did_dc[NUM_HUFF_TBLS]; boolean did_ac[NUM_HUFF_TBLS]; /* It's important not to apply jpeg_gen_optimal_table more than once * per table, because it clobbers the input frequency counts! */ MEMZERO(did_dc, sizeof(did_dc)); MEMZERO(did_ac, sizeof(did_ac)); for (ci = 0; ci < cinfo->comps_in_scan; ci++) { compptr = cinfo->cur_comp_info[ci]; dctbl = compptr->dc_tbl_no; actbl = compptr->ac_tbl_no; if (! did_dc[dctbl]) { htblptr = & cinfo->dc_huff_tbl_ptrs[dctbl]; if (*htblptr == NULL) *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo); jpeg_gen_optimal_table(cinfo, *htblptr, entropy->dc_count_ptrs[dctbl]); did_dc[dctbl] = TRUE; } if (! did_ac[actbl]) { htblptr = & cinfo->ac_huff_tbl_ptrs[actbl]; if (*htblptr == NULL) *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo); jpeg_gen_optimal_table(cinfo, *htblptr, entropy->ac_count_ptrs[actbl]); did_ac[actbl] = TRUE; } } } #endif /* ENTROPY_OPT_SUPPORTED */ /* * Module initialization routine for Huffman entropy encoding. */ GLOBAL(void) jinit_huff_encoder (j_compress_ptr cinfo) { huff_entropy_ptr entropy; int i; entropy = (huff_entropy_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, sizeof(huff_entropy_encoder)); cinfo->entropy = (struct jpeg_entropy_encoder *) entropy; entropy->pub.start_pass = start_pass_huff; /* Mark tables unallocated */ for (i = 0; i < NUM_HUFF_TBLS; i++) { entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL; #ifdef ENTROPY_OPT_SUPPORTED entropy->dc_count_ptrs[i] = entropy->ac_count_ptrs[i] = NULL; #endif } } libjpeg-turbo-1.4.2/jmemsys.h0000644000076500007650000001717012600050400013047 00000000000000/* * jmemsys.h * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1992-1997, Thomas G. Lane. * It was modified by The libjpeg-turbo Project to include only code and * information relevant to libjpeg-turbo. * For conditions of distribution and use, see the accompanying README file. * * This include file defines the interface between the system-independent * and system-dependent portions of the JPEG memory manager. No other * modules need include it. (The system-independent portion is jmemmgr.c; * there are several different versions of the system-dependent portion.) * * This file works as-is for the system-dependent memory managers supplied * in the IJG distribution. You may need to modify it if you write a * custom memory manager. If system-dependent changes are needed in * this file, the best method is to #ifdef them based on a configuration * symbol supplied in jconfig.h. */ /* * These two functions are used to allocate and release small chunks of * memory. (Typically the total amount requested through jpeg_get_small is * no more than 20K or so; this will be requested in chunks of a few K each.) * Behavior should be the same as for the standard library functions malloc * and free; in particular, jpeg_get_small must return NULL on failure. * On most systems, these ARE malloc and free. jpeg_free_small is passed the * size of the object being freed, just in case it's needed. */ EXTERN(void *) jpeg_get_small (j_common_ptr cinfo, size_t sizeofobject); EXTERN(void) jpeg_free_small (j_common_ptr cinfo, void * object, size_t sizeofobject); /* * These two functions are used to allocate and release large chunks of * memory (up to the total free space designated by jpeg_mem_available). * These are identical to the jpeg_get/free_small routines; but we keep them * separate anyway, in case a different allocation strategy is desirable for * large chunks. */ EXTERN(void *) jpeg_get_large (j_common_ptr cinfo, size_t sizeofobject); EXTERN(void) jpeg_free_large (j_common_ptr cinfo, void * object, size_t sizeofobject); /* * The macro MAX_ALLOC_CHUNK designates the maximum number of bytes that may * be requested in a single call to jpeg_get_large (and jpeg_get_small for that * matter, but that case should never come into play). This macro was needed * to model the 64Kb-segment-size limit of far addressing on 80x86 machines. * On machines with flat address spaces, any large constant may be used. * * NB: jmemmgr.c expects that MAX_ALLOC_CHUNK will be representable as type * size_t and will be a multiple of sizeof(align_type). */ #ifndef MAX_ALLOC_CHUNK /* may be overridden in jconfig.h */ #define MAX_ALLOC_CHUNK 1000000000L #endif /* * This routine computes the total space still available for allocation by * jpeg_get_large. If more space than this is needed, backing store will be * used. NOTE: any memory already allocated must not be counted. * * There is a minimum space requirement, corresponding to the minimum * feasible buffer sizes; jmemmgr.c will request that much space even if * jpeg_mem_available returns zero. The maximum space needed, enough to hold * all working storage in memory, is also passed in case it is useful. * Finally, the total space already allocated is passed. If no better * method is available, cinfo->mem->max_memory_to_use - already_allocated * is often a suitable calculation. * * It is OK for jpeg_mem_available to underestimate the space available * (that'll just lead to more backing-store access than is really necessary). * However, an overestimate will lead to failure. Hence it's wise to subtract * a slop factor from the true available space. 5% should be enough. * * On machines with lots of virtual memory, any large constant may be returned. * Conversely, zero may be returned to always use the minimum amount of memory. */ EXTERN(size_t) jpeg_mem_available (j_common_ptr cinfo, size_t min_bytes_needed, size_t max_bytes_needed, size_t already_allocated); /* * This structure holds whatever state is needed to access a single * backing-store object. The read/write/close method pointers are called * by jmemmgr.c to manipulate the backing-store object; all other fields * are private to the system-dependent backing store routines. */ #define TEMP_NAME_LENGTH 64 /* max length of a temporary file's name */ #ifdef USE_MSDOS_MEMMGR /* DOS-specific junk */ typedef unsigned short XMSH; /* type of extended-memory handles */ typedef unsigned short EMSH; /* type of expanded-memory handles */ typedef union { short file_handle; /* DOS file handle if it's a temp file */ XMSH xms_handle; /* handle if it's a chunk of XMS */ EMSH ems_handle; /* handle if it's a chunk of EMS */ } handle_union; #endif /* USE_MSDOS_MEMMGR */ #ifdef USE_MAC_MEMMGR /* Mac-specific junk */ #include #endif /* USE_MAC_MEMMGR */ typedef struct backing_store_struct * backing_store_ptr; typedef struct backing_store_struct { /* Methods for reading/writing/closing this backing-store object */ void (*read_backing_store) (j_common_ptr cinfo, backing_store_ptr info, void * buffer_address, long file_offset, long byte_count); void (*write_backing_store) (j_common_ptr cinfo, backing_store_ptr info, void * buffer_address, long file_offset, long byte_count); void (*close_backing_store) (j_common_ptr cinfo, backing_store_ptr info); /* Private fields for system-dependent backing-store management */ #ifdef USE_MSDOS_MEMMGR /* For the MS-DOS manager (jmemdos.c), we need: */ handle_union handle; /* reference to backing-store storage object */ char temp_name[TEMP_NAME_LENGTH]; /* name if it's a file */ #else #ifdef USE_MAC_MEMMGR /* For the Mac manager (jmemmac.c), we need: */ short temp_file; /* file reference number to temp file */ FSSpec tempSpec; /* the FSSpec for the temp file */ char temp_name[TEMP_NAME_LENGTH]; /* name if it's a file */ #else /* For a typical implementation with temp files, we need: */ FILE * temp_file; /* stdio reference to temp file */ char temp_name[TEMP_NAME_LENGTH]; /* name of temp file */ #endif #endif } backing_store_info; /* * Initial opening of a backing-store object. This must fill in the * read/write/close pointers in the object. The read/write routines * may take an error exit if the specified maximum file size is exceeded. * (If jpeg_mem_available always returns a large value, this routine can * just take an error exit.) */ EXTERN(void) jpeg_open_backing_store (j_common_ptr cinfo, backing_store_ptr info, long total_bytes_needed); /* * These routines take care of any system-dependent initialization and * cleanup required. jpeg_mem_init will be called before anything is * allocated (and, therefore, nothing in cinfo is of use except the error * manager pointer). It should return a suitable default value for * max_memory_to_use; this may subsequently be overridden by the surrounding * application. (Note that max_memory_to_use is only important if * jpeg_mem_available chooses to consult it ... no one else will.) * jpeg_mem_term may assume that all requested memory has been freed and that * all opened backing-store objects have been closed. */ EXTERN(long) jpeg_mem_init (j_common_ptr cinfo); EXTERN(void) jpeg_mem_term (j_common_ptr cinfo); libjpeg-turbo-1.4.2/jquant2.c0000644000076500007650000013727012600050400012743 00000000000000/* * jquant2.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1991-1996, Thomas G. Lane. * libjpeg-turbo Modifications: * Copyright (C) 2009, 2014, D. R. Commander. * For conditions of distribution and use, see the accompanying README file. * * This file contains 2-pass color quantization (color mapping) routines. * These routines provide selection of a custom color map for an image, * followed by mapping of the image to that color map, with optional * Floyd-Steinberg dithering. * It is also possible to use just the second pass to map to an arbitrary * externally-given color map. * * Note: ordered dithering is not supported, since there isn't any fast * way to compute intercolor distances; it's unclear that ordered dither's * fundamental assumptions even hold with an irregularly spaced color map. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" #ifdef QUANT_2PASS_SUPPORTED /* * This module implements the well-known Heckbert paradigm for color * quantization. Most of the ideas used here can be traced back to * Heckbert's seminal paper * Heckbert, Paul. "Color Image Quantization for Frame Buffer Display", * Proc. SIGGRAPH '82, Computer Graphics v.16 #3 (July 1982), pp 297-304. * * In the first pass over the image, we accumulate a histogram showing the * usage count of each possible color. To keep the histogram to a reasonable * size, we reduce the precision of the input; typical practice is to retain * 5 or 6 bits per color, so that 8 or 4 different input values are counted * in the same histogram cell. * * Next, the color-selection step begins with a box representing the whole * color space, and repeatedly splits the "largest" remaining box until we * have as many boxes as desired colors. Then the mean color in each * remaining box becomes one of the possible output colors. * * The second pass over the image maps each input pixel to the closest output * color (optionally after applying a Floyd-Steinberg dithering correction). * This mapping is logically trivial, but making it go fast enough requires * considerable care. * * Heckbert-style quantizers vary a good deal in their policies for choosing * the "largest" box and deciding where to cut it. The particular policies * used here have proved out well in experimental comparisons, but better ones * may yet be found. * * In earlier versions of the IJG code, this module quantized in YCbCr color * space, processing the raw upsampled data without a color conversion step. * This allowed the color conversion math to be done only once per colormap * entry, not once per pixel. However, that optimization precluded other * useful optimizations (such as merging color conversion with upsampling) * and it also interfered with desired capabilities such as quantizing to an * externally-supplied colormap. We have therefore abandoned that approach. * The present code works in the post-conversion color space, typically RGB. * * To improve the visual quality of the results, we actually work in scaled * RGB space, giving G distances more weight than R, and R in turn more than * B. To do everything in integer math, we must use integer scale factors. * The 2/3/1 scale factors used here correspond loosely to the relative * weights of the colors in the NTSC grayscale equation. * If you want to use this code to quantize a non-RGB color space, you'll * probably need to change these scale factors. */ #define R_SCALE 2 /* scale R distances by this much */ #define G_SCALE 3 /* scale G distances by this much */ #define B_SCALE 1 /* and B by this much */ static const int c_scales[3]={R_SCALE, G_SCALE, B_SCALE}; #define C0_SCALE c_scales[rgb_red[cinfo->out_color_space]] #define C1_SCALE c_scales[rgb_green[cinfo->out_color_space]] #define C2_SCALE c_scales[rgb_blue[cinfo->out_color_space]] /* * First we have the histogram data structure and routines for creating it. * * The number of bits of precision can be adjusted by changing these symbols. * We recommend keeping 6 bits for G and 5 each for R and B. * If you have plenty of memory and cycles, 6 bits all around gives marginally * better results; if you are short of memory, 5 bits all around will save * some space but degrade the results. * To maintain a fully accurate histogram, we'd need to allocate a "long" * (preferably unsigned long) for each cell. In practice this is overkill; * we can get by with 16 bits per cell. Few of the cell counts will overflow, * and clamping those that do overflow to the maximum value will give close- * enough results. This reduces the recommended histogram size from 256Kb * to 128Kb, which is a useful savings on PC-class machines. * (In the second pass the histogram space is re-used for pixel mapping data; * in that capacity, each cell must be able to store zero to the number of * desired colors. 16 bits/cell is plenty for that too.) * Since the JPEG code is intended to run in small memory model on 80x86 * machines, we can't just allocate the histogram in one chunk. Instead * of a true 3-D array, we use a row of pointers to 2-D arrays. Each * pointer corresponds to a C0 value (typically 2^5 = 32 pointers) and * each 2-D array has 2^6*2^5 = 2048 or 2^6*2^6 = 4096 entries. */ #define MAXNUMCOLORS (MAXJSAMPLE+1) /* maximum size of colormap */ /* These will do the right thing for either R,G,B or B,G,R color order, * but you may not like the results for other color orders. */ #define HIST_C0_BITS 5 /* bits of precision in R/B histogram */ #define HIST_C1_BITS 6 /* bits of precision in G histogram */ #define HIST_C2_BITS 5 /* bits of precision in B/R histogram */ /* Number of elements along histogram axes. */ #define HIST_C0_ELEMS (1<cquantize; register JSAMPROW ptr; register histptr histp; register hist3d histogram = cquantize->histogram; int row; JDIMENSION col; JDIMENSION width = cinfo->output_width; for (row = 0; row < num_rows; row++) { ptr = input_buf[row]; for (col = width; col > 0; col--) { /* get pixel value and index into the histogram */ histp = & histogram[GETJSAMPLE(ptr[0]) >> C0_SHIFT] [GETJSAMPLE(ptr[1]) >> C1_SHIFT] [GETJSAMPLE(ptr[2]) >> C2_SHIFT]; /* increment, check for overflow and undo increment if so. */ if (++(*histp) <= 0) (*histp)--; ptr += 3; } } } /* * Next we have the really interesting routines: selection of a colormap * given the completed histogram. * These routines work with a list of "boxes", each representing a rectangular * subset of the input color space (to histogram precision). */ typedef struct { /* The bounds of the box (inclusive); expressed as histogram indexes */ int c0min, c0max; int c1min, c1max; int c2min, c2max; /* The volume (actually 2-norm) of the box */ INT32 volume; /* The number of nonzero histogram cells within this box */ long colorcount; } box; typedef box * boxptr; LOCAL(boxptr) find_biggest_color_pop (boxptr boxlist, int numboxes) /* Find the splittable box with the largest color population */ /* Returns NULL if no splittable boxes remain */ { register boxptr boxp; register int i; register long maxc = 0; boxptr which = NULL; for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) { if (boxp->colorcount > maxc && boxp->volume > 0) { which = boxp; maxc = boxp->colorcount; } } return which; } LOCAL(boxptr) find_biggest_volume (boxptr boxlist, int numboxes) /* Find the splittable box with the largest (scaled) volume */ /* Returns NULL if no splittable boxes remain */ { register boxptr boxp; register int i; register INT32 maxv = 0; boxptr which = NULL; for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) { if (boxp->volume > maxv) { which = boxp; maxv = boxp->volume; } } return which; } LOCAL(void) update_box (j_decompress_ptr cinfo, boxptr boxp) /* Shrink the min/max bounds of a box to enclose only nonzero elements, */ /* and recompute its volume and population */ { my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; hist3d histogram = cquantize->histogram; histptr histp; int c0,c1,c2; int c0min,c0max,c1min,c1max,c2min,c2max; INT32 dist0,dist1,dist2; long ccount; c0min = boxp->c0min; c0max = boxp->c0max; c1min = boxp->c1min; c1max = boxp->c1max; c2min = boxp->c2min; c2max = boxp->c2max; if (c0max > c0min) for (c0 = c0min; c0 <= c0max; c0++) for (c1 = c1min; c1 <= c1max; c1++) { histp = & histogram[c0][c1][c2min]; for (c2 = c2min; c2 <= c2max; c2++) if (*histp++ != 0) { boxp->c0min = c0min = c0; goto have_c0min; } } have_c0min: if (c0max > c0min) for (c0 = c0max; c0 >= c0min; c0--) for (c1 = c1min; c1 <= c1max; c1++) { histp = & histogram[c0][c1][c2min]; for (c2 = c2min; c2 <= c2max; c2++) if (*histp++ != 0) { boxp->c0max = c0max = c0; goto have_c0max; } } have_c0max: if (c1max > c1min) for (c1 = c1min; c1 <= c1max; c1++) for (c0 = c0min; c0 <= c0max; c0++) { histp = & histogram[c0][c1][c2min]; for (c2 = c2min; c2 <= c2max; c2++) if (*histp++ != 0) { boxp->c1min = c1min = c1; goto have_c1min; } } have_c1min: if (c1max > c1min) for (c1 = c1max; c1 >= c1min; c1--) for (c0 = c0min; c0 <= c0max; c0++) { histp = & histogram[c0][c1][c2min]; for (c2 = c2min; c2 <= c2max; c2++) if (*histp++ != 0) { boxp->c1max = c1max = c1; goto have_c1max; } } have_c1max: if (c2max > c2min) for (c2 = c2min; c2 <= c2max; c2++) for (c0 = c0min; c0 <= c0max; c0++) { histp = & histogram[c0][c1min][c2]; for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS) if (*histp != 0) { boxp->c2min = c2min = c2; goto have_c2min; } } have_c2min: if (c2max > c2min) for (c2 = c2max; c2 >= c2min; c2--) for (c0 = c0min; c0 <= c0max; c0++) { histp = & histogram[c0][c1min][c2]; for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS) if (*histp != 0) { boxp->c2max = c2max = c2; goto have_c2max; } } have_c2max: /* Update box volume. * We use 2-norm rather than real volume here; this biases the method * against making long narrow boxes, and it has the side benefit that * a box is splittable iff norm > 0. * Since the differences are expressed in histogram-cell units, * we have to shift back to JSAMPLE units to get consistent distances; * after which, we scale according to the selected distance scale factors. */ dist0 = ((c0max - c0min) << C0_SHIFT) * C0_SCALE; dist1 = ((c1max - c1min) << C1_SHIFT) * C1_SCALE; dist2 = ((c2max - c2min) << C2_SHIFT) * C2_SCALE; boxp->volume = dist0*dist0 + dist1*dist1 + dist2*dist2; /* Now scan remaining volume of box and compute population */ ccount = 0; for (c0 = c0min; c0 <= c0max; c0++) for (c1 = c1min; c1 <= c1max; c1++) { histp = & histogram[c0][c1][c2min]; for (c2 = c2min; c2 <= c2max; c2++, histp++) if (*histp != 0) { ccount++; } } boxp->colorcount = ccount; } LOCAL(int) median_cut (j_decompress_ptr cinfo, boxptr boxlist, int numboxes, int desired_colors) /* Repeatedly select and split the largest box until we have enough boxes */ { int n,lb; int c0,c1,c2,cmax; register boxptr b1,b2; while (numboxes < desired_colors) { /* Select box to split. * Current algorithm: by population for first half, then by volume. */ if (numboxes*2 <= desired_colors) { b1 = find_biggest_color_pop(boxlist, numboxes); } else { b1 = find_biggest_volume(boxlist, numboxes); } if (b1 == NULL) /* no splittable boxes left! */ break; b2 = &boxlist[numboxes]; /* where new box will go */ /* Copy the color bounds to the new box. */ b2->c0max = b1->c0max; b2->c1max = b1->c1max; b2->c2max = b1->c2max; b2->c0min = b1->c0min; b2->c1min = b1->c1min; b2->c2min = b1->c2min; /* Choose which axis to split the box on. * Current algorithm: longest scaled axis. * See notes in update_box about scaling distances. */ c0 = ((b1->c0max - b1->c0min) << C0_SHIFT) * C0_SCALE; c1 = ((b1->c1max - b1->c1min) << C1_SHIFT) * C1_SCALE; c2 = ((b1->c2max - b1->c2min) << C2_SHIFT) * C2_SCALE; /* We want to break any ties in favor of green, then red, blue last. * This code does the right thing for R,G,B or B,G,R color orders only. */ if (rgb_red[cinfo->out_color_space] == 0) { cmax = c1; n = 1; if (c0 > cmax) { cmax = c0; n = 0; } if (c2 > cmax) { n = 2; } } else { cmax = c1; n = 1; if (c2 > cmax) { cmax = c2; n = 2; } if (c0 > cmax) { n = 0; } } /* Choose split point along selected axis, and update box bounds. * Current algorithm: split at halfway point. * (Since the box has been shrunk to minimum volume, * any split will produce two nonempty subboxes.) * Note that lb value is max for lower box, so must be < old max. */ switch (n) { case 0: lb = (b1->c0max + b1->c0min) / 2; b1->c0max = lb; b2->c0min = lb+1; break; case 1: lb = (b1->c1max + b1->c1min) / 2; b1->c1max = lb; b2->c1min = lb+1; break; case 2: lb = (b1->c2max + b1->c2min) / 2; b1->c2max = lb; b2->c2min = lb+1; break; } /* Update stats for boxes */ update_box(cinfo, b1); update_box(cinfo, b2); numboxes++; } return numboxes; } LOCAL(void) compute_color (j_decompress_ptr cinfo, boxptr boxp, int icolor) /* Compute representative color for a box, put it in colormap[icolor] */ { /* Current algorithm: mean weighted by pixels (not colors) */ /* Note it is important to get the rounding correct! */ my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; hist3d histogram = cquantize->histogram; histptr histp; int c0,c1,c2; int c0min,c0max,c1min,c1max,c2min,c2max; long count; long total = 0; long c0total = 0; long c1total = 0; long c2total = 0; c0min = boxp->c0min; c0max = boxp->c0max; c1min = boxp->c1min; c1max = boxp->c1max; c2min = boxp->c2min; c2max = boxp->c2max; for (c0 = c0min; c0 <= c0max; c0++) for (c1 = c1min; c1 <= c1max; c1++) { histp = & histogram[c0][c1][c2min]; for (c2 = c2min; c2 <= c2max; c2++) { if ((count = *histp++) != 0) { total += count; c0total += ((c0 << C0_SHIFT) + ((1<>1)) * count; c1total += ((c1 << C1_SHIFT) + ((1<>1)) * count; c2total += ((c2 << C2_SHIFT) + ((1<>1)) * count; } } } cinfo->colormap[0][icolor] = (JSAMPLE) ((c0total + (total>>1)) / total); cinfo->colormap[1][icolor] = (JSAMPLE) ((c1total + (total>>1)) / total); cinfo->colormap[2][icolor] = (JSAMPLE) ((c2total + (total>>1)) / total); } LOCAL(void) select_colors (j_decompress_ptr cinfo, int desired_colors) /* Master routine for color selection */ { boxptr boxlist; int numboxes; int i; /* Allocate workspace for box list */ boxlist = (boxptr) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, desired_colors * sizeof(box)); /* Initialize one box containing whole space */ numboxes = 1; boxlist[0].c0min = 0; boxlist[0].c0max = MAXJSAMPLE >> C0_SHIFT; boxlist[0].c1min = 0; boxlist[0].c1max = MAXJSAMPLE >> C1_SHIFT; boxlist[0].c2min = 0; boxlist[0].c2max = MAXJSAMPLE >> C2_SHIFT; /* Shrink it to actually-used volume and set its statistics */ update_box(cinfo, & boxlist[0]); /* Perform median-cut to produce final box list */ numboxes = median_cut(cinfo, boxlist, numboxes, desired_colors); /* Compute the representative color for each box, fill colormap */ for (i = 0; i < numboxes; i++) compute_color(cinfo, & boxlist[i], i); cinfo->actual_number_of_colors = numboxes; TRACEMS1(cinfo, 1, JTRC_QUANT_SELECTED, numboxes); } /* * These routines are concerned with the time-critical task of mapping input * colors to the nearest color in the selected colormap. * * We re-use the histogram space as an "inverse color map", essentially a * cache for the results of nearest-color searches. All colors within a * histogram cell will be mapped to the same colormap entry, namely the one * closest to the cell's center. This may not be quite the closest entry to * the actual input color, but it's almost as good. A zero in the cache * indicates we haven't found the nearest color for that cell yet; the array * is cleared to zeroes before starting the mapping pass. When we find the * nearest color for a cell, its colormap index plus one is recorded in the * cache for future use. The pass2 scanning routines call fill_inverse_cmap * when they need to use an unfilled entry in the cache. * * Our method of efficiently finding nearest colors is based on the "locally * sorted search" idea described by Heckbert and on the incremental distance * calculation described by Spencer W. Thomas in chapter III.1 of Graphics * Gems II (James Arvo, ed. Academic Press, 1991). Thomas points out that * the distances from a given colormap entry to each cell of the histogram can * be computed quickly using an incremental method: the differences between * distances to adjacent cells themselves differ by a constant. This allows a * fairly fast implementation of the "brute force" approach of computing the * distance from every colormap entry to every histogram cell. Unfortunately, * it needs a work array to hold the best-distance-so-far for each histogram * cell (because the inner loop has to be over cells, not colormap entries). * The work array elements have to be INT32s, so the work array would need * 256Kb at our recommended precision. This is not feasible in DOS machines. * * To get around these problems, we apply Thomas' method to compute the * nearest colors for only the cells within a small subbox of the histogram. * The work array need be only as big as the subbox, so the memory usage * problem is solved. Furthermore, we need not fill subboxes that are never * referenced in pass2; many images use only part of the color gamut, so a * fair amount of work is saved. An additional advantage of this * approach is that we can apply Heckbert's locality criterion to quickly * eliminate colormap entries that are far away from the subbox; typically * three-fourths of the colormap entries are rejected by Heckbert's criterion, * and we need not compute their distances to individual cells in the subbox. * The speed of this approach is heavily influenced by the subbox size: too * small means too much overhead, too big loses because Heckbert's criterion * can't eliminate as many colormap entries. Empirically the best subbox * size seems to be about 1/512th of the histogram (1/8th in each direction). * * Thomas' article also describes a refined method which is asymptotically * faster than the brute-force method, but it is also far more complex and * cannot efficiently be applied to small subboxes. It is therefore not * useful for programs intended to be portable to DOS machines. On machines * with plenty of memory, filling the whole histogram in one shot with Thomas' * refined method might be faster than the present code --- but then again, * it might not be any faster, and it's certainly more complicated. */ /* log2(histogram cells in update box) for each axis; this can be adjusted */ #define BOX_C0_LOG (HIST_C0_BITS-3) #define BOX_C1_LOG (HIST_C1_BITS-3) #define BOX_C2_LOG (HIST_C2_BITS-3) #define BOX_C0_ELEMS (1<actual_number_of_colors; int maxc0, maxc1, maxc2; int centerc0, centerc1, centerc2; int i, x, ncolors; INT32 minmaxdist, min_dist, max_dist, tdist; INT32 mindist[MAXNUMCOLORS]; /* min distance to colormap entry i */ /* Compute true coordinates of update box's upper corner and center. * Actually we compute the coordinates of the center of the upper-corner * histogram cell, which are the upper bounds of the volume we care about. * Note that since ">>" rounds down, the "center" values may be closer to * min than to max; hence comparisons to them must be "<=", not "<". */ maxc0 = minc0 + ((1 << BOX_C0_SHIFT) - (1 << C0_SHIFT)); centerc0 = (minc0 + maxc0) >> 1; maxc1 = minc1 + ((1 << BOX_C1_SHIFT) - (1 << C1_SHIFT)); centerc1 = (minc1 + maxc1) >> 1; maxc2 = minc2 + ((1 << BOX_C2_SHIFT) - (1 << C2_SHIFT)); centerc2 = (minc2 + maxc2) >> 1; /* For each color in colormap, find: * 1. its minimum squared-distance to any point in the update box * (zero if color is within update box); * 2. its maximum squared-distance to any point in the update box. * Both of these can be found by considering only the corners of the box. * We save the minimum distance for each color in mindist[]; * only the smallest maximum distance is of interest. */ minmaxdist = 0x7FFFFFFFL; for (i = 0; i < numcolors; i++) { /* We compute the squared-c0-distance term, then add in the other two. */ x = GETJSAMPLE(cinfo->colormap[0][i]); if (x < minc0) { tdist = (x - minc0) * C0_SCALE; min_dist = tdist*tdist; tdist = (x - maxc0) * C0_SCALE; max_dist = tdist*tdist; } else if (x > maxc0) { tdist = (x - maxc0) * C0_SCALE; min_dist = tdist*tdist; tdist = (x - minc0) * C0_SCALE; max_dist = tdist*tdist; } else { /* within cell range so no contribution to min_dist */ min_dist = 0; if (x <= centerc0) { tdist = (x - maxc0) * C0_SCALE; max_dist = tdist*tdist; } else { tdist = (x - minc0) * C0_SCALE; max_dist = tdist*tdist; } } x = GETJSAMPLE(cinfo->colormap[1][i]); if (x < minc1) { tdist = (x - minc1) * C1_SCALE; min_dist += tdist*tdist; tdist = (x - maxc1) * C1_SCALE; max_dist += tdist*tdist; } else if (x > maxc1) { tdist = (x - maxc1) * C1_SCALE; min_dist += tdist*tdist; tdist = (x - minc1) * C1_SCALE; max_dist += tdist*tdist; } else { /* within cell range so no contribution to min_dist */ if (x <= centerc1) { tdist = (x - maxc1) * C1_SCALE; max_dist += tdist*tdist; } else { tdist = (x - minc1) * C1_SCALE; max_dist += tdist*tdist; } } x = GETJSAMPLE(cinfo->colormap[2][i]); if (x < minc2) { tdist = (x - minc2) * C2_SCALE; min_dist += tdist*tdist; tdist = (x - maxc2) * C2_SCALE; max_dist += tdist*tdist; } else if (x > maxc2) { tdist = (x - maxc2) * C2_SCALE; min_dist += tdist*tdist; tdist = (x - minc2) * C2_SCALE; max_dist += tdist*tdist; } else { /* within cell range so no contribution to min_dist */ if (x <= centerc2) { tdist = (x - maxc2) * C2_SCALE; max_dist += tdist*tdist; } else { tdist = (x - minc2) * C2_SCALE; max_dist += tdist*tdist; } } mindist[i] = min_dist; /* save away the results */ if (max_dist < minmaxdist) minmaxdist = max_dist; } /* Now we know that no cell in the update box is more than minmaxdist * away from some colormap entry. Therefore, only colors that are * within minmaxdist of some part of the box need be considered. */ ncolors = 0; for (i = 0; i < numcolors; i++) { if (mindist[i] <= minmaxdist) colorlist[ncolors++] = (JSAMPLE) i; } return ncolors; } LOCAL(void) find_best_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2, int numcolors, JSAMPLE colorlist[], JSAMPLE bestcolor[]) /* Find the closest colormap entry for each cell in the update box, * given the list of candidate colors prepared by find_nearby_colors. * Return the indexes of the closest entries in the bestcolor[] array. * This routine uses Thomas' incremental distance calculation method to * find the distance from a colormap entry to successive cells in the box. */ { int ic0, ic1, ic2; int i, icolor; register INT32 * bptr; /* pointer into bestdist[] array */ JSAMPLE * cptr; /* pointer into bestcolor[] array */ INT32 dist0, dist1; /* initial distance values */ register INT32 dist2; /* current distance in inner loop */ INT32 xx0, xx1; /* distance increments */ register INT32 xx2; INT32 inc0, inc1, inc2; /* initial values for increments */ /* This array holds the distance to the nearest-so-far color for each cell */ INT32 bestdist[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS]; /* Initialize best-distance for each cell of the update box */ bptr = bestdist; for (i = BOX_C0_ELEMS*BOX_C1_ELEMS*BOX_C2_ELEMS-1; i >= 0; i--) *bptr++ = 0x7FFFFFFFL; /* For each color selected by find_nearby_colors, * compute its distance to the center of each cell in the box. * If that's less than best-so-far, update best distance and color number. */ /* Nominal steps between cell centers ("x" in Thomas article) */ #define STEP_C0 ((1 << C0_SHIFT) * C0_SCALE) #define STEP_C1 ((1 << C1_SHIFT) * C1_SCALE) #define STEP_C2 ((1 << C2_SHIFT) * C2_SCALE) for (i = 0; i < numcolors; i++) { icolor = GETJSAMPLE(colorlist[i]); /* Compute (square of) distance from minc0/c1/c2 to this color */ inc0 = (minc0 - GETJSAMPLE(cinfo->colormap[0][icolor])) * C0_SCALE; dist0 = inc0*inc0; inc1 = (minc1 - GETJSAMPLE(cinfo->colormap[1][icolor])) * C1_SCALE; dist0 += inc1*inc1; inc2 = (minc2 - GETJSAMPLE(cinfo->colormap[2][icolor])) * C2_SCALE; dist0 += inc2*inc2; /* Form the initial difference increments */ inc0 = inc0 * (2 * STEP_C0) + STEP_C0 * STEP_C0; inc1 = inc1 * (2 * STEP_C1) + STEP_C1 * STEP_C1; inc2 = inc2 * (2 * STEP_C2) + STEP_C2 * STEP_C2; /* Now loop over all cells in box, updating distance per Thomas method */ bptr = bestdist; cptr = bestcolor; xx0 = inc0; for (ic0 = BOX_C0_ELEMS-1; ic0 >= 0; ic0--) { dist1 = dist0; xx1 = inc1; for (ic1 = BOX_C1_ELEMS-1; ic1 >= 0; ic1--) { dist2 = dist1; xx2 = inc2; for (ic2 = BOX_C2_ELEMS-1; ic2 >= 0; ic2--) { if (dist2 < *bptr) { *bptr = dist2; *cptr = (JSAMPLE) icolor; } dist2 += xx2; xx2 += 2 * STEP_C2 * STEP_C2; bptr++; cptr++; } dist1 += xx1; xx1 += 2 * STEP_C1 * STEP_C1; } dist0 += xx0; xx0 += 2 * STEP_C0 * STEP_C0; } } } LOCAL(void) fill_inverse_cmap (j_decompress_ptr cinfo, int c0, int c1, int c2) /* Fill the inverse-colormap entries in the update box that contains */ /* histogram cell c0/c1/c2. (Only that one cell MUST be filled, but */ /* we can fill as many others as we wish.) */ { my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; hist3d histogram = cquantize->histogram; int minc0, minc1, minc2; /* lower left corner of update box */ int ic0, ic1, ic2; register JSAMPLE * cptr; /* pointer into bestcolor[] array */ register histptr cachep; /* pointer into main cache array */ /* This array lists the candidate colormap indexes. */ JSAMPLE colorlist[MAXNUMCOLORS]; int numcolors; /* number of candidate colors */ /* This array holds the actually closest colormap index for each cell. */ JSAMPLE bestcolor[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS]; /* Convert cell coordinates to update box ID */ c0 >>= BOX_C0_LOG; c1 >>= BOX_C1_LOG; c2 >>= BOX_C2_LOG; /* Compute true coordinates of update box's origin corner. * Actually we compute the coordinates of the center of the corner * histogram cell, which are the lower bounds of the volume we care about. */ minc0 = (c0 << BOX_C0_SHIFT) + ((1 << C0_SHIFT) >> 1); minc1 = (c1 << BOX_C1_SHIFT) + ((1 << C1_SHIFT) >> 1); minc2 = (c2 << BOX_C2_SHIFT) + ((1 << C2_SHIFT) >> 1); /* Determine which colormap entries are close enough to be candidates * for the nearest entry to some cell in the update box. */ numcolors = find_nearby_colors(cinfo, minc0, minc1, minc2, colorlist); /* Determine the actually nearest colors. */ find_best_colors(cinfo, minc0, minc1, minc2, numcolors, colorlist, bestcolor); /* Save the best color numbers (plus 1) in the main cache array */ c0 <<= BOX_C0_LOG; /* convert ID back to base cell indexes */ c1 <<= BOX_C1_LOG; c2 <<= BOX_C2_LOG; cptr = bestcolor; for (ic0 = 0; ic0 < BOX_C0_ELEMS; ic0++) { for (ic1 = 0; ic1 < BOX_C1_ELEMS; ic1++) { cachep = & histogram[c0+ic0][c1+ic1][c2]; for (ic2 = 0; ic2 < BOX_C2_ELEMS; ic2++) { *cachep++ = (histcell) (GETJSAMPLE(*cptr++) + 1); } } } } /* * Map some rows of pixels to the output colormapped representation. */ METHODDEF(void) pass2_no_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows) /* This version performs no dithering */ { my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; hist3d histogram = cquantize->histogram; register JSAMPROW inptr, outptr; register histptr cachep; register int c0, c1, c2; int row; JDIMENSION col; JDIMENSION width = cinfo->output_width; for (row = 0; row < num_rows; row++) { inptr = input_buf[row]; outptr = output_buf[row]; for (col = width; col > 0; col--) { /* get pixel value and index into the cache */ c0 = GETJSAMPLE(*inptr++) >> C0_SHIFT; c1 = GETJSAMPLE(*inptr++) >> C1_SHIFT; c2 = GETJSAMPLE(*inptr++) >> C2_SHIFT; cachep = & histogram[c0][c1][c2]; /* If we have not seen this color before, find nearest colormap entry */ /* and update the cache */ if (*cachep == 0) fill_inverse_cmap(cinfo, c0,c1,c2); /* Now emit the colormap index for this cell */ *outptr++ = (JSAMPLE) (*cachep - 1); } } } METHODDEF(void) pass2_fs_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows) /* This version performs Floyd-Steinberg dithering */ { my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; hist3d histogram = cquantize->histogram; register LOCFSERROR cur0, cur1, cur2; /* current error or pixel value */ LOCFSERROR belowerr0, belowerr1, belowerr2; /* error for pixel below cur */ LOCFSERROR bpreverr0, bpreverr1, bpreverr2; /* error for below/prev col */ register FSERRPTR errorptr; /* => fserrors[] at column before current */ JSAMPROW inptr; /* => current input pixel */ JSAMPROW outptr; /* => current output pixel */ histptr cachep; int dir; /* +1 or -1 depending on direction */ int dir3; /* 3*dir, for advancing inptr & errorptr */ int row; JDIMENSION col; JDIMENSION width = cinfo->output_width; JSAMPLE *range_limit = cinfo->sample_range_limit; int *error_limit = cquantize->error_limiter; JSAMPROW colormap0 = cinfo->colormap[0]; JSAMPROW colormap1 = cinfo->colormap[1]; JSAMPROW colormap2 = cinfo->colormap[2]; SHIFT_TEMPS for (row = 0; row < num_rows; row++) { inptr = input_buf[row]; outptr = output_buf[row]; if (cquantize->on_odd_row) { /* work right to left in this row */ inptr += (width-1) * 3; /* so point to rightmost pixel */ outptr += width-1; dir = -1; dir3 = -3; errorptr = cquantize->fserrors + (width+1)*3; /* => entry after last column */ cquantize->on_odd_row = FALSE; /* flip for next time */ } else { /* work left to right in this row */ dir = 1; dir3 = 3; errorptr = cquantize->fserrors; /* => entry before first real column */ cquantize->on_odd_row = TRUE; /* flip for next time */ } /* Preset error values: no error propagated to first pixel from left */ cur0 = cur1 = cur2 = 0; /* and no error propagated to row below yet */ belowerr0 = belowerr1 = belowerr2 = 0; bpreverr0 = bpreverr1 = bpreverr2 = 0; for (col = width; col > 0; col--) { /* curN holds the error propagated from the previous pixel on the * current line. Add the error propagated from the previous line * to form the complete error correction term for this pixel, and * round the error term (which is expressed * 16) to an integer. * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct * for either sign of the error value. * Note: errorptr points to *previous* column's array entry. */ cur0 = RIGHT_SHIFT(cur0 + errorptr[dir3+0] + 8, 4); cur1 = RIGHT_SHIFT(cur1 + errorptr[dir3+1] + 8, 4); cur2 = RIGHT_SHIFT(cur2 + errorptr[dir3+2] + 8, 4); /* Limit the error using transfer function set by init_error_limit. * See comments with init_error_limit for rationale. */ cur0 = error_limit[cur0]; cur1 = error_limit[cur1]; cur2 = error_limit[cur2]; /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE. * The maximum error is +- MAXJSAMPLE (or less with error limiting); * this sets the required size of the range_limit array. */ cur0 += GETJSAMPLE(inptr[0]); cur1 += GETJSAMPLE(inptr[1]); cur2 += GETJSAMPLE(inptr[2]); cur0 = GETJSAMPLE(range_limit[cur0]); cur1 = GETJSAMPLE(range_limit[cur1]); cur2 = GETJSAMPLE(range_limit[cur2]); /* Index into the cache with adjusted pixel value */ cachep = & histogram[cur0>>C0_SHIFT][cur1>>C1_SHIFT][cur2>>C2_SHIFT]; /* If we have not seen this color before, find nearest colormap */ /* entry and update the cache */ if (*cachep == 0) fill_inverse_cmap(cinfo, cur0>>C0_SHIFT,cur1>>C1_SHIFT,cur2>>C2_SHIFT); /* Now emit the colormap index for this cell */ { register int pixcode = *cachep - 1; *outptr = (JSAMPLE) pixcode; /* Compute representation error for this pixel */ cur0 -= GETJSAMPLE(colormap0[pixcode]); cur1 -= GETJSAMPLE(colormap1[pixcode]); cur2 -= GETJSAMPLE(colormap2[pixcode]); } /* Compute error fractions to be propagated to adjacent pixels. * Add these into the running sums, and simultaneously shift the * next-line error sums left by 1 column. */ { register LOCFSERROR bnexterr; bnexterr = cur0; /* Process component 0 */ errorptr[0] = (FSERROR) (bpreverr0 + cur0 * 3); bpreverr0 = belowerr0 + cur0 * 5; belowerr0 = bnexterr; cur0 *= 7; bnexterr = cur1; /* Process component 1 */ errorptr[1] = (FSERROR) (bpreverr1 + cur1 * 3); bpreverr1 = belowerr1 + cur1 * 5; belowerr1 = bnexterr; cur1 *= 7; bnexterr = cur2; /* Process component 2 */ errorptr[2] = (FSERROR) (bpreverr2 + cur2 * 3); bpreverr2 = belowerr2 + cur2 * 5; belowerr2 = bnexterr; cur2 *= 7; } /* At this point curN contains the 7/16 error value to be propagated * to the next pixel on the current line, and all the errors for the * next line have been shifted over. We are therefore ready to move on. */ inptr += dir3; /* Advance pixel pointers to next column */ outptr += dir; errorptr += dir3; /* advance errorptr to current column */ } /* Post-loop cleanup: we must unload the final error values into the * final fserrors[] entry. Note we need not unload belowerrN because * it is for the dummy column before or after the actual array. */ errorptr[0] = (FSERROR) bpreverr0; /* unload prev errs into array */ errorptr[1] = (FSERROR) bpreverr1; errorptr[2] = (FSERROR) bpreverr2; } } /* * Initialize the error-limiting transfer function (lookup table). * The raw F-S error computation can potentially compute error values of up to * +- MAXJSAMPLE. But we want the maximum correction applied to a pixel to be * much less, otherwise obviously wrong pixels will be created. (Typical * effects include weird fringes at color-area boundaries, isolated bright * pixels in a dark area, etc.) The standard advice for avoiding this problem * is to ensure that the "corners" of the color cube are allocated as output * colors; then repeated errors in the same direction cannot cause cascading * error buildup. However, that only prevents the error from getting * completely out of hand; Aaron Giles reports that error limiting improves * the results even with corner colors allocated. * A simple clamping of the error values to about +- MAXJSAMPLE/8 works pretty * well, but the smoother transfer function used below is even better. Thanks * to Aaron Giles for this idea. */ LOCAL(void) init_error_limit (j_decompress_ptr cinfo) /* Allocate and fill in the error_limiter table */ { my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; int * table; int in, out; table = (int *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE*2+1) * sizeof(int)); table += MAXJSAMPLE; /* so can index -MAXJSAMPLE .. +MAXJSAMPLE */ cquantize->error_limiter = table; #define STEPSIZE ((MAXJSAMPLE+1)/16) /* Map errors 1:1 up to +- MAXJSAMPLE/16 */ out = 0; for (in = 0; in < STEPSIZE; in++, out++) { table[in] = out; table[-in] = -out; } /* Map errors 1:2 up to +- 3*MAXJSAMPLE/16 */ for (; in < STEPSIZE*3; in++, out += (in&1) ? 0 : 1) { table[in] = out; table[-in] = -out; } /* Clamp the rest to final out value (which is (MAXJSAMPLE+1)/8) */ for (; in <= MAXJSAMPLE; in++) { table[in] = out; table[-in] = -out; } #undef STEPSIZE } /* * Finish up at the end of each pass. */ METHODDEF(void) finish_pass1 (j_decompress_ptr cinfo) { my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; /* Select the representative colors and fill in cinfo->colormap */ cinfo->colormap = cquantize->sv_colormap; select_colors(cinfo, cquantize->desired); /* Force next pass to zero the color index table */ cquantize->needs_zeroed = TRUE; } METHODDEF(void) finish_pass2 (j_decompress_ptr cinfo) { /* no work */ } /* * Initialize for each processing pass. */ METHODDEF(void) start_pass_2_quant (j_decompress_ptr cinfo, boolean is_pre_scan) { my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; hist3d histogram = cquantize->histogram; int i; /* Only F-S dithering or no dithering is supported. */ /* If user asks for ordered dither, give him F-S. */ if (cinfo->dither_mode != JDITHER_NONE) cinfo->dither_mode = JDITHER_FS; if (is_pre_scan) { /* Set up method pointers */ cquantize->pub.color_quantize = prescan_quantize; cquantize->pub.finish_pass = finish_pass1; cquantize->needs_zeroed = TRUE; /* Always zero histogram */ } else { /* Set up method pointers */ if (cinfo->dither_mode == JDITHER_FS) cquantize->pub.color_quantize = pass2_fs_dither; else cquantize->pub.color_quantize = pass2_no_dither; cquantize->pub.finish_pass = finish_pass2; /* Make sure color count is acceptable */ i = cinfo->actual_number_of_colors; if (i < 1) ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 1); if (i > MAXNUMCOLORS) ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS); if (cinfo->dither_mode == JDITHER_FS) { size_t arraysize = (size_t) ((cinfo->output_width + 2) * (3 * sizeof(FSERROR))); /* Allocate Floyd-Steinberg workspace if we didn't already. */ if (cquantize->fserrors == NULL) cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize); /* Initialize the propagated errors to zero. */ jzero_far((void *) cquantize->fserrors, arraysize); /* Make the error-limit table if we didn't already. */ if (cquantize->error_limiter == NULL) init_error_limit(cinfo); cquantize->on_odd_row = FALSE; } } /* Zero the histogram or inverse color map, if necessary */ if (cquantize->needs_zeroed) { for (i = 0; i < HIST_C0_ELEMS; i++) { jzero_far((void *) histogram[i], HIST_C1_ELEMS*HIST_C2_ELEMS * sizeof(histcell)); } cquantize->needs_zeroed = FALSE; } } /* * Switch to a new external colormap between output passes. */ METHODDEF(void) new_color_map_2_quant (j_decompress_ptr cinfo) { my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; /* Reset the inverse color map */ cquantize->needs_zeroed = TRUE; } /* * Module initialization routine for 2-pass color quantization. */ GLOBAL(void) jinit_2pass_quantizer (j_decompress_ptr cinfo) { my_cquantize_ptr cquantize; int i; cquantize = (my_cquantize_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, sizeof(my_cquantizer)); cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize; cquantize->pub.start_pass = start_pass_2_quant; cquantize->pub.new_color_map = new_color_map_2_quant; cquantize->fserrors = NULL; /* flag optional arrays not allocated */ cquantize->error_limiter = NULL; /* Make sure jdmaster didn't give me a case I can't handle */ if (cinfo->out_color_components != 3) ERREXIT(cinfo, JERR_NOTIMPL); /* Allocate the histogram/inverse colormap storage */ cquantize->histogram = (hist3d) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, HIST_C0_ELEMS * sizeof(hist2d)); for (i = 0; i < HIST_C0_ELEMS; i++) { cquantize->histogram[i] = (hist2d) (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE, HIST_C1_ELEMS*HIST_C2_ELEMS * sizeof(histcell)); } cquantize->needs_zeroed = TRUE; /* histogram is garbage now */ /* Allocate storage for the completed colormap, if required. * We do this now since it may affect the memory manager's space * calculations. */ if (cinfo->enable_2pass_quant) { /* Make sure color count is acceptable */ int desired = cinfo->desired_number_of_colors; /* Lower bound on # of colors ... somewhat arbitrary as long as > 0 */ if (desired < 8) ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 8); /* Make sure colormap indexes can be represented by JSAMPLEs */ if (desired > MAXNUMCOLORS) ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS); cquantize->sv_colormap = (*cinfo->mem->alloc_sarray) ((j_common_ptr) cinfo,JPOOL_IMAGE, (JDIMENSION) desired, (JDIMENSION) 3); cquantize->desired = desired; } else cquantize->sv_colormap = NULL; /* Only F-S dithering or no dithering is supported. */ /* If user asks for ordered dither, give him F-S. */ if (cinfo->dither_mode != JDITHER_NONE) cinfo->dither_mode = JDITHER_FS; /* Allocate Floyd-Steinberg workspace if necessary. * This isn't really needed until pass 2, but again it may affect the memory * manager's space calculations. Although we will cope with a later change * in dither_mode, we do not promise to honor max_memory_to_use if * dither_mode changes. */ if (cinfo->dither_mode == JDITHER_FS) { cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE, (size_t) ((cinfo->output_width + 2) * (3 * sizeof(FSERROR)))); /* Might as well create the error-limiting table too. */ init_error_limit(cinfo); } } #endif /* QUANT_2PASS_SUPPORTED */ libjpeg-turbo-1.4.2/jdphuff.c0000644000076500007650000005257712600050400013013 00000000000000/* * jdphuff.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1995-1997, Thomas G. Lane. * libjpeg-turbo Modifications: * Copyright (C) 2015, D. R. Commander. * For conditions of distribution and use, see the accompanying README file. * * This file contains Huffman entropy decoding routines for progressive JPEG. * * Much of the complexity here has to do with supporting input suspension. * If the data source module demands suspension, we want to be able to back * up to the start of the current MCU. To do this, we copy state variables * into local working storage, and update them back to the permanent * storage only upon successful completion of an MCU. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" #include "jdhuff.h" /* Declarations shared with jdhuff.c */ #ifdef D_PROGRESSIVE_SUPPORTED /* * Expanded entropy decoder object for progressive Huffman decoding. * * The savable_state subrecord contains fields that change within an MCU, * but must not be updated permanently until we complete the MCU. */ typedef struct { unsigned int EOBRUN; /* remaining EOBs in EOBRUN */ int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ } savable_state; /* This macro is to work around compilers with missing or broken * structure assignment. You'll need to fix this code if you have * such a compiler and you change MAX_COMPS_IN_SCAN. */ #ifndef NO_STRUCT_ASSIGN #define ASSIGN_STATE(dest,src) ((dest) = (src)) #else #if MAX_COMPS_IN_SCAN == 4 #define ASSIGN_STATE(dest,src) \ ((dest).EOBRUN = (src).EOBRUN, \ (dest).last_dc_val[0] = (src).last_dc_val[0], \ (dest).last_dc_val[1] = (src).last_dc_val[1], \ (dest).last_dc_val[2] = (src).last_dc_val[2], \ (dest).last_dc_val[3] = (src).last_dc_val[3]) #endif #endif typedef struct { struct jpeg_entropy_decoder pub; /* public fields */ /* These fields are loaded into local variables at start of each MCU. * In case of suspension, we exit WITHOUT updating them. */ bitread_perm_state bitstate; /* Bit buffer at start of MCU */ savable_state saved; /* Other state at start of MCU */ /* These fields are NOT loaded into local working state. */ unsigned int restarts_to_go; /* MCUs left in this restart interval */ /* Pointers to derived tables (these workspaces have image lifespan) */ d_derived_tbl * derived_tbls[NUM_HUFF_TBLS]; d_derived_tbl * ac_derived_tbl; /* active table during an AC scan */ } phuff_entropy_decoder; typedef phuff_entropy_decoder * phuff_entropy_ptr; /* Forward declarations */ METHODDEF(boolean) decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data); METHODDEF(boolean) decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data); METHODDEF(boolean) decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data); METHODDEF(boolean) decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data); /* * Initialize for a Huffman-compressed scan. */ METHODDEF(void) start_pass_phuff_decoder (j_decompress_ptr cinfo) { phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; boolean is_DC_band, bad; int ci, coefi, tbl; d_derived_tbl **pdtbl; int *coef_bit_ptr; jpeg_component_info * compptr; is_DC_band = (cinfo->Ss == 0); /* Validate scan parameters */ bad = FALSE; if (is_DC_band) { if (cinfo->Se != 0) bad = TRUE; } else { /* need not check Ss/Se < 0 since they came from unsigned bytes */ if (cinfo->Ss > cinfo->Se || cinfo->Se >= DCTSIZE2) bad = TRUE; /* AC scans may have only one component */ if (cinfo->comps_in_scan != 1) bad = TRUE; } if (cinfo->Ah != 0) { /* Successive approximation refinement scan: must have Al = Ah-1. */ if (cinfo->Al != cinfo->Ah-1) bad = TRUE; } if (cinfo->Al > 13) /* need not check for < 0 */ bad = TRUE; /* Arguably the maximum Al value should be less than 13 for 8-bit precision, * but the spec doesn't say so, and we try to be liberal about what we * accept. Note: large Al values could result in out-of-range DC * coefficients during early scans, leading to bizarre displays due to * overflows in the IDCT math. But we won't crash. */ if (bad) ERREXIT4(cinfo, JERR_BAD_PROGRESSION, cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al); /* Update progression status, and verify that scan order is legal. * Note that inter-scan inconsistencies are treated as warnings * not fatal errors ... not clear if this is right way to behave. */ for (ci = 0; ci < cinfo->comps_in_scan; ci++) { int cindex = cinfo->cur_comp_info[ci]->component_index; coef_bit_ptr = & cinfo->coef_bits[cindex][0]; if (!is_DC_band && coef_bit_ptr[0] < 0) /* AC without prior DC scan */ WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0); for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) { int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi]; if (cinfo->Ah != expected) WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi); coef_bit_ptr[coefi] = cinfo->Al; } } /* Select MCU decoding routine */ if (cinfo->Ah == 0) { if (is_DC_band) entropy->pub.decode_mcu = decode_mcu_DC_first; else entropy->pub.decode_mcu = decode_mcu_AC_first; } else { if (is_DC_band) entropy->pub.decode_mcu = decode_mcu_DC_refine; else entropy->pub.decode_mcu = decode_mcu_AC_refine; } for (ci = 0; ci < cinfo->comps_in_scan; ci++) { compptr = cinfo->cur_comp_info[ci]; /* Make sure requested tables are present, and compute derived tables. * We may build same derived table more than once, but it's not expensive. */ if (is_DC_band) { if (cinfo->Ah == 0) { /* DC refinement needs no table */ tbl = compptr->dc_tbl_no; pdtbl = entropy->derived_tbls + tbl; jpeg_make_d_derived_tbl(cinfo, TRUE, tbl, pdtbl); } } else { tbl = compptr->ac_tbl_no; pdtbl = entropy->derived_tbls + tbl; jpeg_make_d_derived_tbl(cinfo, FALSE, tbl, pdtbl); /* remember the single active table */ entropy->ac_derived_tbl = entropy->derived_tbls[tbl]; } /* Initialize DC predictions to 0 */ entropy->saved.last_dc_val[ci] = 0; } /* Initialize bitread state variables */ entropy->bitstate.bits_left = 0; entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */ entropy->pub.insufficient_data = FALSE; /* Initialize private state variables */ entropy->saved.EOBRUN = 0; /* Initialize restart counter */ entropy->restarts_to_go = cinfo->restart_interval; } /* * Figure F.12: extend sign bit. * On some machines, a shift and add will be faster than a table lookup. */ #define AVOID_TABLES #ifdef AVOID_TABLES #define NEG_1 ((unsigned)-1) #define HUFF_EXTEND(x,s) ((x) < (1<<((s)-1)) ? (x) + (((NEG_1)<<(s)) + 1) : (x)) #else #define HUFF_EXTEND(x,s) ((x) < extend_test[s] ? (x) + extend_offset[s] : (x)) static const int extend_test[16] = /* entry n is 2**(n-1) */ { 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 }; static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */ { 0, ((-1)<<1) + 1, ((-1)<<2) + 1, ((-1)<<3) + 1, ((-1)<<4) + 1, ((-1)<<5) + 1, ((-1)<<6) + 1, ((-1)<<7) + 1, ((-1)<<8) + 1, ((-1)<<9) + 1, ((-1)<<10) + 1, ((-1)<<11) + 1, ((-1)<<12) + 1, ((-1)<<13) + 1, ((-1)<<14) + 1, ((-1)<<15) + 1 }; #endif /* AVOID_TABLES */ /* * Check for a restart marker & resynchronize decoder. * Returns FALSE if must suspend. */ LOCAL(boolean) process_restart (j_decompress_ptr cinfo) { phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; int ci; /* Throw away any unused bits remaining in bit buffer; */ /* include any full bytes in next_marker's count of discarded bytes */ cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8; entropy->bitstate.bits_left = 0; /* Advance past the RSTn marker */ if (! (*cinfo->marker->read_restart_marker) (cinfo)) return FALSE; /* Re-initialize DC predictions to 0 */ for (ci = 0; ci < cinfo->comps_in_scan; ci++) entropy->saved.last_dc_val[ci] = 0; /* Re-init EOB run count, too */ entropy->saved.EOBRUN = 0; /* Reset restart counter */ entropy->restarts_to_go = cinfo->restart_interval; /* Reset out-of-data flag, unless read_restart_marker left us smack up * against a marker. In that case we will end up treating the next data * segment as empty, and we can avoid producing bogus output pixels by * leaving the flag set. */ if (cinfo->unread_marker == 0) entropy->pub.insufficient_data = FALSE; return TRUE; } /* * Huffman MCU decoding. * Each of these routines decodes and returns one MCU's worth of * Huffman-compressed coefficients. * The coefficients are reordered from zigzag order into natural array order, * but are not dequantized. * * The i'th block of the MCU is stored into the block pointed to by * MCU_data[i]. WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER. * * We return FALSE if data source requested suspension. In that case no * changes have been made to permanent state. (Exception: some output * coefficients may already have been assigned. This is harmless for * spectral selection, since we'll just re-assign them on the next call. * Successive approximation AC refinement has to be more careful, however.) */ /* * MCU decoding for DC initial scan (either spectral selection, * or first pass of successive approximation). */ METHODDEF(boolean) decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) { phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; int Al = cinfo->Al; register int s, r; int blkn, ci; JBLOCKROW block; BITREAD_STATE_VARS; savable_state state; d_derived_tbl * tbl; jpeg_component_info * compptr; /* Process restart marker if needed; may have to suspend */ if (cinfo->restart_interval) { if (entropy->restarts_to_go == 0) if (! process_restart(cinfo)) return FALSE; } /* If we've run out of data, just leave the MCU set to zeroes. * This way, we return uniform gray for the remainder of the segment. */ if (! entropy->pub.insufficient_data) { /* Load up working state */ BITREAD_LOAD_STATE(cinfo,entropy->bitstate); ASSIGN_STATE(state, entropy->saved); /* Outer loop handles each block in the MCU */ for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { block = MCU_data[blkn]; ci = cinfo->MCU_membership[blkn]; compptr = cinfo->cur_comp_info[ci]; tbl = entropy->derived_tbls[compptr->dc_tbl_no]; /* Decode a single block's worth of coefficients */ /* Section F.2.2.1: decode the DC coefficient difference */ HUFF_DECODE(s, br_state, tbl, return FALSE, label1); if (s) { CHECK_BIT_BUFFER(br_state, s, return FALSE); r = GET_BITS(s); s = HUFF_EXTEND(r, s); } /* Convert DC difference to actual value, update last_dc_val */ s += state.last_dc_val[ci]; state.last_dc_val[ci] = s; /* Scale and output the coefficient (assumes jpeg_natural_order[0]=0) */ (*block)[0] = (JCOEF) LEFT_SHIFT(s, Al); } /* Completed MCU, so update state */ BITREAD_SAVE_STATE(cinfo,entropy->bitstate); ASSIGN_STATE(entropy->saved, state); } /* Account for restart interval (no-op if not using restarts) */ entropy->restarts_to_go--; return TRUE; } /* * MCU decoding for AC initial scan (either spectral selection, * or first pass of successive approximation). */ METHODDEF(boolean) decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) { phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; int Se = cinfo->Se; int Al = cinfo->Al; register int s, k, r; unsigned int EOBRUN; JBLOCKROW block; BITREAD_STATE_VARS; d_derived_tbl * tbl; /* Process restart marker if needed; may have to suspend */ if (cinfo->restart_interval) { if (entropy->restarts_to_go == 0) if (! process_restart(cinfo)) return FALSE; } /* If we've run out of data, just leave the MCU set to zeroes. * This way, we return uniform gray for the remainder of the segment. */ if (! entropy->pub.insufficient_data) { /* Load up working state. * We can avoid loading/saving bitread state if in an EOB run. */ EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */ /* There is always only one block per MCU */ if (EOBRUN > 0) /* if it's a band of zeroes... */ EOBRUN--; /* ...process it now (we do nothing) */ else { BITREAD_LOAD_STATE(cinfo,entropy->bitstate); block = MCU_data[0]; tbl = entropy->ac_derived_tbl; for (k = cinfo->Ss; k <= Se; k++) { HUFF_DECODE(s, br_state, tbl, return FALSE, label2); r = s >> 4; s &= 15; if (s) { k += r; CHECK_BIT_BUFFER(br_state, s, return FALSE); r = GET_BITS(s); s = HUFF_EXTEND(r, s); /* Scale and output coefficient in natural (dezigzagged) order */ (*block)[jpeg_natural_order[k]] = (JCOEF) LEFT_SHIFT(s, Al); } else { if (r == 15) { /* ZRL */ k += 15; /* skip 15 zeroes in band */ } else { /* EOBr, run length is 2^r + appended bits */ EOBRUN = 1 << r; if (r) { /* EOBr, r > 0 */ CHECK_BIT_BUFFER(br_state, r, return FALSE); r = GET_BITS(r); EOBRUN += r; } EOBRUN--; /* this band is processed at this moment */ break; /* force end-of-band */ } } } BITREAD_SAVE_STATE(cinfo,entropy->bitstate); } /* Completed MCU, so update state */ entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */ } /* Account for restart interval (no-op if not using restarts) */ entropy->restarts_to_go--; return TRUE; } /* * MCU decoding for DC successive approximation refinement scan. * Note: we assume such scans can be multi-component, although the spec * is not very clear on the point. */ METHODDEF(boolean) decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) { phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; int p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */ int blkn; JBLOCKROW block; BITREAD_STATE_VARS; /* Process restart marker if needed; may have to suspend */ if (cinfo->restart_interval) { if (entropy->restarts_to_go == 0) if (! process_restart(cinfo)) return FALSE; } /* Not worth the cycles to check insufficient_data here, * since we will not change the data anyway if we read zeroes. */ /* Load up working state */ BITREAD_LOAD_STATE(cinfo,entropy->bitstate); /* Outer loop handles each block in the MCU */ for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { block = MCU_data[blkn]; /* Encoded data is simply the next bit of the two's-complement DC value */ CHECK_BIT_BUFFER(br_state, 1, return FALSE); if (GET_BITS(1)) (*block)[0] |= p1; /* Note: since we use |=, repeating the assignment later is safe */ } /* Completed MCU, so update state */ BITREAD_SAVE_STATE(cinfo,entropy->bitstate); /* Account for restart interval (no-op if not using restarts) */ entropy->restarts_to_go--; return TRUE; } /* * MCU decoding for AC successive approximation refinement scan. */ METHODDEF(boolean) decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) { phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; int Se = cinfo->Se; int p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */ int m1 = (NEG_1) << cinfo->Al; /* -1 in the bit position being coded */ register int s, k, r; unsigned int EOBRUN; JBLOCKROW block; JCOEFPTR thiscoef; BITREAD_STATE_VARS; d_derived_tbl * tbl; int num_newnz; int newnz_pos[DCTSIZE2]; /* Process restart marker if needed; may have to suspend */ if (cinfo->restart_interval) { if (entropy->restarts_to_go == 0) if (! process_restart(cinfo)) return FALSE; } /* If we've run out of data, don't modify the MCU. */ if (! entropy->pub.insufficient_data) { /* Load up working state */ BITREAD_LOAD_STATE(cinfo,entropy->bitstate); EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */ /* There is always only one block per MCU */ block = MCU_data[0]; tbl = entropy->ac_derived_tbl; /* If we are forced to suspend, we must undo the assignments to any newly * nonzero coefficients in the block, because otherwise we'd get confused * next time about which coefficients were already nonzero. * But we need not undo addition of bits to already-nonzero coefficients; * instead, we can test the current bit to see if we already did it. */ num_newnz = 0; /* initialize coefficient loop counter to start of band */ k = cinfo->Ss; if (EOBRUN == 0) { for (; k <= Se; k++) { HUFF_DECODE(s, br_state, tbl, goto undoit, label3); r = s >> 4; s &= 15; if (s) { if (s != 1) /* size of new coef should always be 1 */ WARNMS(cinfo, JWRN_HUFF_BAD_CODE); CHECK_BIT_BUFFER(br_state, 1, goto undoit); if (GET_BITS(1)) s = p1; /* newly nonzero coef is positive */ else s = m1; /* newly nonzero coef is negative */ } else { if (r != 15) { EOBRUN = 1 << r; /* EOBr, run length is 2^r + appended bits */ if (r) { CHECK_BIT_BUFFER(br_state, r, goto undoit); r = GET_BITS(r); EOBRUN += r; } break; /* rest of block is handled by EOB logic */ } /* note s = 0 for processing ZRL */ } /* Advance over already-nonzero coefs and r still-zero coefs, * appending correction bits to the nonzeroes. A correction bit is 1 * if the absolute value of the coefficient must be increased. */ do { thiscoef = *block + jpeg_natural_order[k]; if (*thiscoef != 0) { CHECK_BIT_BUFFER(br_state, 1, goto undoit); if (GET_BITS(1)) { if ((*thiscoef & p1) == 0) { /* do nothing if already set it */ if (*thiscoef >= 0) *thiscoef += p1; else *thiscoef += m1; } } } else { if (--r < 0) break; /* reached target zero coefficient */ } k++; } while (k <= Se); if (s) { int pos = jpeg_natural_order[k]; /* Output newly nonzero coefficient */ (*block)[pos] = (JCOEF) s; /* Remember its position in case we have to suspend */ newnz_pos[num_newnz++] = pos; } } } if (EOBRUN > 0) { /* Scan any remaining coefficient positions after the end-of-band * (the last newly nonzero coefficient, if any). Append a correction * bit to each already-nonzero coefficient. A correction bit is 1 * if the absolute value of the coefficient must be increased. */ for (; k <= Se; k++) { thiscoef = *block + jpeg_natural_order[k]; if (*thiscoef != 0) { CHECK_BIT_BUFFER(br_state, 1, goto undoit); if (GET_BITS(1)) { if ((*thiscoef & p1) == 0) { /* do nothing if already changed it */ if (*thiscoef >= 0) *thiscoef += p1; else *thiscoef += m1; } } } } /* Count one block completed in EOB run */ EOBRUN--; } /* Completed MCU, so update state */ BITREAD_SAVE_STATE(cinfo,entropy->bitstate); entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */ } /* Account for restart interval (no-op if not using restarts) */ entropy->restarts_to_go--; return TRUE; undoit: /* Re-zero any output coefficients that we made newly nonzero */ while (num_newnz > 0) (*block)[newnz_pos[--num_newnz]] = 0; return FALSE; } /* * Module initialization routine for progressive Huffman entropy decoding. */ GLOBAL(void) jinit_phuff_decoder (j_decompress_ptr cinfo) { phuff_entropy_ptr entropy; int *coef_bit_ptr; int ci, i; entropy = (phuff_entropy_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, sizeof(phuff_entropy_decoder)); cinfo->entropy = (struct jpeg_entropy_decoder *) entropy; entropy->pub.start_pass = start_pass_phuff_decoder; /* Mark derived tables unallocated */ for (i = 0; i < NUM_HUFF_TBLS; i++) { entropy->derived_tbls[i] = NULL; } /* Create progression status table */ cinfo->coef_bits = (int (*)[DCTSIZE2]) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, cinfo->num_components*DCTSIZE2*sizeof(int)); coef_bit_ptr = & cinfo->coef_bits[0][0]; for (ci = 0; ci < cinfo->num_components; ci++) for (i = 0; i < DCTSIZE2; i++) *coef_bit_ptr++ = -1; } #endif /* D_PROGRESSIVE_SUPPORTED */ libjpeg-turbo-1.4.2/rdrle.c0000644000076500007650000002674412600050400012472 00000000000000/* * rdrle.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1991-1996, Thomas G. Lane. * It was modified by The libjpeg-turbo Project to include only code and * information relevant to libjpeg-turbo. * For conditions of distribution and use, see the accompanying README file. * * This file contains routines to read input images in Utah RLE format. * The Utah Raster Toolkit library is required (version 3.1 or later). * * These routines may need modification for non-Unix environments or * specialized applications. As they stand, they assume input from * an ordinary stdio stream. They further assume that reading begins * at the start of the file; start_input may need work if the * user interface has already read some data (e.g., to determine that * the file is indeed RLE format). * * Based on code contributed by Mike Lijewski, * with updates from Robert Hutchinson. */ #include "cdjpeg.h" /* Common decls for cjpeg/djpeg applications */ #ifdef RLE_SUPPORTED /* rle.h is provided by the Utah Raster Toolkit. */ #include /* * We assume that JSAMPLE has the same representation as rle_pixel, * to wit, "unsigned char". Hence we can't cope with 12- or 16-bit samples. */ #if BITS_IN_JSAMPLE != 8 Sorry, this code only copes with 8-bit JSAMPLEs. /* deliberate syntax err */ #endif /* * We support the following types of RLE files: * * GRAYSCALE - 8 bits, no colormap * MAPPEDGRAY - 8 bits, 1 channel colomap * PSEUDOCOLOR - 8 bits, 3 channel colormap * TRUECOLOR - 24 bits, 3 channel colormap * DIRECTCOLOR - 24 bits, no colormap * * For now, we ignore any alpha channel in the image. */ typedef enum { GRAYSCALE, MAPPEDGRAY, PSEUDOCOLOR, TRUECOLOR, DIRECTCOLOR } rle_kind; /* * Since RLE stores scanlines bottom-to-top, we have to invert the image * to conform to JPEG's top-to-bottom order. To do this, we read the * incoming image into a virtual array on the first get_pixel_rows call, * then fetch the required row from the virtual array on subsequent calls. */ typedef struct _rle_source_struct * rle_source_ptr; typedef struct _rle_source_struct { struct cjpeg_source_struct pub; /* public fields */ rle_kind visual; /* actual type of input file */ jvirt_sarray_ptr image; /* virtual array to hold the image */ JDIMENSION row; /* current row # in the virtual array */ rle_hdr header; /* Input file information */ rle_pixel** rle_row; /* holds a row returned by rle_getrow() */ } rle_source_struct; /* * Read the file header; return image size and component count. */ METHODDEF(void) start_input_rle (j_compress_ptr cinfo, cjpeg_source_ptr sinfo) { rle_source_ptr source = (rle_source_ptr) sinfo; JDIMENSION width, height; #ifdef PROGRESS_REPORT cd_progress_ptr progress = (cd_progress_ptr) cinfo->progress; #endif /* Use RLE library routine to get the header info */ source->header = *rle_hdr_init(NULL); source->header.rle_file = source->pub.input_file; switch (rle_get_setup(&(source->header))) { case RLE_SUCCESS: /* A-OK */ break; case RLE_NOT_RLE: ERREXIT(cinfo, JERR_RLE_NOT); break; case RLE_NO_SPACE: ERREXIT(cinfo, JERR_RLE_MEM); break; case RLE_EMPTY: ERREXIT(cinfo, JERR_RLE_EMPTY); break; case RLE_EOF: ERREXIT(cinfo, JERR_RLE_EOF); break; default: ERREXIT(cinfo, JERR_RLE_BADERROR); break; } /* Figure out what we have, set private vars and return values accordingly */ width = source->header.xmax - source->header.xmin + 1; height = source->header.ymax - source->header.ymin + 1; source->header.xmin = 0; /* realign horizontally */ source->header.xmax = width-1; cinfo->image_width = width; cinfo->image_height = height; cinfo->data_precision = 8; /* we can only handle 8 bit data */ if (source->header.ncolors == 1 && source->header.ncmap == 0) { source->visual = GRAYSCALE; TRACEMS2(cinfo, 1, JTRC_RLE_GRAY, width, height); } else if (source->header.ncolors == 1 && source->header.ncmap == 1) { source->visual = MAPPEDGRAY; TRACEMS3(cinfo, 1, JTRC_RLE_MAPGRAY, width, height, 1 << source->header.cmaplen); } else if (source->header.ncolors == 1 && source->header.ncmap == 3) { source->visual = PSEUDOCOLOR; TRACEMS3(cinfo, 1, JTRC_RLE_MAPPED, width, height, 1 << source->header.cmaplen); } else if (source->header.ncolors == 3 && source->header.ncmap == 3) { source->visual = TRUECOLOR; TRACEMS3(cinfo, 1, JTRC_RLE_FULLMAP, width, height, 1 << source->header.cmaplen); } else if (source->header.ncolors == 3 && source->header.ncmap == 0) { source->visual = DIRECTCOLOR; TRACEMS2(cinfo, 1, JTRC_RLE, width, height); } else ERREXIT(cinfo, JERR_RLE_UNSUPPORTED); if (source->visual == GRAYSCALE || source->visual == MAPPEDGRAY) { cinfo->in_color_space = JCS_GRAYSCALE; cinfo->input_components = 1; } else { cinfo->in_color_space = JCS_RGB; cinfo->input_components = 3; } /* * A place to hold each scanline while it's converted. * (GRAYSCALE scanlines don't need converting) */ if (source->visual != GRAYSCALE) { source->rle_row = (rle_pixel**) (*cinfo->mem->alloc_sarray) ((j_common_ptr) cinfo, JPOOL_IMAGE, (JDIMENSION) width, (JDIMENSION) cinfo->input_components); } /* request a virtual array to hold the image */ source->image = (*cinfo->mem->request_virt_sarray) ((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE, (JDIMENSION) (width * source->header.ncolors), (JDIMENSION) height, (JDIMENSION) 1); #ifdef PROGRESS_REPORT if (progress != NULL) { /* count file input as separate pass */ progress->total_extra_passes++; } #endif source->pub.buffer_height = 1; } /* * Read one row of pixels. * Called only after load_image has read the image into the virtual array. * Used for GRAYSCALE, MAPPEDGRAY, TRUECOLOR, and DIRECTCOLOR images. */ METHODDEF(JDIMENSION) get_rle_row (j_compress_ptr cinfo, cjpeg_source_ptr sinfo) { rle_source_ptr source = (rle_source_ptr) sinfo; source->row--; source->pub.buffer = (*cinfo->mem->access_virt_sarray) ((j_common_ptr) cinfo, source->image, source->row, (JDIMENSION) 1, FALSE); return 1; } /* * Read one row of pixels. * Called only after load_image has read the image into the virtual array. * Used for PSEUDOCOLOR images. */ METHODDEF(JDIMENSION) get_pseudocolor_row (j_compress_ptr cinfo, cjpeg_source_ptr sinfo) { rle_source_ptr source = (rle_source_ptr) sinfo; JSAMPROW src_row, dest_row; JDIMENSION col; rle_map *colormap; int val; colormap = source->header.cmap; dest_row = source->pub.buffer[0]; source->row--; src_row = * (*cinfo->mem->access_virt_sarray) ((j_common_ptr) cinfo, source->image, source->row, (JDIMENSION) 1, FALSE); for (col = cinfo->image_width; col > 0; col--) { val = GETJSAMPLE(*src_row++); *dest_row++ = (JSAMPLE) (colormap[val ] >> 8); *dest_row++ = (JSAMPLE) (colormap[val + 256] >> 8); *dest_row++ = (JSAMPLE) (colormap[val + 512] >> 8); } return 1; } /* * Load the image into a virtual array. We have to do this because RLE * files start at the lower left while the JPEG standard has them starting * in the upper left. This is called the first time we want to get a row * of input. What we do is load the RLE data into the array and then call * the appropriate routine to read one row from the array. Before returning, * we set source->pub.get_pixel_rows so that subsequent calls go straight to * the appropriate row-reading routine. */ METHODDEF(JDIMENSION) load_image (j_compress_ptr cinfo, cjpeg_source_ptr sinfo) { rle_source_ptr source = (rle_source_ptr) sinfo; JDIMENSION row, col; JSAMPROW scanline, red_ptr, green_ptr, blue_ptr; rle_pixel **rle_row; rle_map *colormap; char channel; #ifdef PROGRESS_REPORT cd_progress_ptr progress = (cd_progress_ptr) cinfo->progress; #endif colormap = source->header.cmap; rle_row = source->rle_row; /* Read the RLE data into our virtual array. * We assume here that rle_pixel is represented the same as JSAMPLE. */ RLE_CLR_BIT(source->header, RLE_ALPHA); /* don't read the alpha channel */ #ifdef PROGRESS_REPORT if (progress != NULL) { progress->pub.pass_limit = cinfo->image_height; progress->pub.pass_counter = 0; (*progress->pub.progress_monitor) ((j_common_ptr) cinfo); } #endif switch (source->visual) { case GRAYSCALE: case PSEUDOCOLOR: for (row = 0; row < cinfo->image_height; row++) { rle_row = (rle_pixel **) (*cinfo->mem->access_virt_sarray) ((j_common_ptr) cinfo, source->image, row, (JDIMENSION) 1, TRUE); rle_getrow(&source->header, rle_row); #ifdef PROGRESS_REPORT if (progress != NULL) { progress->pub.pass_counter++; (*progress->pub.progress_monitor) ((j_common_ptr) cinfo); } #endif } break; case MAPPEDGRAY: case TRUECOLOR: for (row = 0; row < cinfo->image_height; row++) { scanline = * (*cinfo->mem->access_virt_sarray) ((j_common_ptr) cinfo, source->image, row, (JDIMENSION) 1, TRUE); rle_row = source->rle_row; rle_getrow(&source->header, rle_row); for (col = 0; col < cinfo->image_width; col++) { for (channel = 0; channel < source->header.ncolors; channel++) { *scanline++ = (JSAMPLE) (colormap[GETJSAMPLE(rle_row[channel][col]) + 256 * channel] >> 8); } } #ifdef PROGRESS_REPORT if (progress != NULL) { progress->pub.pass_counter++; (*progress->pub.progress_monitor) ((j_common_ptr) cinfo); } #endif } break; case DIRECTCOLOR: for (row = 0; row < cinfo->image_height; row++) { scanline = * (*cinfo->mem->access_virt_sarray) ((j_common_ptr) cinfo, source->image, row, (JDIMENSION) 1, TRUE); rle_getrow(&source->header, rle_row); red_ptr = rle_row[0]; green_ptr = rle_row[1]; blue_ptr = rle_row[2]; for (col = cinfo->image_width; col > 0; col--) { *scanline++ = *red_ptr++; *scanline++ = *green_ptr++; *scanline++ = *blue_ptr++; } #ifdef PROGRESS_REPORT if (progress != NULL) { progress->pub.pass_counter++; (*progress->pub.progress_monitor) ((j_common_ptr) cinfo); } #endif } } #ifdef PROGRESS_REPORT if (progress != NULL) progress->completed_extra_passes++; #endif /* Set up to call proper row-extraction routine in future */ if (source->visual == PSEUDOCOLOR) { source->pub.buffer = source->rle_row; source->pub.get_pixel_rows = get_pseudocolor_row; } else { source->pub.get_pixel_rows = get_rle_row; } source->row = cinfo->image_height; /* And fetch the topmost (bottommost) row */ return (*source->pub.get_pixel_rows) (cinfo, sinfo); } /* * Finish up at the end of the file. */ METHODDEF(void) finish_input_rle (j_compress_ptr cinfo, cjpeg_source_ptr sinfo) { /* no work */ } /* * The module selection routine for RLE format input. */ GLOBAL(cjpeg_source_ptr) jinit_read_rle (j_compress_ptr cinfo) { rle_source_ptr source; /* Create module interface object */ source = (rle_source_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, sizeof(rle_source_struct)); /* Fill in method ptrs */ source->pub.start_input = start_input_rle; source->pub.finish_input = finish_input_rle; source->pub.get_pixel_rows = load_image; return (cjpeg_source_ptr) source; } #endif /* RLE_SUPPORTED */ libjpeg-turbo-1.4.2/config.guess0000755000076500007650000012367212600050414013541 00000000000000#! /bin/sh # Attempt to guess a canonical system name. # Copyright 1992-2014 Free Software Foundation, Inc. timestamp='2014-11-04' # This file is free software; you can redistribute it and/or modify it # under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, see . # # As a special exception to the GNU General Public License, if you # distribute this file as part of a program that contains a # configuration script generated by Autoconf, you may include it under # the same distribution terms that you use for the rest of that # program. This Exception is an additional permission under section 7 # of the GNU General Public License, version 3 ("GPLv3"). # # Originally written by Per Bothner; maintained since 2000 by Ben Elliston. # # You can get the latest version of this script from: # http://git.savannah.gnu.org/gitweb/?p=config.git;a=blob_plain;f=config.guess;hb=HEAD # # Please send patches to . me=`echo "$0" | sed -e 's,.*/,,'` usage="\ Usage: $0 [OPTION] Output the configuration name of the system \`$me' is run on. Operation modes: -h, --help print this help, then exit -t, --time-stamp print date of last modification, then exit -v, --version print version number, then exit Report bugs and patches to ." version="\ GNU config.guess ($timestamp) Originally written by Per Bothner. Copyright 1992-2014 Free Software Foundation, Inc. This is free software; see the source for copying conditions. There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE." help=" Try \`$me --help' for more information." # Parse command line while test $# -gt 0 ; do case $1 in --time-stamp | --time* | -t ) echo "$timestamp" ; exit ;; --version | -v ) echo "$version" ; exit ;; --help | --h* | -h ) echo "$usage"; exit ;; -- ) # Stop option processing shift; break ;; - ) # Use stdin as input. break ;; -* ) echo "$me: invalid option $1$help" >&2 exit 1 ;; * ) break ;; esac done if test $# != 0; then echo "$me: too many arguments$help" >&2 exit 1 fi trap 'exit 1' 1 2 15 # CC_FOR_BUILD -- compiler used by this script. Note that the use of a # compiler to aid in system detection is discouraged as it requires # temporary files to be created and, as you can see below, it is a # headache to deal with in a portable fashion. # Historically, `CC_FOR_BUILD' used to be named `HOST_CC'. We still # use `HOST_CC' if defined, but it is deprecated. # Portable tmp directory creation inspired by the Autoconf team. set_cc_for_build=' trap "exitcode=\$?; (rm -f \$tmpfiles 2>/dev/null; rmdir \$tmp 2>/dev/null) && exit \$exitcode" 0 ; trap "rm -f \$tmpfiles 2>/dev/null; rmdir \$tmp 2>/dev/null; exit 1" 1 2 13 15 ; : ${TMPDIR=/tmp} ; { tmp=`(umask 077 && mktemp -d "$TMPDIR/cgXXXXXX") 2>/dev/null` && test -n "$tmp" && test -d "$tmp" ; } || { test -n "$RANDOM" && tmp=$TMPDIR/cg$$-$RANDOM && (umask 077 && mkdir $tmp) ; } || { tmp=$TMPDIR/cg-$$ && (umask 077 && mkdir $tmp) && echo "Warning: creating insecure temp directory" >&2 ; } || { echo "$me: cannot create a temporary directory in $TMPDIR" >&2 ; exit 1 ; } ; dummy=$tmp/dummy ; tmpfiles="$dummy.c $dummy.o $dummy.rel $dummy" ; case $CC_FOR_BUILD,$HOST_CC,$CC in ,,) echo "int x;" > $dummy.c ; for c in cc gcc c89 c99 ; do if ($c -c -o $dummy.o $dummy.c) >/dev/null 2>&1 ; then CC_FOR_BUILD="$c"; break ; fi ; done ; if test x"$CC_FOR_BUILD" = x ; then CC_FOR_BUILD=no_compiler_found ; fi ;; ,,*) CC_FOR_BUILD=$CC ;; ,*,*) CC_FOR_BUILD=$HOST_CC ;; esac ; set_cc_for_build= ;' # This is needed to find uname on a Pyramid OSx when run in the BSD universe. # (ghazi@noc.rutgers.edu 1994-08-24) if (test -f /.attbin/uname) >/dev/null 2>&1 ; then PATH=$PATH:/.attbin ; export PATH fi UNAME_MACHINE=`(uname -m) 2>/dev/null` || UNAME_MACHINE=unknown UNAME_RELEASE=`(uname -r) 2>/dev/null` || UNAME_RELEASE=unknown UNAME_SYSTEM=`(uname -s) 2>/dev/null` || UNAME_SYSTEM=unknown UNAME_VERSION=`(uname -v) 2>/dev/null` || UNAME_VERSION=unknown case "${UNAME_SYSTEM}" in Linux|GNU|GNU/*) # If the system lacks a compiler, then just pick glibc. # We could probably try harder. LIBC=gnu eval $set_cc_for_build cat <<-EOF > $dummy.c #include #if defined(__UCLIBC__) LIBC=uclibc #elif defined(__dietlibc__) LIBC=dietlibc #else LIBC=gnu #endif EOF eval `$CC_FOR_BUILD -E $dummy.c 2>/dev/null | grep '^LIBC' | sed 's, ,,g'` ;; esac # Note: order is significant - the case branches are not exclusive. case "${UNAME_MACHINE}:${UNAME_SYSTEM}:${UNAME_RELEASE}:${UNAME_VERSION}" in *:NetBSD:*:*) # NetBSD (nbsd) targets should (where applicable) match one or # more of the tuples: *-*-netbsdelf*, *-*-netbsdaout*, # *-*-netbsdecoff* and *-*-netbsd*. For targets that recently # switched to ELF, *-*-netbsd* would select the old # object file format. This provides both forward # compatibility and a consistent mechanism for selecting the # object file format. # # Note: NetBSD doesn't particularly care about the vendor # portion of the name. We always set it to "unknown". sysctl="sysctl -n hw.machine_arch" UNAME_MACHINE_ARCH=`(/sbin/$sysctl 2>/dev/null || \ /usr/sbin/$sysctl 2>/dev/null || echo unknown)` case "${UNAME_MACHINE_ARCH}" in armeb) machine=armeb-unknown ;; arm*) machine=arm-unknown ;; sh3el) machine=shl-unknown ;; sh3eb) machine=sh-unknown ;; sh5el) machine=sh5le-unknown ;; *) machine=${UNAME_MACHINE_ARCH}-unknown ;; esac # The Operating System including object format, if it has switched # to ELF recently, or will in the future. case "${UNAME_MACHINE_ARCH}" in arm*|i386|m68k|ns32k|sh3*|sparc|vax) eval $set_cc_for_build if echo __ELF__ | $CC_FOR_BUILD -E - 2>/dev/null \ | grep -q __ELF__ then # Once all utilities can be ECOFF (netbsdecoff) or a.out (netbsdaout). # Return netbsd for either. FIX? os=netbsd else os=netbsdelf fi ;; *) os=netbsd ;; esac # The OS release # Debian GNU/NetBSD machines have a different userland, and # thus, need a distinct triplet. However, they do not need # kernel version information, so it can be replaced with a # suitable tag, in the style of linux-gnu. case "${UNAME_VERSION}" in Debian*) release='-gnu' ;; *) release=`echo ${UNAME_RELEASE}|sed -e 's/[-_].*/\./'` ;; esac # Since CPU_TYPE-MANUFACTURER-KERNEL-OPERATING_SYSTEM: # contains redundant information, the shorter form: # CPU_TYPE-MANUFACTURER-OPERATING_SYSTEM is used. echo "${machine}-${os}${release}" exit ;; *:Bitrig:*:*) UNAME_MACHINE_ARCH=`arch | sed 's/Bitrig.//'` echo ${UNAME_MACHINE_ARCH}-unknown-bitrig${UNAME_RELEASE} exit ;; *:OpenBSD:*:*) UNAME_MACHINE_ARCH=`arch | sed 's/OpenBSD.//'` echo ${UNAME_MACHINE_ARCH}-unknown-openbsd${UNAME_RELEASE} exit ;; *:ekkoBSD:*:*) echo ${UNAME_MACHINE}-unknown-ekkobsd${UNAME_RELEASE} exit ;; *:SolidBSD:*:*) echo ${UNAME_MACHINE}-unknown-solidbsd${UNAME_RELEASE} exit ;; macppc:MirBSD:*:*) echo powerpc-unknown-mirbsd${UNAME_RELEASE} exit ;; *:MirBSD:*:*) echo ${UNAME_MACHINE}-unknown-mirbsd${UNAME_RELEASE} exit ;; alpha:OSF1:*:*) case $UNAME_RELEASE in *4.0) UNAME_RELEASE=`/usr/sbin/sizer -v | awk '{print $3}'` ;; *5.*) UNAME_RELEASE=`/usr/sbin/sizer -v | awk '{print $4}'` ;; esac # According to Compaq, /usr/sbin/psrinfo has been available on # OSF/1 and Tru64 systems produced since 1995. I hope that # covers most systems running today. This code pipes the CPU # types through head -n 1, so we only detect the type of CPU 0. ALPHA_CPU_TYPE=`/usr/sbin/psrinfo -v | sed -n -e 's/^ The alpha \(.*\) processor.*$/\1/p' | head -n 1` case "$ALPHA_CPU_TYPE" in "EV4 (21064)") UNAME_MACHINE="alpha" ;; "EV4.5 (21064)") UNAME_MACHINE="alpha" ;; "LCA4 (21066/21068)") UNAME_MACHINE="alpha" ;; "EV5 (21164)") UNAME_MACHINE="alphaev5" ;; "EV5.6 (21164A)") UNAME_MACHINE="alphaev56" ;; "EV5.6 (21164PC)") UNAME_MACHINE="alphapca56" ;; "EV5.7 (21164PC)") UNAME_MACHINE="alphapca57" ;; "EV6 (21264)") UNAME_MACHINE="alphaev6" ;; "EV6.7 (21264A)") UNAME_MACHINE="alphaev67" ;; "EV6.8CB (21264C)") UNAME_MACHINE="alphaev68" ;; "EV6.8AL (21264B)") UNAME_MACHINE="alphaev68" ;; "EV6.8CX (21264D)") UNAME_MACHINE="alphaev68" ;; "EV6.9A (21264/EV69A)") UNAME_MACHINE="alphaev69" ;; "EV7 (21364)") UNAME_MACHINE="alphaev7" ;; "EV7.9 (21364A)") UNAME_MACHINE="alphaev79" ;; esac # A Pn.n version is a patched version. # A Vn.n version is a released version. # A Tn.n version is a released field test version. # A Xn.n version is an unreleased experimental baselevel. # 1.2 uses "1.2" for uname -r. echo ${UNAME_MACHINE}-dec-osf`echo ${UNAME_RELEASE} | sed -e 's/^[PVTX]//' | tr 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' 'abcdefghijklmnopqrstuvwxyz'` # Reset EXIT trap before exiting to avoid spurious non-zero exit code. exitcode=$? trap '' 0 exit $exitcode ;; Alpha\ *:Windows_NT*:*) # How do we know it's Interix rather than the generic POSIX subsystem? # Should we change UNAME_MACHINE based on the output of uname instead # of the specific Alpha model? echo alpha-pc-interix exit ;; 21064:Windows_NT:50:3) echo alpha-dec-winnt3.5 exit ;; Amiga*:UNIX_System_V:4.0:*) echo m68k-unknown-sysv4 exit ;; *:[Aa]miga[Oo][Ss]:*:*) echo ${UNAME_MACHINE}-unknown-amigaos exit ;; *:[Mm]orph[Oo][Ss]:*:*) echo ${UNAME_MACHINE}-unknown-morphos exit ;; *:OS/390:*:*) echo i370-ibm-openedition exit ;; *:z/VM:*:*) echo s390-ibm-zvmoe exit ;; *:OS400:*:*) echo powerpc-ibm-os400 exit ;; arm:RISC*:1.[012]*:*|arm:riscix:1.[012]*:*) echo arm-acorn-riscix${UNAME_RELEASE} exit ;; arm*:riscos:*:*|arm*:RISCOS:*:*) echo arm-unknown-riscos exit ;; SR2?01:HI-UX/MPP:*:* | SR8000:HI-UX/MPP:*:*) echo hppa1.1-hitachi-hiuxmpp exit ;; Pyramid*:OSx*:*:* | MIS*:OSx*:*:* | MIS*:SMP_DC-OSx*:*:*) # akee@wpdis03.wpafb.af.mil (Earle F. Ake) contributed MIS and NILE. if test "`(/bin/universe) 2>/dev/null`" = att ; then echo pyramid-pyramid-sysv3 else echo pyramid-pyramid-bsd fi exit ;; NILE*:*:*:dcosx) echo pyramid-pyramid-svr4 exit ;; DRS?6000:unix:4.0:6*) echo sparc-icl-nx6 exit ;; DRS?6000:UNIX_SV:4.2*:7* | DRS?6000:isis:4.2*:7*) case `/usr/bin/uname -p` in sparc) echo sparc-icl-nx7; exit ;; esac ;; s390x:SunOS:*:*) echo ${UNAME_MACHINE}-ibm-solaris2`echo ${UNAME_RELEASE}|sed -e 's/[^.]*//'` exit ;; sun4H:SunOS:5.*:*) echo sparc-hal-solaris2`echo ${UNAME_RELEASE}|sed -e 's/[^.]*//'` exit ;; sun4*:SunOS:5.*:* | tadpole*:SunOS:5.*:*) echo sparc-sun-solaris2`echo ${UNAME_RELEASE}|sed -e 's/[^.]*//'` exit ;; i86pc:AuroraUX:5.*:* | i86xen:AuroraUX:5.*:*) echo i386-pc-auroraux${UNAME_RELEASE} exit ;; i86pc:SunOS:5.*:* | i86xen:SunOS:5.*:*) eval $set_cc_for_build SUN_ARCH="i386" # If there is a compiler, see if it is configured for 64-bit objects. # Note that the Sun cc does not turn __LP64__ into 1 like gcc does. # This test works for both compilers. if [ "$CC_FOR_BUILD" != 'no_compiler_found' ]; then if (echo '#ifdef __amd64'; echo IS_64BIT_ARCH; echo '#endif') | \ (CCOPTS= $CC_FOR_BUILD -E - 2>/dev/null) | \ grep IS_64BIT_ARCH >/dev/null then SUN_ARCH="x86_64" fi fi echo ${SUN_ARCH}-pc-solaris2`echo ${UNAME_RELEASE}|sed -e 's/[^.]*//'` exit ;; sun4*:SunOS:6*:*) # According to config.sub, this is the proper way to canonicalize # SunOS6. Hard to guess exactly what SunOS6 will be like, but # it's likely to be more like Solaris than SunOS4. echo sparc-sun-solaris3`echo ${UNAME_RELEASE}|sed -e 's/[^.]*//'` exit ;; sun4*:SunOS:*:*) case "`/usr/bin/arch -k`" in Series*|S4*) UNAME_RELEASE=`uname -v` ;; esac # Japanese Language versions have a version number like `4.1.3-JL'. echo sparc-sun-sunos`echo ${UNAME_RELEASE}|sed -e 's/-/_/'` exit ;; sun3*:SunOS:*:*) echo m68k-sun-sunos${UNAME_RELEASE} exit ;; sun*:*:4.2BSD:*) UNAME_RELEASE=`(sed 1q /etc/motd | awk '{print substr($5,1,3)}') 2>/dev/null` test "x${UNAME_RELEASE}" = "x" && UNAME_RELEASE=3 case "`/bin/arch`" in sun3) echo m68k-sun-sunos${UNAME_RELEASE} ;; sun4) echo sparc-sun-sunos${UNAME_RELEASE} ;; esac exit ;; aushp:SunOS:*:*) echo sparc-auspex-sunos${UNAME_RELEASE} exit ;; # The situation for MiNT is a little confusing. The machine name # can be virtually everything (everything which is not # "atarist" or "atariste" at least should have a processor # > m68000). The system name ranges from "MiNT" over "FreeMiNT" # to the lowercase version "mint" (or "freemint"). Finally # the system name "TOS" denotes a system which is actually not # MiNT. But MiNT is downward compatible to TOS, so this should # be no problem. atarist[e]:*MiNT:*:* | atarist[e]:*mint:*:* | atarist[e]:*TOS:*:*) echo m68k-atari-mint${UNAME_RELEASE} exit ;; atari*:*MiNT:*:* | atari*:*mint:*:* | atarist[e]:*TOS:*:*) echo m68k-atari-mint${UNAME_RELEASE} exit ;; *falcon*:*MiNT:*:* | *falcon*:*mint:*:* | *falcon*:*TOS:*:*) echo m68k-atari-mint${UNAME_RELEASE} exit ;; milan*:*MiNT:*:* | milan*:*mint:*:* | *milan*:*TOS:*:*) echo m68k-milan-mint${UNAME_RELEASE} exit ;; hades*:*MiNT:*:* | hades*:*mint:*:* | *hades*:*TOS:*:*) echo m68k-hades-mint${UNAME_RELEASE} exit ;; *:*MiNT:*:* | *:*mint:*:* | *:*TOS:*:*) echo m68k-unknown-mint${UNAME_RELEASE} exit ;; m68k:machten:*:*) echo m68k-apple-machten${UNAME_RELEASE} exit ;; powerpc:machten:*:*) echo powerpc-apple-machten${UNAME_RELEASE} exit ;; RISC*:Mach:*:*) echo mips-dec-mach_bsd4.3 exit ;; RISC*:ULTRIX:*:*) echo mips-dec-ultrix${UNAME_RELEASE} exit ;; VAX*:ULTRIX*:*:*) echo vax-dec-ultrix${UNAME_RELEASE} exit ;; 2020:CLIX:*:* | 2430:CLIX:*:*) echo clipper-intergraph-clix${UNAME_RELEASE} exit ;; mips:*:*:UMIPS | mips:*:*:RISCos) eval $set_cc_for_build sed 's/^ //' << EOF >$dummy.c #ifdef __cplusplus #include /* for printf() prototype */ int main (int argc, char *argv[]) { #else int main (argc, argv) int argc; char *argv[]; { #endif #if defined (host_mips) && defined (MIPSEB) #if defined (SYSTYPE_SYSV) printf ("mips-mips-riscos%ssysv\n", argv[1]); exit (0); #endif #if defined (SYSTYPE_SVR4) printf ("mips-mips-riscos%ssvr4\n", argv[1]); exit (0); #endif #if defined (SYSTYPE_BSD43) || defined(SYSTYPE_BSD) printf ("mips-mips-riscos%sbsd\n", argv[1]); exit (0); #endif #endif exit (-1); } EOF $CC_FOR_BUILD -o $dummy $dummy.c && dummyarg=`echo "${UNAME_RELEASE}" | sed -n 's/\([0-9]*\).*/\1/p'` && SYSTEM_NAME=`$dummy $dummyarg` && { echo "$SYSTEM_NAME"; exit; } echo mips-mips-riscos${UNAME_RELEASE} exit ;; Motorola:PowerMAX_OS:*:*) echo powerpc-motorola-powermax exit ;; Motorola:*:4.3:PL8-*) echo powerpc-harris-powermax exit ;; Night_Hawk:*:*:PowerMAX_OS | Synergy:PowerMAX_OS:*:*) echo powerpc-harris-powermax exit ;; Night_Hawk:Power_UNIX:*:*) echo powerpc-harris-powerunix exit ;; m88k:CX/UX:7*:*) echo m88k-harris-cxux7 exit ;; m88k:*:4*:R4*) echo m88k-motorola-sysv4 exit ;; m88k:*:3*:R3*) echo m88k-motorola-sysv3 exit ;; AViiON:dgux:*:*) # DG/UX returns AViiON for all architectures UNAME_PROCESSOR=`/usr/bin/uname -p` if [ $UNAME_PROCESSOR = mc88100 ] || [ $UNAME_PROCESSOR = mc88110 ] then if [ ${TARGET_BINARY_INTERFACE}x = m88kdguxelfx ] || \ [ ${TARGET_BINARY_INTERFACE}x = x ] then echo m88k-dg-dgux${UNAME_RELEASE} else echo m88k-dg-dguxbcs${UNAME_RELEASE} fi else echo i586-dg-dgux${UNAME_RELEASE} fi exit ;; M88*:DolphinOS:*:*) # DolphinOS (SVR3) echo m88k-dolphin-sysv3 exit ;; M88*:*:R3*:*) # Delta 88k system running SVR3 echo m88k-motorola-sysv3 exit ;; XD88*:*:*:*) # Tektronix XD88 system running UTekV (SVR3) echo m88k-tektronix-sysv3 exit ;; Tek43[0-9][0-9]:UTek:*:*) # Tektronix 4300 system running UTek (BSD) echo m68k-tektronix-bsd exit ;; *:IRIX*:*:*) echo mips-sgi-irix`echo ${UNAME_RELEASE}|sed -e 's/-/_/g'` exit ;; ????????:AIX?:[12].1:2) # AIX 2.2.1 or AIX 2.1.1 is RT/PC AIX. echo romp-ibm-aix # uname -m gives an 8 hex-code CPU id exit ;; # Note that: echo "'`uname -s`'" gives 'AIX ' i*86:AIX:*:*) echo i386-ibm-aix exit ;; ia64:AIX:*:*) if [ -x /usr/bin/oslevel ] ; then IBM_REV=`/usr/bin/oslevel` else IBM_REV=${UNAME_VERSION}.${UNAME_RELEASE} fi echo ${UNAME_MACHINE}-ibm-aix${IBM_REV} exit ;; *:AIX:2:3) if grep bos325 /usr/include/stdio.h >/dev/null 2>&1; then eval $set_cc_for_build sed 's/^ //' << EOF >$dummy.c #include main() { if (!__power_pc()) exit(1); puts("powerpc-ibm-aix3.2.5"); exit(0); } EOF if $CC_FOR_BUILD -o $dummy $dummy.c && SYSTEM_NAME=`$dummy` then echo "$SYSTEM_NAME" else echo rs6000-ibm-aix3.2.5 fi elif grep bos324 /usr/include/stdio.h >/dev/null 2>&1; then echo rs6000-ibm-aix3.2.4 else echo rs6000-ibm-aix3.2 fi exit ;; *:AIX:*:[4567]) IBM_CPU_ID=`/usr/sbin/lsdev -C -c processor -S available | sed 1q | awk '{ print $1 }'` if /usr/sbin/lsattr -El ${IBM_CPU_ID} | grep ' POWER' >/dev/null 2>&1; then IBM_ARCH=rs6000 else IBM_ARCH=powerpc fi if [ -x /usr/bin/lslpp ] ; then IBM_REV=`/usr/bin/lslpp -Lqc bos.rte.libc | awk -F: '{ print $3 }' | sed s/[0-9]*$/0/` else IBM_REV=${UNAME_VERSION}.${UNAME_RELEASE} fi echo ${IBM_ARCH}-ibm-aix${IBM_REV} exit ;; *:AIX:*:*) echo rs6000-ibm-aix exit ;; ibmrt:4.4BSD:*|romp-ibm:BSD:*) echo romp-ibm-bsd4.4 exit ;; ibmrt:*BSD:*|romp-ibm:BSD:*) # covers RT/PC BSD and echo romp-ibm-bsd${UNAME_RELEASE} # 4.3 with uname added to exit ;; # report: romp-ibm BSD 4.3 *:BOSX:*:*) echo rs6000-bull-bosx exit ;; DPX/2?00:B.O.S.:*:*) echo m68k-bull-sysv3 exit ;; 9000/[34]??:4.3bsd:1.*:*) echo m68k-hp-bsd exit ;; hp300:4.4BSD:*:* | 9000/[34]??:4.3bsd:2.*:*) echo m68k-hp-bsd4.4 exit ;; 9000/[34678]??:HP-UX:*:*) HPUX_REV=`echo ${UNAME_RELEASE}|sed -e 's/[^.]*.[0B]*//'` case "${UNAME_MACHINE}" in 9000/31? ) HP_ARCH=m68000 ;; 9000/[34]?? ) HP_ARCH=m68k ;; 9000/[678][0-9][0-9]) if [ -x /usr/bin/getconf ]; then sc_cpu_version=`/usr/bin/getconf SC_CPU_VERSION 2>/dev/null` sc_kernel_bits=`/usr/bin/getconf SC_KERNEL_BITS 2>/dev/null` case "${sc_cpu_version}" in 523) HP_ARCH="hppa1.0" ;; # CPU_PA_RISC1_0 528) HP_ARCH="hppa1.1" ;; # CPU_PA_RISC1_1 532) # CPU_PA_RISC2_0 case "${sc_kernel_bits}" in 32) HP_ARCH="hppa2.0n" ;; 64) HP_ARCH="hppa2.0w" ;; '') HP_ARCH="hppa2.0" ;; # HP-UX 10.20 esac ;; esac fi if [ "${HP_ARCH}" = "" ]; then eval $set_cc_for_build sed 's/^ //' << EOF >$dummy.c #define _HPUX_SOURCE #include #include int main () { #if defined(_SC_KERNEL_BITS) long bits = sysconf(_SC_KERNEL_BITS); #endif long cpu = sysconf (_SC_CPU_VERSION); switch (cpu) { case CPU_PA_RISC1_0: puts ("hppa1.0"); break; case CPU_PA_RISC1_1: puts ("hppa1.1"); break; case CPU_PA_RISC2_0: #if defined(_SC_KERNEL_BITS) switch (bits) { case 64: puts ("hppa2.0w"); break; case 32: puts ("hppa2.0n"); break; default: puts ("hppa2.0"); break; } break; #else /* !defined(_SC_KERNEL_BITS) */ puts ("hppa2.0"); break; #endif default: puts ("hppa1.0"); break; } exit (0); } EOF (CCOPTS= $CC_FOR_BUILD -o $dummy $dummy.c 2>/dev/null) && HP_ARCH=`$dummy` test -z "$HP_ARCH" && HP_ARCH=hppa fi ;; esac if [ ${HP_ARCH} = "hppa2.0w" ] then eval $set_cc_for_build # hppa2.0w-hp-hpux* has a 64-bit kernel and a compiler generating # 32-bit code. hppa64-hp-hpux* has the same kernel and a compiler # generating 64-bit code. GNU and HP use different nomenclature: # # $ CC_FOR_BUILD=cc ./config.guess # => hppa2.0w-hp-hpux11.23 # $ CC_FOR_BUILD="cc +DA2.0w" ./config.guess # => hppa64-hp-hpux11.23 if echo __LP64__ | (CCOPTS= $CC_FOR_BUILD -E - 2>/dev/null) | grep -q __LP64__ then HP_ARCH="hppa2.0w" else HP_ARCH="hppa64" fi fi echo ${HP_ARCH}-hp-hpux${HPUX_REV} exit ;; ia64:HP-UX:*:*) HPUX_REV=`echo ${UNAME_RELEASE}|sed -e 's/[^.]*.[0B]*//'` echo ia64-hp-hpux${HPUX_REV} exit ;; 3050*:HI-UX:*:*) eval $set_cc_for_build sed 's/^ //' << EOF >$dummy.c #include int main () { long cpu = sysconf (_SC_CPU_VERSION); /* The order matters, because CPU_IS_HP_MC68K erroneously returns true for CPU_PA_RISC1_0. CPU_IS_PA_RISC returns correct results, however. */ if (CPU_IS_PA_RISC (cpu)) { switch (cpu) { case CPU_PA_RISC1_0: puts ("hppa1.0-hitachi-hiuxwe2"); break; case CPU_PA_RISC1_1: puts ("hppa1.1-hitachi-hiuxwe2"); break; case CPU_PA_RISC2_0: puts ("hppa2.0-hitachi-hiuxwe2"); break; default: puts ("hppa-hitachi-hiuxwe2"); break; } } else if (CPU_IS_HP_MC68K (cpu)) puts ("m68k-hitachi-hiuxwe2"); else puts ("unknown-hitachi-hiuxwe2"); exit (0); } EOF $CC_FOR_BUILD -o $dummy $dummy.c && SYSTEM_NAME=`$dummy` && { echo "$SYSTEM_NAME"; exit; } echo unknown-hitachi-hiuxwe2 exit ;; 9000/7??:4.3bsd:*:* | 9000/8?[79]:4.3bsd:*:* ) echo hppa1.1-hp-bsd exit ;; 9000/8??:4.3bsd:*:*) echo hppa1.0-hp-bsd exit ;; *9??*:MPE/iX:*:* | *3000*:MPE/iX:*:*) echo hppa1.0-hp-mpeix exit ;; hp7??:OSF1:*:* | hp8?[79]:OSF1:*:* ) echo hppa1.1-hp-osf exit ;; hp8??:OSF1:*:*) echo hppa1.0-hp-osf exit ;; i*86:OSF1:*:*) if [ -x /usr/sbin/sysversion ] ; then echo ${UNAME_MACHINE}-unknown-osf1mk else echo ${UNAME_MACHINE}-unknown-osf1 fi exit ;; parisc*:Lites*:*:*) echo hppa1.1-hp-lites exit ;; C1*:ConvexOS:*:* | convex:ConvexOS:C1*:*) echo c1-convex-bsd exit ;; C2*:ConvexOS:*:* | convex:ConvexOS:C2*:*) if getsysinfo -f scalar_acc then echo c32-convex-bsd else echo c2-convex-bsd fi exit ;; C34*:ConvexOS:*:* | convex:ConvexOS:C34*:*) echo c34-convex-bsd exit ;; C38*:ConvexOS:*:* | convex:ConvexOS:C38*:*) echo c38-convex-bsd exit ;; C4*:ConvexOS:*:* | convex:ConvexOS:C4*:*) echo c4-convex-bsd exit ;; CRAY*Y-MP:*:*:*) echo ymp-cray-unicos${UNAME_RELEASE} | sed -e 's/\.[^.]*$/.X/' exit ;; CRAY*[A-Z]90:*:*:*) echo ${UNAME_MACHINE}-cray-unicos${UNAME_RELEASE} \ | sed -e 's/CRAY.*\([A-Z]90\)/\1/' \ -e y/ABCDEFGHIJKLMNOPQRSTUVWXYZ/abcdefghijklmnopqrstuvwxyz/ \ -e 's/\.[^.]*$/.X/' exit ;; CRAY*TS:*:*:*) echo t90-cray-unicos${UNAME_RELEASE} | sed -e 's/\.[^.]*$/.X/' exit ;; CRAY*T3E:*:*:*) echo alphaev5-cray-unicosmk${UNAME_RELEASE} | sed -e 's/\.[^.]*$/.X/' exit ;; CRAY*SV1:*:*:*) echo sv1-cray-unicos${UNAME_RELEASE} | sed -e 's/\.[^.]*$/.X/' exit ;; *:UNICOS/mp:*:*) echo craynv-cray-unicosmp${UNAME_RELEASE} | sed -e 's/\.[^.]*$/.X/' exit ;; F30[01]:UNIX_System_V:*:* | F700:UNIX_System_V:*:*) FUJITSU_PROC=`uname -m | tr 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' 'abcdefghijklmnopqrstuvwxyz'` FUJITSU_SYS=`uname -p | tr 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' 'abcdefghijklmnopqrstuvwxyz' | sed -e 's/\///'` FUJITSU_REL=`echo ${UNAME_RELEASE} | sed -e 's/ /_/'` echo "${FUJITSU_PROC}-fujitsu-${FUJITSU_SYS}${FUJITSU_REL}" exit ;; 5000:UNIX_System_V:4.*:*) FUJITSU_SYS=`uname -p | tr 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' 'abcdefghijklmnopqrstuvwxyz' | sed -e 's/\///'` FUJITSU_REL=`echo ${UNAME_RELEASE} | tr 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' 'abcdefghijklmnopqrstuvwxyz' | sed -e 's/ /_/'` echo "sparc-fujitsu-${FUJITSU_SYS}${FUJITSU_REL}" exit ;; i*86:BSD/386:*:* | i*86:BSD/OS:*:* | *:Ascend\ Embedded/OS:*:*) echo ${UNAME_MACHINE}-pc-bsdi${UNAME_RELEASE} exit ;; sparc*:BSD/OS:*:*) echo sparc-unknown-bsdi${UNAME_RELEASE} exit ;; *:BSD/OS:*:*) echo ${UNAME_MACHINE}-unknown-bsdi${UNAME_RELEASE} exit ;; *:FreeBSD:*:*) UNAME_PROCESSOR=`/usr/bin/uname -p` case ${UNAME_PROCESSOR} in amd64) echo x86_64-unknown-freebsd`echo ${UNAME_RELEASE}|sed -e 's/[-(].*//'` ;; *) echo ${UNAME_PROCESSOR}-unknown-freebsd`echo ${UNAME_RELEASE}|sed -e 's/[-(].*//'` ;; esac exit ;; i*:CYGWIN*:*) echo ${UNAME_MACHINE}-pc-cygwin exit ;; *:MINGW64*:*) echo ${UNAME_MACHINE}-pc-mingw64 exit ;; *:MINGW*:*) echo ${UNAME_MACHINE}-pc-mingw32 exit ;; *:MSYS*:*) echo ${UNAME_MACHINE}-pc-msys exit ;; i*:windows32*:*) # uname -m includes "-pc" on this system. echo ${UNAME_MACHINE}-mingw32 exit ;; i*:PW*:*) echo ${UNAME_MACHINE}-pc-pw32 exit ;; *:Interix*:*) case ${UNAME_MACHINE} in x86) echo i586-pc-interix${UNAME_RELEASE} exit ;; authenticamd | genuineintel | EM64T) echo x86_64-unknown-interix${UNAME_RELEASE} exit ;; IA64) echo ia64-unknown-interix${UNAME_RELEASE} exit ;; esac ;; [345]86:Windows_95:* | [345]86:Windows_98:* | [345]86:Windows_NT:*) echo i${UNAME_MACHINE}-pc-mks exit ;; 8664:Windows_NT:*) echo x86_64-pc-mks exit ;; i*:Windows_NT*:* | Pentium*:Windows_NT*:*) # How do we know it's Interix rather than the generic POSIX subsystem? # It also conflicts with pre-2.0 versions of AT&T UWIN. Should we # UNAME_MACHINE based on the output of uname instead of i386? echo i586-pc-interix exit ;; i*:UWIN*:*) echo ${UNAME_MACHINE}-pc-uwin exit ;; amd64:CYGWIN*:*:* | x86_64:CYGWIN*:*:*) echo x86_64-unknown-cygwin exit ;; p*:CYGWIN*:*) echo powerpcle-unknown-cygwin exit ;; prep*:SunOS:5.*:*) echo powerpcle-unknown-solaris2`echo ${UNAME_RELEASE}|sed -e 's/[^.]*//'` exit ;; *:GNU:*:*) # the GNU system echo `echo ${UNAME_MACHINE}|sed -e 's,[-/].*$,,'`-unknown-${LIBC}`echo ${UNAME_RELEASE}|sed -e 's,/.*$,,'` exit ;; *:GNU/*:*:*) # other systems with GNU libc and userland echo ${UNAME_MACHINE}-unknown-`echo ${UNAME_SYSTEM} | sed 's,^[^/]*/,,' | tr '[A-Z]' '[a-z]'``echo ${UNAME_RELEASE}|sed -e 's/[-(].*//'`-${LIBC} exit ;; i*86:Minix:*:*) echo ${UNAME_MACHINE}-pc-minix exit ;; aarch64:Linux:*:*) echo ${UNAME_MACHINE}-unknown-linux-${LIBC} exit ;; aarch64_be:Linux:*:*) UNAME_MACHINE=aarch64_be echo ${UNAME_MACHINE}-unknown-linux-${LIBC} exit ;; alpha:Linux:*:*) case `sed -n '/^cpu model/s/^.*: \(.*\)/\1/p' < /proc/cpuinfo` in EV5) UNAME_MACHINE=alphaev5 ;; EV56) UNAME_MACHINE=alphaev56 ;; PCA56) UNAME_MACHINE=alphapca56 ;; PCA57) UNAME_MACHINE=alphapca56 ;; EV6) UNAME_MACHINE=alphaev6 ;; EV67) UNAME_MACHINE=alphaev67 ;; EV68*) UNAME_MACHINE=alphaev68 ;; esac objdump --private-headers /bin/sh | grep -q ld.so.1 if test "$?" = 0 ; then LIBC="gnulibc1" ; fi echo ${UNAME_MACHINE}-unknown-linux-${LIBC} exit ;; arc:Linux:*:* | arceb:Linux:*:*) echo ${UNAME_MACHINE}-unknown-linux-${LIBC} exit ;; arm*:Linux:*:*) eval $set_cc_for_build if echo __ARM_EABI__ | $CC_FOR_BUILD -E - 2>/dev/null \ | grep -q __ARM_EABI__ then echo ${UNAME_MACHINE}-unknown-linux-${LIBC} else if echo __ARM_PCS_VFP | $CC_FOR_BUILD -E - 2>/dev/null \ | grep -q __ARM_PCS_VFP then echo ${UNAME_MACHINE}-unknown-linux-${LIBC}eabi else echo ${UNAME_MACHINE}-unknown-linux-${LIBC}eabihf fi fi exit ;; avr32*:Linux:*:*) echo ${UNAME_MACHINE}-unknown-linux-${LIBC} exit ;; cris:Linux:*:*) echo ${UNAME_MACHINE}-axis-linux-${LIBC} exit ;; crisv32:Linux:*:*) echo ${UNAME_MACHINE}-axis-linux-${LIBC} exit ;; frv:Linux:*:*) echo ${UNAME_MACHINE}-unknown-linux-${LIBC} exit ;; hexagon:Linux:*:*) echo ${UNAME_MACHINE}-unknown-linux-${LIBC} exit ;; i*86:Linux:*:*) echo ${UNAME_MACHINE}-pc-linux-${LIBC} exit ;; ia64:Linux:*:*) echo ${UNAME_MACHINE}-unknown-linux-${LIBC} exit ;; m32r*:Linux:*:*) echo ${UNAME_MACHINE}-unknown-linux-${LIBC} exit ;; m68*:Linux:*:*) echo ${UNAME_MACHINE}-unknown-linux-${LIBC} exit ;; mips:Linux:*:* | mips64:Linux:*:*) eval $set_cc_for_build sed 's/^ //' << EOF >$dummy.c #undef CPU #undef ${UNAME_MACHINE} #undef ${UNAME_MACHINE}el #if defined(__MIPSEL__) || defined(__MIPSEL) || defined(_MIPSEL) || defined(MIPSEL) CPU=${UNAME_MACHINE}el #else #if defined(__MIPSEB__) || defined(__MIPSEB) || defined(_MIPSEB) || defined(MIPSEB) CPU=${UNAME_MACHINE} #else CPU= #endif #endif EOF eval `$CC_FOR_BUILD -E $dummy.c 2>/dev/null | grep '^CPU'` test x"${CPU}" != x && { echo "${CPU}-unknown-linux-${LIBC}"; exit; } ;; openrisc*:Linux:*:*) echo or1k-unknown-linux-${LIBC} exit ;; or32:Linux:*:* | or1k*:Linux:*:*) echo ${UNAME_MACHINE}-unknown-linux-${LIBC} exit ;; padre:Linux:*:*) echo sparc-unknown-linux-${LIBC} exit ;; parisc64:Linux:*:* | hppa64:Linux:*:*) echo hppa64-unknown-linux-${LIBC} exit ;; parisc:Linux:*:* | hppa:Linux:*:*) # Look for CPU level case `grep '^cpu[^a-z]*:' /proc/cpuinfo 2>/dev/null | cut -d' ' -f2` in PA7*) echo hppa1.1-unknown-linux-${LIBC} ;; PA8*) echo hppa2.0-unknown-linux-${LIBC} ;; *) echo hppa-unknown-linux-${LIBC} ;; esac exit ;; ppc64:Linux:*:*) echo powerpc64-unknown-linux-${LIBC} exit ;; ppc:Linux:*:*) echo powerpc-unknown-linux-${LIBC} exit ;; ppc64le:Linux:*:*) echo powerpc64le-unknown-linux-${LIBC} exit ;; ppcle:Linux:*:*) echo powerpcle-unknown-linux-${LIBC} exit ;; s390:Linux:*:* | s390x:Linux:*:*) echo ${UNAME_MACHINE}-ibm-linux-${LIBC} exit ;; sh64*:Linux:*:*) echo ${UNAME_MACHINE}-unknown-linux-${LIBC} exit ;; sh*:Linux:*:*) echo ${UNAME_MACHINE}-unknown-linux-${LIBC} exit ;; sparc:Linux:*:* | sparc64:Linux:*:*) echo ${UNAME_MACHINE}-unknown-linux-${LIBC} exit ;; tile*:Linux:*:*) echo ${UNAME_MACHINE}-unknown-linux-${LIBC} exit ;; vax:Linux:*:*) echo ${UNAME_MACHINE}-dec-linux-${LIBC} exit ;; x86_64:Linux:*:*) echo ${UNAME_MACHINE}-unknown-linux-${LIBC} exit ;; xtensa*:Linux:*:*) echo ${UNAME_MACHINE}-unknown-linux-${LIBC} exit ;; i*86:DYNIX/ptx:4*:*) # ptx 4.0 does uname -s correctly, with DYNIX/ptx in there. # earlier versions are messed up and put the nodename in both # sysname and nodename. echo i386-sequent-sysv4 exit ;; i*86:UNIX_SV:4.2MP:2.*) # Unixware is an offshoot of SVR4, but it has its own version # number series starting with 2... # I am not positive that other SVR4 systems won't match this, # I just have to hope. -- rms. # Use sysv4.2uw... so that sysv4* matches it. echo ${UNAME_MACHINE}-pc-sysv4.2uw${UNAME_VERSION} exit ;; i*86:OS/2:*:*) # If we were able to find `uname', then EMX Unix compatibility # is probably installed. echo ${UNAME_MACHINE}-pc-os2-emx exit ;; i*86:XTS-300:*:STOP) echo ${UNAME_MACHINE}-unknown-stop exit ;; i*86:atheos:*:*) echo ${UNAME_MACHINE}-unknown-atheos exit ;; i*86:syllable:*:*) echo ${UNAME_MACHINE}-pc-syllable exit ;; i*86:LynxOS:2.*:* | i*86:LynxOS:3.[01]*:* | i*86:LynxOS:4.[02]*:*) echo i386-unknown-lynxos${UNAME_RELEASE} exit ;; i*86:*DOS:*:*) echo ${UNAME_MACHINE}-pc-msdosdjgpp exit ;; i*86:*:4.*:* | i*86:SYSTEM_V:4.*:*) UNAME_REL=`echo ${UNAME_RELEASE} | sed 's/\/MP$//'` if grep Novell /usr/include/link.h >/dev/null 2>/dev/null; then echo ${UNAME_MACHINE}-univel-sysv${UNAME_REL} else echo ${UNAME_MACHINE}-pc-sysv${UNAME_REL} fi exit ;; i*86:*:5:[678]*) # UnixWare 7.x, OpenUNIX and OpenServer 6. case `/bin/uname -X | grep "^Machine"` in *486*) UNAME_MACHINE=i486 ;; *Pentium) UNAME_MACHINE=i586 ;; *Pent*|*Celeron) UNAME_MACHINE=i686 ;; esac echo ${UNAME_MACHINE}-unknown-sysv${UNAME_RELEASE}${UNAME_SYSTEM}${UNAME_VERSION} exit ;; i*86:*:3.2:*) if test -f /usr/options/cb.name; then UNAME_REL=`sed -n 's/.*Version //p' /dev/null >/dev/null ; then UNAME_REL=`(/bin/uname -X|grep Release|sed -e 's/.*= //')` (/bin/uname -X|grep i80486 >/dev/null) && UNAME_MACHINE=i486 (/bin/uname -X|grep '^Machine.*Pentium' >/dev/null) \ && UNAME_MACHINE=i586 (/bin/uname -X|grep '^Machine.*Pent *II' >/dev/null) \ && UNAME_MACHINE=i686 (/bin/uname -X|grep '^Machine.*Pentium Pro' >/dev/null) \ && UNAME_MACHINE=i686 echo ${UNAME_MACHINE}-pc-sco$UNAME_REL else echo ${UNAME_MACHINE}-pc-sysv32 fi exit ;; pc:*:*:*) # Left here for compatibility: # uname -m prints for DJGPP always 'pc', but it prints nothing about # the processor, so we play safe by assuming i586. # Note: whatever this is, it MUST be the same as what config.sub # prints for the "djgpp" host, or else GDB configury will decide that # this is a cross-build. echo i586-pc-msdosdjgpp exit ;; Intel:Mach:3*:*) echo i386-pc-mach3 exit ;; paragon:*:*:*) echo i860-intel-osf1 exit ;; i860:*:4.*:*) # i860-SVR4 if grep Stardent /usr/include/sys/uadmin.h >/dev/null 2>&1 ; then echo i860-stardent-sysv${UNAME_RELEASE} # Stardent Vistra i860-SVR4 else # Add other i860-SVR4 vendors below as they are discovered. echo i860-unknown-sysv${UNAME_RELEASE} # Unknown i860-SVR4 fi exit ;; mini*:CTIX:SYS*5:*) # "miniframe" echo m68010-convergent-sysv exit ;; mc68k:UNIX:SYSTEM5:3.51m) echo m68k-convergent-sysv exit ;; M680?0:D-NIX:5.3:*) echo m68k-diab-dnix exit ;; M68*:*:R3V[5678]*:*) test -r /sysV68 && { echo 'm68k-motorola-sysv'; exit; } ;; 3[345]??:*:4.0:3.0 | 3[34]??A:*:4.0:3.0 | 3[34]??,*:*:4.0:3.0 | 3[34]??/*:*:4.0:3.0 | 4400:*:4.0:3.0 | 4850:*:4.0:3.0 | SKA40:*:4.0:3.0 | SDS2:*:4.0:3.0 | SHG2:*:4.0:3.0 | S7501*:*:4.0:3.0) OS_REL='' test -r /etc/.relid \ && OS_REL=.`sed -n 's/[^ ]* [^ ]* \([0-9][0-9]\).*/\1/p' < /etc/.relid` /bin/uname -p 2>/dev/null | grep 86 >/dev/null \ && { echo i486-ncr-sysv4.3${OS_REL}; exit; } /bin/uname -p 2>/dev/null | /bin/grep entium >/dev/null \ && { echo i586-ncr-sysv4.3${OS_REL}; exit; } ;; 3[34]??:*:4.0:* | 3[34]??,*:*:4.0:*) /bin/uname -p 2>/dev/null | grep 86 >/dev/null \ && { echo i486-ncr-sysv4; exit; } ;; NCR*:*:4.2:* | MPRAS*:*:4.2:*) OS_REL='.3' test -r /etc/.relid \ && OS_REL=.`sed -n 's/[^ ]* [^ ]* \([0-9][0-9]\).*/\1/p' < /etc/.relid` /bin/uname -p 2>/dev/null | grep 86 >/dev/null \ && { echo i486-ncr-sysv4.3${OS_REL}; exit; } /bin/uname -p 2>/dev/null | /bin/grep entium >/dev/null \ && { echo i586-ncr-sysv4.3${OS_REL}; exit; } /bin/uname -p 2>/dev/null | /bin/grep pteron >/dev/null \ && { echo i586-ncr-sysv4.3${OS_REL}; exit; } ;; m68*:LynxOS:2.*:* | m68*:LynxOS:3.0*:*) echo m68k-unknown-lynxos${UNAME_RELEASE} exit ;; mc68030:UNIX_System_V:4.*:*) echo m68k-atari-sysv4 exit ;; TSUNAMI:LynxOS:2.*:*) echo sparc-unknown-lynxos${UNAME_RELEASE} exit ;; rs6000:LynxOS:2.*:*) echo rs6000-unknown-lynxos${UNAME_RELEASE} exit ;; PowerPC:LynxOS:2.*:* | PowerPC:LynxOS:3.[01]*:* | PowerPC:LynxOS:4.[02]*:*) echo powerpc-unknown-lynxos${UNAME_RELEASE} exit ;; SM[BE]S:UNIX_SV:*:*) echo mips-dde-sysv${UNAME_RELEASE} exit ;; RM*:ReliantUNIX-*:*:*) echo mips-sni-sysv4 exit ;; RM*:SINIX-*:*:*) echo mips-sni-sysv4 exit ;; *:SINIX-*:*:*) if uname -p 2>/dev/null >/dev/null ; then UNAME_MACHINE=`(uname -p) 2>/dev/null` echo ${UNAME_MACHINE}-sni-sysv4 else echo ns32k-sni-sysv fi exit ;; PENTIUM:*:4.0*:*) # Unisys `ClearPath HMP IX 4000' SVR4/MP effort # says echo i586-unisys-sysv4 exit ;; *:UNIX_System_V:4*:FTX*) # From Gerald Hewes . # How about differentiating between stratus architectures? -djm echo hppa1.1-stratus-sysv4 exit ;; *:*:*:FTX*) # From seanf@swdc.stratus.com. echo i860-stratus-sysv4 exit ;; i*86:VOS:*:*) # From Paul.Green@stratus.com. echo ${UNAME_MACHINE}-stratus-vos exit ;; *:VOS:*:*) # From Paul.Green@stratus.com. echo hppa1.1-stratus-vos exit ;; mc68*:A/UX:*:*) echo m68k-apple-aux${UNAME_RELEASE} exit ;; news*:NEWS-OS:6*:*) echo mips-sony-newsos6 exit ;; R[34]000:*System_V*:*:* | R4000:UNIX_SYSV:*:* | R*000:UNIX_SV:*:*) if [ -d /usr/nec ]; then echo mips-nec-sysv${UNAME_RELEASE} else echo mips-unknown-sysv${UNAME_RELEASE} fi exit ;; BeBox:BeOS:*:*) # BeOS running on hardware made by Be, PPC only. echo powerpc-be-beos exit ;; BeMac:BeOS:*:*) # BeOS running on Mac or Mac clone, PPC only. echo powerpc-apple-beos exit ;; BePC:BeOS:*:*) # BeOS running on Intel PC compatible. echo i586-pc-beos exit ;; BePC:Haiku:*:*) # Haiku running on Intel PC compatible. echo i586-pc-haiku exit ;; x86_64:Haiku:*:*) echo x86_64-unknown-haiku exit ;; SX-4:SUPER-UX:*:*) echo sx4-nec-superux${UNAME_RELEASE} exit ;; SX-5:SUPER-UX:*:*) echo sx5-nec-superux${UNAME_RELEASE} exit ;; SX-6:SUPER-UX:*:*) echo sx6-nec-superux${UNAME_RELEASE} exit ;; SX-7:SUPER-UX:*:*) echo sx7-nec-superux${UNAME_RELEASE} exit ;; SX-8:SUPER-UX:*:*) echo sx8-nec-superux${UNAME_RELEASE} exit ;; SX-8R:SUPER-UX:*:*) echo sx8r-nec-superux${UNAME_RELEASE} exit ;; Power*:Rhapsody:*:*) echo powerpc-apple-rhapsody${UNAME_RELEASE} exit ;; *:Rhapsody:*:*) echo ${UNAME_MACHINE}-apple-rhapsody${UNAME_RELEASE} exit ;; *:Darwin:*:*) UNAME_PROCESSOR=`uname -p` || UNAME_PROCESSOR=unknown eval $set_cc_for_build if test "$UNAME_PROCESSOR" = unknown ; then UNAME_PROCESSOR=powerpc fi if test `echo "$UNAME_RELEASE" | sed -e 's/\..*//'` -le 10 ; then if [ "$CC_FOR_BUILD" != 'no_compiler_found' ]; then if (echo '#ifdef __LP64__'; echo IS_64BIT_ARCH; echo '#endif') | \ (CCOPTS= $CC_FOR_BUILD -E - 2>/dev/null) | \ grep IS_64BIT_ARCH >/dev/null then case $UNAME_PROCESSOR in i386) UNAME_PROCESSOR=x86_64 ;; powerpc) UNAME_PROCESSOR=powerpc64 ;; esac fi fi elif test "$UNAME_PROCESSOR" = i386 ; then # Avoid executing cc on OS X 10.9, as it ships with a stub # that puts up a graphical alert prompting to install # developer tools. Any system running Mac OS X 10.7 or # later (Darwin 11 and later) is required to have a 64-bit # processor. This is not true of the ARM version of Darwin # that Apple uses in portable devices. UNAME_PROCESSOR=x86_64 fi echo ${UNAME_PROCESSOR}-apple-darwin${UNAME_RELEASE} exit ;; *:procnto*:*:* | *:QNX:[0123456789]*:*) UNAME_PROCESSOR=`uname -p` if test "$UNAME_PROCESSOR" = "x86"; then UNAME_PROCESSOR=i386 UNAME_MACHINE=pc fi echo ${UNAME_PROCESSOR}-${UNAME_MACHINE}-nto-qnx${UNAME_RELEASE} exit ;; *:QNX:*:4*) echo i386-pc-qnx exit ;; NEO-?:NONSTOP_KERNEL:*:*) echo neo-tandem-nsk${UNAME_RELEASE} exit ;; NSE-*:NONSTOP_KERNEL:*:*) echo nse-tandem-nsk${UNAME_RELEASE} exit ;; NSR-?:NONSTOP_KERNEL:*:*) echo nsr-tandem-nsk${UNAME_RELEASE} exit ;; *:NonStop-UX:*:*) echo mips-compaq-nonstopux exit ;; BS2000:POSIX*:*:*) echo bs2000-siemens-sysv exit ;; DS/*:UNIX_System_V:*:*) echo ${UNAME_MACHINE}-${UNAME_SYSTEM}-${UNAME_RELEASE} exit ;; *:Plan9:*:*) # "uname -m" is not consistent, so use $cputype instead. 386 # is converted to i386 for consistency with other x86 # operating systems. if test "$cputype" = "386"; then UNAME_MACHINE=i386 else UNAME_MACHINE="$cputype" fi echo ${UNAME_MACHINE}-unknown-plan9 exit ;; *:TOPS-10:*:*) echo pdp10-unknown-tops10 exit ;; *:TENEX:*:*) echo pdp10-unknown-tenex exit ;; KS10:TOPS-20:*:* | KL10:TOPS-20:*:* | TYPE4:TOPS-20:*:*) echo pdp10-dec-tops20 exit ;; XKL-1:TOPS-20:*:* | TYPE5:TOPS-20:*:*) echo pdp10-xkl-tops20 exit ;; *:TOPS-20:*:*) echo pdp10-unknown-tops20 exit ;; *:ITS:*:*) echo pdp10-unknown-its exit ;; SEI:*:*:SEIUX) echo mips-sei-seiux${UNAME_RELEASE} exit ;; *:DragonFly:*:*) echo ${UNAME_MACHINE}-unknown-dragonfly`echo ${UNAME_RELEASE}|sed -e 's/[-(].*//'` exit ;; *:*VMS:*:*) UNAME_MACHINE=`(uname -p) 2>/dev/null` case "${UNAME_MACHINE}" in A*) echo alpha-dec-vms ; exit ;; I*) echo ia64-dec-vms ; exit ;; V*) echo vax-dec-vms ; exit ;; esac ;; *:XENIX:*:SysV) echo i386-pc-xenix exit ;; i*86:skyos:*:*) echo ${UNAME_MACHINE}-pc-skyos`echo ${UNAME_RELEASE}` | sed -e 's/ .*$//' exit ;; i*86:rdos:*:*) echo ${UNAME_MACHINE}-pc-rdos exit ;; i*86:AROS:*:*) echo ${UNAME_MACHINE}-pc-aros exit ;; x86_64:VMkernel:*:*) echo ${UNAME_MACHINE}-unknown-esx exit ;; esac cat >&2 < in order to provide the needed information to handle your system. config.guess timestamp = $timestamp uname -m = `(uname -m) 2>/dev/null || echo unknown` uname -r = `(uname -r) 2>/dev/null || echo unknown` uname -s = `(uname -s) 2>/dev/null || echo unknown` uname -v = `(uname -v) 2>/dev/null || echo unknown` /usr/bin/uname -p = `(/usr/bin/uname -p) 2>/dev/null` /bin/uname -X = `(/bin/uname -X) 2>/dev/null` hostinfo = `(hostinfo) 2>/dev/null` /bin/universe = `(/bin/universe) 2>/dev/null` /usr/bin/arch -k = `(/usr/bin/arch -k) 2>/dev/null` /bin/arch = `(/bin/arch) 2>/dev/null` /usr/bin/oslevel = `(/usr/bin/oslevel) 2>/dev/null` /usr/convex/getsysinfo = `(/usr/convex/getsysinfo) 2>/dev/null` UNAME_MACHINE = ${UNAME_MACHINE} UNAME_RELEASE = ${UNAME_RELEASE} UNAME_SYSTEM = ${UNAME_SYSTEM} UNAME_VERSION = ${UNAME_VERSION} EOF exit 1 # Local variables: # eval: (add-hook 'write-file-hooks 'time-stamp) # time-stamp-start: "timestamp='" # time-stamp-format: "%:y-%02m-%02d" # time-stamp-end: "'" # End: libjpeg-turbo-1.4.2/jmemmgr.c0000644000076500007650000012557112600050400013016 00000000000000/* * jmemmgr.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1991-1997, Thomas G. Lane. * It was modified by The libjpeg-turbo Project to include only code and * information relevant to libjpeg-turbo. * For conditions of distribution and use, see the accompanying README file. * * This file contains the JPEG system-independent memory management * routines. This code is usable across a wide variety of machines; most * of the system dependencies have been isolated in a separate file. * The major functions provided here are: * * pool-based allocation and freeing of memory; * * policy decisions about how to divide available memory among the * virtual arrays; * * control logic for swapping virtual arrays between main memory and * backing storage. * The separate system-dependent file provides the actual backing-storage * access code, and it contains the policy decision about how much total * main memory to use. * This file is system-dependent in the sense that some of its functions * are unnecessary in some systems. For example, if there is enough virtual * memory so that backing storage will never be used, much of the virtual * array control logic could be removed. (Of course, if you have that much * memory then you shouldn't care about a little bit of unused code...) */ #define JPEG_INTERNALS #define AM_MEMORY_MANAGER /* we define jvirt_Xarray_control structs */ #include "jinclude.h" #include "jpeglib.h" #include "jmemsys.h" /* import the system-dependent declarations */ #ifndef NO_GETENV #ifndef HAVE_STDLIB_H /* should declare getenv() */ extern char * getenv (const char * name); #endif #endif LOCAL(size_t) round_up_pow2 (size_t a, size_t b) /* a rounded up to the next multiple of b, i.e. ceil(a/b)*b */ /* Assumes a >= 0, b > 0, and b is a power of 2 */ { return ((a + b - 1) & (~(b - 1))); } /* * Some important notes: * The allocation routines provided here must never return NULL. * They should exit to error_exit if unsuccessful. * * It's not a good idea to try to merge the sarray and barray routines, * even though they are textually almost the same, because samples are * usually stored as bytes while coefficients are shorts or ints. Thus, * in machines where byte pointers have a different representation from * word pointers, the resulting machine code could not be the same. */ /* * Many machines require storage alignment: longs must start on 4-byte * boundaries, doubles on 8-byte boundaries, etc. On such machines, malloc() * always returns pointers that are multiples of the worst-case alignment * requirement, and we had better do so too. * There isn't any really portable way to determine the worst-case alignment * requirement. This module assumes that the alignment requirement is * multiples of ALIGN_SIZE. * By default, we define ALIGN_SIZE as sizeof(double). This is necessary on some * workstations (where doubles really do need 8-byte alignment) and will work * fine on nearly everything. If your machine has lesser alignment needs, * you can save a few bytes by making ALIGN_SIZE smaller. * The only place I know of where this will NOT work is certain Macintosh * 680x0 compilers that define double as a 10-byte IEEE extended float. * Doing 10-byte alignment is counterproductive because longwords won't be * aligned well. Put "#define ALIGN_SIZE 4" in jconfig.h if you have * such a compiler. */ #ifndef ALIGN_SIZE /* so can override from jconfig.h */ #ifndef WITH_SIMD #define ALIGN_SIZE sizeof(double) #else #define ALIGN_SIZE 16 /* Most SIMD implementations require this */ #endif #endif /* * We allocate objects from "pools", where each pool is gotten with a single * request to jpeg_get_small() or jpeg_get_large(). There is no per-object * overhead within a pool, except for alignment padding. Each pool has a * header with a link to the next pool of the same class. * Small and large pool headers are identical. */ typedef struct small_pool_struct * small_pool_ptr; typedef struct small_pool_struct { small_pool_ptr next; /* next in list of pools */ size_t bytes_used; /* how many bytes already used within pool */ size_t bytes_left; /* bytes still available in this pool */ } small_pool_hdr; typedef struct large_pool_struct * large_pool_ptr; typedef struct large_pool_struct { large_pool_ptr next; /* next in list of pools */ size_t bytes_used; /* how many bytes already used within pool */ size_t bytes_left; /* bytes still available in this pool */ } large_pool_hdr; /* * Here is the full definition of a memory manager object. */ typedef struct { struct jpeg_memory_mgr pub; /* public fields */ /* Each pool identifier (lifetime class) names a linked list of pools. */ small_pool_ptr small_list[JPOOL_NUMPOOLS]; large_pool_ptr large_list[JPOOL_NUMPOOLS]; /* Since we only have one lifetime class of virtual arrays, only one * linked list is necessary (for each datatype). Note that the virtual * array control blocks being linked together are actually stored somewhere * in the small-pool list. */ jvirt_sarray_ptr virt_sarray_list; jvirt_barray_ptr virt_barray_list; /* This counts total space obtained from jpeg_get_small/large */ size_t total_space_allocated; /* alloc_sarray and alloc_barray set this value for use by virtual * array routines. */ JDIMENSION last_rowsperchunk; /* from most recent alloc_sarray/barray */ } my_memory_mgr; typedef my_memory_mgr * my_mem_ptr; /* * The control blocks for virtual arrays. * Note that these blocks are allocated in the "small" pool area. * System-dependent info for the associated backing store (if any) is hidden * inside the backing_store_info struct. */ struct jvirt_sarray_control { JSAMPARRAY mem_buffer; /* => the in-memory buffer */ JDIMENSION rows_in_array; /* total virtual array height */ JDIMENSION samplesperrow; /* width of array (and of memory buffer) */ JDIMENSION maxaccess; /* max rows accessed by access_virt_sarray */ JDIMENSION rows_in_mem; /* height of memory buffer */ JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */ JDIMENSION cur_start_row; /* first logical row # in the buffer */ JDIMENSION first_undef_row; /* row # of first uninitialized row */ boolean pre_zero; /* pre-zero mode requested? */ boolean dirty; /* do current buffer contents need written? */ boolean b_s_open; /* is backing-store data valid? */ jvirt_sarray_ptr next; /* link to next virtual sarray control block */ backing_store_info b_s_info; /* System-dependent control info */ }; struct jvirt_barray_control { JBLOCKARRAY mem_buffer; /* => the in-memory buffer */ JDIMENSION rows_in_array; /* total virtual array height */ JDIMENSION blocksperrow; /* width of array (and of memory buffer) */ JDIMENSION maxaccess; /* max rows accessed by access_virt_barray */ JDIMENSION rows_in_mem; /* height of memory buffer */ JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */ JDIMENSION cur_start_row; /* first logical row # in the buffer */ JDIMENSION first_undef_row; /* row # of first uninitialized row */ boolean pre_zero; /* pre-zero mode requested? */ boolean dirty; /* do current buffer contents need written? */ boolean b_s_open; /* is backing-store data valid? */ jvirt_barray_ptr next; /* link to next virtual barray control block */ backing_store_info b_s_info; /* System-dependent control info */ }; #ifdef MEM_STATS /* optional extra stuff for statistics */ LOCAL(void) print_mem_stats (j_common_ptr cinfo, int pool_id) { my_mem_ptr mem = (my_mem_ptr) cinfo->mem; small_pool_ptr shdr_ptr; large_pool_ptr lhdr_ptr; /* Since this is only a debugging stub, we can cheat a little by using * fprintf directly rather than going through the trace message code. * This is helpful because message parm array can't handle longs. */ fprintf(stderr, "Freeing pool %d, total space = %ld\n", pool_id, mem->total_space_allocated); for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL; lhdr_ptr = lhdr_ptr->next) { fprintf(stderr, " Large chunk used %ld\n", (long) lhdr_ptr->bytes_used); } for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL; shdr_ptr = shdr_ptr->next) { fprintf(stderr, " Small chunk used %ld free %ld\n", (long) shdr_ptr->bytes_used, (long) shdr_ptr->bytes_left); } } #endif /* MEM_STATS */ LOCAL(void) out_of_memory (j_common_ptr cinfo, int which) /* Report an out-of-memory error and stop execution */ /* If we compiled MEM_STATS support, report alloc requests before dying */ { #ifdef MEM_STATS cinfo->err->trace_level = 2; /* force self_destruct to report stats */ #endif ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which); } /* * Allocation of "small" objects. * * For these, we use pooled storage. When a new pool must be created, * we try to get enough space for the current request plus a "slop" factor, * where the slop will be the amount of leftover space in the new pool. * The speed vs. space tradeoff is largely determined by the slop values. * A different slop value is provided for each pool class (lifetime), * and we also distinguish the first pool of a class from later ones. * NOTE: the values given work fairly well on both 16- and 32-bit-int * machines, but may be too small if longs are 64 bits or more. * * Since we do not know what alignment malloc() gives us, we have to * allocate ALIGN_SIZE-1 extra space per pool to have room for alignment * adjustment. */ static const size_t first_pool_slop[JPOOL_NUMPOOLS] = { 1600, /* first PERMANENT pool */ 16000 /* first IMAGE pool */ }; static const size_t extra_pool_slop[JPOOL_NUMPOOLS] = { 0, /* additional PERMANENT pools */ 5000 /* additional IMAGE pools */ }; #define MIN_SLOP 50 /* greater than 0 to avoid futile looping */ METHODDEF(void *) alloc_small (j_common_ptr cinfo, int pool_id, size_t sizeofobject) /* Allocate a "small" object */ { my_mem_ptr mem = (my_mem_ptr) cinfo->mem; small_pool_ptr hdr_ptr, prev_hdr_ptr; char * data_ptr; size_t min_request, slop; /* * Round up the requested size to a multiple of ALIGN_SIZE in order * to assure alignment for the next object allocated in the same pool * and so that algorithms can straddle outside the proper area up * to the next alignment. */ sizeofobject = round_up_pow2(sizeofobject, ALIGN_SIZE); /* Check for unsatisfiable request (do now to ensure no overflow below) */ if ((sizeof(small_pool_hdr) + sizeofobject + ALIGN_SIZE - 1) > MAX_ALLOC_CHUNK) out_of_memory(cinfo, 1); /* request exceeds malloc's ability */ /* See if space is available in any existing pool */ if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS) ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ prev_hdr_ptr = NULL; hdr_ptr = mem->small_list[pool_id]; while (hdr_ptr != NULL) { if (hdr_ptr->bytes_left >= sizeofobject) break; /* found pool with enough space */ prev_hdr_ptr = hdr_ptr; hdr_ptr = hdr_ptr->next; } /* Time to make a new pool? */ if (hdr_ptr == NULL) { /* min_request is what we need now, slop is what will be leftover */ min_request = sizeof(small_pool_hdr) + sizeofobject + ALIGN_SIZE - 1; if (prev_hdr_ptr == NULL) /* first pool in class? */ slop = first_pool_slop[pool_id]; else slop = extra_pool_slop[pool_id]; /* Don't ask for more than MAX_ALLOC_CHUNK */ if (slop > (size_t) (MAX_ALLOC_CHUNK-min_request)) slop = (size_t) (MAX_ALLOC_CHUNK-min_request); /* Try to get space, if fail reduce slop and try again */ for (;;) { hdr_ptr = (small_pool_ptr) jpeg_get_small(cinfo, min_request + slop); if (hdr_ptr != NULL) break; slop /= 2; if (slop < MIN_SLOP) /* give up when it gets real small */ out_of_memory(cinfo, 2); /* jpeg_get_small failed */ } mem->total_space_allocated += min_request + slop; /* Success, initialize the new pool header and add to end of list */ hdr_ptr->next = NULL; hdr_ptr->bytes_used = 0; hdr_ptr->bytes_left = sizeofobject + slop; if (prev_hdr_ptr == NULL) /* first pool in class? */ mem->small_list[pool_id] = hdr_ptr; else prev_hdr_ptr->next = hdr_ptr; } /* OK, allocate the object from the current pool */ data_ptr = (char *) hdr_ptr; /* point to first data byte in pool... */ data_ptr += sizeof(small_pool_hdr); /* ...by skipping the header... */ if ((size_t)data_ptr % ALIGN_SIZE) /* ...and adjust for alignment */ data_ptr += ALIGN_SIZE - (size_t)data_ptr % ALIGN_SIZE; data_ptr += hdr_ptr->bytes_used; /* point to place for object */ hdr_ptr->bytes_used += sizeofobject; hdr_ptr->bytes_left -= sizeofobject; return (void *) data_ptr; } /* * Allocation of "large" objects. * * The external semantics of these are the same as "small" objects. However, * the pool management heuristics are quite different. We assume that each * request is large enough that it may as well be passed directly to * jpeg_get_large; the pool management just links everything together * so that we can free it all on demand. * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY * structures. The routines that create these structures (see below) * deliberately bunch rows together to ensure a large request size. */ METHODDEF(void *) alloc_large (j_common_ptr cinfo, int pool_id, size_t sizeofobject) /* Allocate a "large" object */ { my_mem_ptr mem = (my_mem_ptr) cinfo->mem; large_pool_ptr hdr_ptr; char * data_ptr; /* * Round up the requested size to a multiple of ALIGN_SIZE so that * algorithms can straddle outside the proper area up to the next * alignment. */ sizeofobject = round_up_pow2(sizeofobject, ALIGN_SIZE); /* Check for unsatisfiable request (do now to ensure no overflow below) */ if ((sizeof(large_pool_hdr) + sizeofobject + ALIGN_SIZE - 1) > MAX_ALLOC_CHUNK) out_of_memory(cinfo, 3); /* request exceeds malloc's ability */ /* Always make a new pool */ if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS) ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ hdr_ptr = (large_pool_ptr) jpeg_get_large(cinfo, sizeofobject + sizeof(large_pool_hdr) + ALIGN_SIZE - 1); if (hdr_ptr == NULL) out_of_memory(cinfo, 4); /* jpeg_get_large failed */ mem->total_space_allocated += sizeofobject + sizeof(large_pool_hdr) + ALIGN_SIZE - 1; /* Success, initialize the new pool header and add to list */ hdr_ptr->next = mem->large_list[pool_id]; /* We maintain space counts in each pool header for statistical purposes, * even though they are not needed for allocation. */ hdr_ptr->bytes_used = sizeofobject; hdr_ptr->bytes_left = 0; mem->large_list[pool_id] = hdr_ptr; data_ptr = (char *) hdr_ptr; /* point to first data byte in pool... */ data_ptr += sizeof(small_pool_hdr); /* ...by skipping the header... */ if ((size_t)data_ptr % ALIGN_SIZE) /* ...and adjust for alignment */ data_ptr += ALIGN_SIZE - (size_t)data_ptr % ALIGN_SIZE; return (void *) data_ptr; } /* * Creation of 2-D sample arrays. * * To minimize allocation overhead and to allow I/O of large contiguous * blocks, we allocate the sample rows in groups of as many rows as possible * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request. * NB: the virtual array control routines, later in this file, know about * this chunking of rows. The rowsperchunk value is left in the mem manager * object so that it can be saved away if this sarray is the workspace for * a virtual array. * * Since we are often upsampling with a factor 2, we align the size (not * the start) to 2 * ALIGN_SIZE so that the upsampling routines don't have * to be as careful about size. */ METHODDEF(JSAMPARRAY) alloc_sarray (j_common_ptr cinfo, int pool_id, JDIMENSION samplesperrow, JDIMENSION numrows) /* Allocate a 2-D sample array */ { my_mem_ptr mem = (my_mem_ptr) cinfo->mem; JSAMPARRAY result; JSAMPROW workspace; JDIMENSION rowsperchunk, currow, i; long ltemp; /* Make sure each row is properly aligned */ if ((ALIGN_SIZE % sizeof(JSAMPLE)) != 0) out_of_memory(cinfo, 5); /* safety check */ samplesperrow = (JDIMENSION)round_up_pow2(samplesperrow, (2 * ALIGN_SIZE) / sizeof(JSAMPLE)); /* Calculate max # of rows allowed in one allocation chunk */ ltemp = (MAX_ALLOC_CHUNK-sizeof(large_pool_hdr)) / ((long) samplesperrow * sizeof(JSAMPLE)); if (ltemp <= 0) ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); if (ltemp < (long) numrows) rowsperchunk = (JDIMENSION) ltemp; else rowsperchunk = numrows; mem->last_rowsperchunk = rowsperchunk; /* Get space for row pointers (small object) */ result = (JSAMPARRAY) alloc_small(cinfo, pool_id, (size_t) (numrows * sizeof(JSAMPROW))); /* Get the rows themselves (large objects) */ currow = 0; while (currow < numrows) { rowsperchunk = MIN(rowsperchunk, numrows - currow); workspace = (JSAMPROW) alloc_large(cinfo, pool_id, (size_t) ((size_t) rowsperchunk * (size_t) samplesperrow * sizeof(JSAMPLE))); for (i = rowsperchunk; i > 0; i--) { result[currow++] = workspace; workspace += samplesperrow; } } return result; } /* * Creation of 2-D coefficient-block arrays. * This is essentially the same as the code for sample arrays, above. */ METHODDEF(JBLOCKARRAY) alloc_barray (j_common_ptr cinfo, int pool_id, JDIMENSION blocksperrow, JDIMENSION numrows) /* Allocate a 2-D coefficient-block array */ { my_mem_ptr mem = (my_mem_ptr) cinfo->mem; JBLOCKARRAY result; JBLOCKROW workspace; JDIMENSION rowsperchunk, currow, i; long ltemp; /* Make sure each row is properly aligned */ if ((sizeof(JBLOCK) % ALIGN_SIZE) != 0) out_of_memory(cinfo, 6); /* safety check */ /* Calculate max # of rows allowed in one allocation chunk */ ltemp = (MAX_ALLOC_CHUNK-sizeof(large_pool_hdr)) / ((long) blocksperrow * sizeof(JBLOCK)); if (ltemp <= 0) ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); if (ltemp < (long) numrows) rowsperchunk = (JDIMENSION) ltemp; else rowsperchunk = numrows; mem->last_rowsperchunk = rowsperchunk; /* Get space for row pointers (small object) */ result = (JBLOCKARRAY) alloc_small(cinfo, pool_id, (size_t) (numrows * sizeof(JBLOCKROW))); /* Get the rows themselves (large objects) */ currow = 0; while (currow < numrows) { rowsperchunk = MIN(rowsperchunk, numrows - currow); workspace = (JBLOCKROW) alloc_large(cinfo, pool_id, (size_t) ((size_t) rowsperchunk * (size_t) blocksperrow * sizeof(JBLOCK))); for (i = rowsperchunk; i > 0; i--) { result[currow++] = workspace; workspace += blocksperrow; } } return result; } /* * About virtual array management: * * The above "normal" array routines are only used to allocate strip buffers * (as wide as the image, but just a few rows high). Full-image-sized buffers * are handled as "virtual" arrays. The array is still accessed a strip at a * time, but the memory manager must save the whole array for repeated * accesses. The intended implementation is that there is a strip buffer in * memory (as high as is possible given the desired memory limit), plus a * backing file that holds the rest of the array. * * The request_virt_array routines are told the total size of the image and * the maximum number of rows that will be accessed at once. The in-memory * buffer must be at least as large as the maxaccess value. * * The request routines create control blocks but not the in-memory buffers. * That is postponed until realize_virt_arrays is called. At that time the * total amount of space needed is known (approximately, anyway), so free * memory can be divided up fairly. * * The access_virt_array routines are responsible for making a specific strip * area accessible (after reading or writing the backing file, if necessary). * Note that the access routines are told whether the caller intends to modify * the accessed strip; during a read-only pass this saves having to rewrite * data to disk. The access routines are also responsible for pre-zeroing * any newly accessed rows, if pre-zeroing was requested. * * In current usage, the access requests are usually for nonoverlapping * strips; that is, successive access start_row numbers differ by exactly * num_rows = maxaccess. This means we can get good performance with simple * buffer dump/reload logic, by making the in-memory buffer be a multiple * of the access height; then there will never be accesses across bufferload * boundaries. The code will still work with overlapping access requests, * but it doesn't handle bufferload overlaps very efficiently. */ METHODDEF(jvirt_sarray_ptr) request_virt_sarray (j_common_ptr cinfo, int pool_id, boolean pre_zero, JDIMENSION samplesperrow, JDIMENSION numrows, JDIMENSION maxaccess) /* Request a virtual 2-D sample array */ { my_mem_ptr mem = (my_mem_ptr) cinfo->mem; jvirt_sarray_ptr result; /* Only IMAGE-lifetime virtual arrays are currently supported */ if (pool_id != JPOOL_IMAGE) ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ /* get control block */ result = (jvirt_sarray_ptr) alloc_small(cinfo, pool_id, sizeof(struct jvirt_sarray_control)); result->mem_buffer = NULL; /* marks array not yet realized */ result->rows_in_array = numrows; result->samplesperrow = samplesperrow; result->maxaccess = maxaccess; result->pre_zero = pre_zero; result->b_s_open = FALSE; /* no associated backing-store object */ result->next = mem->virt_sarray_list; /* add to list of virtual arrays */ mem->virt_sarray_list = result; return result; } METHODDEF(jvirt_barray_ptr) request_virt_barray (j_common_ptr cinfo, int pool_id, boolean pre_zero, JDIMENSION blocksperrow, JDIMENSION numrows, JDIMENSION maxaccess) /* Request a virtual 2-D coefficient-block array */ { my_mem_ptr mem = (my_mem_ptr) cinfo->mem; jvirt_barray_ptr result; /* Only IMAGE-lifetime virtual arrays are currently supported */ if (pool_id != JPOOL_IMAGE) ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ /* get control block */ result = (jvirt_barray_ptr) alloc_small(cinfo, pool_id, sizeof(struct jvirt_barray_control)); result->mem_buffer = NULL; /* marks array not yet realized */ result->rows_in_array = numrows; result->blocksperrow = blocksperrow; result->maxaccess = maxaccess; result->pre_zero = pre_zero; result->b_s_open = FALSE; /* no associated backing-store object */ result->next = mem->virt_barray_list; /* add to list of virtual arrays */ mem->virt_barray_list = result; return result; } METHODDEF(void) realize_virt_arrays (j_common_ptr cinfo) /* Allocate the in-memory buffers for any unrealized virtual arrays */ { my_mem_ptr mem = (my_mem_ptr) cinfo->mem; size_t space_per_minheight, maximum_space, avail_mem; size_t minheights, max_minheights; jvirt_sarray_ptr sptr; jvirt_barray_ptr bptr; /* Compute the minimum space needed (maxaccess rows in each buffer) * and the maximum space needed (full image height in each buffer). * These may be of use to the system-dependent jpeg_mem_available routine. */ space_per_minheight = 0; maximum_space = 0; for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) { if (sptr->mem_buffer == NULL) { /* if not realized yet */ space_per_minheight += (long) sptr->maxaccess * (long) sptr->samplesperrow * sizeof(JSAMPLE); maximum_space += (long) sptr->rows_in_array * (long) sptr->samplesperrow * sizeof(JSAMPLE); } } for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) { if (bptr->mem_buffer == NULL) { /* if not realized yet */ space_per_minheight += (long) bptr->maxaccess * (long) bptr->blocksperrow * sizeof(JBLOCK); maximum_space += (long) bptr->rows_in_array * (long) bptr->blocksperrow * sizeof(JBLOCK); } } if (space_per_minheight <= 0) return; /* no unrealized arrays, no work */ /* Determine amount of memory to actually use; this is system-dependent. */ avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space, mem->total_space_allocated); /* If the maximum space needed is available, make all the buffers full * height; otherwise parcel it out with the same number of minheights * in each buffer. */ if (avail_mem >= maximum_space) max_minheights = 1000000000L; else { max_minheights = avail_mem / space_per_minheight; /* If there doesn't seem to be enough space, try to get the minimum * anyway. This allows a "stub" implementation of jpeg_mem_available(). */ if (max_minheights <= 0) max_minheights = 1; } /* Allocate the in-memory buffers and initialize backing store as needed. */ for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) { if (sptr->mem_buffer == NULL) { /* if not realized yet */ minheights = ((long) sptr->rows_in_array - 1L) / sptr->maxaccess + 1L; if (minheights <= max_minheights) { /* This buffer fits in memory */ sptr->rows_in_mem = sptr->rows_in_array; } else { /* It doesn't fit in memory, create backing store. */ sptr->rows_in_mem = (JDIMENSION) (max_minheights * sptr->maxaccess); jpeg_open_backing_store(cinfo, & sptr->b_s_info, (long) sptr->rows_in_array * (long) sptr->samplesperrow * (long) sizeof(JSAMPLE)); sptr->b_s_open = TRUE; } sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE, sptr->samplesperrow, sptr->rows_in_mem); sptr->rowsperchunk = mem->last_rowsperchunk; sptr->cur_start_row = 0; sptr->first_undef_row = 0; sptr->dirty = FALSE; } } for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) { if (bptr->mem_buffer == NULL) { /* if not realized yet */ minheights = ((long) bptr->rows_in_array - 1L) / bptr->maxaccess + 1L; if (minheights <= max_minheights) { /* This buffer fits in memory */ bptr->rows_in_mem = bptr->rows_in_array; } else { /* It doesn't fit in memory, create backing store. */ bptr->rows_in_mem = (JDIMENSION) (max_minheights * bptr->maxaccess); jpeg_open_backing_store(cinfo, & bptr->b_s_info, (long) bptr->rows_in_array * (long) bptr->blocksperrow * (long) sizeof(JBLOCK)); bptr->b_s_open = TRUE; } bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE, bptr->blocksperrow, bptr->rows_in_mem); bptr->rowsperchunk = mem->last_rowsperchunk; bptr->cur_start_row = 0; bptr->first_undef_row = 0; bptr->dirty = FALSE; } } } LOCAL(void) do_sarray_io (j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing) /* Do backing store read or write of a virtual sample array */ { long bytesperrow, file_offset, byte_count, rows, thisrow, i; bytesperrow = (long) ptr->samplesperrow * sizeof(JSAMPLE); file_offset = ptr->cur_start_row * bytesperrow; /* Loop to read or write each allocation chunk in mem_buffer */ for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) { /* One chunk, but check for short chunk at end of buffer */ rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i); /* Transfer no more than is currently defined */ thisrow = (long) ptr->cur_start_row + i; rows = MIN(rows, (long) ptr->first_undef_row - thisrow); /* Transfer no more than fits in file */ rows = MIN(rows, (long) ptr->rows_in_array - thisrow); if (rows <= 0) /* this chunk might be past end of file! */ break; byte_count = rows * bytesperrow; if (writing) (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info, (void *) ptr->mem_buffer[i], file_offset, byte_count); else (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info, (void *) ptr->mem_buffer[i], file_offset, byte_count); file_offset += byte_count; } } LOCAL(void) do_barray_io (j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing) /* Do backing store read or write of a virtual coefficient-block array */ { long bytesperrow, file_offset, byte_count, rows, thisrow, i; bytesperrow = (long) ptr->blocksperrow * sizeof(JBLOCK); file_offset = ptr->cur_start_row * bytesperrow; /* Loop to read or write each allocation chunk in mem_buffer */ for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) { /* One chunk, but check for short chunk at end of buffer */ rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i); /* Transfer no more than is currently defined */ thisrow = (long) ptr->cur_start_row + i; rows = MIN(rows, (long) ptr->first_undef_row - thisrow); /* Transfer no more than fits in file */ rows = MIN(rows, (long) ptr->rows_in_array - thisrow); if (rows <= 0) /* this chunk might be past end of file! */ break; byte_count = rows * bytesperrow; if (writing) (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info, (void *) ptr->mem_buffer[i], file_offset, byte_count); else (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info, (void *) ptr->mem_buffer[i], file_offset, byte_count); file_offset += byte_count; } } METHODDEF(JSAMPARRAY) access_virt_sarray (j_common_ptr cinfo, jvirt_sarray_ptr ptr, JDIMENSION start_row, JDIMENSION num_rows, boolean writable) /* Access the part of a virtual sample array starting at start_row */ /* and extending for num_rows rows. writable is true if */ /* caller intends to modify the accessed area. */ { JDIMENSION end_row = start_row + num_rows; JDIMENSION undef_row; /* debugging check */ if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess || ptr->mem_buffer == NULL) ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); /* Make the desired part of the virtual array accessible */ if (start_row < ptr->cur_start_row || end_row > ptr->cur_start_row+ptr->rows_in_mem) { if (! ptr->b_s_open) ERREXIT(cinfo, JERR_VIRTUAL_BUG); /* Flush old buffer contents if necessary */ if (ptr->dirty) { do_sarray_io(cinfo, ptr, TRUE); ptr->dirty = FALSE; } /* Decide what part of virtual array to access. * Algorithm: if target address > current window, assume forward scan, * load starting at target address. If target address < current window, * assume backward scan, load so that target area is top of window. * Note that when switching from forward write to forward read, will have * start_row = 0, so the limiting case applies and we load from 0 anyway. */ if (start_row > ptr->cur_start_row) { ptr->cur_start_row = start_row; } else { /* use long arithmetic here to avoid overflow & unsigned problems */ long ltemp; ltemp = (long) end_row - (long) ptr->rows_in_mem; if (ltemp < 0) ltemp = 0; /* don't fall off front end of file */ ptr->cur_start_row = (JDIMENSION) ltemp; } /* Read in the selected part of the array. * During the initial write pass, we will do no actual read * because the selected part is all undefined. */ do_sarray_io(cinfo, ptr, FALSE); } /* Ensure the accessed part of the array is defined; prezero if needed. * To improve locality of access, we only prezero the part of the array * that the caller is about to access, not the entire in-memory array. */ if (ptr->first_undef_row < end_row) { if (ptr->first_undef_row < start_row) { if (writable) /* writer skipped over a section of array */ ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); undef_row = start_row; /* but reader is allowed to read ahead */ } else { undef_row = ptr->first_undef_row; } if (writable) ptr->first_undef_row = end_row; if (ptr->pre_zero) { size_t bytesperrow = (size_t) ptr->samplesperrow * sizeof(JSAMPLE); undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */ end_row -= ptr->cur_start_row; while (undef_row < end_row) { jzero_far((void *) ptr->mem_buffer[undef_row], bytesperrow); undef_row++; } } else { if (! writable) /* reader looking at undefined data */ ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); } } /* Flag the buffer dirty if caller will write in it */ if (writable) ptr->dirty = TRUE; /* Return address of proper part of the buffer */ return ptr->mem_buffer + (start_row - ptr->cur_start_row); } METHODDEF(JBLOCKARRAY) access_virt_barray (j_common_ptr cinfo, jvirt_barray_ptr ptr, JDIMENSION start_row, JDIMENSION num_rows, boolean writable) /* Access the part of a virtual block array starting at start_row */ /* and extending for num_rows rows. writable is true if */ /* caller intends to modify the accessed area. */ { JDIMENSION end_row = start_row + num_rows; JDIMENSION undef_row; /* debugging check */ if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess || ptr->mem_buffer == NULL) ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); /* Make the desired part of the virtual array accessible */ if (start_row < ptr->cur_start_row || end_row > ptr->cur_start_row+ptr->rows_in_mem) { if (! ptr->b_s_open) ERREXIT(cinfo, JERR_VIRTUAL_BUG); /* Flush old buffer contents if necessary */ if (ptr->dirty) { do_barray_io(cinfo, ptr, TRUE); ptr->dirty = FALSE; } /* Decide what part of virtual array to access. * Algorithm: if target address > current window, assume forward scan, * load starting at target address. If target address < current window, * assume backward scan, load so that target area is top of window. * Note that when switching from forward write to forward read, will have * start_row = 0, so the limiting case applies and we load from 0 anyway. */ if (start_row > ptr->cur_start_row) { ptr->cur_start_row = start_row; } else { /* use long arithmetic here to avoid overflow & unsigned problems */ long ltemp; ltemp = (long) end_row - (long) ptr->rows_in_mem; if (ltemp < 0) ltemp = 0; /* don't fall off front end of file */ ptr->cur_start_row = (JDIMENSION) ltemp; } /* Read in the selected part of the array. * During the initial write pass, we will do no actual read * because the selected part is all undefined. */ do_barray_io(cinfo, ptr, FALSE); } /* Ensure the accessed part of the array is defined; prezero if needed. * To improve locality of access, we only prezero the part of the array * that the caller is about to access, not the entire in-memory array. */ if (ptr->first_undef_row < end_row) { if (ptr->first_undef_row < start_row) { if (writable) /* writer skipped over a section of array */ ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); undef_row = start_row; /* but reader is allowed to read ahead */ } else { undef_row = ptr->first_undef_row; } if (writable) ptr->first_undef_row = end_row; if (ptr->pre_zero) { size_t bytesperrow = (size_t) ptr->blocksperrow * sizeof(JBLOCK); undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */ end_row -= ptr->cur_start_row; while (undef_row < end_row) { jzero_far((void *) ptr->mem_buffer[undef_row], bytesperrow); undef_row++; } } else { if (! writable) /* reader looking at undefined data */ ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); } } /* Flag the buffer dirty if caller will write in it */ if (writable) ptr->dirty = TRUE; /* Return address of proper part of the buffer */ return ptr->mem_buffer + (start_row - ptr->cur_start_row); } /* * Release all objects belonging to a specified pool. */ METHODDEF(void) free_pool (j_common_ptr cinfo, int pool_id) { my_mem_ptr mem = (my_mem_ptr) cinfo->mem; small_pool_ptr shdr_ptr; large_pool_ptr lhdr_ptr; size_t space_freed; if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS) ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ #ifdef MEM_STATS if (cinfo->err->trace_level > 1) print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */ #endif /* If freeing IMAGE pool, close any virtual arrays first */ if (pool_id == JPOOL_IMAGE) { jvirt_sarray_ptr sptr; jvirt_barray_ptr bptr; for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) { if (sptr->b_s_open) { /* there may be no backing store */ sptr->b_s_open = FALSE; /* prevent recursive close if error */ (*sptr->b_s_info.close_backing_store) (cinfo, & sptr->b_s_info); } } mem->virt_sarray_list = NULL; for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) { if (bptr->b_s_open) { /* there may be no backing store */ bptr->b_s_open = FALSE; /* prevent recursive close if error */ (*bptr->b_s_info.close_backing_store) (cinfo, & bptr->b_s_info); } } mem->virt_barray_list = NULL; } /* Release large objects */ lhdr_ptr = mem->large_list[pool_id]; mem->large_list[pool_id] = NULL; while (lhdr_ptr != NULL) { large_pool_ptr next_lhdr_ptr = lhdr_ptr->next; space_freed = lhdr_ptr->bytes_used + lhdr_ptr->bytes_left + sizeof(large_pool_hdr); jpeg_free_large(cinfo, (void *) lhdr_ptr, space_freed); mem->total_space_allocated -= space_freed; lhdr_ptr = next_lhdr_ptr; } /* Release small objects */ shdr_ptr = mem->small_list[pool_id]; mem->small_list[pool_id] = NULL; while (shdr_ptr != NULL) { small_pool_ptr next_shdr_ptr = shdr_ptr->next; space_freed = shdr_ptr->bytes_used + shdr_ptr->bytes_left + sizeof(small_pool_hdr); jpeg_free_small(cinfo, (void *) shdr_ptr, space_freed); mem->total_space_allocated -= space_freed; shdr_ptr = next_shdr_ptr; } } /* * Close up shop entirely. * Note that this cannot be called unless cinfo->mem is non-NULL. */ METHODDEF(void) self_destruct (j_common_ptr cinfo) { int pool; /* Close all backing store, release all memory. * Releasing pools in reverse order might help avoid fragmentation * with some (brain-damaged) malloc libraries. */ for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) { free_pool(cinfo, pool); } /* Release the memory manager control block too. */ jpeg_free_small(cinfo, (void *) cinfo->mem, sizeof(my_memory_mgr)); cinfo->mem = NULL; /* ensures I will be called only once */ jpeg_mem_term(cinfo); /* system-dependent cleanup */ } /* * Memory manager initialization. * When this is called, only the error manager pointer is valid in cinfo! */ GLOBAL(void) jinit_memory_mgr (j_common_ptr cinfo) { my_mem_ptr mem; long max_to_use; int pool; size_t test_mac; cinfo->mem = NULL; /* for safety if init fails */ /* Check for configuration errors. * sizeof(ALIGN_TYPE) should be a power of 2; otherwise, it probably * doesn't reflect any real hardware alignment requirement. * The test is a little tricky: for X>0, X and X-1 have no one-bits * in common if and only if X is a power of 2, ie has only one one-bit. * Some compilers may give an "unreachable code" warning here; ignore it. */ if ((ALIGN_SIZE & (ALIGN_SIZE-1)) != 0) ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE); /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be * a multiple of ALIGN_SIZE. * Again, an "unreachable code" warning may be ignored here. * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK. */ test_mac = (size_t) MAX_ALLOC_CHUNK; if ((long) test_mac != MAX_ALLOC_CHUNK || (MAX_ALLOC_CHUNK % ALIGN_SIZE) != 0) ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK); max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */ /* Attempt to allocate memory manager's control block */ mem = (my_mem_ptr) jpeg_get_small(cinfo, sizeof(my_memory_mgr)); if (mem == NULL) { jpeg_mem_term(cinfo); /* system-dependent cleanup */ ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0); } /* OK, fill in the method pointers */ mem->pub.alloc_small = alloc_small; mem->pub.alloc_large = alloc_large; mem->pub.alloc_sarray = alloc_sarray; mem->pub.alloc_barray = alloc_barray; mem->pub.request_virt_sarray = request_virt_sarray; mem->pub.request_virt_barray = request_virt_barray; mem->pub.realize_virt_arrays = realize_virt_arrays; mem->pub.access_virt_sarray = access_virt_sarray; mem->pub.access_virt_barray = access_virt_barray; mem->pub.free_pool = free_pool; mem->pub.self_destruct = self_destruct; /* Make MAX_ALLOC_CHUNK accessible to other modules */ mem->pub.max_alloc_chunk = MAX_ALLOC_CHUNK; /* Initialize working state */ mem->pub.max_memory_to_use = max_to_use; for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) { mem->small_list[pool] = NULL; mem->large_list[pool] = NULL; } mem->virt_sarray_list = NULL; mem->virt_barray_list = NULL; mem->total_space_allocated = sizeof(my_memory_mgr); /* Declare ourselves open for business */ cinfo->mem = & mem->pub; /* Check for an environment variable JPEGMEM; if found, override the * default max_memory setting from jpeg_mem_init. Note that the * surrounding application may again override this value. * If your system doesn't support getenv(), define NO_GETENV to disable * this feature. */ #ifndef NO_GETENV { char * memenv; if ((memenv = getenv("JPEGMEM")) != NULL) { char ch = 'x'; if (sscanf(memenv, "%ld%c", &max_to_use, &ch) > 0) { if (ch == 'm' || ch == 'M') max_to_use *= 1000L; mem->pub.max_memory_to_use = max_to_use * 1000L; } } } #endif } libjpeg-turbo-1.4.2/jdhuff.h0000644000076500007650000002223612600050400012625 00000000000000/* * jdhuff.h * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1991-1997, Thomas G. Lane. * libjpeg-turbo Modifications: * Copyright (C) 2010-2011, D. R. Commander. * For conditions of distribution and use, see the accompanying README file. * * This file contains declarations for Huffman entropy decoding routines * that are shared between the sequential decoder (jdhuff.c) and the * progressive decoder (jdphuff.c). No other modules need to see these. */ /* Derived data constructed for each Huffman table */ #define HUFF_LOOKAHEAD 8 /* # of bits of lookahead */ typedef struct { /* Basic tables: (element [0] of each array is unused) */ INT32 maxcode[18]; /* largest code of length k (-1 if none) */ /* (maxcode[17] is a sentinel to ensure jpeg_huff_decode terminates) */ INT32 valoffset[18]; /* huffval[] offset for codes of length k */ /* valoffset[k] = huffval[] index of 1st symbol of code length k, less * the smallest code of length k; so given a code of length k, the * corresponding symbol is huffval[code + valoffset[k]] */ /* Link to public Huffman table (needed only in jpeg_huff_decode) */ JHUFF_TBL *pub; /* Lookahead table: indexed by the next HUFF_LOOKAHEAD bits of * the input data stream. If the next Huffman code is no more * than HUFF_LOOKAHEAD bits long, we can obtain its length and * the corresponding symbol directly from this tables. * * The lower 8 bits of each table entry contain the number of * bits in the corresponding Huffman code, or HUFF_LOOKAHEAD + 1 * if too long. The next 8 bits of each entry contain the * symbol. */ int lookup[1< 32 bits on your machine, and shifting/masking longs is * reasonably fast, making bit_buf_type be long and setting BIT_BUF_SIZE * appropriately should be a win. Unfortunately we can't define the size * with something like #define BIT_BUF_SIZE (sizeof(bit_buf_type)*8) * because not all machines measure sizeof in 8-bit bytes. */ typedef struct { /* Bitreading state saved across MCUs */ bit_buf_type get_buffer; /* current bit-extraction buffer */ int bits_left; /* # of unused bits in it */ } bitread_perm_state; typedef struct { /* Bitreading working state within an MCU */ /* Current data source location */ /* We need a copy, rather than munging the original, in case of suspension */ const JOCTET * next_input_byte; /* => next byte to read from source */ size_t bytes_in_buffer; /* # of bytes remaining in source buffer */ /* Bit input buffer --- note these values are kept in register variables, * not in this struct, inside the inner loops. */ bit_buf_type get_buffer; /* current bit-extraction buffer */ int bits_left; /* # of unused bits in it */ /* Pointer needed by jpeg_fill_bit_buffer. */ j_decompress_ptr cinfo; /* back link to decompress master record */ } bitread_working_state; /* Macros to declare and load/save bitread local variables. */ #define BITREAD_STATE_VARS \ register bit_buf_type get_buffer; \ register int bits_left; \ bitread_working_state br_state #define BITREAD_LOAD_STATE(cinfop,permstate) \ br_state.cinfo = cinfop; \ br_state.next_input_byte = cinfop->src->next_input_byte; \ br_state.bytes_in_buffer = cinfop->src->bytes_in_buffer; \ get_buffer = permstate.get_buffer; \ bits_left = permstate.bits_left; #define BITREAD_SAVE_STATE(cinfop,permstate) \ cinfop->src->next_input_byte = br_state.next_input_byte; \ cinfop->src->bytes_in_buffer = br_state.bytes_in_buffer; \ permstate.get_buffer = get_buffer; \ permstate.bits_left = bits_left /* * These macros provide the in-line portion of bit fetching. * Use CHECK_BIT_BUFFER to ensure there are N bits in get_buffer * before using GET_BITS, PEEK_BITS, or DROP_BITS. * The variables get_buffer and bits_left are assumed to be locals, * but the state struct might not be (jpeg_huff_decode needs this). * CHECK_BIT_BUFFER(state,n,action); * Ensure there are N bits in get_buffer; if suspend, take action. * val = GET_BITS(n); * Fetch next N bits. * val = PEEK_BITS(n); * Fetch next N bits without removing them from the buffer. * DROP_BITS(n); * Discard next N bits. * The value N should be a simple variable, not an expression, because it * is evaluated multiple times. */ #define CHECK_BIT_BUFFER(state,nbits,action) \ { if (bits_left < (nbits)) { \ if (! jpeg_fill_bit_buffer(&(state),get_buffer,bits_left,nbits)) \ { action; } \ get_buffer = (state).get_buffer; bits_left = (state).bits_left; } } #define GET_BITS(nbits) \ (((int) (get_buffer >> (bits_left -= (nbits)))) & ((1<<(nbits))-1)) #define PEEK_BITS(nbits) \ (((int) (get_buffer >> (bits_left - (nbits)))) & ((1<<(nbits))-1)) #define DROP_BITS(nbits) \ (bits_left -= (nbits)) /* Load up the bit buffer to a depth of at least nbits */ EXTERN(boolean) jpeg_fill_bit_buffer (bitread_working_state * state, register bit_buf_type get_buffer, register int bits_left, int nbits); /* * Code for extracting next Huffman-coded symbol from input bit stream. * Again, this is time-critical and we make the main paths be macros. * * We use a lookahead table to process codes of up to HUFF_LOOKAHEAD bits * without looping. Usually, more than 95% of the Huffman codes will be 8 * or fewer bits long. The few overlength codes are handled with a loop, * which need not be inline code. * * Notes about the HUFF_DECODE macro: * 1. Near the end of the data segment, we may fail to get enough bits * for a lookahead. In that case, we do it the hard way. * 2. If the lookahead table contains no entry, the next code must be * more than HUFF_LOOKAHEAD bits long. * 3. jpeg_huff_decode returns -1 if forced to suspend. */ #define HUFF_DECODE(result,state,htbl,failaction,slowlabel) \ { register int nb, look; \ if (bits_left < HUFF_LOOKAHEAD) { \ if (! jpeg_fill_bit_buffer(&state,get_buffer,bits_left, 0)) {failaction;} \ get_buffer = state.get_buffer; bits_left = state.bits_left; \ if (bits_left < HUFF_LOOKAHEAD) { \ nb = 1; goto slowlabel; \ } \ } \ look = PEEK_BITS(HUFF_LOOKAHEAD); \ if ((nb = (htbl->lookup[look] >> HUFF_LOOKAHEAD)) <= HUFF_LOOKAHEAD) { \ DROP_BITS(nb); \ result = htbl->lookup[look] & ((1 << HUFF_LOOKAHEAD) - 1); \ } else { \ slowlabel: \ if ((result=jpeg_huff_decode(&state,get_buffer,bits_left,htbl,nb)) < 0) \ { failaction; } \ get_buffer = state.get_buffer; bits_left = state.bits_left; \ } \ } #define HUFF_DECODE_FAST(s,nb,htbl) \ FILL_BIT_BUFFER_FAST; \ s = PEEK_BITS(HUFF_LOOKAHEAD); \ s = htbl->lookup[s]; \ nb = s >> HUFF_LOOKAHEAD; \ /* Pre-execute the common case of nb <= HUFF_LOOKAHEAD */ \ DROP_BITS(nb); \ s = s & ((1 << HUFF_LOOKAHEAD) - 1); \ if (nb > HUFF_LOOKAHEAD) { \ /* Equivalent of jpeg_huff_decode() */ \ /* Don't use GET_BITS() here because we don't want to modify bits_left */ \ s = (get_buffer >> bits_left) & ((1 << (nb)) - 1); \ while (s > htbl->maxcode[nb]) { \ s <<= 1; \ s |= GET_BITS(1); \ nb++; \ } \ s = htbl->pub->huffval[ (int) (s + htbl->valoffset[nb]) & 0xFF ]; \ } /* Out-of-line case for Huffman code fetching */ EXTERN(int) jpeg_huff_decode (bitread_working_state * state, register bit_buf_type get_buffer, register int bits_left, d_derived_tbl * htbl, int min_bits); libjpeg-turbo-1.4.2/jctrans.c0000644000076500007650000003513112600050400013014 00000000000000/* * jctrans.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1995-1998, Thomas G. Lane. * Modified 2000-2009 by Guido Vollbeding. * It was modified by The libjpeg-turbo Project to include only code relevant * to libjpeg-turbo. * For conditions of distribution and use, see the accompanying README file. * * This file contains library routines for transcoding compression, * that is, writing raw DCT coefficient arrays to an output JPEG file. * The routines in jcapimin.c will also be needed by a transcoder. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" /* Forward declarations */ LOCAL(void) transencode_master_selection (j_compress_ptr cinfo, jvirt_barray_ptr * coef_arrays); LOCAL(void) transencode_coef_controller (j_compress_ptr cinfo, jvirt_barray_ptr * coef_arrays); /* * Compression initialization for writing raw-coefficient data. * Before calling this, all parameters and a data destination must be set up. * Call jpeg_finish_compress() to actually write the data. * * The number of passed virtual arrays must match cinfo->num_components. * Note that the virtual arrays need not be filled or even realized at * the time write_coefficients is called; indeed, if the virtual arrays * were requested from this compression object's memory manager, they * typically will be realized during this routine and filled afterwards. */ GLOBAL(void) jpeg_write_coefficients (j_compress_ptr cinfo, jvirt_barray_ptr * coef_arrays) { if (cinfo->global_state != CSTATE_START) ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); /* Mark all tables to be written */ jpeg_suppress_tables(cinfo, FALSE); /* (Re)initialize error mgr and destination modules */ (*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo); (*cinfo->dest->init_destination) (cinfo); /* Perform master selection of active modules */ transencode_master_selection(cinfo, coef_arrays); /* Wait for jpeg_finish_compress() call */ cinfo->next_scanline = 0; /* so jpeg_write_marker works */ cinfo->global_state = CSTATE_WRCOEFS; } /* * Initialize the compression object with default parameters, * then copy from the source object all parameters needed for lossless * transcoding. Parameters that can be varied without loss (such as * scan script and Huffman optimization) are left in their default states. */ GLOBAL(void) jpeg_copy_critical_parameters (j_decompress_ptr srcinfo, j_compress_ptr dstinfo) { JQUANT_TBL ** qtblptr; jpeg_component_info *incomp, *outcomp; JQUANT_TBL *c_quant, *slot_quant; int tblno, ci, coefi; /* Safety check to ensure start_compress not called yet. */ if (dstinfo->global_state != CSTATE_START) ERREXIT1(dstinfo, JERR_BAD_STATE, dstinfo->global_state); /* Copy fundamental image dimensions */ dstinfo->image_width = srcinfo->image_width; dstinfo->image_height = srcinfo->image_height; dstinfo->input_components = srcinfo->num_components; dstinfo->in_color_space = srcinfo->jpeg_color_space; #if JPEG_LIB_VERSION >= 70 dstinfo->jpeg_width = srcinfo->output_width; dstinfo->jpeg_height = srcinfo->output_height; dstinfo->min_DCT_h_scaled_size = srcinfo->min_DCT_h_scaled_size; dstinfo->min_DCT_v_scaled_size = srcinfo->min_DCT_v_scaled_size; #endif /* Initialize all parameters to default values */ jpeg_set_defaults(dstinfo); /* jpeg_set_defaults may choose wrong colorspace, eg YCbCr if input is RGB. * Fix it to get the right header markers for the image colorspace. */ jpeg_set_colorspace(dstinfo, srcinfo->jpeg_color_space); dstinfo->data_precision = srcinfo->data_precision; dstinfo->CCIR601_sampling = srcinfo->CCIR601_sampling; /* Copy the source's quantization tables. */ for (tblno = 0; tblno < NUM_QUANT_TBLS; tblno++) { if (srcinfo->quant_tbl_ptrs[tblno] != NULL) { qtblptr = & dstinfo->quant_tbl_ptrs[tblno]; if (*qtblptr == NULL) *qtblptr = jpeg_alloc_quant_table((j_common_ptr) dstinfo); MEMCOPY((*qtblptr)->quantval, srcinfo->quant_tbl_ptrs[tblno]->quantval, sizeof((*qtblptr)->quantval)); (*qtblptr)->sent_table = FALSE; } } /* Copy the source's per-component info. * Note we assume jpeg_set_defaults has allocated the dest comp_info array. */ dstinfo->num_components = srcinfo->num_components; if (dstinfo->num_components < 1 || dstinfo->num_components > MAX_COMPONENTS) ERREXIT2(dstinfo, JERR_COMPONENT_COUNT, dstinfo->num_components, MAX_COMPONENTS); for (ci = 0, incomp = srcinfo->comp_info, outcomp = dstinfo->comp_info; ci < dstinfo->num_components; ci++, incomp++, outcomp++) { outcomp->component_id = incomp->component_id; outcomp->h_samp_factor = incomp->h_samp_factor; outcomp->v_samp_factor = incomp->v_samp_factor; outcomp->quant_tbl_no = incomp->quant_tbl_no; /* Make sure saved quantization table for component matches the qtable * slot. If not, the input file re-used this qtable slot. * IJG encoder currently cannot duplicate this. */ tblno = outcomp->quant_tbl_no; if (tblno < 0 || tblno >= NUM_QUANT_TBLS || srcinfo->quant_tbl_ptrs[tblno] == NULL) ERREXIT1(dstinfo, JERR_NO_QUANT_TABLE, tblno); slot_quant = srcinfo->quant_tbl_ptrs[tblno]; c_quant = incomp->quant_table; if (c_quant != NULL) { for (coefi = 0; coefi < DCTSIZE2; coefi++) { if (c_quant->quantval[coefi] != slot_quant->quantval[coefi]) ERREXIT1(dstinfo, JERR_MISMATCHED_QUANT_TABLE, tblno); } } /* Note: we do not copy the source's Huffman table assignments; * instead we rely on jpeg_set_colorspace to have made a suitable choice. */ } /* Also copy JFIF version and resolution information, if available. * Strictly speaking this isn't "critical" info, but it's nearly * always appropriate to copy it if available. In particular, * if the application chooses to copy JFIF 1.02 extension markers from * the source file, we need to copy the version to make sure we don't * emit a file that has 1.02 extensions but a claimed version of 1.01. * We will *not*, however, copy version info from mislabeled "2.01" files. */ if (srcinfo->saw_JFIF_marker) { if (srcinfo->JFIF_major_version == 1) { dstinfo->JFIF_major_version = srcinfo->JFIF_major_version; dstinfo->JFIF_minor_version = srcinfo->JFIF_minor_version; } dstinfo->density_unit = srcinfo->density_unit; dstinfo->X_density = srcinfo->X_density; dstinfo->Y_density = srcinfo->Y_density; } } /* * Master selection of compression modules for transcoding. * This substitutes for jcinit.c's initialization of the full compressor. */ LOCAL(void) transencode_master_selection (j_compress_ptr cinfo, jvirt_barray_ptr * coef_arrays) { /* Although we don't actually use input_components for transcoding, * jcmaster.c's initial_setup will complain if input_components is 0. */ cinfo->input_components = 1; /* Initialize master control (includes parameter checking/processing) */ jinit_c_master_control(cinfo, TRUE /* transcode only */); /* Entropy encoding: either Huffman or arithmetic coding. */ if (cinfo->arith_code) { #ifdef C_ARITH_CODING_SUPPORTED jinit_arith_encoder(cinfo); #else ERREXIT(cinfo, JERR_ARITH_NOTIMPL); #endif } else { if (cinfo->progressive_mode) { #ifdef C_PROGRESSIVE_SUPPORTED jinit_phuff_encoder(cinfo); #else ERREXIT(cinfo, JERR_NOT_COMPILED); #endif } else jinit_huff_encoder(cinfo); } /* We need a special coefficient buffer controller. */ transencode_coef_controller(cinfo, coef_arrays); jinit_marker_writer(cinfo); /* We can now tell the memory manager to allocate virtual arrays. */ (*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo); /* Write the datastream header (SOI, JFIF) immediately. * Frame and scan headers are postponed till later. * This lets application insert special markers after the SOI. */ (*cinfo->marker->write_file_header) (cinfo); } /* * The rest of this file is a special implementation of the coefficient * buffer controller. This is similar to jccoefct.c, but it handles only * output from presupplied virtual arrays. Furthermore, we generate any * dummy padding blocks on-the-fly rather than expecting them to be present * in the arrays. */ /* Private buffer controller object */ typedef struct { struct jpeg_c_coef_controller pub; /* public fields */ JDIMENSION iMCU_row_num; /* iMCU row # within image */ JDIMENSION mcu_ctr; /* counts MCUs processed in current row */ int MCU_vert_offset; /* counts MCU rows within iMCU row */ int MCU_rows_per_iMCU_row; /* number of such rows needed */ /* Virtual block array for each component. */ jvirt_barray_ptr * whole_image; /* Workspace for constructing dummy blocks at right/bottom edges. */ JBLOCKROW dummy_buffer[C_MAX_BLOCKS_IN_MCU]; } my_coef_controller; typedef my_coef_controller * my_coef_ptr; LOCAL(void) start_iMCU_row (j_compress_ptr cinfo) /* Reset within-iMCU-row counters for a new row */ { my_coef_ptr coef = (my_coef_ptr) cinfo->coef; /* In an interleaved scan, an MCU row is the same as an iMCU row. * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows. * But at the bottom of the image, process only what's left. */ if (cinfo->comps_in_scan > 1) { coef->MCU_rows_per_iMCU_row = 1; } else { if (coef->iMCU_row_num < (cinfo->total_iMCU_rows-1)) coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor; else coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height; } coef->mcu_ctr = 0; coef->MCU_vert_offset = 0; } /* * Initialize for a processing pass. */ METHODDEF(void) start_pass_coef (j_compress_ptr cinfo, J_BUF_MODE pass_mode) { my_coef_ptr coef = (my_coef_ptr) cinfo->coef; if (pass_mode != JBUF_CRANK_DEST) ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); coef->iMCU_row_num = 0; start_iMCU_row(cinfo); } /* * Process some data. * We process the equivalent of one fully interleaved MCU row ("iMCU" row) * per call, ie, v_samp_factor block rows for each component in the scan. * The data is obtained from the virtual arrays and fed to the entropy coder. * Returns TRUE if the iMCU row is completed, FALSE if suspended. * * NB: input_buf is ignored; it is likely to be a NULL pointer. */ METHODDEF(boolean) compress_output (j_compress_ptr cinfo, JSAMPIMAGE input_buf) { my_coef_ptr coef = (my_coef_ptr) cinfo->coef; JDIMENSION MCU_col_num; /* index of current MCU within row */ JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1; JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; int blkn, ci, xindex, yindex, yoffset, blockcnt; JDIMENSION start_col; JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN]; JBLOCKROW MCU_buffer[C_MAX_BLOCKS_IN_MCU]; JBLOCKROW buffer_ptr; jpeg_component_info *compptr; /* Align the virtual buffers for the components used in this scan. */ for (ci = 0; ci < cinfo->comps_in_scan; ci++) { compptr = cinfo->cur_comp_info[ci]; buffer[ci] = (*cinfo->mem->access_virt_barray) ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index], coef->iMCU_row_num * compptr->v_samp_factor, (JDIMENSION) compptr->v_samp_factor, FALSE); } /* Loop to process one whole iMCU row */ for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; yoffset++) { for (MCU_col_num = coef->mcu_ctr; MCU_col_num < cinfo->MCUs_per_row; MCU_col_num++) { /* Construct list of pointers to DCT blocks belonging to this MCU */ blkn = 0; /* index of current DCT block within MCU */ for (ci = 0; ci < cinfo->comps_in_scan; ci++) { compptr = cinfo->cur_comp_info[ci]; start_col = MCU_col_num * compptr->MCU_width; blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width : compptr->last_col_width; for (yindex = 0; yindex < compptr->MCU_height; yindex++) { if (coef->iMCU_row_num < last_iMCU_row || yindex+yoffset < compptr->last_row_height) { /* Fill in pointers to real blocks in this row */ buffer_ptr = buffer[ci][yindex+yoffset] + start_col; for (xindex = 0; xindex < blockcnt; xindex++) MCU_buffer[blkn++] = buffer_ptr++; } else { /* At bottom of image, need a whole row of dummy blocks */ xindex = 0; } /* Fill in any dummy blocks needed in this row. * Dummy blocks are filled in the same way as in jccoefct.c: * all zeroes in the AC entries, DC entries equal to previous * block's DC value. The init routine has already zeroed the * AC entries, so we need only set the DC entries correctly. */ for (; xindex < compptr->MCU_width; xindex++) { MCU_buffer[blkn] = coef->dummy_buffer[blkn]; MCU_buffer[blkn][0][0] = MCU_buffer[blkn-1][0][0]; blkn++; } } } /* Try to write the MCU. */ if (! (*cinfo->entropy->encode_mcu) (cinfo, MCU_buffer)) { /* Suspension forced; update state counters and exit */ coef->MCU_vert_offset = yoffset; coef->mcu_ctr = MCU_col_num; return FALSE; } } /* Completed an MCU row, but perhaps not an iMCU row */ coef->mcu_ctr = 0; } /* Completed the iMCU row, advance counters for next one */ coef->iMCU_row_num++; start_iMCU_row(cinfo); return TRUE; } /* * Initialize coefficient buffer controller. * * Each passed coefficient array must be the right size for that * coefficient: width_in_blocks wide and height_in_blocks high, * with unitheight at least v_samp_factor. */ LOCAL(void) transencode_coef_controller (j_compress_ptr cinfo, jvirt_barray_ptr * coef_arrays) { my_coef_ptr coef; JBLOCKROW buffer; int i; coef = (my_coef_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, sizeof(my_coef_controller)); cinfo->coef = (struct jpeg_c_coef_controller *) coef; coef->pub.start_pass = start_pass_coef; coef->pub.compress_data = compress_output; /* Save pointer to virtual arrays */ coef->whole_image = coef_arrays; /* Allocate and pre-zero space for dummy DCT blocks. */ buffer = (JBLOCKROW) (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE, C_MAX_BLOCKS_IN_MCU * sizeof(JBLOCK)); jzero_far((void *) buffer, C_MAX_BLOCKS_IN_MCU * sizeof(JBLOCK)); for (i = 0; i < C_MAX_BLOCKS_IN_MCU; i++) { coef->dummy_buffer[i] = buffer + i; } } libjpeg-turbo-1.4.2/change.log0000644000076500007650000002716212600050400013141 00000000000000NOTE: This file was modified by The libjpeg-turbo Project to include only information relevant to libjpeg-turbo. CHANGE LOG for Independent JPEG Group's JPEG software Version 8d 15-Jan-2012 ----------------------- Add cjpeg -rgb option to create RGB JPEG files. Using this switch suppresses the conversion from RGB colorspace input to the default YCbCr JPEG colorspace. Thank to Michael Koch for the initial suggestion. Add option to disable the region adjustment in the transupp crop code. Thank to Jeffrey Friedl for the suggestion. Version 8b 16-May-2010 ----------------------- Repair problem in new memory source manager with corrupt JPEG data. Thank to Ted Campbell and Samuel Chun for the report. Version 8a 28-Feb-2010 ----------------------- Writing tables-only datastreams via jpeg_write_tables works again. Support 32-bit BMPs (RGB image with Alpha channel) for read in cjpeg. Thank to Brett Blackham for the suggestion. Version 8 10-Jan-2010 ---------------------- Add sanity check in BMP reader module to avoid cjpeg crash for empty input image (thank to Isaev Ildar of ISP RAS, Moscow, RU for reporting this error). Add data source and destination managers for read from and write to memory buffers. New API functions jpeg_mem_src and jpeg_mem_dest. Thank to Roberto Boni from Italy for the suggestion. Version 7 27-Jun-2009 ---------------------- New scaled DCTs implemented. djpeg now supports scalings N/8 with all N from 1 to 16. cjpeg -quality option has been extended for support of separate quality settings for luminance and chrominance (or in general, for every provided quantization table slot). New API function jpeg_default_qtables() and q_scale_factor array in library. Support arithmetic entropy encoding and decoding. Added files jaricom.c, jcarith.c, jdarith.c. jpegtran has a new "lossless" cropping feature. Implement -perfect option in jpegtran, new API function jtransform_perfect_transform() in transupp. (DP 204_perfect.dpatch) Better error messages for jpegtran fopen failure. (DP 203_jpegtran_errmsg.dpatch) Fix byte order issue with 16bit PPM/PGM files in rdppm.c/wrppm.c: according to Netpbm, the de facto standard implementation of the PNM formats, the most significant byte is first. (DP 203_rdppm.dpatch) Add -raw option to rdjpgcom not to mangle the output. (DP 205_rdjpgcom_raw.dpatch) Make rdjpgcom locale aware. (DP 201_rdjpgcom_locale.dpatch) Add extern "C" to jpeglib.h. This avoids the need to put extern "C" { ... } around #include "jpeglib.h" in your C++ application. Defining the symbol DONT_USE_EXTERN_C in the configuration prevents this. (DP 202_jpeglib.h_c++.dpatch) Version 6b 27-Mar-1998 ----------------------- jpegtran has new features for lossless image transformations (rotation and flipping) as well as "lossless" reduction to grayscale. jpegtran now copies comments by default; it has a -copy switch to enable copying all APPn blocks as well, or to suppress comments. (Formerly it always suppressed comments and APPn blocks.) jpegtran now also preserves JFIF version and resolution information. New decompressor library feature: COM and APPn markers found in the input file can be saved in memory for later use by the application. (Before, you had to code this up yourself with a custom marker processor.) There is an unused field "void * client_data" now in compress and decompress parameter structs; this may be useful in some applications. JFIF version number information is now saved by the decoder and accepted by the encoder. jpegtran uses this to copy the source file's version number, to ensure "jpegtran -copy all" won't create bogus files that contain JFXX extensions but claim to be version 1.01. Applications that generate their own JFXX extension markers also (finally) have a supported way to cause the encoder to emit JFIF version number 1.02. djpeg's trace mode reports JFIF 1.02 thumbnail images as such, rather than as unknown APP0 markers. In -verbose mode, djpeg and rdjpgcom will try to print the contents of APP12 markers as text. Some digital cameras store useful text information in APP12 markers. Handling of truncated data streams is more robust: blocks beyond the one in which the error occurs will be output as uniform gray, or left unchanged if decoding a progressive JPEG. The appearance no longer depends on the Huffman tables being used. Huffman tables are checked for validity much more carefully than before. To avoid the Unisys LZW patent, djpeg's GIF output capability has been changed to produce "uncompressed GIFs", and cjpeg's GIF input capability has been removed altogether. We're not happy about it either, but there seems to be no good alternative. The configure script now supports building libjpeg as a shared library on many flavors of Unix (all the ones that GNU libtool knows how to build shared libraries for). Use "./configure --enable-shared" to try this out. New jconfig file and makefiles for Microsoft Visual C++ and Developer Studio. Also, a jconfig file and a build script for Metrowerks CodeWarrior on Apple Macintosh. makefile.dj has been updated for DJGPP v2, and there are miscellaneous other minor improvements in the makefiles. jmemmac.c now knows how to create temporary files following Mac System 7 conventions. djpeg's -map switch is now able to read raw-format PPM files reliably. cjpeg -progressive -restart no longer generates any unnecessary DRI markers. Multiple calls to jpeg_simple_progression for a single JPEG object no longer leak memory. Version 6a 7-Feb-96 -------------------- Library initialization sequence modified to detect version mismatches and struct field packing mismatches between library and calling application. This change requires applications to be recompiled, but does not require any application source code change. All routine declarations changed to the style "GLOBAL(type) name ...", that is, GLOBAL, LOCAL, METHODDEF, EXTERN are now macros taking the routine's return type as an argument. This makes it possible to add Microsoft-style linkage keywords to all the routines by changing just these macros. Note that any application code that was using these macros will have to be changed. DCT coefficient quantization tables are now stored in normal array order rather than zigzag order. Application code that calls jpeg_add_quant_table, or otherwise manipulates quantization tables directly, will need to be changed. If you need to make such code work with either older or newer versions of the library, a test like "#if JPEG_LIB_VERSION >= 61" is recommended. djpeg's trace capability now dumps DQT tables in natural order, not zigzag order. This allows the trace output to be made into a "-qtables" file more easily. New system-dependent memory manager module for use on Apple Macintosh. Fix bug in cjpeg's -smooth option: last one or two scanlines would be duplicates of the prior line unless the image height mod 16 was 1 or 2. Repair minor problems in VMS, BCC, MC6 makefiles. New configure script based on latest GNU Autoconf. Correct the list of include files needed by MetroWerks C for ccommand(). Numerous small documentation updates. Version 6 2-Aug-95 ------------------- Progressive JPEG support: library can read and write full progressive JPEG files. A "buffered image" mode supports incremental decoding for on-the-fly display of progressive images. Simply recompiling an existing IJG-v5-based decoder with v6 should allow it to read progressive files, though of course without any special progressive display. New "jpegtran" application performs lossless transcoding between different JPEG formats; primarily, it can be used to convert baseline to progressive JPEG and vice versa. In support of jpegtran, the library now allows lossless reading and writing of JPEG files as DCT coefficient arrays. This ability may be of use in other applications. Notes for programmers: * We changed jpeg_start_decompress() to be able to suspend; this makes all decoding modes available to suspending-input applications. However, existing applications that use suspending input will need to be changed to check the return value from jpeg_start_decompress(). You don't need to do anything if you don't use a suspending data source. * We changed the interface to the virtual array routines: access_virt_array routines now take a count of the number of rows to access this time. The last parameter to request_virt_array routines is now interpreted as the maximum number of rows that may be accessed at once, but not necessarily the height of every access. Version 5b 15-Mar-95 --------------------- Correct bugs with grayscale images having v_samp_factor > 1. jpeg_write_raw_data() now supports output suspension. Correct bugs in "configure" script for case of compiling in a directory other than the one containing the source files. Repair bug in jquant1.c: sometimes didn't use as many colors as it could. Borland C makefile and jconfig file work under either MS-DOS or OS/2. Miscellaneous improvements to documentation. Version 5a 7-Dec-94 -------------------- Changed color conversion roundoff behavior so that grayscale values are represented exactly. (This causes test image files to change.) Make ordered dither use 16x16 instead of 4x4 pattern for a small quality improvement. New configure script based on latest GNU Autoconf. Fix configure script to handle CFLAGS correctly. Rename *.auto files to *.cfg, so that configure script still works if file names have been truncated for DOS. Fix bug in rdbmp.c: didn't allow for extra data between header and image. Modify rdppm.c/wrppm.c to handle 2-byte raw PPM/PGM formats for 12-bit data. Fix several bugs in rdrle.c. NEED_SHORT_EXTERNAL_NAMES option was broken. Revise jerror.h/jerror.c for more flexibility in message table. Repair oversight in jmemname.c NO_MKTEMP case: file could be there but unreadable. Version 5 24-Sep-94 -------------------- Version 5 represents a nearly complete redesign and rewrite of the IJG software. Major user-visible changes include: * Automatic configuration simplifies installation for most Unix systems. * A range of speed vs. image quality tradeoffs are supported. This includes resizing of an image during decompression: scaling down by a factor of 1/2, 1/4, or 1/8 is handled very efficiently. * New programs rdjpgcom and wrjpgcom allow insertion and extraction of text comments in a JPEG file. The application programmer's interface to the library has changed completely. Notable improvements include: * We have eliminated the use of callback routines for handling the uncompressed image data. The application now sees the library as a set of routines that it calls to read or write image data on a scanline-by-scanline basis. * The application image data is represented in a conventional interleaved- pixel format, rather than as a separate array for each color channel. This can save a copying step in many programs. * The handling of compressed data has been cleaned up: the application can supply routines to source or sink the compressed data. It is possible to suspend processing on source/sink buffer overrun, although this is not supported in all operating modes. * All static state has been eliminated from the library, so that multiple instances of compression or decompression can be active concurrently. * JPEG abbreviated datastream formats are supported, ie, quantization and Huffman tables can be stored separately from the image data. * And not only that, but the documentation of the library has improved considerably! The last widely used release before the version 5 rewrite was version 4A of 18-Feb-93. Change logs before that point have been discarded, since they are not of much interest after the rewrite. libjpeg-turbo-1.4.2/tjexampletest.in0000755000076500007650000001725112600050400014433 00000000000000#!/bin/bash set -u set -e trap onexit INT trap onexit TERM trap onexit EXIT onexit() { if [ -d $OUTDIR ]; then rm -rf $OUTDIR fi } runme() { echo \*\*\* $* $* } IMAGES="vgl_5674_0098.bmp vgl_6434_0018a.bmp vgl_6548_0026a.bmp nightshot_iso_100.bmp" IMGDIR=@srcdir@/testimages OUTDIR=__tjexampletest_output EXEDIR=. JAVA="@JAVA@ -cp java/turbojpeg.jar -Djava.library.path=.libs" if [ -d $OUTDIR ]; then rm -rf $OUTDIR fi mkdir -p $OUTDIR exec >$EXEDIR/tjexampletest.log for image in $IMAGES; do cp $IMGDIR/$image $OUTDIR basename=`basename $image .bmp` $EXEDIR/cjpeg -quality 95 -dct fast -grayscale $IMGDIR/${basename}.bmp >$OUTDIR/${basename}_GRAY_fast_cjpeg.jpg $EXEDIR/cjpeg -quality 95 -dct fast -sample 2x2 $IMGDIR/${basename}.bmp >$OUTDIR/${basename}_420_fast_cjpeg.jpg $EXEDIR/cjpeg -quality 95 -dct fast -sample 2x1 $IMGDIR/${basename}.bmp >$OUTDIR/${basename}_422_fast_cjpeg.jpg $EXEDIR/cjpeg -quality 95 -dct fast -sample 1x1 $IMGDIR/${basename}.bmp >$OUTDIR/${basename}_444_fast_cjpeg.jpg $EXEDIR/cjpeg -quality 95 -dct int -grayscale $IMGDIR/${basename}.bmp >$OUTDIR/${basename}_GRAY_accurate_cjpeg.jpg $EXEDIR/cjpeg -quality 95 -dct int -sample 2x2 $IMGDIR/${basename}.bmp >$OUTDIR/${basename}_420_accurate_cjpeg.jpg $EXEDIR/cjpeg -quality 95 -dct int -sample 2x1 $IMGDIR/${basename}.bmp >$OUTDIR/${basename}_422_accurate_cjpeg.jpg $EXEDIR/cjpeg -quality 95 -dct int -sample 1x1 $IMGDIR/${basename}.bmp >$OUTDIR/${basename}_444_accurate_cjpeg.jpg for samp in GRAY 420 422 444; do $EXEDIR/djpeg -rgb -bmp $OUTDIR/${basename}_${samp}_fast_cjpeg.jpg >$OUTDIR/${basename}_${samp}_default_djpeg.bmp $EXEDIR/djpeg -dct fast -rgb -bmp $OUTDIR/${basename}_${samp}_fast_cjpeg.jpg >$OUTDIR/${basename}_${samp}_fast_djpeg.bmp $EXEDIR/djpeg -dct int -rgb -bmp $OUTDIR/${basename}_${samp}_accurate_cjpeg.jpg >$OUTDIR/${basename}_${samp}_accurate_djpeg.bmp done for samp in 420 422; do $EXEDIR/djpeg -nosmooth -bmp $OUTDIR/${basename}_${samp}_fast_cjpeg.jpg >$OUTDIR/${basename}_${samp}_default_nosmooth_djpeg.bmp $EXEDIR/djpeg -dct fast -nosmooth -bmp $OUTDIR/${basename}_${samp}_fast_cjpeg.jpg >$OUTDIR/${basename}_${samp}_fast_nosmooth_djpeg.bmp $EXEDIR/djpeg -dct int -nosmooth -bmp $OUTDIR/${basename}_${samp}_accurate_cjpeg.jpg >$OUTDIR/${basename}_${samp}_accurate_nosmooth_djpeg.bmp done # Compression for dct in fast accurate; do for samp in GRAY 420 422 444; do runme $JAVA TJExample $OUTDIR/$image $OUTDIR/${basename}_${samp}_${dct}.jpg -q 95 -samp ${samp} -${dct}dct runme cmp $OUTDIR/${basename}_${samp}_${dct}.jpg $OUTDIR/${basename}_${samp}_${dct}_cjpeg.jpg done done # Decompression for dct in fast accurate default; do srcdct=${dct} dctarg=-${dct}dct if [ "${dct}" = "default" ]; then srcdct=fast dctarg= fi for samp in GRAY 420 422 444; do runme $JAVA TJExample $OUTDIR/${basename}_${samp}_${srcdct}.jpg $OUTDIR/${basename}_${samp}_${dct}.bmp ${dctarg} runme cmp -i 54:54 $OUTDIR/${basename}_${samp}_${dct}.bmp $OUTDIR/${basename}_${samp}_${dct}_djpeg.bmp rm $OUTDIR/${basename}_${samp}_${dct}.bmp done for samp in 420 422; do runme $JAVA TJExample $OUTDIR/${basename}_${samp}_${srcdct}.jpg $OUTDIR/${basename}_${samp}_${dct}_nosmooth.bmp -fastupsample ${dctarg} runme cmp -i 54:54 $OUTDIR/${basename}_${samp}_${dct}_nosmooth.bmp $OUTDIR/${basename}_${samp}_${dct}_nosmooth_djpeg.bmp rm $OUTDIR/${basename}_${samp}_${dct}_nosmooth.bmp done done # Scaled decompression for scale in 2_1 15_8 7_4 13_8 3_2 11_8 5_4 9_8 7_8 3_4 5_8 1_2 3_8 1_4 1_8; do scalearg=`echo $scale | sed s@_@/@g` for samp in GRAY 420 422 444; do $EXEDIR/djpeg -rgb -bmp -scale ${scalearg} $OUTDIR/${basename}_${samp}_fast_cjpeg.jpg >$OUTDIR/${basename}_${samp}_${scale}_djpeg.bmp runme $JAVA TJExample $OUTDIR/${basename}_${samp}_fast.jpg $OUTDIR/${basename}_${samp}_${scale}.bmp -scale ${scalearg} runme cmp -i 54:54 $OUTDIR/${basename}_${samp}_${scale}.bmp $OUTDIR/${basename}_${samp}_${scale}_djpeg.bmp rm $OUTDIR/${basename}_${samp}_${scale}.bmp done done # Transforms for samp in GRAY 420 422 444; do $EXEDIR/jpegtran -crop 70x60+16+16 -flip horizontal -trim $OUTDIR/${basename}_${samp}_fast.jpg >$OUTDIR/${basename}_${samp}_hflip_jpegtran.jpg $EXEDIR/jpegtran -crop 70x60+16+16 -flip vertical -trim $OUTDIR/${basename}_${samp}_fast.jpg >$OUTDIR/${basename}_${samp}_vflip_jpegtran.jpg $EXEDIR/jpegtran -crop 70x60+16+16 -transpose -trim $OUTDIR/${basename}_${samp}_fast.jpg >$OUTDIR/${basename}_${samp}_transpose_jpegtran.jpg $EXEDIR/jpegtran -crop 70x60+16+16 -transverse -trim $OUTDIR/${basename}_${samp}_fast.jpg >$OUTDIR/${basename}_${samp}_transverse_jpegtran.jpg $EXEDIR/jpegtran -crop 70x60+16+16 -rotate 90 -trim $OUTDIR/${basename}_${samp}_fast.jpg >$OUTDIR/${basename}_${samp}_rot90_jpegtran.jpg $EXEDIR/jpegtran -crop 70x60+16+16 -rotate 180 -trim $OUTDIR/${basename}_${samp}_fast.jpg >$OUTDIR/${basename}_${samp}_rot180_jpegtran.jpg $EXEDIR/jpegtran -crop 70x60+16+16 -rotate 270 -trim $OUTDIR/${basename}_${samp}_fast.jpg >$OUTDIR/${basename}_${samp}_rot270_jpegtran.jpg done for xform in hflip vflip transpose transverse rot90 rot180 rot270; do for samp in GRAY 420 422 444; do runme $JAVA TJExample $OUTDIR/${basename}_${samp}_fast.jpg $OUTDIR/${basename}_${samp}_${xform}.jpg -$xform -crop 16,16,70x60 runme cmp $OUTDIR/${basename}_${samp}_${xform}.jpg $OUTDIR/${basename}_${samp}_${xform}_jpegtran.jpg $EXEDIR/djpeg -rgb -bmp $OUTDIR/${basename}_${samp}_${xform}_jpegtran.jpg >$OUTDIR/${basename}_${samp}_${xform}_jpegtran.bmp runme $JAVA TJExample $OUTDIR/${basename}_${samp}_fast.jpg $OUTDIR/${basename}_${samp}_${xform}.bmp -$xform -crop 16,16,70x60 runme cmp -i 54:54 $OUTDIR/${basename}_${samp}_${xform}.bmp $OUTDIR/${basename}_${samp}_${xform}_jpegtran.bmp rm $OUTDIR/${basename}_${samp}_${xform}.bmp done for samp in 420 422; do $EXEDIR/djpeg -nosmooth -rgb -bmp $OUTDIR/${basename}_${samp}_${xform}_jpegtran.jpg >$OUTDIR/${basename}_${samp}_${xform}_jpegtran.bmp runme $JAVA TJExample $OUTDIR/${basename}_${samp}_fast.jpg $OUTDIR/${basename}_${samp}_${xform}.bmp -$xform -crop 16,16,70x60 -fastupsample runme cmp -i 54:54 $OUTDIR/${basename}_${samp}_${xform}.bmp $OUTDIR/${basename}_${samp}_${xform}_jpegtran.bmp rm $OUTDIR/${basename}_${samp}_${xform}.bmp done done # Grayscale transform for xform in hflip vflip transpose transverse rot90 rot180 rot270; do for samp in GRAY 444 422 420; do runme $JAVA TJExample $OUTDIR/${basename}_${samp}_fast.jpg $OUTDIR/${basename}_${samp}_${xform}.jpg -$xform -grayscale -crop 16,16,70x60 runme cmp $OUTDIR/${basename}_${samp}_${xform}.jpg $OUTDIR/${basename}_GRAY_${xform}_jpegtran.jpg runme $JAVA TJExample $OUTDIR/${basename}_${samp}_fast.jpg $OUTDIR/${basename}_${samp}_${xform}.bmp -$xform -grayscale -crop 16,16,70x60 runme cmp -i 54:54 $OUTDIR/${basename}_${samp}_${xform}.bmp $OUTDIR/${basename}_GRAY_${xform}_jpegtran.bmp rm $OUTDIR/${basename}_${samp}_${xform}.bmp done done # Transforms with scaling for xform in hflip vflip transpose transverse rot90 rot180 rot270; do for samp in GRAY 444 422 420; do for scale in 2_1 15_8 7_4 13_8 3_2 11_8 5_4 9_8 7_8 3_4 5_8 1_2 3_8 1_4 1_8; do scalearg=`echo $scale | sed s@_@/@g` $EXEDIR/djpeg -rgb -bmp -scale ${scalearg} $OUTDIR/${basename}_${samp}_${xform}_jpegtran.jpg >$OUTDIR/${basename}_${samp}_${xform}_${scale}_jpegtran.bmp runme $JAVA TJExample $OUTDIR/${basename}_${samp}_fast.jpg $OUTDIR/${basename}_${samp}_${xform}_${scale}.bmp -$xform -scale ${scalearg} -crop 16,16,70x60 runme cmp -i 54:54 $OUTDIR/${basename}_${samp}_${xform}_${scale}.bmp $OUTDIR/${basename}_${samp}_${xform}_${scale}_jpegtran.bmp rm $OUTDIR/${basename}_${samp}_${xform}_${scale}.bmp done done done done echo SUCCESS! libjpeg-turbo-1.4.2/jdmerge.c0000644000076500007650000005150712600050400012772 00000000000000/* * jdmerge.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1994-1996, Thomas G. Lane. * Copyright 2009 Pierre Ossman for Cendio AB * libjpeg-turbo Modifications: * Copyright (C) 2009, 2011, 2014 D. R. Commander. * Copyright (C) 2013, Linaro Limited. * For conditions of distribution and use, see the accompanying README file. * * This file contains code for merged upsampling/color conversion. * * This file combines functions from jdsample.c and jdcolor.c; * read those files first to understand what's going on. * * When the chroma components are to be upsampled by simple replication * (ie, box filtering), we can save some work in color conversion by * calculating all the output pixels corresponding to a pair of chroma * samples at one time. In the conversion equations * R = Y + K1 * Cr * G = Y + K2 * Cb + K3 * Cr * B = Y + K4 * Cb * only the Y term varies among the group of pixels corresponding to a pair * of chroma samples, so the rest of the terms can be calculated just once. * At typical sampling ratios, this eliminates half or three-quarters of the * multiplications needed for color conversion. * * This file currently provides implementations for the following cases: * YCbCr => RGB color conversion only. * Sampling ratios of 2h1v or 2h2v. * No scaling needed at upsample time. * Corner-aligned (non-CCIR601) sampling alignment. * Other special cases could be added, but in most applications these are * the only common cases. (For uncommon cases we fall back on the more * general code in jdsample.c and jdcolor.c.) */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" #include "jsimd.h" #include "jconfigint.h" #ifdef UPSAMPLE_MERGING_SUPPORTED /* Private subobject */ typedef struct { struct jpeg_upsampler pub; /* public fields */ /* Pointer to routine to do actual upsampling/conversion of one row group */ void (*upmethod) (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); /* Private state for YCC->RGB conversion */ int * Cr_r_tab; /* => table for Cr to R conversion */ int * Cb_b_tab; /* => table for Cb to B conversion */ INT32 * Cr_g_tab; /* => table for Cr to G conversion */ INT32 * Cb_g_tab; /* => table for Cb to G conversion */ /* For 2:1 vertical sampling, we produce two output rows at a time. * We need a "spare" row buffer to hold the second output row if the * application provides just a one-row buffer; we also use the spare * to discard the dummy last row if the image height is odd. */ JSAMPROW spare_row; boolean spare_full; /* T if spare buffer is occupied */ JDIMENSION out_row_width; /* samples per output row */ JDIMENSION rows_to_go; /* counts rows remaining in image */ } my_upsampler; typedef my_upsampler * my_upsample_ptr; #define SCALEBITS 16 /* speediest right-shift on some machines */ #define ONE_HALF ((INT32) 1 << (SCALEBITS-1)) #define FIX(x) ((INT32) ((x) * (1L<RGB colorspace conversion. * This is taken directly from jdcolor.c; see that file for more info. */ LOCAL(void) build_ycc_rgb_table (j_decompress_ptr cinfo) { my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; int i; INT32 x; SHIFT_TEMPS upsample->Cr_r_tab = (int *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * sizeof(int)); upsample->Cb_b_tab = (int *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * sizeof(int)); upsample->Cr_g_tab = (INT32 *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * sizeof(INT32)); upsample->Cb_g_tab = (INT32 *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * sizeof(INT32)); for (i = 0, x = -CENTERJSAMPLE; i <= MAXJSAMPLE; i++, x++) { /* i is the actual input pixel value, in the range 0..MAXJSAMPLE */ /* The Cb or Cr value we are thinking of is x = i - CENTERJSAMPLE */ /* Cr=>R value is nearest int to 1.40200 * x */ upsample->Cr_r_tab[i] = (int) RIGHT_SHIFT(FIX(1.40200) * x + ONE_HALF, SCALEBITS); /* Cb=>B value is nearest int to 1.77200 * x */ upsample->Cb_b_tab[i] = (int) RIGHT_SHIFT(FIX(1.77200) * x + ONE_HALF, SCALEBITS); /* Cr=>G value is scaled-up -0.71414 * x */ upsample->Cr_g_tab[i] = (- FIX(0.71414)) * x; /* Cb=>G value is scaled-up -0.34414 * x */ /* We also add in ONE_HALF so that need not do it in inner loop */ upsample->Cb_g_tab[i] = (- FIX(0.34414)) * x + ONE_HALF; } } /* * Initialize for an upsampling pass. */ METHODDEF(void) start_pass_merged_upsample (j_decompress_ptr cinfo) { my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; /* Mark the spare buffer empty */ upsample->spare_full = FALSE; /* Initialize total-height counter for detecting bottom of image */ upsample->rows_to_go = cinfo->output_height; } /* * Control routine to do upsampling (and color conversion). * * The control routine just handles the row buffering considerations. */ METHODDEF(void) merged_2v_upsample (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, JDIMENSION in_row_groups_avail, JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail) /* 2:1 vertical sampling case: may need a spare row. */ { my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; JSAMPROW work_ptrs[2]; JDIMENSION num_rows; /* number of rows returned to caller */ if (upsample->spare_full) { /* If we have a spare row saved from a previous cycle, just return it. */ JDIMENSION size = upsample->out_row_width; if (cinfo->out_color_space == JCS_RGB565) size = cinfo->output_width * 2; jcopy_sample_rows(& upsample->spare_row, 0, output_buf + *out_row_ctr, 0, 1, size); num_rows = 1; upsample->spare_full = FALSE; } else { /* Figure number of rows to return to caller. */ num_rows = 2; /* Not more than the distance to the end of the image. */ if (num_rows > upsample->rows_to_go) num_rows = upsample->rows_to_go; /* And not more than what the client can accept: */ out_rows_avail -= *out_row_ctr; if (num_rows > out_rows_avail) num_rows = out_rows_avail; /* Create output pointer array for upsampler. */ work_ptrs[0] = output_buf[*out_row_ctr]; if (num_rows > 1) { work_ptrs[1] = output_buf[*out_row_ctr + 1]; } else { work_ptrs[1] = upsample->spare_row; upsample->spare_full = TRUE; } /* Now do the upsampling. */ (*upsample->upmethod) (cinfo, input_buf, *in_row_group_ctr, work_ptrs); } /* Adjust counts */ *out_row_ctr += num_rows; upsample->rows_to_go -= num_rows; /* When the buffer is emptied, declare this input row group consumed */ if (! upsample->spare_full) (*in_row_group_ctr)++; } METHODDEF(void) merged_1v_upsample (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, JDIMENSION in_row_groups_avail, JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail) /* 1:1 vertical sampling case: much easier, never need a spare row. */ { my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; /* Just do the upsampling. */ (*upsample->upmethod) (cinfo, input_buf, *in_row_group_ctr, output_buf + *out_row_ctr); /* Adjust counts */ (*out_row_ctr)++; (*in_row_group_ctr)++; } /* * These are the routines invoked by the control routines to do * the actual upsampling/conversion. One row group is processed per call. * * Note: since we may be writing directly into application-supplied buffers, * we have to be honest about the output width; we can't assume the buffer * has been rounded up to an even width. */ /* * Upsample and color convert for the case of 2:1 horizontal and 1:1 vertical. */ METHODDEF(void) h2v1_merged_upsample (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf) { switch (cinfo->out_color_space) { case JCS_EXT_RGB: extrgb_h2v1_merged_upsample_internal(cinfo, input_buf, in_row_group_ctr, output_buf); break; case JCS_EXT_RGBX: case JCS_EXT_RGBA: extrgbx_h2v1_merged_upsample_internal(cinfo, input_buf, in_row_group_ctr, output_buf); break; case JCS_EXT_BGR: extbgr_h2v1_merged_upsample_internal(cinfo, input_buf, in_row_group_ctr, output_buf); break; case JCS_EXT_BGRX: case JCS_EXT_BGRA: extbgrx_h2v1_merged_upsample_internal(cinfo, input_buf, in_row_group_ctr, output_buf); break; case JCS_EXT_XBGR: case JCS_EXT_ABGR: extxbgr_h2v1_merged_upsample_internal(cinfo, input_buf, in_row_group_ctr, output_buf); break; case JCS_EXT_XRGB: case JCS_EXT_ARGB: extxrgb_h2v1_merged_upsample_internal(cinfo, input_buf, in_row_group_ctr, output_buf); break; default: h2v1_merged_upsample_internal(cinfo, input_buf, in_row_group_ctr, output_buf); break; } } /* * Upsample and color convert for the case of 2:1 horizontal and 2:1 vertical. */ METHODDEF(void) h2v2_merged_upsample (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf) { switch (cinfo->out_color_space) { case JCS_EXT_RGB: extrgb_h2v2_merged_upsample_internal(cinfo, input_buf, in_row_group_ctr, output_buf); break; case JCS_EXT_RGBX: case JCS_EXT_RGBA: extrgbx_h2v2_merged_upsample_internal(cinfo, input_buf, in_row_group_ctr, output_buf); break; case JCS_EXT_BGR: extbgr_h2v2_merged_upsample_internal(cinfo, input_buf, in_row_group_ctr, output_buf); break; case JCS_EXT_BGRX: case JCS_EXT_BGRA: extbgrx_h2v2_merged_upsample_internal(cinfo, input_buf, in_row_group_ctr, output_buf); break; case JCS_EXT_XBGR: case JCS_EXT_ABGR: extxbgr_h2v2_merged_upsample_internal(cinfo, input_buf, in_row_group_ctr, output_buf); break; case JCS_EXT_XRGB: case JCS_EXT_ARGB: extxrgb_h2v2_merged_upsample_internal(cinfo, input_buf, in_row_group_ctr, output_buf); break; default: h2v2_merged_upsample_internal(cinfo, input_buf, in_row_group_ctr, output_buf); break; } } /* * RGB565 conversion */ #define PACK_SHORT_565_LE(r, g, b) ((((r) << 8) & 0xF800) | \ (((g) << 3) & 0x7E0) | ((b) >> 3)) #define PACK_SHORT_565_BE(r, g, b) (((r) & 0xF8) | ((g) >> 5) | \ (((g) << 11) & 0xE000) | \ (((b) << 5) & 0x1F00)) #define PACK_TWO_PIXELS_LE(l, r) ((r << 16) | l) #define PACK_TWO_PIXELS_BE(l, r) ((l << 16) | r) #define PACK_NEED_ALIGNMENT(ptr) (((size_t)(ptr)) & 3) #define WRITE_TWO_PIXELS_LE(addr, pixels) { \ ((INT16*)(addr))[0] = (pixels); \ ((INT16*)(addr))[1] = (pixels) >> 16; \ } #define WRITE_TWO_PIXELS_BE(addr, pixels) { \ ((INT16*)(addr))[1] = (pixels); \ ((INT16*)(addr))[0] = (pixels) >> 16; \ } #define DITHER_565_R(r, dither) ((r) + ((dither) & 0xFF)) #define DITHER_565_G(g, dither) ((g) + (((dither) & 0xFF) >> 1)) #define DITHER_565_B(b, dither) ((b) + ((dither) & 0xFF)) /* Declarations for ordered dithering * * We use a 4x4 ordered dither array packed into 32 bits. This array is * sufficent for dithering RGB888 to RGB565. */ #define DITHER_MASK 0x3 #define DITHER_ROTATE(x) (((x) << 24) | (((x) >> 8) & 0x00FFFFFF)) static const INT32 dither_matrix[4] = { 0x0008020A, 0x0C040E06, 0x030B0109, 0x0F070D05 }; /* Include inline routines for RGB565 conversion */ #define PACK_SHORT_565 PACK_SHORT_565_LE #define PACK_TWO_PIXELS PACK_TWO_PIXELS_LE #define WRITE_TWO_PIXELS WRITE_TWO_PIXELS_LE #define h2v1_merged_upsample_565_internal h2v1_merged_upsample_565_le #define h2v1_merged_upsample_565D_internal h2v1_merged_upsample_565D_le #define h2v2_merged_upsample_565_internal h2v2_merged_upsample_565_le #define h2v2_merged_upsample_565D_internal h2v2_merged_upsample_565D_le #include "jdmrg565.c" #undef PACK_SHORT_565 #undef PACK_TWO_PIXELS #undef WRITE_TWO_PIXELS #undef h2v1_merged_upsample_565_internal #undef h2v1_merged_upsample_565D_internal #undef h2v2_merged_upsample_565_internal #undef h2v2_merged_upsample_565D_internal #define PACK_SHORT_565 PACK_SHORT_565_BE #define PACK_TWO_PIXELS PACK_TWO_PIXELS_BE #define WRITE_TWO_PIXELS WRITE_TWO_PIXELS_BE #define h2v1_merged_upsample_565_internal h2v1_merged_upsample_565_be #define h2v1_merged_upsample_565D_internal h2v1_merged_upsample_565D_be #define h2v2_merged_upsample_565_internal h2v2_merged_upsample_565_be #define h2v2_merged_upsample_565D_internal h2v2_merged_upsample_565D_be #include "jdmrg565.c" #undef PACK_SHORT_565 #undef PACK_TWO_PIXELS #undef WRITE_TWO_PIXELS #undef h2v1_merged_upsample_565_internal #undef h2v1_merged_upsample_565D_internal #undef h2v2_merged_upsample_565_internal #undef h2v2_merged_upsample_565D_internal static INLINE boolean is_big_endian(void) { int test_value = 1; if(*(char *)&test_value != 1) return TRUE; return FALSE; } METHODDEF(void) h2v1_merged_upsample_565 (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf) { if (is_big_endian()) h2v1_merged_upsample_565_be(cinfo, input_buf, in_row_group_ctr, output_buf); else h2v1_merged_upsample_565_le(cinfo, input_buf, in_row_group_ctr, output_buf); } METHODDEF(void) h2v1_merged_upsample_565D (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf) { if (is_big_endian()) h2v1_merged_upsample_565D_be(cinfo, input_buf, in_row_group_ctr, output_buf); else h2v1_merged_upsample_565D_le(cinfo, input_buf, in_row_group_ctr, output_buf); } METHODDEF(void) h2v2_merged_upsample_565 (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf) { if (is_big_endian()) h2v2_merged_upsample_565_be(cinfo, input_buf, in_row_group_ctr, output_buf); else h2v2_merged_upsample_565_le(cinfo, input_buf, in_row_group_ctr, output_buf); } METHODDEF(void) h2v2_merged_upsample_565D (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf) { if (is_big_endian()) h2v2_merged_upsample_565D_be(cinfo, input_buf, in_row_group_ctr, output_buf); else h2v2_merged_upsample_565D_le(cinfo, input_buf, in_row_group_ctr, output_buf); } /* * Module initialization routine for merged upsampling/color conversion. * * NB: this is called under the conditions determined by use_merged_upsample() * in jdmaster.c. That routine MUST correspond to the actual capabilities * of this module; no safety checks are made here. */ GLOBAL(void) jinit_merged_upsampler (j_decompress_ptr cinfo) { my_upsample_ptr upsample; upsample = (my_upsample_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, sizeof(my_upsampler)); cinfo->upsample = (struct jpeg_upsampler *) upsample; upsample->pub.start_pass = start_pass_merged_upsample; upsample->pub.need_context_rows = FALSE; upsample->out_row_width = cinfo->output_width * cinfo->out_color_components; if (cinfo->max_v_samp_factor == 2) { upsample->pub.upsample = merged_2v_upsample; if (jsimd_can_h2v2_merged_upsample()) upsample->upmethod = jsimd_h2v2_merged_upsample; else upsample->upmethod = h2v2_merged_upsample; if (cinfo->out_color_space == JCS_RGB565) { if (cinfo->dither_mode != JDITHER_NONE) { upsample->upmethod = h2v2_merged_upsample_565D; } else { upsample->upmethod = h2v2_merged_upsample_565; } } /* Allocate a spare row buffer */ upsample->spare_row = (JSAMPROW) (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE, (size_t) (upsample->out_row_width * sizeof(JSAMPLE))); } else { upsample->pub.upsample = merged_1v_upsample; if (jsimd_can_h2v1_merged_upsample()) upsample->upmethod = jsimd_h2v1_merged_upsample; else upsample->upmethod = h2v1_merged_upsample; if (cinfo->out_color_space == JCS_RGB565) { if (cinfo->dither_mode != JDITHER_NONE) { upsample->upmethod = h2v1_merged_upsample_565D; } else { upsample->upmethod = h2v1_merged_upsample_565; } } /* No spare row needed */ upsample->spare_row = NULL; } build_ycc_rgb_table(cinfo); } #endif /* UPSAMPLE_MERGING_SUPPORTED */ libjpeg-turbo-1.4.2/jcinit.c0000644000076500007650000000461012600050400012626 00000000000000/* * jcinit.c * * Copyright (C) 1991-1997, Thomas G. Lane. * This file is part of the Independent JPEG Group's software. * For conditions of distribution and use, see the accompanying README file. * * This file contains initialization logic for the JPEG compressor. * This routine is in charge of selecting the modules to be executed and * making an initialization call to each one. * * Logically, this code belongs in jcmaster.c. It's split out because * linking this routine implies linking the entire compression library. * For a transcoding-only application, we want to be able to use jcmaster.c * without linking in the whole library. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" /* * Master selection of compression modules. * This is done once at the start of processing an image. We determine * which modules will be used and give them appropriate initialization calls. */ GLOBAL(void) jinit_compress_master (j_compress_ptr cinfo) { /* Initialize master control (includes parameter checking/processing) */ jinit_c_master_control(cinfo, FALSE /* full compression */); /* Preprocessing */ if (! cinfo->raw_data_in) { jinit_color_converter(cinfo); jinit_downsampler(cinfo); jinit_c_prep_controller(cinfo, FALSE /* never need full buffer here */); } /* Forward DCT */ jinit_forward_dct(cinfo); /* Entropy encoding: either Huffman or arithmetic coding. */ if (cinfo->arith_code) { #ifdef C_ARITH_CODING_SUPPORTED jinit_arith_encoder(cinfo); #else ERREXIT(cinfo, JERR_ARITH_NOTIMPL); #endif } else { if (cinfo->progressive_mode) { #ifdef C_PROGRESSIVE_SUPPORTED jinit_phuff_encoder(cinfo); #else ERREXIT(cinfo, JERR_NOT_COMPILED); #endif } else jinit_huff_encoder(cinfo); } /* Need a full-image coefficient buffer in any multi-pass mode. */ jinit_c_coef_controller(cinfo, (boolean) (cinfo->num_scans > 1 || cinfo->optimize_coding)); jinit_c_main_controller(cinfo, FALSE /* never need full buffer here */); jinit_marker_writer(cinfo); /* We can now tell the memory manager to allocate virtual arrays. */ (*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo); /* Write the datastream header (SOI) immediately. * Frame and scan headers are postponed till later. * This lets application insert special markers after the SOI. */ (*cinfo->marker->write_file_header) (cinfo); } libjpeg-turbo-1.4.2/jdatadst-tj.c0000644000076500007650000001456012600050400013564 00000000000000/* * jdatadst-tj.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1994-1996, Thomas G. Lane. * Modified 2009-2012 by Guido Vollbeding. * libjpeg-turbo Modifications: * Copyright (C) 2011, 2014 D. R. Commander. * For conditions of distribution and use, see the accompanying README file. * * This file contains compression data destination routines for the case of * emitting JPEG data to memory or to a file (or any stdio stream). * While these routines are sufficient for most applications, * some will want to use a different destination manager. * IMPORTANT: we assume that fwrite() will correctly transcribe an array of * JOCTETs into 8-bit-wide elements on external storage. If char is wider * than 8 bits on your machine, you may need to do some tweaking. */ /* this is not a core library module, so it doesn't define JPEG_INTERNALS */ #include "jinclude.h" #include "jpeglib.h" #include "jerror.h" #ifndef HAVE_STDLIB_H /* should declare malloc(),free() */ extern void * malloc (size_t size); extern void free (void *ptr); #endif #define OUTPUT_BUF_SIZE 4096 /* choose an efficiently fwrite'able size */ /* Expanded data destination object for memory output */ typedef struct { struct jpeg_destination_mgr pub; /* public fields */ unsigned char ** outbuffer; /* target buffer */ unsigned long * outsize; unsigned char * newbuffer; /* newly allocated buffer */ JOCTET * buffer; /* start of buffer */ size_t bufsize; boolean alloc; } my_mem_destination_mgr; typedef my_mem_destination_mgr * my_mem_dest_ptr; /* * Initialize destination --- called by jpeg_start_compress * before any data is actually written. */ METHODDEF(void) init_mem_destination (j_compress_ptr cinfo) { /* no work necessary here */ } /* * Empty the output buffer --- called whenever buffer fills up. * * In typical applications, this should write the entire output buffer * (ignoring the current state of next_output_byte & free_in_buffer), * reset the pointer & count to the start of the buffer, and return TRUE * indicating that the buffer has been dumped. * * In applications that need to be able to suspend compression due to output * overrun, a FALSE return indicates that the buffer cannot be emptied now. * In this situation, the compressor will return to its caller (possibly with * an indication that it has not accepted all the supplied scanlines). The * application should resume compression after it has made more room in the * output buffer. Note that there are substantial restrictions on the use of * suspension --- see the documentation. * * When suspending, the compressor will back up to a convenient restart point * (typically the start of the current MCU). next_output_byte & free_in_buffer * indicate where the restart point will be if the current call returns FALSE. * Data beyond this point will be regenerated after resumption, so do not * write it out when emptying the buffer externally. */ METHODDEF(boolean) empty_mem_output_buffer (j_compress_ptr cinfo) { size_t nextsize; JOCTET * nextbuffer; my_mem_dest_ptr dest = (my_mem_dest_ptr) cinfo->dest; if (!dest->alloc) ERREXIT(cinfo, JERR_BUFFER_SIZE); /* Try to allocate new buffer with double size */ nextsize = dest->bufsize * 2; nextbuffer = (JOCTET *) malloc(nextsize); if (nextbuffer == NULL) ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 10); MEMCOPY(nextbuffer, dest->buffer, dest->bufsize); if (dest->newbuffer != NULL) free(dest->newbuffer); dest->newbuffer = nextbuffer; dest->pub.next_output_byte = nextbuffer + dest->bufsize; dest->pub.free_in_buffer = dest->bufsize; dest->buffer = nextbuffer; dest->bufsize = nextsize; return TRUE; } /* * Terminate destination --- called by jpeg_finish_compress * after all data has been written. Usually needs to flush buffer. * * NB: *not* called by jpeg_abort or jpeg_destroy; surrounding * application must deal with any cleanup that should happen even * for error exit. */ METHODDEF(void) term_mem_destination (j_compress_ptr cinfo) { my_mem_dest_ptr dest = (my_mem_dest_ptr) cinfo->dest; if(dest->alloc) *dest->outbuffer = dest->buffer; *dest->outsize = (unsigned long)(dest->bufsize - dest->pub.free_in_buffer); } /* * Prepare for output to a memory buffer. * The caller may supply an own initial buffer with appropriate size. * Otherwise, or when the actual data output exceeds the given size, * the library adapts the buffer size as necessary. * The standard library functions malloc/free are used for allocating * larger memory, so the buffer is available to the application after * finishing compression, and then the application is responsible for * freeing the requested memory. */ GLOBAL(void) jpeg_mem_dest_tj (j_compress_ptr cinfo, unsigned char ** outbuffer, unsigned long * outsize, boolean alloc) { boolean reused = FALSE; my_mem_dest_ptr dest; if (outbuffer == NULL || outsize == NULL) /* sanity check */ ERREXIT(cinfo, JERR_BUFFER_SIZE); /* The destination object is made permanent so that multiple JPEG images * can be written to the same buffer without re-executing jpeg_mem_dest. */ if (cinfo->dest == NULL) { /* first time for this JPEG object? */ cinfo->dest = (struct jpeg_destination_mgr *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT, sizeof(my_mem_destination_mgr)); dest = (my_mem_dest_ptr) cinfo->dest; dest->newbuffer = NULL; dest->buffer = NULL; } dest = (my_mem_dest_ptr) cinfo->dest; dest->pub.init_destination = init_mem_destination; dest->pub.empty_output_buffer = empty_mem_output_buffer; dest->pub.term_destination = term_mem_destination; if (dest->buffer == *outbuffer && *outbuffer != NULL && alloc) reused = TRUE; dest->outbuffer = outbuffer; dest->outsize = outsize; dest->alloc = alloc; if (*outbuffer == NULL || *outsize == 0) { if (alloc) { /* Allocate initial buffer */ dest->newbuffer = *outbuffer = (unsigned char *) malloc(OUTPUT_BUF_SIZE); if (dest->newbuffer == NULL) ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 10); *outsize = OUTPUT_BUF_SIZE; } else ERREXIT(cinfo, JERR_BUFFER_SIZE); } dest->pub.next_output_byte = dest->buffer = *outbuffer; if (!reused) dest->bufsize = *outsize; dest->pub.free_in_buffer = dest->bufsize; } libjpeg-turbo-1.4.2/jpegint.h0000644000076500007650000003576712600050400013034 00000000000000/* * jpegint.h * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1991-1997, Thomas G. Lane. * Modified 1997-2009 by Guido Vollbeding. * libjpeg-turbo Modifications: * Copyright (C) 2015, D. R. Commander * For conditions of distribution and use, see the accompanying README file. * * This file provides common declarations for the various JPEG modules. * These declarations are considered internal to the JPEG library; most * applications using the library shouldn't need to include this file. */ /* Declarations for both compression & decompression */ typedef enum { /* Operating modes for buffer controllers */ JBUF_PASS_THRU, /* Plain stripwise operation */ /* Remaining modes require a full-image buffer to have been created */ JBUF_SAVE_SOURCE, /* Run source subobject only, save output */ JBUF_CRANK_DEST, /* Run dest subobject only, using saved data */ JBUF_SAVE_AND_PASS /* Run both subobjects, save output */ } J_BUF_MODE; /* Values of global_state field (jdapi.c has some dependencies on ordering!) */ #define CSTATE_START 100 /* after create_compress */ #define CSTATE_SCANNING 101 /* start_compress done, write_scanlines OK */ #define CSTATE_RAW_OK 102 /* start_compress done, write_raw_data OK */ #define CSTATE_WRCOEFS 103 /* jpeg_write_coefficients done */ #define DSTATE_START 200 /* after create_decompress */ #define DSTATE_INHEADER 201 /* reading header markers, no SOS yet */ #define DSTATE_READY 202 /* found SOS, ready for start_decompress */ #define DSTATE_PRELOAD 203 /* reading multiscan file in start_decompress*/ #define DSTATE_PRESCAN 204 /* performing dummy pass for 2-pass quant */ #define DSTATE_SCANNING 205 /* start_decompress done, read_scanlines OK */ #define DSTATE_RAW_OK 206 /* start_decompress done, read_raw_data OK */ #define DSTATE_BUFIMAGE 207 /* expecting jpeg_start_output */ #define DSTATE_BUFPOST 208 /* looking for SOS/EOI in jpeg_finish_output */ #define DSTATE_RDCOEFS 209 /* reading file in jpeg_read_coefficients */ #define DSTATE_STOPPING 210 /* looking for EOI in jpeg_finish_decompress */ /* * Left shift macro that handles a negative operand without causing any * sanitizer warnings */ #ifdef __INT32_IS_ACTUALLY_LONG #define LEFT_SHIFT(a, b) ((INT32)((unsigned long)(a) << (b))) #else #define LEFT_SHIFT(a, b) ((INT32)((unsigned int)(a) << (b))) #endif /* Declarations for compression modules */ /* Master control module */ struct jpeg_comp_master { void (*prepare_for_pass) (j_compress_ptr cinfo); void (*pass_startup) (j_compress_ptr cinfo); void (*finish_pass) (j_compress_ptr cinfo); /* State variables made visible to other modules */ boolean call_pass_startup; /* True if pass_startup must be called */ boolean is_last_pass; /* True during last pass */ }; /* Main buffer control (downsampled-data buffer) */ struct jpeg_c_main_controller { void (*start_pass) (j_compress_ptr cinfo, J_BUF_MODE pass_mode); void (*process_data) (j_compress_ptr cinfo, JSAMPARRAY input_buf, JDIMENSION *in_row_ctr, JDIMENSION in_rows_avail); }; /* Compression preprocessing (downsampling input buffer control) */ struct jpeg_c_prep_controller { void (*start_pass) (j_compress_ptr cinfo, J_BUF_MODE pass_mode); void (*pre_process_data) (j_compress_ptr cinfo, JSAMPARRAY input_buf, JDIMENSION *in_row_ctr, JDIMENSION in_rows_avail, JSAMPIMAGE output_buf, JDIMENSION *out_row_group_ctr, JDIMENSION out_row_groups_avail); }; /* Coefficient buffer control */ struct jpeg_c_coef_controller { void (*start_pass) (j_compress_ptr cinfo, J_BUF_MODE pass_mode); boolean (*compress_data) (j_compress_ptr cinfo, JSAMPIMAGE input_buf); }; /* Colorspace conversion */ struct jpeg_color_converter { void (*start_pass) (j_compress_ptr cinfo); void (*color_convert) (j_compress_ptr cinfo, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); }; /* Downsampling */ struct jpeg_downsampler { void (*start_pass) (j_compress_ptr cinfo); void (*downsample) (j_compress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION in_row_index, JSAMPIMAGE output_buf, JDIMENSION out_row_group_index); boolean need_context_rows; /* TRUE if need rows above & below */ }; /* Forward DCT (also controls coefficient quantization) */ struct jpeg_forward_dct { void (*start_pass) (j_compress_ptr cinfo); /* perhaps this should be an array??? */ void (*forward_DCT) (j_compress_ptr cinfo, jpeg_component_info * compptr, JSAMPARRAY sample_data, JBLOCKROW coef_blocks, JDIMENSION start_row, JDIMENSION start_col, JDIMENSION num_blocks); }; /* Entropy encoding */ struct jpeg_entropy_encoder { void (*start_pass) (j_compress_ptr cinfo, boolean gather_statistics); boolean (*encode_mcu) (j_compress_ptr cinfo, JBLOCKROW *MCU_data); void (*finish_pass) (j_compress_ptr cinfo); }; /* Marker writing */ struct jpeg_marker_writer { void (*write_file_header) (j_compress_ptr cinfo); void (*write_frame_header) (j_compress_ptr cinfo); void (*write_scan_header) (j_compress_ptr cinfo); void (*write_file_trailer) (j_compress_ptr cinfo); void (*write_tables_only) (j_compress_ptr cinfo); /* These routines are exported to allow insertion of extra markers */ /* Probably only COM and APPn markers should be written this way */ void (*write_marker_header) (j_compress_ptr cinfo, int marker, unsigned int datalen); void (*write_marker_byte) (j_compress_ptr cinfo, int val); }; /* Declarations for decompression modules */ /* Master control module */ struct jpeg_decomp_master { void (*prepare_for_output_pass) (j_decompress_ptr cinfo); void (*finish_output_pass) (j_decompress_ptr cinfo); /* State variables made visible to other modules */ boolean is_dummy_pass; /* True during 1st pass for 2-pass quant */ }; /* Input control module */ struct jpeg_input_controller { int (*consume_input) (j_decompress_ptr cinfo); void (*reset_input_controller) (j_decompress_ptr cinfo); void (*start_input_pass) (j_decompress_ptr cinfo); void (*finish_input_pass) (j_decompress_ptr cinfo); /* State variables made visible to other modules */ boolean has_multiple_scans; /* True if file has multiple scans */ boolean eoi_reached; /* True when EOI has been consumed */ }; /* Main buffer control (downsampled-data buffer) */ struct jpeg_d_main_controller { void (*start_pass) (j_decompress_ptr cinfo, J_BUF_MODE pass_mode); void (*process_data) (j_decompress_ptr cinfo, JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail); }; /* Coefficient buffer control */ struct jpeg_d_coef_controller { void (*start_input_pass) (j_decompress_ptr cinfo); int (*consume_data) (j_decompress_ptr cinfo); void (*start_output_pass) (j_decompress_ptr cinfo); int (*decompress_data) (j_decompress_ptr cinfo, JSAMPIMAGE output_buf); /* Pointer to array of coefficient virtual arrays, or NULL if none */ jvirt_barray_ptr *coef_arrays; }; /* Decompression postprocessing (color quantization buffer control) */ struct jpeg_d_post_controller { void (*start_pass) (j_decompress_ptr cinfo, J_BUF_MODE pass_mode); void (*post_process_data) (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, JDIMENSION in_row_groups_avail, JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail); }; /* Marker reading & parsing */ struct jpeg_marker_reader { void (*reset_marker_reader) (j_decompress_ptr cinfo); /* Read markers until SOS or EOI. * Returns same codes as are defined for jpeg_consume_input: * JPEG_SUSPENDED, JPEG_REACHED_SOS, or JPEG_REACHED_EOI. */ int (*read_markers) (j_decompress_ptr cinfo); /* Read a restart marker --- exported for use by entropy decoder only */ jpeg_marker_parser_method read_restart_marker; /* State of marker reader --- nominally internal, but applications * supplying COM or APPn handlers might like to know the state. */ boolean saw_SOI; /* found SOI? */ boolean saw_SOF; /* found SOF? */ int next_restart_num; /* next restart number expected (0-7) */ unsigned int discarded_bytes; /* # of bytes skipped looking for a marker */ }; /* Entropy decoding */ struct jpeg_entropy_decoder { void (*start_pass) (j_decompress_ptr cinfo); boolean (*decode_mcu) (j_decompress_ptr cinfo, JBLOCKROW *MCU_data); /* This is here to share code between baseline and progressive decoders; */ /* other modules probably should not use it */ boolean insufficient_data; /* set TRUE after emitting warning */ }; /* Inverse DCT (also performs dequantization) */ typedef void (*inverse_DCT_method_ptr) (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); struct jpeg_inverse_dct { void (*start_pass) (j_decompress_ptr cinfo); /* It is useful to allow each component to have a separate IDCT method. */ inverse_DCT_method_ptr inverse_DCT[MAX_COMPONENTS]; }; /* Upsampling (note that upsampler must also call color converter) */ struct jpeg_upsampler { void (*start_pass) (j_decompress_ptr cinfo); void (*upsample) (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, JDIMENSION in_row_groups_avail, JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail); boolean need_context_rows; /* TRUE if need rows above & below */ }; /* Colorspace conversion */ struct jpeg_color_deconverter { void (*start_pass) (j_decompress_ptr cinfo); void (*color_convert) (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows); }; /* Color quantization or color precision reduction */ struct jpeg_color_quantizer { void (*start_pass) (j_decompress_ptr cinfo, boolean is_pre_scan); void (*color_quantize) (j_decompress_ptr cinfo, JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows); void (*finish_pass) (j_decompress_ptr cinfo); void (*new_color_map) (j_decompress_ptr cinfo); }; /* Miscellaneous useful macros */ #undef MAX #define MAX(a,b) ((a) > (b) ? (a) : (b)) #undef MIN #define MIN(a,b) ((a) < (b) ? (a) : (b)) /* We assume that right shift corresponds to signed division by 2 with * rounding towards minus infinity. This is correct for typical "arithmetic * shift" instructions that shift in copies of the sign bit. But some * C compilers implement >> with an unsigned shift. For these machines you * must define RIGHT_SHIFT_IS_UNSIGNED. * RIGHT_SHIFT provides a proper signed right shift of an INT32 quantity. * It is only applied with constant shift counts. SHIFT_TEMPS must be * included in the variables of any routine using RIGHT_SHIFT. */ #ifdef RIGHT_SHIFT_IS_UNSIGNED #define SHIFT_TEMPS INT32 shift_temp; #define RIGHT_SHIFT(x,shft) \ ((shift_temp = (x)) < 0 ? \ (shift_temp >> (shft)) | ((~((INT32) 0)) << (32-(shft))) : \ (shift_temp >> (shft))) #else #define SHIFT_TEMPS #define RIGHT_SHIFT(x,shft) ((x) >> (shft)) #endif /* Compression module initialization routines */ EXTERN(void) jinit_compress_master (j_compress_ptr cinfo); EXTERN(void) jinit_c_master_control (j_compress_ptr cinfo, boolean transcode_only); EXTERN(void) jinit_c_main_controller (j_compress_ptr cinfo, boolean need_full_buffer); EXTERN(void) jinit_c_prep_controller (j_compress_ptr cinfo, boolean need_full_buffer); EXTERN(void) jinit_c_coef_controller (j_compress_ptr cinfo, boolean need_full_buffer); EXTERN(void) jinit_color_converter (j_compress_ptr cinfo); EXTERN(void) jinit_downsampler (j_compress_ptr cinfo); EXTERN(void) jinit_forward_dct (j_compress_ptr cinfo); EXTERN(void) jinit_huff_encoder (j_compress_ptr cinfo); EXTERN(void) jinit_phuff_encoder (j_compress_ptr cinfo); EXTERN(void) jinit_arith_encoder (j_compress_ptr cinfo); EXTERN(void) jinit_marker_writer (j_compress_ptr cinfo); /* Decompression module initialization routines */ EXTERN(void) jinit_master_decompress (j_decompress_ptr cinfo); EXTERN(void) jinit_d_main_controller (j_decompress_ptr cinfo, boolean need_full_buffer); EXTERN(void) jinit_d_coef_controller (j_decompress_ptr cinfo, boolean need_full_buffer); EXTERN(void) jinit_d_post_controller (j_decompress_ptr cinfo, boolean need_full_buffer); EXTERN(void) jinit_input_controller (j_decompress_ptr cinfo); EXTERN(void) jinit_marker_reader (j_decompress_ptr cinfo); EXTERN(void) jinit_huff_decoder (j_decompress_ptr cinfo); EXTERN(void) jinit_phuff_decoder (j_decompress_ptr cinfo); EXTERN(void) jinit_arith_decoder (j_decompress_ptr cinfo); EXTERN(void) jinit_inverse_dct (j_decompress_ptr cinfo); EXTERN(void) jinit_upsampler (j_decompress_ptr cinfo); EXTERN(void) jinit_color_deconverter (j_decompress_ptr cinfo); EXTERN(void) jinit_1pass_quantizer (j_decompress_ptr cinfo); EXTERN(void) jinit_2pass_quantizer (j_decompress_ptr cinfo); EXTERN(void) jinit_merged_upsampler (j_decompress_ptr cinfo); /* Memory manager initialization */ EXTERN(void) jinit_memory_mgr (j_common_ptr cinfo); /* Utility routines in jutils.c */ EXTERN(long) jdiv_round_up (long a, long b); EXTERN(long) jround_up (long a, long b); EXTERN(void) jcopy_sample_rows (JSAMPARRAY input_array, int source_row, JSAMPARRAY output_array, int dest_row, int num_rows, JDIMENSION num_cols); EXTERN(void) jcopy_block_row (JBLOCKROW input_row, JBLOCKROW output_row, JDIMENSION num_blocks); EXTERN(void) jzero_far (void * target, size_t bytestozero); /* Constant tables in jutils.c */ #if 0 /* This table is not actually needed in v6a */ extern const int jpeg_zigzag_order[]; /* natural coef order to zigzag order */ #endif extern const int jpeg_natural_order[]; /* zigzag coef order to natural order */ /* Arithmetic coding probability estimation tables in jaricom.c */ extern const INT32 jpeg_aritab[]; /* Suppress undefined-structure complaints if necessary. */ #ifdef INCOMPLETE_TYPES_BROKEN #ifndef AM_MEMORY_MANAGER /* only jmemmgr.c defines these */ struct jvirt_sarray_control { long dummy; }; struct jvirt_barray_control { long dummy; }; #endif #endif /* INCOMPLETE_TYPES_BROKEN */ libjpeg-turbo-1.4.2/wrtarga.c0000644000076500007650000001637412600050400013027 00000000000000/* * wrtarga.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1991-1996, Thomas G. Lane. * It was modified by The libjpeg-turbo Project to include only code and * information relevant to libjpeg-turbo. * For conditions of distribution and use, see the accompanying README file. * * This file contains routines to write output images in Targa format. * * These routines may need modification for non-Unix environments or * specialized applications. As they stand, they assume output to * an ordinary stdio stream. * * Based on code contributed by Lee Daniel Crocker. */ #include "cdjpeg.h" /* Common decls for cjpeg/djpeg applications */ #ifdef TARGA_SUPPORTED /* * To support 12-bit JPEG data, we'd have to scale output down to 8 bits. * This is not yet implemented. */ #if BITS_IN_JSAMPLE != 8 Sorry, this code only copes with 8-bit JSAMPLEs. /* deliberate syntax err */ #endif /* Private version of data destination object */ typedef struct { struct djpeg_dest_struct pub; /* public fields */ char *iobuffer; /* physical I/O buffer */ JDIMENSION buffer_width; /* width of one row */ } tga_dest_struct; typedef tga_dest_struct * tga_dest_ptr; LOCAL(void) write_header (j_decompress_ptr cinfo, djpeg_dest_ptr dinfo, int num_colors) /* Create and write a Targa header */ { char targaheader[18]; /* Set unused fields of header to 0 */ MEMZERO(targaheader, sizeof(targaheader)); if (num_colors > 0) { targaheader[1] = 1; /* color map type 1 */ targaheader[5] = (char) (num_colors & 0xFF); targaheader[6] = (char) (num_colors >> 8); targaheader[7] = 24; /* 24 bits per cmap entry */ } targaheader[12] = (char) (cinfo->output_width & 0xFF); targaheader[13] = (char) (cinfo->output_width >> 8); targaheader[14] = (char) (cinfo->output_height & 0xFF); targaheader[15] = (char) (cinfo->output_height >> 8); targaheader[17] = 0x20; /* Top-down, non-interlaced */ if (cinfo->out_color_space == JCS_GRAYSCALE) { targaheader[2] = 3; /* image type = uncompressed grayscale */ targaheader[16] = 8; /* bits per pixel */ } else { /* must be RGB */ if (num_colors > 0) { targaheader[2] = 1; /* image type = colormapped RGB */ targaheader[16] = 8; } else { targaheader[2] = 2; /* image type = uncompressed RGB */ targaheader[16] = 24; } } if (JFWRITE(dinfo->output_file, targaheader, 18) != (size_t) 18) ERREXIT(cinfo, JERR_FILE_WRITE); } /* * Write some pixel data. * In this module rows_supplied will always be 1. */ METHODDEF(void) put_pixel_rows (j_decompress_ptr cinfo, djpeg_dest_ptr dinfo, JDIMENSION rows_supplied) /* used for unquantized full-color output */ { tga_dest_ptr dest = (tga_dest_ptr) dinfo; register JSAMPROW inptr; register char * outptr; register JDIMENSION col; inptr = dest->pub.buffer[0]; outptr = dest->iobuffer; for (col = cinfo->output_width; col > 0; col--) { outptr[0] = (char) GETJSAMPLE(inptr[2]); /* RGB to BGR order */ outptr[1] = (char) GETJSAMPLE(inptr[1]); outptr[2] = (char) GETJSAMPLE(inptr[0]); inptr += 3, outptr += 3; } (void) JFWRITE(dest->pub.output_file, dest->iobuffer, dest->buffer_width); } METHODDEF(void) put_gray_rows (j_decompress_ptr cinfo, djpeg_dest_ptr dinfo, JDIMENSION rows_supplied) /* used for grayscale OR quantized color output */ { tga_dest_ptr dest = (tga_dest_ptr) dinfo; register JSAMPROW inptr; register char * outptr; register JDIMENSION col; inptr = dest->pub.buffer[0]; outptr = dest->iobuffer; for (col = cinfo->output_width; col > 0; col--) { *outptr++ = (char) GETJSAMPLE(*inptr++); } (void) JFWRITE(dest->pub.output_file, dest->iobuffer, dest->buffer_width); } /* * Write some demapped pixel data when color quantization is in effect. * For Targa, this is only applied to grayscale data. */ METHODDEF(void) put_demapped_gray (j_decompress_ptr cinfo, djpeg_dest_ptr dinfo, JDIMENSION rows_supplied) { tga_dest_ptr dest = (tga_dest_ptr) dinfo; register JSAMPROW inptr; register char * outptr; register JSAMPROW color_map0 = cinfo->colormap[0]; register JDIMENSION col; inptr = dest->pub.buffer[0]; outptr = dest->iobuffer; for (col = cinfo->output_width; col > 0; col--) { *outptr++ = (char) GETJSAMPLE(color_map0[GETJSAMPLE(*inptr++)]); } (void) JFWRITE(dest->pub.output_file, dest->iobuffer, dest->buffer_width); } /* * Startup: write the file header. */ METHODDEF(void) start_output_tga (j_decompress_ptr cinfo, djpeg_dest_ptr dinfo) { tga_dest_ptr dest = (tga_dest_ptr) dinfo; int num_colors, i; FILE *outfile; if (cinfo->out_color_space == JCS_GRAYSCALE) { /* Targa doesn't have a mapped grayscale format, so we will */ /* demap quantized gray output. Never emit a colormap. */ write_header(cinfo, dinfo, 0); if (cinfo->quantize_colors) dest->pub.put_pixel_rows = put_demapped_gray; else dest->pub.put_pixel_rows = put_gray_rows; } else if (cinfo->out_color_space == JCS_RGB) { if (cinfo->quantize_colors) { /* We only support 8-bit colormap indexes, so only 256 colors */ num_colors = cinfo->actual_number_of_colors; if (num_colors > 256) ERREXIT1(cinfo, JERR_TOO_MANY_COLORS, num_colors); write_header(cinfo, dinfo, num_colors); /* Write the colormap. Note Targa uses BGR byte order */ outfile = dest->pub.output_file; for (i = 0; i < num_colors; i++) { putc(GETJSAMPLE(cinfo->colormap[2][i]), outfile); putc(GETJSAMPLE(cinfo->colormap[1][i]), outfile); putc(GETJSAMPLE(cinfo->colormap[0][i]), outfile); } dest->pub.put_pixel_rows = put_gray_rows; } else { write_header(cinfo, dinfo, 0); dest->pub.put_pixel_rows = put_pixel_rows; } } else { ERREXIT(cinfo, JERR_TGA_COLORSPACE); } } /* * Finish up at the end of the file. */ METHODDEF(void) finish_output_tga (j_decompress_ptr cinfo, djpeg_dest_ptr dinfo) { /* Make sure we wrote the output file OK */ fflush(dinfo->output_file); if (ferror(dinfo->output_file)) ERREXIT(cinfo, JERR_FILE_WRITE); } /* * The module selection routine for Targa format output. */ GLOBAL(djpeg_dest_ptr) jinit_write_targa (j_decompress_ptr cinfo) { tga_dest_ptr dest; /* Create module interface object, fill in method pointers */ dest = (tga_dest_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, sizeof(tga_dest_struct)); dest->pub.start_output = start_output_tga; dest->pub.finish_output = finish_output_tga; /* Calculate output image dimensions so we can allocate space */ jpeg_calc_output_dimensions(cinfo); /* Create I/O buffer. */ dest->buffer_width = cinfo->output_width * cinfo->output_components; dest->iobuffer = (char *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, (size_t) (dest->buffer_width * sizeof(char))); /* Create decompressor output buffer. */ dest->pub.buffer = (*cinfo->mem->alloc_sarray) ((j_common_ptr) cinfo, JPOOL_IMAGE, dest->buffer_width, (JDIMENSION) 1); dest->pub.buffer_height = 1; return (djpeg_dest_ptr) dest; } #endif /* TARGA_SUPPORTED */ libjpeg-turbo-1.4.2/release/0000755000076500007650000000000012600050400012701 500000000000000libjpeg-turbo-1.4.2/release/libjpeg-turbo.nsi.in0000755000076500007650000001201712600050400016512 00000000000000!include x64.nsh Name "@CMAKE_PROJECT_NAME@ SDK for @INST_PLATFORM@" OutFile "@CMAKE_BINARY_DIR@\${BUILDDIR}@INST_NAME@.exe" InstallDir @INST_DIR@ SetCompressor bzip2 Page directory Page instfiles UninstPage uninstConfirm UninstPage instfiles Section "@CMAKE_PROJECT_NAME@ SDK for @INST_PLATFORM@ (required)" !ifdef WIN64 ${If} ${RunningX64} ${DisableX64FSRedirection} ${Endif} !endif SectionIn RO !ifdef GCC IfFileExists $SYSDIR/libturbojpeg.dll exists 0 !else IfFileExists $SYSDIR/turbojpeg.dll exists 0 !endif goto notexists exists: !ifdef GCC MessageBox MB_OK "An existing version of the @CMAKE_PROJECT_NAME@ SDK for @INST_PLATFORM@ is already installed. Please uninstall it first." !else MessageBox MB_OK "An existing version of the @CMAKE_PROJECT_NAME@ SDK for @INST_PLATFORM@ or the TurboJPEG SDK is already installed. Please uninstall it first." !endif quit notexists: SetOutPath $SYSDIR !ifdef GCC File "@CMAKE_BINARY_DIR@\libturbojpeg.dll" !else File "@CMAKE_BINARY_DIR@\${BUILDDIR}turbojpeg.dll" !endif SetOutPath $INSTDIR\bin !ifdef GCC File "@CMAKE_BINARY_DIR@\libturbojpeg.dll" !else File "@CMAKE_BINARY_DIR@\${BUILDDIR}turbojpeg.dll" !endif !ifdef GCC File "/oname=libjpeg-@DLL_VERSION@.dll" "@CMAKE_BINARY_DIR@\sharedlib\libjpeg-*.dll" !else File "@CMAKE_BINARY_DIR@\sharedlib\${BUILDDIR}jpeg@DLL_VERSION@.dll" !endif File "@CMAKE_BINARY_DIR@\sharedlib\${BUILDDIR}cjpeg.exe" File "@CMAKE_BINARY_DIR@\sharedlib\${BUILDDIR}djpeg.exe" File "@CMAKE_BINARY_DIR@\sharedlib\${BUILDDIR}jpegtran.exe" File "@CMAKE_BINARY_DIR@\${BUILDDIR}tjbench.exe" File "@CMAKE_BINARY_DIR@\${BUILDDIR}rdjpgcom.exe" File "@CMAKE_BINARY_DIR@\${BUILDDIR}wrjpgcom.exe" SetOutPath $INSTDIR\lib !ifdef GCC File "@CMAKE_BINARY_DIR@\libturbojpeg.dll.a" File "@CMAKE_BINARY_DIR@\libturbojpeg.a" File "@CMAKE_BINARY_DIR@\sharedlib\libjpeg.dll.a" File "@CMAKE_BINARY_DIR@\libjpeg.a" !else File "@CMAKE_BINARY_DIR@\${BUILDDIR}turbojpeg.lib" File "@CMAKE_BINARY_DIR@\${BUILDDIR}turbojpeg-static.lib" File "@CMAKE_BINARY_DIR@\sharedlib\${BUILDDIR}jpeg.lib" File "@CMAKE_BINARY_DIR@\${BUILDDIR}jpeg-static.lib" !endif !ifdef JAVA SetOutPath $INSTDIR\classes File "@CMAKE_BINARY_DIR@\java\${BUILDDIR}turbojpeg.jar" !endif SetOutPath $INSTDIR\include File "@CMAKE_BINARY_DIR@\jconfig.h" File "@CMAKE_SOURCE_DIR@\jerror.h" File "@CMAKE_SOURCE_DIR@\jmorecfg.h" File "@CMAKE_SOURCE_DIR@\jpeglib.h" File "@CMAKE_SOURCE_DIR@\turbojpeg.h" SetOutPath $INSTDIR\doc File "@CMAKE_SOURCE_DIR@\README" File "@CMAKE_SOURCE_DIR@\README-turbo.txt" File "@CMAKE_SOURCE_DIR@\example.c" File "@CMAKE_SOURCE_DIR@\libjpeg.txt" File "@CMAKE_SOURCE_DIR@\structure.txt" File "@CMAKE_SOURCE_DIR@\usage.txt" File "@CMAKE_SOURCE_DIR@\wizard.txt" WriteRegStr HKLM "SOFTWARE\@INST_REG_NAME@ @VERSION@" "Install_Dir" "$INSTDIR" WriteRegStr HKLM "Software\Microsoft\Windows\CurrentVersion\Uninstall\@INST_REG_NAME@ @VERSION@" "DisplayName" "@CMAKE_PROJECT_NAME@ SDK v@VERSION@ for @INST_PLATFORM@" WriteRegStr HKLM "Software\Microsoft\Windows\CurrentVersion\Uninstall\@INST_REG_NAME@ @VERSION@" "UninstallString" '"$INSTDIR\uninstall_@VERSION@.exe"' WriteRegDWORD HKLM "Software\Microsoft\Windows\CurrentVersion\Uninstall\@INST_REG_NAME@ @VERSION@" "NoModify" 1 WriteRegDWORD HKLM "Software\Microsoft\Windows\CurrentVersion\Uninstall\@INST_REG_NAME@ @VERSION@" "NoRepair" 1 WriteUninstaller "uninstall_@VERSION@.exe" SectionEnd Section "Uninstall" !ifdef WIN64 ${If} ${RunningX64} ${DisableX64FSRedirection} ${Endif} !endif SetShellVarContext all DeleteRegKey HKLM "Software\Microsoft\Windows\CurrentVersion\Uninstall\@INST_REG_NAME@ @VERSION@" DeleteRegKey HKLM "SOFTWARE\@INST_REG_NAME@ @VERSION@" !ifdef GCC Delete $INSTDIR\bin\libjpeg-@DLL_VERSION@.dll Delete $INSTDIR\bin\libturbojpeg.dll Delete $SYSDIR\libturbojpeg.dll Delete $INSTDIR\lib\libturbojpeg.dll.a" Delete $INSTDIR\lib\libturbojpeg.a" Delete $INSTDIR\lib\libjpeg.dll.a" Delete $INSTDIR\lib\libjpeg.a" !else Delete $INSTDIR\bin\jpeg@DLL_VERSION@.dll Delete $INSTDIR\bin\turbojpeg.dll Delete $SYSDIR\turbojpeg.dll Delete $INSTDIR\lib\jpeg.lib Delete $INSTDIR\lib\jpeg-static.lib Delete $INSTDIR\lib\turbojpeg.lib Delete $INSTDIR\lib\turbojpeg-static.lib !endif !ifdef JAVA Delete $INSTDIR\classes\turbojpeg.jar !endif Delete $INSTDIR\bin\cjpeg.exe Delete $INSTDIR\bin\djpeg.exe Delete $INSTDIR\bin\jpegtran.exe Delete $INSTDIR\bin\tjbench.exe Delete $INSTDIR\bin\rdjpgcom.exe Delete $INSTDIR\bin\wrjpgcom.exe Delete $INSTDIR\include\jconfig.h" Delete $INSTDIR\include\jerror.h" Delete $INSTDIR\include\jmorecfg.h" Delete $INSTDIR\include\jpeglib.h" Delete $INSTDIR\include\turbojpeg.h" Delete $INSTDIR\uninstall_@VERSION@.exe Delete $INSTDIR\doc\README Delete $INSTDIR\doc\README-turbo.txt Delete $INSTDIR\doc\example.c Delete $INSTDIR\doc\libjpeg.txt Delete $INSTDIR\doc\structure.txt Delete $INSTDIR\doc\usage.txt Delete $INSTDIR\doc\wizard.txt RMDir "$INSTDIR\include" RMDir "$INSTDIR\lib" RMDir "$INSTDIR\doc" !ifdef JAVA RMDir "$INSTDIR\classes" !endif RMDir "$INSTDIR\bin" RMDir "$INSTDIR" SectionEnd libjpeg-turbo-1.4.2/release/deb-control.tmpl0000644000076500007650000000313712600050400015733 00000000000000Package: {__PKGNAME} Version: {__VERSION}-{__BUILD} Section: misc Priority: optional Architecture: {__ARCH} Essential: no Maintainer: The libjpeg-turbo Project Homepage: http://www.libjpeg-turbo.org Installed-Size: {__SIZE} Description: A SIMD-accelerated JPEG codec that provides both the libjpeg and TurboJPEG APIs libjpeg-turbo is a JPEG image codec that uses SIMD instructions (MMX, SSE2, NEON) to accelerate baseline JPEG compression and decompression on x86, x86-64, and ARM systems. On such systems, libjpeg-turbo is generally 2-4x as fast as libjpeg, all else being equal. On other types of systems, libjpeg-turbo can still outperform libjpeg by a significant amount, by virtue of its highly-optimized Huffman coding routines. In many cases, the performance of libjpeg-turbo rivals that of proprietary high-speed JPEG codecs. . libjpeg-turbo implements both the traditional libjpeg API as well as the less powerful but more straightforward TurboJPEG API. libjpeg-turbo also features colorspace extensions that allow it to compress from/decompress to 32-bit and big-endian pixel buffers (RGBX, XBGR, etc.), as well as a full-featured Java interface. . libjpeg-turbo was originally based on libjpeg/SIMD, an MMX-accelerated derivative of libjpeg v6b developed by Miyasaka Masaru. The TigerVNC and VirtualGL projects made numerous enhancements to the codec in 2009, and in early 2010, libjpeg-turbo spun off into an independent project, with the goal of making high-speed JPEG compression/decompression technology available to a broader range of users and developers. libjpeg-turbo-1.4.2/release/ReadMe.txt0000644000076500007650000000235312600050400014522 00000000000000libjpeg-turbo is a JPEG image codec that uses SIMD instructions (MMX, SSE2, NEON) to accelerate baseline JPEG compression and decompression on x86, x86-64, and ARM systems. On such systems, libjpeg-turbo is generally 2-4x as fast as libjpeg, all else being equal. On other types of systems, libjpeg-turbo can still outperform libjpeg by a significant amount, by virtue of its highly-optimized Huffman coding routines. In many cases, the performance of libjpeg-turbo rivals that of proprietary high-speed JPEG codecs. libjpeg-turbo implements both the traditional libjpeg API as well as the less powerful but more straightforward TurboJPEG API. libjpeg-turbo also features colorspace extensions that allow it to compress from/decompress to 32-bit and big-endian pixel buffers (RGBX, XBGR, etc.), as well as a full-featured Java interface. libjpeg-turbo was originally based on libjpeg/SIMD, an MMX-accelerated derivative of libjpeg v6b developed by Miyasaka Masaru. The TigerVNC and VirtualGL projects made numerous enhancements to the codec in 2009, and in early 2010, libjpeg-turbo spun off into an independent project, with the goal of making high-speed JPEG compression/decompression technology available to a broader range of users and developers. libjpeg-turbo-1.4.2/release/Distribution.xml0000644000076500007650000000132512600050400016023 00000000000000 libjpeg-turbo libjpeg-turbo.pkg libjpeg-turbo-1.4.2/release/libjpeg-turbo.spec.in0000644000076500007650000001121412600050400016646 00000000000000# Path under which libjpeg-turbo should be installed %define _prefix %{__prefix} # Path under which executables should be installed %define _bindir %{__bindir} # Path under which Java classes and man pages should be installed %define _datadir %{__datadir} # Path under which docs should be installed %define _docdir /usr/share/doc/%{name}-%{version} # Path under which headers should be installed %define _includedir %{__includedir} # _libdir is set to %{_prefix}/%{_lib} by default %ifarch x86_64 %define _lib lib64 %else %if "%{_prefix}" == "/opt/libjpeg-turbo" %define _lib lib32 %endif %endif # Path under which man pages should be installed %define _mandir %{__mandir} Summary: A SIMD-accelerated JPEG codec that provides both the libjpeg and TurboJPEG APIs Name: @PKGNAME@ Version: @VERSION@ Vendor: The libjpeg-turbo Project URL: http://www.libjpeg-turbo.org Group: System Environment/Libraries #-->Source0: http://prdownloads.sourceforge.net/libjpeg-turbo/libjpeg-turbo-%{version}.tar.gz Release: @BUILD@ License: BSD-style BuildRoot: %{_blddir}/%{name}-buildroot-%{version}-%{release} Prereq: /sbin/ldconfig %ifarch x86_64 Provides: %{name} = %{version}-%{release}, @PACKAGE_NAME@ = %{version}-%{release}, libturbojpeg.so()(64bit) %else Provides: %{name} = %{version}-%{release}, @PACKAGE_NAME@ = %{version}-%{release}, libturbojpeg.so %endif %description libjpeg-turbo is a JPEG image codec that uses SIMD instructions (MMX, SSE2, NEON) to accelerate baseline JPEG compression and decompression on x86, x86-64, and ARM systems. On such systems, libjpeg-turbo is generally 2-4x as fast as libjpeg, all else being equal. On other types of systems, libjpeg-turbo can still outperform libjpeg by a significant amount, by virtue of its highly-optimized Huffman coding routines. In many cases, the performance of libjpeg-turbo rivals that of proprietary high-speed JPEG codecs. libjpeg-turbo implements both the traditional libjpeg API as well as the less powerful but more straightforward TurboJPEG API. libjpeg-turbo also features colorspace extensions that allow it to compress from/decompress to 32-bit and big-endian pixel buffers (RGBX, XBGR, etc.), as well as a full-featured Java interface. libjpeg-turbo was originally based on libjpeg/SIMD, an MMX-accelerated derivative of libjpeg v6b developed by Miyasaka Masaru. The TigerVNC and VirtualGL projects made numerous enhancements to the codec in 2009, and in early 2010, libjpeg-turbo spun off into an independent project, with the goal of making high-speed JPEG compression/decompression technology available to a broader range of users and developers. #-->%prep #-->%setup -q -n libjpeg-turbo-%{version} #-->%build #-->./configure prefix=%{_prefix} bindir=%{_bindir} datadir=%{_datadir} \ #--> docdir=%{_docdir} includedir=%{_includedir} libdir=%{_libdir} \ #--> mandir=%{_mandir} JPEG_LIB_VERSION=@JPEG_LIB_VERSION@ \ #--> SO_MAJOR_VERSION=@SO_MAJOR_VERSION@ SO_MINOR_VERSION=@SO_MINOR_VERSION@ \ #--> --with-pic @RPM_CONFIG_ARGS@ #-->make DESTDIR=$RPM_BUILD_ROOT %install rm -rf $RPM_BUILD_ROOT make install DESTDIR=$RPM_BUILD_ROOT docdir=%{_docdir} exampledir=%{_docdir} rm -f $RPM_BUILD_ROOT%{_libdir}/*.la /sbin/ldconfig -n $RPM_BUILD_ROOT%{_libdir} #-->%if 0 LJT_LIBDIR=%{__libdir} if [ ! "$LJT_LIBDIR" = "%{_libdir}" ]; then echo ERROR: libjpeg-turbo must be configured with libdir=%{_prefix}/%{_lib} when generating an in-tree RPM for this architecture. exit 1 fi #-->%endif LJT_DOCDIR=%{__docdir} if [ "%{_prefix}" = "/opt/libjpeg-turbo" -a "$LJT_DOCDIR" = "/opt/libjpeg-turbo/doc" ]; then ln -fs %{_docdir} $RPM_BUILD_ROOT/$LJT_DOCDIR fi %post -p /sbin/ldconfig %postun -p /sbin/ldconfig %clean rm -rf $RPM_BUILD_ROOT %files %defattr(-,root,root) %dir %{_docdir} %doc %{_docdir}/* %dir %{_prefix} %if "%{_prefix}" == "/opt/libjpeg-turbo" && "%{_docdir}" != "%{_prefix}/doc" %{_prefix}/doc %endif %dir %{_bindir} %{_bindir}/cjpeg %{_bindir}/djpeg %{_bindir}/jpegtran %{_bindir}/tjbench %{_bindir}/rdjpgcom %{_bindir}/wrjpgcom %dir %{_libdir} %{_libdir}/libjpeg.so.@SO_MAJOR_VERSION@.@SO_AGE@.@SO_MINOR_VERSION@ %{_libdir}/libjpeg.so.@SO_MAJOR_VERSION@ %{_libdir}/libjpeg.so %{_libdir}/libjpeg.a %{_libdir}/libturbojpeg.so.0.1.0 %{_libdir}/libturbojpeg.so.0 %{_libdir}/libturbojpeg.so %{_libdir}/libturbojpeg.a %dir %{_includedir} %{_includedir}/jconfig.h %{_includedir}/jerror.h %{_includedir}/jmorecfg.h %{_includedir}/jpeglib.h %{_includedir}/turbojpeg.h %dir %{_mandir} %dir %{_mandir}/man1 %{_mandir}/man1/cjpeg.1* %{_mandir}/man1/djpeg.1* %{_mandir}/man1/jpegtran.1* %{_mandir}/man1/rdjpgcom.1* %{_mandir}/man1/wrjpgcom.1* %if "%{_prefix}" != "%{_datadir}" %dir %{_datadir} %endif @JAVA_RPM_CONTENTS_1@ @JAVA_RPM_CONTENTS_2@ %changelog libjpeg-turbo-1.4.2/release/License.rtf0000755000076500007650000000420212600050400014721 00000000000000{\rtf1\ansi\ansicpg1252\cocoartf1038\cocoasubrtf350 {\fonttbl\f0\fswiss\fcharset0 Helvetica;} {\colortbl;\red255\green255\blue255;} {\*\listtable{\list\listtemplateid1\listhybrid{\listlevel\levelnfc23\levelnfcn23\leveljc0\leveljcn0\levelfollow0\levelstartat1\levelspace360\levelindent0{\*\levelmarker \{disc\}}{\leveltext\leveltemplateid1\'01\uc0\u8226 ;}{\levelnumbers;}\fi-360\li720\lin720 }{\listname ;}\listid1}} {\*\listoverridetable{\listoverride\listid1\listoverridecount0\ls1}} \margl1440\margr1440\vieww9820\viewh8480\viewkind0 \deftab720 \pard\pardeftab720 \f0\fs24 \cf0 Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:\ \ \pard\tx220\tx720\pardeftab720\li720\fi-720 \ls1\ilvl0\cf0 {\listtext \'95 }Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.\ {\listtext \'95 }Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.\ {\listtext \'95 }Neither the name of the libjpeg-turbo Project nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.\ \pard\pardeftab720\qc \cf0 \ \pard\pardeftab720 \cf0 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS", AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.\ }libjpeg-turbo-1.4.2/release/makedpkg.in0000644000076500007650000000316212600050400014736 00000000000000#!/bin/sh set -u set -e trap onexit INT trap onexit TERM trap onexit EXIT TMPDIR= SUDO= onexit() { if [ ! "$TMPDIR" = "" ]; then $SUDO rm -rf $TMPDIR fi } uid() { id | cut -f2 -d = | cut -f1 -d \(; } makedeb() { SUPPLEMENT=$1 DIRNAME=$PACKAGE_NAME if [ $SUPPLEMENT = 1 ]; then PACKAGE_NAME=$PACKAGE_NAME\32 DEBARCH=amd64 fi umask 022 rm -f $PACKAGE_NAME\_$VERSION\_$DEBARCH.deb TMPDIR=`mktemp -d /tmp/$PACKAGE_NAME-build.XXXXXX` mkdir $TMPDIR/DEBIAN if [ $SUPPLEMENT = 1 ]; then make install DESTDIR=$TMPDIR bindir=/dummy/bin datadir=/dummy/data \ docdir=/dummy/doc includedir=/dummy/include mandir=/dummy/man rm -f $TMPDIR$LIBDIR/*.la rm -rf $TMPDIR/dummy else make install DESTDIR=$TMPDIR docdir=/usr/share/doc/$DIRNAME-$VERSION \ exampledir=/usr/share/doc/$DIRNAME-$VERSION rm -f $TMPDIR$LIBDIR/*.la if [ "$PREFIX" = "/opt/libjpeg-turbo" -a "$DOCDIR" = "/opt/libjpeg-turbo/doc" ]; then ln -fs /usr/share/doc/$DIRNAME-$VERSION $TMPDIR$DOCDIR fi fi SIZE=`du -s $TMPDIR | cut -f1` (cat $SRCDIR/release/deb-control.tmpl | sed s/{__PKGNAME}/$PACKAGE_NAME/g \ | sed s/{__VERSION}/$VERSION/g | sed s/{__BUILD}/$BUILD/g \ | sed s/{__ARCH}/$DEBARCH/g | sed s/{__SIZE}/$SIZE/g \ > $TMPDIR/DEBIAN/control) /sbin/ldconfig -n $TMPDIR$LIBDIR $SUDO chown -Rh root:root $TMPDIR/* dpkg -b $TMPDIR $PACKAGE_NAME\_$VERSION\_$DEBARCH.deb } PACKAGE_NAME=@PKGNAME@ VERSION=@VERSION@ BUILD=@BUILD@ DEBARCH=@DEBARCH@ SRCDIR=@abs_top_srcdir@ PREFIX=%{__prefix} DOCDIR=%{__docdir} LIBDIR=%{__libdir} if [ ! `uid` -eq 0 ]; then SUDO=sudo fi makedeb 0 if [ "$DEBARCH" = "i386" ]; then makedeb 1; fi exit libjpeg-turbo-1.4.2/release/makemacpkg.in0000644000076500007650000003642212600050400015260 00000000000000#!/bin/sh set -u set -e trap onexit INT trap onexit TERM trap onexit EXIT TMPDIR= onexit() { if [ ! "$TMPDIR" = "" ]; then rm -rf $TMPDIR fi } usage() { echo "$0 [-build32 [32-bit build dir]] [-buildarmv6 [ARMv6 build dir]] [-buildarmv7 [ARMv7 build dir]] [-buildarmv7s [ARMv7s build dir] [-buildarmv8 [ARMv8 build dir]] [-lipo [path to lipo]]" exit 1 } PACKAGE_NAME=@PKGNAME@ VERSION=@VERSION@ BUILD=@BUILD@ SRCDIR=@abs_top_srcdir@ BUILDDIR32=@abs_top_srcdir@/osxx86 BUILD32=0 BUILDDIRARMV6=@abs_top_srcdir@/iosarmv6 BUILDARMV6=0 BUILDDIRARMV7=@abs_top_srcdir@/iosarmv7 BUILDARMV7=0 BUILDDIRARMV7S=@abs_top_srcdir@/iosarmv7s BUILDARMV7S=0 BUILDDIRARMV8=@abs_top_srcdir@/iosarmv8 BUILDARMV8=0 WITH_JAVA=@WITH_JAVA@ LIPO=lipo PREFIX=%{__prefix} BINDIR=%{__bindir} DOCDIR=%{__docdir} LIBDIR=%{__libdir} while [ $# -gt 0 ]; do case $1 in -h*) usage 0 ;; -build32) BUILD32=1 if [ $# -gt 1 ]; then if [[ ! "$2" =~ -.* ]]; then BUILDDIR32=$2; shift fi fi ;; -buildarmv6) BUILDARMV6=1 if [ $# -gt 1 ]; then if [[ ! "$2" =~ -.* ]]; then BUILDDIRARMV6=$2; shift fi fi ;; -buildarmv7) BUILDARMV7=1 if [ $# -gt 1 ]; then if [[ ! "$2" =~ -.* ]]; then BUILDDIRARMV7=$2; shift fi fi ;; -buildarmv7s) BUILDARMV7S=1 if [ $# -gt 1 ]; then if [[ ! "$2" =~ -.* ]]; then BUILDDIRARMV7S=$2; shift fi fi ;; -buildarmv8) BUILDARMV8=1 if [ $# -gt 1 ]; then if [[ ! "$2" =~ -.* ]]; then BUILDDIRARMV8=$2; shift fi fi ;; -lipo) if [ $# -gt 1 ]; then if [[ ! "$2" =~ -.* ]]; then LIPO=$2; shift fi fi ;; esac shift done if [ -f $PACKAGE_NAME-$VERSION.dmg ]; then rm -f $PACKAGE_NAME-$VERSION.dmg fi umask 022 TMPDIR=`mktemp -d /tmp/$PACKAGE_NAME-build.XXXXXX` PKGROOT=$TMPDIR/pkg/Package_Root mkdir -p $PKGROOT make install DESTDIR=$PKGROOT docdir=/Library/Documentation/$PACKAGE_NAME \ exampledir=/Library/Documentation/$PACKAGE_NAME rm -f $PKGROOT$LIBDIR/*.la if [ "$PREFIX" = "/opt/libjpeg-turbo" -a "$DOCDIR" = "/opt/libjpeg-turbo/doc" ]; then ln -fs /Library/Documentation/$PACKAGE_NAME $PKGROOT$DOCDIR fi if [ $BUILD32 = 1 ]; then if [ ! -d $BUILDDIR32 ]; then echo ERROR: 32-bit build directory $BUILDDIR32 does not exist exit 1 fi if [ ! -f $BUILDDIR32/Makefile ]; then echo ERROR: 32-bit build directory $BUILDDIR32 is not configured exit 1 fi mkdir -p $TMPDIR/dist.x86 pushd $BUILDDIR32 make install DESTDIR=$TMPDIR/dist.x86 popd if [ ! -h $TMPDIR/dist.x86/$LIBDIR/libjpeg.@SO_MAJOR_VERSION@.dylib -a \ ! -h $PKGROOT/$LIBDIR/libjpeg.@SO_MAJOR_VERSION@.dylib ]; then $LIPO -create \ -arch i386 $TMPDIR/dist.x86/$LIBDIR/libjpeg.@SO_MAJOR_VERSION@.dylib \ -arch x86_64 $PKGROOT/$LIBDIR/libjpeg.@SO_MAJOR_VERSION@.dylib \ -output $PKGROOT/$LIBDIR/libjpeg.@SO_MAJOR_VERSION@.dylib elif [ ! -h $TMPDIR/dist.x86/$LIBDIR/libjpeg.@SO_MAJOR_VERSION@.0.@SO_MINOR_VERSION@.dylib -a \ ! -h $PKGROOT/$LIBDIR/libjpeg.@SO_MAJOR_VERSION@.0.@SO_MINOR_VERSION@.dylib ]; then $LIPO -create \ -arch i386 $TMPDIR/dist.x86/$LIBDIR/libjpeg.@SO_MAJOR_VERSION@.0.@SO_MINOR_VERSION@.dylib \ -arch x86_64 $PKGROOT/$LIBDIR/libjpeg.@SO_MAJOR_VERSION@.0.@SO_MINOR_VERSION@.dylib \ -output $PKGROOT/$LIBDIR/libjpeg.@SO_MAJOR_VERSION@.0.@SO_MINOR_VERSION@.dylib fi $LIPO -create \ -arch i386 $TMPDIR/dist.x86/$LIBDIR/libjpeg.a \ -arch x86_64 $PKGROOT/$LIBDIR/libjpeg.a \ -output $PKGROOT/$LIBDIR/libjpeg.a $LIPO -create \ -arch i386 $TMPDIR/dist.x86/$LIBDIR/libturbojpeg.0.dylib \ -arch x86_64 $PKGROOT/$LIBDIR/libturbojpeg.0.dylib \ -output $PKGROOT/$LIBDIR/libturbojpeg.0.dylib $LIPO -create \ -arch i386 $TMPDIR/dist.x86/$LIBDIR/libturbojpeg.a \ -arch x86_64 $PKGROOT/$LIBDIR/libturbojpeg.a \ -output $PKGROOT/$LIBDIR/libturbojpeg.a $LIPO -create \ -arch i386 $TMPDIR/dist.x86/$BINDIR/cjpeg \ -arch x86_64 $PKGROOT/$BINDIR/cjpeg \ -output $PKGROOT/$BINDIR/cjpeg $LIPO -create \ -arch i386 $TMPDIR/dist.x86/$BINDIR/djpeg \ -arch x86_64 $PKGROOT/$BINDIR/djpeg \ -output $PKGROOT/$BINDIR/djpeg $LIPO -create \ -arch i386 $TMPDIR/dist.x86/$BINDIR/jpegtran \ -arch x86_64 $PKGROOT/$BINDIR/jpegtran \ -output $PKGROOT/$BINDIR/jpegtran $LIPO -create \ -arch i386 $TMPDIR/dist.x86/$BINDIR/tjbench \ -arch x86_64 $PKGROOT/$BINDIR/tjbench \ -output $PKGROOT/$BINDIR/tjbench $LIPO -create \ -arch i386 $TMPDIR/dist.x86/$BINDIR/rdjpgcom \ -arch x86_64 $PKGROOT/$BINDIR/rdjpgcom \ -output $PKGROOT/$BINDIR/rdjpgcom $LIPO -create \ -arch i386 $TMPDIR/dist.x86/$BINDIR/wrjpgcom \ -arch x86_64 $PKGROOT/$BINDIR/wrjpgcom \ -output $PKGROOT/$BINDIR/wrjpgcom fi if [ $BUILDARMV6 = 1 ]; then if [ ! -d $BUILDDIRARMV6 ]; then echo ERROR: ARMv6 build directory $BUILDDIRARMV6 does not exist exit 1 fi if [ ! -f $BUILDDIRARMV6/Makefile ]; then echo ERROR: ARMv6 build directory $BUILDDIRARMV6 is not configured exit 1 fi mkdir -p $TMPDIR/dist.armv6 pushd $BUILDDIRARMV6 make install DESTDIR=$TMPDIR/dist.armv6 popd if [ ! -h $TMPDIR/dist.armv6/$LIBDIR/libjpeg.@SO_MAJOR_VERSION@.dylib -a \ ! -h $PKGROOT/$LIBDIR/libjpeg.@SO_MAJOR_VERSION@.dylib ]; then $LIPO -create \ $PKGROOT/$LIBDIR/libjpeg.@SO_MAJOR_VERSION@.dylib \ -arch arm $TMPDIR/dist.armv6/$LIBDIR/libjpeg.@SO_MAJOR_VERSION@.dylib \ -output $PKGROOT/$LIBDIR/libjpeg.@SO_MAJOR_VERSION@.dylib elif [ ! -h $TMPDIR/dist.armv6/$LIBDIR/libjpeg.@SO_MAJOR_VERSION@.0.@SO_MINOR_VERSION@.dylib -a \ ! -h $PKGROOT/$LIBDIR/libjpeg.@SO_MAJOR_VERSION@.0.@SO_MINOR_VERSION@.dylib ]; then $LIPO -create \ $PKGROOT/$LIBDIR/libjpeg.@SO_MAJOR_VERSION@.0.@SO_MINOR_VERSION@.dylib \ -arch arm $TMPDIR/dist.armv6/$LIBDIR/libjpeg.@SO_MAJOR_VERSION@.0.@SO_MINOR_VERSION@.dylib \ -output $PKGROOT/$LIBDIR/libjpeg.@SO_MAJOR_VERSION@.0.@SO_MINOR_VERSION@.dylib fi $LIPO -create \ $PKGROOT/$LIBDIR/libjpeg.a \ -arch arm $TMPDIR/dist.armv6/$LIBDIR/libjpeg.a \ -output $PKGROOT/$LIBDIR/libjpeg.a $LIPO -create \ $PKGROOT/$LIBDIR/libturbojpeg.0.dylib \ -arch arm $TMPDIR/dist.armv6/$LIBDIR/libturbojpeg.0.dylib \ -output $PKGROOT/$LIBDIR/libturbojpeg.0.dylib $LIPO -create \ $PKGROOT/$LIBDIR/libturbojpeg.a \ -arch arm $TMPDIR/dist.armv6/$LIBDIR/libturbojpeg.a \ -output $PKGROOT/$LIBDIR/libturbojpeg.a $LIPO -create \ $PKGROOT/$BINDIR/cjpeg \ -arch arm $TMPDIR/dist.armv6/$BINDIR/cjpeg \ -output $PKGROOT/$BINDIR/cjpeg $LIPO -create \ $PKGROOT/$BINDIR/djpeg \ -arch arm $TMPDIR/dist.armv6/$BINDIR/djpeg \ -output $PKGROOT/$BINDIR/djpeg $LIPO -create \ $PKGROOT/$BINDIR/jpegtran \ -arch arm $TMPDIR/dist.armv6/$BINDIR/jpegtran \ -output $PKGROOT/$BINDIR/jpegtran $LIPO -create \ $PKGROOT/$BINDIR/tjbench \ -arch arm $TMPDIR/dist.armv6/$BINDIR/tjbench \ -output $PKGROOT/$BINDIR/tjbench $LIPO -create \ $PKGROOT/$BINDIR/rdjpgcom \ -arch arm $TMPDIR/dist.armv6/$BINDIR/rdjpgcom \ -output $PKGROOT/$BINDIR/rdjpgcom $LIPO -create \ $PKGROOT/$BINDIR/wrjpgcom \ -arch arm $TMPDIR/dist.armv6/$BINDIR/wrjpgcom \ -output $PKGROOT/$BINDIR/wrjpgcom fi if [ $BUILDARMV7 = 1 ]; then if [ ! -d $BUILDDIRARMV7 ]; then echo ERROR: ARMv7 build directory $BUILDDIRARMV7 does not exist exit 1 fi if [ ! -f $BUILDDIRARMV7/Makefile ]; then echo ERROR: ARMv7 build directory $BUILDDIRARMV7 is not configured exit 1 fi mkdir -p $TMPDIR/dist.armv7 pushd $BUILDDIRARMV7 make install DESTDIR=$TMPDIR/dist.armv7 popd if [ ! -h $TMPDIR/dist.armv7/$LIBDIR/libjpeg.@SO_MAJOR_VERSION@.dylib -a \ ! -h $PKGROOT/$LIBDIR/libjpeg.@SO_MAJOR_VERSION@.dylib ]; then $LIPO -create \ $PKGROOT/$LIBDIR/libjpeg.@SO_MAJOR_VERSION@.dylib \ -arch arm $TMPDIR/dist.armv7/$LIBDIR/libjpeg.@SO_MAJOR_VERSION@.dylib \ -output $PKGROOT/$LIBDIR/libjpeg.@SO_MAJOR_VERSION@.dylib elif [ ! -h $TMPDIR/dist.armv7/$LIBDIR/libjpeg.@SO_MAJOR_VERSION@.0.@SO_MINOR_VERSION@.dylib -a \ ! -h $PKGROOT/$LIBDIR/libjpeg.@SO_MAJOR_VERSION@.0.@SO_MINOR_VERSION@.dylib ]; then $LIPO -create \ $PKGROOT/$LIBDIR/libjpeg.@SO_MAJOR_VERSION@.0.@SO_MINOR_VERSION@.dylib \ -arch arm $TMPDIR/dist.armv7/$LIBDIR/libjpeg.@SO_MAJOR_VERSION@.0.@SO_MINOR_VERSION@.dylib \ -output $PKGROOT/$LIBDIR/libjpeg.@SO_MAJOR_VERSION@.0.@SO_MINOR_VERSION@.dylib fi $LIPO -create \ $PKGROOT/$LIBDIR/libjpeg.a \ -arch arm $TMPDIR/dist.armv7/$LIBDIR/libjpeg.a \ -output $PKGROOT/$LIBDIR/libjpeg.a $LIPO -create \ $PKGROOT/$LIBDIR/libturbojpeg.0.dylib \ -arch arm $TMPDIR/dist.armv7/$LIBDIR/libturbojpeg.0.dylib \ -output $PKGROOT/$LIBDIR/libturbojpeg.0.dylib $LIPO -create \ $PKGROOT/$LIBDIR/libturbojpeg.a \ -arch arm $TMPDIR/dist.armv7/$LIBDIR/libturbojpeg.a \ -output $PKGROOT/$LIBDIR/libturbojpeg.a $LIPO -create \ $PKGROOT/$BINDIR/cjpeg \ -arch arm $TMPDIR/dist.armv7/$BINDIR/cjpeg \ -output $PKGROOT/$BINDIR/cjpeg $LIPO -create \ $PKGROOT/$BINDIR/djpeg \ -arch arm $TMPDIR/dist.armv7/$BINDIR/djpeg \ -output $PKGROOT/$BINDIR/djpeg $LIPO -create \ $PKGROOT/$BINDIR/jpegtran \ -arch arm $TMPDIR/dist.armv7/$BINDIR/jpegtran \ -output $PKGROOT/$BINDIR/jpegtran $LIPO -create \ $PKGROOT/$BINDIR/tjbench \ -arch arm $TMPDIR/dist.armv7/$BINDIR/tjbench \ -output $PKGROOT/$BINDIR/tjbench $LIPO -create \ $PKGROOT/$BINDIR/rdjpgcom \ -arch arm $TMPDIR/dist.armv7/$BINDIR/rdjpgcom \ -output $PKGROOT/$BINDIR/rdjpgcom $LIPO -create \ $PKGROOT/$BINDIR/wrjpgcom \ -arch arm $TMPDIR/dist.armv7/$BINDIR/wrjpgcom \ -output $PKGROOT/$BINDIR/wrjpgcom fi if [ $BUILDARMV7S = 1 ]; then if [ ! -d $BUILDDIRARMV7S ]; then echo ERROR: ARMv7s build directory $BUILDDIRARMV7S does not exist exit 1 fi if [ ! -f $BUILDDIRARMV7S/Makefile ]; then echo ERROR: ARMv7s build directory $BUILDDIRARMV7S is not configured exit 1 fi mkdir -p $TMPDIR/dist.armv7s pushd $BUILDDIRARMV7S make install DESTDIR=$TMPDIR/dist.armv7s popd if [ ! -h $TMPDIR/dist.armv7s/$LIBDIR/libjpeg.@SO_MAJOR_VERSION@.dylib -a \ ! -h $PKGROOT/$LIBDIR/libjpeg.@SO_MAJOR_VERSION@.dylib ]; then $LIPO -create \ $PKGROOT/$LIBDIR/libjpeg.@SO_MAJOR_VERSION@.dylib \ -arch arm $TMPDIR/dist.armv7s/$LIBDIR/libjpeg.@SO_MAJOR_VERSION@.dylib \ -output $PKGROOT/$LIBDIR/libjpeg.@SO_MAJOR_VERSION@.dylib elif [ ! -h $TMPDIR/dist.armv7s/$LIBDIR/libjpeg.@SO_MAJOR_VERSION@.0.@SO_MINOR_VERSION@.dylib -a \ ! -h $PKGROOT/$LIBDIR/libjpeg.@SO_MAJOR_VERSION@.0.@SO_MINOR_VERSION@.dylib ]; then $LIPO -create \ $PKGROOT/$LIBDIR/libjpeg.@SO_MAJOR_VERSION@.0.@SO_MINOR_VERSION@.dylib \ -arch arm $TMPDIR/dist.armv7s/$LIBDIR/libjpeg.@SO_MAJOR_VERSION@.0.@SO_MINOR_VERSION@.dylib \ -output $PKGROOT/$LIBDIR/libjpeg.@SO_MAJOR_VERSION@.0.@SO_MINOR_VERSION@.dylib fi $LIPO -create \ $PKGROOT/$LIBDIR/libjpeg.a \ -arch arm $TMPDIR/dist.armv7s/$LIBDIR/libjpeg.a \ -output $PKGROOT/$LIBDIR/libjpeg.a $LIPO -create \ $PKGROOT/$LIBDIR/libturbojpeg.0.dylib \ -arch arm $TMPDIR/dist.armv7s/$LIBDIR/libturbojpeg.0.dylib \ -output $PKGROOT/$LIBDIR/libturbojpeg.0.dylib $LIPO -create \ $PKGROOT/$LIBDIR/libturbojpeg.a \ -arch arm $TMPDIR/dist.armv7s/$LIBDIR/libturbojpeg.a \ -output $PKGROOT/$LIBDIR/libturbojpeg.a $LIPO -create \ $PKGROOT/$BINDIR/cjpeg \ -arch arm $TMPDIR/dist.armv7s/$BINDIR/cjpeg \ -output $PKGROOT/$BINDIR/cjpeg $LIPO -create \ $PKGROOT/$BINDIR/djpeg \ -arch arm $TMPDIR/dist.armv7s/$BINDIR/djpeg \ -output $PKGROOT/$BINDIR/djpeg $LIPO -create \ $PKGROOT/$BINDIR/jpegtran \ -arch arm $TMPDIR/dist.armv7s/$BINDIR/jpegtran \ -output $PKGROOT/$BINDIR/jpegtran $LIPO -create \ $PKGROOT/$BINDIR/tjbench \ -arch arm $TMPDIR/dist.armv7s/$BINDIR/tjbench \ -output $PKGROOT/$BINDIR/tjbench $LIPO -create \ $PKGROOT/$BINDIR/rdjpgcom \ -arch arm $TMPDIR/dist.armv7s/$BINDIR/rdjpgcom \ -output $PKGROOT/$BINDIR/rdjpgcom $LIPO -create \ $PKGROOT/$BINDIR/wrjpgcom \ -arch arm $TMPDIR/dist.armv7s/$BINDIR/wrjpgcom \ -output $PKGROOT/$BINDIR/wrjpgcom fi if [ $BUILDARMV8 = 1 ]; then if [ ! -d $BUILDDIRARMV8 ]; then echo ERROR: ARMv8 build directory $BUILDDIRARMV8 does not exist exit 1 fi if [ ! -f $BUILDDIRARMV8/Makefile ]; then echo ERROR: ARMv8 build directory $BUILDDIRARMV8 is not configured exit 1 fi mkdir -p $TMPDIR/dist.armv8 pushd $BUILDDIRARMV8 make install DESTDIR=$TMPDIR/dist.armv8 popd if [ ! -h $TMPDIR/dist.armv8/$LIBDIR/libjpeg.@SO_MAJOR_VERSION@.dylib -a \ ! -h $PKGROOT/$LIBDIR/libjpeg.@SO_MAJOR_VERSION@.dylib ]; then $LIPO -create \ $PKGROOT/$LIBDIR/libjpeg.@SO_MAJOR_VERSION@.dylib \ -arch arm64 $TMPDIR/dist.armv8/$LIBDIR/libjpeg.@SO_MAJOR_VERSION@.dylib \ -output $PKGROOT/$LIBDIR/libjpeg.@SO_MAJOR_VERSION@.dylib elif [ ! -h $TMPDIR/dist.armv8/$LIBDIR/libjpeg.@SO_MAJOR_VERSION@.0.@SO_MINOR_VERSION@.dylib -a \ ! -h $PKGROOT/$LIBDIR/libjpeg.@SO_MAJOR_VERSION@.0.@SO_MINOR_VERSION@.dylib ]; then $LIPO -create \ $PKGROOT/$LIBDIR/libjpeg.@SO_MAJOR_VERSION@.0.@SO_MINOR_VERSION@.dylib \ -arch arm64 $TMPDIR/dist.armv8/$LIBDIR/libjpeg.@SO_MAJOR_VERSION@.0.@SO_MINOR_VERSION@.dylib \ -output $PKGROOT/$LIBDIR/libjpeg.@SO_MAJOR_VERSION@.0.@SO_MINOR_VERSION@.dylib fi $LIPO -create \ $PKGROOT/$LIBDIR/libjpeg.a \ -arch arm64 $TMPDIR/dist.armv8/$LIBDIR/libjpeg.a \ -output $PKGROOT/$LIBDIR/libjpeg.a $LIPO -create \ $PKGROOT/$LIBDIR/libturbojpeg.0.dylib \ -arch arm64 $TMPDIR/dist.armv8/$LIBDIR/libturbojpeg.0.dylib \ -output $PKGROOT/$LIBDIR/libturbojpeg.0.dylib $LIPO -create \ $PKGROOT/$LIBDIR/libturbojpeg.a \ -arch arm64 $TMPDIR/dist.armv8/$LIBDIR/libturbojpeg.a \ -output $PKGROOT/$LIBDIR/libturbojpeg.a $LIPO -create \ $PKGROOT/$BINDIR/cjpeg \ -arch arm64 $TMPDIR/dist.armv8/$BINDIR/cjpeg \ -output $PKGROOT/$BINDIR/cjpeg $LIPO -create \ $PKGROOT/$BINDIR/djpeg \ -arch arm64 $TMPDIR/dist.armv8/$BINDIR/djpeg \ -output $PKGROOT/$BINDIR/djpeg $LIPO -create \ $PKGROOT/$BINDIR/jpegtran \ -arch arm64 $TMPDIR/dist.armv8/$BINDIR/jpegtran \ -output $PKGROOT/$BINDIR/jpegtran $LIPO -create \ $PKGROOT/$BINDIR/tjbench \ -arch arm64 $TMPDIR/dist.armv8/$BINDIR/tjbench \ -output $PKGROOT/$BINDIR/tjbench $LIPO -create \ $PKGROOT/$BINDIR/rdjpgcom \ -arch arm64 $TMPDIR/dist.armv8/$BINDIR/rdjpgcom \ -output $PKGROOT/$BINDIR/rdjpgcom $LIPO -create \ $PKGROOT/$BINDIR/wrjpgcom \ -arch arm64 $TMPDIR/dist.armv8/$BINDIR/wrjpgcom \ -output $PKGROOT/$BINDIR/wrjpgcom fi install_name_tool -id $LIBDIR/libjpeg.@SO_MAJOR_VERSION@.dylib $PKGROOT/$LIBDIR/libjpeg.@SO_MAJOR_VERSION@.dylib install_name_tool -id $LIBDIR/libturbojpeg.0.dylib $PKGROOT/$LIBDIR/libturbojpeg.0.dylib if [ $WITH_JAVA = 1 ]; then ln -fs libturbojpeg.0.dylib $PKGROOT/$LIBDIR/libturbojpeg.jnilib fi if [ "$PREFIX" = "/opt/libjpeg-turbo" -a "$LIBDIR" = "/opt/libjpeg-turbo/lib" ]; then if [ ! -h $PKGROOT/$PREFIX/lib32 ]; then ln -fs lib $PKGROOT/$PREFIX/lib32 fi if [ ! -h $PKGROOT/$PREFIX/lib64 ]; then ln -fs lib $PKGROOT/$PREFIX/lib64 fi fi mkdir -p $TMPDIR/pkg install -m 755 pkgscripts/uninstall $PKGROOT/$BINDIR/ find $PKGROOT -type f | while read file; do xattr -c $file; done cp $SRCDIR/release/License.rtf $SRCDIR/release/Welcome.rtf $SRCDIR/release/ReadMe.txt $TMPDIR/pkg/ mkdir $TMPDIR/dmg pkgbuild --root $PKGROOT --version $VERSION.$BUILD \ --identifier com.libjpeg-turbo.libjpeg-turbo $TMPDIR/pkg/$PACKAGE_NAME.pkg productbuild --distribution $SRCDIR/release/Distribution.xml \ --package-path $TMPDIR/pkg/ --resources $TMPDIR/pkg/ \ $TMPDIR/dmg/$PACKAGE_NAME.pkg hdiutil create -fs HFS+ -volname $PACKAGE_NAME-$VERSION \ -srcfolder "$TMPDIR/dmg" $TMPDIR/$PACKAGE_NAME-$VERSION.dmg cp $TMPDIR/$PACKAGE_NAME-$VERSION.dmg . exit libjpeg-turbo-1.4.2/release/Welcome.rtf0000755000076500007650000000121012600050400014726 00000000000000{\rtf1\ansi\ansicpg1252\cocoartf1038\cocoasubrtf360 {\fonttbl\f0\fswiss\fcharset0 Helvetica;\f1\fmodern\fcharset0 CourierNewPSMT;} {\colortbl;\red255\green255\blue255;} \margl1440\margr1440\vieww9000\viewh8400\viewkind0 \deftab720 \pard\pardeftab720\ql\qnatural \f0\fs24 \cf0 This installer will install the libjpeg-turbo SDK and run-time libraries onto your computer so that you can use libjpeg-turbo to build new applications or accelerate existing ones. To remove the libjpeg-turbo package, run\ \ \pard\pardeftab720\ql\qnatural \f1 \cf0 /opt/libjpeg-turbo/bin/uninstall\ \pard\pardeftab720\ql\qnatural \f0 \cf0 \ from the command line.\ }libjpeg-turbo-1.4.2/release/uninstall.in0000644000076500007650000000655312600050400015173 00000000000000# Copyright (C)2009-2011, 2013 D. R. Commander. All Rights Reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # - Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # - Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # - Neither the name of the libjpeg-turbo Project nor the names of its # contributors may be used to endorse or promote products derived from this # software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS", # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. #!/bin/sh if [ ! "`id -u`" = "0" ]; then echo "ERROR: This script must be executed as root" exit -1 fi PACKAGE=@PKGNAME@ MACPACKAGE=com.$PACKAGE.$PACKAGE RECEIPT=/Library/Receipts/$PACKAGE.pkg LSBOM= if [ -d $RECEIPT ]; then LSBOM='lsbom -s -f -l '$RECEIPT'/Contents/Archive.bom' else LSBOM='pkgutil --files '$MACPACKAGE fi mylsbom() { $LSBOM || (echo "ERROR: Could not list package contents"; exit -1) } echo Removing package files ... EXITSTATUS=0 pushd / mylsbom | while read file; do if [ ! -d "$file" ]; then rm "$file" 2>&1 || EXITSTATUS=-1; fi done popd echo Removing package directories ... PREFIX=%{__prefix} BINDIR=%{__bindir} DATADIR=%{__datadir} INCLUDEDIR=%{__includedir} LIBDIR=%{__libdir} MANDIR=%{__mandir} if [ -d $BINDIR ]; then rmdir $BINDIR 2>&1 || EXITSTATUS=-1 fi if [ -d $LIBDIR ]; then rmdir $LIBDIR 2>&1 || EXITSTATUS=-1 fi if [ -d $INCLUDEDIR ]; then rmdir $INCLUDEDIR 2>&1 || EXITSTATUS=-1 fi if [ "$PREFIX" = "/opt/libjpeg-turbo" -a "$LIBDIR" = "/opt/libjpeg-turbo/lib" ]; then if [ -h $LIBDIR\32 ]; then rm $LIBDIR\32 2>&1 || EXITSTATUS=-1 fi if [ -h $LIBDIR\64 ]; then rm $LIBDIR\64 2>&1 || EXITSTATUS=-1 fi fi if [ -d $MANDIR/man1 ]; then rmdir $MANDIR/man1 2>&1 || EXITSTATUS=-1 fi if [ -d $MANDIR ]; then rmdir $MANDIR 2>&1 || EXITSTATUS=-1 fi if [ -d $DATADIR/classes ]; then rmdir $DATADIR/classes 2>&1 || EXITSTATUS=-1 fi if [ -d $DATADIR -a "$DATADIR" != "$PREFIX" ]; then rmdir $DATADIR 2>&1 || EXITSTATUS=-1 fi if [ "$PREFIX" = "/opt/libjpeg-turbo" -a -h "$PREFIX/doc" ]; then rm $PREFIX/doc 2>&1 || EXITSTATUS=-1 fi rmdir $PREFIX 2>&1 || EXITSTATUS=-1 rmdir /Library/Documentation/$PACKAGE 2>&1 || EXITSTATUS=-1 if [ -d $RECEIPT ]; then echo Removing package receipt ... rm -r $RECEIPT 2>&1 || EXITSTATUS=-1 else echo Forgetting package $MACPACKAGE ... pkgutil --forget $MACPACKAGE fi exit $EXITSTATUS libjpeg-turbo-1.4.2/release/makecygwinpkg.in0000755000076500007650000000145512600050400016021 00000000000000#!/bin/sh set -u set -e trap onexit INT trap onexit TERM trap onexit EXIT TMPDIR= onexit() { if [ ! "$TMPDIR" = "" ]; then rm -rf $TMPDIR fi } PACKAGE_NAME=@PKGNAME@ VERSION=@VERSION@ BUILD=@BUILD@ SRCDIR=@abs_top_srcdir@ PREFIX=%{__prefix} DOCDIR=%{__docdir} LIBDIR=%{__libdir} umask 022 rm -f $PACKAGE_NAME-$VERSION-$BUILD.tar.bz2 TMPDIR=`mktemp -d /tmp/ljtbuild.XXXXXX` __PWD=`pwd` make install DESTDIR=$TMPDIR/pkg docdir=/usr/share/doc/$PACKAGE_NAME-$VERSION \ exampledir=/usr/share/doc/$PACKAGE_NAME-$VERSION rm $TMPDIR/pkg$LIBDIR/*.la if [ "$PREFIX" = "/opt/libjpeg-turbo" -a "$DOCDIR" = "/opt/libjpeg-turbo/doc" ]; then ln -fs /usr/share/doc/$PACKAGE_NAME-$VERSION $TMPDIR/pkg$DOCDIR fi cd $TMPDIR/pkg tar cfj ../$PACKAGE_NAME-$VERSION-$BUILD.tar.bz2 * cd $__PWD mv $TMPDIR/*.tar.bz2 . exit 0 libjpeg-turbo-1.4.2/jcsample.c0000644000076500007650000004741012600050400013151 00000000000000/* * jcsample.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1991-1996, Thomas G. Lane. * libjpeg-turbo Modifications: * Copyright 2009 Pierre Ossman for Cendio AB * Copyright (C) 2014, MIPS Technologies, Inc., California * For conditions of distribution and use, see the accompanying README file. * * This file contains downsampling routines. * * Downsampling input data is counted in "row groups". A row group * is defined to be max_v_samp_factor pixel rows of each component, * from which the downsampler produces v_samp_factor sample rows. * A single row group is processed in each call to the downsampler module. * * The downsampler is responsible for edge-expansion of its output data * to fill an integral number of DCT blocks horizontally. The source buffer * may be modified if it is helpful for this purpose (the source buffer is * allocated wide enough to correspond to the desired output width). * The caller (the prep controller) is responsible for vertical padding. * * The downsampler may request "context rows" by setting need_context_rows * during startup. In this case, the input arrays will contain at least * one row group's worth of pixels above and below the passed-in data; * the caller will create dummy rows at image top and bottom by replicating * the first or last real pixel row. * * An excellent reference for image resampling is * Digital Image Warping, George Wolberg, 1990. * Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7. * * The downsampling algorithm used here is a simple average of the source * pixels covered by the output pixel. The hi-falutin sampling literature * refers to this as a "box filter". In general the characteristics of a box * filter are not very good, but for the specific cases we normally use (1:1 * and 2:1 ratios) the box is equivalent to a "triangle filter" which is not * nearly so bad. If you intend to use other sampling ratios, you'd be well * advised to improve this code. * * A simple input-smoothing capability is provided. This is mainly intended * for cleaning up color-dithered GIF input files (if you find it inadequate, * we suggest using an external filtering program such as pnmconvol). When * enabled, each input pixel P is replaced by a weighted sum of itself and its * eight neighbors. P's weight is 1-8*SF and each neighbor's weight is SF, * where SF = (smoothing_factor / 1024). * Currently, smoothing is only supported for 2h2v sampling factors. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" #include "jsimd.h" /* Pointer to routine to downsample a single component */ typedef void (*downsample1_ptr) (j_compress_ptr cinfo, jpeg_component_info * compptr, JSAMPARRAY input_data, JSAMPARRAY output_data); /* Private subobject */ typedef struct { struct jpeg_downsampler pub; /* public fields */ /* Downsampling method pointers, one per component */ downsample1_ptr methods[MAX_COMPONENTS]; } my_downsampler; typedef my_downsampler * my_downsample_ptr; /* * Initialize for a downsampling pass. */ METHODDEF(void) start_pass_downsample (j_compress_ptr cinfo) { /* no work for now */ } /* * Expand a component horizontally from width input_cols to width output_cols, * by duplicating the rightmost samples. */ LOCAL(void) expand_right_edge (JSAMPARRAY image_data, int num_rows, JDIMENSION input_cols, JDIMENSION output_cols) { register JSAMPROW ptr; register JSAMPLE pixval; register int count; int row; int numcols = (int) (output_cols - input_cols); if (numcols > 0) { for (row = 0; row < num_rows; row++) { ptr = image_data[row] + input_cols; pixval = ptr[-1]; /* don't need GETJSAMPLE() here */ for (count = numcols; count > 0; count--) *ptr++ = pixval; } } } /* * Do downsampling for a whole row group (all components). * * In this version we simply downsample each component independently. */ METHODDEF(void) sep_downsample (j_compress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION in_row_index, JSAMPIMAGE output_buf, JDIMENSION out_row_group_index) { my_downsample_ptr downsample = (my_downsample_ptr) cinfo->downsample; int ci; jpeg_component_info * compptr; JSAMPARRAY in_ptr, out_ptr; for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { in_ptr = input_buf[ci] + in_row_index; out_ptr = output_buf[ci] + (out_row_group_index * compptr->v_samp_factor); (*downsample->methods[ci]) (cinfo, compptr, in_ptr, out_ptr); } } /* * Downsample pixel values of a single component. * One row group is processed per call. * This version handles arbitrary integral sampling ratios, without smoothing. * Note that this version is not actually used for customary sampling ratios. */ METHODDEF(void) int_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, JSAMPARRAY input_data, JSAMPARRAY output_data) { int inrow, outrow, h_expand, v_expand, numpix, numpix2, h, v; JDIMENSION outcol, outcol_h; /* outcol_h == outcol*h_expand */ JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE; JSAMPROW inptr, outptr; INT32 outvalue; h_expand = cinfo->max_h_samp_factor / compptr->h_samp_factor; v_expand = cinfo->max_v_samp_factor / compptr->v_samp_factor; numpix = h_expand * v_expand; numpix2 = numpix/2; /* Expand input data enough to let all the output samples be generated * by the standard loop. Special-casing padded output would be more * efficient. */ expand_right_edge(input_data, cinfo->max_v_samp_factor, cinfo->image_width, output_cols * h_expand); inrow = 0; for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) { outptr = output_data[outrow]; for (outcol = 0, outcol_h = 0; outcol < output_cols; outcol++, outcol_h += h_expand) { outvalue = 0; for (v = 0; v < v_expand; v++) { inptr = input_data[inrow+v] + outcol_h; for (h = 0; h < h_expand; h++) { outvalue += (INT32) GETJSAMPLE(*inptr++); } } *outptr++ = (JSAMPLE) ((outvalue + numpix2) / numpix); } inrow += v_expand; } } /* * Downsample pixel values of a single component. * This version handles the special case of a full-size component, * without smoothing. */ METHODDEF(void) fullsize_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, JSAMPARRAY input_data, JSAMPARRAY output_data) { /* Copy the data */ jcopy_sample_rows(input_data, 0, output_data, 0, cinfo->max_v_samp_factor, cinfo->image_width); /* Edge-expand */ expand_right_edge(output_data, cinfo->max_v_samp_factor, cinfo->image_width, compptr->width_in_blocks * DCTSIZE); } /* * Downsample pixel values of a single component. * This version handles the common case of 2:1 horizontal and 1:1 vertical, * without smoothing. * * A note about the "bias" calculations: when rounding fractional values to * integer, we do not want to always round 0.5 up to the next integer. * If we did that, we'd introduce a noticeable bias towards larger values. * Instead, this code is arranged so that 0.5 will be rounded up or down at * alternate pixel locations (a simple ordered dither pattern). */ METHODDEF(void) h2v1_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, JSAMPARRAY input_data, JSAMPARRAY output_data) { int outrow; JDIMENSION outcol; JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE; register JSAMPROW inptr, outptr; register int bias; /* Expand input data enough to let all the output samples be generated * by the standard loop. Special-casing padded output would be more * efficient. */ expand_right_edge(input_data, cinfo->max_v_samp_factor, cinfo->image_width, output_cols * 2); for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) { outptr = output_data[outrow]; inptr = input_data[outrow]; bias = 0; /* bias = 0,1,0,1,... for successive samples */ for (outcol = 0; outcol < output_cols; outcol++) { *outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr) + GETJSAMPLE(inptr[1]) + bias) >> 1); bias ^= 1; /* 0=>1, 1=>0 */ inptr += 2; } } } /* * Downsample pixel values of a single component. * This version handles the standard case of 2:1 horizontal and 2:1 vertical, * without smoothing. */ METHODDEF(void) h2v2_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, JSAMPARRAY input_data, JSAMPARRAY output_data) { int inrow, outrow; JDIMENSION outcol; JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE; register JSAMPROW inptr0, inptr1, outptr; register int bias; /* Expand input data enough to let all the output samples be generated * by the standard loop. Special-casing padded output would be more * efficient. */ expand_right_edge(input_data, cinfo->max_v_samp_factor, cinfo->image_width, output_cols * 2); inrow = 0; for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) { outptr = output_data[outrow]; inptr0 = input_data[inrow]; inptr1 = input_data[inrow+1]; bias = 1; /* bias = 1,2,1,2,... for successive samples */ for (outcol = 0; outcol < output_cols; outcol++) { *outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) + GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]) + bias) >> 2); bias ^= 3; /* 1=>2, 2=>1 */ inptr0 += 2; inptr1 += 2; } inrow += 2; } } #ifdef INPUT_SMOOTHING_SUPPORTED /* * Downsample pixel values of a single component. * This version handles the standard case of 2:1 horizontal and 2:1 vertical, * with smoothing. One row of context is required. */ METHODDEF(void) h2v2_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, JSAMPARRAY input_data, JSAMPARRAY output_data) { int inrow, outrow; JDIMENSION colctr; JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE; register JSAMPROW inptr0, inptr1, above_ptr, below_ptr, outptr; INT32 membersum, neighsum, memberscale, neighscale; /* Expand input data enough to let all the output samples be generated * by the standard loop. Special-casing padded output would be more * efficient. */ expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2, cinfo->image_width, output_cols * 2); /* We don't bother to form the individual "smoothed" input pixel values; * we can directly compute the output which is the average of the four * smoothed values. Each of the four member pixels contributes a fraction * (1-8*SF) to its own smoothed image and a fraction SF to each of the three * other smoothed pixels, therefore a total fraction (1-5*SF)/4 to the final * output. The four corner-adjacent neighbor pixels contribute a fraction * SF to just one smoothed pixel, or SF/4 to the final output; while the * eight edge-adjacent neighbors contribute SF to each of two smoothed * pixels, or SF/2 overall. In order to use integer arithmetic, these * factors are scaled by 2^16 = 65536. * Also recall that SF = smoothing_factor / 1024. */ memberscale = 16384 - cinfo->smoothing_factor * 80; /* scaled (1-5*SF)/4 */ neighscale = cinfo->smoothing_factor * 16; /* scaled SF/4 */ inrow = 0; for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) { outptr = output_data[outrow]; inptr0 = input_data[inrow]; inptr1 = input_data[inrow+1]; above_ptr = input_data[inrow-1]; below_ptr = input_data[inrow+2]; /* Special case for first column: pretend column -1 is same as column 0 */ membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) + GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]); neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) + GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) + GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[2]) + GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[2]); neighsum += neighsum; neighsum += GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[2]) + GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[2]); membersum = membersum * memberscale + neighsum * neighscale; *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16); inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2; for (colctr = output_cols - 2; colctr > 0; colctr--) { /* sum of pixels directly mapped to this output element */ membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) + GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]); /* sum of edge-neighbor pixels */ neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) + GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) + GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[2]) + GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[2]); /* The edge-neighbors count twice as much as corner-neighbors */ neighsum += neighsum; /* Add in the corner-neighbors */ neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[2]) + GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[2]); /* form final output scaled up by 2^16 */ membersum = membersum * memberscale + neighsum * neighscale; /* round, descale and output it */ *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16); inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2; } /* Special case for last column */ membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) + GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]); neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) + GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) + GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[1]) + GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[1]); neighsum += neighsum; neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[1]) + GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[1]); membersum = membersum * memberscale + neighsum * neighscale; *outptr = (JSAMPLE) ((membersum + 32768) >> 16); inrow += 2; } } /* * Downsample pixel values of a single component. * This version handles the special case of a full-size component, * with smoothing. One row of context is required. */ METHODDEF(void) fullsize_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY input_data, JSAMPARRAY output_data) { int outrow; JDIMENSION colctr; JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE; register JSAMPROW inptr, above_ptr, below_ptr, outptr; INT32 membersum, neighsum, memberscale, neighscale; int colsum, lastcolsum, nextcolsum; /* Expand input data enough to let all the output samples be generated * by the standard loop. Special-casing padded output would be more * efficient. */ expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2, cinfo->image_width, output_cols); /* Each of the eight neighbor pixels contributes a fraction SF to the * smoothed pixel, while the main pixel contributes (1-8*SF). In order * to use integer arithmetic, these factors are multiplied by 2^16 = 65536. * Also recall that SF = smoothing_factor / 1024. */ memberscale = 65536L - cinfo->smoothing_factor * 512L; /* scaled 1-8*SF */ neighscale = cinfo->smoothing_factor * 64; /* scaled SF */ for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) { outptr = output_data[outrow]; inptr = input_data[outrow]; above_ptr = input_data[outrow-1]; below_ptr = input_data[outrow+1]; /* Special case for first column */ colsum = GETJSAMPLE(*above_ptr++) + GETJSAMPLE(*below_ptr++) + GETJSAMPLE(*inptr); membersum = GETJSAMPLE(*inptr++); nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) + GETJSAMPLE(*inptr); neighsum = colsum + (colsum - membersum) + nextcolsum; membersum = membersum * memberscale + neighsum * neighscale; *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16); lastcolsum = colsum; colsum = nextcolsum; for (colctr = output_cols - 2; colctr > 0; colctr--) { membersum = GETJSAMPLE(*inptr++); above_ptr++; below_ptr++; nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) + GETJSAMPLE(*inptr); neighsum = lastcolsum + (colsum - membersum) + nextcolsum; membersum = membersum * memberscale + neighsum * neighscale; *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16); lastcolsum = colsum; colsum = nextcolsum; } /* Special case for last column */ membersum = GETJSAMPLE(*inptr); neighsum = lastcolsum + (colsum - membersum) + colsum; membersum = membersum * memberscale + neighsum * neighscale; *outptr = (JSAMPLE) ((membersum + 32768) >> 16); } } #endif /* INPUT_SMOOTHING_SUPPORTED */ /* * Module initialization routine for downsampling. * Note that we must select a routine for each component. */ GLOBAL(void) jinit_downsampler (j_compress_ptr cinfo) { my_downsample_ptr downsample; int ci; jpeg_component_info * compptr; boolean smoothok = TRUE; downsample = (my_downsample_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, sizeof(my_downsampler)); cinfo->downsample = (struct jpeg_downsampler *) downsample; downsample->pub.start_pass = start_pass_downsample; downsample->pub.downsample = sep_downsample; downsample->pub.need_context_rows = FALSE; if (cinfo->CCIR601_sampling) ERREXIT(cinfo, JERR_CCIR601_NOTIMPL); /* Verify we can handle the sampling factors, and set up method pointers */ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { if (compptr->h_samp_factor == cinfo->max_h_samp_factor && compptr->v_samp_factor == cinfo->max_v_samp_factor) { #ifdef INPUT_SMOOTHING_SUPPORTED if (cinfo->smoothing_factor) { downsample->methods[ci] = fullsize_smooth_downsample; downsample->pub.need_context_rows = TRUE; } else #endif downsample->methods[ci] = fullsize_downsample; } else if (compptr->h_samp_factor * 2 == cinfo->max_h_samp_factor && compptr->v_samp_factor == cinfo->max_v_samp_factor) { smoothok = FALSE; if (jsimd_can_h2v1_downsample()) downsample->methods[ci] = jsimd_h2v1_downsample; else downsample->methods[ci] = h2v1_downsample; } else if (compptr->h_samp_factor * 2 == cinfo->max_h_samp_factor && compptr->v_samp_factor * 2 == cinfo->max_v_samp_factor) { #ifdef INPUT_SMOOTHING_SUPPORTED if (cinfo->smoothing_factor) { #if defined(__mips__) if (jsimd_can_h2v2_smooth_downsample()) downsample->methods[ci] = jsimd_h2v2_smooth_downsample; else #endif downsample->methods[ci] = h2v2_smooth_downsample; downsample->pub.need_context_rows = TRUE; } else #endif { if (jsimd_can_h2v2_downsample()) downsample->methods[ci] = jsimd_h2v2_downsample; else downsample->methods[ci] = h2v2_downsample; } } else if ((cinfo->max_h_samp_factor % compptr->h_samp_factor) == 0 && (cinfo->max_v_samp_factor % compptr->v_samp_factor) == 0) { smoothok = FALSE; downsample->methods[ci] = int_downsample; } else ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL); } #ifdef INPUT_SMOOTHING_SUPPORTED if (cinfo->smoothing_factor && !smoothok) TRACEMS(cinfo, 0, JTRC_SMOOTH_NOTIMPL); #endif } libjpeg-turbo-1.4.2/compile0000755000076500007650000001624512600050414012574 00000000000000#! /bin/sh # Wrapper for compilers which do not understand '-c -o'. scriptversion=2012-10-14.11; # UTC # Copyright (C) 1999-2014 Free Software Foundation, Inc. # Written by Tom Tromey . # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2, or (at your option) # any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see . # As a special exception to the GNU General Public License, if you # distribute this file as part of a program that contains a # configuration script generated by Autoconf, you may include it under # the same distribution terms that you use for the rest of that program. # This file is maintained in Automake, please report # bugs to or send patches to # . nl=' ' # We need space, tab and new line, in precisely that order. Quoting is # there to prevent tools from complaining about whitespace usage. IFS=" "" $nl" file_conv= # func_file_conv build_file lazy # Convert a $build file to $host form and store it in $file # Currently only supports Windows hosts. If the determined conversion # type is listed in (the comma separated) LAZY, no conversion will # take place. func_file_conv () { file=$1 case $file in / | /[!/]*) # absolute file, and not a UNC file if test -z "$file_conv"; then # lazily determine how to convert abs files case `uname -s` in MINGW*) file_conv=mingw ;; CYGWIN*) file_conv=cygwin ;; *) file_conv=wine ;; esac fi case $file_conv/,$2, in *,$file_conv,*) ;; mingw/*) file=`cmd //C echo "$file " | sed -e 's/"\(.*\) " *$/\1/'` ;; cygwin/*) file=`cygpath -m "$file" || echo "$file"` ;; wine/*) file=`winepath -w "$file" || echo "$file"` ;; esac ;; esac } # func_cl_dashL linkdir # Make cl look for libraries in LINKDIR func_cl_dashL () { func_file_conv "$1" if test -z "$lib_path"; then lib_path=$file else lib_path="$lib_path;$file" fi linker_opts="$linker_opts -LIBPATH:$file" } # func_cl_dashl library # Do a library search-path lookup for cl func_cl_dashl () { lib=$1 found=no save_IFS=$IFS IFS=';' for dir in $lib_path $LIB do IFS=$save_IFS if $shared && test -f "$dir/$lib.dll.lib"; then found=yes lib=$dir/$lib.dll.lib break fi if test -f "$dir/$lib.lib"; then found=yes lib=$dir/$lib.lib break fi if test -f "$dir/lib$lib.a"; then found=yes lib=$dir/lib$lib.a break fi done IFS=$save_IFS if test "$found" != yes; then lib=$lib.lib fi } # func_cl_wrapper cl arg... # Adjust compile command to suit cl func_cl_wrapper () { # Assume a capable shell lib_path= shared=: linker_opts= for arg do if test -n "$eat"; then eat= else case $1 in -o) # configure might choose to run compile as 'compile cc -o foo foo.c'. eat=1 case $2 in *.o | *.[oO][bB][jJ]) func_file_conv "$2" set x "$@" -Fo"$file" shift ;; *) func_file_conv "$2" set x "$@" -Fe"$file" shift ;; esac ;; -I) eat=1 func_file_conv "$2" mingw set x "$@" -I"$file" shift ;; -I*) func_file_conv "${1#-I}" mingw set x "$@" -I"$file" shift ;; -l) eat=1 func_cl_dashl "$2" set x "$@" "$lib" shift ;; -l*) func_cl_dashl "${1#-l}" set x "$@" "$lib" shift ;; -L) eat=1 func_cl_dashL "$2" ;; -L*) func_cl_dashL "${1#-L}" ;; -static) shared=false ;; -Wl,*) arg=${1#-Wl,} save_ifs="$IFS"; IFS=',' for flag in $arg; do IFS="$save_ifs" linker_opts="$linker_opts $flag" done IFS="$save_ifs" ;; -Xlinker) eat=1 linker_opts="$linker_opts $2" ;; -*) set x "$@" "$1" shift ;; *.cc | *.CC | *.cxx | *.CXX | *.[cC]++) func_file_conv "$1" set x "$@" -Tp"$file" shift ;; *.c | *.cpp | *.CPP | *.lib | *.LIB | *.Lib | *.OBJ | *.obj | *.[oO]) func_file_conv "$1" mingw set x "$@" "$file" shift ;; *) set x "$@" "$1" shift ;; esac fi shift done if test -n "$linker_opts"; then linker_opts="-link$linker_opts" fi exec "$@" $linker_opts exit 1 } eat= case $1 in '') echo "$0: No command. Try '$0 --help' for more information." 1>&2 exit 1; ;; -h | --h*) cat <<\EOF Usage: compile [--help] [--version] PROGRAM [ARGS] Wrapper for compilers which do not understand '-c -o'. Remove '-o dest.o' from ARGS, run PROGRAM with the remaining arguments, and rename the output as expected. If you are trying to build a whole package this is not the right script to run: please start by reading the file 'INSTALL'. Report bugs to . EOF exit $? ;; -v | --v*) echo "compile $scriptversion" exit $? ;; cl | *[/\\]cl | cl.exe | *[/\\]cl.exe ) func_cl_wrapper "$@" # Doesn't return... ;; esac ofile= cfile= for arg do if test -n "$eat"; then eat= else case $1 in -o) # configure might choose to run compile as 'compile cc -o foo foo.c'. # So we strip '-o arg' only if arg is an object. eat=1 case $2 in *.o | *.obj) ofile=$2 ;; *) set x "$@" -o "$2" shift ;; esac ;; *.c) cfile=$1 set x "$@" "$1" shift ;; *) set x "$@" "$1" shift ;; esac fi shift done if test -z "$ofile" || test -z "$cfile"; then # If no '-o' option was seen then we might have been invoked from a # pattern rule where we don't need one. That is ok -- this is a # normal compilation that the losing compiler can handle. If no # '.c' file was seen then we are probably linking. That is also # ok. exec "$@" fi # Name of file we expect compiler to create. cofile=`echo "$cfile" | sed 's|^.*[\\/]||; s|^[a-zA-Z]:||; s/\.c$/.o/'` # Create the lock directory. # Note: use '[/\\:.-]' here to ensure that we don't use the same name # that we are using for the .o file. Also, base the name on the expected # object file name, since that is what matters with a parallel build. lockdir=`echo "$cofile" | sed -e 's|[/\\:.-]|_|g'`.d while true; do if mkdir "$lockdir" >/dev/null 2>&1; then break fi sleep 1 done # FIXME: race condition here if user kills between mkdir and trap. trap "rmdir '$lockdir'; exit 1" 1 2 15 # Run the compile. "$@" ret=$? if test -f "$cofile"; then test "$cofile" = "$ofile" || mv "$cofile" "$ofile" elif test -f "${cofile}bj"; then test "${cofile}bj" = "$ofile" || mv "${cofile}bj" "$ofile" fi rmdir "$lockdir" exit $ret # Local Variables: # mode: shell-script # sh-indentation: 2 # eval: (add-hook 'write-file-hooks 'time-stamp) # time-stamp-start: "scriptversion=" # time-stamp-format: "%:y-%02m-%02d.%02H" # time-stamp-time-zone: "UTC" # time-stamp-end: "; # UTC" # End: libjpeg-turbo-1.4.2/jdapimin.c0000644000076500007650000003113512600050400013143 00000000000000/* * jdapimin.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1994-1998, Thomas G. Lane. * It was modified by The libjpeg-turbo Project to include only code relevant * to libjpeg-turbo. * For conditions of distribution and use, see the accompanying README file. * * This file contains application interface code for the decompression half * of the JPEG library. These are the "minimum" API routines that may be * needed in either the normal full-decompression case or the * transcoding-only case. * * Most of the routines intended to be called directly by an application * are in this file or in jdapistd.c. But also see jcomapi.c for routines * shared by compression and decompression, and jdtrans.c for the transcoding * case. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" /* * Initialization of a JPEG decompression object. * The error manager must already be set up (in case memory manager fails). */ GLOBAL(void) jpeg_CreateDecompress (j_decompress_ptr cinfo, int version, size_t structsize) { int i; /* Guard against version mismatches between library and caller. */ cinfo->mem = NULL; /* so jpeg_destroy knows mem mgr not called */ if (version != JPEG_LIB_VERSION) ERREXIT2(cinfo, JERR_BAD_LIB_VERSION, JPEG_LIB_VERSION, version); if (structsize != sizeof(struct jpeg_decompress_struct)) ERREXIT2(cinfo, JERR_BAD_STRUCT_SIZE, (int) sizeof(struct jpeg_decompress_struct), (int) structsize); /* For debugging purposes, we zero the whole master structure. * But the application has already set the err pointer, and may have set * client_data, so we have to save and restore those fields. * Note: if application hasn't set client_data, tools like Purify may * complain here. */ { struct jpeg_error_mgr * err = cinfo->err; void * client_data = cinfo->client_data; /* ignore Purify complaint here */ MEMZERO(cinfo, sizeof(struct jpeg_decompress_struct)); cinfo->err = err; cinfo->client_data = client_data; } cinfo->is_decompressor = TRUE; /* Initialize a memory manager instance for this object */ jinit_memory_mgr((j_common_ptr) cinfo); /* Zero out pointers to permanent structures. */ cinfo->progress = NULL; cinfo->src = NULL; for (i = 0; i < NUM_QUANT_TBLS; i++) cinfo->quant_tbl_ptrs[i] = NULL; for (i = 0; i < NUM_HUFF_TBLS; i++) { cinfo->dc_huff_tbl_ptrs[i] = NULL; cinfo->ac_huff_tbl_ptrs[i] = NULL; } /* Initialize marker processor so application can override methods * for COM, APPn markers before calling jpeg_read_header. */ cinfo->marker_list = NULL; jinit_marker_reader(cinfo); /* And initialize the overall input controller. */ jinit_input_controller(cinfo); /* OK, I'm ready */ cinfo->global_state = DSTATE_START; } /* * Destruction of a JPEG decompression object */ GLOBAL(void) jpeg_destroy_decompress (j_decompress_ptr cinfo) { jpeg_destroy((j_common_ptr) cinfo); /* use common routine */ } /* * Abort processing of a JPEG decompression operation, * but don't destroy the object itself. */ GLOBAL(void) jpeg_abort_decompress (j_decompress_ptr cinfo) { jpeg_abort((j_common_ptr) cinfo); /* use common routine */ } /* * Set default decompression parameters. */ LOCAL(void) default_decompress_parms (j_decompress_ptr cinfo) { /* Guess the input colorspace, and set output colorspace accordingly. */ /* (Wish JPEG committee had provided a real way to specify this...) */ /* Note application may override our guesses. */ switch (cinfo->num_components) { case 1: cinfo->jpeg_color_space = JCS_GRAYSCALE; cinfo->out_color_space = JCS_GRAYSCALE; break; case 3: if (cinfo->saw_JFIF_marker) { cinfo->jpeg_color_space = JCS_YCbCr; /* JFIF implies YCbCr */ } else if (cinfo->saw_Adobe_marker) { switch (cinfo->Adobe_transform) { case 0: cinfo->jpeg_color_space = JCS_RGB; break; case 1: cinfo->jpeg_color_space = JCS_YCbCr; break; default: WARNMS1(cinfo, JWRN_ADOBE_XFORM, cinfo->Adobe_transform); cinfo->jpeg_color_space = JCS_YCbCr; /* assume it's YCbCr */ break; } } else { /* Saw no special markers, try to guess from the component IDs */ int cid0 = cinfo->comp_info[0].component_id; int cid1 = cinfo->comp_info[1].component_id; int cid2 = cinfo->comp_info[2].component_id; if (cid0 == 1 && cid1 == 2 && cid2 == 3) cinfo->jpeg_color_space = JCS_YCbCr; /* assume JFIF w/out marker */ else if (cid0 == 82 && cid1 == 71 && cid2 == 66) cinfo->jpeg_color_space = JCS_RGB; /* ASCII 'R', 'G', 'B' */ else { TRACEMS3(cinfo, 1, JTRC_UNKNOWN_IDS, cid0, cid1, cid2); cinfo->jpeg_color_space = JCS_YCbCr; /* assume it's YCbCr */ } } /* Always guess RGB is proper output colorspace. */ cinfo->out_color_space = JCS_RGB; break; case 4: if (cinfo->saw_Adobe_marker) { switch (cinfo->Adobe_transform) { case 0: cinfo->jpeg_color_space = JCS_CMYK; break; case 2: cinfo->jpeg_color_space = JCS_YCCK; break; default: WARNMS1(cinfo, JWRN_ADOBE_XFORM, cinfo->Adobe_transform); cinfo->jpeg_color_space = JCS_YCCK; /* assume it's YCCK */ break; } } else { /* No special markers, assume straight CMYK. */ cinfo->jpeg_color_space = JCS_CMYK; } cinfo->out_color_space = JCS_CMYK; break; default: cinfo->jpeg_color_space = JCS_UNKNOWN; cinfo->out_color_space = JCS_UNKNOWN; break; } /* Set defaults for other decompression parameters. */ cinfo->scale_num = 1; /* 1:1 scaling */ cinfo->scale_denom = 1; cinfo->output_gamma = 1.0; cinfo->buffered_image = FALSE; cinfo->raw_data_out = FALSE; cinfo->dct_method = JDCT_DEFAULT; cinfo->do_fancy_upsampling = TRUE; cinfo->do_block_smoothing = TRUE; cinfo->quantize_colors = FALSE; /* We set these in case application only sets quantize_colors. */ cinfo->dither_mode = JDITHER_FS; #ifdef QUANT_2PASS_SUPPORTED cinfo->two_pass_quantize = TRUE; #else cinfo->two_pass_quantize = FALSE; #endif cinfo->desired_number_of_colors = 256; cinfo->colormap = NULL; /* Initialize for no mode change in buffered-image mode. */ cinfo->enable_1pass_quant = FALSE; cinfo->enable_external_quant = FALSE; cinfo->enable_2pass_quant = FALSE; } /* * Decompression startup: read start of JPEG datastream to see what's there. * Need only initialize JPEG object and supply a data source before calling. * * This routine will read as far as the first SOS marker (ie, actual start of * compressed data), and will save all tables and parameters in the JPEG * object. It will also initialize the decompression parameters to default * values, and finally return JPEG_HEADER_OK. On return, the application may * adjust the decompression parameters and then call jpeg_start_decompress. * (Or, if the application only wanted to determine the image parameters, * the data need not be decompressed. In that case, call jpeg_abort or * jpeg_destroy to release any temporary space.) * If an abbreviated (tables only) datastream is presented, the routine will * return JPEG_HEADER_TABLES_ONLY upon reaching EOI. The application may then * re-use the JPEG object to read the abbreviated image datastream(s). * It is unnecessary (but OK) to call jpeg_abort in this case. * The JPEG_SUSPENDED return code only occurs if the data source module * requests suspension of the decompressor. In this case the application * should load more source data and then re-call jpeg_read_header to resume * processing. * If a non-suspending data source is used and require_image is TRUE, then the * return code need not be inspected since only JPEG_HEADER_OK is possible. * * This routine is now just a front end to jpeg_consume_input, with some * extra error checking. */ GLOBAL(int) jpeg_read_header (j_decompress_ptr cinfo, boolean require_image) { int retcode; if (cinfo->global_state != DSTATE_START && cinfo->global_state != DSTATE_INHEADER) ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); retcode = jpeg_consume_input(cinfo); switch (retcode) { case JPEG_REACHED_SOS: retcode = JPEG_HEADER_OK; break; case JPEG_REACHED_EOI: if (require_image) /* Complain if application wanted an image */ ERREXIT(cinfo, JERR_NO_IMAGE); /* Reset to start state; it would be safer to require the application to * call jpeg_abort, but we can't change it now for compatibility reasons. * A side effect is to free any temporary memory (there shouldn't be any). */ jpeg_abort((j_common_ptr) cinfo); /* sets state = DSTATE_START */ retcode = JPEG_HEADER_TABLES_ONLY; break; case JPEG_SUSPENDED: /* no work */ break; } return retcode; } /* * Consume data in advance of what the decompressor requires. * This can be called at any time once the decompressor object has * been created and a data source has been set up. * * This routine is essentially a state machine that handles a couple * of critical state-transition actions, namely initial setup and * transition from header scanning to ready-for-start_decompress. * All the actual input is done via the input controller's consume_input * method. */ GLOBAL(int) jpeg_consume_input (j_decompress_ptr cinfo) { int retcode = JPEG_SUSPENDED; /* NB: every possible DSTATE value should be listed in this switch */ switch (cinfo->global_state) { case DSTATE_START: /* Start-of-datastream actions: reset appropriate modules */ (*cinfo->inputctl->reset_input_controller) (cinfo); /* Initialize application's data source module */ (*cinfo->src->init_source) (cinfo); cinfo->global_state = DSTATE_INHEADER; /*FALLTHROUGH*/ case DSTATE_INHEADER: retcode = (*cinfo->inputctl->consume_input) (cinfo); if (retcode == JPEG_REACHED_SOS) { /* Found SOS, prepare to decompress */ /* Set up default parameters based on header data */ default_decompress_parms(cinfo); /* Set global state: ready for start_decompress */ cinfo->global_state = DSTATE_READY; } break; case DSTATE_READY: /* Can't advance past first SOS until start_decompress is called */ retcode = JPEG_REACHED_SOS; break; case DSTATE_PRELOAD: case DSTATE_PRESCAN: case DSTATE_SCANNING: case DSTATE_RAW_OK: case DSTATE_BUFIMAGE: case DSTATE_BUFPOST: case DSTATE_STOPPING: retcode = (*cinfo->inputctl->consume_input) (cinfo); break; default: ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); } return retcode; } /* * Have we finished reading the input file? */ GLOBAL(boolean) jpeg_input_complete (j_decompress_ptr cinfo) { /* Check for valid jpeg object */ if (cinfo->global_state < DSTATE_START || cinfo->global_state > DSTATE_STOPPING) ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); return cinfo->inputctl->eoi_reached; } /* * Is there more than one scan? */ GLOBAL(boolean) jpeg_has_multiple_scans (j_decompress_ptr cinfo) { /* Only valid after jpeg_read_header completes */ if (cinfo->global_state < DSTATE_READY || cinfo->global_state > DSTATE_STOPPING) ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); return cinfo->inputctl->has_multiple_scans; } /* * Finish JPEG decompression. * * This will normally just verify the file trailer and release temp storage. * * Returns FALSE if suspended. The return value need be inspected only if * a suspending data source is used. */ GLOBAL(boolean) jpeg_finish_decompress (j_decompress_ptr cinfo) { if ((cinfo->global_state == DSTATE_SCANNING || cinfo->global_state == DSTATE_RAW_OK) && ! cinfo->buffered_image) { /* Terminate final pass of non-buffered mode */ if (cinfo->output_scanline < cinfo->output_height) ERREXIT(cinfo, JERR_TOO_LITTLE_DATA); (*cinfo->master->finish_output_pass) (cinfo); cinfo->global_state = DSTATE_STOPPING; } else if (cinfo->global_state == DSTATE_BUFIMAGE) { /* Finishing after a buffered-image operation */ cinfo->global_state = DSTATE_STOPPING; } else if (cinfo->global_state != DSTATE_STOPPING) { /* STOPPING = repeat call after a suspension, anything else is error */ ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); } /* Read until EOI */ while (! cinfo->inputctl->eoi_reached) { if ((*cinfo->inputctl->consume_input) (cinfo) == JPEG_SUSPENDED) return FALSE; /* Suspend, come back later */ } /* Do final cleanup */ (*cinfo->src->term_source) (cinfo); /* We can use jpeg_abort to release memory and reset global_state */ jpeg_abort((j_common_ptr) cinfo); return TRUE; } libjpeg-turbo-1.4.2/jfdctflt.c0000644000076500007650000001264112600050400013151 00000000000000/* * jfdctflt.c * * Copyright (C) 1994-1996, Thomas G. Lane. * This file is part of the Independent JPEG Group's software. * For conditions of distribution and use, see the accompanying README file. * * This file contains a floating-point implementation of the * forward DCT (Discrete Cosine Transform). * * This implementation should be more accurate than either of the integer * DCT implementations. However, it may not give the same results on all * machines because of differences in roundoff behavior. Speed will depend * on the hardware's floating point capacity. * * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT * on each column. Direct algorithms are also available, but they are * much more complex and seem not to be any faster when reduced to code. * * This implementation is based on Arai, Agui, and Nakajima's algorithm for * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in * Japanese, but the algorithm is described in the Pennebaker & Mitchell * JPEG textbook (see REFERENCES section in file README). The following code * is based directly on figure 4-8 in P&M. * While an 8-point DCT cannot be done in less than 11 multiplies, it is * possible to arrange the computation so that many of the multiplies are * simple scalings of the final outputs. These multiplies can then be * folded into the multiplications or divisions by the JPEG quantization * table entries. The AA&N method leaves only 5 multiplies and 29 adds * to be done in the DCT itself. * The primary disadvantage of this method is that with a fixed-point * implementation, accuracy is lost due to imprecise representation of the * scaled quantization values. However, that problem does not arise if * we use floating point arithmetic. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" #include "jdct.h" /* Private declarations for DCT subsystem */ #ifdef DCT_FLOAT_SUPPORTED /* * This module is specialized to the case DCTSIZE = 8. */ #if DCTSIZE != 8 Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ #endif /* * Perform the forward DCT on one block of samples. */ GLOBAL(void) jpeg_fdct_float (FAST_FLOAT * data) { FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; FAST_FLOAT tmp10, tmp11, tmp12, tmp13; FAST_FLOAT z1, z2, z3, z4, z5, z11, z13; FAST_FLOAT *dataptr; int ctr; /* Pass 1: process rows. */ dataptr = data; for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { tmp0 = dataptr[0] + dataptr[7]; tmp7 = dataptr[0] - dataptr[7]; tmp1 = dataptr[1] + dataptr[6]; tmp6 = dataptr[1] - dataptr[6]; tmp2 = dataptr[2] + dataptr[5]; tmp5 = dataptr[2] - dataptr[5]; tmp3 = dataptr[3] + dataptr[4]; tmp4 = dataptr[3] - dataptr[4]; /* Even part */ tmp10 = tmp0 + tmp3; /* phase 2 */ tmp13 = tmp0 - tmp3; tmp11 = tmp1 + tmp2; tmp12 = tmp1 - tmp2; dataptr[0] = tmp10 + tmp11; /* phase 3 */ dataptr[4] = tmp10 - tmp11; z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */ dataptr[2] = tmp13 + z1; /* phase 5 */ dataptr[6] = tmp13 - z1; /* Odd part */ tmp10 = tmp4 + tmp5; /* phase 2 */ tmp11 = tmp5 + tmp6; tmp12 = tmp6 + tmp7; /* The rotator is modified from fig 4-8 to avoid extra negations. */ z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */ z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */ z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */ z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */ z11 = tmp7 + z3; /* phase 5 */ z13 = tmp7 - z3; dataptr[5] = z13 + z2; /* phase 6 */ dataptr[3] = z13 - z2; dataptr[1] = z11 + z4; dataptr[7] = z11 - z4; dataptr += DCTSIZE; /* advance pointer to next row */ } /* Pass 2: process columns. */ dataptr = data; for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7]; tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7]; tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6]; tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6]; tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5]; tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5]; tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4]; tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4]; /* Even part */ tmp10 = tmp0 + tmp3; /* phase 2 */ tmp13 = tmp0 - tmp3; tmp11 = tmp1 + tmp2; tmp12 = tmp1 - tmp2; dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */ dataptr[DCTSIZE*4] = tmp10 - tmp11; z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */ dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */ dataptr[DCTSIZE*6] = tmp13 - z1; /* Odd part */ tmp10 = tmp4 + tmp5; /* phase 2 */ tmp11 = tmp5 + tmp6; tmp12 = tmp6 + tmp7; /* The rotator is modified from fig 4-8 to avoid extra negations. */ z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */ z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */ z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */ z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */ z11 = tmp7 + z3; /* phase 5 */ z13 = tmp7 - z3; dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */ dataptr[DCTSIZE*3] = z13 - z2; dataptr[DCTSIZE*1] = z11 + z4; dataptr[DCTSIZE*7] = z11 - z4; dataptr++; /* advance pointer to next column */ } } #endif /* DCT_FLOAT_SUPPORTED */ libjpeg-turbo-1.4.2/jdcolext.c0000644000076500007650000001062112600050400013161 00000000000000/* * jdcolext.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1991-1997, Thomas G. Lane. * libjpeg-turbo Modifications: * Copyright (C) 2009, 2011, D. R. Commander. * For conditions of distribution and use, see the accompanying README file. * * This file contains output colorspace conversion routines. */ /* This file is included by jdcolor.c */ /* * Convert some rows of samples to the output colorspace. * * Note that we change from noninterleaved, one-plane-per-component format * to interleaved-pixel format. The output buffer is therefore three times * as wide as the input buffer. * A starting row offset is provided only for the input buffer. The caller * can easily adjust the passed output_buf value to accommodate any row * offset required on that side. */ INLINE LOCAL(void) ycc_rgb_convert_internal (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) { my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; register int y, cb, cr; register JSAMPROW outptr; register JSAMPROW inptr0, inptr1, inptr2; register JDIMENSION col; JDIMENSION num_cols = cinfo->output_width; /* copy these pointers into registers if possible */ register JSAMPLE * range_limit = cinfo->sample_range_limit; register int * Crrtab = cconvert->Cr_r_tab; register int * Cbbtab = cconvert->Cb_b_tab; register INT32 * Crgtab = cconvert->Cr_g_tab; register INT32 * Cbgtab = cconvert->Cb_g_tab; SHIFT_TEMPS while (--num_rows >= 0) { inptr0 = input_buf[0][input_row]; inptr1 = input_buf[1][input_row]; inptr2 = input_buf[2][input_row]; input_row++; outptr = *output_buf++; for (col = 0; col < num_cols; col++) { y = GETJSAMPLE(inptr0[col]); cb = GETJSAMPLE(inptr1[col]); cr = GETJSAMPLE(inptr2[col]); /* Range-limiting is essential due to noise introduced by DCT losses. */ outptr[RGB_RED] = range_limit[y + Crrtab[cr]]; outptr[RGB_GREEN] = range_limit[y + ((int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS))]; outptr[RGB_BLUE] = range_limit[y + Cbbtab[cb]]; /* Set unused byte to 0xFF so it can be interpreted as an opaque */ /* alpha channel value */ #ifdef RGB_ALPHA outptr[RGB_ALPHA] = 0xFF; #endif outptr += RGB_PIXELSIZE; } } } /* * Convert grayscale to RGB: just duplicate the graylevel three times. * This is provided to support applications that don't want to cope * with grayscale as a separate case. */ INLINE LOCAL(void) gray_rgb_convert_internal (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) { register JSAMPROW inptr, outptr; register JDIMENSION col; JDIMENSION num_cols = cinfo->output_width; while (--num_rows >= 0) { inptr = input_buf[0][input_row++]; outptr = *output_buf++; for (col = 0; col < num_cols; col++) { /* We can dispense with GETJSAMPLE() here */ outptr[RGB_RED] = outptr[RGB_GREEN] = outptr[RGB_BLUE] = inptr[col]; /* Set unused byte to 0xFF so it can be interpreted as an opaque */ /* alpha channel value */ #ifdef RGB_ALPHA outptr[RGB_ALPHA] = 0xFF; #endif outptr += RGB_PIXELSIZE; } } } /* * Convert RGB to extended RGB: just swap the order of source pixels */ INLINE LOCAL(void) rgb_rgb_convert_internal (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) { register JSAMPROW inptr0, inptr1, inptr2; register JSAMPROW outptr; register JDIMENSION col; JDIMENSION num_cols = cinfo->output_width; while (--num_rows >= 0) { inptr0 = input_buf[0][input_row]; inptr1 = input_buf[1][input_row]; inptr2 = input_buf[2][input_row]; input_row++; outptr = *output_buf++; for (col = 0; col < num_cols; col++) { /* We can dispense with GETJSAMPLE() here */ outptr[RGB_RED] = inptr0[col]; outptr[RGB_GREEN] = inptr1[col]; outptr[RGB_BLUE] = inptr2[col]; /* Set unused byte to 0xFF so it can be interpreted as an opaque */ /* alpha channel value */ #ifdef RGB_ALPHA outptr[RGB_ALPHA] = 0xFF; #endif outptr += RGB_PIXELSIZE; } } } libjpeg-turbo-1.4.2/jcprepct.c0000644000076500007650000003156512600050400013171 00000000000000/* * jcprepct.c * * This file is part of the Independent JPEG Group's software: * Copyright (C) 1994-1996, Thomas G. Lane. * It was modified by The libjpeg-turbo Project to include only code relevant * to libjpeg-turbo. * For conditions of distribution and use, see the accompanying README file. * * This file contains the compression preprocessing controller. * This controller manages the color conversion, downsampling, * and edge expansion steps. * * Most of the complexity here is associated with buffering input rows * as required by the downsampler. See the comments at the head of * jcsample.c for the downsampler's needs. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" /* At present, jcsample.c can request context rows only for smoothing. * In the future, we might also need context rows for CCIR601 sampling * or other more-complex downsampling procedures. The code to support * context rows should be compiled only if needed. */ #ifdef INPUT_SMOOTHING_SUPPORTED #define CONTEXT_ROWS_SUPPORTED #endif /* * For the simple (no-context-row) case, we just need to buffer one * row group's worth of pixels for the downsampling step. At the bottom of * the image, we pad to a full row group by replicating the last pixel row. * The downsampler's last output row is then replicated if needed to pad * out to a full iMCU row. * * When providing context rows, we must buffer three row groups' worth of * pixels. Three row groups are physically allocated, but the row pointer * arrays are made five row groups high, with the extra pointers above and * below "wrapping around" to point to the last and first real row groups. * This allows the downsampler to access the proper context rows. * At the top and bottom of the image, we create dummy context rows by * copying the first or last real pixel row. This copying could be avoided * by pointer hacking as is done in jdmainct.c, but it doesn't seem worth the * trouble on the compression side. */ /* Private buffer controller object */ typedef struct { struct jpeg_c_prep_controller pub; /* public fields */ /* Downsampling input buffer. This buffer holds color-converted data * until we have enough to do a downsample step. */ JSAMPARRAY color_buf[MAX_COMPONENTS]; JDIMENSION rows_to_go; /* counts rows remaining in source image */ int next_buf_row; /* index of next row to store in color_buf */ #ifdef CONTEXT_ROWS_SUPPORTED /* only needed for context case */ int this_row_group; /* starting row index of group to process */ int next_buf_stop; /* downsample when we reach this index */ #endif } my_prep_controller; typedef my_prep_controller * my_prep_ptr; /* * Initialize for a processing pass. */ METHODDEF(void) start_pass_prep (j_compress_ptr cinfo, J_BUF_MODE pass_mode) { my_prep_ptr prep = (my_prep_ptr) cinfo->prep; if (pass_mode != JBUF_PASS_THRU) ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); /* Initialize total-height counter for detecting bottom of image */ prep->rows_to_go = cinfo->image_height; /* Mark the conversion buffer empty */ prep->next_buf_row = 0; #ifdef CONTEXT_ROWS_SUPPORTED /* Preset additional state variables for context mode. * These aren't used in non-context mode, so we needn't test which mode. */ prep->this_row_group = 0; /* Set next_buf_stop to stop after two row groups have been read in. */ prep->next_buf_stop = 2 * cinfo->max_v_samp_factor; #endif } /* * Expand an image vertically from height input_rows to height output_rows, * by duplicating the bottom row. */ LOCAL(void) expand_bottom_edge (JSAMPARRAY image_data, JDIMENSION num_cols, int input_rows, int output_rows) { register int row; for (row = input_rows; row < output_rows; row++) { jcopy_sample_rows(image_data, input_rows-1, image_data, row, 1, num_cols); } } /* * Process some data in the simple no-context case. * * Preprocessor output data is counted in "row groups". A row group * is defined to be v_samp_factor sample rows of each component. * Downsampling will produce this much data from each max_v_samp_factor * input rows. */ METHODDEF(void) pre_process_data (j_compress_ptr cinfo, JSAMPARRAY input_buf, JDIMENSION *in_row_ctr, JDIMENSION in_rows_avail, JSAMPIMAGE output_buf, JDIMENSION *out_row_group_ctr, JDIMENSION out_row_groups_avail) { my_prep_ptr prep = (my_prep_ptr) cinfo->prep; int numrows, ci; JDIMENSION inrows; jpeg_component_info * compptr; while (*in_row_ctr < in_rows_avail && *out_row_group_ctr < out_row_groups_avail) { /* Do color conversion to fill the conversion buffer. */ inrows = in_rows_avail - *in_row_ctr; numrows = cinfo->max_v_samp_factor - prep->next_buf_row; numrows = (int) MIN((JDIMENSION) numrows, inrows); (*cinfo->cconvert->color_convert) (cinfo, input_buf + *in_row_ctr, prep->color_buf, (JDIMENSION) prep->next_buf_row, numrows); *in_row_ctr += numrows; prep->next_buf_row += numrows; prep->rows_to_go -= numrows; /* If at bottom of image, pad to fill the conversion buffer. */ if (prep->rows_to_go == 0 && prep->next_buf_row < cinfo->max_v_samp_factor) { for (ci = 0; ci < cinfo->num_components; ci++) { expand_bottom_edge(prep->color_buf[ci], cinfo->image_width, prep->next_buf_row, cinfo->max_v_samp_factor); } prep->next_buf_row = cinfo->max_v_samp_factor; } /* If we've filled the conversion buffer, empty it. */ if (prep->next_buf_row == cinfo->max_v_samp_factor) { (*cinfo->downsample->downsample) (cinfo, prep->color_buf, (JDIMENSION) 0, output_buf, *out_row_group_ctr); prep->next_buf_row = 0; (*out_row_group_ctr)++; } /* If at bottom of image, pad the output to a full iMCU height. * Note we assume the caller is providing a one-iMCU-height output buffer! */ if (prep->rows_to_go == 0 && *out_row_group_ctr < out_row_groups_avail) { for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { expand_bottom_edge(output_buf[ci], compptr->width_in_blocks * DCTSIZE, (int) (*out_row_group_ctr * compptr->v_samp_factor), (int) (out_row_groups_avail * compptr->v_samp_factor)); } *out_row_group_ctr = out_row_groups_avail; break; /* can exit outer loop without test */ } } } #ifdef CONTEXT_ROWS_SUPPORTED /* * Process some data in the context case. */ METHODDEF(void) pre_process_context (j_compress_ptr cinfo, JSAMPARRAY input_buf, JDIMENSION *in_row_ctr, JDIMENSION in_rows_avail, JSAMPIMAGE output_buf, JDIMENSION *out_row_group_ctr, JDIMENSION out_row_groups_avail) { my_prep_ptr prep = (my_prep_ptr) cinfo->prep; int numrows, ci; int buf_height = cinfo->max_v_samp_factor * 3; JDIMENSION inrows; while (*out_row_group_ctr < out_row_groups_avail) { if (*in_row_ctr < in_rows_avail) { /* Do color conversion to fill the conversion buffer. */ inrows = in_rows_avail - *in_row_ctr; numrows = prep->next_buf_stop - prep->next_buf_row; numrows = (int) MIN((JDIMENSION) numrows, inrows); (*cinfo->cconvert->color_convert) (cinfo, input_buf + *in_row_ctr, prep->color_buf, (JDIMENSION) prep->next_buf_row, numrows); /* Pad at top of image, if first time through */ if (prep->rows_to_go == cinfo->image_height) { for (ci = 0; ci < cinfo->num_components; ci++) { int row; for (row = 1; row <= cinfo->max_v_samp_factor; row++) { jcopy_sample_rows(prep->color_buf[ci], 0, prep->color_buf[ci], -row, 1, cinfo->image_width); } } } *in_row_ctr += numrows; prep->next_buf_row += numrows; prep->rows_to_go -= numrows; } else { /* Return for more data, unless we are at the bottom of the image. */ if (prep->rows_to_go != 0) break; /* When at bottom of image, pad to fill the conversion buffer. */ if (prep->next_buf_row < prep->next_buf_stop) { for (ci = 0; ci < cinfo->num_components; ci++) { expand_bottom_edge(prep->color_buf[ci], cinfo->image_width, prep->next_buf_row, prep->next_buf_stop); } prep->next_buf_row = prep->next_buf_stop; } } /* If we've gotten enough data, downsample a row group. */ if (prep->next_buf_row == prep->next_buf_stop) { (*cinfo->downsample->downsample) (cinfo, prep->color_buf, (JDIMENSION) prep->this_row_group, output_buf, *out_row_group_ctr); (*out_row_group_ctr)++; /* Advance pointers with wraparound as necessary. */ prep->this_row_group += cinfo->max_v_samp_factor; if (prep->this_row_group >= buf_height) prep->this_row_group = 0; if (prep->next_buf_row >= buf_height) prep->next_buf_row = 0; prep->next_buf_stop = prep->next_buf_row + cinfo->max_v_samp_factor; } } } /* * Create the wrapped-around downsampling input buffer needed for context mode. */ LOCAL(void) create_context_buffer (j_compress_ptr cinfo) { my_prep_ptr prep = (my_prep_ptr) cinfo->prep; int rgroup_height = cinfo->max_v_samp_factor; int ci, i; jpeg_component_info * compptr; JSAMPARRAY true_buffer, fake_buffer; /* Grab enough space for fake row pointers for all the components; * we need five row groups' worth of pointers for each component. */ fake_buffer = (JSAMPARRAY) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, (cinfo->num_components * 5 * rgroup_height) * sizeof(JSAMPROW)); for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { /* Allocate the actual buffer space (3 row groups) for this component. * We make the buffer wide enough to allow the downsampler to edge-expand * horizontally within the buffer, if it so chooses. */ true_buffer = (*cinfo->mem->alloc_sarray) ((j_common_ptr) cinfo, JPOOL_IMAGE, (JDIMENSION) (((long) compptr->width_in_blocks * DCTSIZE * cinfo->max_h_samp_factor) / compptr->h_samp_factor), (JDIMENSION) (3 * rgroup_height)); /* Copy true buffer row pointers into the middle of the fake row array */ MEMCOPY(fake_buffer + rgroup_height, true_buffer, 3 * rgroup_height * sizeof(JSAMPROW)); /* Fill in the above and below wraparound pointers */ for (i = 0; i < rgroup_height; i++) { fake_buffer[i] = true_buffer[2 * rgroup_height + i]; fake_buffer[4 * rgroup_height + i] = true_buffer[i]; } prep->color_buf[ci] = fake_buffer + rgroup_height; fake_buffer += 5 * rgroup_height; /* point to space for next component */ } } #endif /* CONTEXT_ROWS_SUPPORTED */ /* * Initialize preprocessing controller. */ GLOBAL(void) jinit_c_prep_controller (j_compress_ptr cinfo, boolean need_full_buffer) { my_prep_ptr prep; int ci; jpeg_component_info * compptr; if (need_full_buffer) /* safety check */ ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); prep = (my_prep_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, sizeof(my_prep_controller)); cinfo->prep = (struct jpeg_c_prep_controller *) prep; prep->pub.start_pass = start_pass_prep; /* Allocate the color conversion buffer. * We make the buffer wide enough to allow the downsampler to edge-expand * horizontally within the buffer, if it so chooses. */ if (cinfo->downsample->need_context_rows) { /* Set up to provide context rows */ #ifdef CONTEXT_ROWS_SUPPORTED prep->pub.pre_process_data = pre_process_context; create_context_buffer(cinfo); #else ERREXIT(cinfo, JERR_NOT_COMPILED); #endif } else { /* No context, just make it tall enough for one row group */ prep->pub.pre_process_data = pre_process_data; for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { prep->color_buf[ci] = (*cinfo->mem->alloc_sarray) ((j_common_ptr) cinfo, JPOOL_IMAGE, (JDIMENSION) (((long) compptr->width_in_blocks * DCTSIZE * cinfo->max_h_samp_factor) / compptr->h_samp_factor), (JDIMENSION) cinfo->max_v_samp_factor); } } } libjpeg-turbo-1.4.2/rdcolmap.c0000644000076500007650000001560412600050400013154 00000000000000/* * rdcolmap.c * * Copyright (C) 1994-1996, Thomas G. Lane. * This file is part of the Independent JPEG Group's software. * For conditions of distribution and use, see the accompanying README file. * * This file implements djpeg's "-map file" switch. It reads a source image * and constructs a colormap to be supplied to the JPEG decompressor. * * Currently, these file formats are supported for the map file: * GIF: the contents of the GIF's global colormap are used. * PPM (either text or raw flavor): the entire file is read and * each unique pixel value is entered in the map. * Note that reading a large PPM file will be horrendously slow. * Typically, a PPM-format map file should contain just one pixel * of each desired color. Such a file can be extracted from an * ordinary image PPM file with ppmtomap(1). * * Rescaling a PPM that has a maxval unequal to MAXJSAMPLE is not * currently implemented. */ #include "cdjpeg.h" /* Common decls for cjpeg/djpeg applications */ #ifdef QUANT_2PASS_SUPPORTED /* otherwise can't quantize to supplied map */ /* Portions of this code are based on the PBMPLUS library, which is: ** ** Copyright (C) 1988 by Jef Poskanzer. ** ** Permission to use, copy, modify, and distribute this software and its ** documentation for any purpose and without fee is hereby granted, provided ** that the above copyright notice appear in all copies and that both that ** copyright notice and this permission notice appear in supporting ** documentation. This software is provided "as is" without express or ** implied warranty. */ /* * Add a (potentially) new color to the color map. */ LOCAL(void) add_map_entry (j_decompress_ptr cinfo, int R, int G, int B) { JSAMPROW colormap0 = cinfo->colormap[0]; JSAMPROW colormap1 = cinfo->colormap[1]; JSAMPROW colormap2 = cinfo->colormap[2]; int ncolors = cinfo->actual_number_of_colors; int index; /* Check for duplicate color. */ for (index = 0; index < ncolors; index++) { if (GETJSAMPLE(colormap0[index]) == R && GETJSAMPLE(colormap1[index]) == G && GETJSAMPLE(colormap2[index]) == B) return; /* color is already in map */ } /* Check for map overflow. */ if (ncolors >= (MAXJSAMPLE+1)) ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, (MAXJSAMPLE+1)); /* OK, add color to map. */ colormap0[ncolors] = (JSAMPLE) R; colormap1[ncolors] = (JSAMPLE) G; colormap2[ncolors] = (JSAMPLE) B; cinfo->actual_number_of_colors++; } /* * Extract color map from a GIF file. */ LOCAL(void) read_gif_map (j_decompress_ptr cinfo, FILE * infile) { int header[13]; int i, colormaplen; int R, G, B; /* Initial 'G' has already been read by read_color_map */ /* Read the rest of the GIF header and logical screen descriptor */ for (i = 1; i < 13; i++) { if ((header[i] = getc(infile)) == EOF) ERREXIT(cinfo, JERR_BAD_CMAP_FILE); } /* Verify GIF Header */ if (header[1] != 'I' || header[2] != 'F') ERREXIT(cinfo, JERR_BAD_CMAP_FILE); /* There must be a global color map. */ if ((header[10] & 0x80) == 0) ERREXIT(cinfo, JERR_BAD_CMAP_FILE); /* OK, fetch it. */ colormaplen = 2 << (header[10] & 0x07); for (i = 0; i < colormaplen; i++) { R = getc(infile); G = getc(infile); B = getc(infile); if (R == EOF || G == EOF || B == EOF) ERREXIT(cinfo, JERR_BAD_CMAP_FILE); add_map_entry(cinfo, R << (BITS_IN_JSAMPLE-8), G << (BITS_IN_JSAMPLE-8), B << (BITS_IN_JSAMPLE-8)); } } /* Support routines for reading PPM */ LOCAL(int) pbm_getc (FILE * infile) /* Read next char, skipping over any comments */ /* A comment/newline sequence is returned as a newline */ { register int ch; ch = getc(infile); if (ch == '#') { do { ch = getc(infile); } while (ch != '\n' && ch != EOF); } return ch; } LOCAL(unsigned int) read_pbm_integer (j_decompress_ptr cinfo, FILE * infile) /* Read an unsigned decimal integer from the PPM file */ /* Swallows one trailing character after the integer */ /* Note that on a 16-bit-int machine, only values up to 64k can be read. */ /* This should not be a problem in practice. */ { register int ch; register unsigned int val; /* Skip any leading whitespace */ do { ch = pbm_getc(infile); if (ch == EOF) ERREXIT(cinfo, JERR_BAD_CMAP_FILE); } while (ch == ' ' || ch == '\t' || ch == '\n' || ch == '\r'); if (ch < '0' || ch > '9') ERREXIT(cinfo, JERR_BAD_CMAP_FILE); val = ch - '0'; while ((ch = pbm_getc(infile)) >= '0' && ch <= '9') { val *= 10; val += ch - '0'; } return val; } /* * Extract color map from a PPM file. */ LOCAL(void) read_ppm_map (j_decompress_ptr cinfo, FILE * infile) { int c; unsigned int w, h, maxval, row, col; int R, G, B; /* Initial 'P' has already been read by read_color_map */ c = getc(infile); /* save format discriminator for a sec */ /* while we fetch the remaining header info */ w = read_pbm_integer(cinfo, infile); h = read_pbm_integer(cinfo, infile); maxval = read_pbm_integer(cinfo, infile); if (w <= 0 || h <= 0 || maxval <= 0) /* error check */ ERREXIT(cinfo, JERR_BAD_CMAP_FILE); /* For now, we don't support rescaling from an unusual maxval. */ if (maxval != (unsigned int) MAXJSAMPLE) ERREXIT(cinfo, JERR_BAD_CMAP_FILE); switch (c) { case '3': /* it's a text-format PPM file */ for (row = 0; row < h; row++) { for (col = 0; col < w; col++) { R = read_pbm_integer(cinfo, infile); G = read_pbm_integer(cinfo, infile); B = read_pbm_integer(cinfo, infile); add_map_entry(cinfo, R, G, B); } } break; case '6': /* it's a raw-format PPM file */ for (row = 0; row < h; row++) { for (col = 0; col < w; col++) { R = getc(infile); G = getc(infile); B = getc(infile); if (R == EOF || G == EOF || B == EOF) ERREXIT(cinfo, JERR_BAD_CMAP_FILE); add_map_entry(cinfo, R, G, B); } } break; default: ERREXIT(cinfo, JERR_BAD_CMAP_FILE); break; } } /* * Main entry point from djpeg.c. * Input: opened input file (from file name argument on command line). * Output: colormap and actual_number_of_colors fields are set in cinfo. */ GLOBAL(void) read_color_map (j_decompress_ptr cinfo, FILE * infile) { /* Allocate space for a color map of maximum supported size. */ cinfo->colormap = (*cinfo->mem->alloc_sarray) ((j_common_ptr) cinfo, JPOOL_IMAGE, (JDIMENSION) (MAXJSAMPLE+1), (JDIMENSION) 3); cinfo->actual_number_of_colors = 0; /* initialize map to empty */ /* Read first byte to determine file format */ switch (getc(infile)) { case 'G': read_gif_map(cinfo, infile); break; case 'P': read_ppm_map(cinfo, infile); break; default: ERREXIT(cinfo, JERR_BAD_CMAP_FILE); break; } } #endif /* QUANT_2PASS_SUPPORTED */ libjpeg-turbo-1.4.2/transupp.h0000644000076500007650000002260512600050400013233 00000000000000/* * transupp.h * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1997-2011, Thomas G. Lane, Guido Vollbeding. * It was modified by The libjpeg-turbo Project to include only code relevant * to libjpeg-turbo. * For conditions of distribution and use, see the accompanying README file. * * This file contains declarations for image transformation routines and * other utility code used by the jpegtran sample application. These are * NOT part of the core JPEG library. But we keep these routines separate * from jpegtran.c to ease the task of maintaining jpegtran-like programs * that have other user interfaces. * * NOTE: all the routines declared here have very specific requirements * about when they are to be executed during the reading and writing of the * source and destination files. See the comments in transupp.c, or see * jpegtran.c for an example of correct usage. */ /* If you happen not to want the image transform support, disable it here */ #ifndef TRANSFORMS_SUPPORTED #define TRANSFORMS_SUPPORTED 1 /* 0 disables transform code */ #endif /* * Although rotating and flipping data expressed as DCT coefficients is not * hard, there is an asymmetry in the JPEG format specification for images * whose dimensions aren't multiples of the iMCU size. The right and bottom * image edges are padded out to the next iMCU boundary with junk data; but * no padding is possible at the top and left edges. If we were to flip * the whole image including the pad data, then pad garbage would become * visible at the top and/or left, and real pixels would disappear into the * pad margins --- perhaps permanently, since encoders & decoders may not * bother to preserve DCT blocks that appear to be completely outside the * nominal image area. So, we have to exclude any partial iMCUs from the * basic transformation. * * Transpose is the only transformation that can handle partial iMCUs at the * right and bottom edges completely cleanly. flip_h can flip partial iMCUs * at the bottom, but leaves any partial iMCUs at the right edge untouched. * Similarly flip_v leaves any partial iMCUs at the bottom edge untouched. * The other transforms are defined as combinations of these basic transforms * and process edge blocks in a way that preserves the equivalence. * * The "trim" option causes untransformable partial iMCUs to be dropped; * this is not strictly lossless, but it usually gives the best-looking * result for odd-size images. Note that when this option is active, * the expected mathematical equivalences between the transforms may not hold. * (For example, -rot 270 -trim trims only the bottom edge, but -rot 90 -trim * followed by -rot 180 -trim trims both edges.) * * We also offer a lossless-crop option, which discards data outside a given * image region but losslessly preserves what is inside. Like the rotate and * flip transforms, lossless crop is restricted by the JPEG format: the upper * left corner of the selected region must fall on an iMCU boundary. If this * does not hold for the given crop parameters, we silently move the upper left * corner up and/or left to make it so, simultaneously increasing the region * dimensions to keep the lower right crop corner unchanged. (Thus, the * output image covers at least the requested region, but may cover more.) * The adjustment of the region dimensions may be optionally disabled. * * We also provide a lossless-resize option, which is kind of a lossless-crop * operation in the DCT coefficient block domain - it discards higher-order * coefficients and losslessly preserves lower-order coefficients of a * sub-block. * * Rotate/flip transform, resize, and crop can be requested together in a * single invocation. The crop is applied last --- that is, the crop region * is specified in terms of the destination image after transform/resize. * * We also offer a "force to grayscale" option, which simply discards the * chrominance channels of a YCbCr image. This is lossless in the sense that * the luminance channel is preserved exactly. It's not the same kind of * thing as the rotate/flip transformations, but it's convenient to handle it * as part of this package, mainly because the transformation routines have to * be aware of the option to know how many components to work on. */ /* * Codes for supported types of image transformations. */ typedef enum { JXFORM_NONE, /* no transformation */ JXFORM_FLIP_H, /* horizontal flip */ JXFORM_FLIP_V, /* vertical flip */ JXFORM_TRANSPOSE, /* transpose across UL-to-LR axis */ JXFORM_TRANSVERSE, /* transpose across UR-to-LL axis */ JXFORM_ROT_90, /* 90-degree clockwise rotation */ JXFORM_ROT_180, /* 180-degree rotation */ JXFORM_ROT_270 /* 270-degree clockwise (or 90 ccw) */ } JXFORM_CODE; /* * Codes for crop parameters, which can individually be unspecified, * positive or negative for xoffset or yoffset, * positive or forced for width or height. */ typedef enum { JCROP_UNSET, JCROP_POS, JCROP_NEG, JCROP_FORCE } JCROP_CODE; /* * Transform parameters struct. * NB: application must not change any elements of this struct after * calling jtransform_request_workspace. */ typedef struct { /* Options: set by caller */ JXFORM_CODE transform; /* image transform operator */ boolean perfect; /* if TRUE, fail if partial MCUs are requested */ boolean trim; /* if TRUE, trim partial MCUs as needed */ boolean force_grayscale; /* if TRUE, convert color image to grayscale */ boolean crop; /* if TRUE, crop source image */ boolean slow_hflip; /* For best performance, the JXFORM_FLIP_H transform normally modifies the source coefficients in place. Setting this to TRUE will instead use a slower, double-buffered algorithm, which leaves the source coefficients in tact (necessary if other transformed images must be generated from the same set of coefficients. */ /* Crop parameters: application need not set these unless crop is TRUE. * These can be filled in by jtransform_parse_crop_spec(). */ JDIMENSION crop_width; /* Width of selected region */ JCROP_CODE crop_width_set; /* (forced disables adjustment) */ JDIMENSION crop_height; /* Height of selected region */ JCROP_CODE crop_height_set; /* (forced disables adjustment) */ JDIMENSION crop_xoffset; /* X offset of selected region */ JCROP_CODE crop_xoffset_set; /* (negative measures from right edge) */ JDIMENSION crop_yoffset; /* Y offset of selected region */ JCROP_CODE crop_yoffset_set; /* (negative measures from bottom edge) */ /* Internal workspace: caller should not touch these */ int num_components; /* # of components in workspace */ jvirt_barray_ptr * workspace_coef_arrays; /* workspace for transformations */ JDIMENSION output_width; /* cropped destination dimensions */ JDIMENSION output_height; JDIMENSION x_crop_offset; /* destination crop offsets measured in iMCUs */ JDIMENSION y_crop_offset; int iMCU_sample_width; /* destination iMCU size */ int iMCU_sample_height; } jpeg_transform_info; #if TRANSFORMS_SUPPORTED /* Parse a crop specification (written in X11 geometry style) */ EXTERN(boolean) jtransform_parse_crop_spec (jpeg_transform_info *info, const char *spec); /* Request any required workspace */ EXTERN(boolean) jtransform_request_workspace (j_decompress_ptr srcinfo, jpeg_transform_info *info); /* Adjust output image parameters */ EXTERN(jvirt_barray_ptr *) jtransform_adjust_parameters (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, jvirt_barray_ptr *src_coef_arrays, jpeg_transform_info *info); /* Execute the actual transformation, if any */ EXTERN(void) jtransform_execute_transform (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, jvirt_barray_ptr *src_coef_arrays, jpeg_transform_info *info); /* Determine whether lossless transformation is perfectly * possible for a specified image and transformation. */ EXTERN(boolean) jtransform_perfect_transform (JDIMENSION image_width, JDIMENSION image_height, int MCU_width, int MCU_height, JXFORM_CODE transform); /* jtransform_execute_transform used to be called * jtransform_execute_transformation, but some compilers complain about * routine names that long. This macro is here to avoid breaking any * old source code that uses the original name... */ #define jtransform_execute_transformation jtransform_execute_transform #endif /* TRANSFORMS_SUPPORTED */ /* * Support for copying optional markers from source to destination file. */ typedef enum { JCOPYOPT_NONE, /* copy no optional markers */ JCOPYOPT_COMMENTS, /* copy only comment (COM) markers */ JCOPYOPT_ALL /* copy all optional markers */ } JCOPY_OPTION; #define JCOPYOPT_DEFAULT JCOPYOPT_COMMENTS /* recommended default */ /* Setup decompression object to save desired markers in memory */ EXTERN(void) jcopy_markers_setup (j_decompress_ptr srcinfo, JCOPY_OPTION option); /* Copy markers saved in the given source object to the destination object */ EXTERN(void) jcopy_markers_execute (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, JCOPY_OPTION option); libjpeg-turbo-1.4.2/win/0000755000076500007650000000000012600050400012056 500000000000000libjpeg-turbo-1.4.2/win/jpeg62.def0000755000076500007650000000551612600050400013565 00000000000000EXPORTS jcopy_block_row @ 1 ; jcopy_sample_rows @ 2 ; jdiv_round_up @ 3 ; jinit_1pass_quantizer @ 4 ; jinit_2pass_quantizer @ 5 ; jinit_c_coef_controller @ 6 ; jinit_c_main_controller @ 7 ; jinit_c_master_control @ 8 ; jinit_c_prep_controller @ 9 ; jinit_color_converter @ 10 ; jinit_color_deconverter @ 11 ; jinit_compress_master @ 12 ; jinit_d_coef_controller @ 13 ; jinit_d_main_controller @ 14 ; jinit_d_post_controller @ 15 ; jinit_downsampler @ 16 ; jinit_forward_dct @ 17 ; jinit_huff_decoder @ 18 ; jinit_huff_encoder @ 19 ; jinit_input_controller @ 20 ; jinit_inverse_dct @ 21 ; jinit_marker_reader @ 22 ; jinit_marker_writer @ 23 ; jinit_master_decompress @ 24 ; jinit_memory_mgr @ 25 ; jinit_merged_upsampler @ 26 ; jinit_phuff_decoder @ 27 ; jinit_phuff_encoder @ 28 ; jinit_upsampler @ 29 ; jpeg_CreateCompress @ 30 ; jpeg_CreateDecompress @ 31 ; jpeg_abort @ 32 ; jpeg_abort_compress @ 33 ; jpeg_abort_decompress @ 34 ; jpeg_add_quant_table @ 35 ; jpeg_alloc_huff_table @ 36 ; jpeg_alloc_quant_table @ 37 ; jpeg_calc_output_dimensions @ 38 ; jpeg_consume_input @ 39 ; jpeg_copy_critical_parameters @ 40 ; jpeg_default_colorspace @ 41 ; jpeg_destroy @ 42 ; jpeg_destroy_compress @ 43 ; jpeg_destroy_decompress @ 44 ; jpeg_fdct_float @ 45 ; jpeg_fdct_ifast @ 46 ; jpeg_fdct_islow @ 47 ; jpeg_fill_bit_buffer @ 48 ; jpeg_finish_compress @ 49 ; jpeg_finish_decompress @ 50 ; jpeg_finish_output @ 51 ; jpeg_free_large @ 52 ; jpeg_free_small @ 53 ; jpeg_gen_optimal_table @ 54 ; jpeg_get_large @ 55 ; jpeg_get_small @ 56 ; jpeg_has_multiple_scans @ 57 ; jpeg_huff_decode @ 58 ; jpeg_idct_1x1 @ 59 ; jpeg_idct_2x2 @ 60 ; jpeg_idct_4x4 @ 61 ; jpeg_idct_float @ 62 ; jpeg_idct_ifast @ 63 ; jpeg_idct_islow @ 64 ; jpeg_input_complete @ 65 ; jpeg_make_c_derived_tbl @ 66 ; jpeg_make_d_derived_tbl @ 67 ; jpeg_mem_available @ 68 ; jpeg_mem_init @ 69 ; jpeg_mem_term @ 70 ; jpeg_new_colormap @ 71 ; jpeg_open_backing_store @ 72 ; jpeg_quality_scaling @ 73 ; jpeg_read_coefficients @ 74 ; jpeg_read_header @ 75 ; jpeg_read_raw_data @ 76 ; jpeg_read_scanlines @ 77 ; jpeg_resync_to_restart @ 78 ; jpeg_save_markers @ 79 ; jpeg_set_colorspace @ 80 ; jpeg_set_defaults @ 81 ; jpeg_set_linear_quality @ 82 ; jpeg_set_marker_processor @ 83 ; jpeg_set_quality @ 84 ; jpeg_simple_progression @ 85 ; jpeg_start_compress @ 86 ; jpeg_start_decompress @ 87 ; jpeg_start_output @ 88 ; jpeg_std_error @ 89 ; jpeg_stdio_dest @ 90 ; jpeg_stdio_src @ 91 ; jpeg_suppress_tables @ 92 ; jpeg_write_coefficients @ 93 ; jpeg_write_m_byte @ 94 ; jpeg_write_m_header @ 95 ; jpeg_write_marker @ 96 ; jpeg_write_raw_data @ 97 ; jpeg_write_scanlines @ 98 ; jpeg_write_tables @ 99 ; jround_up @ 100 ; jzero_far @ 101 ; libjpeg-turbo-1.4.2/win/jpeg8.def0000644000076500007650000000574312600050400013504 00000000000000EXPORTS jcopy_block_row @ 1 ; jcopy_sample_rows @ 2 ; jdiv_round_up @ 3 ; jinit_1pass_quantizer @ 4 ; jinit_2pass_quantizer @ 5 ; jinit_c_coef_controller @ 6 ; jinit_c_main_controller @ 7 ; jinit_c_master_control @ 8 ; jinit_c_prep_controller @ 9 ; jinit_color_converter @ 10 ; jinit_color_deconverter @ 11 ; jinit_compress_master @ 12 ; jinit_d_coef_controller @ 13 ; jinit_d_main_controller @ 14 ; jinit_d_post_controller @ 15 ; jinit_downsampler @ 16 ; jinit_forward_dct @ 17 ; jinit_huff_decoder @ 18 ; jinit_huff_encoder @ 19 ; jinit_input_controller @ 20 ; jinit_inverse_dct @ 21 ; jinit_marker_reader @ 22 ; jinit_marker_writer @ 23 ; jinit_master_decompress @ 24 ; jinit_memory_mgr @ 25 ; jinit_merged_upsampler @ 26 ; jinit_phuff_decoder @ 27 ; jinit_phuff_encoder @ 28 ; jinit_upsampler @ 29 ; jpeg_CreateCompress @ 30 ; jpeg_CreateDecompress @ 31 ; jpeg_abort @ 32 ; jpeg_abort_compress @ 33 ; jpeg_abort_decompress @ 34 ; jpeg_add_quant_table @ 35 ; jpeg_alloc_huff_table @ 36 ; jpeg_alloc_quant_table @ 37 ; jpeg_calc_jpeg_dimensions @ 38 ; jpeg_calc_output_dimensions @ 39 ; jpeg_consume_input @ 40 ; jpeg_copy_critical_parameters @ 41 ; jpeg_core_output_dimensions @ 42 ; jpeg_default_colorspace @ 43 ; jpeg_default_qtables @ 44 ; jpeg_destroy @ 45 ; jpeg_destroy_compress @ 46 ; jpeg_destroy_decompress @ 47 ; jpeg_fdct_float @ 48 ; jpeg_fdct_ifast @ 49 ; jpeg_fdct_islow @ 50 ; jpeg_fill_bit_buffer @ 51 ; jpeg_finish_compress @ 52 ; jpeg_finish_decompress @ 53 ; jpeg_finish_output @ 54 ; jpeg_free_large @ 55 ; jpeg_free_small @ 56 ; jpeg_gen_optimal_table @ 57 ; jpeg_get_large @ 58 ; jpeg_get_small @ 59 ; jpeg_has_multiple_scans @ 60 ; jpeg_huff_decode @ 61 ; jpeg_idct_1x1 @ 62 ; jpeg_idct_2x2 @ 63 ; jpeg_idct_4x4 @ 64 ; jpeg_idct_float @ 65 ; jpeg_idct_ifast @ 66 ; jpeg_idct_islow @ 67 ; jpeg_input_complete @ 68 ; jpeg_make_c_derived_tbl @ 69 ; jpeg_make_d_derived_tbl @ 70 ; jpeg_mem_available @ 71 ; jpeg_mem_dest @ 72 ; jpeg_mem_init @ 73 ; jpeg_mem_src @ 74 ; jpeg_mem_term @ 75 ; jpeg_new_colormap @ 76 ; jpeg_open_backing_store @ 77 ; jpeg_quality_scaling @ 78 ; jpeg_read_coefficients @ 79 ; jpeg_read_header @ 80 ; jpeg_read_raw_data @ 81 ; jpeg_read_scanlines @ 82 ; jpeg_resync_to_restart @ 83 ; jpeg_save_markers @ 84 ; jpeg_set_colorspace @ 85 ; jpeg_set_defaults @ 86 ; jpeg_set_linear_quality @ 87 ; jpeg_set_marker_processor @ 88 ; jpeg_set_quality @ 89 ; jpeg_simple_progression @ 90 ; jpeg_start_compress @ 91 ; jpeg_start_decompress @ 92 ; jpeg_start_output @ 93 ; jpeg_std_error @ 94 ; jpeg_stdio_dest @ 95 ; jpeg_stdio_src @ 96 ; jpeg_suppress_tables @ 97 ; jpeg_write_coefficients @ 98 ; jpeg_write_m_byte @ 99 ; jpeg_write_m_header @ 100 ; jpeg_write_marker @ 101 ; jpeg_write_raw_data @ 102 ; jpeg_write_scanlines @ 103 ; jpeg_write_tables @ 104 ; jround_up @ 105 ; jzero_far @ 106 ; libjpeg-turbo-1.4.2/win/jpeg7-memsrcdst.def0000644000076500007650000000567712600050400015510 00000000000000EXPORTS jcopy_block_row @ 1 ; jcopy_sample_rows @ 2 ; jdiv_round_up @ 3 ; jinit_1pass_quantizer @ 4 ; jinit_2pass_quantizer @ 5 ; jinit_c_coef_controller @ 6 ; jinit_c_main_controller @ 7 ; jinit_c_master_control @ 8 ; jinit_c_prep_controller @ 9 ; jinit_color_converter @ 10 ; jinit_color_deconverter @ 11 ; jinit_compress_master @ 12 ; jinit_d_coef_controller @ 13 ; jinit_d_main_controller @ 14 ; jinit_d_post_controller @ 15 ; jinit_downsampler @ 16 ; jinit_forward_dct @ 17 ; jinit_huff_decoder @ 18 ; jinit_huff_encoder @ 19 ; jinit_input_controller @ 20 ; jinit_inverse_dct @ 21 ; jinit_marker_reader @ 22 ; jinit_marker_writer @ 23 ; jinit_master_decompress @ 24 ; jinit_memory_mgr @ 25 ; jinit_merged_upsampler @ 26 ; jinit_phuff_decoder @ 27 ; jinit_phuff_encoder @ 28 ; jinit_upsampler @ 29 ; jpeg_CreateCompress @ 30 ; jpeg_CreateDecompress @ 31 ; jpeg_abort @ 32 ; jpeg_abort_compress @ 33 ; jpeg_abort_decompress @ 34 ; jpeg_add_quant_table @ 35 ; jpeg_alloc_huff_table @ 36 ; jpeg_alloc_quant_table @ 37 ; jpeg_calc_jpeg_dimensions @ 38 ; jpeg_calc_output_dimensions @ 39 ; jpeg_consume_input @ 40 ; jpeg_copy_critical_parameters @ 41 ; jpeg_default_colorspace @ 42 ; jpeg_default_qtables @ 43 ; jpeg_destroy @ 44 ; jpeg_destroy_compress @ 45 ; jpeg_destroy_decompress @ 46 ; jpeg_fdct_float @ 47 ; jpeg_fdct_ifast @ 48 ; jpeg_fdct_islow @ 49 ; jpeg_fill_bit_buffer @ 50 ; jpeg_finish_compress @ 51 ; jpeg_finish_decompress @ 52 ; jpeg_finish_output @ 53 ; jpeg_free_large @ 54 ; jpeg_free_small @ 55 ; jpeg_gen_optimal_table @ 56 ; jpeg_get_large @ 57 ; jpeg_get_small @ 58 ; jpeg_has_multiple_scans @ 59 ; jpeg_huff_decode @ 60 ; jpeg_idct_1x1 @ 61 ; jpeg_idct_2x2 @ 62 ; jpeg_idct_4x4 @ 63 ; jpeg_idct_float @ 64 ; jpeg_idct_ifast @ 65 ; jpeg_idct_islow @ 66 ; jpeg_input_complete @ 67 ; jpeg_make_c_derived_tbl @ 68 ; jpeg_make_d_derived_tbl @ 69 ; jpeg_mem_available @ 70 ; jpeg_mem_init @ 71 ; jpeg_mem_term @ 72 ; jpeg_new_colormap @ 73 ; jpeg_open_backing_store @ 74 ; jpeg_quality_scaling @ 75 ; jpeg_read_coefficients @ 76 ; jpeg_read_header @ 77 ; jpeg_read_raw_data @ 78 ; jpeg_read_scanlines @ 79 ; jpeg_resync_to_restart @ 80 ; jpeg_save_markers @ 81 ; jpeg_set_colorspace @ 82 ; jpeg_set_defaults @ 83 ; jpeg_set_linear_quality @ 84 ; jpeg_set_marker_processor @ 85 ; jpeg_set_quality @ 86 ; jpeg_simple_progression @ 87 ; jpeg_start_compress @ 88 ; jpeg_start_decompress @ 89 ; jpeg_start_output @ 90 ; jpeg_std_error @ 91 ; jpeg_stdio_dest @ 92 ; jpeg_stdio_src @ 93 ; jpeg_suppress_tables @ 94 ; jpeg_write_coefficients @ 95 ; jpeg_write_m_byte @ 96 ; jpeg_write_m_header @ 97 ; jpeg_write_marker @ 98 ; jpeg_write_raw_data @ 99 ; jpeg_write_scanlines @ 100 ; jpeg_write_tables @ 101 ; jround_up @ 102 ; jzero_far @ 103 ; jpeg_mem_dest @ 104 ; jpeg_mem_src @ 105 ; libjpeg-turbo-1.4.2/win/jconfigint.h.in0000644000076500007650000000042312600050400014705 00000000000000#define VERSION "@VERSION@" #define BUILD "@BUILD@" #define PACKAGE_NAME "@CMAKE_PROJECT_NAME@" #ifndef INLINE #if defined(__GNUC__) #define INLINE inline __attribute__((always_inline)) #elif defined(_MSC_VER) #define INLINE __forceinline #else #define INLINE #endif #endif libjpeg-turbo-1.4.2/win/jpeg7.def0000644000076500007650000000562012600050400013475 00000000000000EXPORTS jcopy_block_row @ 1 ; jcopy_sample_rows @ 2 ; jdiv_round_up @ 3 ; jinit_1pass_quantizer @ 4 ; jinit_2pass_quantizer @ 5 ; jinit_c_coef_controller @ 6 ; jinit_c_main_controller @ 7 ; jinit_c_master_control @ 8 ; jinit_c_prep_controller @ 9 ; jinit_color_converter @ 10 ; jinit_color_deconverter @ 11 ; jinit_compress_master @ 12 ; jinit_d_coef_controller @ 13 ; jinit_d_main_controller @ 14 ; jinit_d_post_controller @ 15 ; jinit_downsampler @ 16 ; jinit_forward_dct @ 17 ; jinit_huff_decoder @ 18 ; jinit_huff_encoder @ 19 ; jinit_input_controller @ 20 ; jinit_inverse_dct @ 21 ; jinit_marker_reader @ 22 ; jinit_marker_writer @ 23 ; jinit_master_decompress @ 24 ; jinit_memory_mgr @ 25 ; jinit_merged_upsampler @ 26 ; jinit_phuff_decoder @ 27 ; jinit_phuff_encoder @ 28 ; jinit_upsampler @ 29 ; jpeg_CreateCompress @ 30 ; jpeg_CreateDecompress @ 31 ; jpeg_abort @ 32 ; jpeg_abort_compress @ 33 ; jpeg_abort_decompress @ 34 ; jpeg_add_quant_table @ 35 ; jpeg_alloc_huff_table @ 36 ; jpeg_alloc_quant_table @ 37 ; jpeg_calc_jpeg_dimensions @ 38 ; jpeg_calc_output_dimensions @ 39 ; jpeg_consume_input @ 40 ; jpeg_copy_critical_parameters @ 41 ; jpeg_default_colorspace @ 42 ; jpeg_default_qtables @ 43 ; jpeg_destroy @ 44 ; jpeg_destroy_compress @ 45 ; jpeg_destroy_decompress @ 46 ; jpeg_fdct_float @ 47 ; jpeg_fdct_ifast @ 48 ; jpeg_fdct_islow @ 49 ; jpeg_fill_bit_buffer @ 50 ; jpeg_finish_compress @ 51 ; jpeg_finish_decompress @ 52 ; jpeg_finish_output @ 53 ; jpeg_free_large @ 54 ; jpeg_free_small @ 55 ; jpeg_gen_optimal_table @ 56 ; jpeg_get_large @ 57 ; jpeg_get_small @ 58 ; jpeg_has_multiple_scans @ 59 ; jpeg_huff_decode @ 60 ; jpeg_idct_1x1 @ 61 ; jpeg_idct_2x2 @ 62 ; jpeg_idct_4x4 @ 63 ; jpeg_idct_float @ 64 ; jpeg_idct_ifast @ 65 ; jpeg_idct_islow @ 66 ; jpeg_input_complete @ 67 ; jpeg_make_c_derived_tbl @ 68 ; jpeg_make_d_derived_tbl @ 69 ; jpeg_mem_available @ 70 ; jpeg_mem_init @ 71 ; jpeg_mem_term @ 72 ; jpeg_new_colormap @ 73 ; jpeg_open_backing_store @ 74 ; jpeg_quality_scaling @ 75 ; jpeg_read_coefficients @ 76 ; jpeg_read_header @ 77 ; jpeg_read_raw_data @ 78 ; jpeg_read_scanlines @ 79 ; jpeg_resync_to_restart @ 80 ; jpeg_save_markers @ 81 ; jpeg_set_colorspace @ 82 ; jpeg_set_defaults @ 83 ; jpeg_set_linear_quality @ 84 ; jpeg_set_marker_processor @ 85 ; jpeg_set_quality @ 86 ; jpeg_simple_progression @ 87 ; jpeg_start_compress @ 88 ; jpeg_start_decompress @ 89 ; jpeg_start_output @ 90 ; jpeg_std_error @ 91 ; jpeg_stdio_dest @ 92 ; jpeg_stdio_src @ 93 ; jpeg_suppress_tables @ 94 ; jpeg_write_coefficients @ 95 ; jpeg_write_m_byte @ 96 ; jpeg_write_m_header @ 97 ; jpeg_write_marker @ 98 ; jpeg_write_raw_data @ 99 ; jpeg_write_scanlines @ 100 ; jpeg_write_tables @ 101 ; jround_up @ 102 ; jzero_far @ 103 ; libjpeg-turbo-1.4.2/win/jconfig.h.in0000644000076500007650000000316112600050400014174 00000000000000/* jconfig.vc --- jconfig.h for Microsoft Visual C++ on Windows 95 or NT. */ /* see jconfig.txt for explanations */ #define JPEG_LIB_VERSION @JPEG_LIB_VERSION@ #define LIBJPEG_TURBO_VERSION @VERSION@ #cmakedefine C_ARITH_CODING_SUPPORTED #cmakedefine D_ARITH_CODING_SUPPORTED #cmakedefine MEM_SRCDST_SUPPORTED /* * Define BITS_IN_JSAMPLE as either * 8 for 8-bit sample values (the usual setting) * 12 for 12-bit sample values * Only 8 and 12 are legal data precisions for lossy JPEG according to the * JPEG standard, and the IJG code does not support anything else! * We do not support run-time selection of data precision, sorry. */ #define BITS_IN_JSAMPLE @BITS_IN_JSAMPLE@ /* use 8 or 12 */ #define HAVE_UNSIGNED_CHAR #define HAVE_UNSIGNED_SHORT /* #define void char */ /* #define const */ #undef __CHAR_UNSIGNED__ #define HAVE_STDDEF_H #define HAVE_STDLIB_H #undef NEED_BSD_STRINGS #undef NEED_SYS_TYPES_H #undef NEED_FAR_POINTERS /* we presume a 32-bit flat memory model */ #undef INCOMPLETE_TYPES_BROKEN /* Define "boolean" as unsigned char, not int, per Windows custom */ #ifndef __RPCNDR_H__ /* don't conflict if rpcndr.h already read */ typedef unsigned char boolean; #endif #define HAVE_BOOLEAN /* prevent jmorecfg.h from redefining it */ /* Define "INT32" as int, not long, per Windows custom */ #if !(defined(_BASETSD_H_) || defined(_BASETSD_H)) /* don't conflict if basetsd.h already read */ typedef short INT16; typedef signed int INT32; #endif #define XMD_H /* prevent jmorecfg.h from redefining it */ #ifdef JPEG_INTERNALS #undef RIGHT_SHIFT_IS_UNSIGNED #endif /* JPEG_INTERNALS */ libjpeg-turbo-1.4.2/win/jpeg62-memsrcdst.def0000755000076500007650000000557512600050400015571 00000000000000EXPORTS jcopy_block_row @ 1 ; jcopy_sample_rows @ 2 ; jdiv_round_up @ 3 ; jinit_1pass_quantizer @ 4 ; jinit_2pass_quantizer @ 5 ; jinit_c_coef_controller @ 6 ; jinit_c_main_controller @ 7 ; jinit_c_master_control @ 8 ; jinit_c_prep_controller @ 9 ; jinit_color_converter @ 10 ; jinit_color_deconverter @ 11 ; jinit_compress_master @ 12 ; jinit_d_coef_controller @ 13 ; jinit_d_main_controller @ 14 ; jinit_d_post_controller @ 15 ; jinit_downsampler @ 16 ; jinit_forward_dct @ 17 ; jinit_huff_decoder @ 18 ; jinit_huff_encoder @ 19 ; jinit_input_controller @ 20 ; jinit_inverse_dct @ 21 ; jinit_marker_reader @ 22 ; jinit_marker_writer @ 23 ; jinit_master_decompress @ 24 ; jinit_memory_mgr @ 25 ; jinit_merged_upsampler @ 26 ; jinit_phuff_decoder @ 27 ; jinit_phuff_encoder @ 28 ; jinit_upsampler @ 29 ; jpeg_CreateCompress @ 30 ; jpeg_CreateDecompress @ 31 ; jpeg_abort @ 32 ; jpeg_abort_compress @ 33 ; jpeg_abort_decompress @ 34 ; jpeg_add_quant_table @ 35 ; jpeg_alloc_huff_table @ 36 ; jpeg_alloc_quant_table @ 37 ; jpeg_calc_output_dimensions @ 38 ; jpeg_consume_input @ 39 ; jpeg_copy_critical_parameters @ 40 ; jpeg_default_colorspace @ 41 ; jpeg_destroy @ 42 ; jpeg_destroy_compress @ 43 ; jpeg_destroy_decompress @ 44 ; jpeg_fdct_float @ 45 ; jpeg_fdct_ifast @ 46 ; jpeg_fdct_islow @ 47 ; jpeg_fill_bit_buffer @ 48 ; jpeg_finish_compress @ 49 ; jpeg_finish_decompress @ 50 ; jpeg_finish_output @ 51 ; jpeg_free_large @ 52 ; jpeg_free_small @ 53 ; jpeg_gen_optimal_table @ 54 ; jpeg_get_large @ 55 ; jpeg_get_small @ 56 ; jpeg_has_multiple_scans @ 57 ; jpeg_huff_decode @ 58 ; jpeg_idct_1x1 @ 59 ; jpeg_idct_2x2 @ 60 ; jpeg_idct_4x4 @ 61 ; jpeg_idct_float @ 62 ; jpeg_idct_ifast @ 63 ; jpeg_idct_islow @ 64 ; jpeg_input_complete @ 65 ; jpeg_make_c_derived_tbl @ 66 ; jpeg_make_d_derived_tbl @ 67 ; jpeg_mem_available @ 68 ; jpeg_mem_init @ 69 ; jpeg_mem_term @ 70 ; jpeg_new_colormap @ 71 ; jpeg_open_backing_store @ 72 ; jpeg_quality_scaling @ 73 ; jpeg_read_coefficients @ 74 ; jpeg_read_header @ 75 ; jpeg_read_raw_data @ 76 ; jpeg_read_scanlines @ 77 ; jpeg_resync_to_restart @ 78 ; jpeg_save_markers @ 79 ; jpeg_set_colorspace @ 80 ; jpeg_set_defaults @ 81 ; jpeg_set_linear_quality @ 82 ; jpeg_set_marker_processor @ 83 ; jpeg_set_quality @ 84 ; jpeg_simple_progression @ 85 ; jpeg_start_compress @ 86 ; jpeg_start_decompress @ 87 ; jpeg_start_output @ 88 ; jpeg_std_error @ 89 ; jpeg_stdio_dest @ 90 ; jpeg_stdio_src @ 91 ; jpeg_suppress_tables @ 92 ; jpeg_write_coefficients @ 93 ; jpeg_write_m_byte @ 94 ; jpeg_write_m_header @ 95 ; jpeg_write_marker @ 96 ; jpeg_write_raw_data @ 97 ; jpeg_write_scanlines @ 98 ; jpeg_write_tables @ 99 ; jround_up @ 100 ; jzero_far @ 101 ; jpeg_mem_dest @ 102 ; jpeg_mem_src @ 103 ; libjpeg-turbo-1.4.2/win/jsimdcfg.inc0000755000076500007650000000563412600050400014272 00000000000000; ; Automatically generated include file from jsimdcfg.inc.h ; ; ; -- jpeglib.h ; %define DCTSIZE 8 %define DCTSIZE2 64 ; ; -- jmorecfg.h ; %define RGB_RED 0 %define RGB_GREEN 1 %define RGB_BLUE 2 %define RGB_PIXELSIZE 3 %define EXT_RGB_RED 0 %define EXT_RGB_GREEN 1 %define EXT_RGB_BLUE 2 %define EXT_RGB_PIXELSIZE 3 %define EXT_RGBX_RED 0 %define EXT_RGBX_GREEN 1 %define EXT_RGBX_BLUE 2 %define EXT_RGBX_PIXELSIZE 4 %define EXT_BGR_RED 2 %define EXT_BGR_GREEN 1 %define EXT_BGR_BLUE 0 %define EXT_BGR_PIXELSIZE 3 %define EXT_BGRX_RED 2 %define EXT_BGRX_GREEN 1 %define EXT_BGRX_BLUE 0 %define EXT_BGRX_PIXELSIZE 4 %define EXT_XBGR_RED 3 %define EXT_XBGR_GREEN 2 %define EXT_XBGR_BLUE 1 %define EXT_XBGR_PIXELSIZE 4 %define EXT_XRGB_RED 1 %define EXT_XRGB_GREEN 2 %define EXT_XRGB_BLUE 3 %define EXT_XRGB_PIXELSIZE 4 %define RGBX_FILLER_0XFF 1 ; Representation of a single sample (pixel element value). ; On this SIMD implementation, this must be 'unsigned char'. ; %define JSAMPLE byte ; unsigned char %define SIZEOF_JSAMPLE SIZEOF_BYTE ; sizeof(JSAMPLE) %define CENTERJSAMPLE 128 ; Representation of a DCT frequency coefficient. ; On this SIMD implementation, this must be 'short'. ; %define JCOEF word ; short %define SIZEOF_JCOEF SIZEOF_WORD ; sizeof(JCOEF) ; Datatype used for image dimensions. ; On this SIMD implementation, this must be 'unsigned int'. ; %define JDIMENSION dword ; unsigned int %define SIZEOF_JDIMENSION SIZEOF_DWORD ; sizeof(JDIMENSION) %define JSAMPROW POINTER ; JSAMPLE * (jpeglib.h) %define JSAMPARRAY POINTER ; JSAMPROW * (jpeglib.h) %define JSAMPIMAGE POINTER ; JSAMPARRAY * (jpeglib.h) %define JCOEFPTR POINTER ; JCOEF * (jpeglib.h) %define SIZEOF_JSAMPROW SIZEOF_POINTER ; sizeof(JSAMPROW) %define SIZEOF_JSAMPARRAY SIZEOF_POINTER ; sizeof(JSAMPARRAY) %define SIZEOF_JSAMPIMAGE SIZEOF_POINTER ; sizeof(JSAMPIMAGE) %define SIZEOF_JCOEFPTR SIZEOF_POINTER ; sizeof(JCOEFPTR) ; ; -- jdct.h ; ; A forward DCT routine is given a pointer to a work area of type DCTELEM[]; ; the DCT is to be performed in-place in that buffer. ; To maximize parallelism, Type DCTELEM is changed to short (originally, int). ; %define DCTELEM word ; short %define SIZEOF_DCTELEM SIZEOF_WORD ; sizeof(DCTELEM) %define float FP32 ; float %define SIZEOF_FAST_FLOAT SIZEOF_FP32 ; sizeof(float) ; To maximize parallelism, Type short is changed to short. ; %define ISLOW_MULT_TYPE word ; must be short %define SIZEOF_ISLOW_MULT_TYPE SIZEOF_WORD ; sizeof(ISLOW_MULT_TYPE) %define IFAST_MULT_TYPE word ; must be short %define SIZEOF_IFAST_MULT_TYPE SIZEOF_WORD ; sizeof(IFAST_MULT_TYPE) %define IFAST_SCALE_BITS 2 ; fractional bits in scale factors %define FLOAT_MULT_TYPE FP32 ; must be float %define SIZEOF_FLOAT_MULT_TYPE SIZEOF_FP32 ; sizeof(FLOAT_MULT_TYPE) ; ; -- jsimd.h ; %define JSIMD_NONE 0x00 %define JSIMD_MMX 0x01 %define JSIMD_3DNOW 0x02 %define JSIMD_SSE 0x04 %define JSIMD_SSE2 0x08 ; Short forms of external names for systems with brain-damaged linkers. ; libjpeg-turbo-1.4.2/jfdctint.c0000644000076500007650000002630212600050400013155 00000000000000/* * jfdctint.c * * This file was part of the Independent JPEG Group's software. * Copyright (C) 1991-1996, Thomas G. Lane. * libjpeg-turbo Modifications: * Copyright (C) 2015, D. R. Commander * For conditions of distribution and use, see the accompanying README file. * * This file contains a slow-but-accurate integer implementation of the * forward DCT (Discrete Cosine Transform). * * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT * on each column. Direct algorithms are also available, but they are * much more complex and seem not to be any faster when reduced to code. * * This implementation is based on an algorithm described in * C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT * Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics, * Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991. * The primary algorithm described there uses 11 multiplies and 29 adds. * We use their alternate method with 12 multiplies and 32 adds. * The advantage of this method is that no data path contains more than one * multiplication; this allows a very simple and accurate implementation in * scaled fixed-point arithmetic, with a minimal number of shifts. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" #include "jdct.h" /* Private declarations for DCT subsystem */ #ifdef DCT_ISLOW_SUPPORTED /* * This module is specialized to the case DCTSIZE = 8. */ #if DCTSIZE != 8 Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ #endif /* * The poop on this scaling stuff is as follows: * * Each 1-D DCT step produces outputs which are a factor of sqrt(N) * larger than the true DCT outputs. The final outputs are therefore * a factor of N larger than desired; since N=8 this can be cured by * a simple right shift at the end of the algorithm. The advantage of * this arrangement is that we save two multiplications per 1-D DCT, * because the y0 and y4 outputs need not be divided by sqrt(N). * In the IJG code, this factor of 8 is removed by the quantization step * (in jcdctmgr.c), NOT in this module. * * We have to do addition and subtraction of the integer inputs, which * is no problem, and multiplication by fractional constants, which is * a problem to do in integer arithmetic. We multiply all the constants * by CONST_SCALE and convert them to integer constants (thus retaining * CONST_BITS bits of precision in the constants). After doing a * multiplication we have to divide the product by CONST_SCALE, with proper * rounding, to produce the correct output. This division can be done * cheaply as a right shift of CONST_BITS bits. We postpone shifting * as long as possible so that partial sums can be added together with * full fractional precision. * * The outputs of the first pass are scaled up by PASS1_BITS bits so that * they are represented to better-than-integral precision. These outputs * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word * with the recommended scaling. (For 12-bit sample data, the intermediate * array is INT32 anyway.) * * To avoid overflow of the 32-bit intermediate results in pass 2, we must * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis * shows that the values given below are the most effective. */ #if BITS_IN_JSAMPLE == 8 #define CONST_BITS 13 #define PASS1_BITS 2 #else #define CONST_BITS 13 #define PASS1_BITS 1 /* lose a little precision to avoid overflow */ #endif /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus * causing a lot of useless floating-point operations at run time. * To get around this we use the following pre-calculated constants. * If you change CONST_BITS you may want to add appropriate values. * (With a reasonable C compiler, you can just rely on the FIX() macro...) */ #if CONST_BITS == 13 #define FIX_0_298631336 ((INT32) 2446) /* FIX(0.298631336) */ #define FIX_0_390180644 ((INT32) 3196) /* FIX(0.390180644) */ #define FIX_0_541196100 ((INT32) 4433) /* FIX(0.541196100) */ #define FIX_0_765366865 ((INT32) 6270) /* FIX(0.765366865) */ #define FIX_0_899976223 ((INT32) 7373) /* FIX(0.899976223) */ #define FIX_1_175875602 ((INT32) 9633) /* FIX(1.175875602) */ #define FIX_1_501321110 ((INT32) 12299) /* FIX(1.501321110) */ #define FIX_1_847759065 ((INT32) 15137) /* FIX(1.847759065) */ #define FIX_1_961570560 ((INT32) 16069) /* FIX(1.961570560) */ #define FIX_2_053119869 ((INT32) 16819) /* FIX(2.053119869) */ #define FIX_2_562915447 ((INT32) 20995) /* FIX(2.562915447) */ #define FIX_3_072711026 ((INT32) 25172) /* FIX(3.072711026) */ #else #define FIX_0_298631336 FIX(0.298631336) #define FIX_0_390180644 FIX(0.390180644) #define FIX_0_541196100 FIX(0.541196100) #define FIX_0_765366865 FIX(0.765366865) #define FIX_0_899976223 FIX(0.899976223) #define FIX_1_175875602 FIX(1.175875602) #define FIX_1_501321110 FIX(1.501321110) #define FIX_1_847759065 FIX(1.847759065) #define FIX_1_961570560 FIX(1.961570560) #define FIX_2_053119869 FIX(2.053119869) #define FIX_2_562915447 FIX(2.562915447) #define FIX_3_072711026 FIX(3.072711026) #endif /* Multiply an INT32 variable by an INT32 constant to yield an INT32 result. * For 8-bit samples with the recommended scaling, all the variable * and constant values involved are no more than 16 bits wide, so a * 16x16->32 bit multiply can be used instead of a full 32x32 multiply. * For 12-bit samples, a full 32-bit multiplication will be needed. */ #if BITS_IN_JSAMPLE == 8 #define MULTIPLY(var,const) MULTIPLY16C16(var,const) #else #define MULTIPLY(var,const) ((var) * (const)) #endif /* * Perform the forward DCT on one block of samples. */ GLOBAL(void) jpeg_fdct_islow (DCTELEM * data) { INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; INT32 tmp10, tmp11, tmp12, tmp13; INT32 z1, z2, z3, z4, z5; DCTELEM *dataptr; int ctr; SHIFT_TEMPS /* Pass 1: process rows. */ /* Note results are scaled up by sqrt(8) compared to a true DCT; */ /* furthermore, we scale the results by 2**PASS1_BITS. */ dataptr = data; for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { tmp0 = dataptr[0] + dataptr[7]; tmp7 = dataptr[0] - dataptr[7]; tmp1 = dataptr[1] + dataptr[6]; tmp6 = dataptr[1] - dataptr[6]; tmp2 = dataptr[2] + dataptr[5]; tmp5 = dataptr[2] - dataptr[5]; tmp3 = dataptr[3] + dataptr[4]; tmp4 = dataptr[3] - dataptr[4]; /* Even part per LL&M figure 1 --- note that published figure is faulty; * rotator "sqrt(2)*c1" should be "sqrt(2)*c6". */ tmp10 = tmp0 + tmp3; tmp13 = tmp0 - tmp3; tmp11 = tmp1 + tmp2; tmp12 = tmp1 - tmp2; dataptr[0] = (DCTELEM) LEFT_SHIFT(tmp10 + tmp11, PASS1_BITS); dataptr[4] = (DCTELEM) LEFT_SHIFT(tmp10 - tmp11, PASS1_BITS); z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865), CONST_BITS-PASS1_BITS); dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065), CONST_BITS-PASS1_BITS); /* Odd part per figure 8 --- note paper omits factor of sqrt(2). * cK represents cos(K*pi/16). * i0..i3 in the paper are tmp4..tmp7 here. */ z1 = tmp4 + tmp7; z2 = tmp5 + tmp6; z3 = tmp4 + tmp6; z4 = tmp5 + tmp7; z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */ tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */ tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */ tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */ tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */ z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */ z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */ z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */ z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */ z3 += z5; z4 += z5; dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS); dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS); dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS); dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS); dataptr += DCTSIZE; /* advance pointer to next row */ } /* Pass 2: process columns. * We remove the PASS1_BITS scaling, but leave the results scaled up * by an overall factor of 8. */ dataptr = data; for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7]; tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7]; tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6]; tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6]; tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5]; tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5]; tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4]; tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4]; /* Even part per LL&M figure 1 --- note that published figure is faulty; * rotator "sqrt(2)*c1" should be "sqrt(2)*c6". */ tmp10 = tmp0 + tmp3; tmp13 = tmp0 - tmp3; tmp11 = tmp1 + tmp2; tmp12 = tmp1 - tmp2; dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS); dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp10 - tmp11, PASS1_BITS); z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865), CONST_BITS+PASS1_BITS); dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065), CONST_BITS+PASS1_BITS); /* Odd part per figure 8 --- note paper omits factor of sqrt(2). * cK represents cos(K*pi/16). * i0..i3 in the paper are tmp4..tmp7 here. */ z1 = tmp4 + tmp7; z2 = tmp5 + tmp6; z3 = tmp4 + tmp6; z4 = tmp5 + tmp7; z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */ tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */ tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */ tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */ tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */ z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */ z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */ z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */ z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */ z3 += z5; z4 += z5; dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS+PASS1_BITS); dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS+PASS1_BITS); dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS+PASS1_BITS); dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS+PASS1_BITS); dataptr++; /* advance pointer to next column */ } } #endif /* DCT_ISLOW_SUPPORTED */ libjpeg-turbo-1.4.2/transupp.c0000644000076500007650000017122312600050400013227 00000000000000/* * transupp.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1997-2011, Thomas G. Lane, Guido Vollbeding. * libjpeg-turbo Modifications: * Copyright (C) 2010, D. R. Commander. * For conditions of distribution and use, see the accompanying README file. * * This file contains image transformation routines and other utility code * used by the jpegtran sample application. These are NOT part of the core * JPEG library. But we keep these routines separate from jpegtran.c to * ease the task of maintaining jpegtran-like programs that have other user * interfaces. */ /* Although this file really shouldn't have access to the library internals, * it's helpful to let it call jround_up() and jcopy_block_row(). */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" #include "transupp.h" /* My own external interface */ #include "jpegcomp.h" #include /* to declare isdigit() */ #if JPEG_LIB_VERSION >= 70 #define dstinfo_min_DCT_h_scaled_size dstinfo->min_DCT_h_scaled_size #define dstinfo_min_DCT_v_scaled_size dstinfo->min_DCT_v_scaled_size #else #define dstinfo_min_DCT_h_scaled_size DCTSIZE #define dstinfo_min_DCT_v_scaled_size DCTSIZE #endif #if TRANSFORMS_SUPPORTED /* * Lossless image transformation routines. These routines work on DCT * coefficient arrays and thus do not require any lossy decompression * or recompression of the image. * Thanks to Guido Vollbeding for the initial design and code of this feature, * and to Ben Jackson for introducing the cropping feature. * * Horizontal flipping is done in-place, using a single top-to-bottom * pass through the virtual source array. It will thus be much the * fastest option for images larger than main memory. * * The other routines require a set of destination virtual arrays, so they * need twice as much memory as jpegtran normally does. The destination * arrays are always written in normal scan order (top to bottom) because * the virtual array manager expects this. The source arrays will be scanned * in the corresponding order, which means multiple passes through the source * arrays for most of the transforms. That could result in much thrashing * if the image is larger than main memory. * * If cropping or trimming is involved, the destination arrays may be smaller * than the source arrays. Note it is not possible to do horizontal flip * in-place when a nonzero Y crop offset is specified, since we'd have to move * data from one block row to another but the virtual array manager doesn't * guarantee we can touch more than one row at a time. So in that case, * we have to use a separate destination array. * * Some notes about the operating environment of the individual transform * routines: * 1. Both the source and destination virtual arrays are allocated from the * source JPEG object, and therefore should be manipulated by calling the * source's memory manager. * 2. The destination's component count should be used. It may be smaller * than the source's when forcing to grayscale. * 3. Likewise the destination's sampling factors should be used. When * forcing to grayscale the destination's sampling factors will be all 1, * and we may as well take that as the effective iMCU size. * 4. When "trim" is in effect, the destination's dimensions will be the * trimmed values but the source's will be untrimmed. * 5. When "crop" is in effect, the destination's dimensions will be the * cropped values but the source's will be uncropped. Each transform * routine is responsible for picking up source data starting at the * correct X and Y offset for the crop region. (The X and Y offsets * passed to the transform routines are measured in iMCU blocks of the * destination.) * 6. All the routines assume that the source and destination buffers are * padded out to a full iMCU boundary. This is true, although for the * source buffer it is an undocumented property of jdcoefct.c. */ LOCAL(void) do_crop (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, JDIMENSION x_crop_offset, JDIMENSION y_crop_offset, jvirt_barray_ptr *src_coef_arrays, jvirt_barray_ptr *dst_coef_arrays) /* Crop. This is only used when no rotate/flip is requested with the crop. */ { JDIMENSION dst_blk_y, x_crop_blocks, y_crop_blocks; int ci, offset_y; JBLOCKARRAY src_buffer, dst_buffer; jpeg_component_info *compptr; /* We simply have to copy the right amount of data (the destination's * image size) starting at the given X and Y offsets in the source. */ for (ci = 0; ci < dstinfo->num_components; ci++) { compptr = dstinfo->comp_info + ci; x_crop_blocks = x_crop_offset * compptr->h_samp_factor; y_crop_blocks = y_crop_offset * compptr->v_samp_factor; for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; dst_blk_y += compptr->v_samp_factor) { dst_buffer = (*srcinfo->mem->access_virt_barray) ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y, (JDIMENSION) compptr->v_samp_factor, TRUE); src_buffer = (*srcinfo->mem->access_virt_barray) ((j_common_ptr) srcinfo, src_coef_arrays[ci], dst_blk_y + y_crop_blocks, (JDIMENSION) compptr->v_samp_factor, FALSE); for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { jcopy_block_row(src_buffer[offset_y] + x_crop_blocks, dst_buffer[offset_y], compptr->width_in_blocks); } } } } LOCAL(void) do_flip_h_no_crop (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, JDIMENSION x_crop_offset, jvirt_barray_ptr *src_coef_arrays) /* Horizontal flip; done in-place, so no separate dest array is required. * NB: this only works when y_crop_offset is zero. */ { JDIMENSION MCU_cols, comp_width, blk_x, blk_y, x_crop_blocks; int ci, k, offset_y; JBLOCKARRAY buffer; JCOEFPTR ptr1, ptr2; JCOEF temp1, temp2; jpeg_component_info *compptr; /* Horizontal mirroring of DCT blocks is accomplished by swapping * pairs of blocks in-place. Within a DCT block, we perform horizontal * mirroring by changing the signs of odd-numbered columns. * Partial iMCUs at the right edge are left untouched. */ MCU_cols = srcinfo->output_width / (dstinfo->max_h_samp_factor * dstinfo_min_DCT_h_scaled_size); for (ci = 0; ci < dstinfo->num_components; ci++) { compptr = dstinfo->comp_info + ci; comp_width = MCU_cols * compptr->h_samp_factor; x_crop_blocks = x_crop_offset * compptr->h_samp_factor; for (blk_y = 0; blk_y < compptr->height_in_blocks; blk_y += compptr->v_samp_factor) { buffer = (*srcinfo->mem->access_virt_barray) ((j_common_ptr) srcinfo, src_coef_arrays[ci], blk_y, (JDIMENSION) compptr->v_samp_factor, TRUE); for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { /* Do the mirroring */ for (blk_x = 0; blk_x * 2 < comp_width; blk_x++) { ptr1 = buffer[offset_y][blk_x]; ptr2 = buffer[offset_y][comp_width - blk_x - 1]; /* this unrolled loop doesn't need to know which row it's on... */ for (k = 0; k < DCTSIZE2; k += 2) { temp1 = *ptr1; /* swap even column */ temp2 = *ptr2; *ptr1++ = temp2; *ptr2++ = temp1; temp1 = *ptr1; /* swap odd column with sign change */ temp2 = *ptr2; *ptr1++ = -temp2; *ptr2++ = -temp1; } } if (x_crop_blocks > 0) { /* Now left-justify the portion of the data to be kept. * We can't use a single jcopy_block_row() call because that routine * depends on memcpy(), whose behavior is unspecified for overlapping * source and destination areas. Sigh. */ for (blk_x = 0; blk_x < compptr->width_in_blocks; blk_x++) { jcopy_block_row(buffer[offset_y] + blk_x + x_crop_blocks, buffer[offset_y] + blk_x, (JDIMENSION) 1); } } } } } } LOCAL(void) do_flip_h (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, JDIMENSION x_crop_offset, JDIMENSION y_crop_offset, jvirt_barray_ptr *src_coef_arrays, jvirt_barray_ptr *dst_coef_arrays) /* Horizontal flip in general cropping case */ { JDIMENSION MCU_cols, comp_width, dst_blk_x, dst_blk_y; JDIMENSION x_crop_blocks, y_crop_blocks; int ci, k, offset_y; JBLOCKARRAY src_buffer, dst_buffer; JBLOCKROW src_row_ptr, dst_row_ptr; JCOEFPTR src_ptr, dst_ptr; jpeg_component_info *compptr; /* Here we must output into a separate array because we can't touch * different rows of a single virtual array simultaneously. Otherwise, * this is essentially the same as the routine above. */ MCU_cols = srcinfo->output_width / (dstinfo->max_h_samp_factor * dstinfo_min_DCT_h_scaled_size); for (ci = 0; ci < dstinfo->num_components; ci++) { compptr = dstinfo->comp_info + ci; comp_width = MCU_cols * compptr->h_samp_factor; x_crop_blocks = x_crop_offset * compptr->h_samp_factor; y_crop_blocks = y_crop_offset * compptr->v_samp_factor; for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; dst_blk_y += compptr->v_samp_factor) { dst_buffer = (*srcinfo->mem->access_virt_barray) ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y, (JDIMENSION) compptr->v_samp_factor, TRUE); src_buffer = (*srcinfo->mem->access_virt_barray) ((j_common_ptr) srcinfo, src_coef_arrays[ci], dst_blk_y + y_crop_blocks, (JDIMENSION) compptr->v_samp_factor, FALSE); for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { dst_row_ptr = dst_buffer[offset_y]; src_row_ptr = src_buffer[offset_y]; for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; dst_blk_x++) { if (x_crop_blocks + dst_blk_x < comp_width) { /* Do the mirrorable blocks */ dst_ptr = dst_row_ptr[dst_blk_x]; src_ptr = src_row_ptr[comp_width - x_crop_blocks - dst_blk_x - 1]; /* this unrolled loop doesn't need to know which row it's on... */ for (k = 0; k < DCTSIZE2; k += 2) { *dst_ptr++ = *src_ptr++; /* copy even column */ *dst_ptr++ = - *src_ptr++; /* copy odd column with sign change */ } } else { /* Copy last partial block(s) verbatim */ jcopy_block_row(src_row_ptr + dst_blk_x + x_crop_blocks, dst_row_ptr + dst_blk_x, (JDIMENSION) 1); } } } } } } LOCAL(void) do_flip_v (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, JDIMENSION x_crop_offset, JDIMENSION y_crop_offset, jvirt_barray_ptr *src_coef_arrays, jvirt_barray_ptr *dst_coef_arrays) /* Vertical flip */ { JDIMENSION MCU_rows, comp_height, dst_blk_x, dst_blk_y; JDIMENSION x_crop_blocks, y_crop_blocks; int ci, i, j, offset_y; JBLOCKARRAY src_buffer, dst_buffer; JBLOCKROW src_row_ptr, dst_row_ptr; JCOEFPTR src_ptr, dst_ptr; jpeg_component_info *compptr; /* We output into a separate array because we can't touch different * rows of the source virtual array simultaneously. Otherwise, this * is a pretty straightforward analog of horizontal flip. * Within a DCT block, vertical mirroring is done by changing the signs * of odd-numbered rows. * Partial iMCUs at the bottom edge are copied verbatim. */ MCU_rows = srcinfo->output_height / (dstinfo->max_v_samp_factor * dstinfo_min_DCT_v_scaled_size); for (ci = 0; ci < dstinfo->num_components; ci++) { compptr = dstinfo->comp_info + ci; comp_height = MCU_rows * compptr->v_samp_factor; x_crop_blocks = x_crop_offset * compptr->h_samp_factor; y_crop_blocks = y_crop_offset * compptr->v_samp_factor; for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; dst_blk_y += compptr->v_samp_factor) { dst_buffer = (*srcinfo->mem->access_virt_barray) ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y, (JDIMENSION) compptr->v_samp_factor, TRUE); if (y_crop_blocks + dst_blk_y < comp_height) { /* Row is within the mirrorable area. */ src_buffer = (*srcinfo->mem->access_virt_barray) ((j_common_ptr) srcinfo, src_coef_arrays[ci], comp_height - y_crop_blocks - dst_blk_y - (JDIMENSION) compptr->v_samp_factor, (JDIMENSION) compptr->v_samp_factor, FALSE); } else { /* Bottom-edge blocks will be copied verbatim. */ src_buffer = (*srcinfo->mem->access_virt_barray) ((j_common_ptr) srcinfo, src_coef_arrays[ci], dst_blk_y + y_crop_blocks, (JDIMENSION) compptr->v_samp_factor, FALSE); } for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { if (y_crop_blocks + dst_blk_y < comp_height) { /* Row is within the mirrorable area. */ dst_row_ptr = dst_buffer[offset_y]; src_row_ptr = src_buffer[compptr->v_samp_factor - offset_y - 1]; src_row_ptr += x_crop_blocks; for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; dst_blk_x++) { dst_ptr = dst_row_ptr[dst_blk_x]; src_ptr = src_row_ptr[dst_blk_x]; for (i = 0; i < DCTSIZE; i += 2) { /* copy even row */ for (j = 0; j < DCTSIZE; j++) *dst_ptr++ = *src_ptr++; /* copy odd row with sign change */ for (j = 0; j < DCTSIZE; j++) *dst_ptr++ = - *src_ptr++; } } } else { /* Just copy row verbatim. */ jcopy_block_row(src_buffer[offset_y] + x_crop_blocks, dst_buffer[offset_y], compptr->width_in_blocks); } } } } } LOCAL(void) do_transpose (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, JDIMENSION x_crop_offset, JDIMENSION y_crop_offset, jvirt_barray_ptr *src_coef_arrays, jvirt_barray_ptr *dst_coef_arrays) /* Transpose source into destination */ { JDIMENSION dst_blk_x, dst_blk_y, x_crop_blocks, y_crop_blocks; int ci, i, j, offset_x, offset_y; JBLOCKARRAY src_buffer, dst_buffer; JCOEFPTR src_ptr, dst_ptr; jpeg_component_info *compptr; /* Transposing pixels within a block just requires transposing the * DCT coefficients. * Partial iMCUs at the edges require no special treatment; we simply * process all the available DCT blocks for every component. */ for (ci = 0; ci < dstinfo->num_components; ci++) { compptr = dstinfo->comp_info + ci; x_crop_blocks = x_crop_offset * compptr->h_samp_factor; y_crop_blocks = y_crop_offset * compptr->v_samp_factor; for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; dst_blk_y += compptr->v_samp_factor) { dst_buffer = (*srcinfo->mem->access_virt_barray) ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y, (JDIMENSION) compptr->v_samp_factor, TRUE); for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; dst_blk_x += compptr->h_samp_factor) { src_buffer = (*srcinfo->mem->access_virt_barray) ((j_common_ptr) srcinfo, src_coef_arrays[ci], dst_blk_x + x_crop_blocks, (JDIMENSION) compptr->h_samp_factor, FALSE); for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) { dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x]; src_ptr = src_buffer[offset_x][dst_blk_y + offset_y + y_crop_blocks]; for (i = 0; i < DCTSIZE; i++) for (j = 0; j < DCTSIZE; j++) dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; } } } } } } LOCAL(void) do_rot_90 (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, JDIMENSION x_crop_offset, JDIMENSION y_crop_offset, jvirt_barray_ptr *src_coef_arrays, jvirt_barray_ptr *dst_coef_arrays) /* 90 degree rotation is equivalent to * 1. Transposing the image; * 2. Horizontal mirroring. * These two steps are merged into a single processing routine. */ { JDIMENSION MCU_cols, comp_width, dst_blk_x, dst_blk_y; JDIMENSION x_crop_blocks, y_crop_blocks; int ci, i, j, offset_x, offset_y; JBLOCKARRAY src_buffer, dst_buffer; JCOEFPTR src_ptr, dst_ptr; jpeg_component_info *compptr; /* Because of the horizontal mirror step, we can't process partial iMCUs * at the (output) right edge properly. They just get transposed and * not mirrored. */ MCU_cols = srcinfo->output_height / (dstinfo->max_h_samp_factor * dstinfo_min_DCT_h_scaled_size); for (ci = 0; ci < dstinfo->num_components; ci++) { compptr = dstinfo->comp_info + ci; comp_width = MCU_cols * compptr->h_samp_factor; x_crop_blocks = x_crop_offset * compptr->h_samp_factor; y_crop_blocks = y_crop_offset * compptr->v_samp_factor; for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; dst_blk_y += compptr->v_samp_factor) { dst_buffer = (*srcinfo->mem->access_virt_barray) ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y, (JDIMENSION) compptr->v_samp_factor, TRUE); for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; dst_blk_x += compptr->h_samp_factor) { if (x_crop_blocks + dst_blk_x < comp_width) { /* Block is within the mirrorable area. */ src_buffer = (*srcinfo->mem->access_virt_barray) ((j_common_ptr) srcinfo, src_coef_arrays[ci], comp_width - x_crop_blocks - dst_blk_x - (JDIMENSION) compptr->h_samp_factor, (JDIMENSION) compptr->h_samp_factor, FALSE); } else { /* Edge blocks are transposed but not mirrored. */ src_buffer = (*srcinfo->mem->access_virt_barray) ((j_common_ptr) srcinfo, src_coef_arrays[ci], dst_blk_x + x_crop_blocks, (JDIMENSION) compptr->h_samp_factor, FALSE); } for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) { dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x]; if (x_crop_blocks + dst_blk_x < comp_width) { /* Block is within the mirrorable area. */ src_ptr = src_buffer[compptr->h_samp_factor - offset_x - 1] [dst_blk_y + offset_y + y_crop_blocks]; for (i = 0; i < DCTSIZE; i++) { for (j = 0; j < DCTSIZE; j++) dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; i++; for (j = 0; j < DCTSIZE; j++) dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j]; } } else { /* Edge blocks are transposed but not mirrored. */ src_ptr = src_buffer[offset_x] [dst_blk_y + offset_y + y_crop_blocks]; for (i = 0; i < DCTSIZE; i++) for (j = 0; j < DCTSIZE; j++) dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; } } } } } } } LOCAL(void) do_rot_270 (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, JDIMENSION x_crop_offset, JDIMENSION y_crop_offset, jvirt_barray_ptr *src_coef_arrays, jvirt_barray_ptr *dst_coef_arrays) /* 270 degree rotation is equivalent to * 1. Horizontal mirroring; * 2. Transposing the image. * These two steps are merged into a single processing routine. */ { JDIMENSION MCU_rows, comp_height, dst_blk_x, dst_blk_y; JDIMENSION x_crop_blocks, y_crop_blocks; int ci, i, j, offset_x, offset_y; JBLOCKARRAY src_buffer, dst_buffer; JCOEFPTR src_ptr, dst_ptr; jpeg_component_info *compptr; /* Because of the horizontal mirror step, we can't process partial iMCUs * at the (output) bottom edge properly. They just get transposed and * not mirrored. */ MCU_rows = srcinfo->output_width / (dstinfo->max_v_samp_factor * dstinfo_min_DCT_v_scaled_size); for (ci = 0; ci < dstinfo->num_components; ci++) { compptr = dstinfo->comp_info + ci; comp_height = MCU_rows * compptr->v_samp_factor; x_crop_blocks = x_crop_offset * compptr->h_samp_factor; y_crop_blocks = y_crop_offset * compptr->v_samp_factor; for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; dst_blk_y += compptr->v_samp_factor) { dst_buffer = (*srcinfo->mem->access_virt_barray) ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y, (JDIMENSION) compptr->v_samp_factor, TRUE); for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; dst_blk_x += compptr->h_samp_factor) { src_buffer = (*srcinfo->mem->access_virt_barray) ((j_common_ptr) srcinfo, src_coef_arrays[ci], dst_blk_x + x_crop_blocks, (JDIMENSION) compptr->h_samp_factor, FALSE); for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) { dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x]; if (y_crop_blocks + dst_blk_y < comp_height) { /* Block is within the mirrorable area. */ src_ptr = src_buffer[offset_x] [comp_height - y_crop_blocks - dst_blk_y - offset_y - 1]; for (i = 0; i < DCTSIZE; i++) { for (j = 0; j < DCTSIZE; j++) { dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; j++; dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j]; } } } else { /* Edge blocks are transposed but not mirrored. */ src_ptr = src_buffer[offset_x] [dst_blk_y + offset_y + y_crop_blocks]; for (i = 0; i < DCTSIZE; i++) for (j = 0; j < DCTSIZE; j++) dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; } } } } } } } LOCAL(void) do_rot_180 (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, JDIMENSION x_crop_offset, JDIMENSION y_crop_offset, jvirt_barray_ptr *src_coef_arrays, jvirt_barray_ptr *dst_coef_arrays) /* 180 degree rotation is equivalent to * 1. Vertical mirroring; * 2. Horizontal mirroring. * These two steps are merged into a single processing routine. */ { JDIMENSION MCU_cols, MCU_rows, comp_width, comp_height, dst_blk_x, dst_blk_y; JDIMENSION x_crop_blocks, y_crop_blocks; int ci, i, j, offset_y; JBLOCKARRAY src_buffer, dst_buffer; JBLOCKROW src_row_ptr, dst_row_ptr; JCOEFPTR src_ptr, dst_ptr; jpeg_component_info *compptr; MCU_cols = srcinfo->output_width / (dstinfo->max_h_samp_factor * dstinfo_min_DCT_h_scaled_size); MCU_rows = srcinfo->output_height / (dstinfo->max_v_samp_factor * dstinfo_min_DCT_v_scaled_size); for (ci = 0; ci < dstinfo->num_components; ci++) { compptr = dstinfo->comp_info + ci; comp_width = MCU_cols * compptr->h_samp_factor; comp_height = MCU_rows * compptr->v_samp_factor; x_crop_blocks = x_crop_offset * compptr->h_samp_factor; y_crop_blocks = y_crop_offset * compptr->v_samp_factor; for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; dst_blk_y += compptr->v_samp_factor) { dst_buffer = (*srcinfo->mem->access_virt_barray) ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y, (JDIMENSION) compptr->v_samp_factor, TRUE); if (y_crop_blocks + dst_blk_y < comp_height) { /* Row is within the vertically mirrorable area. */ src_buffer = (*srcinfo->mem->access_virt_barray) ((j_common_ptr) srcinfo, src_coef_arrays[ci], comp_height - y_crop_blocks - dst_blk_y - (JDIMENSION) compptr->v_samp_factor, (JDIMENSION) compptr->v_samp_factor, FALSE); } else { /* Bottom-edge rows are only mirrored horizontally. */ src_buffer = (*srcinfo->mem->access_virt_barray) ((j_common_ptr) srcinfo, src_coef_arrays[ci], dst_blk_y + y_crop_blocks, (JDIMENSION) compptr->v_samp_factor, FALSE); } for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { dst_row_ptr = dst_buffer[offset_y]; if (y_crop_blocks + dst_blk_y < comp_height) { /* Row is within the mirrorable area. */ src_row_ptr = src_buffer[compptr->v_samp_factor - offset_y - 1]; for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; dst_blk_x++) { dst_ptr = dst_row_ptr[dst_blk_x]; if (x_crop_blocks + dst_blk_x < comp_width) { /* Process the blocks that can be mirrored both ways. */ src_ptr = src_row_ptr[comp_width - x_crop_blocks - dst_blk_x - 1]; for (i = 0; i < DCTSIZE; i += 2) { /* For even row, negate every odd column. */ for (j = 0; j < DCTSIZE; j += 2) { *dst_ptr++ = *src_ptr++; *dst_ptr++ = - *src_ptr++; } /* For odd row, negate every even column. */ for (j = 0; j < DCTSIZE; j += 2) { *dst_ptr++ = - *src_ptr++; *dst_ptr++ = *src_ptr++; } } } else { /* Any remaining right-edge blocks are only mirrored vertically. */ src_ptr = src_row_ptr[x_crop_blocks + dst_blk_x]; for (i = 0; i < DCTSIZE; i += 2) { for (j = 0; j < DCTSIZE; j++) *dst_ptr++ = *src_ptr++; for (j = 0; j < DCTSIZE; j++) *dst_ptr++ = - *src_ptr++; } } } } else { /* Remaining rows are just mirrored horizontally. */ src_row_ptr = src_buffer[offset_y]; for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; dst_blk_x++) { if (x_crop_blocks + dst_blk_x < comp_width) { /* Process the blocks that can be mirrored. */ dst_ptr = dst_row_ptr[dst_blk_x]; src_ptr = src_row_ptr[comp_width - x_crop_blocks - dst_blk_x - 1]; for (i = 0; i < DCTSIZE2; i += 2) { *dst_ptr++ = *src_ptr++; *dst_ptr++ = - *src_ptr++; } } else { /* Any remaining right-edge blocks are only copied. */ jcopy_block_row(src_row_ptr + dst_blk_x + x_crop_blocks, dst_row_ptr + dst_blk_x, (JDIMENSION) 1); } } } } } } } LOCAL(void) do_transverse (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, JDIMENSION x_crop_offset, JDIMENSION y_crop_offset, jvirt_barray_ptr *src_coef_arrays, jvirt_barray_ptr *dst_coef_arrays) /* Transverse transpose is equivalent to * 1. 180 degree rotation; * 2. Transposition; * or * 1. Horizontal mirroring; * 2. Transposition; * 3. Horizontal mirroring. * These steps are merged into a single processing routine. */ { JDIMENSION MCU_cols, MCU_rows, comp_width, comp_height, dst_blk_x, dst_blk_y; JDIMENSION x_crop_blocks, y_crop_blocks; int ci, i, j, offset_x, offset_y; JBLOCKARRAY src_buffer, dst_buffer; JCOEFPTR src_ptr, dst_ptr; jpeg_component_info *compptr; MCU_cols = srcinfo->output_height / (dstinfo->max_h_samp_factor * dstinfo_min_DCT_h_scaled_size); MCU_rows = srcinfo->output_width / (dstinfo->max_v_samp_factor * dstinfo_min_DCT_v_scaled_size); for (ci = 0; ci < dstinfo->num_components; ci++) { compptr = dstinfo->comp_info + ci; comp_width = MCU_cols * compptr->h_samp_factor; comp_height = MCU_rows * compptr->v_samp_factor; x_crop_blocks = x_crop_offset * compptr->h_samp_factor; y_crop_blocks = y_crop_offset * compptr->v_samp_factor; for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; dst_blk_y += compptr->v_samp_factor) { dst_buffer = (*srcinfo->mem->access_virt_barray) ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y, (JDIMENSION) compptr->v_samp_factor, TRUE); for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; dst_blk_x += compptr->h_samp_factor) { if (x_crop_blocks + dst_blk_x < comp_width) { /* Block is within the mirrorable area. */ src_buffer = (*srcinfo->mem->access_virt_barray) ((j_common_ptr) srcinfo, src_coef_arrays[ci], comp_width - x_crop_blocks - dst_blk_x - (JDIMENSION) compptr->h_samp_factor, (JDIMENSION) compptr->h_samp_factor, FALSE); } else { src_buffer = (*srcinfo->mem->access_virt_barray) ((j_common_ptr) srcinfo, src_coef_arrays[ci], dst_blk_x + x_crop_blocks, (JDIMENSION) compptr->h_samp_factor, FALSE); } for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) { dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x]; if (y_crop_blocks + dst_blk_y < comp_height) { if (x_crop_blocks + dst_blk_x < comp_width) { /* Block is within the mirrorable area. */ src_ptr = src_buffer[compptr->h_samp_factor - offset_x - 1] [comp_height - y_crop_blocks - dst_blk_y - offset_y - 1]; for (i = 0; i < DCTSIZE; i++) { for (j = 0; j < DCTSIZE; j++) { dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; j++; dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j]; } i++; for (j = 0; j < DCTSIZE; j++) { dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j]; j++; dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; } } } else { /* Right-edge blocks are mirrored in y only */ src_ptr = src_buffer[offset_x] [comp_height - y_crop_blocks - dst_blk_y - offset_y - 1]; for (i = 0; i < DCTSIZE; i++) { for (j = 0; j < DCTSIZE; j++) { dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; j++; dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j]; } } } } else { if (x_crop_blocks + dst_blk_x < comp_width) { /* Bottom-edge blocks are mirrored in x only */ src_ptr = src_buffer[compptr->h_samp_factor - offset_x - 1] [dst_blk_y + offset_y + y_crop_blocks]; for (i = 0; i < DCTSIZE; i++) { for (j = 0; j < DCTSIZE; j++) dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; i++; for (j = 0; j < DCTSIZE; j++) dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j]; } } else { /* At lower right corner, just transpose, no mirroring */ src_ptr = src_buffer[offset_x] [dst_blk_y + offset_y + y_crop_blocks]; for (i = 0; i < DCTSIZE; i++) for (j = 0; j < DCTSIZE; j++) dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; } } } } } } } } /* Parse an unsigned integer: subroutine for jtransform_parse_crop_spec. * Returns TRUE if valid integer found, FALSE if not. * *strptr is advanced over the digit string, and *result is set to its value. */ LOCAL(boolean) jt_read_integer (const char ** strptr, JDIMENSION * result) { const char * ptr = *strptr; JDIMENSION val = 0; for (; isdigit(*ptr); ptr++) { val = val * 10 + (JDIMENSION) (*ptr - '0'); } *result = val; if (ptr == *strptr) return FALSE; /* oops, no digits */ *strptr = ptr; return TRUE; } /* Parse a crop specification (written in X11 geometry style). * The routine returns TRUE if the spec string is valid, FALSE if not. * * The crop spec string should have the format * [f]x[f]{+-}{+-} * where width, height, xoffset, and yoffset are unsigned integers. * Each of the elements can be omitted to indicate a default value. * (A weakness of this style is that it is not possible to omit xoffset * while specifying yoffset, since they look alike.) * * This code is loosely based on XParseGeometry from the X11 distribution. */ GLOBAL(boolean) jtransform_parse_crop_spec (jpeg_transform_info *info, const char *spec) { info->crop = FALSE; info->crop_width_set = JCROP_UNSET; info->crop_height_set = JCROP_UNSET; info->crop_xoffset_set = JCROP_UNSET; info->crop_yoffset_set = JCROP_UNSET; if (isdigit(*spec)) { /* fetch width */ if (! jt_read_integer(&spec, &info->crop_width)) return FALSE; if (*spec == 'f' || *spec == 'F') { spec++; info->crop_width_set = JCROP_FORCE; } else info->crop_width_set = JCROP_POS; } if (*spec == 'x' || *spec == 'X') { /* fetch height */ spec++; if (! jt_read_integer(&spec, &info->crop_height)) return FALSE; if (*spec == 'f' || *spec == 'F') { spec++; info->crop_height_set = JCROP_FORCE; } else info->crop_height_set = JCROP_POS; } if (*spec == '+' || *spec == '-') { /* fetch xoffset */ info->crop_xoffset_set = (*spec == '-') ? JCROP_NEG : JCROP_POS; spec++; if (! jt_read_integer(&spec, &info->crop_xoffset)) return FALSE; } if (*spec == '+' || *spec == '-') { /* fetch yoffset */ info->crop_yoffset_set = (*spec == '-') ? JCROP_NEG : JCROP_POS; spec++; if (! jt_read_integer(&spec, &info->crop_yoffset)) return FALSE; } /* We had better have gotten to the end of the string. */ if (*spec != '\0') return FALSE; info->crop = TRUE; return TRUE; } /* Trim off any partial iMCUs on the indicated destination edge */ LOCAL(void) trim_right_edge (jpeg_transform_info *info, JDIMENSION full_width) { JDIMENSION MCU_cols; MCU_cols = info->output_width / info->iMCU_sample_width; if (MCU_cols > 0 && info->x_crop_offset + MCU_cols == full_width / info->iMCU_sample_width) info->output_width = MCU_cols * info->iMCU_sample_width; } LOCAL(void) trim_bottom_edge (jpeg_transform_info *info, JDIMENSION full_height) { JDIMENSION MCU_rows; MCU_rows = info->output_height / info->iMCU_sample_height; if (MCU_rows > 0 && info->y_crop_offset + MCU_rows == full_height / info->iMCU_sample_height) info->output_height = MCU_rows * info->iMCU_sample_height; } /* Request any required workspace. * * This routine figures out the size that the output image will be * (which implies that all the transform parameters must be set before * it is called). * * We allocate the workspace virtual arrays from the source decompression * object, so that all the arrays (both the original data and the workspace) * will be taken into account while making memory management decisions. * Hence, this routine must be called after jpeg_read_header (which reads * the image dimensions) and before jpeg_read_coefficients (which realizes * the source's virtual arrays). * * This function returns FALSE right away if -perfect is given * and transformation is not perfect. Otherwise returns TRUE. */ GLOBAL(boolean) jtransform_request_workspace (j_decompress_ptr srcinfo, jpeg_transform_info *info) { jvirt_barray_ptr *coef_arrays; boolean need_workspace, transpose_it; jpeg_component_info *compptr; JDIMENSION xoffset, yoffset; JDIMENSION width_in_iMCUs, height_in_iMCUs; JDIMENSION width_in_blocks, height_in_blocks; int ci, h_samp_factor, v_samp_factor; /* Determine number of components in output image */ if (info->force_grayscale && srcinfo->jpeg_color_space == JCS_YCbCr && srcinfo->num_components == 3) /* We'll only process the first component */ info->num_components = 1; else /* Process all the components */ info->num_components = srcinfo->num_components; /* Compute output image dimensions and related values. */ #if JPEG_LIB_VERSION >= 80 jpeg_core_output_dimensions(srcinfo); #else srcinfo->output_width = srcinfo->image_width; srcinfo->output_height = srcinfo->image_height; #endif /* Return right away if -perfect is given and transformation is not perfect. */ if (info->perfect) { if (info->num_components == 1) { if (!jtransform_perfect_transform(srcinfo->output_width, srcinfo->output_height, srcinfo->_min_DCT_h_scaled_size, srcinfo->_min_DCT_v_scaled_size, info->transform)) return FALSE; } else { if (!jtransform_perfect_transform(srcinfo->output_width, srcinfo->output_height, srcinfo->max_h_samp_factor * srcinfo->_min_DCT_h_scaled_size, srcinfo->max_v_samp_factor * srcinfo->_min_DCT_v_scaled_size, info->transform)) return FALSE; } } /* If there is only one output component, force the iMCU size to be 1; * else use the source iMCU size. (This allows us to do the right thing * when reducing color to grayscale, and also provides a handy way of * cleaning up "funny" grayscale images whose sampling factors are not 1x1.) */ switch (info->transform) { case JXFORM_TRANSPOSE: case JXFORM_TRANSVERSE: case JXFORM_ROT_90: case JXFORM_ROT_270: info->output_width = srcinfo->output_height; info->output_height = srcinfo->output_width; if (info->num_components == 1) { info->iMCU_sample_width = srcinfo->_min_DCT_v_scaled_size; info->iMCU_sample_height = srcinfo->_min_DCT_h_scaled_size; } else { info->iMCU_sample_width = srcinfo->max_v_samp_factor * srcinfo->_min_DCT_v_scaled_size; info->iMCU_sample_height = srcinfo->max_h_samp_factor * srcinfo->_min_DCT_h_scaled_size; } break; default: info->output_width = srcinfo->output_width; info->output_height = srcinfo->output_height; if (info->num_components == 1) { info->iMCU_sample_width = srcinfo->_min_DCT_h_scaled_size; info->iMCU_sample_height = srcinfo->_min_DCT_v_scaled_size; } else { info->iMCU_sample_width = srcinfo->max_h_samp_factor * srcinfo->_min_DCT_h_scaled_size; info->iMCU_sample_height = srcinfo->max_v_samp_factor * srcinfo->_min_DCT_v_scaled_size; } break; } /* If cropping has been requested, compute the crop area's position and * dimensions, ensuring that its upper left corner falls at an iMCU boundary. */ if (info->crop) { /* Insert default values for unset crop parameters */ if (info->crop_xoffset_set == JCROP_UNSET) info->crop_xoffset = 0; /* default to +0 */ if (info->crop_yoffset_set == JCROP_UNSET) info->crop_yoffset = 0; /* default to +0 */ if (info->crop_xoffset >= info->output_width || info->crop_yoffset >= info->output_height) ERREXIT(srcinfo, JERR_BAD_CROP_SPEC); if (info->crop_width_set == JCROP_UNSET) info->crop_width = info->output_width - info->crop_xoffset; if (info->crop_height_set == JCROP_UNSET) info->crop_height = info->output_height - info->crop_yoffset; /* Ensure parameters are valid */ if (info->crop_width <= 0 || info->crop_width > info->output_width || info->crop_height <= 0 || info->crop_height > info->output_height || info->crop_xoffset > info->output_width - info->crop_width || info->crop_yoffset > info->output_height - info->crop_height) ERREXIT(srcinfo, JERR_BAD_CROP_SPEC); /* Convert negative crop offsets into regular offsets */ if (info->crop_xoffset_set == JCROP_NEG) xoffset = info->output_width - info->crop_width - info->crop_xoffset; else xoffset = info->crop_xoffset; if (info->crop_yoffset_set == JCROP_NEG) yoffset = info->output_height - info->crop_height - info->crop_yoffset; else yoffset = info->crop_yoffset; /* Now adjust so that upper left corner falls at an iMCU boundary */ if (info->crop_width_set == JCROP_FORCE) info->output_width = info->crop_width; else info->output_width = info->crop_width + (xoffset % info->iMCU_sample_width); if (info->crop_height_set == JCROP_FORCE) info->output_height = info->crop_height; else info->output_height = info->crop_height + (yoffset % info->iMCU_sample_height); /* Save x/y offsets measured in iMCUs */ info->x_crop_offset = xoffset / info->iMCU_sample_width; info->y_crop_offset = yoffset / info->iMCU_sample_height; } else { info->x_crop_offset = 0; info->y_crop_offset = 0; } /* Figure out whether we need workspace arrays, * and if so whether they are transposed relative to the source. */ need_workspace = FALSE; transpose_it = FALSE; switch (info->transform) { case JXFORM_NONE: if (info->x_crop_offset != 0 || info->y_crop_offset != 0) need_workspace = TRUE; /* No workspace needed if neither cropping nor transforming */ break; case JXFORM_FLIP_H: if (info->trim) trim_right_edge(info, srcinfo->output_width); if (info->y_crop_offset != 0 || info->slow_hflip) need_workspace = TRUE; /* do_flip_h_no_crop doesn't need a workspace array */ break; case JXFORM_FLIP_V: if (info->trim) trim_bottom_edge(info, srcinfo->output_height); /* Need workspace arrays having same dimensions as source image. */ need_workspace = TRUE; break; case JXFORM_TRANSPOSE: /* transpose does NOT have to trim anything */ /* Need workspace arrays having transposed dimensions. */ need_workspace = TRUE; transpose_it = TRUE; break; case JXFORM_TRANSVERSE: if (info->trim) { trim_right_edge(info, srcinfo->output_height); trim_bottom_edge(info, srcinfo->output_width); } /* Need workspace arrays having transposed dimensions. */ need_workspace = TRUE; transpose_it = TRUE; break; case JXFORM_ROT_90: if (info->trim) trim_right_edge(info, srcinfo->output_height); /* Need workspace arrays having transposed dimensions. */ need_workspace = TRUE; transpose_it = TRUE; break; case JXFORM_ROT_180: if (info->trim) { trim_right_edge(info, srcinfo->output_width); trim_bottom_edge(info, srcinfo->output_height); } /* Need workspace arrays having same dimensions as source image. */ need_workspace = TRUE; break; case JXFORM_ROT_270: if (info->trim) trim_bottom_edge(info, srcinfo->output_width); /* Need workspace arrays having transposed dimensions. */ need_workspace = TRUE; transpose_it = TRUE; break; } /* Allocate workspace if needed. * Note that we allocate arrays padded out to the next iMCU boundary, * so that transform routines need not worry about missing edge blocks. */ if (need_workspace) { coef_arrays = (jvirt_barray_ptr *) (*srcinfo->mem->alloc_small) ((j_common_ptr) srcinfo, JPOOL_IMAGE, sizeof(jvirt_barray_ptr) * info->num_components); width_in_iMCUs = (JDIMENSION) jdiv_round_up((long) info->output_width, (long) info->iMCU_sample_width); height_in_iMCUs = (JDIMENSION) jdiv_round_up((long) info->output_height, (long) info->iMCU_sample_height); for (ci = 0; ci < info->num_components; ci++) { compptr = srcinfo->comp_info + ci; if (info->num_components == 1) { /* we're going to force samp factors to 1x1 in this case */ h_samp_factor = v_samp_factor = 1; } else if (transpose_it) { h_samp_factor = compptr->v_samp_factor; v_samp_factor = compptr->h_samp_factor; } else { h_samp_factor = compptr->h_samp_factor; v_samp_factor = compptr->v_samp_factor; } width_in_blocks = width_in_iMCUs * h_samp_factor; height_in_blocks = height_in_iMCUs * v_samp_factor; coef_arrays[ci] = (*srcinfo->mem->request_virt_barray) ((j_common_ptr) srcinfo, JPOOL_IMAGE, FALSE, width_in_blocks, height_in_blocks, (JDIMENSION) v_samp_factor); } info->workspace_coef_arrays = coef_arrays; } else info->workspace_coef_arrays = NULL; return TRUE; } /* Transpose destination image parameters */ LOCAL(void) transpose_critical_parameters (j_compress_ptr dstinfo) { int tblno, i, j, ci, itemp; jpeg_component_info *compptr; JQUANT_TBL *qtblptr; JDIMENSION jtemp; UINT16 qtemp; /* Transpose image dimensions */ jtemp = dstinfo->image_width; dstinfo->image_width = dstinfo->image_height; dstinfo->image_height = jtemp; #if JPEG_LIB_VERSION >= 70 itemp = dstinfo->min_DCT_h_scaled_size; dstinfo->min_DCT_h_scaled_size = dstinfo->min_DCT_v_scaled_size; dstinfo->min_DCT_v_scaled_size = itemp; #endif /* Transpose sampling factors */ for (ci = 0; ci < dstinfo->num_components; ci++) { compptr = dstinfo->comp_info + ci; itemp = compptr->h_samp_factor; compptr->h_samp_factor = compptr->v_samp_factor; compptr->v_samp_factor = itemp; } /* Transpose quantization tables */ for (tblno = 0; tblno < NUM_QUANT_TBLS; tblno++) { qtblptr = dstinfo->quant_tbl_ptrs[tblno]; if (qtblptr != NULL) { for (i = 0; i < DCTSIZE; i++) { for (j = 0; j < i; j++) { qtemp = qtblptr->quantval[i*DCTSIZE+j]; qtblptr->quantval[i*DCTSIZE+j] = qtblptr->quantval[j*DCTSIZE+i]; qtblptr->quantval[j*DCTSIZE+i] = qtemp; } } } } } /* Adjust Exif image parameters. * * We try to adjust the Tags ExifImageWidth and ExifImageHeight if possible. */ #if JPEG_LIB_VERSION >= 70 LOCAL(void) adjust_exif_parameters (JOCTET * data, unsigned int length, JDIMENSION new_width, JDIMENSION new_height) { boolean is_motorola; /* Flag for byte order */ unsigned int number_of_tags, tagnum; unsigned int firstoffset, offset; JDIMENSION new_value; if (length < 12) return; /* Length of an IFD entry */ /* Discover byte order */ if (GETJOCTET(data[0]) == 0x49 && GETJOCTET(data[1]) == 0x49) is_motorola = FALSE; else if (GETJOCTET(data[0]) == 0x4D && GETJOCTET(data[1]) == 0x4D) is_motorola = TRUE; else return; /* Check Tag Mark */ if (is_motorola) { if (GETJOCTET(data[2]) != 0) return; if (GETJOCTET(data[3]) != 0x2A) return; } else { if (GETJOCTET(data[3]) != 0) return; if (GETJOCTET(data[2]) != 0x2A) return; } /* Get first IFD offset (offset to IFD0) */ if (is_motorola) { if (GETJOCTET(data[4]) != 0) return; if (GETJOCTET(data[5]) != 0) return; firstoffset = GETJOCTET(data[6]); firstoffset <<= 8; firstoffset += GETJOCTET(data[7]); } else { if (GETJOCTET(data[7]) != 0) return; if (GETJOCTET(data[6]) != 0) return; firstoffset = GETJOCTET(data[5]); firstoffset <<= 8; firstoffset += GETJOCTET(data[4]); } if (firstoffset > length - 2) return; /* check end of data segment */ /* Get the number of directory entries contained in this IFD */ if (is_motorola) { number_of_tags = GETJOCTET(data[firstoffset]); number_of_tags <<= 8; number_of_tags += GETJOCTET(data[firstoffset+1]); } else { number_of_tags = GETJOCTET(data[firstoffset+1]); number_of_tags <<= 8; number_of_tags += GETJOCTET(data[firstoffset]); } if (number_of_tags == 0) return; firstoffset += 2; /* Search for ExifSubIFD offset Tag in IFD0 */ for (;;) { if (firstoffset > length - 12) return; /* check end of data segment */ /* Get Tag number */ if (is_motorola) { tagnum = GETJOCTET(data[firstoffset]); tagnum <<= 8; tagnum += GETJOCTET(data[firstoffset+1]); } else { tagnum = GETJOCTET(data[firstoffset+1]); tagnum <<= 8; tagnum += GETJOCTET(data[firstoffset]); } if (tagnum == 0x8769) break; /* found ExifSubIFD offset Tag */ if (--number_of_tags == 0) return; firstoffset += 12; } /* Get the ExifSubIFD offset */ if (is_motorola) { if (GETJOCTET(data[firstoffset+8]) != 0) return; if (GETJOCTET(data[firstoffset+9]) != 0) return; offset = GETJOCTET(data[firstoffset+10]); offset <<= 8; offset += GETJOCTET(data[firstoffset+11]); } else { if (GETJOCTET(data[firstoffset+11]) != 0) return; if (GETJOCTET(data[firstoffset+10]) != 0) return; offset = GETJOCTET(data[firstoffset+9]); offset <<= 8; offset += GETJOCTET(data[firstoffset+8]); } if (offset > length - 2) return; /* check end of data segment */ /* Get the number of directory entries contained in this SubIFD */ if (is_motorola) { number_of_tags = GETJOCTET(data[offset]); number_of_tags <<= 8; number_of_tags += GETJOCTET(data[offset+1]); } else { number_of_tags = GETJOCTET(data[offset+1]); number_of_tags <<= 8; number_of_tags += GETJOCTET(data[offset]); } if (number_of_tags < 2) return; offset += 2; /* Search for ExifImageWidth and ExifImageHeight Tags in this SubIFD */ do { if (offset > length - 12) return; /* check end of data segment */ /* Get Tag number */ if (is_motorola) { tagnum = GETJOCTET(data[offset]); tagnum <<= 8; tagnum += GETJOCTET(data[offset+1]); } else { tagnum = GETJOCTET(data[offset+1]); tagnum <<= 8; tagnum += GETJOCTET(data[offset]); } if (tagnum == 0xA002 || tagnum == 0xA003) { if (tagnum == 0xA002) new_value = new_width; /* ExifImageWidth Tag */ else new_value = new_height; /* ExifImageHeight Tag */ if (is_motorola) { data[offset+2] = 0; /* Format = unsigned long (4 octets) */ data[offset+3] = 4; data[offset+4] = 0; /* Number Of Components = 1 */ data[offset+5] = 0; data[offset+6] = 0; data[offset+7] = 1; data[offset+8] = 0; data[offset+9] = 0; data[offset+10] = (JOCTET)((new_value >> 8) & 0xFF); data[offset+11] = (JOCTET)(new_value & 0xFF); } else { data[offset+2] = 4; /* Format = unsigned long (4 octets) */ data[offset+3] = 0; data[offset+4] = 1; /* Number Of Components = 1 */ data[offset+5] = 0; data[offset+6] = 0; data[offset+7] = 0; data[offset+8] = (JOCTET)(new_value & 0xFF); data[offset+9] = (JOCTET)((new_value >> 8) & 0xFF); data[offset+10] = 0; data[offset+11] = 0; } } offset += 12; } while (--number_of_tags); } #endif /* Adjust output image parameters as needed. * * This must be called after jpeg_copy_critical_parameters() * and before jpeg_write_coefficients(). * * The return value is the set of virtual coefficient arrays to be written * (either the ones allocated by jtransform_request_workspace, or the * original source data arrays). The caller will need to pass this value * to jpeg_write_coefficients(). */ GLOBAL(jvirt_barray_ptr *) jtransform_adjust_parameters (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, jvirt_barray_ptr *src_coef_arrays, jpeg_transform_info *info) { /* If force-to-grayscale is requested, adjust destination parameters */ if (info->force_grayscale) { /* First, ensure we have YCbCr or grayscale data, and that the source's * Y channel is full resolution. (No reasonable person would make Y * be less than full resolution, so actually coping with that case * isn't worth extra code space. But we check it to avoid crashing.) */ if (((dstinfo->jpeg_color_space == JCS_YCbCr && dstinfo->num_components == 3) || (dstinfo->jpeg_color_space == JCS_GRAYSCALE && dstinfo->num_components == 1)) && srcinfo->comp_info[0].h_samp_factor == srcinfo->max_h_samp_factor && srcinfo->comp_info[0].v_samp_factor == srcinfo->max_v_samp_factor) { /* We use jpeg_set_colorspace to make sure subsidiary settings get fixed * properly. Among other things, it sets the target h_samp_factor & * v_samp_factor to 1, which typically won't match the source. * We have to preserve the source's quantization table number, however. */ int sv_quant_tbl_no = dstinfo->comp_info[0].quant_tbl_no; jpeg_set_colorspace(dstinfo, JCS_GRAYSCALE); dstinfo->comp_info[0].quant_tbl_no = sv_quant_tbl_no; } else { /* Sorry, can't do it */ ERREXIT(dstinfo, JERR_CONVERSION_NOTIMPL); } } else if (info->num_components == 1) { /* For a single-component source, we force the destination sampling factors * to 1x1, with or without force_grayscale. This is useful because some * decoders choke on grayscale images with other sampling factors. */ dstinfo->comp_info[0].h_samp_factor = 1; dstinfo->comp_info[0].v_samp_factor = 1; } /* Correct the destination's image dimensions as necessary * for rotate/flip, resize, and crop operations. */ #if JPEG_LIB_VERSION >= 70 dstinfo->jpeg_width = info->output_width; dstinfo->jpeg_height = info->output_height; #endif /* Transpose destination image parameters */ switch (info->transform) { case JXFORM_TRANSPOSE: case JXFORM_TRANSVERSE: case JXFORM_ROT_90: case JXFORM_ROT_270: #if JPEG_LIB_VERSION < 70 dstinfo->image_width = info->output_height; dstinfo->image_height = info->output_width; #endif transpose_critical_parameters(dstinfo); break; default: #if JPEG_LIB_VERSION < 70 dstinfo->image_width = info->output_width; dstinfo->image_height = info->output_height; #endif break; } /* Adjust Exif properties */ if (srcinfo->marker_list != NULL && srcinfo->marker_list->marker == JPEG_APP0+1 && srcinfo->marker_list->data_length >= 6 && GETJOCTET(srcinfo->marker_list->data[0]) == 0x45 && GETJOCTET(srcinfo->marker_list->data[1]) == 0x78 && GETJOCTET(srcinfo->marker_list->data[2]) == 0x69 && GETJOCTET(srcinfo->marker_list->data[3]) == 0x66 && GETJOCTET(srcinfo->marker_list->data[4]) == 0 && GETJOCTET(srcinfo->marker_list->data[5]) == 0) { /* Suppress output of JFIF marker */ dstinfo->write_JFIF_header = FALSE; #if JPEG_LIB_VERSION >= 70 /* Adjust Exif image parameters */ if (dstinfo->jpeg_width != srcinfo->image_width || dstinfo->jpeg_height != srcinfo->image_height) /* Align data segment to start of TIFF structure for parsing */ adjust_exif_parameters(srcinfo->marker_list->data + 6, srcinfo->marker_list->data_length - 6, dstinfo->jpeg_width, dstinfo->jpeg_height); #endif } /* Return the appropriate output data set */ if (info->workspace_coef_arrays != NULL) return info->workspace_coef_arrays; return src_coef_arrays; } /* Execute the actual transformation, if any. * * This must be called *after* jpeg_write_coefficients, because it depends * on jpeg_write_coefficients to have computed subsidiary values such as * the per-component width and height fields in the destination object. * * Note that some transformations will modify the source data arrays! */ GLOBAL(void) jtransform_execute_transform (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, jvirt_barray_ptr *src_coef_arrays, jpeg_transform_info *info) { jvirt_barray_ptr *dst_coef_arrays = info->workspace_coef_arrays; /* Note: conditions tested here should match those in switch statement * in jtransform_request_workspace() */ switch (info->transform) { case JXFORM_NONE: if (info->x_crop_offset != 0 || info->y_crop_offset != 0) do_crop(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset, src_coef_arrays, dst_coef_arrays); break; case JXFORM_FLIP_H: if (info->y_crop_offset != 0 || info->slow_hflip) do_flip_h(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset, src_coef_arrays, dst_coef_arrays); else do_flip_h_no_crop(srcinfo, dstinfo, info->x_crop_offset, src_coef_arrays); break; case JXFORM_FLIP_V: do_flip_v(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset, src_coef_arrays, dst_coef_arrays); break; case JXFORM_TRANSPOSE: do_transpose(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset, src_coef_arrays, dst_coef_arrays); break; case JXFORM_TRANSVERSE: do_transverse(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset, src_coef_arrays, dst_coef_arrays); break; case JXFORM_ROT_90: do_rot_90(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset, src_coef_arrays, dst_coef_arrays); break; case JXFORM_ROT_180: do_rot_180(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset, src_coef_arrays, dst_coef_arrays); break; case JXFORM_ROT_270: do_rot_270(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset, src_coef_arrays, dst_coef_arrays); break; } } /* jtransform_perfect_transform * * Determine whether lossless transformation is perfectly * possible for a specified image and transformation. * * Inputs: * image_width, image_height: source image dimensions. * MCU_width, MCU_height: pixel dimensions of MCU. * transform: transformation identifier. * Parameter sources from initialized jpeg_struct * (after reading source header): * image_width = cinfo.image_width * image_height = cinfo.image_height * MCU_width = cinfo.max_h_samp_factor * cinfo.block_size * MCU_height = cinfo.max_v_samp_factor * cinfo.block_size * Result: * TRUE = perfect transformation possible * FALSE = perfect transformation not possible * (may use custom action then) */ GLOBAL(boolean) jtransform_perfect_transform(JDIMENSION image_width, JDIMENSION image_height, int MCU_width, int MCU_height, JXFORM_CODE transform) { boolean result = TRUE; /* initialize TRUE */ switch (transform) { case JXFORM_FLIP_H: case JXFORM_ROT_270: if (image_width % (JDIMENSION) MCU_width) result = FALSE; break; case JXFORM_FLIP_V: case JXFORM_ROT_90: if (image_height % (JDIMENSION) MCU_height) result = FALSE; break; case JXFORM_TRANSVERSE: case JXFORM_ROT_180: if (image_width % (JDIMENSION) MCU_width) result = FALSE; if (image_height % (JDIMENSION) MCU_height) result = FALSE; break; default: break; } return result; } #endif /* TRANSFORMS_SUPPORTED */ /* Setup decompression object to save desired markers in memory. * This must be called before jpeg_read_header() to have the desired effect. */ GLOBAL(void) jcopy_markers_setup (j_decompress_ptr srcinfo, JCOPY_OPTION option) { #ifdef SAVE_MARKERS_SUPPORTED int m; /* Save comments except under NONE option */ if (option != JCOPYOPT_NONE) { jpeg_save_markers(srcinfo, JPEG_COM, 0xFFFF); } /* Save all types of APPn markers iff ALL option */ if (option == JCOPYOPT_ALL) { for (m = 0; m < 16; m++) jpeg_save_markers(srcinfo, JPEG_APP0 + m, 0xFFFF); } #endif /* SAVE_MARKERS_SUPPORTED */ } /* Copy markers saved in the given source object to the destination object. * This should be called just after jpeg_start_compress() or * jpeg_write_coefficients(). * Note that those routines will have written the SOI, and also the * JFIF APP0 or Adobe APP14 markers if selected. */ GLOBAL(void) jcopy_markers_execute (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, JCOPY_OPTION option) { jpeg_saved_marker_ptr marker; /* In the current implementation, we don't actually need to examine the * option flag here; we just copy everything that got saved. * But to avoid confusion, we do not output JFIF and Adobe APP14 markers * if the encoder library already wrote one. */ for (marker = srcinfo->marker_list; marker != NULL; marker = marker->next) { if (dstinfo->write_JFIF_header && marker->marker == JPEG_APP0 && marker->data_length >= 5 && GETJOCTET(marker->data[0]) == 0x4A && GETJOCTET(marker->data[1]) == 0x46 && GETJOCTET(marker->data[2]) == 0x49 && GETJOCTET(marker->data[3]) == 0x46 && GETJOCTET(marker->data[4]) == 0) continue; /* reject duplicate JFIF */ if (dstinfo->write_Adobe_marker && marker->marker == JPEG_APP0+14 && marker->data_length >= 5 && GETJOCTET(marker->data[0]) == 0x41 && GETJOCTET(marker->data[1]) == 0x64 && GETJOCTET(marker->data[2]) == 0x6F && GETJOCTET(marker->data[3]) == 0x62 && GETJOCTET(marker->data[4]) == 0x65) continue; /* reject duplicate Adobe */ jpeg_write_marker(dstinfo, marker->marker, marker->data, marker->data_length); } } libjpeg-turbo-1.4.2/jcapimin.c0000644000076500007650000002274612600050400013152 00000000000000/* * jcapimin.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1994-1998, Thomas G. Lane. * Modified 2003-2010 by Guido Vollbeding. * It was modified by The libjpeg-turbo Project to include only code relevant * to libjpeg-turbo. * For conditions of distribution and use, see the accompanying README file. * * This file contains application interface code for the compression half * of the JPEG library. These are the "minimum" API routines that may be * needed in either the normal full-compression case or the transcoding-only * case. * * Most of the routines intended to be called directly by an application * are in this file or in jcapistd.c. But also see jcparam.c for * parameter-setup helper routines, jcomapi.c for routines shared by * compression and decompression, and jctrans.c for the transcoding case. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" /* * Initialization of a JPEG compression object. * The error manager must already be set up (in case memory manager fails). */ GLOBAL(void) jpeg_CreateCompress (j_compress_ptr cinfo, int version, size_t structsize) { int i; /* Guard against version mismatches between library and caller. */ cinfo->mem = NULL; /* so jpeg_destroy knows mem mgr not called */ if (version != JPEG_LIB_VERSION) ERREXIT2(cinfo, JERR_BAD_LIB_VERSION, JPEG_LIB_VERSION, version); if (structsize != sizeof(struct jpeg_compress_struct)) ERREXIT2(cinfo, JERR_BAD_STRUCT_SIZE, (int) sizeof(struct jpeg_compress_struct), (int) structsize); /* For debugging purposes, we zero the whole master structure. * But the application has already set the err pointer, and may have set * client_data, so we have to save and restore those fields. * Note: if application hasn't set client_data, tools like Purify may * complain here. */ { struct jpeg_error_mgr * err = cinfo->err; void * client_data = cinfo->client_data; /* ignore Purify complaint here */ MEMZERO(cinfo, sizeof(struct jpeg_compress_struct)); cinfo->err = err; cinfo->client_data = client_data; } cinfo->is_decompressor = FALSE; /* Initialize a memory manager instance for this object */ jinit_memory_mgr((j_common_ptr) cinfo); /* Zero out pointers to permanent structures. */ cinfo->progress = NULL; cinfo->dest = NULL; cinfo->comp_info = NULL; for (i = 0; i < NUM_QUANT_TBLS; i++) { cinfo->quant_tbl_ptrs[i] = NULL; #if JPEG_LIB_VERSION >= 70 cinfo->q_scale_factor[i] = 100; #endif } for (i = 0; i < NUM_HUFF_TBLS; i++) { cinfo->dc_huff_tbl_ptrs[i] = NULL; cinfo->ac_huff_tbl_ptrs[i] = NULL; } #if JPEG_LIB_VERSION >= 80 /* Must do it here for emit_dqt in case jpeg_write_tables is used */ cinfo->block_size = DCTSIZE; cinfo->natural_order = jpeg_natural_order; cinfo->lim_Se = DCTSIZE2-1; #endif cinfo->script_space = NULL; cinfo->input_gamma = 1.0; /* in case application forgets */ /* OK, I'm ready */ cinfo->global_state = CSTATE_START; } /* * Destruction of a JPEG compression object */ GLOBAL(void) jpeg_destroy_compress (j_compress_ptr cinfo) { jpeg_destroy((j_common_ptr) cinfo); /* use common routine */ } /* * Abort processing of a JPEG compression operation, * but don't destroy the object itself. */ GLOBAL(void) jpeg_abort_compress (j_compress_ptr cinfo) { jpeg_abort((j_common_ptr) cinfo); /* use common routine */ } /* * Forcibly suppress or un-suppress all quantization and Huffman tables. * Marks all currently defined tables as already written (if suppress) * or not written (if !suppress). This will control whether they get emitted * by a subsequent jpeg_start_compress call. * * This routine is exported for use by applications that want to produce * abbreviated JPEG datastreams. It logically belongs in jcparam.c, but * since it is called by jpeg_start_compress, we put it here --- otherwise * jcparam.o would be linked whether the application used it or not. */ GLOBAL(void) jpeg_suppress_tables (j_compress_ptr cinfo, boolean suppress) { int i; JQUANT_TBL * qtbl; JHUFF_TBL * htbl; for (i = 0; i < NUM_QUANT_TBLS; i++) { if ((qtbl = cinfo->quant_tbl_ptrs[i]) != NULL) qtbl->sent_table = suppress; } for (i = 0; i < NUM_HUFF_TBLS; i++) { if ((htbl = cinfo->dc_huff_tbl_ptrs[i]) != NULL) htbl->sent_table = suppress; if ((htbl = cinfo->ac_huff_tbl_ptrs[i]) != NULL) htbl->sent_table = suppress; } } /* * Finish JPEG compression. * * If a multipass operating mode was selected, this may do a great deal of * work including most of the actual output. */ GLOBAL(void) jpeg_finish_compress (j_compress_ptr cinfo) { JDIMENSION iMCU_row; if (cinfo->global_state == CSTATE_SCANNING || cinfo->global_state == CSTATE_RAW_OK) { /* Terminate first pass */ if (cinfo->next_scanline < cinfo->image_height) ERREXIT(cinfo, JERR_TOO_LITTLE_DATA); (*cinfo->master->finish_pass) (cinfo); } else if (cinfo->global_state != CSTATE_WRCOEFS) ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); /* Perform any remaining passes */ while (! cinfo->master->is_last_pass) { (*cinfo->master->prepare_for_pass) (cinfo); for (iMCU_row = 0; iMCU_row < cinfo->total_iMCU_rows; iMCU_row++) { if (cinfo->progress != NULL) { cinfo->progress->pass_counter = (long) iMCU_row; cinfo->progress->pass_limit = (long) cinfo->total_iMCU_rows; (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo); } /* We bypass the main controller and invoke coef controller directly; * all work is being done from the coefficient buffer. */ if (! (*cinfo->coef->compress_data) (cinfo, (JSAMPIMAGE) NULL)) ERREXIT(cinfo, JERR_CANT_SUSPEND); } (*cinfo->master->finish_pass) (cinfo); } /* Write EOI, do final cleanup */ (*cinfo->marker->write_file_trailer) (cinfo); (*cinfo->dest->term_destination) (cinfo); /* We can use jpeg_abort to release memory and reset global_state */ jpeg_abort((j_common_ptr) cinfo); } /* * Write a special marker. * This is only recommended for writing COM or APPn markers. * Must be called after jpeg_start_compress() and before * first call to jpeg_write_scanlines() or jpeg_write_raw_data(). */ GLOBAL(void) jpeg_write_marker (j_compress_ptr cinfo, int marker, const JOCTET *dataptr, unsigned int datalen) { void (*write_marker_byte) (j_compress_ptr info, int val); if (cinfo->next_scanline != 0 || (cinfo->global_state != CSTATE_SCANNING && cinfo->global_state != CSTATE_RAW_OK && cinfo->global_state != CSTATE_WRCOEFS)) ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); (*cinfo->marker->write_marker_header) (cinfo, marker, datalen); write_marker_byte = cinfo->marker->write_marker_byte; /* copy for speed */ while (datalen--) { (*write_marker_byte) (cinfo, *dataptr); dataptr++; } } /* Same, but piecemeal. */ GLOBAL(void) jpeg_write_m_header (j_compress_ptr cinfo, int marker, unsigned int datalen) { if (cinfo->next_scanline != 0 || (cinfo->global_state != CSTATE_SCANNING && cinfo->global_state != CSTATE_RAW_OK && cinfo->global_state != CSTATE_WRCOEFS)) ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); (*cinfo->marker->write_marker_header) (cinfo, marker, datalen); } GLOBAL(void) jpeg_write_m_byte (j_compress_ptr cinfo, int val) { (*cinfo->marker->write_marker_byte) (cinfo, val); } /* * Alternate compression function: just write an abbreviated table file. * Before calling this, all parameters and a data destination must be set up. * * To produce a pair of files containing abbreviated tables and abbreviated * image data, one would proceed as follows: * * initialize JPEG object * set JPEG parameters * set destination to table file * jpeg_write_tables(cinfo); * set destination to image file * jpeg_start_compress(cinfo, FALSE); * write data... * jpeg_finish_compress(cinfo); * * jpeg_write_tables has the side effect of marking all tables written * (same as jpeg_suppress_tables(..., TRUE)). Thus a subsequent start_compress * will not re-emit the tables unless it is passed write_all_tables=TRUE. */ GLOBAL(void) jpeg_write_tables (j_compress_ptr cinfo) { if (cinfo->global_state != CSTATE_START) ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); /* (Re)initialize error mgr and destination modules */ (*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo); (*cinfo->dest->init_destination) (cinfo); /* Initialize the marker writer ... bit of a crock to do it here. */ jinit_marker_writer(cinfo); /* Write them tables! */ (*cinfo->marker->write_tables_only) (cinfo); /* And clean up. */ (*cinfo->dest->term_destination) (cinfo); /* * In library releases up through v6a, we called jpeg_abort() here to free * any working memory allocated by the destination manager and marker * writer. Some applications had a problem with that: they allocated space * of their own from the library memory manager, and didn't want it to go * away during write_tables. So now we do nothing. This will cause a * memory leak if an app calls write_tables repeatedly without doing a full * compression cycle or otherwise resetting the JPEG object. However, that * seems less bad than unexpectedly freeing memory in the normal case. * An app that prefers the old behavior can call jpeg_abort for itself after * each call to jpeg_write_tables(). */ } libjpeg-turbo-1.4.2/jpegcomp.h0000644000076500007650000000203612600050400013157 00000000000000/* * jpegcomp.h * * Copyright (C) 2010, D. R. Commander * For conditions of distribution and use, see the accompanying README file. * * JPEG compatibility macros * These declarations are considered internal to the JPEG library; most * applications using the library shouldn't need to include this file. */ #if JPEG_LIB_VERSION >= 70 #define _DCT_scaled_size DCT_h_scaled_size #define _DCT_h_scaled_size DCT_h_scaled_size #define _DCT_v_scaled_size DCT_v_scaled_size #define _min_DCT_scaled_size min_DCT_h_scaled_size #define _min_DCT_h_scaled_size min_DCT_h_scaled_size #define _min_DCT_v_scaled_size min_DCT_v_scaled_size #define _jpeg_width jpeg_width #define _jpeg_height jpeg_height #else #define _DCT_scaled_size DCT_scaled_size #define _DCT_h_scaled_size DCT_scaled_size #define _DCT_v_scaled_size DCT_scaled_size #define _min_DCT_scaled_size min_DCT_scaled_size #define _min_DCT_h_scaled_size min_DCT_scaled_size #define _min_DCT_v_scaled_size min_DCT_scaled_size #define _jpeg_width image_width #define _jpeg_height image_height #endif libjpeg-turbo-1.4.2/README0000644000076500007650000003302412600050400012063 00000000000000libjpeg-turbo note: This file has been modified by The libjpeg-turbo Project to include only information relevant to libjpeg-turbo, to wordsmith certain sections, and to remove impolitic language that existed in the libjpeg v8 README. It is included only for reference. Please see README-turbo.txt for information specific to libjpeg-turbo. The Independent JPEG Group's JPEG software ========================================== This distribution contains a release of the Independent JPEG Group's free JPEG software. You are welcome to redistribute this software and to use it for any purpose, subject to the conditions under LEGAL ISSUES, below. This software is the work of Tom Lane, Guido Vollbeding, Philip Gladstone, Bill Allombert, Jim Boucher, Lee Crocker, Bob Friesenhahn, Ben Jackson, Julian Minguillon, Luis Ortiz, George Phillips, Davide Rossi, Ge' Weijers, and other members of the Independent JPEG Group. IJG is not affiliated with the ISO/IEC JTC1/SC29/WG1 standards committee (also known as JPEG, together with ITU-T SG16). DOCUMENTATION ROADMAP ===================== This file contains the following sections: OVERVIEW General description of JPEG and the IJG software. LEGAL ISSUES Copyright, lack of warranty, terms of distribution. REFERENCES Where to learn more about JPEG. ARCHIVE LOCATIONS Where to find newer versions of this software. FILE FORMAT WARS Software *not* to get. TO DO Plans for future IJG releases. Other documentation files in the distribution are: User documentation: usage.txt Usage instructions for cjpeg, djpeg, jpegtran, rdjpgcom, and wrjpgcom. *.1 Unix-style man pages for programs (same info as usage.txt). wizard.txt Advanced usage instructions for JPEG wizards only. change.log Version-to-version change highlights. Programmer and internal documentation: libjpeg.txt How to use the JPEG library in your own programs. example.c Sample code for calling the JPEG library. structure.txt Overview of the JPEG library's internal structure. coderules.txt Coding style rules --- please read if you contribute code. Please read at least usage.txt. Some information can also be found in the JPEG FAQ (Frequently Asked Questions) article. See ARCHIVE LOCATIONS below to find out where to obtain the FAQ article. If you want to understand how the JPEG code works, we suggest reading one or more of the REFERENCES, then looking at the documentation files (in roughly the order listed) before diving into the code. OVERVIEW ======== This package contains C software to implement JPEG image encoding, decoding, and transcoding. JPEG (pronounced "jay-peg") is a standardized compression method for full-color and grayscale images. JPEG's strong suit is compressing photographic images or other types of images that have smooth color and brightness transitions between neighboring pixels. Images with sharp lines or other abrupt features may not compress well with JPEG, and a higher JPEG quality may have to be used to avoid visible compression artifacts with such images. JPEG is lossy, meaning that the output pixels are not necessarily identical to the input pixels. However, on photographic content and other "smooth" images, very good compression ratios can be obtained with no visible compression artifacts, and extremely high compression ratios are possible if you are willing to sacrifice image quality (by reducing the "quality" setting in the compressor.) This software implements JPEG baseline, extended-sequential, and progressive compression processes. Provision is made for supporting all variants of these processes, although some uncommon parameter settings aren't implemented yet. We have made no provision for supporting the hierarchical or lossless processes defined in the standard. We provide a set of library routines for reading and writing JPEG image files, plus two sample applications "cjpeg" and "djpeg", which use the library to perform conversion between JPEG and some other popular image file formats. The library is intended to be reused in other applications. In order to support file conversion and viewing software, we have included considerable functionality beyond the bare JPEG coding/decoding capability; for example, the color quantization modules are not strictly part of JPEG decoding, but they are essential for output to colormapped file formats or colormapped displays. These extra functions can be compiled out of the library if not required for a particular application. We have also included "jpegtran", a utility for lossless transcoding between different JPEG processes, and "rdjpgcom" and "wrjpgcom", two simple applications for inserting and extracting textual comments in JFIF files. The emphasis in designing this software has been on achieving portability and flexibility, while also making it fast enough to be useful. In particular, the software is not intended to be read as a tutorial on JPEG. (See the REFERENCES section for introductory material.) Rather, it is intended to be reliable, portable, industrial-strength code. We do not claim to have achieved that goal in every aspect of the software, but we strive for it. We welcome the use of this software as a component of commercial products. No royalty is required, but we do ask for an acknowledgement in product documentation, as described under LEGAL ISSUES. LEGAL ISSUES ============ In plain English: 1. We don't promise that this software works. (But if you find any bugs, please let us know!) 2. You can use this software for whatever you want. You don't have to pay us. 3. You may not pretend that you wrote this software. If you use it in a program, you must acknowledge somewhere in your documentation that you've used the IJG code. In legalese: The authors make NO WARRANTY or representation, either express or implied, with respect to this software, its quality, accuracy, merchantability, or fitness for a particular purpose. This software is provided "AS IS", and you, its user, assume the entire risk as to its quality and accuracy. This software is copyright (C) 1991-2012, Thomas G. Lane, Guido Vollbeding. All Rights Reserved except as specified below. Permission is hereby granted to use, copy, modify, and distribute this software (or portions thereof) for any purpose, without fee, subject to these conditions: (1) If any part of the source code for this software is distributed, then this README file must be included, with this copyright and no-warranty notice unaltered; and any additions, deletions, or changes to the original files must be clearly indicated in accompanying documentation. (2) If only executable code is distributed, then the accompanying documentation must state that "this software is based in part on the work of the Independent JPEG Group". (3) Permission for use of this software is granted only if the user accepts full responsibility for any undesirable consequences; the authors accept NO LIABILITY for damages of any kind. These conditions apply to any software derived from or based on the IJG code, not just to the unmodified library. If you use our work, you ought to acknowledge us. Permission is NOT granted for the use of any IJG author's name or company name in advertising or publicity relating to this software or products derived from it. This software may be referred to only as "the Independent JPEG Group's software". We specifically permit and encourage the use of this software as the basis of commercial products, provided that all warranty or liability claims are assumed by the product vendor. The Unix configuration script "configure" was produced with GNU Autoconf. It is copyright by the Free Software Foundation but is freely distributable. The same holds for its supporting scripts (config.guess, config.sub, ltmain.sh). Another support script, install-sh, is copyright by X Consortium but is also freely distributable. The IJG distribution formerly included code to read and write GIF files. To avoid entanglement with the Unisys LZW patent, GIF reading support has been removed altogether, and the GIF writer has been simplified to produce "uncompressed GIFs". This technique does not use the LZW algorithm; the resulting GIF files are larger than usual, but are readable by all standard GIF decoders. We are required to state that "The Graphics Interchange Format(c) is the Copyright property of CompuServe Incorporated. GIF(sm) is a Service Mark property of CompuServe Incorporated." REFERENCES ========== We recommend reading one or more of these references before trying to understand the innards of the JPEG software. The best short technical introduction to the JPEG compression algorithm is Wallace, Gregory K. "The JPEG Still Picture Compression Standard", Communications of the ACM, April 1991 (vol. 34 no. 4), pp. 30-44. (Adjacent articles in that issue discuss MPEG motion picture compression, applications of JPEG, and related topics.) If you don't have the CACM issue handy, a PostScript file containing a revised version of Wallace's article is available at http://www.ijg.org/files/wallace.ps.gz. The file (actually a preprint for an article that appeared in IEEE Trans. Consumer Electronics) omits the sample images that appeared in CACM, but it includes corrections and some added material. Note: the Wallace article is copyright ACM and IEEE, and it may not be used for commercial purposes. A somewhat less technical, more leisurely introduction to JPEG can be found in "The Data Compression Book" by Mark Nelson and Jean-loup Gailly, published by M&T Books (New York), 2nd ed. 1996, ISBN 1-55851-434-1. This book provides good explanations and example C code for a multitude of compression methods including JPEG. It is an excellent source if you are comfortable reading C code but don't know much about data compression in general. The book's JPEG sample code is far from industrial-strength, but when you are ready to look at a full implementation, you've got one here... The best currently available description of JPEG is the textbook "JPEG Still Image Data Compression Standard" by William B. Pennebaker and Joan L. Mitchell, published by Van Nostrand Reinhold, 1993, ISBN 0-442-01272-1. Price US$59.95, 638 pp. The book includes the complete text of the ISO JPEG standards (DIS 10918-1 and draft DIS 10918-2). The original JPEG standard is divided into two parts, Part 1 being the actual specification, while Part 2 covers compliance testing methods. Part 1 is titled "Digital Compression and Coding of Continuous-tone Still Images, Part 1: Requirements and guidelines" and has document numbers ISO/IEC IS 10918-1, ITU-T T.81. Part 2 is titled "Digital Compression and Coding of Continuous-tone Still Images, Part 2: Compliance testing" and has document numbers ISO/IEC IS 10918-2, ITU-T T.83. The JPEG standard does not specify all details of an interchangeable file format. For the omitted details we follow the "JFIF" conventions, revision 1.02. JFIF 1.02 has been adopted as an Ecma International Technical Report and thus received a formal publication status. It is available as a free download in PDF format from http://www.ecma-international.org/publications/techreports/E-TR-098.htm. A PostScript version of the JFIF document is available at http://www.ijg.org/files/jfif.ps.gz. There is also a plain text version at http://www.ijg.org/files/jfif.txt.gz, but it is missing the figures. The TIFF 6.0 file format specification can be obtained by FTP from ftp://ftp.sgi.com/graphics/tiff/TIFF6.ps.gz. The JPEG incorporation scheme found in the TIFF 6.0 spec of 3-June-92 has a number of serious problems. IJG does not recommend use of the TIFF 6.0 design (TIFF Compression tag 6). Instead, we recommend the JPEG design proposed by TIFF Technical Note #2 (Compression tag 7). Copies of this Note can be obtained from http://www.ijg.org/files/. It is expected that the next revision of the TIFF spec will replace the 6.0 JPEG design with the Note's design. Although IJG's own code does not support TIFF/JPEG, the free libtiff library uses our library to implement TIFF/JPEG per the Note. ARCHIVE LOCATIONS ================= The "official" archive site for this software is www.ijg.org. The most recent released version can always be found there in directory "files". This particular version will be archived as http://www.ijg.org/files/jpegsrc.v8d.tar.gz, and in Windows-compatible "zip" archive format as http://www.ijg.org/files/jpegsr8d.zip. The JPEG FAQ (Frequently Asked Questions) article is a source of some general information about JPEG. It is available on the World Wide Web at http://www.faqs.org/faqs/jpeg-faq/ and other news.answers archive sites, including the official news.answers archive at rtfm.mit.edu: ftp://rtfm.mit.edu/pub/usenet/news.answers/jpeg-faq/. If you don't have Web or FTP access, send e-mail to mail-server@rtfm.mit.edu with body send usenet/news.answers/jpeg-faq/part1 send usenet/news.answers/jpeg-faq/part2 FILE FORMAT WARS ================ The ISO/IEC JTC1/SC29/WG1 standards committee (also known as JPEG, together with ITU-T SG16) currently promotes different formats containing the name "JPEG" which are incompatible with original DCT-based JPEG. IJG therefore does not support these formats (see REFERENCES). Indeed, one of the original reasons for developing this free software was to help force convergence on common, interoperable format standards for JPEG files. Don't use an incompatible file format! (In any case, our decoder will remain capable of reading existing JPEG image files indefinitely.) TO DO ===== Please send bug reports, offers of help, etc. to jpeg-info@jpegclub.org. libjpeg-turbo-1.4.2/Makefile.am0000644000076500007650000007135412600050400013247 00000000000000lib_LTLIBRARIES = libjpeg.la libjpeg_la_LDFLAGS = -version-info ${LIBTOOL_CURRENT}:${SO_MINOR_VERSION}:${SO_AGE} -no-undefined include_HEADERS = jerror.h jmorecfg.h jpeglib.h if WITH_TURBOJPEG lib_LTLIBRARIES += libturbojpeg.la libturbojpeg_la_LDFLAGS = -version-info 1:0:1 -no-undefined include_HEADERS += turbojpeg.h endif nodist_include_HEADERS = jconfig.h HDRS = jchuff.h jdct.h jdhuff.h jerror.h jinclude.h jmemsys.h jmorecfg.h \ jpegint.h jpeglib.h jversion.h jsimd.h jsimddct.h jpegcomp.h \ jpeg_nbits_table.h libjpeg_la_SOURCES = $(HDRS) jcapimin.c jcapistd.c jccoefct.c jccolor.c \ jcdctmgr.c jchuff.c jcinit.c jcmainct.c jcmarker.c jcmaster.c \ jcomapi.c jcparam.c jcphuff.c jcprepct.c jcsample.c jctrans.c \ jdapimin.c jdapistd.c jdatadst.c jdatasrc.c jdcoefct.c jdcolor.c \ jddctmgr.c jdhuff.c jdinput.c jdmainct.c jdmarker.c jdmaster.c \ jdmerge.c jdphuff.c jdpostct.c jdsample.c jdtrans.c jerror.c \ jfdctflt.c jfdctfst.c jfdctint.c jidctflt.c jidctfst.c jidctint.c \ jidctred.c jquant1.c jquant2.c jutils.c jmemmgr.c jmemnobs.c if WITH_ARITH libjpeg_la_SOURCES += jaricom.c endif if WITH_ARITH_ENC libjpeg_la_SOURCES += jcarith.c endif if WITH_ARITH_DEC libjpeg_la_SOURCES += jdarith.c endif SUBDIRS = java if WITH_TURBOJPEG libturbojpeg_la_SOURCES = $(libjpeg_la_SOURCES) turbojpeg.c turbojpeg.h \ transupp.c transupp.h jdatadst-tj.c jdatasrc-tj.c if WITH_JAVA libturbojpeg_la_SOURCES += turbojpeg-jni.c libturbojpeg_la_CFLAGS = ${JNI_CFLAGS} TJMAPFILE = turbojpeg-mapfile.jni else TJMAPFILE = turbojpeg-mapfile endif libturbojpeg_la_SOURCES += $(TJMAPFILE) if VERSION_SCRIPT libturbojpeg_la_LDFLAGS += $(VERSION_SCRIPT_FLAG)$(srcdir)/$(TJMAPFILE) endif endif if VERSION_SCRIPT libjpeg_la_LDFLAGS += $(VERSION_SCRIPT_FLAG)libjpeg.map endif if WITH_SIMD SUBDIRS += simd libjpeg_la_LIBADD = simd/libsimd.la libturbojpeg_la_LIBADD = simd/libsimd.la else libjpeg_la_SOURCES += jsimd_none.c endif bin_PROGRAMS = cjpeg djpeg jpegtran rdjpgcom wrjpgcom noinst_PROGRAMS = jcstest if WITH_TURBOJPEG bin_PROGRAMS += tjbench noinst_PROGRAMS += tjunittest tjbench_SOURCES = tjbench.c bmp.h bmp.c tjutil.h tjutil.c rdbmp.c rdppm.c \ wrbmp.c wrppm.c tjbench_LDADD = libturbojpeg.la libjpeg.la -lm tjbench_CFLAGS = -DBMP_SUPPORTED -DPPM_SUPPORTED tjunittest_SOURCES = tjunittest.c tjutil.h tjutil.c tjunittest_LDADD = libturbojpeg.la endif cjpeg_SOURCES = cdjpeg.h cderror.h cdjpeg.c cjpeg.c rdgif.c rdppm.c rdswitch.c if WITH_12BIT else cjpeg_SOURCES += rdbmp.c rdtarga.c endif cjpeg_LDADD = libjpeg.la cjpeg_CFLAGS = -DGIF_SUPPORTED -DPPM_SUPPORTED if WITH_12BIT else cjpeg_CFLAGS += -DBMP_SUPPORTED -DTARGA_SUPPORTED endif djpeg_SOURCES = cdjpeg.h cderror.h cdjpeg.c djpeg.c rdcolmap.c rdswitch.c \ wrgif.c wrppm.c if WITH_12BIT else djpeg_SOURCES += wrbmp.c wrtarga.c endif djpeg_LDADD = libjpeg.la djpeg_CFLAGS = -DGIF_SUPPORTED -DPPM_SUPPORTED if WITH_12BIT else djpeg_CFLAGS += -DBMP_SUPPORTED -DTARGA_SUPPORTED endif jpegtran_SOURCES = jpegtran.c rdswitch.c cdjpeg.c transupp.c transupp.h jpegtran_LDADD = libjpeg.la rdjpgcom_SOURCES = rdjpgcom.c rdjpgcom_LDADD = libjpeg.la wrjpgcom_SOURCES = wrjpgcom.c wrjpgcom_LDADD = libjpeg.la jcstest_SOURCES = jcstest.c jcstest_LDADD = libjpeg.la dist_man1_MANS = cjpeg.1 djpeg.1 jpegtran.1 rdjpgcom.1 wrjpgcom.1 DOCS= coderules.txt jconfig.txt change.log rdrle.c wrrle.c BUILDING.txt \ ChangeLog.txt dist_doc_DATA = README README-turbo.txt libjpeg.txt structure.txt usage.txt \ wizard.txt exampledir = $(docdir) dist_example_DATA = example.c EXTRA_DIST = win release $(DOCS) testimages CMakeLists.txt \ sharedlib/CMakeLists.txt cmakescripts libjpeg.map.in doc doxygen.config \ doxygen-extra.css jccolext.c jdcolext.c jdcol565.c jdmrgext.c jdmrg565.c \ jstdhuff.c LICENSE.txt dist-hook: rm -rf `find $(distdir) -name .svn` SUBDIRS += md5 if WITH_12BIT TESTORIG = testorig12.jpg MD5_JPEG_RGB_ISLOW = 9620f424569594bb9242b48498ad801f MD5_PPM_RGB_ISLOW = f3301d2219783b8b3d942b7239fa50c0 MD5_JPEG_422_IFAST_OPT = 7322e3bd2f127f7de4b40d4480ce60e4 MD5_PPM_422_IFAST = 79807fa552899e66a04708f533e16950 MD5_PPM_422M_IFAST = 07737bfe8a7c1c87aaa393a0098d16b0 MD5_JPEG_420_IFAST_Q100_PROG = a1da220b5604081863a504297ed59e55 MD5_PPM_420_Q100_IFAST = 1b3730122709f53d007255e8dfd3305e MD5_PPM_420M_Q100_IFAST = 980a1a3c5bf9510022869d30b7d26566 MD5_JPEG_GRAY_ISLOW = 235c90707b16e2e069f37c888b2636d9 MD5_PPM_GRAY_ISLOW = 7213c10af507ad467da5578ca5ee1fca MD5_PPM_GRAY_ISLOW_RGB = e96ee81c30a6ed422d466338bd3de65d MD5_JPEG_420S_IFAST_OPT = 7af8e60be4d9c227ec63ac9b6630855e MD5_JPEG_3x2_FLOAT_PROG_SSE = a8c17daf77b457725ec929e215b603f8 MD5_PPM_3x2_FLOAT_SSE = 42876ab9e5c2f76a87d08db5fbd57956 MD5_JPEG_3x2_FLOAT_PROG_32BIT = a8c17daf77b457725ec929e215b603f8 MD5_PPM_3x2_FLOAT_32BIT = 42876ab9e5c2f76a87d08db5fbd57956 MD5_PPM_3x2_FLOAT_64BIT = d6fbc71153b3d8ded484dbc17c7b9cf4 MD5_JPEG_3x2_IFAST_PROG = 1396cc2b7185cfe943d408c9d305339e MD5_PPM_3x2_IFAST = 3975985ef6eeb0a2cdc58daa651ccc00 MD5_PPM_420M_ISLOW_2_1 = 4ca6be2a6f326ff9eaab63e70a8259c0 MD5_PPM_420M_ISLOW_15_8 = 12aa9f9534c1b3d7ba047322226365eb MD5_PPM_420M_ISLOW_13_8 = f7e22817c7b25e1393e4ec101e9d4e96 MD5_PPM_420M_ISLOW_11_8 = 800a16f9f4dc9b293197bfe11be10a82 MD5_PPM_420M_ISLOW_9_8 = 06b7a92a9bc69f4dc36ec40f1937d55c MD5_PPM_420M_ISLOW_7_8 = 3ec444a14a4ab4eab88ffc49c48eca43 MD5_PPM_420M_ISLOW_3_4 = 3e726b7ea872445b19437d1c1d4f0d93 MD5_PPM_420M_ISLOW_5_8 = a8a771abdc94301d20ffac119b2caccd MD5_PPM_420M_ISLOW_1_2 = b419124dd5568b085787234866102866 MD5_PPM_420M_ISLOW_3_8 = 343d19015531b7bbe746124127244fa8 MD5_PPM_420M_ISLOW_1_4 = 35fd59d866e44659edfa3c18db2a3edb MD5_PPM_420M_ISLOW_1_8 = ccaed48ac0aedefda5d4abe4013f4ad7 MD5_JPEG_CROP = cdb35ff4b4519392690ea040c56ea99c else TESTORIG = testorig.jpg MD5_JPEG_RGB_ISLOW = 768e970dd57b340ff1b83c9d3d47c77b MD5_PPM_RGB_ISLOW = 00a257f5393fef8821f2b88ac7421291 MD5_BMP_RGB_ISLOW_565 = f07d2e75073e4bb10f6c6f4d36e2e3be MD5_BMP_RGB_ISLOW_565D = 4cfa0928ef3e6bb626d7728c924cfda4 MD5_JPEG_422_IFAST_OPT = 2540287b79d913f91665e660303ab2c8 MD5_PPM_422_IFAST = 35bd6b3f833bad23de82acea847129fa MD5_PPM_422M_IFAST = 8dbc65323d62cca7c91ba02dd1cfa81d MD5_BMP_422M_IFAST_565 = 3294bd4d9a1f2b3d08ea6020d0db7065 MD5_BMP_422M_IFAST_565D = da98c9c7b6039511be4a79a878a9abc1 MD5_JPEG_420_IFAST_Q100_PROG = 990cbe0329c882420a2094da7e5adade MD5_PPM_420_Q100_IFAST = 5a732542015c278ff43635e473a8a294 MD5_PPM_420M_Q100_IFAST = ff692ee9323a3b424894862557c092f1 MD5_JPEG_GRAY_ISLOW = 72b51f894b8f4a10b3ee3066770aa38d MD5_PPM_GRAY_ISLOW = 8d3596c56eace32f205deccc229aa5ed MD5_PPM_GRAY_ISLOW_RGB = 116424ac07b79e5e801f00508eab48ec MD5_BMP_GRAY_ISLOW_565 = 12f78118e56a2f48b966f792fedf23cc MD5_BMP_GRAY_ISLOW_565D = bdbbd616441a24354c98553df5dc82db MD5_JPEG_420S_IFAST_OPT = 388708217ac46273ca33086b22827ed8 # See README-turbo.txt for more details on why this next bit is necessary. MD5_JPEG_3x2_FLOAT_PROG_SSE = 343e3f8caf8af5986ebaf0bdc13b5c71 MD5_PPM_3x2_FLOAT_SSE = 1a75f36e5904d6fc3a85a43da9ad89bb MD5_JPEG_3x2_FLOAT_PROG_32BIT = 9bca803d2042bd1eb03819e2bf92b3e5 MD5_PPM_3x2_FLOAT_32BIT = f6bfab038438ed8f5522fbd33595dcdc MD5_PPM_3x2_FLOAT_64BIT = 0e917a34193ef976b679a6b069b1be26 MD5_JPEG_3x2_IFAST_PROG = 1ee5d2c1a77f2da495f993c8c7cceca5 MD5_PPM_3x2_IFAST = fd283664b3b49127984af0a7f118fccd MD5_JPEG_420_ISLOW_ARI = e986fb0a637a8d833d96e8a6d6d84ea1 MD5_JPEG_444_ISLOW_PROGARI = 0a8f1c8f66e113c3cf635df0a475a617 MD5_PPM_420M_IFAST_ARI = 72b59a99bcf1de24c5b27d151bde2437 MD5_JPEG_420_ISLOW = 9a68f56bc76e466aa7e52f415d0f4a5f MD5_PPM_420M_ISLOW_2_1 = 9f9de8c0612f8d06869b960b05abf9c9 MD5_PPM_420M_ISLOW_15_8 = b6875bc070720b899566cc06459b63b7 MD5_PPM_420M_ISLOW_13_8 = bc3452573c8152f6ae552939ee19f82f MD5_PPM_420M_ISLOW_11_8 = d8cc73c0aaacd4556569b59437ba00a5 MD5_PPM_420M_ISLOW_9_8 = d25e61bc7eac0002f5b393aa223747b6 MD5_PPM_420M_ISLOW_7_8 = ddb564b7c74a09494016d6cd7502a946 MD5_PPM_420M_ISLOW_3_4 = 8ed8e68808c3fbc4ea764fc9d2968646 MD5_PPM_420M_ISLOW_5_8 = a3363274999da2366a024efae6d16c9b MD5_PPM_420M_ISLOW_1_2 = e692a315cea26b988c8e8b29a5dbcd81 MD5_PPM_420M_ISLOW_3_8 = 79eca9175652ced755155c90e785a996 MD5_PPM_420M_ISLOW_1_4 = 79cd778f8bf1a117690052cacdd54eca MD5_PPM_420M_ISLOW_1_8 = 391b3d4aca640c8567d6f8745eb2142f MD5_BMP_420_ISLOW_256 = 4980185e3776e89bd931736e1cddeee6 MD5_BMP_420_ISLOW_565 = bf9d13e16c4923b92e1faa604d7922cb MD5_BMP_420_ISLOW_565D = 6bde71526acc44bcff76f696df8638d2 MD5_BMP_420M_ISLOW_565 = 8dc0185245353cfa32ad97027342216f MD5_BMP_420M_ISLOW_565D =d1be3a3339166255e76fa50a0d70d73e MD5_JPEG_CROP = b4197f377e621c4e9b1d20471432610d endif .PHONY: test test: tjquicktest tjbittest bittest tjquicktest: testclean all if WITH_TURBOJPEG if WITH_JAVA $(JAVA) -cp java/turbojpeg.jar -Djava.library.path=.libs TJUnitTest $(JAVA) -cp java/turbojpeg.jar -Djava.library.path=.libs TJUnitTest -bi $(JAVA) -cp java/turbojpeg.jar -Djava.library.path=.libs TJUnitTest -yuv $(JAVA) -cp java/turbojpeg.jar -Djava.library.path=.libs TJUnitTest -yuv -noyuvpad $(JAVA) -cp java/turbojpeg.jar -Djava.library.path=.libs TJUnitTest -yuv -bi $(JAVA) -cp java/turbojpeg.jar -Djava.library.path=.libs TJUnitTest -yuv -bi -noyuvpad endif ./tjunittest ./tjunittest -alloc ./tjunittest -yuv ./tjunittest -yuv -alloc ./tjunittest -yuv -noyuvpad endif echo GREAT SUCCESS! tjbittest: testclean all if WITH_TURBOJPEG MD5_PPM_GRAY_TILE = 89d3ca21213d9d864b50b4e4e7de4ca6 MD5_PPM_420_8x8_TILE = 847fceab15c5b7b911cb986cf0f71de3 MD5_PPM_420_16x16_TILE = ca45552a93687e078f7137cc4126a7b0 MD5_PPM_420_32x32_TILE = d8676f1d6b68df358353bba9844f4a00 MD5_PPM_420_64x64_TILE = 4e4c1a3d7ea4bace4f868bcbe83b7050 MD5_PPM_420_128x128_TILE = f24c3429c52265832beab9df72a0ceae MD5_PPM_420M_8x8_TILE = bc25320e1f4c31ce2e610e43e9fd173c MD5_PPM_420M_TILE = 75ffdf14602258c5c189522af57fa605 MD5_PPM_422_8x8_TILE = d83dacd9fc73b0a6f10c09acad64eb1e MD5_PPM_422_16x16_TILE = 35077fb610d72dd743b1eb0cbcfe10fb MD5_PPM_422_32x32_TILE = e6902ed8a449ecc0f0d6f2bf945f65f7 MD5_PPM_422_64x64_TILE = 2b4502a8f316cedbde1da7bce3d2231e MD5_PPM_422_128x128_TILE = f0b5617d578f5e13c8eee215d64d4877 MD5_PPM_422M_8x8_TILE = 828941d7f41cd6283abd6beffb7fd51d MD5_PPM_422M_TILE = e877ae1324c4a280b95376f7f018172f MD5_PPM_444_TILE = 7964e41e67cfb8d0a587c0aa4798f9c3 # Test compressing from/decompressing to an arbitrary subregion of a larger # image buffer cp $(srcdir)/testimages/testorig.ppm testout_tile.ppm ./tjbench testout_tile.ppm 95 -rgb -quiet -tile -benchtime 0.01 >/dev/null 2>&1 for i in 8 16 32 64 128; do \ md5/md5cmp $(MD5_PPM_GRAY_TILE) testout_tile_GRAY_Q95_$$i\x$$i.ppm; \ done md5/md5cmp $(MD5_PPM_420_8x8_TILE) testout_tile_420_Q95_8x8.ppm md5/md5cmp $(MD5_PPM_420_16x16_TILE) testout_tile_420_Q95_16x16.ppm md5/md5cmp $(MD5_PPM_420_32x32_TILE) testout_tile_420_Q95_32x32.ppm md5/md5cmp $(MD5_PPM_420_64x64_TILE) testout_tile_420_Q95_64x64.ppm md5/md5cmp $(MD5_PPM_420_128x128_TILE) testout_tile_420_Q95_128x128.ppm md5/md5cmp $(MD5_PPM_422_8x8_TILE) testout_tile_422_Q95_8x8.ppm md5/md5cmp $(MD5_PPM_422_16x16_TILE) testout_tile_422_Q95_16x16.ppm md5/md5cmp $(MD5_PPM_422_32x32_TILE) testout_tile_422_Q95_32x32.ppm md5/md5cmp $(MD5_PPM_422_64x64_TILE) testout_tile_422_Q95_64x64.ppm md5/md5cmp $(MD5_PPM_422_128x128_TILE) testout_tile_422_Q95_128x128.ppm for i in 8 16 32 64 128; do \ md5/md5cmp $(MD5_PPM_444_TILE) testout_tile_444_Q95_$$i\x$$i.ppm; \ done rm testout_tile_GRAY_* testout_tile_420_* testout_tile_422_* testout_tile_444_* ./tjbench testout_tile.ppm 95 -rgb -fastupsample -quiet -tile -benchtime 0.01 >/dev/null 2>&1 md5/md5cmp $(MD5_PPM_420M_8x8_TILE) testout_tile_420_Q95_8x8.ppm for i in 16 32 64 128; do \ md5/md5cmp $(MD5_PPM_420M_TILE) testout_tile_420_Q95_$$i\x$$i.ppm; \ done md5/md5cmp $(MD5_PPM_422M_8x8_TILE) testout_tile_422_Q95_8x8.ppm for i in 16 32 64 128; do \ md5/md5cmp $(MD5_PPM_422M_TILE) testout_tile_422_Q95_$$i\x$$i.ppm; \ done rm testout_tile_GRAY_* testout_tile_420_* testout_tile_422_* testout_tile_444_* testout_tile.ppm echo GREAT SUCCESS! endif bittest: testclean all # These tests are carefully crafted to provide full coverage of as many of the # underlying algorithms as possible (including all of the SIMD-accelerated # ones.) # CC: null SAMP: fullsize FDCT: islow ENT: huff ./cjpeg -rgb -dct int -outfile testout_rgb_islow.jpg $(srcdir)/testimages/testorig.ppm md5/md5cmp $(MD5_JPEG_RGB_ISLOW) testout_rgb_islow.jpg # CC: null SAMP: fullsize IDCT: islow ENT: huff ./djpeg -dct int -ppm -outfile testout_rgb_islow.ppm testout_rgb_islow.jpg md5/md5cmp $(MD5_PPM_RGB_ISLOW) testout_rgb_islow.ppm rm testout_rgb_islow.ppm if WITH_12BIT rm testout_rgb_islow.jpg else # CC: RGB->RGB565 SAMP: fullsize IDCT: islow ENT: huff ./djpeg -dct int -rgb565 -dither none -bmp -outfile testout_rgb_islow_565.bmp testout_rgb_islow.jpg md5/md5cmp $(MD5_BMP_RGB_ISLOW_565) testout_rgb_islow_565.bmp rm testout_rgb_islow_565.bmp # CC: RGB->RGB565 (dithered) SAMP: fullsize IDCT: islow ENT: huff ./djpeg -dct int -rgb565 -bmp -outfile testout_rgb_islow_565D.bmp testout_rgb_islow.jpg md5/md5cmp $(MD5_BMP_RGB_ISLOW_565D) testout_rgb_islow_565D.bmp rm testout_rgb_islow_565D.bmp testout_rgb_islow.jpg endif # CC: RGB->YCC SAMP: fullsize/h2v1 FDCT: ifast ENT: 2-pass huff ./cjpeg -sample 2x1 -dct fast -opt -outfile testout_422_ifast_opt.jpg $(srcdir)/testimages/testorig.ppm md5/md5cmp $(MD5_JPEG_422_IFAST_OPT) testout_422_ifast_opt.jpg # CC: YCC->RGB SAMP: fullsize/h2v1 fancy IDCT: ifast ENT: huff ./djpeg -dct fast -outfile testout_422_ifast.ppm testout_422_ifast_opt.jpg md5/md5cmp $(MD5_PPM_422_IFAST) testout_422_ifast.ppm rm testout_422_ifast.ppm # CC: YCC->RGB SAMP: h2v1 merged IDCT: ifast ENT: huff ./djpeg -dct fast -nosmooth -outfile testout_422m_ifast.ppm testout_422_ifast_opt.jpg md5/md5cmp $(MD5_PPM_422M_IFAST) testout_422m_ifast.ppm rm testout_422m_ifast.ppm if WITH_12BIT rm testout_422_ifast_opt.jpg else # CC: YCC->RGB565 SAMP: h2v1 merged IDCT: ifast ENT: huff ./djpeg -dct int -nosmooth -rgb565 -dither none -bmp -outfile testout_422m_ifast_565.bmp testout_422_ifast_opt.jpg md5/md5cmp $(MD5_BMP_422M_IFAST_565) testout_422m_ifast_565.bmp rm testout_422m_ifast_565.bmp # CC: YCC->RGB565 (dithered) SAMP: h2v1 merged IDCT: ifast ENT: huff ./djpeg -dct int -nosmooth -rgb565 -bmp -outfile testout_422m_ifast_565D.bmp testout_422_ifast_opt.jpg md5/md5cmp $(MD5_BMP_422M_IFAST_565D) testout_422m_ifast_565D.bmp rm testout_422m_ifast_565D.bmp testout_422_ifast_opt.jpg endif # CC: RGB->YCC SAMP: fullsize/h2v2 FDCT: ifast ENT: prog huff ./cjpeg -sample 2x2 -quality 100 -dct fast -prog -outfile testout_420_q100_ifast_prog.jpg $(srcdir)/testimages/testorig.ppm md5/md5cmp $(MD5_JPEG_420_IFAST_Q100_PROG) testout_420_q100_ifast_prog.jpg # CC: YCC->RGB SAMP: fullsize/h2v2 fancy IDCT: ifast ENT: prog huff ./djpeg -dct fast -outfile testout_420_q100_ifast.ppm testout_420_q100_ifast_prog.jpg md5/md5cmp $(MD5_PPM_420_Q100_IFAST) testout_420_q100_ifast.ppm rm testout_420_q100_ifast.ppm # CC: YCC->RGB SAMP: h2v2 merged IDCT: ifast ENT: prog huff ./djpeg -dct fast -nosmooth -outfile testout_420m_q100_ifast.ppm testout_420_q100_ifast_prog.jpg md5/md5cmp $(MD5_PPM_420M_Q100_IFAST) testout_420m_q100_ifast.ppm rm testout_420m_q100_ifast.ppm testout_420_q100_ifast_prog.jpg # CC: RGB->Gray SAMP: fullsize FDCT: islow ENT: huff ./cjpeg -gray -dct int -outfile testout_gray_islow.jpg $(srcdir)/testimages/testorig.ppm md5/md5cmp $(MD5_JPEG_GRAY_ISLOW) testout_gray_islow.jpg # CC: Gray->Gray SAMP: fullsize IDCT: islow ENT: huff ./djpeg -dct int -outfile testout_gray_islow.ppm testout_gray_islow.jpg md5/md5cmp $(MD5_PPM_GRAY_ISLOW) testout_gray_islow.ppm rm testout_gray_islow.ppm # CC: Gray->RGB SAMP: fullsize IDCT: islow ENT: huff ./djpeg -dct int -rgb -outfile testout_gray_islow_rgb.ppm testout_gray_islow.jpg md5/md5cmp $(MD5_PPM_GRAY_ISLOW_RGB) testout_gray_islow_rgb.ppm rm testout_gray_islow_rgb.ppm if WITH_12BIT rm testout_gray_islow.jpg else # CC: Gray->RGB565 SAMP: fullsize IDCT: islow ENT: huff ./djpeg -dct int -rgb565 -dither none -bmp -outfile testout_gray_islow_565.bmp testout_gray_islow.jpg md5/md5cmp $(MD5_BMP_GRAY_ISLOW_565) testout_gray_islow_565.bmp rm testout_gray_islow_565.bmp # CC: Gray->RGB565 (dithered) SAMP: fullsize IDCT: islow ENT: huff ./djpeg -dct int -rgb565 -bmp -outfile testout_gray_islow_565D.bmp testout_gray_islow.jpg md5/md5cmp $(MD5_BMP_GRAY_ISLOW_565D) testout_gray_islow_565D.bmp rm testout_gray_islow_565D.bmp testout_gray_islow.jpg endif # CC: RGB->YCC SAMP: fullsize smooth/h2v2 smooth FDCT: islow # ENT: 2-pass huff ./cjpeg -sample 2x2 -smooth 1 -dct int -opt -outfile testout_420s_ifast_opt.jpg $(srcdir)/testimages/testorig.ppm md5/md5cmp $(MD5_JPEG_420S_IFAST_OPT) testout_420s_ifast_opt.jpg rm testout_420s_ifast_opt.jpg # The output of the floating point tests is not validated by default, because # the output differs depending on the type of floating point math used, and # this is only deterministic if the DCT/IDCT are implemented using SIMD # instructions on a particular platform. Pass one of the following on the make # command line to validate the floating point tests against one of the expected # results: # # FLOATTEST=sse validate against the expected results from the libjpeg-turbo # SSE SIMD extensions # FLOATTEST=32bit validate against the expected results from the C code # when running on a 32-bit FPU (or when SSE is being used for # floating point math, which is generally the default with # x86-64 compilers) # FLOATTEST=64bit validate against the exepected results from the C code # when running on a 64-bit FPU # CC: RGB->YCC SAMP: fullsize/int FDCT: float ENT: prog huff ./cjpeg -sample 3x2 -dct float -prog -outfile testout_3x2_float_prog.jpg $(srcdir)/testimages/testorig.ppm if [ "${FLOATTEST}" = "sse" ]; then \ md5/md5cmp $(MD5_JPEG_3x2_FLOAT_PROG_SSE) testout_3x2_float_prog.jpg; \ elif [ "${FLOATTEST}" = "32bit" -o "${FLOATTEST}" = "64bit" ]; then \ md5/md5cmp $(MD5_JPEG_3x2_FLOAT_PROG_32BIT) testout_3x2_float_prog.jpg; \ fi # CC: YCC->RGB SAMP: fullsize/int IDCT: float ENT: prog huff ./djpeg -dct float -outfile testout_3x2_float.ppm testout_3x2_float_prog.jpg if [ "${FLOATTEST}" = "sse" ]; then \ md5/md5cmp $(MD5_PPM_3x2_FLOAT_SSE) testout_3x2_float.ppm; \ elif [ "${FLOATTEST}" = "32bit" ]; then \ md5/md5cmp $(MD5_PPM_3x2_FLOAT_32BIT) testout_3x2_float.ppm; \ elif [ "${FLOATTEST}" = "64bit" ]; then \ md5/md5cmp $(MD5_PPM_3x2_FLOAT_64BIT) testout_3x2_float.ppm; \ fi rm testout_3x2_float.ppm testout_3x2_float_prog.jpg # CC: RGB->YCC SAMP: fullsize/int FDCT: ifast ENT: prog huff ./cjpeg -sample 3x2 -dct fast -prog -outfile testout_3x2_ifast_prog.jpg $(srcdir)/testimages/testorig.ppm md5/md5cmp $(MD5_JPEG_3x2_IFAST_PROG) testout_3x2_ifast_prog.jpg # CC: YCC->RGB SAMP: fullsize/int IDCT: ifast ENT: prog huff ./djpeg -dct fast -outfile testout_3x2_ifast.ppm testout_3x2_ifast_prog.jpg md5/md5cmp $(MD5_PPM_3x2_IFAST) testout_3x2_ifast.ppm rm testout_3x2_ifast.ppm testout_3x2_ifast_prog.jpg if WITH_ARITH_ENC # CC: YCC->RGB SAMP: fullsize/h2v2 FDCT: islow ENT: arith ./cjpeg -dct int -arithmetic -outfile testout_420_islow_ari.jpg $(srcdir)/testimages/testorig.ppm md5/md5cmp $(MD5_JPEG_420_ISLOW_ARI) testout_420_islow_ari.jpg rm testout_420_islow_ari.jpg ./jpegtran -arithmetic -outfile testout_420_islow_ari.jpg $(srcdir)/testimages/testimgint.jpg md5/md5cmp $(MD5_JPEG_420_ISLOW_ARI) testout_420_islow_ari.jpg rm testout_420_islow_ari.jpg # CC: YCC->RGB SAMP: fullsize FDCT: islow ENT: prog arith ./cjpeg -sample 1x1 -dct int -progressive -arithmetic -outfile testout_444_islow_progari.jpg $(srcdir)/testimages/testorig.ppm md5/md5cmp $(MD5_JPEG_444_ISLOW_PROGARI) testout_444_islow_progari.jpg rm testout_444_islow_progari.jpg endif if WITH_ARITH_DEC # CC: RGB->YCC SAMP: h2v2 merged IDCT: ifast ENT: arith ./djpeg -fast -ppm -outfile testout_420m_ifast_ari.ppm $(srcdir)/testimages/testimgari.jpg md5/md5cmp $(MD5_PPM_420M_IFAST_ARI) testout_420m_ifast_ari.ppm rm testout_420m_ifast_ari.ppm ./jpegtran -outfile testout_420_islow.jpg $(srcdir)/testimages/testimgari.jpg md5/md5cmp $(MD5_JPEG_420_ISLOW) testout_420_islow.jpg rm testout_420_islow.jpg endif # CC: YCC->RGB SAMP: h2v2 merged IDCT: 16x16 islow ENT: huff ./djpeg -dct int -scale 2/1 -nosmooth -ppm -outfile testout_420m_islow_2_1.ppm $(srcdir)/testimages/$(TESTORIG) md5/md5cmp $(MD5_PPM_420M_ISLOW_2_1) testout_420m_islow_2_1.ppm rm testout_420m_islow_2_1.ppm # CC: YCC->RGB SAMP: h2v2 merged IDCT: 15x15 islow ENT: huff ./djpeg -dct int -scale 15/8 -nosmooth -ppm -outfile testout_420m_islow_15_8.ppm $(srcdir)/testimages/$(TESTORIG) md5/md5cmp $(MD5_PPM_420M_ISLOW_15_8) testout_420m_islow_15_8.ppm rm testout_420m_islow_15_8.ppm # CC: YCC->RGB SAMP: h2v2 merged IDCT: 13x13 islow ENT: huff ./djpeg -dct int -scale 13/8 -nosmooth -ppm -outfile testout_420m_islow_13_8.ppm $(srcdir)/testimages/$(TESTORIG) md5/md5cmp $(MD5_PPM_420M_ISLOW_13_8) testout_420m_islow_13_8.ppm rm testout_420m_islow_13_8.ppm # CC: YCC->RGB SAMP: h2v2 merged IDCT: 11x11 islow ENT: huff ./djpeg -dct int -scale 11/8 -nosmooth -ppm -outfile testout_420m_islow_11_8.ppm $(srcdir)/testimages/$(TESTORIG) md5/md5cmp $(MD5_PPM_420M_ISLOW_11_8) testout_420m_islow_11_8.ppm rm testout_420m_islow_11_8.ppm # CC: YCC->RGB SAMP: h2v2 merged IDCT: 9x9 islow ENT: huff ./djpeg -dct int -scale 9/8 -nosmooth -ppm -outfile testout_420m_islow_9_8.ppm $(srcdir)/testimages/$(TESTORIG) md5/md5cmp $(MD5_PPM_420M_ISLOW_9_8) testout_420m_islow_9_8.ppm rm testout_420m_islow_9_8.ppm # CC: YCC->RGB SAMP: h2v2 merged IDCT: 7x7 islow/14x14 islow ENT: huff ./djpeg -dct int -scale 7/8 -nosmooth -ppm -outfile testout_420m_islow_7_8.ppm $(srcdir)/testimages/$(TESTORIG) md5/md5cmp $(MD5_PPM_420M_ISLOW_7_8) testout_420m_islow_7_8.ppm rm testout_420m_islow_7_8.ppm # CC: YCC->RGB SAMP: h2v2 merged IDCT: 6x6 islow/12x12 islow ENT: huff ./djpeg -dct int -scale 3/4 -nosmooth -ppm -outfile testout_420m_islow_3_4.ppm $(srcdir)/testimages/$(TESTORIG) md5/md5cmp $(MD5_PPM_420M_ISLOW_3_4) testout_420m_islow_3_4.ppm rm testout_420m_islow_3_4.ppm # CC: YCC->RGB SAMP: h2v2 merged IDCT: 5x5 islow/10x10 islow ENT: huff ./djpeg -dct int -scale 5/8 -nosmooth -ppm -outfile testout_420m_islow_5_8.ppm $(srcdir)/testimages/$(TESTORIG) md5/md5cmp $(MD5_PPM_420M_ISLOW_5_8) testout_420m_islow_5_8.ppm rm testout_420m_islow_5_8.ppm # CC: YCC->RGB SAMP: h2v2 merged IDCT: 4x4 islow/8x8 islow ENT: huff ./djpeg -dct int -scale 1/2 -nosmooth -ppm -outfile testout_420m_islow_1_2.ppm $(srcdir)/testimages/$(TESTORIG) md5/md5cmp $(MD5_PPM_420M_ISLOW_1_2) testout_420m_islow_1_2.ppm rm testout_420m_islow_1_2.ppm # CC: YCC->RGB SAMP: h2v2 merged IDCT: 3x3 islow/6x6 islow ENT: huff ./djpeg -dct int -scale 3/8 -nosmooth -ppm -outfile testout_420m_islow_3_8.ppm $(srcdir)/testimages/$(TESTORIG) md5/md5cmp $(MD5_PPM_420M_ISLOW_3_8) testout_420m_islow_3_8.ppm rm testout_420m_islow_3_8.ppm # CC: YCC->RGB SAMP: h2v2 merged IDCT: 2x2 islow/4x4 islow ENT: huff ./djpeg -dct int -scale 1/4 -nosmooth -ppm -outfile testout_420m_islow_1_4.ppm $(srcdir)/testimages/$(TESTORIG) md5/md5cmp $(MD5_PPM_420M_ISLOW_1_4) testout_420m_islow_1_4.ppm rm testout_420m_islow_1_4.ppm # CC: YCC->RGB SAMP: h2v2 merged IDCT: 1x1 islow/2x2 islow ENT: huff ./djpeg -dct int -scale 1/8 -nosmooth -ppm -outfile testout_420m_islow_1_8.ppm $(srcdir)/testimages/$(TESTORIG) md5/md5cmp $(MD5_PPM_420M_ISLOW_1_8) testout_420m_islow_1_8.ppm rm testout_420m_islow_1_8.ppm if WITH_12BIT else # CC: YCC->RGB (dithered) SAMP: h2v2 fancy IDCT: islow ENT: huff ./djpeg -dct int -colors 256 -bmp -outfile testout_420_islow_256.bmp $(srcdir)/testimages/$(TESTORIG) md5/md5cmp $(MD5_BMP_420_ISLOW_256) testout_420_islow_256.bmp rm testout_420_islow_256.bmp # CC: YCC->RGB565 SAMP: h2v2 fancy IDCT: islow ENT: huff ./djpeg -dct int -rgb565 -dither none -bmp -outfile testout_420_islow_565.bmp $(srcdir)/testimages/$(TESTORIG) md5/md5cmp $(MD5_BMP_420_ISLOW_565) testout_420_islow_565.bmp rm testout_420_islow_565.bmp # CC: YCC->RGB565 (dithered) SAMP: h2v2 fancy IDCT: islow ENT: huff ./djpeg -dct int -rgb565 -bmp -outfile testout_420_islow_565D.bmp $(srcdir)/testimages/$(TESTORIG) md5/md5cmp $(MD5_BMP_420_ISLOW_565D) testout_420_islow_565D.bmp rm testout_420_islow_565D.bmp # CC: YCC->RGB565 SAMP: h2v2 merged IDCT: islow ENT: huff ./djpeg -dct int -nosmooth -rgb565 -dither none -bmp -outfile testout_420m_islow_565.bmp $(srcdir)/testimages/$(TESTORIG) md5/md5cmp $(MD5_BMP_420M_ISLOW_565) testout_420m_islow_565.bmp rm testout_420m_islow_565.bmp # CC: YCC->RGB565 (dithered) SAMP: h2v2 merged IDCT: islow ENT: huff ./djpeg -dct int -nosmooth -rgb565 -bmp -outfile testout_420m_islow_565D.bmp $(srcdir)/testimages/$(TESTORIG) md5/md5cmp $(MD5_BMP_420M_ISLOW_565D) testout_420m_islow_565D.bmp rm testout_420m_islow_565D.bmp endif ./jpegtran -crop 120x90+20+50 -transpose -perfect -outfile testout_crop.jpg $(srcdir)/testimages/$(TESTORIG) md5/md5cmp $(MD5_JPEG_CROP) testout_crop.jpg rm testout_crop.jpg echo GREAT SUCCESS! testclean: rm -f testout* rm -f *_GRAY_*.bmp rm -f *_GRAY_*.png rm -f *_GRAY_*.ppm rm -f *_GRAY_*.jpg rm -f *_GRAY.yuv rm -f *_420_*.bmp rm -f *_420_*.png rm -f *_420_*.ppm rm -f *_420_*.jpg rm -f *_420.yuv rm -f *_422_*.bmp rm -f *_422_*.png rm -f *_422_*.ppm rm -f *_422_*.jpg rm -f *_422.yuv rm -f *_444_*.bmp rm -f *_444_*.png rm -f *_444_*.ppm rm -f *_444_*.jpg rm -f *_444.yuv rm -f *_440_*.bmp rm -f *_440_*.png rm -f *_440_*.ppm rm -f *_440_*.jpg rm -f *_440.yuv rm -f *_411_*.bmp rm -f *_411_*.png rm -f *_411_*.ppm rm -f *_411_*.jpg rm -f *_411.yuv tjtest: sh ./tjbenchtest sh ./tjbenchtest -alloc sh ./tjbenchtest -yuv sh ./tjbenchtest -yuv -alloc if WITH_JAVA sh ./tjbenchtest.java sh ./tjbenchtest.java -yuv endif pkgscripts/libjpeg-turbo.spec: pkgscripts/libjpeg-turbo.spec.tmpl cat pkgscripts/libjpeg-turbo.spec.tmpl | sed s@%{__prefix}@$(prefix)@g | \ sed s@%{__bindir}@$(bindir)@g | sed s@%{__datadir}@$(datadir)@g | \ sed s@%{__docdir}@$(docdir)@g | sed s@%{__includedir}@$(includedir)@g | \ sed s@%{__libdir}@$(libdir)@g | sed s@%{__mandir}@$(mandir)@g \ > pkgscripts/libjpeg-turbo.spec rpm: all pkgscripts/libjpeg-turbo.spec TMPDIR=`mktemp -d /tmp/${PACKAGE_NAME}-build.XXXXXX`; \ mkdir -p $$TMPDIR/RPMS; \ ln -fs `pwd` $$TMPDIR/BUILD; \ rm -f ${PKGNAME}-${VERSION}.${RPMARCH}.rpm; \ rpmbuild -bb --define "_blddir $$TMPDIR/buildroot" \ --define "_topdir $$TMPDIR" \ --target ${RPMARCH} pkgscripts/libjpeg-turbo.spec; \ cp $$TMPDIR/RPMS/${RPMARCH}/${PKGNAME}-${VERSION}-${BUILD}.${RPMARCH}.rpm \ ${PKGNAME}-${VERSION}.${RPMARCH}.rpm; \ rm -rf $$TMPDIR srpm: dist-gzip pkgscripts/libjpeg-turbo.spec TMPDIR=`mktemp -d /tmp/${PACKAGE_NAME}-build.XXXXXX`; \ mkdir -p $$TMPDIR/RPMS; \ mkdir -p $$TMPDIR/SRPMS; \ mkdir -p $$TMPDIR/BUILD; \ mkdir -p $$TMPDIR/SOURCES; \ mkdir -p $$TMPDIR/SPECS; \ rm -f ${PKGNAME}-${VERSION}.src.rpm; \ cp ${PACKAGE_NAME}-${VERSION}.tar.gz $$TMPDIR/SOURCES; \ cat pkgscripts/libjpeg-turbo.spec | sed s/%{_blddir}/%{_tmppath}/g \ | sed s/#--\>//g \ > $$TMPDIR/SPECS/libjpeg-turbo.spec; \ rpmbuild -bs --define "_topdir $$TMPDIR" $$TMPDIR/SPECS/libjpeg-turbo.spec; \ cp $$TMPDIR/SRPMS/${PKGNAME}-${VERSION}-${BUILD}.src.rpm \ ${PKGNAME}-${VERSION}.src.rpm; \ rm -rf $$TMPDIR pkgscripts/makedpkg: pkgscripts/makedpkg.tmpl cat pkgscripts/makedpkg.tmpl | sed s@%{__prefix}@$(prefix)@g | \ sed s@%{__docdir}@$(docdir)@g | sed s@%{__libdir}@$(libdir)@g \ > pkgscripts/makedpkg deb: all pkgscripts/makedpkg sh pkgscripts/makedpkg pkgscripts/uninstall: pkgscripts/uninstall.tmpl cat pkgscripts/uninstall.tmpl | sed s@%{__prefix}@$(prefix)@g | \ sed s@%{__bindir}@$(bindir)@g | sed s@%{__datadir}@$(datadir)@g | \ sed s@%{__includedir}@$(includedir)@g | sed s@%{__libdir}@$(libdir)@g | \ sed s@%{__mandir}@$(mandir)@g > pkgscripts/uninstall pkgscripts/makemacpkg: pkgscripts/makemacpkg.tmpl cat pkgscripts/makemacpkg.tmpl | sed s@%{__prefix}@$(prefix)@g | \ sed s@%{__bindir}@$(bindir)@g | sed s@%{__docdir}@$(docdir)@g | \ sed s@%{__libdir}@$(libdir)@g > pkgscripts/makemacpkg if X86_64 udmg: all pkgscripts/makemacpkg pkgscripts/uninstall sh pkgscripts/makemacpkg -build32 ${BUILDDIR32} iosdmg: all pkgscripts/makemacpkg pkgscripts/uninstall sh pkgscripts/makemacpkg -build32 ${BUILDDIR32} -buildarmv6 ${BUILDDIRARMV6} -buildarmv7 ${BUILDDIRARMV7} -buildarmv7s ${BUILDDIRARMV7S} -buildarmv8 ${BUILDDIRARMV8} -lipo "${LIPO}" else iosdmg: all pkgscripts/makemacpkg pkgscripts/uninstall sh pkgscripts/makemacpkg -buildarmv6 ${BUILDDIRARMV6} -buildarmv7 ${BUILDDIRARMV7} -buildarmv7s ${BUILDDIRARMV7S} -buildarmv8 ${BUILDDIRARMV8} -lipo "${LIPO}" endif dmg: all pkgscripts/makemacpkg pkgscripts/uninstall sh pkgscripts/makemacpkg pkgscripts/makecygwinpkg: pkgscripts/makecygwinpkg.tmpl cat pkgscripts/makecygwinpkg.tmpl | sed s@%{__prefix}@$(prefix)@g | \ sed s@%{__docdir}@$(docdir)@g | sed s@%{__libdir}@$(libdir)@g \ > pkgscripts/makecygwinpkg cygwinpkg: all pkgscripts/makecygwinpkg sh pkgscripts/makecygwinpkg libjpeg-turbo-1.4.2/jcphuff.c0000644000076500007650000006251012600050400012776 00000000000000/* * jcphuff.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1995-1997, Thomas G. Lane. * It was modified by The libjpeg-turbo Project to include only code relevant * to libjpeg-turbo. * For conditions of distribution and use, see the accompanying README file. * * This file contains Huffman entropy encoding routines for progressive JPEG. * * We do not support output suspension in this module, since the library * currently does not allow multiple-scan files to be written with output * suspension. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" #include "jchuff.h" /* Declarations shared with jchuff.c */ #ifdef C_PROGRESSIVE_SUPPORTED /* Expanded entropy encoder object for progressive Huffman encoding. */ typedef struct { struct jpeg_entropy_encoder pub; /* public fields */ /* Mode flag: TRUE for optimization, FALSE for actual data output */ boolean gather_statistics; /* Bit-level coding status. * next_output_byte/free_in_buffer are local copies of cinfo->dest fields. */ JOCTET * next_output_byte; /* => next byte to write in buffer */ size_t free_in_buffer; /* # of byte spaces remaining in buffer */ INT32 put_buffer; /* current bit-accumulation buffer */ int put_bits; /* # of bits now in it */ j_compress_ptr cinfo; /* link to cinfo (needed for dump_buffer) */ /* Coding status for DC components */ int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ /* Coding status for AC components */ int ac_tbl_no; /* the table number of the single component */ unsigned int EOBRUN; /* run length of EOBs */ unsigned int BE; /* # of buffered correction bits before MCU */ char * bit_buffer; /* buffer for correction bits (1 per char) */ /* packing correction bits tightly would save some space but cost time... */ unsigned int restarts_to_go; /* MCUs left in this restart interval */ int next_restart_num; /* next restart number to write (0-7) */ /* Pointers to derived tables (these workspaces have image lifespan). * Since any one scan codes only DC or only AC, we only need one set * of tables, not one for DC and one for AC. */ c_derived_tbl * derived_tbls[NUM_HUFF_TBLS]; /* Statistics tables for optimization; again, one set is enough */ long * count_ptrs[NUM_HUFF_TBLS]; } phuff_entropy_encoder; typedef phuff_entropy_encoder * phuff_entropy_ptr; /* MAX_CORR_BITS is the number of bits the AC refinement correction-bit * buffer can hold. Larger sizes may slightly improve compression, but * 1000 is already well into the realm of overkill. * The minimum safe size is 64 bits. */ #define MAX_CORR_BITS 1000 /* Max # of correction bits I can buffer */ /* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32. * We assume that int right shift is unsigned if INT32 right shift is, * which should be safe. */ #ifdef RIGHT_SHIFT_IS_UNSIGNED #define ISHIFT_TEMPS int ishift_temp; #define IRIGHT_SHIFT(x,shft) \ ((ishift_temp = (x)) < 0 ? \ (ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \ (ishift_temp >> (shft))) #else #define ISHIFT_TEMPS #define IRIGHT_SHIFT(x,shft) ((x) >> (shft)) #endif /* Forward declarations */ METHODDEF(boolean) encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data); METHODDEF(boolean) encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data); METHODDEF(boolean) encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data); METHODDEF(boolean) encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data); METHODDEF(void) finish_pass_phuff (j_compress_ptr cinfo); METHODDEF(void) finish_pass_gather_phuff (j_compress_ptr cinfo); /* * Initialize for a Huffman-compressed scan using progressive JPEG. */ METHODDEF(void) start_pass_phuff (j_compress_ptr cinfo, boolean gather_statistics) { phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; boolean is_DC_band; int ci, tbl; jpeg_component_info * compptr; entropy->cinfo = cinfo; entropy->gather_statistics = gather_statistics; is_DC_band = (cinfo->Ss == 0); /* We assume jcmaster.c already validated the scan parameters. */ /* Select execution routines */ if (cinfo->Ah == 0) { if (is_DC_band) entropy->pub.encode_mcu = encode_mcu_DC_first; else entropy->pub.encode_mcu = encode_mcu_AC_first; } else { if (is_DC_band) entropy->pub.encode_mcu = encode_mcu_DC_refine; else { entropy->pub.encode_mcu = encode_mcu_AC_refine; /* AC refinement needs a correction bit buffer */ if (entropy->bit_buffer == NULL) entropy->bit_buffer = (char *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, MAX_CORR_BITS * sizeof(char)); } } if (gather_statistics) entropy->pub.finish_pass = finish_pass_gather_phuff; else entropy->pub.finish_pass = finish_pass_phuff; /* Only DC coefficients may be interleaved, so cinfo->comps_in_scan = 1 * for AC coefficients. */ for (ci = 0; ci < cinfo->comps_in_scan; ci++) { compptr = cinfo->cur_comp_info[ci]; /* Initialize DC predictions to 0 */ entropy->last_dc_val[ci] = 0; /* Get table index */ if (is_DC_band) { if (cinfo->Ah != 0) /* DC refinement needs no table */ continue; tbl = compptr->dc_tbl_no; } else { entropy->ac_tbl_no = tbl = compptr->ac_tbl_no; } if (gather_statistics) { /* Check for invalid table index */ /* (make_c_derived_tbl does this in the other path) */ if (tbl < 0 || tbl >= NUM_HUFF_TBLS) ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl); /* Allocate and zero the statistics tables */ /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */ if (entropy->count_ptrs[tbl] == NULL) entropy->count_ptrs[tbl] = (long *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, 257 * sizeof(long)); MEMZERO(entropy->count_ptrs[tbl], 257 * sizeof(long)); } else { /* Compute derived values for Huffman table */ /* We may do this more than once for a table, but it's not expensive */ jpeg_make_c_derived_tbl(cinfo, is_DC_band, tbl, & entropy->derived_tbls[tbl]); } } /* Initialize AC stuff */ entropy->EOBRUN = 0; entropy->BE = 0; /* Initialize bit buffer to empty */ entropy->put_buffer = 0; entropy->put_bits = 0; /* Initialize restart stuff */ entropy->restarts_to_go = cinfo->restart_interval; entropy->next_restart_num = 0; } /* Outputting bytes to the file. * NB: these must be called only when actually outputting, * that is, entropy->gather_statistics == FALSE. */ /* Emit a byte */ #define emit_byte(entropy,val) \ { *(entropy)->next_output_byte++ = (JOCTET) (val); \ if (--(entropy)->free_in_buffer == 0) \ dump_buffer(entropy); } LOCAL(void) dump_buffer (phuff_entropy_ptr entropy) /* Empty the output buffer; we do not support suspension in this module. */ { struct jpeg_destination_mgr * dest = entropy->cinfo->dest; if (! (*dest->empty_output_buffer) (entropy->cinfo)) ERREXIT(entropy->cinfo, JERR_CANT_SUSPEND); /* After a successful buffer dump, must reset buffer pointers */ entropy->next_output_byte = dest->next_output_byte; entropy->free_in_buffer = dest->free_in_buffer; } /* Outputting bits to the file */ /* Only the right 24 bits of put_buffer are used; the valid bits are * left-justified in this part. At most 16 bits can be passed to emit_bits * in one call, and we never retain more than 7 bits in put_buffer * between calls, so 24 bits are sufficient. */ LOCAL(void) emit_bits (phuff_entropy_ptr entropy, unsigned int code, int size) /* Emit some bits, unless we are in gather mode */ { /* This routine is heavily used, so it's worth coding tightly. */ register INT32 put_buffer = (INT32) code; register int put_bits = entropy->put_bits; /* if size is 0, caller used an invalid Huffman table entry */ if (size == 0) ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE); if (entropy->gather_statistics) return; /* do nothing if we're only getting stats */ put_buffer &= (((INT32) 1)<put_buffer; /* and merge with old buffer contents */ while (put_bits >= 8) { int c = (int) ((put_buffer >> 16) & 0xFF); emit_byte(entropy, c); if (c == 0xFF) { /* need to stuff a zero byte? */ emit_byte(entropy, 0); } put_buffer <<= 8; put_bits -= 8; } entropy->put_buffer = put_buffer; /* update variables */ entropy->put_bits = put_bits; } LOCAL(void) flush_bits (phuff_entropy_ptr entropy) { emit_bits(entropy, 0x7F, 7); /* fill any partial byte with ones */ entropy->put_buffer = 0; /* and reset bit-buffer to empty */ entropy->put_bits = 0; } /* * Emit (or just count) a Huffman symbol. */ LOCAL(void) emit_symbol (phuff_entropy_ptr entropy, int tbl_no, int symbol) { if (entropy->gather_statistics) entropy->count_ptrs[tbl_no][symbol]++; else { c_derived_tbl * tbl = entropy->derived_tbls[tbl_no]; emit_bits(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]); } } /* * Emit bits from a correction bit buffer. */ LOCAL(void) emit_buffered_bits (phuff_entropy_ptr entropy, char * bufstart, unsigned int nbits) { if (entropy->gather_statistics) return; /* no real work */ while (nbits > 0) { emit_bits(entropy, (unsigned int) (*bufstart), 1); bufstart++; nbits--; } } /* * Emit any pending EOBRUN symbol. */ LOCAL(void) emit_eobrun (phuff_entropy_ptr entropy) { register int temp, nbits; if (entropy->EOBRUN > 0) { /* if there is any pending EOBRUN */ temp = entropy->EOBRUN; nbits = 0; while ((temp >>= 1)) nbits++; /* safety check: shouldn't happen given limited correction-bit buffer */ if (nbits > 14) ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE); emit_symbol(entropy, entropy->ac_tbl_no, nbits << 4); if (nbits) emit_bits(entropy, entropy->EOBRUN, nbits); entropy->EOBRUN = 0; /* Emit any buffered correction bits */ emit_buffered_bits(entropy, entropy->bit_buffer, entropy->BE); entropy->BE = 0; } } /* * Emit a restart marker & resynchronize predictions. */ LOCAL(void) emit_restart (phuff_entropy_ptr entropy, int restart_num) { int ci; emit_eobrun(entropy); if (! entropy->gather_statistics) { flush_bits(entropy); emit_byte(entropy, 0xFF); emit_byte(entropy, JPEG_RST0 + restart_num); } if (entropy->cinfo->Ss == 0) { /* Re-initialize DC predictions to 0 */ for (ci = 0; ci < entropy->cinfo->comps_in_scan; ci++) entropy->last_dc_val[ci] = 0; } else { /* Re-initialize all AC-related fields to 0 */ entropy->EOBRUN = 0; entropy->BE = 0; } } /* * MCU encoding for DC initial scan (either spectral selection, * or first pass of successive approximation). */ METHODDEF(boolean) encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data) { phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; register int temp, temp2; register int nbits; int blkn, ci; int Al = cinfo->Al; JBLOCKROW block; jpeg_component_info * compptr; ISHIFT_TEMPS entropy->next_output_byte = cinfo->dest->next_output_byte; entropy->free_in_buffer = cinfo->dest->free_in_buffer; /* Emit restart marker if needed */ if (cinfo->restart_interval) if (entropy->restarts_to_go == 0) emit_restart(entropy, entropy->next_restart_num); /* Encode the MCU data blocks */ for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { block = MCU_data[blkn]; ci = cinfo->MCU_membership[blkn]; compptr = cinfo->cur_comp_info[ci]; /* Compute the DC value after the required point transform by Al. * This is simply an arithmetic right shift. */ temp2 = IRIGHT_SHIFT((int) ((*block)[0]), Al); /* DC differences are figured on the point-transformed values. */ temp = temp2 - entropy->last_dc_val[ci]; entropy->last_dc_val[ci] = temp2; /* Encode the DC coefficient difference per section G.1.2.1 */ temp2 = temp; if (temp < 0) { temp = -temp; /* temp is abs value of input */ /* For a negative input, want temp2 = bitwise complement of abs(input) */ /* This code assumes we are on a two's complement machine */ temp2--; } /* Find the number of bits needed for the magnitude of the coefficient */ nbits = 0; while (temp) { nbits++; temp >>= 1; } /* Check for out-of-range coefficient values. * Since we're encoding a difference, the range limit is twice as much. */ if (nbits > MAX_COEF_BITS+1) ERREXIT(cinfo, JERR_BAD_DCT_COEF); /* Count/emit the Huffman-coded symbol for the number of bits */ emit_symbol(entropy, compptr->dc_tbl_no, nbits); /* Emit that number of bits of the value, if positive, */ /* or the complement of its magnitude, if negative. */ if (nbits) /* emit_bits rejects calls with size 0 */ emit_bits(entropy, (unsigned int) temp2, nbits); } cinfo->dest->next_output_byte = entropy->next_output_byte; cinfo->dest->free_in_buffer = entropy->free_in_buffer; /* Update restart-interval state too */ if (cinfo->restart_interval) { if (entropy->restarts_to_go == 0) { entropy->restarts_to_go = cinfo->restart_interval; entropy->next_restart_num++; entropy->next_restart_num &= 7; } entropy->restarts_to_go--; } return TRUE; } /* * MCU encoding for AC initial scan (either spectral selection, * or first pass of successive approximation). */ METHODDEF(boolean) encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data) { phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; register int temp, temp2; register int nbits; register int r, k; int Se = cinfo->Se; int Al = cinfo->Al; JBLOCKROW block; entropy->next_output_byte = cinfo->dest->next_output_byte; entropy->free_in_buffer = cinfo->dest->free_in_buffer; /* Emit restart marker if needed */ if (cinfo->restart_interval) if (entropy->restarts_to_go == 0) emit_restart(entropy, entropy->next_restart_num); /* Encode the MCU data block */ block = MCU_data[0]; /* Encode the AC coefficients per section G.1.2.2, fig. G.3 */ r = 0; /* r = run length of zeros */ for (k = cinfo->Ss; k <= Se; k++) { if ((temp = (*block)[jpeg_natural_order[k]]) == 0) { r++; continue; } /* We must apply the point transform by Al. For AC coefficients this * is an integer division with rounding towards 0. To do this portably * in C, we shift after obtaining the absolute value; so the code is * interwoven with finding the abs value (temp) and output bits (temp2). */ if (temp < 0) { temp = -temp; /* temp is abs value of input */ temp >>= Al; /* apply the point transform */ /* For a negative coef, want temp2 = bitwise complement of abs(coef) */ temp2 = ~temp; } else { temp >>= Al; /* apply the point transform */ temp2 = temp; } /* Watch out for case that nonzero coef is zero after point transform */ if (temp == 0) { r++; continue; } /* Emit any pending EOBRUN */ if (entropy->EOBRUN > 0) emit_eobrun(entropy); /* if run length > 15, must emit special run-length-16 codes (0xF0) */ while (r > 15) { emit_symbol(entropy, entropy->ac_tbl_no, 0xF0); r -= 16; } /* Find the number of bits needed for the magnitude of the coefficient */ nbits = 1; /* there must be at least one 1 bit */ while ((temp >>= 1)) nbits++; /* Check for out-of-range coefficient values */ if (nbits > MAX_COEF_BITS) ERREXIT(cinfo, JERR_BAD_DCT_COEF); /* Count/emit Huffman symbol for run length / number of bits */ emit_symbol(entropy, entropy->ac_tbl_no, (r << 4) + nbits); /* Emit that number of bits of the value, if positive, */ /* or the complement of its magnitude, if negative. */ emit_bits(entropy, (unsigned int) temp2, nbits); r = 0; /* reset zero run length */ } if (r > 0) { /* If there are trailing zeroes, */ entropy->EOBRUN++; /* count an EOB */ if (entropy->EOBRUN == 0x7FFF) emit_eobrun(entropy); /* force it out to avoid overflow */ } cinfo->dest->next_output_byte = entropy->next_output_byte; cinfo->dest->free_in_buffer = entropy->free_in_buffer; /* Update restart-interval state too */ if (cinfo->restart_interval) { if (entropy->restarts_to_go == 0) { entropy->restarts_to_go = cinfo->restart_interval; entropy->next_restart_num++; entropy->next_restart_num &= 7; } entropy->restarts_to_go--; } return TRUE; } /* * MCU encoding for DC successive approximation refinement scan. * Note: we assume such scans can be multi-component, although the spec * is not very clear on the point. */ METHODDEF(boolean) encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data) { phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; register int temp; int blkn; int Al = cinfo->Al; JBLOCKROW block; entropy->next_output_byte = cinfo->dest->next_output_byte; entropy->free_in_buffer = cinfo->dest->free_in_buffer; /* Emit restart marker if needed */ if (cinfo->restart_interval) if (entropy->restarts_to_go == 0) emit_restart(entropy, entropy->next_restart_num); /* Encode the MCU data blocks */ for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { block = MCU_data[blkn]; /* We simply emit the Al'th bit of the DC coefficient value. */ temp = (*block)[0]; emit_bits(entropy, (unsigned int) (temp >> Al), 1); } cinfo->dest->next_output_byte = entropy->next_output_byte; cinfo->dest->free_in_buffer = entropy->free_in_buffer; /* Update restart-interval state too */ if (cinfo->restart_interval) { if (entropy->restarts_to_go == 0) { entropy->restarts_to_go = cinfo->restart_interval; entropy->next_restart_num++; entropy->next_restart_num &= 7; } entropy->restarts_to_go--; } return TRUE; } /* * MCU encoding for AC successive approximation refinement scan. */ METHODDEF(boolean) encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data) { phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; register int temp; register int r, k; int EOB; char *BR_buffer; unsigned int BR; int Se = cinfo->Se; int Al = cinfo->Al; JBLOCKROW block; int absvalues[DCTSIZE2]; entropy->next_output_byte = cinfo->dest->next_output_byte; entropy->free_in_buffer = cinfo->dest->free_in_buffer; /* Emit restart marker if needed */ if (cinfo->restart_interval) if (entropy->restarts_to_go == 0) emit_restart(entropy, entropy->next_restart_num); /* Encode the MCU data block */ block = MCU_data[0]; /* It is convenient to make a pre-pass to determine the transformed * coefficients' absolute values and the EOB position. */ EOB = 0; for (k = cinfo->Ss; k <= Se; k++) { temp = (*block)[jpeg_natural_order[k]]; /* We must apply the point transform by Al. For AC coefficients this * is an integer division with rounding towards 0. To do this portably * in C, we shift after obtaining the absolute value. */ if (temp < 0) temp = -temp; /* temp is abs value of input */ temp >>= Al; /* apply the point transform */ absvalues[k] = temp; /* save abs value for main pass */ if (temp == 1) EOB = k; /* EOB = index of last newly-nonzero coef */ } /* Encode the AC coefficients per section G.1.2.3, fig. G.7 */ r = 0; /* r = run length of zeros */ BR = 0; /* BR = count of buffered bits added now */ BR_buffer = entropy->bit_buffer + entropy->BE; /* Append bits to buffer */ for (k = cinfo->Ss; k <= Se; k++) { if ((temp = absvalues[k]) == 0) { r++; continue; } /* Emit any required ZRLs, but not if they can be folded into EOB */ while (r > 15 && k <= EOB) { /* emit any pending EOBRUN and the BE correction bits */ emit_eobrun(entropy); /* Emit ZRL */ emit_symbol(entropy, entropy->ac_tbl_no, 0xF0); r -= 16; /* Emit buffered correction bits that must be associated with ZRL */ emit_buffered_bits(entropy, BR_buffer, BR); BR_buffer = entropy->bit_buffer; /* BE bits are gone now */ BR = 0; } /* If the coef was previously nonzero, it only needs a correction bit. * NOTE: a straight translation of the spec's figure G.7 would suggest * that we also need to test r > 15. But if r > 15, we can only get here * if k > EOB, which implies that this coefficient is not 1. */ if (temp > 1) { /* The correction bit is the next bit of the absolute value. */ BR_buffer[BR++] = (char) (temp & 1); continue; } /* Emit any pending EOBRUN and the BE correction bits */ emit_eobrun(entropy); /* Count/emit Huffman symbol for run length / number of bits */ emit_symbol(entropy, entropy->ac_tbl_no, (r << 4) + 1); /* Emit output bit for newly-nonzero coef */ temp = ((*block)[jpeg_natural_order[k]] < 0) ? 0 : 1; emit_bits(entropy, (unsigned int) temp, 1); /* Emit buffered correction bits that must be associated with this code */ emit_buffered_bits(entropy, BR_buffer, BR); BR_buffer = entropy->bit_buffer; /* BE bits are gone now */ BR = 0; r = 0; /* reset zero run length */ } if (r > 0 || BR > 0) { /* If there are trailing zeroes, */ entropy->EOBRUN++; /* count an EOB */ entropy->BE += BR; /* concat my correction bits to older ones */ /* We force out the EOB if we risk either: * 1. overflow of the EOB counter; * 2. overflow of the correction bit buffer during the next MCU. */ if (entropy->EOBRUN == 0x7FFF || entropy->BE > (MAX_CORR_BITS-DCTSIZE2+1)) emit_eobrun(entropy); } cinfo->dest->next_output_byte = entropy->next_output_byte; cinfo->dest->free_in_buffer = entropy->free_in_buffer; /* Update restart-interval state too */ if (cinfo->restart_interval) { if (entropy->restarts_to_go == 0) { entropy->restarts_to_go = cinfo->restart_interval; entropy->next_restart_num++; entropy->next_restart_num &= 7; } entropy->restarts_to_go--; } return TRUE; } /* * Finish up at the end of a Huffman-compressed progressive scan. */ METHODDEF(void) finish_pass_phuff (j_compress_ptr cinfo) { phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; entropy->next_output_byte = cinfo->dest->next_output_byte; entropy->free_in_buffer = cinfo->dest->free_in_buffer; /* Flush out any buffered data */ emit_eobrun(entropy); flush_bits(entropy); cinfo->dest->next_output_byte = entropy->next_output_byte; cinfo->dest->free_in_buffer = entropy->free_in_buffer; } /* * Finish up a statistics-gathering pass and create the new Huffman tables. */ METHODDEF(void) finish_pass_gather_phuff (j_compress_ptr cinfo) { phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; boolean is_DC_band; int ci, tbl; jpeg_component_info * compptr; JHUFF_TBL **htblptr; boolean did[NUM_HUFF_TBLS]; /* Flush out buffered data (all we care about is counting the EOB symbol) */ emit_eobrun(entropy); is_DC_band = (cinfo->Ss == 0); /* It's important not to apply jpeg_gen_optimal_table more than once * per table, because it clobbers the input frequency counts! */ MEMZERO(did, sizeof(did)); for (ci = 0; ci < cinfo->comps_in_scan; ci++) { compptr = cinfo->cur_comp_info[ci]; if (is_DC_band) { if (cinfo->Ah != 0) /* DC refinement needs no table */ continue; tbl = compptr->dc_tbl_no; } else { tbl = compptr->ac_tbl_no; } if (! did[tbl]) { if (is_DC_band) htblptr = & cinfo->dc_huff_tbl_ptrs[tbl]; else htblptr = & cinfo->ac_huff_tbl_ptrs[tbl]; if (*htblptr == NULL) *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo); jpeg_gen_optimal_table(cinfo, *htblptr, entropy->count_ptrs[tbl]); did[tbl] = TRUE; } } } /* * Module initialization routine for progressive Huffman entropy encoding. */ GLOBAL(void) jinit_phuff_encoder (j_compress_ptr cinfo) { phuff_entropy_ptr entropy; int i; entropy = (phuff_entropy_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, sizeof(phuff_entropy_encoder)); cinfo->entropy = (struct jpeg_entropy_encoder *) entropy; entropy->pub.start_pass = start_pass_phuff; /* Mark tables unallocated */ for (i = 0; i < NUM_HUFF_TBLS; i++) { entropy->derived_tbls[i] = NULL; entropy->count_ptrs[i] = NULL; } entropy->bit_buffer = NULL; /* needed only in AC refinement scan */ } #endif /* C_PROGRESSIVE_SUPPORTED */ libjpeg-turbo-1.4.2/CMakeLists.txt0000644000076500007650000010334712600050400013751 00000000000000# # Setup # cmake_minimum_required(VERSION 2.8.8) # Use LINK_INTERFACE_LIBRARIES instead of INTERFACE_LINK_LIBRARIES if(POLICY CMP0022) cmake_policy(SET CMP0022 OLD) endif() project(libjpeg-turbo C) set(VERSION 1.4.2) if(CYGWIN OR NOT CMAKE_HOST_SYSTEM_NAME STREQUAL "Windows") execute_process(COMMAND "date" "+%Y%m%d" OUTPUT_VARIABLE BUILD) string(REGEX REPLACE "\n" "" BUILD ${BUILD}) elseif(WIN32) execute_process(COMMAND "wmic.exe" "os" "get" "LocalDateTime" OUTPUT_VARIABLE BUILD) string(REGEX REPLACE "[^0-9]" "" BUILD "${BUILD}") if (BUILD STREQUAL "") execute_process(COMMAND "cmd.exe" "/C" "DATE" "/T" OUTPUT_VARIABLE BUILD) string(REGEX REPLACE ".*[ ]([0-9]*)[/.]([0-9]*)[/.]([0-9]*).*" "\\3\\2\\1" BUILD "${BUILD}") else() string(SUBSTRING "${BUILD}" 0 8 BUILD) endif() else() message(FATAL_ERROR "Platform not supported by this build system. Use autotools instead.") endif() # This does nothing except when using MinGW. CMAKE_BUILD_TYPE has no meaning # in Visual Studio, and it always defaults to Debug when using NMake. if(NOT CMAKE_BUILD_TYPE) set(CMAKE_BUILD_TYPE Release) endif() message(STATUS "CMAKE_BUILD_TYPE = ${CMAKE_BUILD_TYPE}") # This only works if building from the command line. There is currently no way # to set a variable's value based on the build type when using Visual Studio. if(CMAKE_BUILD_TYPE STREQUAL "Debug") set(BUILD "${BUILD}d") endif() message(STATUS "VERSION = ${VERSION}, BUILD = ${BUILD}") option(WITH_SIMD "Include SIMD extensions" TRUE) option(WITH_ARITH_ENC "Include arithmetic encoding support" TRUE) option(WITH_ARITH_DEC "Include arithmetic decoding support" TRUE) option(WITH_JPEG7 "Emulate libjpeg v7 API/ABI (this makes libjpeg-turbo backward incompatible with libjpeg v6b)" FALSE) option(WITH_JPEG8 "Emulate libjpeg v8 API/ABI (this makes libjpeg-turbo backward incompatible with libjpeg v6b)" FALSE) option(WITH_MEM_SRCDST "Include in-memory source/destination manager functions when emulating the libjpeg v6b or v7 API/ABI" TRUE) option(WITH_TURBOJPEG "Include the TurboJPEG wrapper library and associated test programs" TRUE) option(WITH_JAVA "Build Java wrapper for the TurboJPEG library" FALSE) option(WITH_12BIT "Encode/decode JPEG images with 12-bit samples (implies WITH_SIMD=0 WITH_TURBOJPEG=0 WITH_ARITH_ENC=0 WITH_ARITH_DEC=0)" FALSE) option(ENABLE_STATIC "Build static libraries" TRUE) option(ENABLE_SHARED "Build shared libraries" TRUE) if(WITH_12BIT) set(WITH_SIMD FALSE) set(WITH_TURBOJPEG FALSE) set(WITH_JAVA FALSE) set(WITH_ARITH_ENC FALSE) set(WITH_ARITH_DEC FALSE) set(BITS_IN_JSAMPLE 12) message(STATUS "12-bit JPEG support enabled") else() set(BITS_IN_JSAMPLE 8) endif() if(WITH_ARITH_ENC) set(C_ARITH_CODING_SUPPORTED 1) message(STATUS "Arithmetic encoding support enabled") else() message(STATUS "Arithmetic encoding support disabled") endif() if(WITH_ARITH_DEC) set(D_ARITH_CODING_SUPPORTED 1) message(STATUS "Arithmetic decoding support enabled") else() message(STATUS "Arithmetic decoding support disabled") endif() if(WITH_TURBOJPEG) message(STATUS "TurboJPEG C wrapper enabled") else() message(STATUS "TurboJPEG C wrapper disabled") endif() if(WITH_JAVA) message(STATUS "TurboJPEG Java wrapper enabled") else() message(STATUS "TurboJPEG Java wrapper disabled") endif() set(SO_AGE 0) if(WITH_MEM_SRCDST) set(SO_AGE 1) endif() set(JPEG_LIB_VERSION 62) set(DLL_VERSION ${JPEG_LIB_VERSION}) set(FULLVERSION ${DLL_VERSION}.${SO_AGE}.0) if(WITH_JPEG8) set(JPEG_LIB_VERSION 80) set(DLL_VERSION 8) set(FULLVERSION ${DLL_VERSION}.0.2) message(STATUS "Emulating libjpeg v8 API/ABI") elseif(WITH_JPEG7) set(JPEG_LIB_VERSION 70) set(DLL_VERSION 7) set(FULLVERSION ${DLL_VERSION}.${SO_AGE}.0) message(STATUS "Emulating libjpeg v7 API/ABI") endif(WITH_JPEG8) if(WITH_MEM_SRCDST) set(MEM_SRCDST_SUPPORTED 1) message(STATUS "In-memory source/destination managers enabled") else() message(STATUS "In-memory source/destination managers disabled") endif() if(MSVC) option(WITH_CRT_DLL "Link all libjpeg-turbo libraries and executables with the C run-time DLL (msvcr*.dll) instead of the static C run-time library (libcmt*.lib.) The default is to use the C run-time DLL only with the libraries and executables that need it." FALSE) if(NOT WITH_CRT_DLL) # Use the static C library for all build types foreach(var CMAKE_C_FLAGS CMAKE_C_FLAGS_DEBUG CMAKE_C_FLAGS_RELEASE CMAKE_C_FLAGS_MINSIZEREL CMAKE_C_FLAGS_RELWITHDEBINFO) if(${var} MATCHES "/MD") string(REGEX REPLACE "/MD" "/MT" ${var} "${${var}}") endif() endforeach() endif() add_definitions(-W3 -wd4996) endif() # Detect whether compiler is 64-bit if(MSVC AND CMAKE_CL_64) set(SIMD_X86_64 1) set(64BIT 1) elseif(CMAKE_SIZEOF_VOID_P MATCHES 8) set(SIMD_X86_64 1) set(64BIT 1) endif() if(64BIT) message(STATUS "64-bit build") else() message(STATUS "32-bit build") endif() if(CMAKE_INSTALL_PREFIX_INITIALIZED_TO_DEFAULT) if(MSVC) set(CMAKE_INSTALL_PREFIX_DEFAULT ${CMAKE_PROJECT_NAME}) else() set(CMAKE_INSTALL_PREFIX_DEFAULT ${CMAKE_PROJECT_NAME}-gcc) endif() if(64BIT) set(CMAKE_INSTALL_PREFIX_DEFAULT ${CMAKE_INSTALL_PREFIX_DEFAULT}64) endif() set(CMAKE_INSTALL_PREFIX "c:/${CMAKE_INSTALL_PREFIX_DEFAULT}" CACHE PATH "Directory into which to install libjpeg-turbo (default: c:/${CMAKE_INSTALL_PREFIX_DEFAULT})" FORCE) endif() message(STATUS "Install directory = ${CMAKE_INSTALL_PREFIX}") configure_file(win/jconfig.h.in jconfig.h) configure_file(win/jconfigint.h.in jconfigint.h) include_directories(${CMAKE_CURRENT_BINARY_DIR} ${CMAKE_SOURCE_DIR}) if(WITH_JAVA) find_package(Java) find_package(JNI) if(DEFINED JAVACFLAGS) message(STATUS "Java compiler flags = ${JAVACFLAGS}") endif() endif() # # Targets # set(JPEG_SOURCES jcapimin.c jcapistd.c jccoefct.c jccolor.c jcdctmgr.c jchuff.c jcinit.c jcmainct.c jcmarker.c jcmaster.c jcomapi.c jcparam.c jcphuff.c jcprepct.c jcsample.c jctrans.c jdapimin.c jdapistd.c jdatadst.c jdatasrc.c jdcoefct.c jdcolor.c jddctmgr.c jdhuff.c jdinput.c jdmainct.c jdmarker.c jdmaster.c jdmerge.c jdphuff.c jdpostct.c jdsample.c jdtrans.c jerror.c jfdctflt.c jfdctfst.c jfdctint.c jidctflt.c jidctfst.c jidctint.c jidctred.c jquant1.c jquant2.c jutils.c jmemmgr.c jmemnobs.c) if(WITH_ARITH_ENC OR WITH_ARITH_DEC) set(JPEG_SOURCES ${JPEG_SOURCES} jaricom.c) endif() if(WITH_ARITH_ENC) set(JPEG_SOURCES ${JPEG_SOURCES} jcarith.c) endif() if(WITH_ARITH_DEC) set(JPEG_SOURCES ${JPEG_SOURCES} jdarith.c) endif() if(WITH_SIMD) add_definitions(-DWITH_SIMD) add_subdirectory(simd) if(SIMD_X86_64) set(JPEG_SOURCES ${JPEG_SOURCES} simd/jsimd_x86_64.c) else() set(JPEG_SOURCES ${JPEG_SOURCES} simd/jsimd_i386.c) endif() # This tells CMake that the "source" files haven't been generated yet set_source_files_properties(${SIMD_OBJS} PROPERTIES GENERATED 1) else() set(JPEG_SOURCES ${JPEG_SOURCES} jsimd_none.c) message(STATUS "Not using SIMD acceleration") endif() if(WITH_JAVA) add_subdirectory(java) set(ENABLE_SHARED TRUE) endif() if(ENABLE_SHARED) add_subdirectory(sharedlib) endif() if(ENABLE_STATIC OR WITH_TURBOJPEG) add_library(jpeg-static STATIC ${JPEG_SOURCES} ${SIMD_OBJS}) if(NOT MSVC) set_target_properties(jpeg-static PROPERTIES OUTPUT_NAME jpeg) endif() if(WITH_SIMD) add_dependencies(jpeg-static simd) endif() endif() if(WITH_TURBOJPEG) set(TURBOJPEG_SOURCES turbojpeg.c transupp.c jdatadst-tj.c jdatasrc-tj.c) if(WITH_JAVA) set(TURBOJPEG_SOURCES ${TURBOJPEG_SOURCES} turbojpeg-jni.c) include_directories(${JAVA_INCLUDE_PATH} ${JAVA_INCLUDE_PATH2}) endif() if(ENABLE_SHARED) add_library(turbojpeg SHARED ${TURBOJPEG_SOURCES}) set_target_properties(turbojpeg PROPERTIES DEFINE_SYMBOL DLLDEFINE) if(MINGW) set_target_properties(turbojpeg PROPERTIES LINK_FLAGS -Wl,--kill-at) endif() target_link_libraries(turbojpeg jpeg-static) set_target_properties(turbojpeg PROPERTIES LINK_INTERFACE_LIBRARIES "") add_executable(tjunittest tjunittest.c tjutil.c) target_link_libraries(tjunittest turbojpeg) add_executable(tjbench tjbench.c bmp.c tjutil.c rdbmp.c rdppm.c wrbmp.c wrppm.c) target_link_libraries(tjbench turbojpeg jpeg-static) set_property(TARGET tjbench PROPERTY COMPILE_FLAGS "-DBMP_SUPPORTED -DPPM_SUPPORTED") endif() if(ENABLE_STATIC) add_library(turbojpeg-static STATIC ${JPEG_SOURCES} ${SIMD_OBJS} turbojpeg.c transupp.c jdatadst-tj.c jdatasrc-tj.c) if(NOT MSVC) set_target_properties(turbojpeg-static PROPERTIES OUTPUT_NAME turbojpeg) endif() if(WITH_SIMD) add_dependencies(turbojpeg-static simd) endif() add_executable(tjunittest-static tjunittest.c tjutil.c) target_link_libraries(tjunittest-static turbojpeg-static) add_executable(tjbench-static tjbench.c bmp.c tjutil.c rdbmp.c rdppm.c wrbmp.c wrppm.c) target_link_libraries(tjbench-static turbojpeg-static jpeg-static) set_property(TARGET tjbench-static PROPERTY COMPILE_FLAGS "-DBMP_SUPPORTED -DPPM_SUPPORTED") endif() endif() if(WITH_12BIT) set(COMPILE_FLAGS "-DGIF_SUPPORTED -DPPM_SUPPORTED -DUSE_SETMODE") else() set(COMPILE_FLAGS "-DBMP_SUPPORTED -DGIF_SUPPORTED -DPPM_SUPPORTED -DTARGA_SUPPORTED -DUSE_SETMODE") set(CJPEG_BMP_SOURCES rdbmp.c rdtarga.c) set(DJPEG_BMP_SOURCES wrbmp.c wrtarga.c) endif() if(ENABLE_STATIC) add_executable(cjpeg-static cjpeg.c cdjpeg.c rdgif.c rdppm.c rdswitch.c ${CJPEG_BMP_SOURCES}) set_property(TARGET cjpeg-static PROPERTY COMPILE_FLAGS ${COMPILE_FLAGS}) target_link_libraries(cjpeg-static jpeg-static) add_executable(djpeg-static djpeg.c cdjpeg.c rdcolmap.c rdswitch.c wrgif.c wrppm.c ${DJPEG_BMP_SOURCES}) set_property(TARGET djpeg-static PROPERTY COMPILE_FLAGS ${COMPILE_FLAGS}) target_link_libraries(djpeg-static jpeg-static) add_executable(jpegtran-static jpegtran.c cdjpeg.c rdswitch.c transupp.c) target_link_libraries(jpegtran-static jpeg-static) set_property(TARGET jpegtran-static PROPERTY COMPILE_FLAGS "-DUSE_SETMODE") endif() add_executable(rdjpgcom rdjpgcom.c) add_executable(wrjpgcom wrjpgcom.c) # # Tests # if(MSVC_IDE) set(OBJDIR "\${CTEST_CONFIGURATION_TYPE}/") else() set(OBJDIR "") endif() enable_testing() if(WITH_12BIT) set(TESTORIG testorig12.jpg) set(MD5_JPEG_RGB_ISLOW 9620f424569594bb9242b48498ad801f) set(MD5_PPM_RGB_ISLOW f3301d2219783b8b3d942b7239fa50c0) set(MD5_JPEG_422_IFAST_OPT 7322e3bd2f127f7de4b40d4480ce60e4) set(MD5_PPM_422_IFAST 79807fa552899e66a04708f533e16950) set(MD5_PPM_422M_IFAST 07737bfe8a7c1c87aaa393a0098d16b0) set(MD5_JPEG_420_IFAST_Q100_PROG a1da220b5604081863a504297ed59e55) set(MD5_PPM_420_Q100_IFAST 1b3730122709f53d007255e8dfd3305e) set(MD5_PPM_420M_Q100_IFAST 980a1a3c5bf9510022869d30b7d26566) set(MD5_JPEG_GRAY_ISLOW 235c90707b16e2e069f37c888b2636d9) set(MD5_PPM_GRAY_ISLOW 7213c10af507ad467da5578ca5ee1fca) set(MD5_PPM_GRAY_ISLOW_RGB e96ee81c30a6ed422d466338bd3de65d) set(MD5_JPEG_420S_IFAST_OPT 7af8e60be4d9c227ec63ac9b6630855e) set(MD5_JPEG_3x2_FLOAT_PROG a8c17daf77b457725ec929e215b603f8) set(MD5_PPM_3x2_FLOAT 42876ab9e5c2f76a87d08db5fbd57956) set(MD5_PPM_420M_ISLOW_2_1 4ca6be2a6f326ff9eaab63e70a8259c0) set(MD5_PPM_420M_ISLOW_15_8 12aa9f9534c1b3d7ba047322226365eb) set(MD5_PPM_420M_ISLOW_13_8 f7e22817c7b25e1393e4ec101e9d4e96) set(MD5_PPM_420M_ISLOW_11_8 800a16f9f4dc9b293197bfe11be10a82) set(MD5_PPM_420M_ISLOW_9_8 06b7a92a9bc69f4dc36ec40f1937d55c) set(MD5_PPM_420M_ISLOW_7_8 3ec444a14a4ab4eab88ffc49c48eca43) set(MD5_PPM_420M_ISLOW_3_4 3e726b7ea872445b19437d1c1d4f0d93) set(MD5_PPM_420M_ISLOW_5_8 a8a771abdc94301d20ffac119b2caccd) set(MD5_PPM_420M_ISLOW_1_2 b419124dd5568b085787234866102866) set(MD5_PPM_420M_ISLOW_3_8 343d19015531b7bbe746124127244fa8) set(MD5_PPM_420M_ISLOW_1_4 35fd59d866e44659edfa3c18db2a3edb) set(MD5_PPM_420M_ISLOW_1_8 ccaed48ac0aedefda5d4abe4013f4ad7) set(MD5_JPEG_CROP cdb35ff4b4519392690ea040c56ea99c) else() set(TESTORIG testorig.jpg) set(MD5_JPEG_RGB_ISLOW 768e970dd57b340ff1b83c9d3d47c77b) set(MD5_PPM_RGB_ISLOW 00a257f5393fef8821f2b88ac7421291) set(MD5_BMP_RGB_ISLOW_565 f07d2e75073e4bb10f6c6f4d36e2e3be) set(MD5_BMP_RGB_ISLOW_565D 4cfa0928ef3e6bb626d7728c924cfda4) set(MD5_JPEG_422_IFAST_OPT 2540287b79d913f91665e660303ab2c8) set(MD5_PPM_422_IFAST 35bd6b3f833bad23de82acea847129fa) set(MD5_PPM_422M_IFAST 8dbc65323d62cca7c91ba02dd1cfa81d) set(MD5_BMP_422M_IFAST_565 3294bd4d9a1f2b3d08ea6020d0db7065) set(MD5_BMP_422M_IFAST_565D da98c9c7b6039511be4a79a878a9abc1) set(MD5_JPEG_420_IFAST_Q100_PROG 990cbe0329c882420a2094da7e5adade) set(MD5_PPM_420_Q100_IFAST 5a732542015c278ff43635e473a8a294) set(MD5_PPM_420M_Q100_IFAST ff692ee9323a3b424894862557c092f1) set(MD5_JPEG_GRAY_ISLOW 72b51f894b8f4a10b3ee3066770aa38d) set(MD5_PPM_GRAY_ISLOW 8d3596c56eace32f205deccc229aa5ed) set(MD5_PPM_GRAY_ISLOW_RGB 116424ac07b79e5e801f00508eab48ec) set(MD5_BMP_GRAY_ISLOW_565 12f78118e56a2f48b966f792fedf23cc) set(MD5_BMP_GRAY_ISLOW_565D bdbbd616441a24354c98553df5dc82db) set(MD5_JPEG_420S_IFAST_OPT 388708217ac46273ca33086b22827ed8) if(WITH_SIMD) set(MD5_JPEG_3x2_FLOAT_PROG 343e3f8caf8af5986ebaf0bdc13b5c71) set(MD5_PPM_3x2_FLOAT 1a75f36e5904d6fc3a85a43da9ad89bb) else() set(MD5_JPEG_3x2_FLOAT_PROG 9bca803d2042bd1eb03819e2bf92b3e5) set(MD5_PPM_3x2_FLOAT f6bfab038438ed8f5522fbd33595dcdc) endif() set(MD5_JPEG_420_ISLOW_ARI e986fb0a637a8d833d96e8a6d6d84ea1) set(MD5_JPEG_444_ISLOW_PROGARI 0a8f1c8f66e113c3cf635df0a475a617) set(MD5_PPM_420M_IFAST_ARI 72b59a99bcf1de24c5b27d151bde2437) set(MD5_JPEG_420_ISLOW 9a68f56bc76e466aa7e52f415d0f4a5f) set(MD5_PPM_420M_ISLOW_2_1 9f9de8c0612f8d06869b960b05abf9c9) set(MD5_PPM_420M_ISLOW_15_8 b6875bc070720b899566cc06459b63b7) set(MD5_PPM_420M_ISLOW_13_8 bc3452573c8152f6ae552939ee19f82f) set(MD5_PPM_420M_ISLOW_11_8 d8cc73c0aaacd4556569b59437ba00a5) set(MD5_PPM_420M_ISLOW_9_8 d25e61bc7eac0002f5b393aa223747b6) set(MD5_PPM_420M_ISLOW_7_8 ddb564b7c74a09494016d6cd7502a946) set(MD5_PPM_420M_ISLOW_3_4 8ed8e68808c3fbc4ea764fc9d2968646) set(MD5_PPM_420M_ISLOW_5_8 a3363274999da2366a024efae6d16c9b) set(MD5_PPM_420M_ISLOW_1_2 e692a315cea26b988c8e8b29a5dbcd81) set(MD5_PPM_420M_ISLOW_3_8 79eca9175652ced755155c90e785a996) set(MD5_PPM_420M_ISLOW_1_4 79cd778f8bf1a117690052cacdd54eca) set(MD5_PPM_420M_ISLOW_1_8 391b3d4aca640c8567d6f8745eb2142f) set(MD5_BMP_420_ISLOW_256 4980185e3776e89bd931736e1cddeee6) set(MD5_BMP_420_ISLOW_565 bf9d13e16c4923b92e1faa604d7922cb) set(MD5_BMP_420_ISLOW_565D 6bde71526acc44bcff76f696df8638d2) set(MD5_BMP_420M_ISLOW_565 8dc0185245353cfa32ad97027342216f) set(MD5_BMP_420M_ISLOW_565D d1be3a3339166255e76fa50a0d70d73e) set(MD5_JPEG_CROP b4197f377e621c4e9b1d20471432610d) endif() if(WITH_JAVA) add_test(TJUnitTest ${JAVA_RUNTIME} -cp java/${OBJDIR}turbojpeg.jar -Djava.library.path=${CMAKE_CURRENT_BINARY_DIR}/${OBJDIR} TJUnitTest) add_test(TJUnitTest-yuv ${JAVA_RUNTIME} -cp java/${OBJDIR}turbojpeg.jar -Djava.library.path=${CMAKE_CURRENT_BINARY_DIR}/${OBJDIR} TJUnitTest -yuv) add_test(TJUnitTest-yuv-nopad ${JAVA_RUNTIME} -cp java/${OBJDIR}turbojpeg.jar -Djava.library.path=${CMAKE_CURRENT_BINARY_DIR}/${OBJDIR} TJUnitTest -yuv -noyuvpad) add_test(TJUnitTest-bi ${JAVA_RUNTIME} -cp java/${OBJDIR}turbojpeg.jar -Djava.library.path=${CMAKE_CURRENT_BINARY_DIR}/${OBJDIR} TJUnitTest -bi) add_test(TJUnitTest-bi-yuv ${JAVA_RUNTIME} -cp java/${OBJDIR}turbojpeg.jar -Djava.library.path=${CMAKE_CURRENT_BINARY_DIR}/${OBJDIR} TJUnitTest -bi -yuv) add_test(TJUnitTest-bi-yuv-nopad ${JAVA_RUNTIME} -cp java/${OBJDIR}turbojpeg.jar -Djava.library.path=${CMAKE_CURRENT_BINARY_DIR}/${OBJDIR} TJUnitTest -bi -yuv -noyuvpad) endif() set(TEST_LIBTYPES "") if(ENABLE_SHARED) set(TEST_LIBTYPES ${TEST_LIBTYPES} shared) endif() if(ENABLE_STATIC) set(TEST_LIBTYPES ${TEST_LIBTYPES} static) endif() foreach(libtype ${TEST_LIBTYPES}) if(libtype STREQUAL "shared") set(dir sharedlib/) else() set(dir "") set(suffix -static) endif() if(WITH_TURBOJPEG) add_test(tjunittest${suffix} tjunittest${suffix}) add_test(tjunittest${suffix}-alloc tjunittest${suffix} -alloc) add_test(tjunittest${suffix}-yuv tjunittest${suffix} -yuv) add_test(tjunittest${suffix}-yuv-alloc tjunittest${suffix} -yuv -alloc) add_test(tjunittest${suffix}-yuv-nopad tjunittest${suffix} -yuv -noyuvpad) endif() # These tests are carefully chosen to provide full coverage of as many of the # underlying algorithms as possible (including all of the SIMD-accelerated # ones.) # CC: null SAMP: fullsize FDCT: islow ENT: huff add_test(cjpeg${suffix}-rgb-islow ${dir}cjpeg${suffix} -rgb -dct int -outfile testout_rgb_islow.jpg ${CMAKE_SOURCE_DIR}/testimages/testorig.ppm) add_test(cjpeg${suffix}-rgb-islow-cmp ${CMAKE_COMMAND} -DMD5=${MD5_JPEG_RGB_ISLOW} -DFILE=testout_rgb_islow.jpg -P ${CMAKE_SOURCE_DIR}/cmakescripts/md5cmp.cmake) # CC: null SAMP: fullsize IDCT: islow ENT: huff add_test(djpeg${suffix}-rgb-islow ${dir}djpeg${suffix} -dct int -ppm -outfile testout_rgb_islow.ppm testout_rgb_islow.jpg) add_test(djpeg${suffix}-rgb-islow-cmp ${CMAKE_COMMAND} -DMD5=${MD5_PPM_RGB_ISLOW} -DFILE=testout_rgb_islow.ppm -P ${CMAKE_SOURCE_DIR}/cmakescripts/md5cmp.cmake) if(NOT WITH_12BIT) # CC: RGB->RGB565 SAMP: fullsize IDCT: islow ENT: huff add_test(djpeg${suffix}-rgb-islow-565 ${dir}djpeg${suffix} -dct int -rgb565 -dither none -bmp -outfile testout_rgb_islow_565.bmp testout_rgb_islow.jpg) add_test(djpeg${suffix}-rgb-islow-565-cmp ${CMAKE_COMMAND} -DMD5=${MD5_BMP_RGB_ISLOW_565} -DFILE=testout_rgb_islow_565.bmp -P ${CMAKE_SOURCE_DIR}/cmakescripts/md5cmp.cmake) # CC: RGB->RGB565 (dithered) SAMP: fullsize IDCT: islow ENT: huff add_test(djpeg${suffix}-rgb-islow-565D ${dir}djpeg${suffix} -dct int -rgb565 -bmp -outfile testout_rgb_islow_565D.bmp testout_rgb_islow.jpg) add_test(djpeg${suffix}-rgb-islow-565D-cmp ${CMAKE_COMMAND} -DMD5=${MD5_BMP_RGB_ISLOW_565D} -DFILE=testout_rgb_islow_565D.bmp -P ${CMAKE_SOURCE_DIR}/cmakescripts/md5cmp.cmake) endif() # CC: RGB->YCC SAMP: fullsize/h2v1 FDCT: ifast ENT: 2-pass huff add_test(cjpeg${suffix}-422-ifast-opt ${dir}cjpeg${suffix} -sample 2x1 -dct fast -opt -outfile testout_422_ifast_opt.jpg ${CMAKE_SOURCE_DIR}/testimages/testorig.ppm) add_test(cjpeg${suffix}-422-ifast-opt-cmp ${CMAKE_COMMAND} -DMD5=${MD5_JPEG_422_IFAST_OPT} -DFILE=testout_422_ifast_opt.jpg -P ${CMAKE_SOURCE_DIR}/cmakescripts/md5cmp.cmake) # CC: YCC->RGB SAMP: fullsize/h2v1 fancy IDCT: ifast ENT: huff add_test(djpeg${suffix}-422-ifast ${dir}djpeg${suffix} -dct fast -outfile testout_422_ifast.ppm testout_422_ifast_opt.jpg) add_test(djpeg${suffix}-422-ifast-cmp ${CMAKE_COMMAND} -DMD5=${MD5_PPM_422_IFAST} -DFILE=testout_422_ifast.ppm -P ${CMAKE_SOURCE_DIR}/cmakescripts/md5cmp.cmake) # CC: YCC->RGB SAMP: h2v1 merged IDCT: ifast ENT: huff add_test(djpeg${suffix}-422m-ifast ${dir}djpeg${suffix} -dct fast -nosmooth -outfile testout_422m_ifast.ppm testout_422_ifast_opt.jpg) add_test(djpeg${suffix}-422m-ifast-cmp ${CMAKE_COMMAND} -DMD5=${MD5_PPM_422M_IFAST} -DFILE=testout_422m_ifast.ppm -P ${CMAKE_SOURCE_DIR}/cmakescripts/md5cmp.cmake) if(NOT WITH_12BIT) # CC: YCC->RGB565 SAMP: h2v1 merged IDCT: ifast ENT: huff add_test(djpeg${suffix}-422m-ifast-565 ${dir}djpeg${suffix} -dct int -nosmooth -rgb565 -dither none -bmp -outfile testout_422m_ifast_565.bmp testout_422_ifast_opt.jpg) add_test(djpeg${suffix}-422m-ifast-565-cmp ${CMAKE_COMMAND} -DMD5=${MD5_BMP_422M_IFAST_565} -DFILE=testout_422m_ifast_565.bmp -P ${CMAKE_SOURCE_DIR}/cmakescripts/md5cmp.cmake) # CC: YCC->RGB565 (dithered) SAMP: h2v1 merged IDCT: ifast ENT: huff add_test(djpeg${suffix}-422m-ifast-565D ${dir}djpeg${suffix} -dct int -nosmooth -rgb565 -bmp -outfile testout_422m_ifast_565D.bmp testout_422_ifast_opt.jpg) add_test(djpeg${suffix}-422m-ifast-565D-cmp ${CMAKE_COMMAND} -DMD5=${MD5_BMP_422M_IFAST_565D} -DFILE=testout_422m_ifast_565D.bmp -P ${CMAKE_SOURCE_DIR}/cmakescripts/md5cmp.cmake) endif() # CC: RGB->YCC SAMP: fullsize/h2v2 FDCT: ifast ENT: prog huff add_test(cjpeg${suffix}-420-q100-ifast-prog ${dir}cjpeg${suffix} -sample 2x2 -quality 100 -dct fast -prog -outfile testout_420_q100_ifast_prog.jpg ${CMAKE_SOURCE_DIR}/testimages/testorig.ppm) add_test(cjpeg${suffix}-420-q100-ifast-prog-cmp ${CMAKE_COMMAND} -DMD5=${MD5_JPEG_420_IFAST_Q100_PROG} -DFILE=testout_420_q100_ifast_prog.jpg -P ${CMAKE_SOURCE_DIR}/cmakescripts/md5cmp.cmake) # CC: YCC->RGB SAMP: fullsize/h2v2 fancy IDCT: ifast ENT: prog huff add_test(djpeg${suffix}-420-q100-ifast-prog ${dir}djpeg${suffix} -dct fast -outfile testout_420_q100_ifast.ppm testout_420_q100_ifast_prog.jpg) add_test(djpeg${suffix}-420-q100-ifast-prog-cmp ${CMAKE_COMMAND} -DMD5=${MD5_PPM_420_Q100_IFAST} -DFILE=testout_420_q100_ifast.ppm -P ${CMAKE_SOURCE_DIR}/cmakescripts/md5cmp.cmake) # CC: YCC->RGB SAMP: h2v2 merged IDCT: ifast ENT: prog huff add_test(djpeg${suffix}-420m-q100-ifast-prog ${dir}djpeg${suffix} -dct fast -nosmooth -outfile testout_420m_q100_ifast.ppm testout_420_q100_ifast_prog.jpg) add_test(djpeg${suffix}-420m-q100-ifast-prog-cmp ${CMAKE_COMMAND} -DMD5=${MD5_PPM_420M_Q100_IFAST} -DFILE=testout_420m_q100_ifast.ppm -P ${CMAKE_SOURCE_DIR}/cmakescripts/md5cmp.cmake) # CC: RGB->Gray SAMP: fullsize FDCT: islow ENT: huff add_test(cjpeg${suffix}-gray-islow ${dir}cjpeg${suffix} -gray -dct int -outfile testout_gray_islow.jpg ${CMAKE_SOURCE_DIR}/testimages/testorig.ppm) add_test(cjpeg${suffix}-gray-islow-cmp ${CMAKE_COMMAND} -DMD5=${MD5_JPEG_GRAY_ISLOW} -DFILE=testout_gray_islow.jpg -P ${CMAKE_SOURCE_DIR}/cmakescripts/md5cmp.cmake) # CC: Gray->Gray SAMP: fullsize IDCT: islow ENT: huff add_test(djpeg${suffix}-gray-islow ${dir}djpeg${suffix} -dct int -outfile testout_gray_islow.ppm testout_gray_islow.jpg) add_test(djpeg${suffix}-gray-islow-cmp ${CMAKE_COMMAND} -DMD5=${MD5_PPM_GRAY_ISLOW} -DFILE=testout_gray_islow.ppm -P ${CMAKE_SOURCE_DIR}/cmakescripts/md5cmp.cmake) # CC: Gray->RGB SAMP: fullsize IDCT: islow ENT: huff add_test(djpeg${suffix}-gray-islow-rgb ${dir}djpeg${suffix} -dct int -rgb -outfile testout_gray_islow_rgb.ppm testout_gray_islow.jpg) add_test(djpeg${suffix}-gray-islow-rgb-cmp ${CMAKE_COMMAND} -DMD5=${MD5_PPM_GRAY_ISLOW_RGB} -DFILE=testout_gray_islow_rgb.ppm -P ${CMAKE_SOURCE_DIR}/cmakescripts/md5cmp.cmake) if(NOT WITH_12BIT) # CC: Gray->RGB565 SAMP: fullsize IDCT: islow ENT: huff add_test(djpeg${suffix}-gray-islow-565 ${dir}djpeg${suffix} -dct int -rgb565 -dither none -bmp -outfile testout_gray_islow_565.bmp testout_gray_islow.jpg) add_test(djpeg${suffix}-gray-islow-565-cmp ${CMAKE_COMMAND} -DMD5=${MD5_BMP_GRAY_ISLOW_565} -DFILE=testout_gray_islow_565.bmp -P ${CMAKE_SOURCE_DIR}/cmakescripts/md5cmp.cmake) # CC: Gray->RGB565 (dithered) SAMP: fullsize IDCT: islow ENT: huff add_test(djpeg${suffix}-gray-islow-565D ${dir}djpeg${suffix} -dct int -rgb565 -bmp -outfile testout_gray_islow_565D.bmp testout_gray_islow.jpg) add_test(djpeg${suffix}-gray-islow-565D-cmp ${CMAKE_COMMAND} -DMD5=${MD5_BMP_GRAY_ISLOW_565D} -DFILE=testout_gray_islow_565D.bmp -P ${CMAKE_SOURCE_DIR}/cmakescripts/md5cmp.cmake) endif() # CC: RGB->YCC SAMP: fullsize smooth/h2v2 smooth FDCT: islow # ENT: 2-pass huff add_test(cjpeg${suffix}-420s-ifast-opt ${dir}cjpeg${suffix} -sample 2x2 -smooth 1 -dct int -opt -outfile testout_420s_ifast_opt.jpg ${CMAKE_SOURCE_DIR}/testimages/testorig.ppm) add_test(cjpeg${suffix}-420s-ifast-opt-cmp ${CMAKE_COMMAND} -DMD5=${MD5_JPEG_420S_IFAST_OPT} -DFILE=testout_420s_ifast_opt.jpg -P ${CMAKE_SOURCE_DIR}/cmakescripts/md5cmp.cmake) # CC: RGB->YCC SAMP: fullsize/int FDCT: float ENT: prog huff add_test(cjpeg${suffix}-3x2-float-prog ${dir}cjpeg${suffix} -sample 3x2 -dct float -prog -outfile testout_3x2_float_prog.jpg ${CMAKE_SOURCE_DIR}/testimages/testorig.ppm) add_test(cjpeg${suffix}-3x2-float-prog-cmp ${CMAKE_COMMAND} -DMD5=${MD5_JPEG_3x2_FLOAT_PROG} -DFILE=testout_3x2_float_prog.jpg -P ${CMAKE_SOURCE_DIR}/cmakescripts/md5cmp.cmake) # CC: YCC->RGB SAMP: fullsize/int IDCT: float ENT: prog huff add_test(djpeg${suffix}-3x2-float-prog ${dir}djpeg${suffix} -dct float -outfile testout_3x2_float.ppm testout_3x2_float_prog.jpg) add_test(djpeg${suffix}-3x2-float-prog-cmp ${CMAKE_COMMAND} -DMD5=${MD5_PPM_3x2_FLOAT} -DFILE=testout_3x2_float.ppm -P ${CMAKE_SOURCE_DIR}/cmakescripts/md5cmp.cmake) if(WITH_ARITH_ENC) # CC: YCC->RGB SAMP: fullsize/h2v2 FDCT: islow ENT: arith add_test(cjpeg${suffix}-420-islow-ari ${dir}cjpeg${suffix} -dct int -arithmetic -outfile testout_420_islow_ari.jpg ${CMAKE_SOURCE_DIR}/testimages/testorig.ppm) add_test(cjpeg${suffix}-420-islow-ari-cmp ${CMAKE_COMMAND} -DMD5=${MD5_JPEG_420_ISLOW_ARI} -DFILE=testout_420_islow_ari.jpg -P ${CMAKE_SOURCE_DIR}/cmakescripts/md5cmp.cmake) add_test(jpegtran${suffix}-420-islow-ari ${dir}jpegtran${suffix} -arithmetic -outfile testout_420_islow_ari.jpg ${CMAKE_SOURCE_DIR}/testimages/testimgint.jpg) add_test(jpegtran${suffix}-420-islow-ari-cmp ${CMAKE_COMMAND} -DMD5=${MD5_JPEG_420_ISLOW_ARI} -DFILE=testout_420_islow_ari.jpg -P ${CMAKE_SOURCE_DIR}/cmakescripts/md5cmp.cmake) # CC: YCC->RGB SAMP: fullsize FDCT: islow ENT: prog arith add_test(cjpeg${suffix}-444-islow-progari ${dir}cjpeg${suffix} -sample 1x1 -dct int -progressive -arithmetic -outfile testout_444_islow_progari.jpg ${CMAKE_SOURCE_DIR}/testimages/testorig.ppm) add_test(cjpeg${suffix}-444-islow-progari-cmp ${CMAKE_COMMAND} -DMD5=${MD5_JPEG_444_ISLOW_PROGARI} -DFILE=testout_444_islow_progari.jpg -P ${CMAKE_SOURCE_DIR}/cmakescripts/md5cmp.cmake) endif() if(WITH_ARITH_DEC) # CC: RGB->YCC SAMP: h2v2 merged IDCT: ifast ENT: arith add_test(djpeg${suffix}-420m-ifast-ari ${dir}djpeg${suffix} -fast -ppm -outfile testout_420m_ifast_ari.ppm ${CMAKE_SOURCE_DIR}/testimages/testimgari.jpg) add_test(djpeg${suffix}-420m-ifast-ari-cmp ${CMAKE_COMMAND} -DMD5=${MD5_PPM_420M_IFAST_ARI} -DFILE=testout_420m_ifast_ari.ppm -P ${CMAKE_SOURCE_DIR}/cmakescripts/md5cmp.cmake) add_test(jpegtran${suffix}-420-islow ${dir}jpegtran${suffix} -outfile testout_420_islow.jpg ${CMAKE_SOURCE_DIR}/testimages/testimgari.jpg) add_test(jpegtran${suffix}-420-islow-cmp ${CMAKE_COMMAND} -DMD5=${MD5_JPEG_420_ISLOW} -DFILE=testout_420_islow.jpg -P ${CMAKE_SOURCE_DIR}/cmakescripts/md5cmp.cmake) endif() # 2/1-- CC: YCC->RGB SAMP: h2v2 merged IDCT: 16x16 islow ENT: huff # 15/8-- CC: YCC->RGB SAMP: h2v2 merged IDCT: 15x15 islow ENT: huff # 13/8-- CC: YCC->RGB SAMP: h2v2 merged IDCT: 13x13 islow ENT: huff # 11/8-- CC: YCC->RGB SAMP: h2v2 merged IDCT: 11x11 islow ENT: huff # 9/8-- CC: YCC->RGB SAMP: h2v2 merged IDCT: 9x9 islow ENT: huff # 7/8-- CC: YCC->RGB SAMP: h2v2 merged IDCT: 7x7 islow/14x14 islow # ENT: huff # 3/4-- CC: YCC->RGB SAMP: h2v2 merged IDCT: 6x6 islow/12x12 islow # ENT: huff # 5/8-- CC: YCC->RGB SAMP: h2v2 merged IDCT: 5x5 islow/10x10 islow # ENT: huff # 1/2-- CC: YCC->RGB SAMP: h2v2 merged IDCT: 4x4 islow/8x8 islow # ENT: huff # 3/8-- CC: YCC->RGB SAMP: h2v2 merged IDCT: 3x3 islow/6x6 islow # ENT: huff # 1/4-- CC: YCC->RGB SAMP: h2v2 merged IDCT: 2x2 islow/4x4 islow # ENT: huff # 1/8-- CC: YCC->RGB SAMP: h2v2 merged IDCT: 1x1 islow/2x2 islow # ENT: huff foreach(scale 2_1 15_8 13_8 11_8 9_8 7_8 3_4 5_8 1_2 3_8 1_4 1_8) string(REGEX REPLACE "_" "/" scalearg ${scale}) add_test(djpeg${suffix}-420m-islow-${scale} ${dir}djpeg${suffix} -dct int -scale ${scalearg} -nosmooth -ppm -outfile testout_420m_islow_${scale}.ppm ${CMAKE_SOURCE_DIR}/testimages/${TESTORIG}) add_test(djpeg${suffix}-420m-islow-${scale}-cmp ${CMAKE_COMMAND} -DMD5=${MD5_PPM_420M_ISLOW_${scale}} -DFILE=testout_420m_islow_${scale}.ppm -P ${CMAKE_SOURCE_DIR}/cmakescripts/md5cmp.cmake) endforeach() if(NOT WITH_12BIT) # CC: YCC->RGB (dithered) SAMP: h2v2 fancy IDCT: islow ENT: huff add_test(djpeg${suffix}-420-islow-256 ${dir}djpeg${suffix} -dct int -colors 256 -bmp -outfile testout_420_islow_256.bmp ${CMAKE_SOURCE_DIR}/testimages/${TESTORIG}) add_test(djpeg${suffix}-420-islow-256-cmp ${CMAKE_COMMAND} -DMD5=${MD5_BMP_420_ISLOW_256} -DFILE=testout_420_islow_256.bmp -P ${CMAKE_SOURCE_DIR}/cmakescripts/md5cmp.cmake) # CC: YCC->RGB565 SAMP: h2v2 fancy IDCT: islow ENT: huff add_test(djpeg${suffix}-420-islow-565 ${dir}djpeg${suffix} -dct int -rgb565 -dither none -bmp -outfile testout_420_islow_565.bmp ${CMAKE_SOURCE_DIR}/testimages/${TESTORIG}) add_test(djpeg${suffix}-420-islow-565-cmp ${CMAKE_COMMAND} -DMD5=${MD5_BMP_420_ISLOW_565} -DFILE=testout_420_islow_565.bmp -P ${CMAKE_SOURCE_DIR}/cmakescripts/md5cmp.cmake) # CC: YCC->RGB565 (dithered) SAMP: h2v2 fancy IDCT: islow ENT: huff add_test(djpeg${suffix}-420-islow-565D ${dir}djpeg${suffix} -dct int -rgb565 -bmp -outfile testout_420_islow_565D.bmp ${CMAKE_SOURCE_DIR}/testimages/${TESTORIG}) add_test(djpeg${suffix}-420-islow-565D-cmp ${CMAKE_COMMAND} -DMD5=${MD5_BMP_420_ISLOW_565D} -DFILE=testout_420_islow_565D.bmp -P ${CMAKE_SOURCE_DIR}/cmakescripts/md5cmp.cmake) # CC: YCC->RGB565 SAMP: h2v2 merged IDCT: islow ENT: huff add_test(djpeg${suffix}-420m-islow-565 ${dir}djpeg${suffix} -dct int -nosmooth -rgb565 -dither none -bmp -outfile testout_420m_islow_565.bmp ${CMAKE_SOURCE_DIR}/testimages/${TESTORIG}) add_test(djpeg${suffix}-420m-islow-565-cmp ${CMAKE_COMMAND} -DMD5=${MD5_BMP_420M_ISLOW_565} -DFILE=testout_420m_islow_565.bmp -P ${CMAKE_SOURCE_DIR}/cmakescripts/md5cmp.cmake) # CC: YCC->RGB565 (dithered) SAMP: h2v2 merged IDCT: islow ENT: huff add_test(djpeg${suffix}-420m-islow-565D ${dir}djpeg${suffix} -dct int -nosmooth -rgb565 -bmp -outfile testout_420m_islow_565D.bmp ${CMAKE_SOURCE_DIR}/testimages/${TESTORIG}) add_test(djpeg${suffix}-420m-islow-565D-cmp ${CMAKE_COMMAND} -DMD5=${MD5_BMP_420M_ISLOW_565D} -DFILE=testout_420m_islow_565D.bmp -P ${CMAKE_SOURCE_DIR}/cmakescripts/md5cmp.cmake) endif() add_test(jpegtran${suffix}-crop ${dir}jpegtran${suffix} -crop 120x90+20+50 -transpose -perfect -outfile testout_crop.jpg ${CMAKE_SOURCE_DIR}/testimages/${TESTORIG}) add_test(jpegtran${suffix}-crop-cmp ${CMAKE_COMMAND} -DMD5=${MD5_JPEG_CROP} -DFILE=testout_crop.jpg -P ${CMAKE_SOURCE_DIR}/cmakescripts/md5cmp.cmake) endforeach() add_custom_target(testclean COMMAND ${CMAKE_COMMAND} -P ${CMAKE_SOURCE_DIR}/cmakescripts/testclean.cmake) # # Installer # if(MSVC) set(INST_PLATFORM "Visual C++") set(INST_NAME ${CMAKE_PROJECT_NAME}-${VERSION}-vc) set(INST_REG_NAME ${CMAKE_PROJECT_NAME}) elseif(MINGW) set(INST_PLATFORM GCC) set(INST_NAME ${CMAKE_PROJECT_NAME}-${VERSION}-gcc) set(INST_REG_NAME ${CMAKE_PROJECT_NAME}-gcc) set(INST_DEFS -DGCC) endif() if(64BIT) set(INST_PLATFORM "${INST_PLATFORM} 64-bit") set(INST_NAME ${INST_NAME}64) set(INST_REG_NAME ${INST_DIR}64) set(INST_DEFS ${INST_DEFS} -DWIN64) endif() if(WITH_JAVA) set(INST_DEFS ${INST_DEFS} -DJAVA) endif() if(MSVC_IDE) set(INST_DEFS ${INST_DEFS} "-DBUILDDIR=${CMAKE_CFG_INTDIR}\\") else() set(INST_DEFS ${INST_DEFS} "-DBUILDDIR=") endif() STRING(REGEX REPLACE "/" "\\\\" INST_DIR ${CMAKE_INSTALL_PREFIX}) configure_file(release/libjpeg-turbo.nsi.in libjpeg-turbo.nsi @ONLY) if(WITH_JAVA) set(JAVA_DEPEND java) endif() add_custom_target(installer makensis -nocd ${INST_DEFS} libjpeg-turbo.nsi DEPENDS jpeg jpeg-static turbojpeg turbojpeg-static rdjpgcom wrjpgcom cjpeg djpeg jpegtran tjbench ${JAVA_DEPEND} SOURCES libjpeg-turbo.nsi) if(WITH_TURBOJPEG) if(ENABLE_SHARED) install(TARGETS turbojpeg tjbench ARCHIVE DESTINATION lib LIBRARY DESTINATION lib RUNTIME DESTINATION bin) endif() if(ENABLE_STATIC) install(TARGETS turbojpeg-static ARCHIVE DESTINATION lib) if(NOT ENABLE_SHARED) install(PROGRAMS ${CMAKE_CURRENT_BINARY_DIR}/tjbench-static.exe DESTINATION bin RENAME tjbench.exe) endif() endif() install(FILES ${CMAKE_SOURCE_DIR}/turbojpeg.h DESTINATION include) endif() if(ENABLE_STATIC) install(TARGETS jpeg-static ARCHIVE DESTINATION lib) if(NOT ENABLE_SHARED) install(PROGRAMS ${CMAKE_CURRENT_BINARY_DIR}/cjpeg-static.exe DESTINATION bin RENAME cjpeg.exe) install(PROGRAMS ${CMAKE_CURRENT_BINARY_DIR}/djpeg-static.exe DESTINATION bin RENAME djpeg.exe) install(PROGRAMS ${CMAKE_CURRENT_BINARY_DIR}/jpegtran-static.exe DESTINATION bin RENAME jpegtran.exe) endif() endif() install(TARGETS rdjpgcom wrjpgcom RUNTIME DESTINATION bin) install(FILES ${CMAKE_SOURCE_DIR}/README ${CMAKE_SOURCE_DIR}/README-turbo.txt ${CMAKE_SOURCE_DIR}/example.c ${CMAKE_SOURCE_DIR}/libjpeg.txt ${CMAKE_SOURCE_DIR}/structure.txt ${CMAKE_SOURCE_DIR}/usage.txt ${CMAKE_SOURCE_DIR}/wizard.txt DESTINATION doc) install(FILES ${CMAKE_BINARY_DIR}/jconfig.h ${CMAKE_SOURCE_DIR}/jerror.h ${CMAKE_SOURCE_DIR}/jmorecfg.h ${CMAKE_SOURCE_DIR}/jpeglib.h DESTINATION include) libjpeg-turbo-1.4.2/jpeglib.h0000644000076500007650000014067212600050400013000 00000000000000/* * jpeglib.h * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1991-1998, Thomas G. Lane. * Modified 2002-2009 by Guido Vollbeding. * libjpeg-turbo Modifications: * Copyright (C) 2009-2011, 2013-2014, D. R. Commander. * For conditions of distribution and use, see the accompanying README file. * * This file defines the application interface for the JPEG library. * Most applications using the library need only include this file, * and perhaps jerror.h if they want to know the exact error codes. */ #ifndef JPEGLIB_H #define JPEGLIB_H /* * First we include the configuration files that record how this * installation of the JPEG library is set up. jconfig.h can be * generated automatically for many systems. jmorecfg.h contains * manual configuration options that most people need not worry about. */ #ifndef JCONFIG_INCLUDED /* in case jinclude.h already did */ #include "jconfig.h" /* widely used configuration options */ #endif #include "jmorecfg.h" /* seldom changed options */ #ifdef __cplusplus #ifndef DONT_USE_EXTERN_C extern "C" { #endif #endif /* Various constants determining the sizes of things. * All of these are specified by the JPEG standard, so don't change them * if you want to be compatible. */ #define DCTSIZE 8 /* The basic DCT block is 8x8 samples */ #define DCTSIZE2 64 /* DCTSIZE squared; # of elements in a block */ #define NUM_QUANT_TBLS 4 /* Quantization tables are numbered 0..3 */ #define NUM_HUFF_TBLS 4 /* Huffman tables are numbered 0..3 */ #define NUM_ARITH_TBLS 16 /* Arith-coding tables are numbered 0..15 */ #define MAX_COMPS_IN_SCAN 4 /* JPEG limit on # of components in one scan */ #define MAX_SAMP_FACTOR 4 /* JPEG limit on sampling factors */ /* Unfortunately, some bozo at Adobe saw no reason to be bound by the standard; * the PostScript DCT filter can emit files with many more than 10 blocks/MCU. * If you happen to run across such a file, you can up D_MAX_BLOCKS_IN_MCU * to handle it. We even let you do this from the jconfig.h file. However, * we strongly discourage changing C_MAX_BLOCKS_IN_MCU; just because Adobe * sometimes emits noncompliant files doesn't mean you should too. */ #define C_MAX_BLOCKS_IN_MCU 10 /* compressor's limit on blocks per MCU */ #ifndef D_MAX_BLOCKS_IN_MCU #define D_MAX_BLOCKS_IN_MCU 10 /* decompressor's limit on blocks per MCU */ #endif /* Data structures for images (arrays of samples and of DCT coefficients). */ typedef JSAMPLE *JSAMPROW; /* ptr to one image row of pixel samples. */ typedef JSAMPROW *JSAMPARRAY; /* ptr to some rows (a 2-D sample array) */ typedef JSAMPARRAY *JSAMPIMAGE; /* a 3-D sample array: top index is color */ typedef JCOEF JBLOCK[DCTSIZE2]; /* one block of coefficients */ typedef JBLOCK *JBLOCKROW; /* pointer to one row of coefficient blocks */ typedef JBLOCKROW *JBLOCKARRAY; /* a 2-D array of coefficient blocks */ typedef JBLOCKARRAY *JBLOCKIMAGE; /* a 3-D array of coefficient blocks */ typedef JCOEF *JCOEFPTR; /* useful in a couple of places */ /* Types for JPEG compression parameters and working tables. */ /* DCT coefficient quantization tables. */ typedef struct { /* This array gives the coefficient quantizers in natural array order * (not the zigzag order in which they are stored in a JPEG DQT marker). * CAUTION: IJG versions prior to v6a kept this array in zigzag order. */ UINT16 quantval[DCTSIZE2]; /* quantization step for each coefficient */ /* This field is used only during compression. It's initialized FALSE when * the table is created, and set TRUE when it's been output to the file. * You could suppress output of a table by setting this to TRUE. * (See jpeg_suppress_tables for an example.) */ boolean sent_table; /* TRUE when table has been output */ } JQUANT_TBL; /* Huffman coding tables. */ typedef struct { /* These two fields directly represent the contents of a JPEG DHT marker */ UINT8 bits[17]; /* bits[k] = # of symbols with codes of */ /* length k bits; bits[0] is unused */ UINT8 huffval[256]; /* The symbols, in order of incr code length */ /* This field is used only during compression. It's initialized FALSE when * the table is created, and set TRUE when it's been output to the file. * You could suppress output of a table by setting this to TRUE. * (See jpeg_suppress_tables for an example.) */ boolean sent_table; /* TRUE when table has been output */ } JHUFF_TBL; /* Basic info about one component (color channel). */ typedef struct { /* These values are fixed over the whole image. */ /* For compression, they must be supplied by parameter setup; */ /* for decompression, they are read from the SOF marker. */ int component_id; /* identifier for this component (0..255) */ int component_index; /* its index in SOF or cinfo->comp_info[] */ int h_samp_factor; /* horizontal sampling factor (1..4) */ int v_samp_factor; /* vertical sampling factor (1..4) */ int quant_tbl_no; /* quantization table selector (0..3) */ /* These values may vary between scans. */ /* For compression, they must be supplied by parameter setup; */ /* for decompression, they are read from the SOS marker. */ /* The decompressor output side may not use these variables. */ int dc_tbl_no; /* DC entropy table selector (0..3) */ int ac_tbl_no; /* AC entropy table selector (0..3) */ /* Remaining fields should be treated as private by applications. */ /* These values are computed during compression or decompression startup: */ /* Component's size in DCT blocks. * Any dummy blocks added to complete an MCU are not counted; therefore * these values do not depend on whether a scan is interleaved or not. */ JDIMENSION width_in_blocks; JDIMENSION height_in_blocks; /* Size of a DCT block in samples. Always DCTSIZE for compression. * For decompression this is the size of the output from one DCT block, * reflecting any scaling we choose to apply during the IDCT step. * Values from 1 to 16 are supported. * Note that different components may receive different IDCT scalings. */ #if JPEG_LIB_VERSION >= 70 int DCT_h_scaled_size; int DCT_v_scaled_size; #else int DCT_scaled_size; #endif /* The downsampled dimensions are the component's actual, unpadded number * of samples at the main buffer (preprocessing/compression interface), thus * downsampled_width = ceil(image_width * Hi/Hmax) * and similarly for height. For decompression, IDCT scaling is included, so * downsampled_width = ceil(image_width * Hi/Hmax * DCT_[h_]scaled_size/DCTSIZE) */ JDIMENSION downsampled_width; /* actual width in samples */ JDIMENSION downsampled_height; /* actual height in samples */ /* This flag is used only for decompression. In cases where some of the * components will be ignored (eg grayscale output from YCbCr image), * we can skip most computations for the unused components. */ boolean component_needed; /* do we need the value of this component? */ /* These values are computed before starting a scan of the component. */ /* The decompressor output side may not use these variables. */ int MCU_width; /* number of blocks per MCU, horizontally */ int MCU_height; /* number of blocks per MCU, vertically */ int MCU_blocks; /* MCU_width * MCU_height */ int MCU_sample_width; /* MCU width in samples, MCU_width*DCT_[h_]scaled_size */ int last_col_width; /* # of non-dummy blocks across in last MCU */ int last_row_height; /* # of non-dummy blocks down in last MCU */ /* Saved quantization table for component; NULL if none yet saved. * See jdinput.c comments about the need for this information. * This field is currently used only for decompression. */ JQUANT_TBL * quant_table; /* Private per-component storage for DCT or IDCT subsystem. */ void * dct_table; } jpeg_component_info; /* The script for encoding a multiple-scan file is an array of these: */ typedef struct { int comps_in_scan; /* number of components encoded in this scan */ int component_index[MAX_COMPS_IN_SCAN]; /* their SOF/comp_info[] indexes */ int Ss, Se; /* progressive JPEG spectral selection parms */ int Ah, Al; /* progressive JPEG successive approx. parms */ } jpeg_scan_info; /* The decompressor can save APPn and COM markers in a list of these: */ typedef struct jpeg_marker_struct * jpeg_saved_marker_ptr; struct jpeg_marker_struct { jpeg_saved_marker_ptr next; /* next in list, or NULL */ UINT8 marker; /* marker code: JPEG_COM, or JPEG_APP0+n */ unsigned int original_length; /* # bytes of data in the file */ unsigned int data_length; /* # bytes of data saved at data[] */ JOCTET * data; /* the data contained in the marker */ /* the marker length word is not counted in data_length or original_length */ }; /* Known color spaces. */ #define JCS_EXTENSIONS 1 #define JCS_ALPHA_EXTENSIONS 1 typedef enum { JCS_UNKNOWN, /* error/unspecified */ JCS_GRAYSCALE, /* monochrome */ JCS_RGB, /* red/green/blue as specified by the RGB_RED, RGB_GREEN, RGB_BLUE, and RGB_PIXELSIZE macros */ JCS_YCbCr, /* Y/Cb/Cr (also known as YUV) */ JCS_CMYK, /* C/M/Y/K */ JCS_YCCK, /* Y/Cb/Cr/K */ JCS_EXT_RGB, /* red/green/blue */ JCS_EXT_RGBX, /* red/green/blue/x */ JCS_EXT_BGR, /* blue/green/red */ JCS_EXT_BGRX, /* blue/green/red/x */ JCS_EXT_XBGR, /* x/blue/green/red */ JCS_EXT_XRGB, /* x/red/green/blue */ /* When out_color_space it set to JCS_EXT_RGBX, JCS_EXT_BGRX, JCS_EXT_XBGR, or JCS_EXT_XRGB during decompression, the X byte is undefined, and in order to ensure the best performance, libjpeg-turbo can set that byte to whatever value it wishes. Use the following colorspace constants to ensure that the X byte is set to 0xFF, so that it can be interpreted as an opaque alpha channel. */ JCS_EXT_RGBA, /* red/green/blue/alpha */ JCS_EXT_BGRA, /* blue/green/red/alpha */ JCS_EXT_ABGR, /* alpha/blue/green/red */ JCS_EXT_ARGB, /* alpha/red/green/blue */ JCS_RGB565 /* 5-bit red/6-bit green/5-bit blue */ } J_COLOR_SPACE; /* DCT/IDCT algorithm options. */ typedef enum { JDCT_ISLOW, /* slow but accurate integer algorithm */ JDCT_IFAST, /* faster, less accurate integer method */ JDCT_FLOAT /* floating-point: accurate, fast on fast HW */ } J_DCT_METHOD; #ifndef JDCT_DEFAULT /* may be overridden in jconfig.h */ #define JDCT_DEFAULT JDCT_ISLOW #endif #ifndef JDCT_FASTEST /* may be overridden in jconfig.h */ #define JDCT_FASTEST JDCT_IFAST #endif /* Dithering options for decompression. */ typedef enum { JDITHER_NONE, /* no dithering */ JDITHER_ORDERED, /* simple ordered dither */ JDITHER_FS /* Floyd-Steinberg error diffusion dither */ } J_DITHER_MODE; /* Common fields between JPEG compression and decompression master structs. */ #define jpeg_common_fields \ struct jpeg_error_mgr * err; /* Error handler module */\ struct jpeg_memory_mgr * mem; /* Memory manager module */\ struct jpeg_progress_mgr * progress; /* Progress monitor, or NULL if none */\ void * client_data; /* Available for use by application */\ boolean is_decompressor; /* So common code can tell which is which */\ int global_state /* For checking call sequence validity */ /* Routines that are to be used by both halves of the library are declared * to receive a pointer to this structure. There are no actual instances of * jpeg_common_struct, only of jpeg_compress_struct and jpeg_decompress_struct. */ struct jpeg_common_struct { jpeg_common_fields; /* Fields common to both master struct types */ /* Additional fields follow in an actual jpeg_compress_struct or * jpeg_decompress_struct. All three structs must agree on these * initial fields! (This would be a lot cleaner in C++.) */ }; typedef struct jpeg_common_struct * j_common_ptr; typedef struct jpeg_compress_struct * j_compress_ptr; typedef struct jpeg_decompress_struct * j_decompress_ptr; /* Master record for a compression instance */ struct jpeg_compress_struct { jpeg_common_fields; /* Fields shared with jpeg_decompress_struct */ /* Destination for compressed data */ struct jpeg_destination_mgr * dest; /* Description of source image --- these fields must be filled in by * outer application before starting compression. in_color_space must * be correct before you can even call jpeg_set_defaults(). */ JDIMENSION image_width; /* input image width */ JDIMENSION image_height; /* input image height */ int input_components; /* # of color components in input image */ J_COLOR_SPACE in_color_space; /* colorspace of input image */ double input_gamma; /* image gamma of input image */ /* Compression parameters --- these fields must be set before calling * jpeg_start_compress(). We recommend calling jpeg_set_defaults() to * initialize everything to reasonable defaults, then changing anything * the application specifically wants to change. That way you won't get * burnt when new parameters are added. Also note that there are several * helper routines to simplify changing parameters. */ #if JPEG_LIB_VERSION >= 70 unsigned int scale_num, scale_denom; /* fraction by which to scale image */ JDIMENSION jpeg_width; /* scaled JPEG image width */ JDIMENSION jpeg_height; /* scaled JPEG image height */ /* Dimensions of actual JPEG image that will be written to file, * derived from input dimensions by scaling factors above. * These fields are computed by jpeg_start_compress(). * You can also use jpeg_calc_jpeg_dimensions() to determine these values * in advance of calling jpeg_start_compress(). */ #endif int data_precision; /* bits of precision in image data */ int num_components; /* # of color components in JPEG image */ J_COLOR_SPACE jpeg_color_space; /* colorspace of JPEG image */ jpeg_component_info * comp_info; /* comp_info[i] describes component that appears i'th in SOF */ JQUANT_TBL * quant_tbl_ptrs[NUM_QUANT_TBLS]; #if JPEG_LIB_VERSION >= 70 int q_scale_factor[NUM_QUANT_TBLS]; #endif /* ptrs to coefficient quantization tables, or NULL if not defined, * and corresponding scale factors (percentage, initialized 100). */ JHUFF_TBL * dc_huff_tbl_ptrs[NUM_HUFF_TBLS]; JHUFF_TBL * ac_huff_tbl_ptrs[NUM_HUFF_TBLS]; /* ptrs to Huffman coding tables, or NULL if not defined */ UINT8 arith_dc_L[NUM_ARITH_TBLS]; /* L values for DC arith-coding tables */ UINT8 arith_dc_U[NUM_ARITH_TBLS]; /* U values for DC arith-coding tables */ UINT8 arith_ac_K[NUM_ARITH_TBLS]; /* Kx values for AC arith-coding tables */ int num_scans; /* # of entries in scan_info array */ const jpeg_scan_info * scan_info; /* script for multi-scan file, or NULL */ /* The default value of scan_info is NULL, which causes a single-scan * sequential JPEG file to be emitted. To create a multi-scan file, * set num_scans and scan_info to point to an array of scan definitions. */ boolean raw_data_in; /* TRUE=caller supplies downsampled data */ boolean arith_code; /* TRUE=arithmetic coding, FALSE=Huffman */ boolean optimize_coding; /* TRUE=optimize entropy encoding parms */ boolean CCIR601_sampling; /* TRUE=first samples are cosited */ #if JPEG_LIB_VERSION >= 70 boolean do_fancy_downsampling; /* TRUE=apply fancy downsampling */ #endif int smoothing_factor; /* 1..100, or 0 for no input smoothing */ J_DCT_METHOD dct_method; /* DCT algorithm selector */ /* The restart interval can be specified in absolute MCUs by setting * restart_interval, or in MCU rows by setting restart_in_rows * (in which case the correct restart_interval will be figured * for each scan). */ unsigned int restart_interval; /* MCUs per restart, or 0 for no restart */ int restart_in_rows; /* if > 0, MCU rows per restart interval */ /* Parameters controlling emission of special markers. */ boolean write_JFIF_header; /* should a JFIF marker be written? */ UINT8 JFIF_major_version; /* What to write for the JFIF version number */ UINT8 JFIF_minor_version; /* These three values are not used by the JPEG code, merely copied */ /* into the JFIF APP0 marker. density_unit can be 0 for unknown, */ /* 1 for dots/inch, or 2 for dots/cm. Note that the pixel aspect */ /* ratio is defined by X_density/Y_density even when density_unit=0. */ UINT8 density_unit; /* JFIF code for pixel size units */ UINT16 X_density; /* Horizontal pixel density */ UINT16 Y_density; /* Vertical pixel density */ boolean write_Adobe_marker; /* should an Adobe marker be written? */ /* State variable: index of next scanline to be written to * jpeg_write_scanlines(). Application may use this to control its * processing loop, e.g., "while (next_scanline < image_height)". */ JDIMENSION next_scanline; /* 0 .. image_height-1 */ /* Remaining fields are known throughout compressor, but generally * should not be touched by a surrounding application. */ /* * These fields are computed during compression startup */ boolean progressive_mode; /* TRUE if scan script uses progressive mode */ int max_h_samp_factor; /* largest h_samp_factor */ int max_v_samp_factor; /* largest v_samp_factor */ #if JPEG_LIB_VERSION >= 70 int min_DCT_h_scaled_size; /* smallest DCT_h_scaled_size of any component */ int min_DCT_v_scaled_size; /* smallest DCT_v_scaled_size of any component */ #endif JDIMENSION total_iMCU_rows; /* # of iMCU rows to be input to coef ctlr */ /* The coefficient controller receives data in units of MCU rows as defined * for fully interleaved scans (whether the JPEG file is interleaved or not). * There are v_samp_factor * DCTSIZE sample rows of each component in an * "iMCU" (interleaved MCU) row. */ /* * These fields are valid during any one scan. * They describe the components and MCUs actually appearing in the scan. */ int comps_in_scan; /* # of JPEG components in this scan */ jpeg_component_info * cur_comp_info[MAX_COMPS_IN_SCAN]; /* *cur_comp_info[i] describes component that appears i'th in SOS */ JDIMENSION MCUs_per_row; /* # of MCUs across the image */ JDIMENSION MCU_rows_in_scan; /* # of MCU rows in the image */ int blocks_in_MCU; /* # of DCT blocks per MCU */ int MCU_membership[C_MAX_BLOCKS_IN_MCU]; /* MCU_membership[i] is index in cur_comp_info of component owning */ /* i'th block in an MCU */ int Ss, Se, Ah, Al; /* progressive JPEG parameters for scan */ #if JPEG_LIB_VERSION >= 80 int block_size; /* the basic DCT block size: 1..16 */ const int * natural_order; /* natural-order position array */ int lim_Se; /* min( Se, DCTSIZE2-1 ) */ #endif /* * Links to compression subobjects (methods and private variables of modules) */ struct jpeg_comp_master * master; struct jpeg_c_main_controller * main; struct jpeg_c_prep_controller * prep; struct jpeg_c_coef_controller * coef; struct jpeg_marker_writer * marker; struct jpeg_color_converter * cconvert; struct jpeg_downsampler * downsample; struct jpeg_forward_dct * fdct; struct jpeg_entropy_encoder * entropy; jpeg_scan_info * script_space; /* workspace for jpeg_simple_progression */ int script_space_size; }; /* Master record for a decompression instance */ struct jpeg_decompress_struct { jpeg_common_fields; /* Fields shared with jpeg_compress_struct */ /* Source of compressed data */ struct jpeg_source_mgr * src; /* Basic description of image --- filled in by jpeg_read_header(). */ /* Application may inspect these values to decide how to process image. */ JDIMENSION image_width; /* nominal image width (from SOF marker) */ JDIMENSION image_height; /* nominal image height */ int num_components; /* # of color components in JPEG image */ J_COLOR_SPACE jpeg_color_space; /* colorspace of JPEG image */ /* Decompression processing parameters --- these fields must be set before * calling jpeg_start_decompress(). Note that jpeg_read_header() initializes * them to default values. */ J_COLOR_SPACE out_color_space; /* colorspace for output */ unsigned int scale_num, scale_denom; /* fraction by which to scale image */ double output_gamma; /* image gamma wanted in output */ boolean buffered_image; /* TRUE=multiple output passes */ boolean raw_data_out; /* TRUE=downsampled data wanted */ J_DCT_METHOD dct_method; /* IDCT algorithm selector */ boolean do_fancy_upsampling; /* TRUE=apply fancy upsampling */ boolean do_block_smoothing; /* TRUE=apply interblock smoothing */ boolean quantize_colors; /* TRUE=colormapped output wanted */ /* the following are ignored if not quantize_colors: */ J_DITHER_MODE dither_mode; /* type of color dithering to use */ boolean two_pass_quantize; /* TRUE=use two-pass color quantization */ int desired_number_of_colors; /* max # colors to use in created colormap */ /* these are significant only in buffered-image mode: */ boolean enable_1pass_quant; /* enable future use of 1-pass quantizer */ boolean enable_external_quant;/* enable future use of external colormap */ boolean enable_2pass_quant; /* enable future use of 2-pass quantizer */ /* Description of actual output image that will be returned to application. * These fields are computed by jpeg_start_decompress(). * You can also use jpeg_calc_output_dimensions() to determine these values * in advance of calling jpeg_start_decompress(). */ JDIMENSION output_width; /* scaled image width */ JDIMENSION output_height; /* scaled image height */ int out_color_components; /* # of color components in out_color_space */ int output_components; /* # of color components returned */ /* output_components is 1 (a colormap index) when quantizing colors; * otherwise it equals out_color_components. */ int rec_outbuf_height; /* min recommended height of scanline buffer */ /* If the buffer passed to jpeg_read_scanlines() is less than this many rows * high, space and time will be wasted due to unnecessary data copying. * Usually rec_outbuf_height will be 1 or 2, at most 4. */ /* When quantizing colors, the output colormap is described by these fields. * The application can supply a colormap by setting colormap non-NULL before * calling jpeg_start_decompress; otherwise a colormap is created during * jpeg_start_decompress or jpeg_start_output. * The map has out_color_components rows and actual_number_of_colors columns. */ int actual_number_of_colors; /* number of entries in use */ JSAMPARRAY colormap; /* The color map as a 2-D pixel array */ /* State variables: these variables indicate the progress of decompression. * The application may examine these but must not modify them. */ /* Row index of next scanline to be read from jpeg_read_scanlines(). * Application may use this to control its processing loop, e.g., * "while (output_scanline < output_height)". */ JDIMENSION output_scanline; /* 0 .. output_height-1 */ /* Current input scan number and number of iMCU rows completed in scan. * These indicate the progress of the decompressor input side. */ int input_scan_number; /* Number of SOS markers seen so far */ JDIMENSION input_iMCU_row; /* Number of iMCU rows completed */ /* The "output scan number" is the notional scan being displayed by the * output side. The decompressor will not allow output scan/row number * to get ahead of input scan/row, but it can fall arbitrarily far behind. */ int output_scan_number; /* Nominal scan number being displayed */ JDIMENSION output_iMCU_row; /* Number of iMCU rows read */ /* Current progression status. coef_bits[c][i] indicates the precision * with which component c's DCT coefficient i (in zigzag order) is known. * It is -1 when no data has yet been received, otherwise it is the point * transform (shift) value for the most recent scan of the coefficient * (thus, 0 at completion of the progression). * This pointer is NULL when reading a non-progressive file. */ int (*coef_bits)[DCTSIZE2]; /* -1 or current Al value for each coef */ /* Internal JPEG parameters --- the application usually need not look at * these fields. Note that the decompressor output side may not use * any parameters that can change between scans. */ /* Quantization and Huffman tables are carried forward across input * datastreams when processing abbreviated JPEG datastreams. */ JQUANT_TBL * quant_tbl_ptrs[NUM_QUANT_TBLS]; /* ptrs to coefficient quantization tables, or NULL if not defined */ JHUFF_TBL * dc_huff_tbl_ptrs[NUM_HUFF_TBLS]; JHUFF_TBL * ac_huff_tbl_ptrs[NUM_HUFF_TBLS]; /* ptrs to Huffman coding tables, or NULL if not defined */ /* These parameters are never carried across datastreams, since they * are given in SOF/SOS markers or defined to be reset by SOI. */ int data_precision; /* bits of precision in image data */ jpeg_component_info * comp_info; /* comp_info[i] describes component that appears i'th in SOF */ #if JPEG_LIB_VERSION >= 80 boolean is_baseline; /* TRUE if Baseline SOF0 encountered */ #endif boolean progressive_mode; /* TRUE if SOFn specifies progressive mode */ boolean arith_code; /* TRUE=arithmetic coding, FALSE=Huffman */ UINT8 arith_dc_L[NUM_ARITH_TBLS]; /* L values for DC arith-coding tables */ UINT8 arith_dc_U[NUM_ARITH_TBLS]; /* U values for DC arith-coding tables */ UINT8 arith_ac_K[NUM_ARITH_TBLS]; /* Kx values for AC arith-coding tables */ unsigned int restart_interval; /* MCUs per restart interval, or 0 for no restart */ /* These fields record data obtained from optional markers recognized by * the JPEG library. */ boolean saw_JFIF_marker; /* TRUE iff a JFIF APP0 marker was found */ /* Data copied from JFIF marker; only valid if saw_JFIF_marker is TRUE: */ UINT8 JFIF_major_version; /* JFIF version number */ UINT8 JFIF_minor_version; UINT8 density_unit; /* JFIF code for pixel size units */ UINT16 X_density; /* Horizontal pixel density */ UINT16 Y_density; /* Vertical pixel density */ boolean saw_Adobe_marker; /* TRUE iff an Adobe APP14 marker was found */ UINT8 Adobe_transform; /* Color transform code from Adobe marker */ boolean CCIR601_sampling; /* TRUE=first samples are cosited */ /* Aside from the specific data retained from APPn markers known to the * library, the uninterpreted contents of any or all APPn and COM markers * can be saved in a list for examination by the application. */ jpeg_saved_marker_ptr marker_list; /* Head of list of saved markers */ /* Remaining fields are known throughout decompressor, but generally * should not be touched by a surrounding application. */ /* * These fields are computed during decompression startup */ int max_h_samp_factor; /* largest h_samp_factor */ int max_v_samp_factor; /* largest v_samp_factor */ #if JPEG_LIB_VERSION >= 70 int min_DCT_h_scaled_size; /* smallest DCT_h_scaled_size of any component */ int min_DCT_v_scaled_size; /* smallest DCT_v_scaled_size of any component */ #else int min_DCT_scaled_size; /* smallest DCT_scaled_size of any component */ #endif JDIMENSION total_iMCU_rows; /* # of iMCU rows in image */ /* The coefficient controller's input and output progress is measured in * units of "iMCU" (interleaved MCU) rows. These are the same as MCU rows * in fully interleaved JPEG scans, but are used whether the scan is * interleaved or not. We define an iMCU row as v_samp_factor DCT block * rows of each component. Therefore, the IDCT output contains * v_samp_factor*DCT_[v_]scaled_size sample rows of a component per iMCU row. */ JSAMPLE * sample_range_limit; /* table for fast range-limiting */ /* * These fields are valid during any one scan. * They describe the components and MCUs actually appearing in the scan. * Note that the decompressor output side must not use these fields. */ int comps_in_scan; /* # of JPEG components in this scan */ jpeg_component_info * cur_comp_info[MAX_COMPS_IN_SCAN]; /* *cur_comp_info[i] describes component that appears i'th in SOS */ JDIMENSION MCUs_per_row; /* # of MCUs across the image */ JDIMENSION MCU_rows_in_scan; /* # of MCU rows in the image */ int blocks_in_MCU; /* # of DCT blocks per MCU */ int MCU_membership[D_MAX_BLOCKS_IN_MCU]; /* MCU_membership[i] is index in cur_comp_info of component owning */ /* i'th block in an MCU */ int Ss, Se, Ah, Al; /* progressive JPEG parameters for scan */ #if JPEG_LIB_VERSION >= 80 /* These fields are derived from Se of first SOS marker. */ int block_size; /* the basic DCT block size: 1..16 */ const int * natural_order; /* natural-order position array for entropy decode */ int lim_Se; /* min( Se, DCTSIZE2-1 ) for entropy decode */ #endif /* This field is shared between entropy decoder and marker parser. * It is either zero or the code of a JPEG marker that has been * read from the data source, but has not yet been processed. */ int unread_marker; /* * Links to decompression subobjects (methods, private variables of modules) */ struct jpeg_decomp_master * master; struct jpeg_d_main_controller * main; struct jpeg_d_coef_controller * coef; struct jpeg_d_post_controller * post; struct jpeg_input_controller * inputctl; struct jpeg_marker_reader * marker; struct jpeg_entropy_decoder * entropy; struct jpeg_inverse_dct * idct; struct jpeg_upsampler * upsample; struct jpeg_color_deconverter * cconvert; struct jpeg_color_quantizer * cquantize; }; /* "Object" declarations for JPEG modules that may be supplied or called * directly by the surrounding application. * As with all objects in the JPEG library, these structs only define the * publicly visible methods and state variables of a module. Additional * private fields may exist after the public ones. */ /* Error handler object */ struct jpeg_error_mgr { /* Error exit handler: does not return to caller */ void (*error_exit) (j_common_ptr cinfo); /* Conditionally emit a trace or warning message */ void (*emit_message) (j_common_ptr cinfo, int msg_level); /* Routine that actually outputs a trace or error message */ void (*output_message) (j_common_ptr cinfo); /* Format a message string for the most recent JPEG error or message */ void (*format_message) (j_common_ptr cinfo, char * buffer); #define JMSG_LENGTH_MAX 200 /* recommended size of format_message buffer */ /* Reset error state variables at start of a new image */ void (*reset_error_mgr) (j_common_ptr cinfo); /* The message ID code and any parameters are saved here. * A message can have one string parameter or up to 8 int parameters. */ int msg_code; #define JMSG_STR_PARM_MAX 80 union { int i[8]; char s[JMSG_STR_PARM_MAX]; } msg_parm; /* Standard state variables for error facility */ int trace_level; /* max msg_level that will be displayed */ /* For recoverable corrupt-data errors, we emit a warning message, * but keep going unless emit_message chooses to abort. emit_message * should count warnings in num_warnings. The surrounding application * can check for bad data by seeing if num_warnings is nonzero at the * end of processing. */ long num_warnings; /* number of corrupt-data warnings */ /* These fields point to the table(s) of error message strings. * An application can change the table pointer to switch to a different * message list (typically, to change the language in which errors are * reported). Some applications may wish to add additional error codes * that will be handled by the JPEG library error mechanism; the second * table pointer is used for this purpose. * * First table includes all errors generated by JPEG library itself. * Error code 0 is reserved for a "no such error string" message. */ const char * const * jpeg_message_table; /* Library errors */ int last_jpeg_message; /* Table contains strings 0..last_jpeg_message */ /* Second table can be added by application (see cjpeg/djpeg for example). * It contains strings numbered first_addon_message..last_addon_message. */ const char * const * addon_message_table; /* Non-library errors */ int first_addon_message; /* code for first string in addon table */ int last_addon_message; /* code for last string in addon table */ }; /* Progress monitor object */ struct jpeg_progress_mgr { void (*progress_monitor) (j_common_ptr cinfo); long pass_counter; /* work units completed in this pass */ long pass_limit; /* total number of work units in this pass */ int completed_passes; /* passes completed so far */ int total_passes; /* total number of passes expected */ }; /* Data destination object for compression */ struct jpeg_destination_mgr { JOCTET * next_output_byte; /* => next byte to write in buffer */ size_t free_in_buffer; /* # of byte spaces remaining in buffer */ void (*init_destination) (j_compress_ptr cinfo); boolean (*empty_output_buffer) (j_compress_ptr cinfo); void (*term_destination) (j_compress_ptr cinfo); }; /* Data source object for decompression */ struct jpeg_source_mgr { const JOCTET * next_input_byte; /* => next byte to read from buffer */ size_t bytes_in_buffer; /* # of bytes remaining in buffer */ void (*init_source) (j_decompress_ptr cinfo); boolean (*fill_input_buffer) (j_decompress_ptr cinfo); void (*skip_input_data) (j_decompress_ptr cinfo, long num_bytes); boolean (*resync_to_restart) (j_decompress_ptr cinfo, int desired); void (*term_source) (j_decompress_ptr cinfo); }; /* Memory manager object. * Allocates "small" objects (a few K total), "large" objects (tens of K), * and "really big" objects (virtual arrays with backing store if needed). * The memory manager does not allow individual objects to be freed; rather, * each created object is assigned to a pool, and whole pools can be freed * at once. This is faster and more convenient than remembering exactly what * to free, especially where malloc()/free() are not too speedy. * NB: alloc routines never return NULL. They exit to error_exit if not * successful. */ #define JPOOL_PERMANENT 0 /* lasts until master record is destroyed */ #define JPOOL_IMAGE 1 /* lasts until done with image/datastream */ #define JPOOL_NUMPOOLS 2 typedef struct jvirt_sarray_control * jvirt_sarray_ptr; typedef struct jvirt_barray_control * jvirt_barray_ptr; struct jpeg_memory_mgr { /* Method pointers */ void * (*alloc_small) (j_common_ptr cinfo, int pool_id, size_t sizeofobject); void * (*alloc_large) (j_common_ptr cinfo, int pool_id, size_t sizeofobject); JSAMPARRAY (*alloc_sarray) (j_common_ptr cinfo, int pool_id, JDIMENSION samplesperrow, JDIMENSION numrows); JBLOCKARRAY (*alloc_barray) (j_common_ptr cinfo, int pool_id, JDIMENSION blocksperrow, JDIMENSION numrows); jvirt_sarray_ptr (*request_virt_sarray) (j_common_ptr cinfo, int pool_id, boolean pre_zero, JDIMENSION samplesperrow, JDIMENSION numrows, JDIMENSION maxaccess); jvirt_barray_ptr (*request_virt_barray) (j_common_ptr cinfo, int pool_id, boolean pre_zero, JDIMENSION blocksperrow, JDIMENSION numrows, JDIMENSION maxaccess); void (*realize_virt_arrays) (j_common_ptr cinfo); JSAMPARRAY (*access_virt_sarray) (j_common_ptr cinfo, jvirt_sarray_ptr ptr, JDIMENSION start_row, JDIMENSION num_rows, boolean writable); JBLOCKARRAY (*access_virt_barray) (j_common_ptr cinfo, jvirt_barray_ptr ptr, JDIMENSION start_row, JDIMENSION num_rows, boolean writable); void (*free_pool) (j_common_ptr cinfo, int pool_id); void (*self_destruct) (j_common_ptr cinfo); /* Limit on memory allocation for this JPEG object. (Note that this is * merely advisory, not a guaranteed maximum; it only affects the space * used for virtual-array buffers.) May be changed by outer application * after creating the JPEG object. */ long max_memory_to_use; /* Maximum allocation request accepted by alloc_large. */ long max_alloc_chunk; }; /* Routine signature for application-supplied marker processing methods. * Need not pass marker code since it is stored in cinfo->unread_marker. */ typedef boolean (*jpeg_marker_parser_method) (j_decompress_ptr cinfo); /* Originally, this macro was used as a way of defining function prototypes * for both modern compilers as well as older compilers that did not support * prototype parameters. libjpeg-turbo has never supported these older, * non-ANSI compilers, but the macro is still included because there is some * software out there that uses it. */ #define JPP(arglist) arglist /* Default error-management setup */ EXTERN(struct jpeg_error_mgr *) jpeg_std_error (struct jpeg_error_mgr * err); /* Initialization of JPEG compression objects. * jpeg_create_compress() and jpeg_create_decompress() are the exported * names that applications should call. These expand to calls on * jpeg_CreateCompress and jpeg_CreateDecompress with additional information * passed for version mismatch checking. * NB: you must set up the error-manager BEFORE calling jpeg_create_xxx. */ #define jpeg_create_compress(cinfo) \ jpeg_CreateCompress((cinfo), JPEG_LIB_VERSION, \ (size_t) sizeof(struct jpeg_compress_struct)) #define jpeg_create_decompress(cinfo) \ jpeg_CreateDecompress((cinfo), JPEG_LIB_VERSION, \ (size_t) sizeof(struct jpeg_decompress_struct)) EXTERN(void) jpeg_CreateCompress (j_compress_ptr cinfo, int version, size_t structsize); EXTERN(void) jpeg_CreateDecompress (j_decompress_ptr cinfo, int version, size_t structsize); /* Destruction of JPEG compression objects */ EXTERN(void) jpeg_destroy_compress (j_compress_ptr cinfo); EXTERN(void) jpeg_destroy_decompress (j_decompress_ptr cinfo); /* Standard data source and destination managers: stdio streams. */ /* Caller is responsible for opening the file before and closing after. */ EXTERN(void) jpeg_stdio_dest (j_compress_ptr cinfo, FILE * outfile); EXTERN(void) jpeg_stdio_src (j_decompress_ptr cinfo, FILE * infile); #if JPEG_LIB_VERSION >= 80 || defined(MEM_SRCDST_SUPPORTED) /* Data source and destination managers: memory buffers. */ EXTERN(void) jpeg_mem_dest (j_compress_ptr cinfo, unsigned char ** outbuffer, unsigned long * outsize); EXTERN(void) jpeg_mem_src (j_decompress_ptr cinfo, unsigned char * inbuffer, unsigned long insize); #endif /* Default parameter setup for compression */ EXTERN(void) jpeg_set_defaults (j_compress_ptr cinfo); /* Compression parameter setup aids */ EXTERN(void) jpeg_set_colorspace (j_compress_ptr cinfo, J_COLOR_SPACE colorspace); EXTERN(void) jpeg_default_colorspace (j_compress_ptr cinfo); EXTERN(void) jpeg_set_quality (j_compress_ptr cinfo, int quality, boolean force_baseline); EXTERN(void) jpeg_set_linear_quality (j_compress_ptr cinfo, int scale_factor, boolean force_baseline); #if JPEG_LIB_VERSION >= 70 EXTERN(void) jpeg_default_qtables (j_compress_ptr cinfo, boolean force_baseline); #endif EXTERN(void) jpeg_add_quant_table (j_compress_ptr cinfo, int which_tbl, const unsigned int *basic_table, int scale_factor, boolean force_baseline); EXTERN(int) jpeg_quality_scaling (int quality); EXTERN(void) jpeg_simple_progression (j_compress_ptr cinfo); EXTERN(void) jpeg_suppress_tables (j_compress_ptr cinfo, boolean suppress); EXTERN(JQUANT_TBL *) jpeg_alloc_quant_table (j_common_ptr cinfo); EXTERN(JHUFF_TBL *) jpeg_alloc_huff_table (j_common_ptr cinfo); /* Main entry points for compression */ EXTERN(void) jpeg_start_compress (j_compress_ptr cinfo, boolean write_all_tables); EXTERN(JDIMENSION) jpeg_write_scanlines (j_compress_ptr cinfo, JSAMPARRAY scanlines, JDIMENSION num_lines); EXTERN(void) jpeg_finish_compress (j_compress_ptr cinfo); #if JPEG_LIB_VERSION >= 70 /* Precalculate JPEG dimensions for current compression parameters. */ EXTERN(void) jpeg_calc_jpeg_dimensions (j_compress_ptr cinfo); #endif /* Replaces jpeg_write_scanlines when writing raw downsampled data. */ EXTERN(JDIMENSION) jpeg_write_raw_data (j_compress_ptr cinfo, JSAMPIMAGE data, JDIMENSION num_lines); /* Write a special marker. See libjpeg.txt concerning safe usage. */ EXTERN(void) jpeg_write_marker (j_compress_ptr cinfo, int marker, const JOCTET * dataptr, unsigned int datalen); /* Same, but piecemeal. */ EXTERN(void) jpeg_write_m_header (j_compress_ptr cinfo, int marker, unsigned int datalen); EXTERN(void) jpeg_write_m_byte (j_compress_ptr cinfo, int val); /* Alternate compression function: just write an abbreviated table file */ EXTERN(void) jpeg_write_tables (j_compress_ptr cinfo); /* Decompression startup: read start of JPEG datastream to see what's there */ EXTERN(int) jpeg_read_header (j_decompress_ptr cinfo, boolean require_image); /* Return value is one of: */ #define JPEG_SUSPENDED 0 /* Suspended due to lack of input data */ #define JPEG_HEADER_OK 1 /* Found valid image datastream */ #define JPEG_HEADER_TABLES_ONLY 2 /* Found valid table-specs-only datastream */ /* If you pass require_image = TRUE (normal case), you need not check for * a TABLES_ONLY return code; an abbreviated file will cause an error exit. * JPEG_SUSPENDED is only possible if you use a data source module that can * give a suspension return (the stdio source module doesn't). */ /* Main entry points for decompression */ EXTERN(boolean) jpeg_start_decompress (j_decompress_ptr cinfo); EXTERN(JDIMENSION) jpeg_read_scanlines (j_decompress_ptr cinfo, JSAMPARRAY scanlines, JDIMENSION max_lines); EXTERN(boolean) jpeg_finish_decompress (j_decompress_ptr cinfo); /* Replaces jpeg_read_scanlines when reading raw downsampled data. */ EXTERN(JDIMENSION) jpeg_read_raw_data (j_decompress_ptr cinfo, JSAMPIMAGE data, JDIMENSION max_lines); /* Additional entry points for buffered-image mode. */ EXTERN(boolean) jpeg_has_multiple_scans (j_decompress_ptr cinfo); EXTERN(boolean) jpeg_start_output (j_decompress_ptr cinfo, int scan_number); EXTERN(boolean) jpeg_finish_output (j_decompress_ptr cinfo); EXTERN(boolean) jpeg_input_complete (j_decompress_ptr cinfo); EXTERN(void) jpeg_new_colormap (j_decompress_ptr cinfo); EXTERN(int) jpeg_consume_input (j_decompress_ptr cinfo); /* Return value is one of: */ /* #define JPEG_SUSPENDED 0 Suspended due to lack of input data */ #define JPEG_REACHED_SOS 1 /* Reached start of new scan */ #define JPEG_REACHED_EOI 2 /* Reached end of image */ #define JPEG_ROW_COMPLETED 3 /* Completed one iMCU row */ #define JPEG_SCAN_COMPLETED 4 /* Completed last iMCU row of a scan */ /* Precalculate output dimensions for current decompression parameters. */ #if JPEG_LIB_VERSION >= 80 EXTERN(void) jpeg_core_output_dimensions (j_decompress_ptr cinfo); #endif EXTERN(void) jpeg_calc_output_dimensions (j_decompress_ptr cinfo); /* Control saving of COM and APPn markers into marker_list. */ EXTERN(void) jpeg_save_markers (j_decompress_ptr cinfo, int marker_code, unsigned int length_limit); /* Install a special processing method for COM or APPn markers. */ EXTERN(void) jpeg_set_marker_processor (j_decompress_ptr cinfo, int marker_code, jpeg_marker_parser_method routine); /* Read or write raw DCT coefficients --- useful for lossless transcoding. */ EXTERN(jvirt_barray_ptr *) jpeg_read_coefficients (j_decompress_ptr cinfo); EXTERN(void) jpeg_write_coefficients (j_compress_ptr cinfo, jvirt_barray_ptr * coef_arrays); EXTERN(void) jpeg_copy_critical_parameters (j_decompress_ptr srcinfo, j_compress_ptr dstinfo); /* If you choose to abort compression or decompression before completing * jpeg_finish_(de)compress, then you need to clean up to release memory, * temporary files, etc. You can just call jpeg_destroy_(de)compress * if you're done with the JPEG object, but if you want to clean it up and * reuse it, call this: */ EXTERN(void) jpeg_abort_compress (j_compress_ptr cinfo); EXTERN(void) jpeg_abort_decompress (j_decompress_ptr cinfo); /* Generic versions of jpeg_abort and jpeg_destroy that work on either * flavor of JPEG object. These may be more convenient in some places. */ EXTERN(void) jpeg_abort (j_common_ptr cinfo); EXTERN(void) jpeg_destroy (j_common_ptr cinfo); /* Default restart-marker-resync procedure for use by data source modules */ EXTERN(boolean) jpeg_resync_to_restart (j_decompress_ptr cinfo, int desired); /* These marker codes are exported since applications and data source modules * are likely to want to use them. */ #define JPEG_RST0 0xD0 /* RST0 marker code */ #define JPEG_EOI 0xD9 /* EOI marker code */ #define JPEG_APP0 0xE0 /* APP0 marker code */ #define JPEG_COM 0xFE /* COM marker code */ /* If we have a brain-damaged compiler that emits warnings (or worse, errors) * for structure definitions that are never filled in, keep it quiet by * supplying dummy definitions for the various substructures. */ #ifdef INCOMPLETE_TYPES_BROKEN #ifndef JPEG_INTERNALS /* will be defined in jpegint.h */ struct jvirt_sarray_control { long dummy; }; struct jvirt_barray_control { long dummy; }; struct jpeg_comp_master { long dummy; }; struct jpeg_c_main_controller { long dummy; }; struct jpeg_c_prep_controller { long dummy; }; struct jpeg_c_coef_controller { long dummy; }; struct jpeg_marker_writer { long dummy; }; struct jpeg_color_converter { long dummy; }; struct jpeg_downsampler { long dummy; }; struct jpeg_forward_dct { long dummy; }; struct jpeg_entropy_encoder { long dummy; }; struct jpeg_decomp_master { long dummy; }; struct jpeg_d_main_controller { long dummy; }; struct jpeg_d_coef_controller { long dummy; }; struct jpeg_d_post_controller { long dummy; }; struct jpeg_input_controller { long dummy; }; struct jpeg_marker_reader { long dummy; }; struct jpeg_entropy_decoder { long dummy; }; struct jpeg_inverse_dct { long dummy; }; struct jpeg_upsampler { long dummy; }; struct jpeg_color_deconverter { long dummy; }; struct jpeg_color_quantizer { long dummy; }; #endif /* JPEG_INTERNALS */ #endif /* INCOMPLETE_TYPES_BROKEN */ /* * The JPEG library modules define JPEG_INTERNALS before including this file. * The internal structure declarations are read only when that is true. * Applications using the library should not include jpegint.h, but may wish * to include jerror.h. */ #ifdef JPEG_INTERNALS #include "jpegint.h" /* fetch private declarations */ #include "jerror.h" /* fetch error codes too */ #endif #ifdef __cplusplus #ifndef DONT_USE_EXTERN_C } #endif #endif #endif /* JPEGLIB_H */ libjpeg-turbo-1.4.2/jdmaster.c0000644000076500007650000006620612600050400013170 00000000000000/* * jdmaster.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1991-1997, Thomas G. Lane. * Modified 2002-2009 by Guido Vollbeding. * libjpeg-turbo Modifications: * Copyright (C) 2009-2011, D. R. Commander. * Copyright (C) 2013, Linaro Limited. * For conditions of distribution and use, see the accompanying README file. * * This file contains master control logic for the JPEG decompressor. * These routines are concerned with selecting the modules to be executed * and with determining the number of passes and the work to be done in each * pass. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" #include "jpegcomp.h" /* Private state */ typedef struct { struct jpeg_decomp_master pub; /* public fields */ int pass_number; /* # of passes completed */ boolean using_merged_upsample; /* TRUE if using merged upsample/cconvert */ /* Saved references to initialized quantizer modules, * in case we need to switch modes. */ struct jpeg_color_quantizer * quantizer_1pass; struct jpeg_color_quantizer * quantizer_2pass; } my_decomp_master; typedef my_decomp_master * my_master_ptr; /* * Determine whether merged upsample/color conversion should be used. * CRUCIAL: this must match the actual capabilities of jdmerge.c! */ LOCAL(boolean) use_merged_upsample (j_decompress_ptr cinfo) { #ifdef UPSAMPLE_MERGING_SUPPORTED /* Merging is the equivalent of plain box-filter upsampling */ if (cinfo->do_fancy_upsampling || cinfo->CCIR601_sampling) return FALSE; /* jdmerge.c only supports YCC=>RGB and YCC=>RGB565 color conversion */ if (cinfo->jpeg_color_space != JCS_YCbCr || cinfo->num_components != 3 || (cinfo->out_color_space != JCS_RGB && cinfo->out_color_space != JCS_RGB565 && cinfo->out_color_space != JCS_EXT_RGB && cinfo->out_color_space != JCS_EXT_RGBX && cinfo->out_color_space != JCS_EXT_BGR && cinfo->out_color_space != JCS_EXT_BGRX && cinfo->out_color_space != JCS_EXT_XBGR && cinfo->out_color_space != JCS_EXT_XRGB && cinfo->out_color_space != JCS_EXT_RGBA && cinfo->out_color_space != JCS_EXT_BGRA && cinfo->out_color_space != JCS_EXT_ABGR && cinfo->out_color_space != JCS_EXT_ARGB)) return FALSE; if ((cinfo->out_color_space == JCS_RGB565 && cinfo->out_color_components != 3) || (cinfo->out_color_space != JCS_RGB565 && cinfo->out_color_components != rgb_pixelsize[cinfo->out_color_space])) return FALSE; /* and it only handles 2h1v or 2h2v sampling ratios */ if (cinfo->comp_info[0].h_samp_factor != 2 || cinfo->comp_info[1].h_samp_factor != 1 || cinfo->comp_info[2].h_samp_factor != 1 || cinfo->comp_info[0].v_samp_factor > 2 || cinfo->comp_info[1].v_samp_factor != 1 || cinfo->comp_info[2].v_samp_factor != 1) return FALSE; /* furthermore, it doesn't work if we've scaled the IDCTs differently */ if (cinfo->comp_info[0]._DCT_scaled_size != cinfo->_min_DCT_scaled_size || cinfo->comp_info[1]._DCT_scaled_size != cinfo->_min_DCT_scaled_size || cinfo->comp_info[2]._DCT_scaled_size != cinfo->_min_DCT_scaled_size) return FALSE; /* ??? also need to test for upsample-time rescaling, when & if supported */ return TRUE; /* by golly, it'll work... */ #else return FALSE; #endif } /* * Compute output image dimensions and related values. * NOTE: this is exported for possible use by application. * Hence it mustn't do anything that can't be done twice. */ #if JPEG_LIB_VERSION >= 80 GLOBAL(void) #else LOCAL(void) #endif jpeg_core_output_dimensions (j_decompress_ptr cinfo) /* Do computations that are needed before master selection phase. * This function is used for transcoding and full decompression. */ { #ifdef IDCT_SCALING_SUPPORTED int ci; jpeg_component_info *compptr; /* Compute actual output image dimensions and DCT scaling choices. */ if (cinfo->scale_num * DCTSIZE <= cinfo->scale_denom) { /* Provide 1/block_size scaling */ cinfo->output_width = (JDIMENSION) jdiv_round_up((long) cinfo->image_width, (long) DCTSIZE); cinfo->output_height = (JDIMENSION) jdiv_round_up((long) cinfo->image_height, (long) DCTSIZE); cinfo->_min_DCT_h_scaled_size = 1; cinfo->_min_DCT_v_scaled_size = 1; } else if (cinfo->scale_num * DCTSIZE <= cinfo->scale_denom * 2) { /* Provide 2/block_size scaling */ cinfo->output_width = (JDIMENSION) jdiv_round_up((long) cinfo->image_width * 2L, (long) DCTSIZE); cinfo->output_height = (JDIMENSION) jdiv_round_up((long) cinfo->image_height * 2L, (long) DCTSIZE); cinfo->_min_DCT_h_scaled_size = 2; cinfo->_min_DCT_v_scaled_size = 2; } else if (cinfo->scale_num * DCTSIZE <= cinfo->scale_denom * 3) { /* Provide 3/block_size scaling */ cinfo->output_width = (JDIMENSION) jdiv_round_up((long) cinfo->image_width * 3L, (long) DCTSIZE); cinfo->output_height = (JDIMENSION) jdiv_round_up((long) cinfo->image_height * 3L, (long) DCTSIZE); cinfo->_min_DCT_h_scaled_size = 3; cinfo->_min_DCT_v_scaled_size = 3; } else if (cinfo->scale_num * DCTSIZE <= cinfo->scale_denom * 4) { /* Provide 4/block_size scaling */ cinfo->output_width = (JDIMENSION) jdiv_round_up((long) cinfo->image_width * 4L, (long) DCTSIZE); cinfo->output_height = (JDIMENSION) jdiv_round_up((long) cinfo->image_height * 4L, (long) DCTSIZE); cinfo->_min_DCT_h_scaled_size = 4; cinfo->_min_DCT_v_scaled_size = 4; } else if (cinfo->scale_num * DCTSIZE <= cinfo->scale_denom * 5) { /* Provide 5/block_size scaling */ cinfo->output_width = (JDIMENSION) jdiv_round_up((long) cinfo->image_width * 5L, (long) DCTSIZE); cinfo->output_height = (JDIMENSION) jdiv_round_up((long) cinfo->image_height * 5L, (long) DCTSIZE); cinfo->_min_DCT_h_scaled_size = 5; cinfo->_min_DCT_v_scaled_size = 5; } else if (cinfo->scale_num * DCTSIZE <= cinfo->scale_denom * 6) { /* Provide 6/block_size scaling */ cinfo->output_width = (JDIMENSION) jdiv_round_up((long) cinfo->image_width * 6L, (long) DCTSIZE); cinfo->output_height = (JDIMENSION) jdiv_round_up((long) cinfo->image_height * 6L, (long) DCTSIZE); cinfo->_min_DCT_h_scaled_size = 6; cinfo->_min_DCT_v_scaled_size = 6; } else if (cinfo->scale_num * DCTSIZE <= cinfo->scale_denom * 7) { /* Provide 7/block_size scaling */ cinfo->output_width = (JDIMENSION) jdiv_round_up((long) cinfo->image_width * 7L, (long) DCTSIZE); cinfo->output_height = (JDIMENSION) jdiv_round_up((long) cinfo->image_height * 7L, (long) DCTSIZE); cinfo->_min_DCT_h_scaled_size = 7; cinfo->_min_DCT_v_scaled_size = 7; } else if (cinfo->scale_num * DCTSIZE <= cinfo->scale_denom * 8) { /* Provide 8/block_size scaling */ cinfo->output_width = (JDIMENSION) jdiv_round_up((long) cinfo->image_width * 8L, (long) DCTSIZE); cinfo->output_height = (JDIMENSION) jdiv_round_up((long) cinfo->image_height * 8L, (long) DCTSIZE); cinfo->_min_DCT_h_scaled_size = 8; cinfo->_min_DCT_v_scaled_size = 8; } else if (cinfo->scale_num * DCTSIZE <= cinfo->scale_denom * 9) { /* Provide 9/block_size scaling */ cinfo->output_width = (JDIMENSION) jdiv_round_up((long) cinfo->image_width * 9L, (long) DCTSIZE); cinfo->output_height = (JDIMENSION) jdiv_round_up((long) cinfo->image_height * 9L, (long) DCTSIZE); cinfo->_min_DCT_h_scaled_size = 9; cinfo->_min_DCT_v_scaled_size = 9; } else if (cinfo->scale_num * DCTSIZE <= cinfo->scale_denom * 10) { /* Provide 10/block_size scaling */ cinfo->output_width = (JDIMENSION) jdiv_round_up((long) cinfo->image_width * 10L, (long) DCTSIZE); cinfo->output_height = (JDIMENSION) jdiv_round_up((long) cinfo->image_height * 10L, (long) DCTSIZE); cinfo->_min_DCT_h_scaled_size = 10; cinfo->_min_DCT_v_scaled_size = 10; } else if (cinfo->scale_num * DCTSIZE <= cinfo->scale_denom * 11) { /* Provide 11/block_size scaling */ cinfo->output_width = (JDIMENSION) jdiv_round_up((long) cinfo->image_width * 11L, (long) DCTSIZE); cinfo->output_height = (JDIMENSION) jdiv_round_up((long) cinfo->image_height * 11L, (long) DCTSIZE); cinfo->_min_DCT_h_scaled_size = 11; cinfo->_min_DCT_v_scaled_size = 11; } else if (cinfo->scale_num * DCTSIZE <= cinfo->scale_denom * 12) { /* Provide 12/block_size scaling */ cinfo->output_width = (JDIMENSION) jdiv_round_up((long) cinfo->image_width * 12L, (long) DCTSIZE); cinfo->output_height = (JDIMENSION) jdiv_round_up((long) cinfo->image_height * 12L, (long) DCTSIZE); cinfo->_min_DCT_h_scaled_size = 12; cinfo->_min_DCT_v_scaled_size = 12; } else if (cinfo->scale_num * DCTSIZE <= cinfo->scale_denom * 13) { /* Provide 13/block_size scaling */ cinfo->output_width = (JDIMENSION) jdiv_round_up((long) cinfo->image_width * 13L, (long) DCTSIZE); cinfo->output_height = (JDIMENSION) jdiv_round_up((long) cinfo->image_height * 13L, (long) DCTSIZE); cinfo->_min_DCT_h_scaled_size = 13; cinfo->_min_DCT_v_scaled_size = 13; } else if (cinfo->scale_num * DCTSIZE <= cinfo->scale_denom * 14) { /* Provide 14/block_size scaling */ cinfo->output_width = (JDIMENSION) jdiv_round_up((long) cinfo->image_width * 14L, (long) DCTSIZE); cinfo->output_height = (JDIMENSION) jdiv_round_up((long) cinfo->image_height * 14L, (long) DCTSIZE); cinfo->_min_DCT_h_scaled_size = 14; cinfo->_min_DCT_v_scaled_size = 14; } else if (cinfo->scale_num * DCTSIZE <= cinfo->scale_denom * 15) { /* Provide 15/block_size scaling */ cinfo->output_width = (JDIMENSION) jdiv_round_up((long) cinfo->image_width * 15L, (long) DCTSIZE); cinfo->output_height = (JDIMENSION) jdiv_round_up((long) cinfo->image_height * 15L, (long) DCTSIZE); cinfo->_min_DCT_h_scaled_size = 15; cinfo->_min_DCT_v_scaled_size = 15; } else { /* Provide 16/block_size scaling */ cinfo->output_width = (JDIMENSION) jdiv_round_up((long) cinfo->image_width * 16L, (long) DCTSIZE); cinfo->output_height = (JDIMENSION) jdiv_round_up((long) cinfo->image_height * 16L, (long) DCTSIZE); cinfo->_min_DCT_h_scaled_size = 16; cinfo->_min_DCT_v_scaled_size = 16; } /* Recompute dimensions of components */ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { compptr->_DCT_h_scaled_size = cinfo->_min_DCT_h_scaled_size; compptr->_DCT_v_scaled_size = cinfo->_min_DCT_v_scaled_size; } #else /* !IDCT_SCALING_SUPPORTED */ /* Hardwire it to "no scaling" */ cinfo->output_width = cinfo->image_width; cinfo->output_height = cinfo->image_height; /* jdinput.c has already initialized DCT_scaled_size, * and has computed unscaled downsampled_width and downsampled_height. */ #endif /* IDCT_SCALING_SUPPORTED */ } /* * Compute output image dimensions and related values. * NOTE: this is exported for possible use by application. * Hence it mustn't do anything that can't be done twice. * Also note that it may be called before the master module is initialized! */ GLOBAL(void) jpeg_calc_output_dimensions (j_decompress_ptr cinfo) /* Do computations that are needed before master selection phase */ { #ifdef IDCT_SCALING_SUPPORTED int ci; jpeg_component_info *compptr; #endif /* Prevent application from calling me at wrong times */ if (cinfo->global_state != DSTATE_READY) ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); /* Compute core output image dimensions and DCT scaling choices. */ jpeg_core_output_dimensions(cinfo); #ifdef IDCT_SCALING_SUPPORTED /* In selecting the actual DCT scaling for each component, we try to * scale up the chroma components via IDCT scaling rather than upsampling. * This saves time if the upsampler gets to use 1:1 scaling. * Note this code adapts subsampling ratios which are powers of 2. */ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { int ssize = cinfo->_min_DCT_scaled_size; while (ssize < DCTSIZE && ((cinfo->max_h_samp_factor * cinfo->_min_DCT_scaled_size) % (compptr->h_samp_factor * ssize * 2) == 0) && ((cinfo->max_v_samp_factor * cinfo->_min_DCT_scaled_size) % (compptr->v_samp_factor * ssize * 2) == 0)) { ssize = ssize * 2; } #if JPEG_LIB_VERSION >= 70 compptr->DCT_h_scaled_size = compptr->DCT_v_scaled_size = ssize; #else compptr->DCT_scaled_size = ssize; #endif } /* Recompute downsampled dimensions of components; * application needs to know these if using raw downsampled data. */ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { /* Size in samples, after IDCT scaling */ compptr->downsampled_width = (JDIMENSION) jdiv_round_up((long) cinfo->image_width * (long) (compptr->h_samp_factor * compptr->_DCT_scaled_size), (long) (cinfo->max_h_samp_factor * DCTSIZE)); compptr->downsampled_height = (JDIMENSION) jdiv_round_up((long) cinfo->image_height * (long) (compptr->v_samp_factor * compptr->_DCT_scaled_size), (long) (cinfo->max_v_samp_factor * DCTSIZE)); } #else /* !IDCT_SCALING_SUPPORTED */ /* Hardwire it to "no scaling" */ cinfo->output_width = cinfo->image_width; cinfo->output_height = cinfo->image_height; /* jdinput.c has already initialized DCT_scaled_size to DCTSIZE, * and has computed unscaled downsampled_width and downsampled_height. */ #endif /* IDCT_SCALING_SUPPORTED */ /* Report number of components in selected colorspace. */ /* Probably this should be in the color conversion module... */ switch (cinfo->out_color_space) { case JCS_GRAYSCALE: cinfo->out_color_components = 1; break; case JCS_RGB: case JCS_EXT_RGB: case JCS_EXT_RGBX: case JCS_EXT_BGR: case JCS_EXT_BGRX: case JCS_EXT_XBGR: case JCS_EXT_XRGB: case JCS_EXT_RGBA: case JCS_EXT_BGRA: case JCS_EXT_ABGR: case JCS_EXT_ARGB: cinfo->out_color_components = rgb_pixelsize[cinfo->out_color_space]; break; case JCS_YCbCr: case JCS_RGB565: cinfo->out_color_components = 3; break; case JCS_CMYK: case JCS_YCCK: cinfo->out_color_components = 4; break; default: /* else must be same colorspace as in file */ cinfo->out_color_components = cinfo->num_components; break; } cinfo->output_components = (cinfo->quantize_colors ? 1 : cinfo->out_color_components); /* See if upsampler will want to emit more than one row at a time */ if (use_merged_upsample(cinfo)) cinfo->rec_outbuf_height = cinfo->max_v_samp_factor; else cinfo->rec_outbuf_height = 1; } /* * Several decompression processes need to range-limit values to the range * 0..MAXJSAMPLE; the input value may fall somewhat outside this range * due to noise introduced by quantization, roundoff error, etc. These * processes are inner loops and need to be as fast as possible. On most * machines, particularly CPUs with pipelines or instruction prefetch, * a (subscript-check-less) C table lookup * x = sample_range_limit[x]; * is faster than explicit tests * if (x < 0) x = 0; * else if (x > MAXJSAMPLE) x = MAXJSAMPLE; * These processes all use a common table prepared by the routine below. * * For most steps we can mathematically guarantee that the initial value * of x is within MAXJSAMPLE+1 of the legal range, so a table running from * -(MAXJSAMPLE+1) to 2*MAXJSAMPLE+1 is sufficient. But for the initial * limiting step (just after the IDCT), a wildly out-of-range value is * possible if the input data is corrupt. To avoid any chance of indexing * off the end of memory and getting a bad-pointer trap, we perform the * post-IDCT limiting thus: * x = range_limit[x & MASK]; * where MASK is 2 bits wider than legal sample data, ie 10 bits for 8-bit * samples. Under normal circumstances this is more than enough range and * a correct output will be generated; with bogus input data the mask will * cause wraparound, and we will safely generate a bogus-but-in-range output. * For the post-IDCT step, we want to convert the data from signed to unsigned * representation by adding CENTERJSAMPLE at the same time that we limit it. * So the post-IDCT limiting table ends up looking like this: * CENTERJSAMPLE,CENTERJSAMPLE+1,...,MAXJSAMPLE, * MAXJSAMPLE (repeat 2*(MAXJSAMPLE+1)-CENTERJSAMPLE times), * 0 (repeat 2*(MAXJSAMPLE+1)-CENTERJSAMPLE times), * 0,1,...,CENTERJSAMPLE-1 * Negative inputs select values from the upper half of the table after * masking. * * We can save some space by overlapping the start of the post-IDCT table * with the simpler range limiting table. The post-IDCT table begins at * sample_range_limit + CENTERJSAMPLE. */ LOCAL(void) prepare_range_limit_table (j_decompress_ptr cinfo) /* Allocate and fill in the sample_range_limit table */ { JSAMPLE * table; int i; table = (JSAMPLE *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, (5 * (MAXJSAMPLE+1) + CENTERJSAMPLE) * sizeof(JSAMPLE)); table += (MAXJSAMPLE+1); /* allow negative subscripts of simple table */ cinfo->sample_range_limit = table; /* First segment of "simple" table: limit[x] = 0 for x < 0 */ MEMZERO(table - (MAXJSAMPLE+1), (MAXJSAMPLE+1) * sizeof(JSAMPLE)); /* Main part of "simple" table: limit[x] = x */ for (i = 0; i <= MAXJSAMPLE; i++) table[i] = (JSAMPLE) i; table += CENTERJSAMPLE; /* Point to where post-IDCT table starts */ /* End of simple table, rest of first half of post-IDCT table */ for (i = CENTERJSAMPLE; i < 2*(MAXJSAMPLE+1); i++) table[i] = MAXJSAMPLE; /* Second half of post-IDCT table */ MEMZERO(table + (2 * (MAXJSAMPLE+1)), (2 * (MAXJSAMPLE+1) - CENTERJSAMPLE) * sizeof(JSAMPLE)); MEMCOPY(table + (4 * (MAXJSAMPLE+1) - CENTERJSAMPLE), cinfo->sample_range_limit, CENTERJSAMPLE * sizeof(JSAMPLE)); } /* * Master selection of decompression modules. * This is done once at jpeg_start_decompress time. We determine * which modules will be used and give them appropriate initialization calls. * We also initialize the decompressor input side to begin consuming data. * * Since jpeg_read_header has finished, we know what is in the SOF * and (first) SOS markers. We also have all the application parameter * settings. */ LOCAL(void) master_selection (j_decompress_ptr cinfo) { my_master_ptr master = (my_master_ptr) cinfo->master; boolean use_c_buffer; long samplesperrow; JDIMENSION jd_samplesperrow; /* Initialize dimensions and other stuff */ jpeg_calc_output_dimensions(cinfo); prepare_range_limit_table(cinfo); /* Width of an output scanline must be representable as JDIMENSION. */ samplesperrow = (long) cinfo->output_width * (long) cinfo->out_color_components; jd_samplesperrow = (JDIMENSION) samplesperrow; if ((long) jd_samplesperrow != samplesperrow) ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); /* Initialize my private state */ master->pass_number = 0; master->using_merged_upsample = use_merged_upsample(cinfo); /* Color quantizer selection */ master->quantizer_1pass = NULL; master->quantizer_2pass = NULL; /* No mode changes if not using buffered-image mode. */ if (! cinfo->quantize_colors || ! cinfo->buffered_image) { cinfo->enable_1pass_quant = FALSE; cinfo->enable_external_quant = FALSE; cinfo->enable_2pass_quant = FALSE; } if (cinfo->quantize_colors) { if (cinfo->raw_data_out) ERREXIT(cinfo, JERR_NOTIMPL); /* 2-pass quantizer only works in 3-component color space. */ if (cinfo->out_color_components != 3) { cinfo->enable_1pass_quant = TRUE; cinfo->enable_external_quant = FALSE; cinfo->enable_2pass_quant = FALSE; cinfo->colormap = NULL; } else if (cinfo->colormap != NULL) { cinfo->enable_external_quant = TRUE; } else if (cinfo->two_pass_quantize) { cinfo->enable_2pass_quant = TRUE; } else { cinfo->enable_1pass_quant = TRUE; } if (cinfo->enable_1pass_quant) { #ifdef QUANT_1PASS_SUPPORTED jinit_1pass_quantizer(cinfo); master->quantizer_1pass = cinfo->cquantize; #else ERREXIT(cinfo, JERR_NOT_COMPILED); #endif } /* We use the 2-pass code to map to external colormaps. */ if (cinfo->enable_2pass_quant || cinfo->enable_external_quant) { #ifdef QUANT_2PASS_SUPPORTED jinit_2pass_quantizer(cinfo); master->quantizer_2pass = cinfo->cquantize; #else ERREXIT(cinfo, JERR_NOT_COMPILED); #endif } /* If both quantizers are initialized, the 2-pass one is left active; * this is necessary for starting with quantization to an external map. */ } /* Post-processing: in particular, color conversion first */ if (! cinfo->raw_data_out) { if (master->using_merged_upsample) { #ifdef UPSAMPLE_MERGING_SUPPORTED jinit_merged_upsampler(cinfo); /* does color conversion too */ #else ERREXIT(cinfo, JERR_NOT_COMPILED); #endif } else { jinit_color_deconverter(cinfo); jinit_upsampler(cinfo); } jinit_d_post_controller(cinfo, cinfo->enable_2pass_quant); } /* Inverse DCT */ jinit_inverse_dct(cinfo); /* Entropy decoding: either Huffman or arithmetic coding. */ if (cinfo->arith_code) { #ifdef D_ARITH_CODING_SUPPORTED jinit_arith_decoder(cinfo); #else ERREXIT(cinfo, JERR_ARITH_NOTIMPL); #endif } else { if (cinfo->progressive_mode) { #ifdef D_PROGRESSIVE_SUPPORTED jinit_phuff_decoder(cinfo); #else ERREXIT(cinfo, JERR_NOT_COMPILED); #endif } else jinit_huff_decoder(cinfo); } /* Initialize principal buffer controllers. */ use_c_buffer = cinfo->inputctl->has_multiple_scans || cinfo->buffered_image; jinit_d_coef_controller(cinfo, use_c_buffer); if (! cinfo->raw_data_out) jinit_d_main_controller(cinfo, FALSE /* never need full buffer here */); /* We can now tell the memory manager to allocate virtual arrays. */ (*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo); /* Initialize input side of decompressor to consume first scan. */ (*cinfo->inputctl->start_input_pass) (cinfo); #ifdef D_MULTISCAN_FILES_SUPPORTED /* If jpeg_start_decompress will read the whole file, initialize * progress monitoring appropriately. The input step is counted * as one pass. */ if (cinfo->progress != NULL && ! cinfo->buffered_image && cinfo->inputctl->has_multiple_scans) { int nscans; /* Estimate number of scans to set pass_limit. */ if (cinfo->progressive_mode) { /* Arbitrarily estimate 2 interleaved DC scans + 3 AC scans/component. */ nscans = 2 + 3 * cinfo->num_components; } else { /* For a nonprogressive multiscan file, estimate 1 scan per component. */ nscans = cinfo->num_components; } cinfo->progress->pass_counter = 0L; cinfo->progress->pass_limit = (long) cinfo->total_iMCU_rows * nscans; cinfo->progress->completed_passes = 0; cinfo->progress->total_passes = (cinfo->enable_2pass_quant ? 3 : 2); /* Count the input pass as done */ master->pass_number++; } #endif /* D_MULTISCAN_FILES_SUPPORTED */ } /* * Per-pass setup. * This is called at the beginning of each output pass. We determine which * modules will be active during this pass and give them appropriate * start_pass calls. We also set is_dummy_pass to indicate whether this * is a "real" output pass or a dummy pass for color quantization. * (In the latter case, jdapistd.c will crank the pass to completion.) */ METHODDEF(void) prepare_for_output_pass (j_decompress_ptr cinfo) { my_master_ptr master = (my_master_ptr) cinfo->master; if (master->pub.is_dummy_pass) { #ifdef QUANT_2PASS_SUPPORTED /* Final pass of 2-pass quantization */ master->pub.is_dummy_pass = FALSE; (*cinfo->cquantize->start_pass) (cinfo, FALSE); (*cinfo->post->start_pass) (cinfo, JBUF_CRANK_DEST); (*cinfo->main->start_pass) (cinfo, JBUF_CRANK_DEST); #else ERREXIT(cinfo, JERR_NOT_COMPILED); #endif /* QUANT_2PASS_SUPPORTED */ } else { if (cinfo->quantize_colors && cinfo->colormap == NULL) { /* Select new quantization method */ if (cinfo->two_pass_quantize && cinfo->enable_2pass_quant) { cinfo->cquantize = master->quantizer_2pass; master->pub.is_dummy_pass = TRUE; } else if (cinfo->enable_1pass_quant) { cinfo->cquantize = master->quantizer_1pass; } else { ERREXIT(cinfo, JERR_MODE_CHANGE); } } (*cinfo->idct->start_pass) (cinfo); (*cinfo->coef->start_output_pass) (cinfo); if (! cinfo->raw_data_out) { if (! master->using_merged_upsample) (*cinfo->cconvert->start_pass) (cinfo); (*cinfo->upsample->start_pass) (cinfo); if (cinfo->quantize_colors) (*cinfo->cquantize->start_pass) (cinfo, master->pub.is_dummy_pass); (*cinfo->post->start_pass) (cinfo, (master->pub.is_dummy_pass ? JBUF_SAVE_AND_PASS : JBUF_PASS_THRU)); (*cinfo->main->start_pass) (cinfo, JBUF_PASS_THRU); } } /* Set up progress monitor's pass info if present */ if (cinfo->progress != NULL) { cinfo->progress->completed_passes = master->pass_number; cinfo->progress->total_passes = master->pass_number + (master->pub.is_dummy_pass ? 2 : 1); /* In buffered-image mode, we assume one more output pass if EOI not * yet reached, but no more passes if EOI has been reached. */ if (cinfo->buffered_image && ! cinfo->inputctl->eoi_reached) { cinfo->progress->total_passes += (cinfo->enable_2pass_quant ? 2 : 1); } } } /* * Finish up at end of an output pass. */ METHODDEF(void) finish_output_pass (j_decompress_ptr cinfo) { my_master_ptr master = (my_master_ptr) cinfo->master; if (cinfo->quantize_colors) (*cinfo->cquantize->finish_pass) (cinfo); master->pass_number++; } #ifdef D_MULTISCAN_FILES_SUPPORTED /* * Switch to a new external colormap between output passes. */ GLOBAL(void) jpeg_new_colormap (j_decompress_ptr cinfo) { my_master_ptr master = (my_master_ptr) cinfo->master; /* Prevent application from calling me at wrong times */ if (cinfo->global_state != DSTATE_BUFIMAGE) ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); if (cinfo->quantize_colors && cinfo->enable_external_quant && cinfo->colormap != NULL) { /* Select 2-pass quantizer for external colormap use */ cinfo->cquantize = master->quantizer_2pass; /* Notify quantizer of colormap change */ (*cinfo->cquantize->new_color_map) (cinfo); master->pub.is_dummy_pass = FALSE; /* just in case */ } else ERREXIT(cinfo, JERR_MODE_CHANGE); } #endif /* D_MULTISCAN_FILES_SUPPORTED */ /* * Initialize master decompression control and select active modules. * This is performed at the start of jpeg_start_decompress. */ GLOBAL(void) jinit_master_decompress (j_decompress_ptr cinfo) { my_master_ptr master; master = (my_master_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, sizeof(my_decomp_master)); cinfo->master = (struct jpeg_decomp_master *) master; master->pub.prepare_for_output_pass = prepare_for_output_pass; master->pub.finish_output_pass = finish_output_pass; master->pub.is_dummy_pass = FALSE; master_selection(cinfo); } libjpeg-turbo-1.4.2/wizard.txt0000644000076500007650000002413712600050400013251 00000000000000Advanced usage instructions for the Independent JPEG Group's JPEG software ========================================================================== This file describes cjpeg's "switches for wizards". The "wizard" switches are intended for experimentation with JPEG by persons who are reasonably knowledgeable about the JPEG standard. If you don't know what you are doing, DON'T USE THESE SWITCHES. You'll likely produce files with worse image quality and/or poorer compression than you'd get from the default settings. Furthermore, these switches must be used with caution when making files intended for general use, because not all JPEG decoders will support unusual JPEG parameter settings. Quantization Table Adjustment ----------------------------- Ordinarily, cjpeg starts with a default set of tables (the same ones given as examples in the JPEG standard) and scales them up or down according to the -quality setting. The details of the scaling algorithm can be found in jcparam.c. At very low quality settings, some quantization table entries can get scaled up to values exceeding 255. Although 2-byte quantization values are supported by the IJG software, this feature is not in baseline JPEG and is not supported by all implementations. If you need to ensure wide compatibility of low-quality files, you can constrain the scaled quantization values to no more than 255 by giving the -baseline switch. Note that use of -baseline will result in poorer quality for the same file size, since more bits than necessary are expended on higher AC coefficients. You can substitute a different set of quantization values by using the -qtables switch: -qtables file Use the quantization tables given in the named file. The specified file should be a text file containing decimal quantization values. The file should contain one to four tables, each of 64 elements. The tables are implicitly numbered 0,1,etc. in order of appearance. Table entries appear in normal array order (NOT in the zigzag order in which they will be stored in the JPEG file). Quantization table files are free format, in that arbitrary whitespace can appear between numbers. Also, comments can be included: a comment starts with '#' and extends to the end of the line. Here is an example file that duplicates the default quantization tables: # Quantization tables given in JPEG spec, section K.1 # This is table 0 (the luminance table): 16 11 10 16 24 40 51 61 12 12 14 19 26 58 60 55 14 13 16 24 40 57 69 56 14 17 22 29 51 87 80 62 18 22 37 56 68 109 103 77 24 35 55 64 81 104 113 92 49 64 78 87 103 121 120 101 72 92 95 98 112 100 103 99 # This is table 1 (the chrominance table): 17 18 24 47 99 99 99 99 18 21 26 66 99 99 99 99 24 26 56 99 99 99 99 99 47 66 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 If the -qtables switch is used without -quality, then the specified tables are used exactly as-is. If both -qtables and -quality are used, then the tables taken from the file are scaled in the same fashion that the default tables would be scaled for that quality setting. If -baseline appears, then the quantization values are constrained to the range 1-255. By default, cjpeg will use quantization table 0 for luminance components and table 1 for chrominance components. To override this choice, use the -qslots switch: -qslots N[,...] Select which quantization table to use for each color component. The -qslots switch specifies a quantization table number for each color component, in the order in which the components appear in the JPEG SOF marker. For example, to create a separate table for each of Y,Cb,Cr, you could provide a -qtables file that defines three quantization tables and say "-qslots 0,1,2". If -qslots gives fewer table numbers than there are color components, then the last table number is repeated as necessary. Sampling Factor Adjustment -------------------------- By default, cjpeg uses 2:1 horizontal and vertical downsampling when compressing YCbCr data, and no downsampling for all other color spaces. You can override this default with the -sample switch: -sample HxV[,...] Set JPEG sampling factors for each color component. The -sample switch specifies the JPEG sampling factors for each color component, in the order in which they appear in the JPEG SOF marker. If you specify fewer HxV pairs than there are components, the remaining components are set to 1x1 sampling. For example, the default YCbCr setting is equivalent to "-sample 2x2,1x1,1x1", which can be abbreviated to "-sample 2x2". There are still some JPEG decoders in existence that support only 2x1 sampling (also called 4:2:2 sampling). Compatibility with such decoders can be achieved by specifying "-sample 2x1". This is not recommended unless really necessary, since it increases file size and encoding/decoding time with very little quality gain. Multiple Scan / Progression Control ----------------------------------- By default, cjpeg emits a single-scan sequential JPEG file. The -progressive switch generates a progressive JPEG file using a default series of progression parameters. You can create multiple-scan sequential JPEG files or progressive JPEG files with custom progression parameters by using the -scans switch: -scans file Use the scan sequence given in the named file. The specified file should be a text file containing a "scan script". The script specifies the contents and ordering of the scans to be emitted. Each entry in the script defines one scan. A scan definition specifies the components to be included in the scan, and for progressive JPEG it also specifies the progression parameters Ss,Se,Ah,Al for the scan. Scan definitions are separated by semicolons (';'). A semicolon after the last scan definition is optional. Each scan definition contains one to four component indexes, optionally followed by a colon (':') and the four progressive-JPEG parameters. The component indexes denote which color component(s) are to be transmitted in the scan. Components are numbered in the order in which they appear in the JPEG SOF marker, with the first component being numbered 0. (Note that these indexes are not the "component ID" codes assigned to the components, just positional indexes.) The progression parameters for each scan are: Ss Zigzag index of first coefficient included in scan Se Zigzag index of last coefficient included in scan Ah Zero for first scan of a coefficient, else Al of prior scan Al Successive approximation low bit position for scan If the progression parameters are omitted, the values 0,63,0,0 are used, producing a sequential JPEG file. cjpeg automatically determines whether the script represents a progressive or sequential file, by observing whether Ss and Se values other than 0 and 63 appear. (The -progressive switch is not needed to specify this; in fact, it is ignored when -scans appears.) The scan script must meet the JPEG restrictions on progression sequences. (cjpeg checks that the spec's requirements are obeyed.) Scan script files are free format, in that arbitrary whitespace can appear between numbers and around punctuation. Also, comments can be included: a comment starts with '#' and extends to the end of the line. For additional legibility, commas or dashes can be placed between values. (Actually, any single punctuation character other than ':' or ';' can be inserted.) For example, the following two scan definitions are equivalent: 0 1 2: 0 63 0 0; 0,1,2 : 0-63, 0,0 ; Here is an example of a scan script that generates a partially interleaved sequential JPEG file: 0; # Y only in first scan 1 2; # Cb and Cr in second scan Here is an example of a progressive scan script using only spectral selection (no successive approximation): # Interleaved DC scan for Y,Cb,Cr: 0,1,2: 0-0, 0, 0 ; # AC scans: 0: 1-2, 0, 0 ; # First two Y AC coefficients 0: 3-5, 0, 0 ; # Three more 1: 1-63, 0, 0 ; # All AC coefficients for Cb 2: 1-63, 0, 0 ; # All AC coefficients for Cr 0: 6-9, 0, 0 ; # More Y coefficients 0: 10-63, 0, 0 ; # Remaining Y coefficients Here is an example of a successive-approximation script. This is equivalent to the default script used by "cjpeg -progressive" for YCbCr images: # Initial DC scan for Y,Cb,Cr (lowest bit not sent) 0,1,2: 0-0, 0, 1 ; # First AC scan: send first 5 Y AC coefficients, minus 2 lowest bits: 0: 1-5, 0, 2 ; # Send all Cr,Cb AC coefficients, minus lowest bit: # (chroma data is usually too small to be worth subdividing further; # but note we send Cr first since eye is least sensitive to Cb) 2: 1-63, 0, 1 ; 1: 1-63, 0, 1 ; # Send remaining Y AC coefficients, minus 2 lowest bits: 0: 6-63, 0, 2 ; # Send next-to-lowest bit of all Y AC coefficients: 0: 1-63, 2, 1 ; # At this point we've sent all but the lowest bit of all coefficients. # Send lowest bit of DC coefficients 0,1,2: 0-0, 1, 0 ; # Send lowest bit of AC coefficients 2: 1-63, 1, 0 ; 1: 1-63, 1, 0 ; # Y AC lowest bit scan is last; it's usually the largest scan 0: 1-63, 1, 0 ; It may be worth pointing out that this script is tuned for quality settings of around 50 to 75. For lower quality settings, you'd probably want to use a script with fewer stages of successive approximation (otherwise the initial scans will be really bad). For higher quality settings, you might want to use more stages of successive approximation (so that the initial scans are not too large). libjpeg-turbo-1.4.2/jsimddct.h0000644000076500007650000000631112600050400013154 00000000000000/* * jsimddct.h * * Copyright 2009 Pierre Ossman for Cendio AB * * Based on the x86 SIMD extension for IJG JPEG library, * Copyright (C) 1999-2006, MIYASAKA Masaru. * For conditions of distribution and use, see copyright notice in jsimdext.inc * */ EXTERN(int) jsimd_can_convsamp (void); EXTERN(int) jsimd_can_convsamp_float (void); EXTERN(void) jsimd_convsamp (JSAMPARRAY sample_data, JDIMENSION start_col, DCTELEM * workspace); EXTERN(void) jsimd_convsamp_float (JSAMPARRAY sample_data, JDIMENSION start_col, FAST_FLOAT * workspace); EXTERN(int) jsimd_can_fdct_islow (void); EXTERN(int) jsimd_can_fdct_ifast (void); EXTERN(int) jsimd_can_fdct_float (void); EXTERN(void) jsimd_fdct_islow (DCTELEM * data); EXTERN(void) jsimd_fdct_ifast (DCTELEM * data); EXTERN(void) jsimd_fdct_float (FAST_FLOAT * data); EXTERN(int) jsimd_can_quantize (void); EXTERN(int) jsimd_can_quantize_float (void); EXTERN(void) jsimd_quantize (JCOEFPTR coef_block, DCTELEM * divisors, DCTELEM * workspace); EXTERN(void) jsimd_quantize_float (JCOEFPTR coef_block, FAST_FLOAT * divisors, FAST_FLOAT * workspace); EXTERN(int) jsimd_can_idct_2x2 (void); EXTERN(int) jsimd_can_idct_4x4 (void); EXTERN(int) jsimd_can_idct_6x6 (void); EXTERN(int) jsimd_can_idct_12x12 (void); EXTERN(void) jsimd_idct_2x2 (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); EXTERN(void) jsimd_idct_4x4 (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); EXTERN(void) jsimd_idct_6x6 (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); EXTERN(void) jsimd_idct_12x12 (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); EXTERN(int) jsimd_can_idct_islow (void); EXTERN(int) jsimd_can_idct_ifast (void); EXTERN(int) jsimd_can_idct_float (void); EXTERN(void) jsimd_idct_islow (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); EXTERN(void) jsimd_idct_ifast (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); EXTERN(void) jsimd_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); libjpeg-turbo-1.4.2/tjutil.h0000644000076500007650000000363412600050400012673 00000000000000/* * Copyright (C)2011 D. R. Commander. All Rights Reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * - Neither the name of the libjpeg-turbo Project nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS", * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #ifdef _WIN32 #ifndef __MINGW32__ #include #define snprintf(str, n, format, ...) \ _snprintf_s(str, n, _TRUNCATE, format, __VA_ARGS__) #endif #define strcasecmp stricmp #define strncasecmp strnicmp #endif #ifndef min #define min(a,b) ((a)<(b)?(a):(b)) #endif #ifndef max #define max(a,b) ((a)>(b)?(a):(b)) #endif extern double gettime(void); libjpeg-turbo-1.4.2/wrgif.c0000644000076500007650000003177112600050400012474 00000000000000/* * wrgif.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1991-1997, Thomas G. Lane. * It was modified by The libjpeg-turbo Project to include only code relevant * to libjpeg-turbo. * For conditions of distribution and use, see the accompanying README file. * * This file contains routines to write output images in GIF format. * ************************************************************************** * NOTE: to avoid entanglements with Unisys' patent on LZW compression, * * this code has been modified to output "uncompressed GIF" files. * * There is no trace of the LZW algorithm in this file. * ************************************************************************** * * These routines may need modification for non-Unix environments or * specialized applications. As they stand, they assume output to * an ordinary stdio stream. */ /* * This code is loosely based on ppmtogif from the PBMPLUS distribution * of Feb. 1991. That file contains the following copyright notice: * Based on GIFENCODE by David Rowley . * Lempel-Ziv compression based on "compress" by Spencer W. Thomas et al. * Copyright (C) 1989 by Jef Poskanzer. * Permission to use, copy, modify, and distribute this software and its * documentation for any purpose and without fee is hereby granted, provided * that the above copyright notice appear in all copies and that both that * copyright notice and this permission notice appear in supporting * documentation. This software is provided "as is" without express or * implied warranty. * * We are also required to state that * "The Graphics Interchange Format(c) is the Copyright property of * CompuServe Incorporated. GIF(sm) is a Service Mark property of * CompuServe Incorporated." */ #include "cdjpeg.h" /* Common decls for cjpeg/djpeg applications */ #ifdef GIF_SUPPORTED /* Private version of data destination object */ typedef struct { struct djpeg_dest_struct pub; /* public fields */ j_decompress_ptr cinfo; /* back link saves passing separate parm */ /* State for packing variable-width codes into a bitstream */ int n_bits; /* current number of bits/code */ int maxcode; /* maximum code, given n_bits */ INT32 cur_accum; /* holds bits not yet output */ int cur_bits; /* # of bits in cur_accum */ /* State for GIF code assignment */ int ClearCode; /* clear code (doesn't change) */ int EOFCode; /* EOF code (ditto) */ int code_counter; /* counts output symbols */ /* GIF data packet construction buffer */ int bytesinpkt; /* # of bytes in current packet */ char packetbuf[256]; /* workspace for accumulating packet */ } gif_dest_struct; typedef gif_dest_struct * gif_dest_ptr; /* Largest value that will fit in N bits */ #define MAXCODE(n_bits) ((1 << (n_bits)) - 1) /* * Routines to package finished data bytes into GIF data blocks. * A data block consists of a count byte (1..255) and that many data bytes. */ LOCAL(void) flush_packet (gif_dest_ptr dinfo) /* flush any accumulated data */ { if (dinfo->bytesinpkt > 0) { /* never write zero-length packet */ dinfo->packetbuf[0] = (char) dinfo->bytesinpkt++; if (JFWRITE(dinfo->pub.output_file, dinfo->packetbuf, dinfo->bytesinpkt) != (size_t) dinfo->bytesinpkt) ERREXIT(dinfo->cinfo, JERR_FILE_WRITE); dinfo->bytesinpkt = 0; } } /* Add a character to current packet; flush to disk if necessary */ #define CHAR_OUT(dinfo,c) \ { (dinfo)->packetbuf[++(dinfo)->bytesinpkt] = (char) (c); \ if ((dinfo)->bytesinpkt >= 255) \ flush_packet(dinfo); \ } /* Routine to convert variable-width codes into a byte stream */ LOCAL(void) output (gif_dest_ptr dinfo, int code) /* Emit a code of n_bits bits */ /* Uses cur_accum and cur_bits to reblock into 8-bit bytes */ { dinfo->cur_accum |= ((INT32) code) << dinfo->cur_bits; dinfo->cur_bits += dinfo->n_bits; while (dinfo->cur_bits >= 8) { CHAR_OUT(dinfo, dinfo->cur_accum & 0xFF); dinfo->cur_accum >>= 8; dinfo->cur_bits -= 8; } } /* The pseudo-compression algorithm. * * In this module we simply output each pixel value as a separate symbol; * thus, no compression occurs. In fact, there is expansion of one bit per * pixel, because we use a symbol width one bit wider than the pixel width. * * GIF ordinarily uses variable-width symbols, and the decoder will expect * to ratchet up the symbol width after a fixed number of symbols. * To simplify the logic and keep the expansion penalty down, we emit a * GIF Clear code to reset the decoder just before the width would ratchet up. * Thus, all the symbols in the output file will have the same bit width. * Note that emitting the Clear codes at the right times is a mere matter of * counting output symbols and is in no way dependent on the LZW patent. * * With a small basic pixel width (low color count), Clear codes will be * needed very frequently, causing the file to expand even more. So this * simplistic approach wouldn't work too well on bilevel images, for example. * But for output of JPEG conversions the pixel width will usually be 8 bits * (129 to 256 colors), so the overhead added by Clear symbols is only about * one symbol in every 256. */ LOCAL(void) compress_init (gif_dest_ptr dinfo, int i_bits) /* Initialize pseudo-compressor */ { /* init all the state variables */ dinfo->n_bits = i_bits; dinfo->maxcode = MAXCODE(dinfo->n_bits); dinfo->ClearCode = (1 << (i_bits - 1)); dinfo->EOFCode = dinfo->ClearCode + 1; dinfo->code_counter = dinfo->ClearCode + 2; /* init output buffering vars */ dinfo->bytesinpkt = 0; dinfo->cur_accum = 0; dinfo->cur_bits = 0; /* GIF specifies an initial Clear code */ output(dinfo, dinfo->ClearCode); } LOCAL(void) compress_pixel (gif_dest_ptr dinfo, int c) /* Accept and "compress" one pixel value. * The given value must be less than n_bits wide. */ { /* Output the given pixel value as a symbol. */ output(dinfo, c); /* Issue Clear codes often enough to keep the reader from ratcheting up * its symbol size. */ if (dinfo->code_counter < dinfo->maxcode) { dinfo->code_counter++; } else { output(dinfo, dinfo->ClearCode); dinfo->code_counter = dinfo->ClearCode + 2; /* reset the counter */ } } LOCAL(void) compress_term (gif_dest_ptr dinfo) /* Clean up at end */ { /* Send an EOF code */ output(dinfo, dinfo->EOFCode); /* Flush the bit-packing buffer */ if (dinfo->cur_bits > 0) { CHAR_OUT(dinfo, dinfo->cur_accum & 0xFF); } /* Flush the packet buffer */ flush_packet(dinfo); } /* GIF header construction */ LOCAL(void) put_word (gif_dest_ptr dinfo, unsigned int w) /* Emit a 16-bit word, LSB first */ { putc(w & 0xFF, dinfo->pub.output_file); putc((w >> 8) & 0xFF, dinfo->pub.output_file); } LOCAL(void) put_3bytes (gif_dest_ptr dinfo, int val) /* Emit 3 copies of same byte value --- handy subr for colormap construction */ { putc(val, dinfo->pub.output_file); putc(val, dinfo->pub.output_file); putc(val, dinfo->pub.output_file); } LOCAL(void) emit_header (gif_dest_ptr dinfo, int num_colors, JSAMPARRAY colormap) /* Output the GIF file header, including color map */ /* If colormap==NULL, synthesize a grayscale colormap */ { int BitsPerPixel, ColorMapSize, InitCodeSize, FlagByte; int cshift = dinfo->cinfo->data_precision - 8; int i; if (num_colors > 256) ERREXIT1(dinfo->cinfo, JERR_TOO_MANY_COLORS, num_colors); /* Compute bits/pixel and related values */ BitsPerPixel = 1; while (num_colors > (1 << BitsPerPixel)) BitsPerPixel++; ColorMapSize = 1 << BitsPerPixel; if (BitsPerPixel <= 1) InitCodeSize = 2; else InitCodeSize = BitsPerPixel; /* * Write the GIF header. * Note that we generate a plain GIF87 header for maximum compatibility. */ putc('G', dinfo->pub.output_file); putc('I', dinfo->pub.output_file); putc('F', dinfo->pub.output_file); putc('8', dinfo->pub.output_file); putc('7', dinfo->pub.output_file); putc('a', dinfo->pub.output_file); /* Write the Logical Screen Descriptor */ put_word(dinfo, (unsigned int) dinfo->cinfo->output_width); put_word(dinfo, (unsigned int) dinfo->cinfo->output_height); FlagByte = 0x80; /* Yes, there is a global color table */ FlagByte |= (BitsPerPixel-1) << 4; /* color resolution */ FlagByte |= (BitsPerPixel-1); /* size of global color table */ putc(FlagByte, dinfo->pub.output_file); putc(0, dinfo->pub.output_file); /* Background color index */ putc(0, dinfo->pub.output_file); /* Reserved (aspect ratio in GIF89) */ /* Write the Global Color Map */ /* If the color map is more than 8 bits precision, */ /* we reduce it to 8 bits by shifting */ for (i=0; i < ColorMapSize; i++) { if (i < num_colors) { if (colormap != NULL) { if (dinfo->cinfo->out_color_space == JCS_RGB) { /* Normal case: RGB color map */ putc(GETJSAMPLE(colormap[0][i]) >> cshift, dinfo->pub.output_file); putc(GETJSAMPLE(colormap[1][i]) >> cshift, dinfo->pub.output_file); putc(GETJSAMPLE(colormap[2][i]) >> cshift, dinfo->pub.output_file); } else { /* Grayscale "color map": possible if quantizing grayscale image */ put_3bytes(dinfo, GETJSAMPLE(colormap[0][i]) >> cshift); } } else { /* Create a grayscale map of num_colors values, range 0..255 */ put_3bytes(dinfo, (i * 255 + (num_colors-1)/2) / (num_colors-1)); } } else { /* fill out the map to a power of 2 */ put_3bytes(dinfo, 0); } } /* Write image separator and Image Descriptor */ putc(',', dinfo->pub.output_file); /* separator */ put_word(dinfo, 0); /* left/top offset */ put_word(dinfo, 0); put_word(dinfo, (unsigned int) dinfo->cinfo->output_width); /* image size */ put_word(dinfo, (unsigned int) dinfo->cinfo->output_height); /* flag byte: not interlaced, no local color map */ putc(0x00, dinfo->pub.output_file); /* Write Initial Code Size byte */ putc(InitCodeSize, dinfo->pub.output_file); /* Initialize for "compression" of image data */ compress_init(dinfo, InitCodeSize+1); } /* * Startup: write the file header. */ METHODDEF(void) start_output_gif (j_decompress_ptr cinfo, djpeg_dest_ptr dinfo) { gif_dest_ptr dest = (gif_dest_ptr) dinfo; if (cinfo->quantize_colors) emit_header(dest, cinfo->actual_number_of_colors, cinfo->colormap); else emit_header(dest, 256, (JSAMPARRAY) NULL); } /* * Write some pixel data. * In this module rows_supplied will always be 1. */ METHODDEF(void) put_pixel_rows (j_decompress_ptr cinfo, djpeg_dest_ptr dinfo, JDIMENSION rows_supplied) { gif_dest_ptr dest = (gif_dest_ptr) dinfo; register JSAMPROW ptr; register JDIMENSION col; ptr = dest->pub.buffer[0]; for (col = cinfo->output_width; col > 0; col--) { compress_pixel(dest, GETJSAMPLE(*ptr++)); } } /* * Finish up at the end of the file. */ METHODDEF(void) finish_output_gif (j_decompress_ptr cinfo, djpeg_dest_ptr dinfo) { gif_dest_ptr dest = (gif_dest_ptr) dinfo; /* Flush "compression" mechanism */ compress_term(dest); /* Write a zero-length data block to end the series */ putc(0, dest->pub.output_file); /* Write the GIF terminator mark */ putc(';', dest->pub.output_file); /* Make sure we wrote the output file OK */ fflush(dest->pub.output_file); if (ferror(dest->pub.output_file)) ERREXIT(cinfo, JERR_FILE_WRITE); } /* * The module selection routine for GIF format output. */ GLOBAL(djpeg_dest_ptr) jinit_write_gif (j_decompress_ptr cinfo) { gif_dest_ptr dest; /* Create module interface object, fill in method pointers */ dest = (gif_dest_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, sizeof(gif_dest_struct)); dest->cinfo = cinfo; /* make back link for subroutines */ dest->pub.start_output = start_output_gif; dest->pub.put_pixel_rows = put_pixel_rows; dest->pub.finish_output = finish_output_gif; if (cinfo->out_color_space != JCS_GRAYSCALE && cinfo->out_color_space != JCS_RGB) ERREXIT(cinfo, JERR_GIF_COLORSPACE); /* Force quantization if color or if > 8 bits input */ if (cinfo->out_color_space != JCS_GRAYSCALE || cinfo->data_precision > 8) { /* Force quantization to at most 256 colors */ cinfo->quantize_colors = TRUE; if (cinfo->desired_number_of_colors > 256) cinfo->desired_number_of_colors = 256; } /* Calculate output image dimensions so we can allocate space */ jpeg_calc_output_dimensions(cinfo); if (cinfo->output_components != 1) /* safety check: just one component? */ ERREXIT(cinfo, JERR_GIF_BUG); /* Create decompressor output buffer. */ dest->pub.buffer = (*cinfo->mem->alloc_sarray) ((j_common_ptr) cinfo, JPOOL_IMAGE, cinfo->output_width, (JDIMENSION) 1); dest->pub.buffer_height = 1; return (djpeg_dest_ptr) dest; } #endif /* GIF_SUPPORTED */ libjpeg-turbo-1.4.2/doxygen-extra.css0000644000076500007650000000003312600050400014505 00000000000000code { color: #4665A2; } libjpeg-turbo-1.4.2/jcdctmgr.c0000644000076500007650000005362312600050400013153 00000000000000/* * jcdctmgr.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1994-1996, Thomas G. Lane. * libjpeg-turbo Modifications: * Copyright (C) 1999-2006, MIYASAKA Masaru. * Copyright 2009 Pierre Ossman for Cendio AB * Copyright (C) 2011, 2014-2015 D. R. Commander * For conditions of distribution and use, see the accompanying README file. * * This file contains the forward-DCT management logic. * This code selects a particular DCT implementation to be used, * and it performs related housekeeping chores including coefficient * quantization. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" #include "jdct.h" /* Private declarations for DCT subsystem */ #include "jsimddct.h" /* Private subobject for this module */ typedef void (*forward_DCT_method_ptr) (DCTELEM * data); typedef void (*float_DCT_method_ptr) (FAST_FLOAT * data); typedef void (*convsamp_method_ptr) (JSAMPARRAY sample_data, JDIMENSION start_col, DCTELEM * workspace); typedef void (*float_convsamp_method_ptr) (JSAMPARRAY sample_data, JDIMENSION start_col, FAST_FLOAT *workspace); typedef void (*quantize_method_ptr) (JCOEFPTR coef_block, DCTELEM * divisors, DCTELEM * workspace); typedef void (*float_quantize_method_ptr) (JCOEFPTR coef_block, FAST_FLOAT * divisors, FAST_FLOAT * workspace); METHODDEF(void) quantize (JCOEFPTR, DCTELEM *, DCTELEM *); typedef struct { struct jpeg_forward_dct pub; /* public fields */ /* Pointer to the DCT routine actually in use */ forward_DCT_method_ptr dct; convsamp_method_ptr convsamp; quantize_method_ptr quantize; /* The actual post-DCT divisors --- not identical to the quant table * entries, because of scaling (especially for an unnormalized DCT). * Each table is given in normal array order. */ DCTELEM * divisors[NUM_QUANT_TBLS]; /* work area for FDCT subroutine */ DCTELEM * workspace; #ifdef DCT_FLOAT_SUPPORTED /* Same as above for the floating-point case. */ float_DCT_method_ptr float_dct; float_convsamp_method_ptr float_convsamp; float_quantize_method_ptr float_quantize; FAST_FLOAT * float_divisors[NUM_QUANT_TBLS]; FAST_FLOAT * float_workspace; #endif } my_fdct_controller; typedef my_fdct_controller * my_fdct_ptr; #if BITS_IN_JSAMPLE == 8 /* * Find the highest bit in an integer through binary search. */ LOCAL(int) flss (UINT16 val) { int bit; bit = 16; if (!val) return 0; if (!(val & 0xff00)) { bit -= 8; val <<= 8; } if (!(val & 0xf000)) { bit -= 4; val <<= 4; } if (!(val & 0xc000)) { bit -= 2; val <<= 2; } if (!(val & 0x8000)) { bit -= 1; val <<= 1; } return bit; } /* * Compute values to do a division using reciprocal. * * This implementation is based on an algorithm described in * "How to optimize for the Pentium family of microprocessors" * (http://www.agner.org/assem/). * More information about the basic algorithm can be found in * the paper "Integer Division Using Reciprocals" by Robert Alverson. * * The basic idea is to replace x/d by x * d^-1. In order to store * d^-1 with enough precision we shift it left a few places. It turns * out that this algoright gives just enough precision, and also fits * into DCTELEM: * * b = (the number of significant bits in divisor) - 1 * r = (word size) + b * f = 2^r / divisor * * f will not be an integer for most cases, so we need to compensate * for the rounding error introduced: * * no fractional part: * * result = input >> r * * fractional part of f < 0.5: * * round f down to nearest integer * result = ((input + 1) * f) >> r * * fractional part of f > 0.5: * * round f up to nearest integer * result = (input * f) >> r * * This is the original algorithm that gives truncated results. But we * want properly rounded results, so we replace "input" with * "input + divisor/2". * * In order to allow SIMD implementations we also tweak the values to * allow the same calculation to be made at all times: * * dctbl[0] = f rounded to nearest integer * dctbl[1] = divisor / 2 (+ 1 if fractional part of f < 0.5) * dctbl[2] = 1 << ((word size) * 2 - r) * dctbl[3] = r - (word size) * * dctbl[2] is for stupid instruction sets where the shift operation * isn't member wise (e.g. MMX). * * The reason dctbl[2] and dctbl[3] reduce the shift with (word size) * is that most SIMD implementations have a "multiply and store top * half" operation. * * Lastly, we store each of the values in their own table instead * of in a consecutive manner, yet again in order to allow SIMD * routines. */ LOCAL(int) compute_reciprocal (UINT16 divisor, DCTELEM * dtbl) { UDCTELEM2 fq, fr; UDCTELEM c; int b, r; if (divisor == 1) { /* divisor == 1 means unquantized, so these reciprocal/correction/shift * values will cause the C quantization algorithm to act like the * identity function. Since only the C quantization algorithm is used in * these cases, the scale value is irrelevant. */ dtbl[DCTSIZE2 * 0] = (DCTELEM) 1; /* reciprocal */ dtbl[DCTSIZE2 * 1] = (DCTELEM) 0; /* correction */ dtbl[DCTSIZE2 * 2] = (DCTELEM) 1; /* scale */ dtbl[DCTSIZE2 * 3] = (DCTELEM) (-sizeof(DCTELEM) * 8); /* shift */ return 0; } b = flss(divisor) - 1; r = sizeof(DCTELEM) * 8 + b; fq = ((UDCTELEM2)1 << r) / divisor; fr = ((UDCTELEM2)1 << r) % divisor; c = divisor / 2; /* for rounding */ if (fr == 0) { /* divisor is power of two */ /* fq will be one bit too large to fit in DCTELEM, so adjust */ fq >>= 1; r--; } else if (fr <= (divisor / 2U)) { /* fractional part is < 0.5 */ c++; } else { /* fractional part is > 0.5 */ fq++; } dtbl[DCTSIZE2 * 0] = (DCTELEM) fq; /* reciprocal */ dtbl[DCTSIZE2 * 1] = (DCTELEM) c; /* correction + roundfactor */ dtbl[DCTSIZE2 * 2] = (DCTELEM) (1 << (sizeof(DCTELEM)*8*2 - r)); /* scale */ dtbl[DCTSIZE2 * 3] = (DCTELEM) r - sizeof(DCTELEM)*8; /* shift */ if(r <= 16) return 0; else return 1; } #endif /* * Initialize for a processing pass. * Verify that all referenced Q-tables are present, and set up * the divisor table for each one. * In the current implementation, DCT of all components is done during * the first pass, even if only some components will be output in the * first scan. Hence all components should be examined here. */ METHODDEF(void) start_pass_fdctmgr (j_compress_ptr cinfo) { my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct; int ci, qtblno, i; jpeg_component_info *compptr; JQUANT_TBL * qtbl; DCTELEM * dtbl; for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { qtblno = compptr->quant_tbl_no; /* Make sure specified quantization table is present */ if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS || cinfo->quant_tbl_ptrs[qtblno] == NULL) ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno); qtbl = cinfo->quant_tbl_ptrs[qtblno]; /* Compute divisors for this quant table */ /* We may do this more than once for same table, but it's not a big deal */ switch (cinfo->dct_method) { #ifdef DCT_ISLOW_SUPPORTED case JDCT_ISLOW: /* For LL&M IDCT method, divisors are equal to raw quantization * coefficients multiplied by 8 (to counteract scaling). */ if (fdct->divisors[qtblno] == NULL) { fdct->divisors[qtblno] = (DCTELEM *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, (DCTSIZE2 * 4) * sizeof(DCTELEM)); } dtbl = fdct->divisors[qtblno]; for (i = 0; i < DCTSIZE2; i++) { #if BITS_IN_JSAMPLE == 8 if(!compute_reciprocal(qtbl->quantval[i] << 3, &dtbl[i]) && fdct->quantize == jsimd_quantize) fdct->quantize = quantize; #else dtbl[i] = ((DCTELEM) qtbl->quantval[i]) << 3; #endif } break; #endif #ifdef DCT_IFAST_SUPPORTED case JDCT_IFAST: { /* For AA&N IDCT method, divisors are equal to quantization * coefficients scaled by scalefactor[row]*scalefactor[col], where * scalefactor[0] = 1 * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 * We apply a further scale factor of 8. */ #define CONST_BITS 14 static const INT16 aanscales[DCTSIZE2] = { /* precomputed values scaled up by 14 bits */ 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, 22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270, 21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906, 19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315, 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, 12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552, 8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446, 4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247 }; SHIFT_TEMPS if (fdct->divisors[qtblno] == NULL) { fdct->divisors[qtblno] = (DCTELEM *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, (DCTSIZE2 * 4) * sizeof(DCTELEM)); } dtbl = fdct->divisors[qtblno]; for (i = 0; i < DCTSIZE2; i++) { #if BITS_IN_JSAMPLE == 8 if(!compute_reciprocal( DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i], (INT32) aanscales[i]), CONST_BITS-3), &dtbl[i]) && fdct->quantize == jsimd_quantize) fdct->quantize = quantize; #else dtbl[i] = (DCTELEM) DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i], (INT32) aanscales[i]), CONST_BITS-3); #endif } } break; #endif #ifdef DCT_FLOAT_SUPPORTED case JDCT_FLOAT: { /* For float AA&N IDCT method, divisors are equal to quantization * coefficients scaled by scalefactor[row]*scalefactor[col], where * scalefactor[0] = 1 * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 * We apply a further scale factor of 8. * What's actually stored is 1/divisor so that the inner loop can * use a multiplication rather than a division. */ FAST_FLOAT * fdtbl; int row, col; static const double aanscalefactor[DCTSIZE] = { 1.0, 1.387039845, 1.306562965, 1.175875602, 1.0, 0.785694958, 0.541196100, 0.275899379 }; if (fdct->float_divisors[qtblno] == NULL) { fdct->float_divisors[qtblno] = (FAST_FLOAT *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, DCTSIZE2 * sizeof(FAST_FLOAT)); } fdtbl = fdct->float_divisors[qtblno]; i = 0; for (row = 0; row < DCTSIZE; row++) { for (col = 0; col < DCTSIZE; col++) { fdtbl[i] = (FAST_FLOAT) (1.0 / (((double) qtbl->quantval[i] * aanscalefactor[row] * aanscalefactor[col] * 8.0))); i++; } } } break; #endif default: ERREXIT(cinfo, JERR_NOT_COMPILED); break; } } } /* * Load data into workspace, applying unsigned->signed conversion. */ METHODDEF(void) convsamp (JSAMPARRAY sample_data, JDIMENSION start_col, DCTELEM * workspace) { register DCTELEM *workspaceptr; register JSAMPROW elemptr; register int elemr; workspaceptr = workspace; for (elemr = 0; elemr < DCTSIZE; elemr++) { elemptr = sample_data[elemr] + start_col; #if DCTSIZE == 8 /* unroll the inner loop */ *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; #else { register int elemc; for (elemc = DCTSIZE; elemc > 0; elemc--) *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; } #endif } } /* * Quantize/descale the coefficients, and store into coef_blocks[]. */ METHODDEF(void) quantize (JCOEFPTR coef_block, DCTELEM * divisors, DCTELEM * workspace) { int i; DCTELEM temp; JCOEFPTR output_ptr = coef_block; #if BITS_IN_JSAMPLE == 8 UDCTELEM recip, corr; int shift; UDCTELEM2 product; for (i = 0; i < DCTSIZE2; i++) { temp = workspace[i]; recip = divisors[i + DCTSIZE2 * 0]; corr = divisors[i + DCTSIZE2 * 1]; shift = divisors[i + DCTSIZE2 * 3]; if (temp < 0) { temp = -temp; product = (UDCTELEM2)(temp + corr) * recip; product >>= shift + sizeof(DCTELEM)*8; temp = product; temp = -temp; } else { product = (UDCTELEM2)(temp + corr) * recip; product >>= shift + sizeof(DCTELEM)*8; temp = product; } output_ptr[i] = (JCOEF) temp; } #else register DCTELEM qval; for (i = 0; i < DCTSIZE2; i++) { qval = divisors[i]; temp = workspace[i]; /* Divide the coefficient value by qval, ensuring proper rounding. * Since C does not specify the direction of rounding for negative * quotients, we have to force the dividend positive for portability. * * In most files, at least half of the output values will be zero * (at default quantization settings, more like three-quarters...) * so we should ensure that this case is fast. On many machines, * a comparison is enough cheaper than a divide to make a special test * a win. Since both inputs will be nonnegative, we need only test * for a < b to discover whether a/b is 0. * If your machine's division is fast enough, define FAST_DIVIDE. */ #ifdef FAST_DIVIDE #define DIVIDE_BY(a,b) a /= b #else #define DIVIDE_BY(a,b) if (a >= b) a /= b; else a = 0 #endif if (temp < 0) { temp = -temp; temp += qval>>1; /* for rounding */ DIVIDE_BY(temp, qval); temp = -temp; } else { temp += qval>>1; /* for rounding */ DIVIDE_BY(temp, qval); } output_ptr[i] = (JCOEF) temp; } #endif } /* * Perform forward DCT on one or more blocks of a component. * * The input samples are taken from the sample_data[] array starting at * position start_row/start_col, and moving to the right for any additional * blocks. The quantized coefficients are returned in coef_blocks[]. */ METHODDEF(void) forward_DCT (j_compress_ptr cinfo, jpeg_component_info * compptr, JSAMPARRAY sample_data, JBLOCKROW coef_blocks, JDIMENSION start_row, JDIMENSION start_col, JDIMENSION num_blocks) /* This version is used for integer DCT implementations. */ { /* This routine is heavily used, so it's worth coding it tightly. */ my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct; DCTELEM * divisors = fdct->divisors[compptr->quant_tbl_no]; DCTELEM * workspace; JDIMENSION bi; /* Make sure the compiler doesn't look up these every pass */ forward_DCT_method_ptr do_dct = fdct->dct; convsamp_method_ptr do_convsamp = fdct->convsamp; quantize_method_ptr do_quantize = fdct->quantize; workspace = fdct->workspace; sample_data += start_row; /* fold in the vertical offset once */ for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) { /* Load data into workspace, applying unsigned->signed conversion */ (*do_convsamp) (sample_data, start_col, workspace); /* Perform the DCT */ (*do_dct) (workspace); /* Quantize/descale the coefficients, and store into coef_blocks[] */ (*do_quantize) (coef_blocks[bi], divisors, workspace); } } #ifdef DCT_FLOAT_SUPPORTED METHODDEF(void) convsamp_float (JSAMPARRAY sample_data, JDIMENSION start_col, FAST_FLOAT * workspace) { register FAST_FLOAT *workspaceptr; register JSAMPROW elemptr; register int elemr; workspaceptr = workspace; for (elemr = 0; elemr < DCTSIZE; elemr++) { elemptr = sample_data[elemr] + start_col; #if DCTSIZE == 8 /* unroll the inner loop */ *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); #else { register int elemc; for (elemc = DCTSIZE; elemc > 0; elemc--) *workspaceptr++ = (FAST_FLOAT) (GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); } #endif } } METHODDEF(void) quantize_float (JCOEFPTR coef_block, FAST_FLOAT * divisors, FAST_FLOAT * workspace) { register FAST_FLOAT temp; register int i; register JCOEFPTR output_ptr = coef_block; for (i = 0; i < DCTSIZE2; i++) { /* Apply the quantization and scaling factor */ temp = workspace[i] * divisors[i]; /* Round to nearest integer. * Since C does not specify the direction of rounding for negative * quotients, we have to force the dividend positive for portability. * The maximum coefficient size is +-16K (for 12-bit data), so this * code should work for either 16-bit or 32-bit ints. */ output_ptr[i] = (JCOEF) ((int) (temp + (FAST_FLOAT) 16384.5) - 16384); } } METHODDEF(void) forward_DCT_float (j_compress_ptr cinfo, jpeg_component_info * compptr, JSAMPARRAY sample_data, JBLOCKROW coef_blocks, JDIMENSION start_row, JDIMENSION start_col, JDIMENSION num_blocks) /* This version is used for floating-point DCT implementations. */ { /* This routine is heavily used, so it's worth coding it tightly. */ my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct; FAST_FLOAT * divisors = fdct->float_divisors[compptr->quant_tbl_no]; FAST_FLOAT * workspace; JDIMENSION bi; /* Make sure the compiler doesn't look up these every pass */ float_DCT_method_ptr do_dct = fdct->float_dct; float_convsamp_method_ptr do_convsamp = fdct->float_convsamp; float_quantize_method_ptr do_quantize = fdct->float_quantize; workspace = fdct->float_workspace; sample_data += start_row; /* fold in the vertical offset once */ for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) { /* Load data into workspace, applying unsigned->signed conversion */ (*do_convsamp) (sample_data, start_col, workspace); /* Perform the DCT */ (*do_dct) (workspace); /* Quantize/descale the coefficients, and store into coef_blocks[] */ (*do_quantize) (coef_blocks[bi], divisors, workspace); } } #endif /* DCT_FLOAT_SUPPORTED */ /* * Initialize FDCT manager. */ GLOBAL(void) jinit_forward_dct (j_compress_ptr cinfo) { my_fdct_ptr fdct; int i; fdct = (my_fdct_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, sizeof(my_fdct_controller)); cinfo->fdct = (struct jpeg_forward_dct *) fdct; fdct->pub.start_pass = start_pass_fdctmgr; /* First determine the DCT... */ switch (cinfo->dct_method) { #ifdef DCT_ISLOW_SUPPORTED case JDCT_ISLOW: fdct->pub.forward_DCT = forward_DCT; if (jsimd_can_fdct_islow()) fdct->dct = jsimd_fdct_islow; else fdct->dct = jpeg_fdct_islow; break; #endif #ifdef DCT_IFAST_SUPPORTED case JDCT_IFAST: fdct->pub.forward_DCT = forward_DCT; if (jsimd_can_fdct_ifast()) fdct->dct = jsimd_fdct_ifast; else fdct->dct = jpeg_fdct_ifast; break; #endif #ifdef DCT_FLOAT_SUPPORTED case JDCT_FLOAT: fdct->pub.forward_DCT = forward_DCT_float; if (jsimd_can_fdct_float()) fdct->float_dct = jsimd_fdct_float; else fdct->float_dct = jpeg_fdct_float; break; #endif default: ERREXIT(cinfo, JERR_NOT_COMPILED); break; } /* ...then the supporting stages. */ switch (cinfo->dct_method) { #ifdef DCT_ISLOW_SUPPORTED case JDCT_ISLOW: #endif #ifdef DCT_IFAST_SUPPORTED case JDCT_IFAST: #endif #if defined(DCT_ISLOW_SUPPORTED) || defined(DCT_IFAST_SUPPORTED) if (jsimd_can_convsamp()) fdct->convsamp = jsimd_convsamp; else fdct->convsamp = convsamp; if (jsimd_can_quantize()) fdct->quantize = jsimd_quantize; else fdct->quantize = quantize; break; #endif #ifdef DCT_FLOAT_SUPPORTED case JDCT_FLOAT: if (jsimd_can_convsamp_float()) fdct->float_convsamp = jsimd_convsamp_float; else fdct->float_convsamp = convsamp_float; if (jsimd_can_quantize_float()) fdct->float_quantize = jsimd_quantize_float; else fdct->float_quantize = quantize_float; break; #endif default: ERREXIT(cinfo, JERR_NOT_COMPILED); break; } /* Allocate workspace memory */ #ifdef DCT_FLOAT_SUPPORTED if (cinfo->dct_method == JDCT_FLOAT) fdct->float_workspace = (FAST_FLOAT *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, sizeof(FAST_FLOAT) * DCTSIZE2); else #endif fdct->workspace = (DCTELEM *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, sizeof(DCTELEM) * DCTSIZE2); /* Mark divisor tables unallocated */ for (i = 0; i < NUM_QUANT_TBLS; i++) { fdct->divisors[i] = NULL; #ifdef DCT_FLOAT_SUPPORTED fdct->float_divisors[i] = NULL; #endif } } libjpeg-turbo-1.4.2/jdapistd.c0000644000076500007650000002273412600050400013157 00000000000000/* * jdapistd.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1994-1996, Thomas G. Lane. * libjpeg-turbo Modifications: * Copyright (C) 2010, D. R. Commander. * For conditions of distribution and use, see the accompanying README file. * * This file contains application interface code for the decompression half * of the JPEG library. These are the "standard" API routines that are * used in the normal full-decompression case. They are not used by a * transcoding-only application. Note that if an application links in * jpeg_start_decompress, it will end up linking in the entire decompressor. * We thus must separate this file from jdapimin.c to avoid linking the * whole decompression library into a transcoder. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" #include "jpegcomp.h" /* Forward declarations */ LOCAL(boolean) output_pass_setup (j_decompress_ptr cinfo); /* * Decompression initialization. * jpeg_read_header must be completed before calling this. * * If a multipass operating mode was selected, this will do all but the * last pass, and thus may take a great deal of time. * * Returns FALSE if suspended. The return value need be inspected only if * a suspending data source is used. */ GLOBAL(boolean) jpeg_start_decompress (j_decompress_ptr cinfo) { if (cinfo->global_state == DSTATE_READY) { /* First call: initialize master control, select active modules */ jinit_master_decompress(cinfo); if (cinfo->buffered_image) { /* No more work here; expecting jpeg_start_output next */ cinfo->global_state = DSTATE_BUFIMAGE; return TRUE; } cinfo->global_state = DSTATE_PRELOAD; } if (cinfo->global_state == DSTATE_PRELOAD) { /* If file has multiple scans, absorb them all into the coef buffer */ if (cinfo->inputctl->has_multiple_scans) { #ifdef D_MULTISCAN_FILES_SUPPORTED for (;;) { int retcode; /* Call progress monitor hook if present */ if (cinfo->progress != NULL) (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo); /* Absorb some more input */ retcode = (*cinfo->inputctl->consume_input) (cinfo); if (retcode == JPEG_SUSPENDED) return FALSE; if (retcode == JPEG_REACHED_EOI) break; /* Advance progress counter if appropriate */ if (cinfo->progress != NULL && (retcode == JPEG_ROW_COMPLETED || retcode == JPEG_REACHED_SOS)) { if (++cinfo->progress->pass_counter >= cinfo->progress->pass_limit) { /* jdmaster underestimated number of scans; ratchet up one scan */ cinfo->progress->pass_limit += (long) cinfo->total_iMCU_rows; } } } #else ERREXIT(cinfo, JERR_NOT_COMPILED); #endif /* D_MULTISCAN_FILES_SUPPORTED */ } cinfo->output_scan_number = cinfo->input_scan_number; } else if (cinfo->global_state != DSTATE_PRESCAN) ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); /* Perform any dummy output passes, and set up for the final pass */ return output_pass_setup(cinfo); } /* * Set up for an output pass, and perform any dummy pass(es) needed. * Common subroutine for jpeg_start_decompress and jpeg_start_output. * Entry: global_state = DSTATE_PRESCAN only if previously suspended. * Exit: If done, returns TRUE and sets global_state for proper output mode. * If suspended, returns FALSE and sets global_state = DSTATE_PRESCAN. */ LOCAL(boolean) output_pass_setup (j_decompress_ptr cinfo) { if (cinfo->global_state != DSTATE_PRESCAN) { /* First call: do pass setup */ (*cinfo->master->prepare_for_output_pass) (cinfo); cinfo->output_scanline = 0; cinfo->global_state = DSTATE_PRESCAN; } /* Loop over any required dummy passes */ while (cinfo->master->is_dummy_pass) { #ifdef QUANT_2PASS_SUPPORTED /* Crank through the dummy pass */ while (cinfo->output_scanline < cinfo->output_height) { JDIMENSION last_scanline; /* Call progress monitor hook if present */ if (cinfo->progress != NULL) { cinfo->progress->pass_counter = (long) cinfo->output_scanline; cinfo->progress->pass_limit = (long) cinfo->output_height; (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo); } /* Process some data */ last_scanline = cinfo->output_scanline; (*cinfo->main->process_data) (cinfo, (JSAMPARRAY) NULL, &cinfo->output_scanline, (JDIMENSION) 0); if (cinfo->output_scanline == last_scanline) return FALSE; /* No progress made, must suspend */ } /* Finish up dummy pass, and set up for another one */ (*cinfo->master->finish_output_pass) (cinfo); (*cinfo->master->prepare_for_output_pass) (cinfo); cinfo->output_scanline = 0; #else ERREXIT(cinfo, JERR_NOT_COMPILED); #endif /* QUANT_2PASS_SUPPORTED */ } /* Ready for application to drive output pass through * jpeg_read_scanlines or jpeg_read_raw_data. */ cinfo->global_state = cinfo->raw_data_out ? DSTATE_RAW_OK : DSTATE_SCANNING; return TRUE; } /* * Read some scanlines of data from the JPEG decompressor. * * The return value will be the number of lines actually read. * This may be less than the number requested in several cases, * including bottom of image, data source suspension, and operating * modes that emit multiple scanlines at a time. * * Note: we warn about excess calls to jpeg_read_scanlines() since * this likely signals an application programmer error. However, * an oversize buffer (max_lines > scanlines remaining) is not an error. */ GLOBAL(JDIMENSION) jpeg_read_scanlines (j_decompress_ptr cinfo, JSAMPARRAY scanlines, JDIMENSION max_lines) { JDIMENSION row_ctr; if (cinfo->global_state != DSTATE_SCANNING) ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); if (cinfo->output_scanline >= cinfo->output_height) { WARNMS(cinfo, JWRN_TOO_MUCH_DATA); return 0; } /* Call progress monitor hook if present */ if (cinfo->progress != NULL) { cinfo->progress->pass_counter = (long) cinfo->output_scanline; cinfo->progress->pass_limit = (long) cinfo->output_height; (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo); } /* Process some data */ row_ctr = 0; (*cinfo->main->process_data) (cinfo, scanlines, &row_ctr, max_lines); cinfo->output_scanline += row_ctr; return row_ctr; } /* * Alternate entry point to read raw data. * Processes exactly one iMCU row per call, unless suspended. */ GLOBAL(JDIMENSION) jpeg_read_raw_data (j_decompress_ptr cinfo, JSAMPIMAGE data, JDIMENSION max_lines) { JDIMENSION lines_per_iMCU_row; if (cinfo->global_state != DSTATE_RAW_OK) ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); if (cinfo->output_scanline >= cinfo->output_height) { WARNMS(cinfo, JWRN_TOO_MUCH_DATA); return 0; } /* Call progress monitor hook if present */ if (cinfo->progress != NULL) { cinfo->progress->pass_counter = (long) cinfo->output_scanline; cinfo->progress->pass_limit = (long) cinfo->output_height; (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo); } /* Verify that at least one iMCU row can be returned. */ lines_per_iMCU_row = cinfo->max_v_samp_factor * cinfo->_min_DCT_scaled_size; if (max_lines < lines_per_iMCU_row) ERREXIT(cinfo, JERR_BUFFER_SIZE); /* Decompress directly into user's buffer. */ if (! (*cinfo->coef->decompress_data) (cinfo, data)) return 0; /* suspension forced, can do nothing more */ /* OK, we processed one iMCU row. */ cinfo->output_scanline += lines_per_iMCU_row; return lines_per_iMCU_row; } /* Additional entry points for buffered-image mode. */ #ifdef D_MULTISCAN_FILES_SUPPORTED /* * Initialize for an output pass in buffered-image mode. */ GLOBAL(boolean) jpeg_start_output (j_decompress_ptr cinfo, int scan_number) { if (cinfo->global_state != DSTATE_BUFIMAGE && cinfo->global_state != DSTATE_PRESCAN) ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); /* Limit scan number to valid range */ if (scan_number <= 0) scan_number = 1; if (cinfo->inputctl->eoi_reached && scan_number > cinfo->input_scan_number) scan_number = cinfo->input_scan_number; cinfo->output_scan_number = scan_number; /* Perform any dummy output passes, and set up for the real pass */ return output_pass_setup(cinfo); } /* * Finish up after an output pass in buffered-image mode. * * Returns FALSE if suspended. The return value need be inspected only if * a suspending data source is used. */ GLOBAL(boolean) jpeg_finish_output (j_decompress_ptr cinfo) { if ((cinfo->global_state == DSTATE_SCANNING || cinfo->global_state == DSTATE_RAW_OK) && cinfo->buffered_image) { /* Terminate this pass. */ /* We do not require the whole pass to have been completed. */ (*cinfo->master->finish_output_pass) (cinfo); cinfo->global_state = DSTATE_BUFPOST; } else if (cinfo->global_state != DSTATE_BUFPOST) { /* BUFPOST = repeat call after a suspension, anything else is error */ ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); } /* Read markers looking for SOS or EOI */ while (cinfo->input_scan_number <= cinfo->output_scan_number && ! cinfo->inputctl->eoi_reached) { if ((*cinfo->inputctl->consume_input) (cinfo) == JPEG_SUSPENDED) return FALSE; /* Suspend, come back later */ } cinfo->global_state = DSTATE_BUFIMAGE; return TRUE; } #endif /* D_MULTISCAN_FILES_SUPPORTED */ libjpeg-turbo-1.4.2/rdgif.c0000644000076500007650000000242212600050400012440 00000000000000/* * rdgif.c * * Copyright (C) 1991-1997, Thomas G. Lane. * This file is part of the Independent JPEG Group's software. * For conditions of distribution and use, see the accompanying README file. * * This file contains routines to read input images in GIF format. * ***************************************************************************** * NOTE: to avoid entanglements with Unisys' patent on LZW compression, * * the ability to read GIF files has been removed from the IJG distribution. * * Sorry about that. * ***************************************************************************** * * We are required to state that * "The Graphics Interchange Format(c) is the Copyright property of * CompuServe Incorporated. GIF(sm) is a Service Mark property of * CompuServe Incorporated." */ #include "cdjpeg.h" /* Common decls for cjpeg/djpeg applications */ #ifdef GIF_SUPPORTED /* * The module selection routine for GIF format input. */ GLOBAL(cjpeg_source_ptr) jinit_read_gif (j_compress_ptr cinfo) { fprintf(stderr, "GIF input is unsupported for legal reasons. Sorry.\n"); exit(EXIT_FAILURE); return NULL; /* keep compiler happy */ } #endif /* GIF_SUPPORTED */ libjpeg-turbo-1.4.2/jccolext.c0000644000076500007650000001100612600050400013156 00000000000000/* * jccolext.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1991-1996, Thomas G. Lane. * libjpeg-turbo Modifications: * Copyright (C) 2009-2012, D. R. Commander. * For conditions of distribution and use, see the accompanying README file. * * This file contains input colorspace conversion routines. */ /* This file is included by jccolor.c */ /* * Convert some rows of samples to the JPEG colorspace. * * Note that we change from the application's interleaved-pixel format * to our internal noninterleaved, one-plane-per-component format. * The input buffer is therefore three times as wide as the output buffer. * * A starting row offset is provided only for the output buffer. The caller * can easily adjust the passed input_buf value to accommodate any row * offset required on that side. */ INLINE LOCAL(void) rgb_ycc_convert_internal (j_compress_ptr cinfo, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows) { my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; register int r, g, b; register INT32 * ctab = cconvert->rgb_ycc_tab; register JSAMPROW inptr; register JSAMPROW outptr0, outptr1, outptr2; register JDIMENSION col; JDIMENSION num_cols = cinfo->image_width; while (--num_rows >= 0) { inptr = *input_buf++; outptr0 = output_buf[0][output_row]; outptr1 = output_buf[1][output_row]; outptr2 = output_buf[2][output_row]; output_row++; for (col = 0; col < num_cols; col++) { r = GETJSAMPLE(inptr[RGB_RED]); g = GETJSAMPLE(inptr[RGB_GREEN]); b = GETJSAMPLE(inptr[RGB_BLUE]); inptr += RGB_PIXELSIZE; /* If the inputs are 0..MAXJSAMPLE, the outputs of these equations * must be too; we do not need an explicit range-limiting operation. * Hence the value being shifted is never negative, and we don't * need the general RIGHT_SHIFT macro. */ /* Y */ outptr0[col] = (JSAMPLE) ((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF]) >> SCALEBITS); /* Cb */ outptr1[col] = (JSAMPLE) ((ctab[r+R_CB_OFF] + ctab[g+G_CB_OFF] + ctab[b+B_CB_OFF]) >> SCALEBITS); /* Cr */ outptr2[col] = (JSAMPLE) ((ctab[r+R_CR_OFF] + ctab[g+G_CR_OFF] + ctab[b+B_CR_OFF]) >> SCALEBITS); } } } /**************** Cases other than RGB -> YCbCr **************/ /* * Convert some rows of samples to the JPEG colorspace. * This version handles RGB->grayscale conversion, which is the same * as the RGB->Y portion of RGB->YCbCr. * We assume rgb_ycc_start has been called (we only use the Y tables). */ INLINE LOCAL(void) rgb_gray_convert_internal (j_compress_ptr cinfo, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows) { my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; register int r, g, b; register INT32 * ctab = cconvert->rgb_ycc_tab; register JSAMPROW inptr; register JSAMPROW outptr; register JDIMENSION col; JDIMENSION num_cols = cinfo->image_width; while (--num_rows >= 0) { inptr = *input_buf++; outptr = output_buf[0][output_row]; output_row++; for (col = 0; col < num_cols; col++) { r = GETJSAMPLE(inptr[RGB_RED]); g = GETJSAMPLE(inptr[RGB_GREEN]); b = GETJSAMPLE(inptr[RGB_BLUE]); inptr += RGB_PIXELSIZE; /* Y */ outptr[col] = (JSAMPLE) ((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF]) >> SCALEBITS); } } } /* * Convert some rows of samples to the JPEG colorspace. * This version handles extended RGB->plain RGB conversion */ INLINE LOCAL(void) rgb_rgb_convert_internal (j_compress_ptr cinfo, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows) { register JSAMPROW inptr; register JSAMPROW outptr0, outptr1, outptr2; register JDIMENSION col; JDIMENSION num_cols = cinfo->image_width; while (--num_rows >= 0) { inptr = *input_buf++; outptr0 = output_buf[0][output_row]; outptr1 = output_buf[1][output_row]; outptr2 = output_buf[2][output_row]; output_row++; for (col = 0; col < num_cols; col++) { outptr0[col] = GETJSAMPLE(inptr[RGB_RED]); outptr1[col] = GETJSAMPLE(inptr[RGB_GREEN]); outptr2[col] = GETJSAMPLE(inptr[RGB_BLUE]); inptr += RGB_PIXELSIZE; } } } libjpeg-turbo-1.4.2/wrppm.c0000644000076500007650000002006312600050400012513 00000000000000/* * wrppm.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1991-1996, Thomas G. Lane. * Modified 2009 by Guido Vollbeding. * It was modified by The libjpeg-turbo Project to include only code and * information relevant to libjpeg-turbo. * For conditions of distribution and use, see the accompanying README file. * * This file contains routines to write output images in PPM/PGM format. * The extended 2-byte-per-sample raw PPM/PGM formats are supported. * The PBMPLUS library is NOT required to compile this software * (but it is highly useful as a set of PPM image manipulation programs). * * These routines may need modification for non-Unix environments or * specialized applications. As they stand, they assume output to * an ordinary stdio stream. */ #include "cdjpeg.h" /* Common decls for cjpeg/djpeg applications */ #ifdef PPM_SUPPORTED /* * For 12-bit JPEG data, we either downscale the values to 8 bits * (to write standard byte-per-sample PPM/PGM files), or output * nonstandard word-per-sample PPM/PGM files. Downscaling is done * if PPM_NORAWWORD is defined (this can be done in the Makefile * or in jconfig.h). * (When the core library supports data precision reduction, a cleaner * implementation will be to ask for that instead.) */ #if BITS_IN_JSAMPLE == 8 #define PUTPPMSAMPLE(ptr,v) *ptr++ = (char) (v) #define BYTESPERSAMPLE 1 #define PPM_MAXVAL 255 #else #ifdef PPM_NORAWWORD #define PUTPPMSAMPLE(ptr,v) *ptr++ = (char) ((v) >> (BITS_IN_JSAMPLE-8)) #define BYTESPERSAMPLE 1 #define PPM_MAXVAL 255 #else /* The word-per-sample format always puts the MSB first. */ #define PUTPPMSAMPLE(ptr,v) \ { register int val_ = v; \ *ptr++ = (char) ((val_ >> 8) & 0xFF); \ *ptr++ = (char) (val_ & 0xFF); \ } #define BYTESPERSAMPLE 2 #define PPM_MAXVAL ((1<pub.output_file, dest->iobuffer, dest->buffer_width); } /* * This code is used when we have to copy the data and apply a pixel * format translation. Typically this only happens in 12-bit mode. */ METHODDEF(void) copy_pixel_rows (j_decompress_ptr cinfo, djpeg_dest_ptr dinfo, JDIMENSION rows_supplied) { ppm_dest_ptr dest = (ppm_dest_ptr) dinfo; register char * bufferptr; register JSAMPROW ptr; register JDIMENSION col; ptr = dest->pub.buffer[0]; bufferptr = dest->iobuffer; for (col = dest->samples_per_row; col > 0; col--) { PUTPPMSAMPLE(bufferptr, GETJSAMPLE(*ptr++)); } (void) JFWRITE(dest->pub.output_file, dest->iobuffer, dest->buffer_width); } /* * Write some pixel data when color quantization is in effect. * We have to demap the color index values to straight data. */ METHODDEF(void) put_demapped_rgb (j_decompress_ptr cinfo, djpeg_dest_ptr dinfo, JDIMENSION rows_supplied) { ppm_dest_ptr dest = (ppm_dest_ptr) dinfo; register char * bufferptr; register int pixval; register JSAMPROW ptr; register JSAMPROW color_map0 = cinfo->colormap[0]; register JSAMPROW color_map1 = cinfo->colormap[1]; register JSAMPROW color_map2 = cinfo->colormap[2]; register JDIMENSION col; ptr = dest->pub.buffer[0]; bufferptr = dest->iobuffer; for (col = cinfo->output_width; col > 0; col--) { pixval = GETJSAMPLE(*ptr++); PUTPPMSAMPLE(bufferptr, GETJSAMPLE(color_map0[pixval])); PUTPPMSAMPLE(bufferptr, GETJSAMPLE(color_map1[pixval])); PUTPPMSAMPLE(bufferptr, GETJSAMPLE(color_map2[pixval])); } (void) JFWRITE(dest->pub.output_file, dest->iobuffer, dest->buffer_width); } METHODDEF(void) put_demapped_gray (j_decompress_ptr cinfo, djpeg_dest_ptr dinfo, JDIMENSION rows_supplied) { ppm_dest_ptr dest = (ppm_dest_ptr) dinfo; register char * bufferptr; register JSAMPROW ptr; register JSAMPROW color_map = cinfo->colormap[0]; register JDIMENSION col; ptr = dest->pub.buffer[0]; bufferptr = dest->iobuffer; for (col = cinfo->output_width; col > 0; col--) { PUTPPMSAMPLE(bufferptr, GETJSAMPLE(color_map[GETJSAMPLE(*ptr++)])); } (void) JFWRITE(dest->pub.output_file, dest->iobuffer, dest->buffer_width); } /* * Startup: write the file header. */ METHODDEF(void) start_output_ppm (j_decompress_ptr cinfo, djpeg_dest_ptr dinfo) { ppm_dest_ptr dest = (ppm_dest_ptr) dinfo; /* Emit file header */ switch (cinfo->out_color_space) { case JCS_GRAYSCALE: /* emit header for raw PGM format */ fprintf(dest->pub.output_file, "P5\n%ld %ld\n%d\n", (long) cinfo->output_width, (long) cinfo->output_height, PPM_MAXVAL); break; case JCS_RGB: /* emit header for raw PPM format */ fprintf(dest->pub.output_file, "P6\n%ld %ld\n%d\n", (long) cinfo->output_width, (long) cinfo->output_height, PPM_MAXVAL); break; default: ERREXIT(cinfo, JERR_PPM_COLORSPACE); } } /* * Finish up at the end of the file. */ METHODDEF(void) finish_output_ppm (j_decompress_ptr cinfo, djpeg_dest_ptr dinfo) { /* Make sure we wrote the output file OK */ fflush(dinfo->output_file); if (ferror(dinfo->output_file)) ERREXIT(cinfo, JERR_FILE_WRITE); } /* * The module selection routine for PPM format output. */ GLOBAL(djpeg_dest_ptr) jinit_write_ppm (j_decompress_ptr cinfo) { ppm_dest_ptr dest; /* Create module interface object, fill in method pointers */ dest = (ppm_dest_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, sizeof(ppm_dest_struct)); dest->pub.start_output = start_output_ppm; dest->pub.finish_output = finish_output_ppm; /* Calculate output image dimensions so we can allocate space */ jpeg_calc_output_dimensions(cinfo); /* Create physical I/O buffer */ dest->samples_per_row = cinfo->output_width * cinfo->out_color_components; dest->buffer_width = dest->samples_per_row * (BYTESPERSAMPLE * sizeof(char)); dest->iobuffer = (char *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, dest->buffer_width); if (cinfo->quantize_colors || BITS_IN_JSAMPLE != 8 || sizeof(JSAMPLE) != sizeof(char)) { /* When quantizing, we need an output buffer for colormap indexes * that's separate from the physical I/O buffer. We also need a * separate buffer if pixel format translation must take place. */ dest->pub.buffer = (*cinfo->mem->alloc_sarray) ((j_common_ptr) cinfo, JPOOL_IMAGE, cinfo->output_width * cinfo->output_components, (JDIMENSION) 1); dest->pub.buffer_height = 1; if (! cinfo->quantize_colors) dest->pub.put_pixel_rows = copy_pixel_rows; else if (cinfo->out_color_space == JCS_GRAYSCALE) dest->pub.put_pixel_rows = put_demapped_gray; else dest->pub.put_pixel_rows = put_demapped_rgb; } else { /* We will fwrite() directly from decompressor output buffer. */ /* Synthesize a JSAMPARRAY pointer structure */ dest->pixrow = (JSAMPROW) dest->iobuffer; dest->pub.buffer = & dest->pixrow; dest->pub.buffer_height = 1; dest->pub.put_pixel_rows = put_pixel_rows; } return (djpeg_dest_ptr) dest; } #endif /* PPM_SUPPORTED */ libjpeg-turbo-1.4.2/jidctfst.c0000644000076500007650000003246012600050400013164 00000000000000/* * jidctfst.c * * Copyright (C) 1994-1998, Thomas G. Lane. * This file is part of the Independent JPEG Group's software. * For conditions of distribution and use, see the accompanying README file. * * This file contains a fast, not so accurate integer implementation of the * inverse DCT (Discrete Cosine Transform). In the IJG code, this routine * must also perform dequantization of the input coefficients. * * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT * on each row (or vice versa, but it's more convenient to emit a row at * a time). Direct algorithms are also available, but they are much more * complex and seem not to be any faster when reduced to code. * * This implementation is based on Arai, Agui, and Nakajima's algorithm for * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in * Japanese, but the algorithm is described in the Pennebaker & Mitchell * JPEG textbook (see REFERENCES section in file README). The following code * is based directly on figure 4-8 in P&M. * While an 8-point DCT cannot be done in less than 11 multiplies, it is * possible to arrange the computation so that many of the multiplies are * simple scalings of the final outputs. These multiplies can then be * folded into the multiplications or divisions by the JPEG quantization * table entries. The AA&N method leaves only 5 multiplies and 29 adds * to be done in the DCT itself. * The primary disadvantage of this method is that with fixed-point math, * accuracy is lost due to imprecise representation of the scaled * quantization values. The smaller the quantization table entry, the less * precise the scaled value, so this implementation does worse with high- * quality-setting files than with low-quality ones. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" #include "jdct.h" /* Private declarations for DCT subsystem */ #ifdef DCT_IFAST_SUPPORTED /* * This module is specialized to the case DCTSIZE = 8. */ #if DCTSIZE != 8 Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ #endif /* Scaling decisions are generally the same as in the LL&M algorithm; * see jidctint.c for more details. However, we choose to descale * (right shift) multiplication products as soon as they are formed, * rather than carrying additional fractional bits into subsequent additions. * This compromises accuracy slightly, but it lets us save a few shifts. * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples) * everywhere except in the multiplications proper; this saves a good deal * of work on 16-bit-int machines. * * The dequantized coefficients are not integers because the AA&N scaling * factors have been incorporated. We represent them scaled up by PASS1_BITS, * so that the first and second IDCT rounds have the same input scaling. * For 8-bit JSAMPLEs, we choose IFAST_SCALE_BITS = PASS1_BITS so as to * avoid a descaling shift; this compromises accuracy rather drastically * for small quantization table entries, but it saves a lot of shifts. * For 12-bit JSAMPLEs, there's no hope of using 16x16 multiplies anyway, * so we use a much larger scaling factor to preserve accuracy. * * A final compromise is to represent the multiplicative constants to only * 8 fractional bits, rather than 13. This saves some shifting work on some * machines, and may also reduce the cost of multiplication (since there * are fewer one-bits in the constants). */ #if BITS_IN_JSAMPLE == 8 #define CONST_BITS 8 #define PASS1_BITS 2 #else #define CONST_BITS 8 #define PASS1_BITS 1 /* lose a little precision to avoid overflow */ #endif /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus * causing a lot of useless floating-point operations at run time. * To get around this we use the following pre-calculated constants. * If you change CONST_BITS you may want to add appropriate values. * (With a reasonable C compiler, you can just rely on the FIX() macro...) */ #if CONST_BITS == 8 #define FIX_1_082392200 ((INT32) 277) /* FIX(1.082392200) */ #define FIX_1_414213562 ((INT32) 362) /* FIX(1.414213562) */ #define FIX_1_847759065 ((INT32) 473) /* FIX(1.847759065) */ #define FIX_2_613125930 ((INT32) 669) /* FIX(2.613125930) */ #else #define FIX_1_082392200 FIX(1.082392200) #define FIX_1_414213562 FIX(1.414213562) #define FIX_1_847759065 FIX(1.847759065) #define FIX_2_613125930 FIX(2.613125930) #endif /* We can gain a little more speed, with a further compromise in accuracy, * by omitting the addition in a descaling shift. This yields an incorrectly * rounded result half the time... */ #ifndef USE_ACCURATE_ROUNDING #undef DESCALE #define DESCALE(x,n) RIGHT_SHIFT(x, n) #endif /* Multiply a DCTELEM variable by an INT32 constant, and immediately * descale to yield a DCTELEM result. */ #define MULTIPLY(var,const) ((DCTELEM) DESCALE((var) * (const), CONST_BITS)) /* Dequantize a coefficient by multiplying it by the multiplier-table * entry; produce a DCTELEM result. For 8-bit data a 16x16->16 * multiplication will do. For 12-bit data, the multiplier table is * declared INT32, so a 32-bit multiply will be used. */ #if BITS_IN_JSAMPLE == 8 #define DEQUANTIZE(coef,quantval) (((IFAST_MULT_TYPE) (coef)) * (quantval)) #else #define DEQUANTIZE(coef,quantval) \ DESCALE((coef)*(quantval), IFAST_SCALE_BITS-PASS1_BITS) #endif /* Like DESCALE, but applies to a DCTELEM and produces an int. * We assume that int right shift is unsigned if INT32 right shift is. */ #ifdef RIGHT_SHIFT_IS_UNSIGNED #define ISHIFT_TEMPS DCTELEM ishift_temp; #if BITS_IN_JSAMPLE == 8 #define DCTELEMBITS 16 /* DCTELEM may be 16 or 32 bits */ #else #define DCTELEMBITS 32 /* DCTELEM must be 32 bits */ #endif #define IRIGHT_SHIFT(x,shft) \ ((ishift_temp = (x)) < 0 ? \ (ishift_temp >> (shft)) | ((~((DCTELEM) 0)) << (DCTELEMBITS-(shft))) : \ (ishift_temp >> (shft))) #else #define ISHIFT_TEMPS #define IRIGHT_SHIFT(x,shft) ((x) >> (shft)) #endif #ifdef USE_ACCURATE_ROUNDING #define IDESCALE(x,n) ((int) IRIGHT_SHIFT((x) + (1 << ((n)-1)), n)) #else #define IDESCALE(x,n) ((int) IRIGHT_SHIFT(x, n)) #endif /* * Perform dequantization and inverse DCT on one block of coefficients. */ GLOBAL(void) jpeg_idct_ifast (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; DCTELEM tmp10, tmp11, tmp12, tmp13; DCTELEM z5, z10, z11, z12, z13; JCOEFPTR inptr; IFAST_MULT_TYPE * quantptr; int * wsptr; JSAMPROW outptr; JSAMPLE *range_limit = IDCT_range_limit(cinfo); int ctr; int workspace[DCTSIZE2]; /* buffers data between passes */ SHIFT_TEMPS /* for DESCALE */ ISHIFT_TEMPS /* for IDESCALE */ /* Pass 1: process columns from input, store into work array. */ inptr = coef_block; quantptr = (IFAST_MULT_TYPE *) compptr->dct_table; wsptr = workspace; for (ctr = DCTSIZE; ctr > 0; ctr--) { /* Due to quantization, we will usually find that many of the input * coefficients are zero, especially the AC terms. We can exploit this * by short-circuiting the IDCT calculation for any column in which all * the AC terms are zero. In that case each output is equal to the * DC coefficient (with scale factor as needed). * With typical images and quantization tables, half or more of the * column DCT calculations can be simplified this way. */ if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 && inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 && inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 && inptr[DCTSIZE*7] == 0) { /* AC terms all zero */ int dcval = (int) DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); wsptr[DCTSIZE*0] = dcval; wsptr[DCTSIZE*1] = dcval; wsptr[DCTSIZE*2] = dcval; wsptr[DCTSIZE*3] = dcval; wsptr[DCTSIZE*4] = dcval; wsptr[DCTSIZE*5] = dcval; wsptr[DCTSIZE*6] = dcval; wsptr[DCTSIZE*7] = dcval; inptr++; /* advance pointers to next column */ quantptr++; wsptr++; continue; } /* Even part */ tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); tmp10 = tmp0 + tmp2; /* phase 3 */ tmp11 = tmp0 - tmp2; tmp13 = tmp1 + tmp3; /* phases 5-3 */ tmp12 = MULTIPLY(tmp1 - tmp3, FIX_1_414213562) - tmp13; /* 2*c4 */ tmp0 = tmp10 + tmp13; /* phase 2 */ tmp3 = tmp10 - tmp13; tmp1 = tmp11 + tmp12; tmp2 = tmp11 - tmp12; /* Odd part */ tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); z13 = tmp6 + tmp5; /* phase 6 */ z10 = tmp6 - tmp5; z11 = tmp4 + tmp7; z12 = tmp4 - tmp7; tmp7 = z11 + z13; /* phase 5 */ tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */ z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */ tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */ tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */ tmp6 = tmp12 - tmp7; /* phase 2 */ tmp5 = tmp11 - tmp6; tmp4 = tmp10 + tmp5; wsptr[DCTSIZE*0] = (int) (tmp0 + tmp7); wsptr[DCTSIZE*7] = (int) (tmp0 - tmp7); wsptr[DCTSIZE*1] = (int) (tmp1 + tmp6); wsptr[DCTSIZE*6] = (int) (tmp1 - tmp6); wsptr[DCTSIZE*2] = (int) (tmp2 + tmp5); wsptr[DCTSIZE*5] = (int) (tmp2 - tmp5); wsptr[DCTSIZE*4] = (int) (tmp3 + tmp4); wsptr[DCTSIZE*3] = (int) (tmp3 - tmp4); inptr++; /* advance pointers to next column */ quantptr++; wsptr++; } /* Pass 2: process rows from work array, store into output array. */ /* Note that we must descale the results by a factor of 8 == 2**3, */ /* and also undo the PASS1_BITS scaling. */ wsptr = workspace; for (ctr = 0; ctr < DCTSIZE; ctr++) { outptr = output_buf[ctr] + output_col; /* Rows of zeroes can be exploited in the same way as we did with columns. * However, the column calculation has created many nonzero AC terms, so * the simplification applies less often (typically 5% to 10% of the time). * On machines with very fast multiplication, it's possible that the * test takes more time than it's worth. In that case this section * may be commented out. */ #ifndef NO_ZERO_ROW_TEST if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 && wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) { /* AC terms all zero */ JSAMPLE dcval = range_limit[IDESCALE(wsptr[0], PASS1_BITS+3) & RANGE_MASK]; outptr[0] = dcval; outptr[1] = dcval; outptr[2] = dcval; outptr[3] = dcval; outptr[4] = dcval; outptr[5] = dcval; outptr[6] = dcval; outptr[7] = dcval; wsptr += DCTSIZE; /* advance pointer to next row */ continue; } #endif /* Even part */ tmp10 = ((DCTELEM) wsptr[0] + (DCTELEM) wsptr[4]); tmp11 = ((DCTELEM) wsptr[0] - (DCTELEM) wsptr[4]); tmp13 = ((DCTELEM) wsptr[2] + (DCTELEM) wsptr[6]); tmp12 = MULTIPLY((DCTELEM) wsptr[2] - (DCTELEM) wsptr[6], FIX_1_414213562) - tmp13; tmp0 = tmp10 + tmp13; tmp3 = tmp10 - tmp13; tmp1 = tmp11 + tmp12; tmp2 = tmp11 - tmp12; /* Odd part */ z13 = (DCTELEM) wsptr[5] + (DCTELEM) wsptr[3]; z10 = (DCTELEM) wsptr[5] - (DCTELEM) wsptr[3]; z11 = (DCTELEM) wsptr[1] + (DCTELEM) wsptr[7]; z12 = (DCTELEM) wsptr[1] - (DCTELEM) wsptr[7]; tmp7 = z11 + z13; /* phase 5 */ tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */ z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */ tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */ tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */ tmp6 = tmp12 - tmp7; /* phase 2 */ tmp5 = tmp11 - tmp6; tmp4 = tmp10 + tmp5; /* Final output stage: scale down by a factor of 8 and range-limit */ outptr[0] = range_limit[IDESCALE(tmp0 + tmp7, PASS1_BITS+3) & RANGE_MASK]; outptr[7] = range_limit[IDESCALE(tmp0 - tmp7, PASS1_BITS+3) & RANGE_MASK]; outptr[1] = range_limit[IDESCALE(tmp1 + tmp6, PASS1_BITS+3) & RANGE_MASK]; outptr[6] = range_limit[IDESCALE(tmp1 - tmp6, PASS1_BITS+3) & RANGE_MASK]; outptr[2] = range_limit[IDESCALE(tmp2 + tmp5, PASS1_BITS+3) & RANGE_MASK]; outptr[5] = range_limit[IDESCALE(tmp2 - tmp5, PASS1_BITS+3) & RANGE_MASK]; outptr[4] = range_limit[IDESCALE(tmp3 + tmp4, PASS1_BITS+3) & RANGE_MASK]; outptr[3] = range_limit[IDESCALE(tmp3 - tmp4, PASS1_BITS+3) & RANGE_MASK]; wsptr += DCTSIZE; /* advance pointer to next row */ } } #endif /* DCT_IFAST_SUPPORTED */ libjpeg-turbo-1.4.2/jdcoefct.c0000644000076500007650000006452312600050400013140 00000000000000/* * jdcoefct.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1994-1997, Thomas G. Lane. * libjpeg-turbo Modifications: * Copyright (C) 2010, D. R. Commander. * For conditions of distribution and use, see the accompanying README file. * * This file contains the coefficient buffer controller for decompression. * This controller is the top level of the JPEG decompressor proper. * The coefficient buffer lies between entropy decoding and inverse-DCT steps. * * In buffered-image mode, this controller is the interface between * input-oriented processing and output-oriented processing. * Also, the input side (only) is used when reading a file for transcoding. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" #include "jpegcomp.h" /* Block smoothing is only applicable for progressive JPEG, so: */ #ifndef D_PROGRESSIVE_SUPPORTED #undef BLOCK_SMOOTHING_SUPPORTED #endif /* Private buffer controller object */ typedef struct { struct jpeg_d_coef_controller pub; /* public fields */ /* These variables keep track of the current location of the input side. */ /* cinfo->input_iMCU_row is also used for this. */ JDIMENSION MCU_ctr; /* counts MCUs processed in current row */ int MCU_vert_offset; /* counts MCU rows within iMCU row */ int MCU_rows_per_iMCU_row; /* number of such rows needed */ /* The output side's location is represented by cinfo->output_iMCU_row. */ /* In single-pass modes, it's sufficient to buffer just one MCU. * We allocate a workspace of D_MAX_BLOCKS_IN_MCU coefficient blocks, * and let the entropy decoder write into that workspace each time. * In multi-pass modes, this array points to the current MCU's blocks * within the virtual arrays; it is used only by the input side. */ JBLOCKROW MCU_buffer[D_MAX_BLOCKS_IN_MCU]; /* Temporary workspace for one MCU */ JCOEF * workspace; #ifdef D_MULTISCAN_FILES_SUPPORTED /* In multi-pass modes, we need a virtual block array for each component. */ jvirt_barray_ptr whole_image[MAX_COMPONENTS]; #endif #ifdef BLOCK_SMOOTHING_SUPPORTED /* When doing block smoothing, we latch coefficient Al values here */ int * coef_bits_latch; #define SAVED_COEFS 6 /* we save coef_bits[0..5] */ #endif } my_coef_controller; typedef my_coef_controller * my_coef_ptr; /* Forward declarations */ METHODDEF(int) decompress_onepass (j_decompress_ptr cinfo, JSAMPIMAGE output_buf); #ifdef D_MULTISCAN_FILES_SUPPORTED METHODDEF(int) decompress_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf); #endif #ifdef BLOCK_SMOOTHING_SUPPORTED LOCAL(boolean) smoothing_ok (j_decompress_ptr cinfo); METHODDEF(int) decompress_smooth_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf); #endif LOCAL(void) start_iMCU_row (j_decompress_ptr cinfo) /* Reset within-iMCU-row counters for a new row (input side) */ { my_coef_ptr coef = (my_coef_ptr) cinfo->coef; /* In an interleaved scan, an MCU row is the same as an iMCU row. * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows. * But at the bottom of the image, process only what's left. */ if (cinfo->comps_in_scan > 1) { coef->MCU_rows_per_iMCU_row = 1; } else { if (cinfo->input_iMCU_row < (cinfo->total_iMCU_rows-1)) coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor; else coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height; } coef->MCU_ctr = 0; coef->MCU_vert_offset = 0; } /* * Initialize for an input processing pass. */ METHODDEF(void) start_input_pass (j_decompress_ptr cinfo) { cinfo->input_iMCU_row = 0; start_iMCU_row(cinfo); } /* * Initialize for an output processing pass. */ METHODDEF(void) start_output_pass (j_decompress_ptr cinfo) { #ifdef BLOCK_SMOOTHING_SUPPORTED my_coef_ptr coef = (my_coef_ptr) cinfo->coef; /* If multipass, check to see whether to use block smoothing on this pass */ if (coef->pub.coef_arrays != NULL) { if (cinfo->do_block_smoothing && smoothing_ok(cinfo)) coef->pub.decompress_data = decompress_smooth_data; else coef->pub.decompress_data = decompress_data; } #endif cinfo->output_iMCU_row = 0; } /* * Decompress and return some data in the single-pass case. * Always attempts to emit one fully interleaved MCU row ("iMCU" row). * Input and output must run in lockstep since we have only a one-MCU buffer. * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED. * * NB: output_buf contains a plane for each component in image, * which we index according to the component's SOF position. */ METHODDEF(int) decompress_onepass (j_decompress_ptr cinfo, JSAMPIMAGE output_buf) { my_coef_ptr coef = (my_coef_ptr) cinfo->coef; JDIMENSION MCU_col_num; /* index of current MCU within row */ JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1; JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; int blkn, ci, xindex, yindex, yoffset, useful_width; JSAMPARRAY output_ptr; JDIMENSION start_col, output_col; jpeg_component_info *compptr; inverse_DCT_method_ptr inverse_DCT; /* Loop to process as much as one whole iMCU row */ for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; yoffset++) { for (MCU_col_num = coef->MCU_ctr; MCU_col_num <= last_MCU_col; MCU_col_num++) { /* Try to fetch an MCU. Entropy decoder expects buffer to be zeroed. */ jzero_far((void *) coef->MCU_buffer[0], (size_t) (cinfo->blocks_in_MCU * sizeof(JBLOCK))); if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) { /* Suspension forced; update state counters and exit */ coef->MCU_vert_offset = yoffset; coef->MCU_ctr = MCU_col_num; return JPEG_SUSPENDED; } /* Determine where data should go in output_buf and do the IDCT thing. * We skip dummy blocks at the right and bottom edges (but blkn gets * incremented past them!). Note the inner loop relies on having * allocated the MCU_buffer[] blocks sequentially. */ blkn = 0; /* index of current DCT block within MCU */ for (ci = 0; ci < cinfo->comps_in_scan; ci++) { compptr = cinfo->cur_comp_info[ci]; /* Don't bother to IDCT an uninteresting component. */ if (! compptr->component_needed) { blkn += compptr->MCU_blocks; continue; } inverse_DCT = cinfo->idct->inverse_DCT[compptr->component_index]; useful_width = (MCU_col_num < last_MCU_col) ? compptr->MCU_width : compptr->last_col_width; output_ptr = output_buf[compptr->component_index] + yoffset * compptr->_DCT_scaled_size; start_col = MCU_col_num * compptr->MCU_sample_width; for (yindex = 0; yindex < compptr->MCU_height; yindex++) { if (cinfo->input_iMCU_row < last_iMCU_row || yoffset+yindex < compptr->last_row_height) { output_col = start_col; for (xindex = 0; xindex < useful_width; xindex++) { (*inverse_DCT) (cinfo, compptr, (JCOEFPTR) coef->MCU_buffer[blkn+xindex], output_ptr, output_col); output_col += compptr->_DCT_scaled_size; } } blkn += compptr->MCU_width; output_ptr += compptr->_DCT_scaled_size; } } } /* Completed an MCU row, but perhaps not an iMCU row */ coef->MCU_ctr = 0; } /* Completed the iMCU row, advance counters for next one */ cinfo->output_iMCU_row++; if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) { start_iMCU_row(cinfo); return JPEG_ROW_COMPLETED; } /* Completed the scan */ (*cinfo->inputctl->finish_input_pass) (cinfo); return JPEG_SCAN_COMPLETED; } /* * Dummy consume-input routine for single-pass operation. */ METHODDEF(int) dummy_consume_data (j_decompress_ptr cinfo) { return JPEG_SUSPENDED; /* Always indicate nothing was done */ } #ifdef D_MULTISCAN_FILES_SUPPORTED /* * Consume input data and store it in the full-image coefficient buffer. * We read as much as one fully interleaved MCU row ("iMCU" row) per call, * ie, v_samp_factor block rows for each component in the scan. * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED. */ METHODDEF(int) consume_data (j_decompress_ptr cinfo) { my_coef_ptr coef = (my_coef_ptr) cinfo->coef; JDIMENSION MCU_col_num; /* index of current MCU within row */ int blkn, ci, xindex, yindex, yoffset; JDIMENSION start_col; JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN]; JBLOCKROW buffer_ptr; jpeg_component_info *compptr; /* Align the virtual buffers for the components used in this scan. */ for (ci = 0; ci < cinfo->comps_in_scan; ci++) { compptr = cinfo->cur_comp_info[ci]; buffer[ci] = (*cinfo->mem->access_virt_barray) ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index], cinfo->input_iMCU_row * compptr->v_samp_factor, (JDIMENSION) compptr->v_samp_factor, TRUE); /* Note: entropy decoder expects buffer to be zeroed, * but this is handled automatically by the memory manager * because we requested a pre-zeroed array. */ } /* Loop to process one whole iMCU row */ for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; yoffset++) { for (MCU_col_num = coef->MCU_ctr; MCU_col_num < cinfo->MCUs_per_row; MCU_col_num++) { /* Construct list of pointers to DCT blocks belonging to this MCU */ blkn = 0; /* index of current DCT block within MCU */ for (ci = 0; ci < cinfo->comps_in_scan; ci++) { compptr = cinfo->cur_comp_info[ci]; start_col = MCU_col_num * compptr->MCU_width; for (yindex = 0; yindex < compptr->MCU_height; yindex++) { buffer_ptr = buffer[ci][yindex+yoffset] + start_col; for (xindex = 0; xindex < compptr->MCU_width; xindex++) { coef->MCU_buffer[blkn++] = buffer_ptr++; } } } /* Try to fetch the MCU. */ if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) { /* Suspension forced; update state counters and exit */ coef->MCU_vert_offset = yoffset; coef->MCU_ctr = MCU_col_num; return JPEG_SUSPENDED; } } /* Completed an MCU row, but perhaps not an iMCU row */ coef->MCU_ctr = 0; } /* Completed the iMCU row, advance counters for next one */ if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) { start_iMCU_row(cinfo); return JPEG_ROW_COMPLETED; } /* Completed the scan */ (*cinfo->inputctl->finish_input_pass) (cinfo); return JPEG_SCAN_COMPLETED; } /* * Decompress and return some data in the multi-pass case. * Always attempts to emit one fully interleaved MCU row ("iMCU" row). * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED. * * NB: output_buf contains a plane for each component in image. */ METHODDEF(int) decompress_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf) { my_coef_ptr coef = (my_coef_ptr) cinfo->coef; JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; JDIMENSION block_num; int ci, block_row, block_rows; JBLOCKARRAY buffer; JBLOCKROW buffer_ptr; JSAMPARRAY output_ptr; JDIMENSION output_col; jpeg_component_info *compptr; inverse_DCT_method_ptr inverse_DCT; /* Force some input to be done if we are getting ahead of the input. */ while (cinfo->input_scan_number < cinfo->output_scan_number || (cinfo->input_scan_number == cinfo->output_scan_number && cinfo->input_iMCU_row <= cinfo->output_iMCU_row)) { if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED) return JPEG_SUSPENDED; } /* OK, output from the virtual arrays. */ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { /* Don't bother to IDCT an uninteresting component. */ if (! compptr->component_needed) continue; /* Align the virtual buffer for this component. */ buffer = (*cinfo->mem->access_virt_barray) ((j_common_ptr) cinfo, coef->whole_image[ci], cinfo->output_iMCU_row * compptr->v_samp_factor, (JDIMENSION) compptr->v_samp_factor, FALSE); /* Count non-dummy DCT block rows in this iMCU row. */ if (cinfo->output_iMCU_row < last_iMCU_row) block_rows = compptr->v_samp_factor; else { /* NB: can't use last_row_height here; it is input-side-dependent! */ block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor); if (block_rows == 0) block_rows = compptr->v_samp_factor; } inverse_DCT = cinfo->idct->inverse_DCT[ci]; output_ptr = output_buf[ci]; /* Loop over all DCT blocks to be processed. */ for (block_row = 0; block_row < block_rows; block_row++) { buffer_ptr = buffer[block_row]; output_col = 0; for (block_num = 0; block_num < compptr->width_in_blocks; block_num++) { (*inverse_DCT) (cinfo, compptr, (JCOEFPTR) buffer_ptr, output_ptr, output_col); buffer_ptr++; output_col += compptr->_DCT_scaled_size; } output_ptr += compptr->_DCT_scaled_size; } } if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows) return JPEG_ROW_COMPLETED; return JPEG_SCAN_COMPLETED; } #endif /* D_MULTISCAN_FILES_SUPPORTED */ #ifdef BLOCK_SMOOTHING_SUPPORTED /* * This code applies interblock smoothing as described by section K.8 * of the JPEG standard: the first 5 AC coefficients are estimated from * the DC values of a DCT block and its 8 neighboring blocks. * We apply smoothing only for progressive JPEG decoding, and only if * the coefficients it can estimate are not yet known to full precision. */ /* Natural-order array positions of the first 5 zigzag-order coefficients */ #define Q01_POS 1 #define Q10_POS 8 #define Q20_POS 16 #define Q11_POS 9 #define Q02_POS 2 /* * Determine whether block smoothing is applicable and safe. * We also latch the current states of the coef_bits[] entries for the * AC coefficients; otherwise, if the input side of the decompressor * advances into a new scan, we might think the coefficients are known * more accurately than they really are. */ LOCAL(boolean) smoothing_ok (j_decompress_ptr cinfo) { my_coef_ptr coef = (my_coef_ptr) cinfo->coef; boolean smoothing_useful = FALSE; int ci, coefi; jpeg_component_info *compptr; JQUANT_TBL * qtable; int * coef_bits; int * coef_bits_latch; if (! cinfo->progressive_mode || cinfo->coef_bits == NULL) return FALSE; /* Allocate latch area if not already done */ if (coef->coef_bits_latch == NULL) coef->coef_bits_latch = (int *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, cinfo->num_components * (SAVED_COEFS * sizeof(int))); coef_bits_latch = coef->coef_bits_latch; for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { /* All components' quantization values must already be latched. */ if ((qtable = compptr->quant_table) == NULL) return FALSE; /* Verify DC & first 5 AC quantizers are nonzero to avoid zero-divide. */ if (qtable->quantval[0] == 0 || qtable->quantval[Q01_POS] == 0 || qtable->quantval[Q10_POS] == 0 || qtable->quantval[Q20_POS] == 0 || qtable->quantval[Q11_POS] == 0 || qtable->quantval[Q02_POS] == 0) return FALSE; /* DC values must be at least partly known for all components. */ coef_bits = cinfo->coef_bits[ci]; if (coef_bits[0] < 0) return FALSE; /* Block smoothing is helpful if some AC coefficients remain inaccurate. */ for (coefi = 1; coefi <= 5; coefi++) { coef_bits_latch[coefi] = coef_bits[coefi]; if (coef_bits[coefi] != 0) smoothing_useful = TRUE; } coef_bits_latch += SAVED_COEFS; } return smoothing_useful; } /* * Variant of decompress_data for use when doing block smoothing. */ METHODDEF(int) decompress_smooth_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf) { my_coef_ptr coef = (my_coef_ptr) cinfo->coef; JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; JDIMENSION block_num, last_block_column; int ci, block_row, block_rows, access_rows; JBLOCKARRAY buffer; JBLOCKROW buffer_ptr, prev_block_row, next_block_row; JSAMPARRAY output_ptr; JDIMENSION output_col; jpeg_component_info *compptr; inverse_DCT_method_ptr inverse_DCT; boolean first_row, last_row; JCOEF * workspace; int *coef_bits; JQUANT_TBL *quanttbl; INT32 Q00,Q01,Q02,Q10,Q11,Q20, num; int DC1,DC2,DC3,DC4,DC5,DC6,DC7,DC8,DC9; int Al, pred; /* Keep a local variable to avoid looking it up more than once */ workspace = coef->workspace; /* Force some input to be done if we are getting ahead of the input. */ while (cinfo->input_scan_number <= cinfo->output_scan_number && ! cinfo->inputctl->eoi_reached) { if (cinfo->input_scan_number == cinfo->output_scan_number) { /* If input is working on current scan, we ordinarily want it to * have completed the current row. But if input scan is DC, * we want it to keep one row ahead so that next block row's DC * values are up to date. */ JDIMENSION delta = (cinfo->Ss == 0) ? 1 : 0; if (cinfo->input_iMCU_row > cinfo->output_iMCU_row+delta) break; } if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED) return JPEG_SUSPENDED; } /* OK, output from the virtual arrays. */ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { /* Don't bother to IDCT an uninteresting component. */ if (! compptr->component_needed) continue; /* Count non-dummy DCT block rows in this iMCU row. */ if (cinfo->output_iMCU_row < last_iMCU_row) { block_rows = compptr->v_samp_factor; access_rows = block_rows * 2; /* this and next iMCU row */ last_row = FALSE; } else { /* NB: can't use last_row_height here; it is input-side-dependent! */ block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor); if (block_rows == 0) block_rows = compptr->v_samp_factor; access_rows = block_rows; /* this iMCU row only */ last_row = TRUE; } /* Align the virtual buffer for this component. */ if (cinfo->output_iMCU_row > 0) { access_rows += compptr->v_samp_factor; /* prior iMCU row too */ buffer = (*cinfo->mem->access_virt_barray) ((j_common_ptr) cinfo, coef->whole_image[ci], (cinfo->output_iMCU_row - 1) * compptr->v_samp_factor, (JDIMENSION) access_rows, FALSE); buffer += compptr->v_samp_factor; /* point to current iMCU row */ first_row = FALSE; } else { buffer = (*cinfo->mem->access_virt_barray) ((j_common_ptr) cinfo, coef->whole_image[ci], (JDIMENSION) 0, (JDIMENSION) access_rows, FALSE); first_row = TRUE; } /* Fetch component-dependent info */ coef_bits = coef->coef_bits_latch + (ci * SAVED_COEFS); quanttbl = compptr->quant_table; Q00 = quanttbl->quantval[0]; Q01 = quanttbl->quantval[Q01_POS]; Q10 = quanttbl->quantval[Q10_POS]; Q20 = quanttbl->quantval[Q20_POS]; Q11 = quanttbl->quantval[Q11_POS]; Q02 = quanttbl->quantval[Q02_POS]; inverse_DCT = cinfo->idct->inverse_DCT[ci]; output_ptr = output_buf[ci]; /* Loop over all DCT blocks to be processed. */ for (block_row = 0; block_row < block_rows; block_row++) { buffer_ptr = buffer[block_row]; if (first_row && block_row == 0) prev_block_row = buffer_ptr; else prev_block_row = buffer[block_row-1]; if (last_row && block_row == block_rows-1) next_block_row = buffer_ptr; else next_block_row = buffer[block_row+1]; /* We fetch the surrounding DC values using a sliding-register approach. * Initialize all nine here so as to do the right thing on narrow pics. */ DC1 = DC2 = DC3 = (int) prev_block_row[0][0]; DC4 = DC5 = DC6 = (int) buffer_ptr[0][0]; DC7 = DC8 = DC9 = (int) next_block_row[0][0]; output_col = 0; last_block_column = compptr->width_in_blocks - 1; for (block_num = 0; block_num <= last_block_column; block_num++) { /* Fetch current DCT block into workspace so we can modify it. */ jcopy_block_row(buffer_ptr, (JBLOCKROW) workspace, (JDIMENSION) 1); /* Update DC values */ if (block_num < last_block_column) { DC3 = (int) prev_block_row[1][0]; DC6 = (int) buffer_ptr[1][0]; DC9 = (int) next_block_row[1][0]; } /* Compute coefficient estimates per K.8. * An estimate is applied only if coefficient is still zero, * and is not known to be fully accurate. */ /* AC01 */ if ((Al=coef_bits[1]) != 0 && workspace[1] == 0) { num = 36 * Q00 * (DC4 - DC6); if (num >= 0) { pred = (int) (((Q01<<7) + num) / (Q01<<8)); if (Al > 0 && pred >= (1< 0 && pred >= (1<= 0) { pred = (int) (((Q10<<7) + num) / (Q10<<8)); if (Al > 0 && pred >= (1< 0 && pred >= (1<= 0) { pred = (int) (((Q20<<7) + num) / (Q20<<8)); if (Al > 0 && pred >= (1< 0 && pred >= (1<= 0) { pred = (int) (((Q11<<7) + num) / (Q11<<8)); if (Al > 0 && pred >= (1< 0 && pred >= (1<= 0) { pred = (int) (((Q02<<7) + num) / (Q02<<8)); if (Al > 0 && pred >= (1< 0 && pred >= (1<_DCT_scaled_size; } output_ptr += compptr->_DCT_scaled_size; } } if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows) return JPEG_ROW_COMPLETED; return JPEG_SCAN_COMPLETED; } #endif /* BLOCK_SMOOTHING_SUPPORTED */ /* * Initialize coefficient buffer controller. */ GLOBAL(void) jinit_d_coef_controller (j_decompress_ptr cinfo, boolean need_full_buffer) { my_coef_ptr coef; coef = (my_coef_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, sizeof(my_coef_controller)); cinfo->coef = (struct jpeg_d_coef_controller *) coef; coef->pub.start_input_pass = start_input_pass; coef->pub.start_output_pass = start_output_pass; #ifdef BLOCK_SMOOTHING_SUPPORTED coef->coef_bits_latch = NULL; #endif /* Create the coefficient buffer. */ if (need_full_buffer) { #ifdef D_MULTISCAN_FILES_SUPPORTED /* Allocate a full-image virtual array for each component, */ /* padded to a multiple of samp_factor DCT blocks in each direction. */ /* Note we ask for a pre-zeroed array. */ int ci, access_rows; jpeg_component_info *compptr; for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { access_rows = compptr->v_samp_factor; #ifdef BLOCK_SMOOTHING_SUPPORTED /* If block smoothing could be used, need a bigger window */ if (cinfo->progressive_mode) access_rows *= 3; #endif coef->whole_image[ci] = (*cinfo->mem->request_virt_barray) ((j_common_ptr) cinfo, JPOOL_IMAGE, TRUE, (JDIMENSION) jround_up((long) compptr->width_in_blocks, (long) compptr->h_samp_factor), (JDIMENSION) jround_up((long) compptr->height_in_blocks, (long) compptr->v_samp_factor), (JDIMENSION) access_rows); } coef->pub.consume_data = consume_data; coef->pub.decompress_data = decompress_data; coef->pub.coef_arrays = coef->whole_image; /* link to virtual arrays */ #else ERREXIT(cinfo, JERR_NOT_COMPILED); #endif } else { /* We only need a single-MCU buffer. */ JBLOCKROW buffer; int i; buffer = (JBLOCKROW) (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE, D_MAX_BLOCKS_IN_MCU * sizeof(JBLOCK)); for (i = 0; i < D_MAX_BLOCKS_IN_MCU; i++) { coef->MCU_buffer[i] = buffer + i; } coef->pub.consume_data = dummy_consume_data; coef->pub.decompress_data = decompress_onepass; coef->pub.coef_arrays = NULL; /* flag for no virtual arrays */ } /* Allocate the workspace buffer */ coef->workspace = (JCOEF *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, sizeof(JCOEF) * DCTSIZE2); } libjpeg-turbo-1.4.2/aclocal.m40000644000076500007650000133457012600050410013057 00000000000000# generated automatically by aclocal 1.15 -*- Autoconf -*- # Copyright (C) 1996-2014 Free Software Foundation, Inc. # This file is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY, to the extent permitted by law; without # even the implied warranty of MERCHANTABILITY or FITNESS FOR A # PARTICULAR PURPOSE. m4_ifndef([AC_CONFIG_MACRO_DIRS], [m4_defun([_AM_CONFIG_MACRO_DIRS], [])m4_defun([AC_CONFIG_MACRO_DIRS], [_AM_CONFIG_MACRO_DIRS($@)])]) m4_ifndef([AC_AUTOCONF_VERSION], [m4_copy([m4_PACKAGE_VERSION], [AC_AUTOCONF_VERSION])])dnl m4_if(m4_defn([AC_AUTOCONF_VERSION]), [2.69],, [m4_warning([this file was generated for autoconf 2.69. You have another version of autoconf. It may work, but is not guaranteed to. If you have problems, you may need to regenerate the build system entirely. To do so, use the procedure documented by the package, typically 'autoreconf'.])]) # libtool.m4 - Configure libtool for the host system. -*-Autoconf-*- # # Copyright (C) 1996-2001, 2003-2015 Free Software Foundation, Inc. # Written by Gordon Matzigkeit, 1996 # # This file is free software; the Free Software Foundation gives # unlimited permission to copy and/or distribute it, with or without # modifications, as long as this notice is preserved. m4_define([_LT_COPYING], [dnl # Copyright (C) 2014 Free Software Foundation, Inc. # This is free software; see the source for copying conditions. There is NO # warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # GNU Libtool is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of of the License, or # (at your option) any later version. # # As a special exception to the GNU General Public License, if you # distribute this file as part of a program or library that is built # using GNU Libtool, you may include this file under the same # distribution terms that you use for the rest of that program. # # GNU Libtool is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see . ]) # serial 58 LT_INIT # LT_PREREQ(VERSION) # ------------------ # Complain and exit if this libtool version is less that VERSION. m4_defun([LT_PREREQ], [m4_if(m4_version_compare(m4_defn([LT_PACKAGE_VERSION]), [$1]), -1, [m4_default([$3], [m4_fatal([Libtool version $1 or higher is required], 63)])], [$2])]) # _LT_CHECK_BUILDDIR # ------------------ # Complain if the absolute build directory name contains unusual characters m4_defun([_LT_CHECK_BUILDDIR], [case `pwd` in *\ * | *\ *) AC_MSG_WARN([Libtool does not cope well with whitespace in `pwd`]) ;; esac ]) # LT_INIT([OPTIONS]) # ------------------ AC_DEFUN([LT_INIT], [AC_PREREQ([2.62])dnl We use AC_PATH_PROGS_FEATURE_CHECK AC_REQUIRE([AC_CONFIG_AUX_DIR_DEFAULT])dnl AC_BEFORE([$0], [LT_LANG])dnl AC_BEFORE([$0], [LT_OUTPUT])dnl AC_BEFORE([$0], [LTDL_INIT])dnl m4_require([_LT_CHECK_BUILDDIR])dnl dnl Autoconf doesn't catch unexpanded LT_ macros by default: m4_pattern_forbid([^_?LT_[A-Z_]+$])dnl m4_pattern_allow([^(_LT_EOF|LT_DLGLOBAL|LT_DLLAZY_OR_NOW|LT_MULTI_MODULE)$])dnl dnl aclocal doesn't pull ltoptions.m4, ltsugar.m4, or ltversion.m4 dnl unless we require an AC_DEFUNed macro: AC_REQUIRE([LTOPTIONS_VERSION])dnl AC_REQUIRE([LTSUGAR_VERSION])dnl AC_REQUIRE([LTVERSION_VERSION])dnl AC_REQUIRE([LTOBSOLETE_VERSION])dnl m4_require([_LT_PROG_LTMAIN])dnl _LT_SHELL_INIT([SHELL=${CONFIG_SHELL-/bin/sh}]) dnl Parse OPTIONS _LT_SET_OPTIONS([$0], [$1]) # This can be used to rebuild libtool when needed LIBTOOL_DEPS=$ltmain # Always use our own libtool. LIBTOOL='$(SHELL) $(top_builddir)/libtool' AC_SUBST(LIBTOOL)dnl _LT_SETUP # Only expand once: m4_define([LT_INIT]) ])# LT_INIT # Old names: AU_ALIAS([AC_PROG_LIBTOOL], [LT_INIT]) AU_ALIAS([AM_PROG_LIBTOOL], [LT_INIT]) dnl aclocal-1.4 backwards compatibility: dnl AC_DEFUN([AC_PROG_LIBTOOL], []) dnl AC_DEFUN([AM_PROG_LIBTOOL], []) # _LT_PREPARE_CC_BASENAME # ----------------------- m4_defun([_LT_PREPARE_CC_BASENAME], [ # Calculate cc_basename. Skip known compiler wrappers and cross-prefix. func_cc_basename () { for cc_temp in @S|@*""; do case $cc_temp in compile | *[[\\/]]compile | ccache | *[[\\/]]ccache ) ;; distcc | *[[\\/]]distcc | purify | *[[\\/]]purify ) ;; \-*) ;; *) break;; esac done func_cc_basename_result=`$ECHO "$cc_temp" | $SED "s%.*/%%; s%^$host_alias-%%"` } ])# _LT_PREPARE_CC_BASENAME # _LT_CC_BASENAME(CC) # ------------------- # It would be clearer to call AC_REQUIREs from _LT_PREPARE_CC_BASENAME, # but that macro is also expanded into generated libtool script, which # arranges for $SED and $ECHO to be set by different means. m4_defun([_LT_CC_BASENAME], [m4_require([_LT_PREPARE_CC_BASENAME])dnl AC_REQUIRE([_LT_DECL_SED])dnl AC_REQUIRE([_LT_PROG_ECHO_BACKSLASH])dnl func_cc_basename $1 cc_basename=$func_cc_basename_result ]) # _LT_FILEUTILS_DEFAULTS # ---------------------- # It is okay to use these file commands and assume they have been set # sensibly after 'm4_require([_LT_FILEUTILS_DEFAULTS])'. m4_defun([_LT_FILEUTILS_DEFAULTS], [: ${CP="cp -f"} : ${MV="mv -f"} : ${RM="rm -f"} ])# _LT_FILEUTILS_DEFAULTS # _LT_SETUP # --------- m4_defun([_LT_SETUP], [AC_REQUIRE([AC_CANONICAL_HOST])dnl AC_REQUIRE([AC_CANONICAL_BUILD])dnl AC_REQUIRE([_LT_PREPARE_SED_QUOTE_VARS])dnl AC_REQUIRE([_LT_PROG_ECHO_BACKSLASH])dnl _LT_DECL([], [PATH_SEPARATOR], [1], [The PATH separator for the build system])dnl dnl _LT_DECL([], [host_alias], [0], [The host system])dnl _LT_DECL([], [host], [0])dnl _LT_DECL([], [host_os], [0])dnl dnl _LT_DECL([], [build_alias], [0], [The build system])dnl _LT_DECL([], [build], [0])dnl _LT_DECL([], [build_os], [0])dnl dnl AC_REQUIRE([AC_PROG_CC])dnl AC_REQUIRE([LT_PATH_LD])dnl AC_REQUIRE([LT_PATH_NM])dnl dnl AC_REQUIRE([AC_PROG_LN_S])dnl test -z "$LN_S" && LN_S="ln -s" _LT_DECL([], [LN_S], [1], [Whether we need soft or hard links])dnl dnl AC_REQUIRE([LT_CMD_MAX_LEN])dnl _LT_DECL([objext], [ac_objext], [0], [Object file suffix (normally "o")])dnl _LT_DECL([], [exeext], [0], [Executable file suffix (normally "")])dnl dnl m4_require([_LT_FILEUTILS_DEFAULTS])dnl m4_require([_LT_CHECK_SHELL_FEATURES])dnl m4_require([_LT_PATH_CONVERSION_FUNCTIONS])dnl m4_require([_LT_CMD_RELOAD])dnl m4_require([_LT_CHECK_MAGIC_METHOD])dnl m4_require([_LT_CHECK_SHAREDLIB_FROM_LINKLIB])dnl m4_require([_LT_CMD_OLD_ARCHIVE])dnl m4_require([_LT_CMD_GLOBAL_SYMBOLS])dnl m4_require([_LT_WITH_SYSROOT])dnl m4_require([_LT_CMD_TRUNCATE])dnl _LT_CONFIG_LIBTOOL_INIT([ # See if we are running on zsh, and set the options that allow our # commands through without removal of \ escapes INIT. if test -n "\${ZSH_VERSION+set}"; then setopt NO_GLOB_SUBST fi ]) if test -n "${ZSH_VERSION+set}"; then setopt NO_GLOB_SUBST fi _LT_CHECK_OBJDIR m4_require([_LT_TAG_COMPILER])dnl case $host_os in aix3*) # AIX sometimes has problems with the GCC collect2 program. For some # reason, if we set the COLLECT_NAMES environment variable, the problems # vanish in a puff of smoke. if test set != "${COLLECT_NAMES+set}"; then COLLECT_NAMES= export COLLECT_NAMES fi ;; esac # Global variables: ofile=libtool can_build_shared=yes # All known linkers require a '.a' archive for static linking (except MSVC, # which needs '.lib'). libext=a with_gnu_ld=$lt_cv_prog_gnu_ld old_CC=$CC old_CFLAGS=$CFLAGS # Set sane defaults for various variables test -z "$CC" && CC=cc test -z "$LTCC" && LTCC=$CC test -z "$LTCFLAGS" && LTCFLAGS=$CFLAGS test -z "$LD" && LD=ld test -z "$ac_objext" && ac_objext=o _LT_CC_BASENAME([$compiler]) # Only perform the check for file, if the check method requires it test -z "$MAGIC_CMD" && MAGIC_CMD=file case $deplibs_check_method in file_magic*) if test "$file_magic_cmd" = '$MAGIC_CMD'; then _LT_PATH_MAGIC fi ;; esac # Use C for the default configuration in the libtool script LT_SUPPORTED_TAG([CC]) _LT_LANG_C_CONFIG _LT_LANG_DEFAULT_CONFIG _LT_CONFIG_COMMANDS ])# _LT_SETUP # _LT_PREPARE_SED_QUOTE_VARS # -------------------------- # Define a few sed substitution that help us do robust quoting. m4_defun([_LT_PREPARE_SED_QUOTE_VARS], [# Backslashify metacharacters that are still active within # double-quoted strings. sed_quote_subst='s/\([["`$\\]]\)/\\\1/g' # Same as above, but do not quote variable references. double_quote_subst='s/\([["`\\]]\)/\\\1/g' # Sed substitution to delay expansion of an escaped shell variable in a # double_quote_subst'ed string. delay_variable_subst='s/\\\\\\\\\\\$/\\\\\\$/g' # Sed substitution to delay expansion of an escaped single quote. delay_single_quote_subst='s/'\''/'\'\\\\\\\'\''/g' # Sed substitution to avoid accidental globbing in evaled expressions no_glob_subst='s/\*/\\\*/g' ]) # _LT_PROG_LTMAIN # --------------- # Note that this code is called both from 'configure', and 'config.status' # now that we use AC_CONFIG_COMMANDS to generate libtool. Notably, # 'config.status' has no value for ac_aux_dir unless we are using Automake, # so we pass a copy along to make sure it has a sensible value anyway. m4_defun([_LT_PROG_LTMAIN], [m4_ifdef([AC_REQUIRE_AUX_FILE], [AC_REQUIRE_AUX_FILE([ltmain.sh])])dnl _LT_CONFIG_LIBTOOL_INIT([ac_aux_dir='$ac_aux_dir']) ltmain=$ac_aux_dir/ltmain.sh ])# _LT_PROG_LTMAIN # So that we can recreate a full libtool script including additional # tags, we accumulate the chunks of code to send to AC_CONFIG_COMMANDS # in macros and then make a single call at the end using the 'libtool' # label. # _LT_CONFIG_LIBTOOL_INIT([INIT-COMMANDS]) # ---------------------------------------- # Register INIT-COMMANDS to be passed to AC_CONFIG_COMMANDS later. m4_define([_LT_CONFIG_LIBTOOL_INIT], [m4_ifval([$1], [m4_append([_LT_OUTPUT_LIBTOOL_INIT], [$1 ])])]) # Initialize. m4_define([_LT_OUTPUT_LIBTOOL_INIT]) # _LT_CONFIG_LIBTOOL([COMMANDS]) # ------------------------------ # Register COMMANDS to be passed to AC_CONFIG_COMMANDS later. m4_define([_LT_CONFIG_LIBTOOL], [m4_ifval([$1], [m4_append([_LT_OUTPUT_LIBTOOL_COMMANDS], [$1 ])])]) # Initialize. m4_define([_LT_OUTPUT_LIBTOOL_COMMANDS]) # _LT_CONFIG_SAVE_COMMANDS([COMMANDS], [INIT_COMMANDS]) # ----------------------------------------------------- m4_defun([_LT_CONFIG_SAVE_COMMANDS], [_LT_CONFIG_LIBTOOL([$1]) _LT_CONFIG_LIBTOOL_INIT([$2]) ]) # _LT_FORMAT_COMMENT([COMMENT]) # ----------------------------- # Add leading comment marks to the start of each line, and a trailing # full-stop to the whole comment if one is not present already. m4_define([_LT_FORMAT_COMMENT], [m4_ifval([$1], [ m4_bpatsubst([m4_bpatsubst([$1], [^ *], [# ])], [['`$\]], [\\\&])]m4_bmatch([$1], [[!?.]$], [], [.]) )]) # _LT_DECL([CONFIGNAME], VARNAME, VALUE, [DESCRIPTION], [IS-TAGGED?]) # ------------------------------------------------------------------- # CONFIGNAME is the name given to the value in the libtool script. # VARNAME is the (base) name used in the configure script. # VALUE may be 0, 1 or 2 for a computed quote escaped value based on # VARNAME. Any other value will be used directly. m4_define([_LT_DECL], [lt_if_append_uniq([lt_decl_varnames], [$2], [, ], [lt_dict_add_subkey([lt_decl_dict], [$2], [libtool_name], [m4_ifval([$1], [$1], [$2])]) lt_dict_add_subkey([lt_decl_dict], [$2], [value], [$3]) m4_ifval([$4], [lt_dict_add_subkey([lt_decl_dict], [$2], [description], [$4])]) lt_dict_add_subkey([lt_decl_dict], [$2], [tagged?], [m4_ifval([$5], [yes], [no])])]) ]) # _LT_TAGDECL([CONFIGNAME], VARNAME, VALUE, [DESCRIPTION]) # -------------------------------------------------------- m4_define([_LT_TAGDECL], [_LT_DECL([$1], [$2], [$3], [$4], [yes])]) # lt_decl_tag_varnames([SEPARATOR], [VARNAME1...]) # ------------------------------------------------ m4_define([lt_decl_tag_varnames], [_lt_decl_filter([tagged?], [yes], $@)]) # _lt_decl_filter(SUBKEY, VALUE, [SEPARATOR], [VARNAME1..]) # --------------------------------------------------------- m4_define([_lt_decl_filter], [m4_case([$#], [0], [m4_fatal([$0: too few arguments: $#])], [1], [m4_fatal([$0: too few arguments: $#: $1])], [2], [lt_dict_filter([lt_decl_dict], [$1], [$2], [], lt_decl_varnames)], [3], [lt_dict_filter([lt_decl_dict], [$1], [$2], [$3], lt_decl_varnames)], [lt_dict_filter([lt_decl_dict], $@)])[]dnl ]) # lt_decl_quote_varnames([SEPARATOR], [VARNAME1...]) # -------------------------------------------------- m4_define([lt_decl_quote_varnames], [_lt_decl_filter([value], [1], $@)]) # lt_decl_dquote_varnames([SEPARATOR], [VARNAME1...]) # --------------------------------------------------- m4_define([lt_decl_dquote_varnames], [_lt_decl_filter([value], [2], $@)]) # lt_decl_varnames_tagged([SEPARATOR], [VARNAME1...]) # --------------------------------------------------- m4_define([lt_decl_varnames_tagged], [m4_assert([$# <= 2])dnl _$0(m4_quote(m4_default([$1], [[, ]])), m4_ifval([$2], [[$2]], [m4_dquote(lt_decl_tag_varnames)]), m4_split(m4_normalize(m4_quote(_LT_TAGS)), [ ]))]) m4_define([_lt_decl_varnames_tagged], [m4_ifval([$3], [lt_combine([$1], [$2], [_], $3)])]) # lt_decl_all_varnames([SEPARATOR], [VARNAME1...]) # ------------------------------------------------ m4_define([lt_decl_all_varnames], [_$0(m4_quote(m4_default([$1], [[, ]])), m4_if([$2], [], m4_quote(lt_decl_varnames), m4_quote(m4_shift($@))))[]dnl ]) m4_define([_lt_decl_all_varnames], [lt_join($@, lt_decl_varnames_tagged([$1], lt_decl_tag_varnames([[, ]], m4_shift($@))))dnl ]) # _LT_CONFIG_STATUS_DECLARE([VARNAME]) # ------------------------------------ # Quote a variable value, and forward it to 'config.status' so that its # declaration there will have the same value as in 'configure'. VARNAME # must have a single quote delimited value for this to work. m4_define([_LT_CONFIG_STATUS_DECLARE], [$1='`$ECHO "$][$1" | $SED "$delay_single_quote_subst"`']) # _LT_CONFIG_STATUS_DECLARATIONS # ------------------------------ # We delimit libtool config variables with single quotes, so when # we write them to config.status, we have to be sure to quote all # embedded single quotes properly. In configure, this macro expands # each variable declared with _LT_DECL (and _LT_TAGDECL) into: # # ='`$ECHO "$" | $SED "$delay_single_quote_subst"`' m4_defun([_LT_CONFIG_STATUS_DECLARATIONS], [m4_foreach([_lt_var], m4_quote(lt_decl_all_varnames), [m4_n([_LT_CONFIG_STATUS_DECLARE(_lt_var)])])]) # _LT_LIBTOOL_TAGS # ---------------- # Output comment and list of tags supported by the script m4_defun([_LT_LIBTOOL_TAGS], [_LT_FORMAT_COMMENT([The names of the tagged configurations supported by this script])dnl available_tags='_LT_TAGS'dnl ]) # _LT_LIBTOOL_DECLARE(VARNAME, [TAG]) # ----------------------------------- # Extract the dictionary values for VARNAME (optionally with TAG) and # expand to a commented shell variable setting: # # # Some comment about what VAR is for. # visible_name=$lt_internal_name m4_define([_LT_LIBTOOL_DECLARE], [_LT_FORMAT_COMMENT(m4_quote(lt_dict_fetch([lt_decl_dict], [$1], [description])))[]dnl m4_pushdef([_libtool_name], m4_quote(lt_dict_fetch([lt_decl_dict], [$1], [libtool_name])))[]dnl m4_case(m4_quote(lt_dict_fetch([lt_decl_dict], [$1], [value])), [0], [_libtool_name=[$]$1], [1], [_libtool_name=$lt_[]$1], [2], [_libtool_name=$lt_[]$1], [_libtool_name=lt_dict_fetch([lt_decl_dict], [$1], [value])])[]dnl m4_ifval([$2], [_$2])[]m4_popdef([_libtool_name])[]dnl ]) # _LT_LIBTOOL_CONFIG_VARS # ----------------------- # Produce commented declarations of non-tagged libtool config variables # suitable for insertion in the LIBTOOL CONFIG section of the 'libtool' # script. Tagged libtool config variables (even for the LIBTOOL CONFIG # section) are produced by _LT_LIBTOOL_TAG_VARS. m4_defun([_LT_LIBTOOL_CONFIG_VARS], [m4_foreach([_lt_var], m4_quote(_lt_decl_filter([tagged?], [no], [], lt_decl_varnames)), [m4_n([_LT_LIBTOOL_DECLARE(_lt_var)])])]) # _LT_LIBTOOL_TAG_VARS(TAG) # ------------------------- m4_define([_LT_LIBTOOL_TAG_VARS], [m4_foreach([_lt_var], m4_quote(lt_decl_tag_varnames), [m4_n([_LT_LIBTOOL_DECLARE(_lt_var, [$1])])])]) # _LT_TAGVAR(VARNAME, [TAGNAME]) # ------------------------------ m4_define([_LT_TAGVAR], [m4_ifval([$2], [$1_$2], [$1])]) # _LT_CONFIG_COMMANDS # ------------------- # Send accumulated output to $CONFIG_STATUS. Thanks to the lists of # variables for single and double quote escaping we saved from calls # to _LT_DECL, we can put quote escaped variables declarations # into 'config.status', and then the shell code to quote escape them in # for loops in 'config.status'. Finally, any additional code accumulated # from calls to _LT_CONFIG_LIBTOOL_INIT is expanded. m4_defun([_LT_CONFIG_COMMANDS], [AC_PROVIDE_IFELSE([LT_OUTPUT], dnl If the libtool generation code has been placed in $CONFIG_LT, dnl instead of duplicating it all over again into config.status, dnl then we will have config.status run $CONFIG_LT later, so it dnl needs to know what name is stored there: [AC_CONFIG_COMMANDS([libtool], [$SHELL $CONFIG_LT || AS_EXIT(1)], [CONFIG_LT='$CONFIG_LT'])], dnl If the libtool generation code is destined for config.status, dnl expand the accumulated commands and init code now: [AC_CONFIG_COMMANDS([libtool], [_LT_OUTPUT_LIBTOOL_COMMANDS], [_LT_OUTPUT_LIBTOOL_COMMANDS_INIT])]) ])#_LT_CONFIG_COMMANDS # Initialize. m4_define([_LT_OUTPUT_LIBTOOL_COMMANDS_INIT], [ # The HP-UX ksh and POSIX shell print the target directory to stdout # if CDPATH is set. (unset CDPATH) >/dev/null 2>&1 && unset CDPATH sed_quote_subst='$sed_quote_subst' double_quote_subst='$double_quote_subst' delay_variable_subst='$delay_variable_subst' _LT_CONFIG_STATUS_DECLARATIONS LTCC='$LTCC' LTCFLAGS='$LTCFLAGS' compiler='$compiler_DEFAULT' # A function that is used when there is no print builtin or printf. func_fallback_echo () { eval 'cat <<_LTECHO_EOF \$[]1 _LTECHO_EOF' } # Quote evaled strings. for var in lt_decl_all_varnames([[ \ ]], lt_decl_quote_varnames); do case \`eval \\\\\$ECHO \\\\""\\\\\$\$var"\\\\"\` in *[[\\\\\\\`\\"\\\$]]*) eval "lt_\$var=\\\\\\"\\\`\\\$ECHO \\"\\\$\$var\\" | \\\$SED \\"\\\$sed_quote_subst\\"\\\`\\\\\\"" ## exclude from sc_prohibit_nested_quotes ;; *) eval "lt_\$var=\\\\\\"\\\$\$var\\\\\\"" ;; esac done # Double-quote double-evaled strings. for var in lt_decl_all_varnames([[ \ ]], lt_decl_dquote_varnames); do case \`eval \\\\\$ECHO \\\\""\\\\\$\$var"\\\\"\` in *[[\\\\\\\`\\"\\\$]]*) eval "lt_\$var=\\\\\\"\\\`\\\$ECHO \\"\\\$\$var\\" | \\\$SED -e \\"\\\$double_quote_subst\\" -e \\"\\\$sed_quote_subst\\" -e \\"\\\$delay_variable_subst\\"\\\`\\\\\\"" ## exclude from sc_prohibit_nested_quotes ;; *) eval "lt_\$var=\\\\\\"\\\$\$var\\\\\\"" ;; esac done _LT_OUTPUT_LIBTOOL_INIT ]) # _LT_GENERATED_FILE_INIT(FILE, [COMMENT]) # ------------------------------------ # Generate a child script FILE with all initialization necessary to # reuse the environment learned by the parent script, and make the # file executable. If COMMENT is supplied, it is inserted after the # '#!' sequence but before initialization text begins. After this # macro, additional text can be appended to FILE to form the body of # the child script. The macro ends with non-zero status if the # file could not be fully written (such as if the disk is full). m4_ifdef([AS_INIT_GENERATED], [m4_defun([_LT_GENERATED_FILE_INIT],[AS_INIT_GENERATED($@)])], [m4_defun([_LT_GENERATED_FILE_INIT], [m4_require([AS_PREPARE])]dnl [m4_pushdef([AS_MESSAGE_LOG_FD])]dnl [lt_write_fail=0 cat >$1 <<_ASEOF || lt_write_fail=1 #! $SHELL # Generated by $as_me. $2 SHELL=\${CONFIG_SHELL-$SHELL} export SHELL _ASEOF cat >>$1 <<\_ASEOF || lt_write_fail=1 AS_SHELL_SANITIZE _AS_PREPARE exec AS_MESSAGE_FD>&1 _ASEOF test 0 = "$lt_write_fail" && chmod +x $1[]dnl m4_popdef([AS_MESSAGE_LOG_FD])])])# _LT_GENERATED_FILE_INIT # LT_OUTPUT # --------- # This macro allows early generation of the libtool script (before # AC_OUTPUT is called), incase it is used in configure for compilation # tests. AC_DEFUN([LT_OUTPUT], [: ${CONFIG_LT=./config.lt} AC_MSG_NOTICE([creating $CONFIG_LT]) _LT_GENERATED_FILE_INIT(["$CONFIG_LT"], [# Run this file to recreate a libtool stub with the current configuration.]) cat >>"$CONFIG_LT" <<\_LTEOF lt_cl_silent=false exec AS_MESSAGE_LOG_FD>>config.log { echo AS_BOX([Running $as_me.]) } >&AS_MESSAGE_LOG_FD lt_cl_help="\ '$as_me' creates a local libtool stub from the current configuration, for use in further configure time tests before the real libtool is generated. Usage: $[0] [[OPTIONS]] -h, --help print this help, then exit -V, --version print version number, then exit -q, --quiet do not print progress messages -d, --debug don't remove temporary files Report bugs to ." lt_cl_version="\ m4_ifset([AC_PACKAGE_NAME], [AC_PACKAGE_NAME ])config.lt[]dnl m4_ifset([AC_PACKAGE_VERSION], [ AC_PACKAGE_VERSION]) configured by $[0], generated by m4_PACKAGE_STRING. Copyright (C) 2011 Free Software Foundation, Inc. This config.lt script is free software; the Free Software Foundation gives unlimited permision to copy, distribute and modify it." while test 0 != $[#] do case $[1] in --version | --v* | -V ) echo "$lt_cl_version"; exit 0 ;; --help | --h* | -h ) echo "$lt_cl_help"; exit 0 ;; --debug | --d* | -d ) debug=: ;; --quiet | --q* | --silent | --s* | -q ) lt_cl_silent=: ;; -*) AC_MSG_ERROR([unrecognized option: $[1] Try '$[0] --help' for more information.]) ;; *) AC_MSG_ERROR([unrecognized argument: $[1] Try '$[0] --help' for more information.]) ;; esac shift done if $lt_cl_silent; then exec AS_MESSAGE_FD>/dev/null fi _LTEOF cat >>"$CONFIG_LT" <<_LTEOF _LT_OUTPUT_LIBTOOL_COMMANDS_INIT _LTEOF cat >>"$CONFIG_LT" <<\_LTEOF AC_MSG_NOTICE([creating $ofile]) _LT_OUTPUT_LIBTOOL_COMMANDS AS_EXIT(0) _LTEOF chmod +x "$CONFIG_LT" # configure is writing to config.log, but config.lt does its own redirection, # appending to config.log, which fails on DOS, as config.log is still kept # open by configure. Here we exec the FD to /dev/null, effectively closing # config.log, so it can be properly (re)opened and appended to by config.lt. lt_cl_success=: test yes = "$silent" && lt_config_lt_args="$lt_config_lt_args --quiet" exec AS_MESSAGE_LOG_FD>/dev/null $SHELL "$CONFIG_LT" $lt_config_lt_args || lt_cl_success=false exec AS_MESSAGE_LOG_FD>>config.log $lt_cl_success || AS_EXIT(1) ])# LT_OUTPUT # _LT_CONFIG(TAG) # --------------- # If TAG is the built-in tag, create an initial libtool script with a # default configuration from the untagged config vars. Otherwise add code # to config.status for appending the configuration named by TAG from the # matching tagged config vars. m4_defun([_LT_CONFIG], [m4_require([_LT_FILEUTILS_DEFAULTS])dnl _LT_CONFIG_SAVE_COMMANDS([ m4_define([_LT_TAG], m4_if([$1], [], [C], [$1]))dnl m4_if(_LT_TAG, [C], [ # See if we are running on zsh, and set the options that allow our # commands through without removal of \ escapes. if test -n "${ZSH_VERSION+set}"; then setopt NO_GLOB_SUBST fi cfgfile=${ofile}T trap "$RM \"$cfgfile\"; exit 1" 1 2 15 $RM "$cfgfile" cat <<_LT_EOF >> "$cfgfile" #! $SHELL # Generated automatically by $as_me ($PACKAGE) $VERSION # Libtool was configured on host `(hostname || uname -n) 2>/dev/null | sed 1q`: # NOTE: Changes made to this file will be lost: look at ltmain.sh. # Provide generalized library-building support services. # Written by Gordon Matzigkeit, 1996 _LT_COPYING _LT_LIBTOOL_TAGS # Configured defaults for sys_lib_dlsearch_path munging. : \${LT_SYS_LIBRARY_PATH="$configure_time_lt_sys_library_path"} # ### BEGIN LIBTOOL CONFIG _LT_LIBTOOL_CONFIG_VARS _LT_LIBTOOL_TAG_VARS # ### END LIBTOOL CONFIG _LT_EOF cat <<'_LT_EOF' >> "$cfgfile" # ### BEGIN FUNCTIONS SHARED WITH CONFIGURE _LT_PREPARE_MUNGE_PATH_LIST _LT_PREPARE_CC_BASENAME # ### END FUNCTIONS SHARED WITH CONFIGURE _LT_EOF case $host_os in aix3*) cat <<\_LT_EOF >> "$cfgfile" # AIX sometimes has problems with the GCC collect2 program. For some # reason, if we set the COLLECT_NAMES environment variable, the problems # vanish in a puff of smoke. if test set != "${COLLECT_NAMES+set}"; then COLLECT_NAMES= export COLLECT_NAMES fi _LT_EOF ;; esac _LT_PROG_LTMAIN # We use sed instead of cat because bash on DJGPP gets confused if # if finds mixed CR/LF and LF-only lines. Since sed operates in # text mode, it properly converts lines to CR/LF. This bash problem # is reportedly fixed, but why not run on old versions too? sed '$q' "$ltmain" >> "$cfgfile" \ || (rm -f "$cfgfile"; exit 1) mv -f "$cfgfile" "$ofile" || (rm -f "$ofile" && cp "$cfgfile" "$ofile" && rm -f "$cfgfile") chmod +x "$ofile" ], [cat <<_LT_EOF >> "$ofile" dnl Unfortunately we have to use $1 here, since _LT_TAG is not expanded dnl in a comment (ie after a #). # ### BEGIN LIBTOOL TAG CONFIG: $1 _LT_LIBTOOL_TAG_VARS(_LT_TAG) # ### END LIBTOOL TAG CONFIG: $1 _LT_EOF ])dnl /m4_if ], [m4_if([$1], [], [ PACKAGE='$PACKAGE' VERSION='$VERSION' RM='$RM' ofile='$ofile'], []) ])dnl /_LT_CONFIG_SAVE_COMMANDS ])# _LT_CONFIG # LT_SUPPORTED_TAG(TAG) # --------------------- # Trace this macro to discover what tags are supported by the libtool # --tag option, using: # autoconf --trace 'LT_SUPPORTED_TAG:$1' AC_DEFUN([LT_SUPPORTED_TAG], []) # C support is built-in for now m4_define([_LT_LANG_C_enabled], []) m4_define([_LT_TAGS], []) # LT_LANG(LANG) # ------------- # Enable libtool support for the given language if not already enabled. AC_DEFUN([LT_LANG], [AC_BEFORE([$0], [LT_OUTPUT])dnl m4_case([$1], [C], [_LT_LANG(C)], [C++], [_LT_LANG(CXX)], [Go], [_LT_LANG(GO)], [Java], [_LT_LANG(GCJ)], [Fortran 77], [_LT_LANG(F77)], [Fortran], [_LT_LANG(FC)], [Windows Resource], [_LT_LANG(RC)], [m4_ifdef([_LT_LANG_]$1[_CONFIG], [_LT_LANG($1)], [m4_fatal([$0: unsupported language: "$1"])])])dnl ])# LT_LANG # _LT_LANG(LANGNAME) # ------------------ m4_defun([_LT_LANG], [m4_ifdef([_LT_LANG_]$1[_enabled], [], [LT_SUPPORTED_TAG([$1])dnl m4_append([_LT_TAGS], [$1 ])dnl m4_define([_LT_LANG_]$1[_enabled], [])dnl _LT_LANG_$1_CONFIG($1)])dnl ])# _LT_LANG m4_ifndef([AC_PROG_GO], [ # NOTE: This macro has been submitted for inclusion into # # GNU Autoconf as AC_PROG_GO. When it is available in # # a released version of Autoconf we should remove this # # macro and use it instead. # m4_defun([AC_PROG_GO], [AC_LANG_PUSH(Go)dnl AC_ARG_VAR([GOC], [Go compiler command])dnl AC_ARG_VAR([GOFLAGS], [Go compiler flags])dnl _AC_ARG_VAR_LDFLAGS()dnl AC_CHECK_TOOL(GOC, gccgo) if test -z "$GOC"; then if test -n "$ac_tool_prefix"; then AC_CHECK_PROG(GOC, [${ac_tool_prefix}gccgo], [${ac_tool_prefix}gccgo]) fi fi if test -z "$GOC"; then AC_CHECK_PROG(GOC, gccgo, gccgo, false) fi ])#m4_defun ])#m4_ifndef # _LT_LANG_DEFAULT_CONFIG # ----------------------- m4_defun([_LT_LANG_DEFAULT_CONFIG], [AC_PROVIDE_IFELSE([AC_PROG_CXX], [LT_LANG(CXX)], [m4_define([AC_PROG_CXX], defn([AC_PROG_CXX])[LT_LANG(CXX)])]) AC_PROVIDE_IFELSE([AC_PROG_F77], [LT_LANG(F77)], [m4_define([AC_PROG_F77], defn([AC_PROG_F77])[LT_LANG(F77)])]) AC_PROVIDE_IFELSE([AC_PROG_FC], [LT_LANG(FC)], [m4_define([AC_PROG_FC], defn([AC_PROG_FC])[LT_LANG(FC)])]) dnl The call to [A][M_PROG_GCJ] is quoted like that to stop aclocal dnl pulling things in needlessly. AC_PROVIDE_IFELSE([AC_PROG_GCJ], [LT_LANG(GCJ)], [AC_PROVIDE_IFELSE([A][M_PROG_GCJ], [LT_LANG(GCJ)], [AC_PROVIDE_IFELSE([LT_PROG_GCJ], [LT_LANG(GCJ)], [m4_ifdef([AC_PROG_GCJ], [m4_define([AC_PROG_GCJ], defn([AC_PROG_GCJ])[LT_LANG(GCJ)])]) m4_ifdef([A][M_PROG_GCJ], [m4_define([A][M_PROG_GCJ], defn([A][M_PROG_GCJ])[LT_LANG(GCJ)])]) m4_ifdef([LT_PROG_GCJ], [m4_define([LT_PROG_GCJ], defn([LT_PROG_GCJ])[LT_LANG(GCJ)])])])])]) AC_PROVIDE_IFELSE([AC_PROG_GO], [LT_LANG(GO)], [m4_define([AC_PROG_GO], defn([AC_PROG_GO])[LT_LANG(GO)])]) AC_PROVIDE_IFELSE([LT_PROG_RC], [LT_LANG(RC)], [m4_define([LT_PROG_RC], defn([LT_PROG_RC])[LT_LANG(RC)])]) ])# _LT_LANG_DEFAULT_CONFIG # Obsolete macros: AU_DEFUN([AC_LIBTOOL_CXX], [LT_LANG(C++)]) AU_DEFUN([AC_LIBTOOL_F77], [LT_LANG(Fortran 77)]) AU_DEFUN([AC_LIBTOOL_FC], [LT_LANG(Fortran)]) AU_DEFUN([AC_LIBTOOL_GCJ], [LT_LANG(Java)]) AU_DEFUN([AC_LIBTOOL_RC], [LT_LANG(Windows Resource)]) dnl aclocal-1.4 backwards compatibility: dnl AC_DEFUN([AC_LIBTOOL_CXX], []) dnl AC_DEFUN([AC_LIBTOOL_F77], []) dnl AC_DEFUN([AC_LIBTOOL_FC], []) dnl AC_DEFUN([AC_LIBTOOL_GCJ], []) dnl AC_DEFUN([AC_LIBTOOL_RC], []) # _LT_TAG_COMPILER # ---------------- m4_defun([_LT_TAG_COMPILER], [AC_REQUIRE([AC_PROG_CC])dnl _LT_DECL([LTCC], [CC], [1], [A C compiler])dnl _LT_DECL([LTCFLAGS], [CFLAGS], [1], [LTCC compiler flags])dnl _LT_TAGDECL([CC], [compiler], [1], [A language specific compiler])dnl _LT_TAGDECL([with_gcc], [GCC], [0], [Is the compiler the GNU compiler?])dnl # If no C compiler was specified, use CC. LTCC=${LTCC-"$CC"} # If no C compiler flags were specified, use CFLAGS. LTCFLAGS=${LTCFLAGS-"$CFLAGS"} # Allow CC to be a program name with arguments. compiler=$CC ])# _LT_TAG_COMPILER # _LT_COMPILER_BOILERPLATE # ------------------------ # Check for compiler boilerplate output or warnings with # the simple compiler test code. m4_defun([_LT_COMPILER_BOILERPLATE], [m4_require([_LT_DECL_SED])dnl ac_outfile=conftest.$ac_objext echo "$lt_simple_compile_test_code" >conftest.$ac_ext eval "$ac_compile" 2>&1 >/dev/null | $SED '/^$/d; /^ *+/d' >conftest.err _lt_compiler_boilerplate=`cat conftest.err` $RM conftest* ])# _LT_COMPILER_BOILERPLATE # _LT_LINKER_BOILERPLATE # ---------------------- # Check for linker boilerplate output or warnings with # the simple link test code. m4_defun([_LT_LINKER_BOILERPLATE], [m4_require([_LT_DECL_SED])dnl ac_outfile=conftest.$ac_objext echo "$lt_simple_link_test_code" >conftest.$ac_ext eval "$ac_link" 2>&1 >/dev/null | $SED '/^$/d; /^ *+/d' >conftest.err _lt_linker_boilerplate=`cat conftest.err` $RM -r conftest* ])# _LT_LINKER_BOILERPLATE # _LT_REQUIRED_DARWIN_CHECKS # ------------------------- m4_defun_once([_LT_REQUIRED_DARWIN_CHECKS],[ case $host_os in rhapsody* | darwin*) AC_CHECK_TOOL([DSYMUTIL], [dsymutil], [:]) AC_CHECK_TOOL([NMEDIT], [nmedit], [:]) AC_CHECK_TOOL([LIPO], [lipo], [:]) AC_CHECK_TOOL([OTOOL], [otool], [:]) AC_CHECK_TOOL([OTOOL64], [otool64], [:]) _LT_DECL([], [DSYMUTIL], [1], [Tool to manipulate archived DWARF debug symbol files on Mac OS X]) _LT_DECL([], [NMEDIT], [1], [Tool to change global to local symbols on Mac OS X]) _LT_DECL([], [LIPO], [1], [Tool to manipulate fat objects and archives on Mac OS X]) _LT_DECL([], [OTOOL], [1], [ldd/readelf like tool for Mach-O binaries on Mac OS X]) _LT_DECL([], [OTOOL64], [1], [ldd/readelf like tool for 64 bit Mach-O binaries on Mac OS X 10.4]) AC_CACHE_CHECK([for -single_module linker flag],[lt_cv_apple_cc_single_mod], [lt_cv_apple_cc_single_mod=no if test -z "$LT_MULTI_MODULE"; then # By default we will add the -single_module flag. You can override # by either setting the environment variable LT_MULTI_MODULE # non-empty at configure time, or by adding -multi_module to the # link flags. rm -rf libconftest.dylib* echo "int foo(void){return 1;}" > conftest.c echo "$LTCC $LTCFLAGS $LDFLAGS -o libconftest.dylib \ -dynamiclib -Wl,-single_module conftest.c" >&AS_MESSAGE_LOG_FD $LTCC $LTCFLAGS $LDFLAGS -o libconftest.dylib \ -dynamiclib -Wl,-single_module conftest.c 2>conftest.err _lt_result=$? # If there is a non-empty error log, and "single_module" # appears in it, assume the flag caused a linker warning if test -s conftest.err && $GREP single_module conftest.err; then cat conftest.err >&AS_MESSAGE_LOG_FD # Otherwise, if the output was created with a 0 exit code from # the compiler, it worked. elif test -f libconftest.dylib && test 0 = "$_lt_result"; then lt_cv_apple_cc_single_mod=yes else cat conftest.err >&AS_MESSAGE_LOG_FD fi rm -rf libconftest.dylib* rm -f conftest.* fi]) AC_CACHE_CHECK([for -exported_symbols_list linker flag], [lt_cv_ld_exported_symbols_list], [lt_cv_ld_exported_symbols_list=no save_LDFLAGS=$LDFLAGS echo "_main" > conftest.sym LDFLAGS="$LDFLAGS -Wl,-exported_symbols_list,conftest.sym" AC_LINK_IFELSE([AC_LANG_PROGRAM([],[])], [lt_cv_ld_exported_symbols_list=yes], [lt_cv_ld_exported_symbols_list=no]) LDFLAGS=$save_LDFLAGS ]) AC_CACHE_CHECK([for -force_load linker flag],[lt_cv_ld_force_load], [lt_cv_ld_force_load=no cat > conftest.c << _LT_EOF int forced_loaded() { return 2;} _LT_EOF echo "$LTCC $LTCFLAGS -c -o conftest.o conftest.c" >&AS_MESSAGE_LOG_FD $LTCC $LTCFLAGS -c -o conftest.o conftest.c 2>&AS_MESSAGE_LOG_FD echo "$AR cru libconftest.a conftest.o" >&AS_MESSAGE_LOG_FD $AR cru libconftest.a conftest.o 2>&AS_MESSAGE_LOG_FD echo "$RANLIB libconftest.a" >&AS_MESSAGE_LOG_FD $RANLIB libconftest.a 2>&AS_MESSAGE_LOG_FD cat > conftest.c << _LT_EOF int main() { return 0;} _LT_EOF echo "$LTCC $LTCFLAGS $LDFLAGS -o conftest conftest.c -Wl,-force_load,./libconftest.a" >&AS_MESSAGE_LOG_FD $LTCC $LTCFLAGS $LDFLAGS -o conftest conftest.c -Wl,-force_load,./libconftest.a 2>conftest.err _lt_result=$? if test -s conftest.err && $GREP force_load conftest.err; then cat conftest.err >&AS_MESSAGE_LOG_FD elif test -f conftest && test 0 = "$_lt_result" && $GREP forced_load conftest >/dev/null 2>&1; then lt_cv_ld_force_load=yes else cat conftest.err >&AS_MESSAGE_LOG_FD fi rm -f conftest.err libconftest.a conftest conftest.c rm -rf conftest.dSYM ]) case $host_os in rhapsody* | darwin1.[[012]]) _lt_dar_allow_undefined='$wl-undefined ${wl}suppress' ;; darwin1.*) _lt_dar_allow_undefined='$wl-flat_namespace $wl-undefined ${wl}suppress' ;; darwin*) # darwin 5.x on # if running on 10.5 or later, the deployment target defaults # to the OS version, if on x86, and 10.4, the deployment # target defaults to 10.4. Don't you love it? case ${MACOSX_DEPLOYMENT_TARGET-10.0},$host in 10.0,*86*-darwin8*|10.0,*-darwin[[91]]*) _lt_dar_allow_undefined='$wl-undefined ${wl}dynamic_lookup' ;; 10.[[012]][[,.]]*) _lt_dar_allow_undefined='$wl-flat_namespace $wl-undefined ${wl}suppress' ;; 10.*) _lt_dar_allow_undefined='$wl-undefined ${wl}dynamic_lookup' ;; esac ;; esac if test yes = "$lt_cv_apple_cc_single_mod"; then _lt_dar_single_mod='$single_module' fi if test yes = "$lt_cv_ld_exported_symbols_list"; then _lt_dar_export_syms=' $wl-exported_symbols_list,$output_objdir/$libname-symbols.expsym' else _lt_dar_export_syms='~$NMEDIT -s $output_objdir/$libname-symbols.expsym $lib' fi if test : != "$DSYMUTIL" && test no = "$lt_cv_ld_force_load"; then _lt_dsymutil='~$DSYMUTIL $lib || :' else _lt_dsymutil= fi ;; esac ]) # _LT_DARWIN_LINKER_FEATURES([TAG]) # --------------------------------- # Checks for linker and compiler features on darwin m4_defun([_LT_DARWIN_LINKER_FEATURES], [ m4_require([_LT_REQUIRED_DARWIN_CHECKS]) _LT_TAGVAR(archive_cmds_need_lc, $1)=no _LT_TAGVAR(hardcode_direct, $1)=no _LT_TAGVAR(hardcode_automatic, $1)=yes _LT_TAGVAR(hardcode_shlibpath_var, $1)=unsupported if test yes = "$lt_cv_ld_force_load"; then _LT_TAGVAR(whole_archive_flag_spec, $1)='`for conv in $convenience\"\"; do test -n \"$conv\" && new_convenience=\"$new_convenience $wl-force_load,$conv\"; done; func_echo_all \"$new_convenience\"`' m4_case([$1], [F77], [_LT_TAGVAR(compiler_needs_object, $1)=yes], [FC], [_LT_TAGVAR(compiler_needs_object, $1)=yes]) else _LT_TAGVAR(whole_archive_flag_spec, $1)='' fi _LT_TAGVAR(link_all_deplibs, $1)=yes _LT_TAGVAR(allow_undefined_flag, $1)=$_lt_dar_allow_undefined case $cc_basename in ifort*|nagfor*) _lt_dar_can_shared=yes ;; *) _lt_dar_can_shared=$GCC ;; esac if test yes = "$_lt_dar_can_shared"; then output_verbose_link_cmd=func_echo_all _LT_TAGVAR(archive_cmds, $1)="\$CC -dynamiclib \$allow_undefined_flag -o \$lib \$libobjs \$deplibs \$compiler_flags -install_name \$rpath/\$soname \$verstring $_lt_dar_single_mod$_lt_dsymutil" _LT_TAGVAR(module_cmds, $1)="\$CC \$allow_undefined_flag -o \$lib -bundle \$libobjs \$deplibs \$compiler_flags$_lt_dsymutil" _LT_TAGVAR(archive_expsym_cmds, $1)="sed 's|^|_|' < \$export_symbols > \$output_objdir/\$libname-symbols.expsym~\$CC -dynamiclib \$allow_undefined_flag -o \$lib \$libobjs \$deplibs \$compiler_flags -install_name \$rpath/\$soname \$verstring $_lt_dar_single_mod$_lt_dar_export_syms$_lt_dsymutil" _LT_TAGVAR(module_expsym_cmds, $1)="sed -e 's|^|_|' < \$export_symbols > \$output_objdir/\$libname-symbols.expsym~\$CC \$allow_undefined_flag -o \$lib -bundle \$libobjs \$deplibs \$compiler_flags$_lt_dar_export_syms$_lt_dsymutil" m4_if([$1], [CXX], [ if test yes != "$lt_cv_apple_cc_single_mod"; then _LT_TAGVAR(archive_cmds, $1)="\$CC -r -keep_private_externs -nostdlib -o \$lib-master.o \$libobjs~\$CC -dynamiclib \$allow_undefined_flag -o \$lib \$lib-master.o \$deplibs \$compiler_flags -install_name \$rpath/\$soname \$verstring$_lt_dsymutil" _LT_TAGVAR(archive_expsym_cmds, $1)="sed 's|^|_|' < \$export_symbols > \$output_objdir/\$libname-symbols.expsym~\$CC -r -keep_private_externs -nostdlib -o \$lib-master.o \$libobjs~\$CC -dynamiclib \$allow_undefined_flag -o \$lib \$lib-master.o \$deplibs \$compiler_flags -install_name \$rpath/\$soname \$verstring$_lt_dar_export_syms$_lt_dsymutil" fi ],[]) else _LT_TAGVAR(ld_shlibs, $1)=no fi ]) # _LT_SYS_MODULE_PATH_AIX([TAGNAME]) # ---------------------------------- # Links a minimal program and checks the executable # for the system default hardcoded library path. In most cases, # this is /usr/lib:/lib, but when the MPI compilers are used # the location of the communication and MPI libs are included too. # If we don't find anything, use the default library path according # to the aix ld manual. # Store the results from the different compilers for each TAGNAME. # Allow to override them for all tags through lt_cv_aix_libpath. m4_defun([_LT_SYS_MODULE_PATH_AIX], [m4_require([_LT_DECL_SED])dnl if test set = "${lt_cv_aix_libpath+set}"; then aix_libpath=$lt_cv_aix_libpath else AC_CACHE_VAL([_LT_TAGVAR([lt_cv_aix_libpath_], [$1])], [AC_LINK_IFELSE([AC_LANG_PROGRAM],[ lt_aix_libpath_sed='[ /Import File Strings/,/^$/ { /^0/ { s/^0 *\([^ ]*\) *$/\1/ p } }]' _LT_TAGVAR([lt_cv_aix_libpath_], [$1])=`dump -H conftest$ac_exeext 2>/dev/null | $SED -n -e "$lt_aix_libpath_sed"` # Check for a 64-bit object if we didn't find anything. if test -z "$_LT_TAGVAR([lt_cv_aix_libpath_], [$1])"; then _LT_TAGVAR([lt_cv_aix_libpath_], [$1])=`dump -HX64 conftest$ac_exeext 2>/dev/null | $SED -n -e "$lt_aix_libpath_sed"` fi],[]) if test -z "$_LT_TAGVAR([lt_cv_aix_libpath_], [$1])"; then _LT_TAGVAR([lt_cv_aix_libpath_], [$1])=/usr/lib:/lib fi ]) aix_libpath=$_LT_TAGVAR([lt_cv_aix_libpath_], [$1]) fi ])# _LT_SYS_MODULE_PATH_AIX # _LT_SHELL_INIT(ARG) # ------------------- m4_define([_LT_SHELL_INIT], [m4_divert_text([M4SH-INIT], [$1 ])])# _LT_SHELL_INIT # _LT_PROG_ECHO_BACKSLASH # ----------------------- # Find how we can fake an echo command that does not interpret backslash. # In particular, with Autoconf 2.60 or later we add some code to the start # of the generated configure script that will find a shell with a builtin # printf (that we can use as an echo command). m4_defun([_LT_PROG_ECHO_BACKSLASH], [ECHO='\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\' ECHO=$ECHO$ECHO$ECHO$ECHO$ECHO ECHO=$ECHO$ECHO$ECHO$ECHO$ECHO$ECHO AC_MSG_CHECKING([how to print strings]) # Test print first, because it will be a builtin if present. if test "X`( print -r -- -n ) 2>/dev/null`" = X-n && \ test "X`print -r -- $ECHO 2>/dev/null`" = "X$ECHO"; then ECHO='print -r --' elif test "X`printf %s $ECHO 2>/dev/null`" = "X$ECHO"; then ECHO='printf %s\n' else # Use this function as a fallback that always works. func_fallback_echo () { eval 'cat <<_LTECHO_EOF $[]1 _LTECHO_EOF' } ECHO='func_fallback_echo' fi # func_echo_all arg... # Invoke $ECHO with all args, space-separated. func_echo_all () { $ECHO "$*" } case $ECHO in printf*) AC_MSG_RESULT([printf]) ;; print*) AC_MSG_RESULT([print -r]) ;; *) AC_MSG_RESULT([cat]) ;; esac m4_ifdef([_AS_DETECT_SUGGESTED], [_AS_DETECT_SUGGESTED([ test -n "${ZSH_VERSION+set}${BASH_VERSION+set}" || ( ECHO='\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\' ECHO=$ECHO$ECHO$ECHO$ECHO$ECHO ECHO=$ECHO$ECHO$ECHO$ECHO$ECHO$ECHO PATH=/empty FPATH=/empty; export PATH FPATH test "X`printf %s $ECHO`" = "X$ECHO" \ || test "X`print -r -- $ECHO`" = "X$ECHO" )])]) _LT_DECL([], [SHELL], [1], [Shell to use when invoking shell scripts]) _LT_DECL([], [ECHO], [1], [An echo program that protects backslashes]) ])# _LT_PROG_ECHO_BACKSLASH # _LT_WITH_SYSROOT # ---------------- AC_DEFUN([_LT_WITH_SYSROOT], [AC_MSG_CHECKING([for sysroot]) AC_ARG_WITH([sysroot], [AS_HELP_STRING([--with-sysroot@<:@=DIR@:>@], [Search for dependent libraries within DIR (or the compiler's sysroot if not specified).])], [], [with_sysroot=no]) dnl lt_sysroot will always be passed unquoted. We quote it here dnl in case the user passed a directory name. lt_sysroot= case $with_sysroot in #( yes) if test yes = "$GCC"; then lt_sysroot=`$CC --print-sysroot 2>/dev/null` fi ;; #( /*) lt_sysroot=`echo "$with_sysroot" | sed -e "$sed_quote_subst"` ;; #( no|'') ;; #( *) AC_MSG_RESULT([$with_sysroot]) AC_MSG_ERROR([The sysroot must be an absolute path.]) ;; esac AC_MSG_RESULT([${lt_sysroot:-no}]) _LT_DECL([], [lt_sysroot], [0], [The root where to search for ]dnl [dependent libraries, and where our libraries should be installed.])]) # _LT_ENABLE_LOCK # --------------- m4_defun([_LT_ENABLE_LOCK], [AC_ARG_ENABLE([libtool-lock], [AS_HELP_STRING([--disable-libtool-lock], [avoid locking (might break parallel builds)])]) test no = "$enable_libtool_lock" || enable_libtool_lock=yes # Some flags need to be propagated to the compiler or linker for good # libtool support. case $host in ia64-*-hpux*) # Find out what ABI is being produced by ac_compile, and set mode # options accordingly. echo 'int i;' > conftest.$ac_ext if AC_TRY_EVAL(ac_compile); then case `/usr/bin/file conftest.$ac_objext` in *ELF-32*) HPUX_IA64_MODE=32 ;; *ELF-64*) HPUX_IA64_MODE=64 ;; esac fi rm -rf conftest* ;; *-*-irix6*) # Find out what ABI is being produced by ac_compile, and set linker # options accordingly. echo '[#]line '$LINENO' "configure"' > conftest.$ac_ext if AC_TRY_EVAL(ac_compile); then if test yes = "$lt_cv_prog_gnu_ld"; then case `/usr/bin/file conftest.$ac_objext` in *32-bit*) LD="${LD-ld} -melf32bsmip" ;; *N32*) LD="${LD-ld} -melf32bmipn32" ;; *64-bit*) LD="${LD-ld} -melf64bmip" ;; esac else case `/usr/bin/file conftest.$ac_objext` in *32-bit*) LD="${LD-ld} -32" ;; *N32*) LD="${LD-ld} -n32" ;; *64-bit*) LD="${LD-ld} -64" ;; esac fi fi rm -rf conftest* ;; mips64*-*linux*) # Find out what ABI is being produced by ac_compile, and set linker # options accordingly. echo '[#]line '$LINENO' "configure"' > conftest.$ac_ext if AC_TRY_EVAL(ac_compile); then emul=elf case `/usr/bin/file conftest.$ac_objext` in *32-bit*) emul="${emul}32" ;; *64-bit*) emul="${emul}64" ;; esac case `/usr/bin/file conftest.$ac_objext` in *MSB*) emul="${emul}btsmip" ;; *LSB*) emul="${emul}ltsmip" ;; esac case `/usr/bin/file conftest.$ac_objext` in *N32*) emul="${emul}n32" ;; esac LD="${LD-ld} -m $emul" fi rm -rf conftest* ;; x86_64-*kfreebsd*-gnu|x86_64-*linux*|powerpc*-*linux*| \ s390*-*linux*|s390*-*tpf*|sparc*-*linux*) # Find out what ABI is being produced by ac_compile, and set linker # options accordingly. Note that the listed cases only cover the # situations where additional linker options are needed (such as when # doing 32-bit compilation for a host where ld defaults to 64-bit, or # vice versa); the common cases where no linker options are needed do # not appear in the list. echo 'int i;' > conftest.$ac_ext if AC_TRY_EVAL(ac_compile); then case `/usr/bin/file conftest.o` in *32-bit*) case $host in x86_64-*kfreebsd*-gnu) LD="${LD-ld} -m elf_i386_fbsd" ;; x86_64-*linux*) case `/usr/bin/file conftest.o` in *x86-64*) LD="${LD-ld} -m elf32_x86_64" ;; *) LD="${LD-ld} -m elf_i386" ;; esac ;; powerpc64le-*linux*) LD="${LD-ld} -m elf32lppclinux" ;; powerpc64-*linux*) LD="${LD-ld} -m elf32ppclinux" ;; s390x-*linux*) LD="${LD-ld} -m elf_s390" ;; sparc64-*linux*) LD="${LD-ld} -m elf32_sparc" ;; esac ;; *64-bit*) case $host in x86_64-*kfreebsd*-gnu) LD="${LD-ld} -m elf_x86_64_fbsd" ;; x86_64-*linux*) LD="${LD-ld} -m elf_x86_64" ;; powerpcle-*linux*) LD="${LD-ld} -m elf64lppc" ;; powerpc-*linux*) LD="${LD-ld} -m elf64ppc" ;; s390*-*linux*|s390*-*tpf*) LD="${LD-ld} -m elf64_s390" ;; sparc*-*linux*) LD="${LD-ld} -m elf64_sparc" ;; esac ;; esac fi rm -rf conftest* ;; *-*-sco3.2v5*) # On SCO OpenServer 5, we need -belf to get full-featured binaries. SAVE_CFLAGS=$CFLAGS CFLAGS="$CFLAGS -belf" AC_CACHE_CHECK([whether the C compiler needs -belf], lt_cv_cc_needs_belf, [AC_LANG_PUSH(C) AC_LINK_IFELSE([AC_LANG_PROGRAM([[]],[[]])],[lt_cv_cc_needs_belf=yes],[lt_cv_cc_needs_belf=no]) AC_LANG_POP]) if test yes != "$lt_cv_cc_needs_belf"; then # this is probably gcc 2.8.0, egcs 1.0 or newer; no need for -belf CFLAGS=$SAVE_CFLAGS fi ;; *-*solaris*) # Find out what ABI is being produced by ac_compile, and set linker # options accordingly. echo 'int i;' > conftest.$ac_ext if AC_TRY_EVAL(ac_compile); then case `/usr/bin/file conftest.o` in *64-bit*) case $lt_cv_prog_gnu_ld in yes*) case $host in i?86-*-solaris*|x86_64-*-solaris*) LD="${LD-ld} -m elf_x86_64" ;; sparc*-*-solaris*) LD="${LD-ld} -m elf64_sparc" ;; esac # GNU ld 2.21 introduced _sol2 emulations. Use them if available. if ${LD-ld} -V | grep _sol2 >/dev/null 2>&1; then LD=${LD-ld}_sol2 fi ;; *) if ${LD-ld} -64 -r -o conftest2.o conftest.o >/dev/null 2>&1; then LD="${LD-ld} -64" fi ;; esac ;; esac fi rm -rf conftest* ;; esac need_locks=$enable_libtool_lock ])# _LT_ENABLE_LOCK # _LT_PROG_AR # ----------- m4_defun([_LT_PROG_AR], [AC_CHECK_TOOLS(AR, [ar], false) : ${AR=ar} : ${AR_FLAGS=cru} _LT_DECL([], [AR], [1], [The archiver]) _LT_DECL([], [AR_FLAGS], [1], [Flags to create an archive]) AC_CACHE_CHECK([for archiver @FILE support], [lt_cv_ar_at_file], [lt_cv_ar_at_file=no AC_COMPILE_IFELSE([AC_LANG_PROGRAM], [echo conftest.$ac_objext > conftest.lst lt_ar_try='$AR $AR_FLAGS libconftest.a @conftest.lst >&AS_MESSAGE_LOG_FD' AC_TRY_EVAL([lt_ar_try]) if test 0 -eq "$ac_status"; then # Ensure the archiver fails upon bogus file names. rm -f conftest.$ac_objext libconftest.a AC_TRY_EVAL([lt_ar_try]) if test 0 -ne "$ac_status"; then lt_cv_ar_at_file=@ fi fi rm -f conftest.* libconftest.a ]) ]) if test no = "$lt_cv_ar_at_file"; then archiver_list_spec= else archiver_list_spec=$lt_cv_ar_at_file fi _LT_DECL([], [archiver_list_spec], [1], [How to feed a file listing to the archiver]) ])# _LT_PROG_AR # _LT_CMD_OLD_ARCHIVE # ------------------- m4_defun([_LT_CMD_OLD_ARCHIVE], [_LT_PROG_AR AC_CHECK_TOOL(STRIP, strip, :) test -z "$STRIP" && STRIP=: _LT_DECL([], [STRIP], [1], [A symbol stripping program]) AC_CHECK_TOOL(RANLIB, ranlib, :) test -z "$RANLIB" && RANLIB=: _LT_DECL([], [RANLIB], [1], [Commands used to install an old-style archive]) # Determine commands to create old-style static archives. old_archive_cmds='$AR $AR_FLAGS $oldlib$oldobjs' old_postinstall_cmds='chmod 644 $oldlib' old_postuninstall_cmds= if test -n "$RANLIB"; then case $host_os in bitrig* | openbsd*) old_postinstall_cmds="$old_postinstall_cmds~\$RANLIB -t \$tool_oldlib" ;; *) old_postinstall_cmds="$old_postinstall_cmds~\$RANLIB \$tool_oldlib" ;; esac old_archive_cmds="$old_archive_cmds~\$RANLIB \$tool_oldlib" fi case $host_os in darwin*) lock_old_archive_extraction=yes ;; *) lock_old_archive_extraction=no ;; esac _LT_DECL([], [old_postinstall_cmds], [2]) _LT_DECL([], [old_postuninstall_cmds], [2]) _LT_TAGDECL([], [old_archive_cmds], [2], [Commands used to build an old-style archive]) _LT_DECL([], [lock_old_archive_extraction], [0], [Whether to use a lock for old archive extraction]) ])# _LT_CMD_OLD_ARCHIVE # _LT_COMPILER_OPTION(MESSAGE, VARIABLE-NAME, FLAGS, # [OUTPUT-FILE], [ACTION-SUCCESS], [ACTION-FAILURE]) # ---------------------------------------------------------------- # Check whether the given compiler option works AC_DEFUN([_LT_COMPILER_OPTION], [m4_require([_LT_FILEUTILS_DEFAULTS])dnl m4_require([_LT_DECL_SED])dnl AC_CACHE_CHECK([$1], [$2], [$2=no m4_if([$4], , [ac_outfile=conftest.$ac_objext], [ac_outfile=$4]) echo "$lt_simple_compile_test_code" > conftest.$ac_ext lt_compiler_flag="$3" ## exclude from sc_useless_quotes_in_assignment # Insert the option either (1) after the last *FLAGS variable, or # (2) before a word containing "conftest.", or (3) at the end. # Note that $ac_compile itself does not contain backslashes and begins # with a dollar sign (not a hyphen), so the echo should work correctly. # The option is referenced via a variable to avoid confusing sed. lt_compile=`echo "$ac_compile" | $SED \ -e 's:.*FLAGS}\{0,1\} :&$lt_compiler_flag :; t' \ -e 's: [[^ ]]*conftest\.: $lt_compiler_flag&:; t' \ -e 's:$: $lt_compiler_flag:'` (eval echo "\"\$as_me:$LINENO: $lt_compile\"" >&AS_MESSAGE_LOG_FD) (eval "$lt_compile" 2>conftest.err) ac_status=$? cat conftest.err >&AS_MESSAGE_LOG_FD echo "$as_me:$LINENO: \$? = $ac_status" >&AS_MESSAGE_LOG_FD if (exit $ac_status) && test -s "$ac_outfile"; then # The compiler can only warn and ignore the option if not recognized # So say no if there are warnings other than the usual output. $ECHO "$_lt_compiler_boilerplate" | $SED '/^$/d' >conftest.exp $SED '/^$/d; /^ *+/d' conftest.err >conftest.er2 if test ! -s conftest.er2 || diff conftest.exp conftest.er2 >/dev/null; then $2=yes fi fi $RM conftest* ]) if test yes = "[$]$2"; then m4_if([$5], , :, [$5]) else m4_if([$6], , :, [$6]) fi ])# _LT_COMPILER_OPTION # Old name: AU_ALIAS([AC_LIBTOOL_COMPILER_OPTION], [_LT_COMPILER_OPTION]) dnl aclocal-1.4 backwards compatibility: dnl AC_DEFUN([AC_LIBTOOL_COMPILER_OPTION], []) # _LT_LINKER_OPTION(MESSAGE, VARIABLE-NAME, FLAGS, # [ACTION-SUCCESS], [ACTION-FAILURE]) # ---------------------------------------------------- # Check whether the given linker option works AC_DEFUN([_LT_LINKER_OPTION], [m4_require([_LT_FILEUTILS_DEFAULTS])dnl m4_require([_LT_DECL_SED])dnl AC_CACHE_CHECK([$1], [$2], [$2=no save_LDFLAGS=$LDFLAGS LDFLAGS="$LDFLAGS $3" echo "$lt_simple_link_test_code" > conftest.$ac_ext if (eval $ac_link 2>conftest.err) && test -s conftest$ac_exeext; then # The linker can only warn and ignore the option if not recognized # So say no if there are warnings if test -s conftest.err; then # Append any errors to the config.log. cat conftest.err 1>&AS_MESSAGE_LOG_FD $ECHO "$_lt_linker_boilerplate" | $SED '/^$/d' > conftest.exp $SED '/^$/d; /^ *+/d' conftest.err >conftest.er2 if diff conftest.exp conftest.er2 >/dev/null; then $2=yes fi else $2=yes fi fi $RM -r conftest* LDFLAGS=$save_LDFLAGS ]) if test yes = "[$]$2"; then m4_if([$4], , :, [$4]) else m4_if([$5], , :, [$5]) fi ])# _LT_LINKER_OPTION # Old name: AU_ALIAS([AC_LIBTOOL_LINKER_OPTION], [_LT_LINKER_OPTION]) dnl aclocal-1.4 backwards compatibility: dnl AC_DEFUN([AC_LIBTOOL_LINKER_OPTION], []) # LT_CMD_MAX_LEN #--------------- AC_DEFUN([LT_CMD_MAX_LEN], [AC_REQUIRE([AC_CANONICAL_HOST])dnl # find the maximum length of command line arguments AC_MSG_CHECKING([the maximum length of command line arguments]) AC_CACHE_VAL([lt_cv_sys_max_cmd_len], [dnl i=0 teststring=ABCD case $build_os in msdosdjgpp*) # On DJGPP, this test can blow up pretty badly due to problems in libc # (any single argument exceeding 2000 bytes causes a buffer overrun # during glob expansion). Even if it were fixed, the result of this # check would be larger than it should be. lt_cv_sys_max_cmd_len=12288; # 12K is about right ;; gnu*) # Under GNU Hurd, this test is not required because there is # no limit to the length of command line arguments. # Libtool will interpret -1 as no limit whatsoever lt_cv_sys_max_cmd_len=-1; ;; cygwin* | mingw* | cegcc*) # On Win9x/ME, this test blows up -- it succeeds, but takes # about 5 minutes as the teststring grows exponentially. # Worse, since 9x/ME are not pre-emptively multitasking, # you end up with a "frozen" computer, even though with patience # the test eventually succeeds (with a max line length of 256k). # Instead, let's just punt: use the minimum linelength reported by # all of the supported platforms: 8192 (on NT/2K/XP). lt_cv_sys_max_cmd_len=8192; ;; mint*) # On MiNT this can take a long time and run out of memory. lt_cv_sys_max_cmd_len=8192; ;; amigaos*) # On AmigaOS with pdksh, this test takes hours, literally. # So we just punt and use a minimum line length of 8192. lt_cv_sys_max_cmd_len=8192; ;; bitrig* | darwin* | dragonfly* | freebsd* | netbsd* | openbsd*) # This has been around since 386BSD, at least. Likely further. if test -x /sbin/sysctl; then lt_cv_sys_max_cmd_len=`/sbin/sysctl -n kern.argmax` elif test -x /usr/sbin/sysctl; then lt_cv_sys_max_cmd_len=`/usr/sbin/sysctl -n kern.argmax` else lt_cv_sys_max_cmd_len=65536 # usable default for all BSDs fi # And add a safety zone lt_cv_sys_max_cmd_len=`expr $lt_cv_sys_max_cmd_len \/ 4` lt_cv_sys_max_cmd_len=`expr $lt_cv_sys_max_cmd_len \* 3` ;; interix*) # We know the value 262144 and hardcode it with a safety zone (like BSD) lt_cv_sys_max_cmd_len=196608 ;; os2*) # The test takes a long time on OS/2. lt_cv_sys_max_cmd_len=8192 ;; osf*) # Dr. Hans Ekkehard Plesser reports seeing a kernel panic running configure # due to this test when exec_disable_arg_limit is 1 on Tru64. It is not # nice to cause kernel panics so lets avoid the loop below. # First set a reasonable default. lt_cv_sys_max_cmd_len=16384 # if test -x /sbin/sysconfig; then case `/sbin/sysconfig -q proc exec_disable_arg_limit` in *1*) lt_cv_sys_max_cmd_len=-1 ;; esac fi ;; sco3.2v5*) lt_cv_sys_max_cmd_len=102400 ;; sysv5* | sco5v6* | sysv4.2uw2*) kargmax=`grep ARG_MAX /etc/conf/cf.d/stune 2>/dev/null` if test -n "$kargmax"; then lt_cv_sys_max_cmd_len=`echo $kargmax | sed 's/.*[[ ]]//'` else lt_cv_sys_max_cmd_len=32768 fi ;; *) lt_cv_sys_max_cmd_len=`(getconf ARG_MAX) 2> /dev/null` if test -n "$lt_cv_sys_max_cmd_len" && \ test undefined != "$lt_cv_sys_max_cmd_len"; then lt_cv_sys_max_cmd_len=`expr $lt_cv_sys_max_cmd_len \/ 4` lt_cv_sys_max_cmd_len=`expr $lt_cv_sys_max_cmd_len \* 3` else # Make teststring a little bigger before we do anything with it. # a 1K string should be a reasonable start. for i in 1 2 3 4 5 6 7 8; do teststring=$teststring$teststring done SHELL=${SHELL-${CONFIG_SHELL-/bin/sh}} # If test is not a shell built-in, we'll probably end up computing a # maximum length that is only half of the actual maximum length, but # we can't tell. while { test X`env echo "$teststring$teststring" 2>/dev/null` \ = "X$teststring$teststring"; } >/dev/null 2>&1 && test 17 != "$i" # 1/2 MB should be enough do i=`expr $i + 1` teststring=$teststring$teststring done # Only check the string length outside the loop. lt_cv_sys_max_cmd_len=`expr "X$teststring" : ".*" 2>&1` teststring= # Add a significant safety factor because C++ compilers can tack on # massive amounts of additional arguments before passing them to the # linker. It appears as though 1/2 is a usable value. lt_cv_sys_max_cmd_len=`expr $lt_cv_sys_max_cmd_len \/ 2` fi ;; esac ]) if test -n "$lt_cv_sys_max_cmd_len"; then AC_MSG_RESULT($lt_cv_sys_max_cmd_len) else AC_MSG_RESULT(none) fi max_cmd_len=$lt_cv_sys_max_cmd_len _LT_DECL([], [max_cmd_len], [0], [What is the maximum length of a command?]) ])# LT_CMD_MAX_LEN # Old name: AU_ALIAS([AC_LIBTOOL_SYS_MAX_CMD_LEN], [LT_CMD_MAX_LEN]) dnl aclocal-1.4 backwards compatibility: dnl AC_DEFUN([AC_LIBTOOL_SYS_MAX_CMD_LEN], []) # _LT_HEADER_DLFCN # ---------------- m4_defun([_LT_HEADER_DLFCN], [AC_CHECK_HEADERS([dlfcn.h], [], [], [AC_INCLUDES_DEFAULT])dnl ])# _LT_HEADER_DLFCN # _LT_TRY_DLOPEN_SELF (ACTION-IF-TRUE, ACTION-IF-TRUE-W-USCORE, # ACTION-IF-FALSE, ACTION-IF-CROSS-COMPILING) # ---------------------------------------------------------------- m4_defun([_LT_TRY_DLOPEN_SELF], [m4_require([_LT_HEADER_DLFCN])dnl if test yes = "$cross_compiling"; then : [$4] else lt_dlunknown=0; lt_dlno_uscore=1; lt_dlneed_uscore=2 lt_status=$lt_dlunknown cat > conftest.$ac_ext <<_LT_EOF [#line $LINENO "configure" #include "confdefs.h" #if HAVE_DLFCN_H #include #endif #include #ifdef RTLD_GLOBAL # define LT_DLGLOBAL RTLD_GLOBAL #else # ifdef DL_GLOBAL # define LT_DLGLOBAL DL_GLOBAL # else # define LT_DLGLOBAL 0 # endif #endif /* We may have to define LT_DLLAZY_OR_NOW in the command line if we find out it does not work in some platform. */ #ifndef LT_DLLAZY_OR_NOW # ifdef RTLD_LAZY # define LT_DLLAZY_OR_NOW RTLD_LAZY # else # ifdef DL_LAZY # define LT_DLLAZY_OR_NOW DL_LAZY # else # ifdef RTLD_NOW # define LT_DLLAZY_OR_NOW RTLD_NOW # else # ifdef DL_NOW # define LT_DLLAZY_OR_NOW DL_NOW # else # define LT_DLLAZY_OR_NOW 0 # endif # endif # endif # endif #endif /* When -fvisibility=hidden is used, assume the code has been annotated correspondingly for the symbols needed. */ #if defined __GNUC__ && (((__GNUC__ == 3) && (__GNUC_MINOR__ >= 3)) || (__GNUC__ > 3)) int fnord () __attribute__((visibility("default"))); #endif int fnord () { return 42; } int main () { void *self = dlopen (0, LT_DLGLOBAL|LT_DLLAZY_OR_NOW); int status = $lt_dlunknown; if (self) { if (dlsym (self,"fnord")) status = $lt_dlno_uscore; else { if (dlsym( self,"_fnord")) status = $lt_dlneed_uscore; else puts (dlerror ()); } /* dlclose (self); */ } else puts (dlerror ()); return status; }] _LT_EOF if AC_TRY_EVAL(ac_link) && test -s "conftest$ac_exeext" 2>/dev/null; then (./conftest; exit; ) >&AS_MESSAGE_LOG_FD 2>/dev/null lt_status=$? case x$lt_status in x$lt_dlno_uscore) $1 ;; x$lt_dlneed_uscore) $2 ;; x$lt_dlunknown|x*) $3 ;; esac else : # compilation failed $3 fi fi rm -fr conftest* ])# _LT_TRY_DLOPEN_SELF # LT_SYS_DLOPEN_SELF # ------------------ AC_DEFUN([LT_SYS_DLOPEN_SELF], [m4_require([_LT_HEADER_DLFCN])dnl if test yes != "$enable_dlopen"; then enable_dlopen=unknown enable_dlopen_self=unknown enable_dlopen_self_static=unknown else lt_cv_dlopen=no lt_cv_dlopen_libs= case $host_os in beos*) lt_cv_dlopen=load_add_on lt_cv_dlopen_libs= lt_cv_dlopen_self=yes ;; mingw* | pw32* | cegcc*) lt_cv_dlopen=LoadLibrary lt_cv_dlopen_libs= ;; cygwin*) lt_cv_dlopen=dlopen lt_cv_dlopen_libs= ;; darwin*) # if libdl is installed we need to link against it AC_CHECK_LIB([dl], [dlopen], [lt_cv_dlopen=dlopen lt_cv_dlopen_libs=-ldl],[ lt_cv_dlopen=dyld lt_cv_dlopen_libs= lt_cv_dlopen_self=yes ]) ;; tpf*) # Don't try to run any link tests for TPF. We know it's impossible # because TPF is a cross-compiler, and we know how we open DSOs. lt_cv_dlopen=dlopen lt_cv_dlopen_libs= lt_cv_dlopen_self=no ;; *) AC_CHECK_FUNC([shl_load], [lt_cv_dlopen=shl_load], [AC_CHECK_LIB([dld], [shl_load], [lt_cv_dlopen=shl_load lt_cv_dlopen_libs=-ldld], [AC_CHECK_FUNC([dlopen], [lt_cv_dlopen=dlopen], [AC_CHECK_LIB([dl], [dlopen], [lt_cv_dlopen=dlopen lt_cv_dlopen_libs=-ldl], [AC_CHECK_LIB([svld], [dlopen], [lt_cv_dlopen=dlopen lt_cv_dlopen_libs=-lsvld], [AC_CHECK_LIB([dld], [dld_link], [lt_cv_dlopen=dld_link lt_cv_dlopen_libs=-ldld]) ]) ]) ]) ]) ]) ;; esac if test no = "$lt_cv_dlopen"; then enable_dlopen=no else enable_dlopen=yes fi case $lt_cv_dlopen in dlopen) save_CPPFLAGS=$CPPFLAGS test yes = "$ac_cv_header_dlfcn_h" && CPPFLAGS="$CPPFLAGS -DHAVE_DLFCN_H" save_LDFLAGS=$LDFLAGS wl=$lt_prog_compiler_wl eval LDFLAGS=\"\$LDFLAGS $export_dynamic_flag_spec\" save_LIBS=$LIBS LIBS="$lt_cv_dlopen_libs $LIBS" AC_CACHE_CHECK([whether a program can dlopen itself], lt_cv_dlopen_self, [dnl _LT_TRY_DLOPEN_SELF( lt_cv_dlopen_self=yes, lt_cv_dlopen_self=yes, lt_cv_dlopen_self=no, lt_cv_dlopen_self=cross) ]) if test yes = "$lt_cv_dlopen_self"; then wl=$lt_prog_compiler_wl eval LDFLAGS=\"\$LDFLAGS $lt_prog_compiler_static\" AC_CACHE_CHECK([whether a statically linked program can dlopen itself], lt_cv_dlopen_self_static, [dnl _LT_TRY_DLOPEN_SELF( lt_cv_dlopen_self_static=yes, lt_cv_dlopen_self_static=yes, lt_cv_dlopen_self_static=no, lt_cv_dlopen_self_static=cross) ]) fi CPPFLAGS=$save_CPPFLAGS LDFLAGS=$save_LDFLAGS LIBS=$save_LIBS ;; esac case $lt_cv_dlopen_self in yes|no) enable_dlopen_self=$lt_cv_dlopen_self ;; *) enable_dlopen_self=unknown ;; esac case $lt_cv_dlopen_self_static in yes|no) enable_dlopen_self_static=$lt_cv_dlopen_self_static ;; *) enable_dlopen_self_static=unknown ;; esac fi _LT_DECL([dlopen_support], [enable_dlopen], [0], [Whether dlopen is supported]) _LT_DECL([dlopen_self], [enable_dlopen_self], [0], [Whether dlopen of programs is supported]) _LT_DECL([dlopen_self_static], [enable_dlopen_self_static], [0], [Whether dlopen of statically linked programs is supported]) ])# LT_SYS_DLOPEN_SELF # Old name: AU_ALIAS([AC_LIBTOOL_DLOPEN_SELF], [LT_SYS_DLOPEN_SELF]) dnl aclocal-1.4 backwards compatibility: dnl AC_DEFUN([AC_LIBTOOL_DLOPEN_SELF], []) # _LT_COMPILER_C_O([TAGNAME]) # --------------------------- # Check to see if options -c and -o are simultaneously supported by compiler. # This macro does not hard code the compiler like AC_PROG_CC_C_O. m4_defun([_LT_COMPILER_C_O], [m4_require([_LT_DECL_SED])dnl m4_require([_LT_FILEUTILS_DEFAULTS])dnl m4_require([_LT_TAG_COMPILER])dnl AC_CACHE_CHECK([if $compiler supports -c -o file.$ac_objext], [_LT_TAGVAR(lt_cv_prog_compiler_c_o, $1)], [_LT_TAGVAR(lt_cv_prog_compiler_c_o, $1)=no $RM -r conftest 2>/dev/null mkdir conftest cd conftest mkdir out echo "$lt_simple_compile_test_code" > conftest.$ac_ext lt_compiler_flag="-o out/conftest2.$ac_objext" # Insert the option either (1) after the last *FLAGS variable, or # (2) before a word containing "conftest.", or (3) at the end. # Note that $ac_compile itself does not contain backslashes and begins # with a dollar sign (not a hyphen), so the echo should work correctly. lt_compile=`echo "$ac_compile" | $SED \ -e 's:.*FLAGS}\{0,1\} :&$lt_compiler_flag :; t' \ -e 's: [[^ ]]*conftest\.: $lt_compiler_flag&:; t' \ -e 's:$: $lt_compiler_flag:'` (eval echo "\"\$as_me:$LINENO: $lt_compile\"" >&AS_MESSAGE_LOG_FD) (eval "$lt_compile" 2>out/conftest.err) ac_status=$? cat out/conftest.err >&AS_MESSAGE_LOG_FD echo "$as_me:$LINENO: \$? = $ac_status" >&AS_MESSAGE_LOG_FD if (exit $ac_status) && test -s out/conftest2.$ac_objext then # The compiler can only warn and ignore the option if not recognized # So say no if there are warnings $ECHO "$_lt_compiler_boilerplate" | $SED '/^$/d' > out/conftest.exp $SED '/^$/d; /^ *+/d' out/conftest.err >out/conftest.er2 if test ! -s out/conftest.er2 || diff out/conftest.exp out/conftest.er2 >/dev/null; then _LT_TAGVAR(lt_cv_prog_compiler_c_o, $1)=yes fi fi chmod u+w . 2>&AS_MESSAGE_LOG_FD $RM conftest* # SGI C++ compiler will create directory out/ii_files/ for # template instantiation test -d out/ii_files && $RM out/ii_files/* && rmdir out/ii_files $RM out/* && rmdir out cd .. $RM -r conftest $RM conftest* ]) _LT_TAGDECL([compiler_c_o], [lt_cv_prog_compiler_c_o], [1], [Does compiler simultaneously support -c and -o options?]) ])# _LT_COMPILER_C_O # _LT_COMPILER_FILE_LOCKS([TAGNAME]) # ---------------------------------- # Check to see if we can do hard links to lock some files if needed m4_defun([_LT_COMPILER_FILE_LOCKS], [m4_require([_LT_ENABLE_LOCK])dnl m4_require([_LT_FILEUTILS_DEFAULTS])dnl _LT_COMPILER_C_O([$1]) hard_links=nottested if test no = "$_LT_TAGVAR(lt_cv_prog_compiler_c_o, $1)" && test no != "$need_locks"; then # do not overwrite the value of need_locks provided by the user AC_MSG_CHECKING([if we can lock with hard links]) hard_links=yes $RM conftest* ln conftest.a conftest.b 2>/dev/null && hard_links=no touch conftest.a ln conftest.a conftest.b 2>&5 || hard_links=no ln conftest.a conftest.b 2>/dev/null && hard_links=no AC_MSG_RESULT([$hard_links]) if test no = "$hard_links"; then AC_MSG_WARN(['$CC' does not support '-c -o', so 'make -j' may be unsafe]) need_locks=warn fi else need_locks=no fi _LT_DECL([], [need_locks], [1], [Must we lock files when doing compilation?]) ])# _LT_COMPILER_FILE_LOCKS # _LT_CHECK_OBJDIR # ---------------- m4_defun([_LT_CHECK_OBJDIR], [AC_CACHE_CHECK([for objdir], [lt_cv_objdir], [rm -f .libs 2>/dev/null mkdir .libs 2>/dev/null if test -d .libs; then lt_cv_objdir=.libs else # MS-DOS does not allow filenames that begin with a dot. lt_cv_objdir=_libs fi rmdir .libs 2>/dev/null]) objdir=$lt_cv_objdir _LT_DECL([], [objdir], [0], [The name of the directory that contains temporary libtool files])dnl m4_pattern_allow([LT_OBJDIR])dnl AC_DEFINE_UNQUOTED([LT_OBJDIR], "$lt_cv_objdir/", [Define to the sub-directory where libtool stores uninstalled libraries.]) ])# _LT_CHECK_OBJDIR # _LT_LINKER_HARDCODE_LIBPATH([TAGNAME]) # -------------------------------------- # Check hardcoding attributes. m4_defun([_LT_LINKER_HARDCODE_LIBPATH], [AC_MSG_CHECKING([how to hardcode library paths into programs]) _LT_TAGVAR(hardcode_action, $1)= if test -n "$_LT_TAGVAR(hardcode_libdir_flag_spec, $1)" || test -n "$_LT_TAGVAR(runpath_var, $1)" || test yes = "$_LT_TAGVAR(hardcode_automatic, $1)"; then # We can hardcode non-existent directories. if test no != "$_LT_TAGVAR(hardcode_direct, $1)" && # If the only mechanism to avoid hardcoding is shlibpath_var, we # have to relink, otherwise we might link with an installed library # when we should be linking with a yet-to-be-installed one ## test no != "$_LT_TAGVAR(hardcode_shlibpath_var, $1)" && test no != "$_LT_TAGVAR(hardcode_minus_L, $1)"; then # Linking always hardcodes the temporary library directory. _LT_TAGVAR(hardcode_action, $1)=relink else # We can link without hardcoding, and we can hardcode nonexisting dirs. _LT_TAGVAR(hardcode_action, $1)=immediate fi else # We cannot hardcode anything, or else we can only hardcode existing # directories. _LT_TAGVAR(hardcode_action, $1)=unsupported fi AC_MSG_RESULT([$_LT_TAGVAR(hardcode_action, $1)]) if test relink = "$_LT_TAGVAR(hardcode_action, $1)" || test yes = "$_LT_TAGVAR(inherit_rpath, $1)"; then # Fast installation is not supported enable_fast_install=no elif test yes = "$shlibpath_overrides_runpath" || test no = "$enable_shared"; then # Fast installation is not necessary enable_fast_install=needless fi _LT_TAGDECL([], [hardcode_action], [0], [How to hardcode a shared library path into an executable]) ])# _LT_LINKER_HARDCODE_LIBPATH # _LT_CMD_STRIPLIB # ---------------- m4_defun([_LT_CMD_STRIPLIB], [m4_require([_LT_DECL_EGREP]) striplib= old_striplib= AC_MSG_CHECKING([whether stripping libraries is possible]) if test -n "$STRIP" && $STRIP -V 2>&1 | $GREP "GNU strip" >/dev/null; then test -z "$old_striplib" && old_striplib="$STRIP --strip-debug" test -z "$striplib" && striplib="$STRIP --strip-unneeded" AC_MSG_RESULT([yes]) else # FIXME - insert some real tests, host_os isn't really good enough case $host_os in darwin*) if test -n "$STRIP"; then striplib="$STRIP -x" old_striplib="$STRIP -S" AC_MSG_RESULT([yes]) else AC_MSG_RESULT([no]) fi ;; *) AC_MSG_RESULT([no]) ;; esac fi _LT_DECL([], [old_striplib], [1], [Commands to strip libraries]) _LT_DECL([], [striplib], [1]) ])# _LT_CMD_STRIPLIB # _LT_PREPARE_MUNGE_PATH_LIST # --------------------------- # Make sure func_munge_path_list() is defined correctly. m4_defun([_LT_PREPARE_MUNGE_PATH_LIST], [[# func_munge_path_list VARIABLE PATH # ----------------------------------- # VARIABLE is name of variable containing _space_ separated list of # directories to be munged by the contents of PATH, which is string # having a format: # "DIR[:DIR]:" # string "DIR[ DIR]" will be prepended to VARIABLE # ":DIR[:DIR]" # string "DIR[ DIR]" will be appended to VARIABLE # "DIRP[:DIRP]::[DIRA:]DIRA" # string "DIRP[ DIRP]" will be prepended to VARIABLE and string # "DIRA[ DIRA]" will be appended to VARIABLE # "DIR[:DIR]" # VARIABLE will be replaced by "DIR[ DIR]" func_munge_path_list () { case x@S|@2 in x) ;; *:) eval @S|@1=\"`$ECHO @S|@2 | $SED 's/:/ /g'` \@S|@@S|@1\" ;; x:*) eval @S|@1=\"\@S|@@S|@1 `$ECHO @S|@2 | $SED 's/:/ /g'`\" ;; *::*) eval @S|@1=\"\@S|@@S|@1\ `$ECHO @S|@2 | $SED -e 's/.*:://' -e 's/:/ /g'`\" eval @S|@1=\"`$ECHO @S|@2 | $SED -e 's/::.*//' -e 's/:/ /g'`\ \@S|@@S|@1\" ;; *) eval @S|@1=\"`$ECHO @S|@2 | $SED 's/:/ /g'`\" ;; esac } ]])# _LT_PREPARE_PATH_LIST # _LT_SYS_DYNAMIC_LINKER([TAG]) # ----------------------------- # PORTME Fill in your ld.so characteristics m4_defun([_LT_SYS_DYNAMIC_LINKER], [AC_REQUIRE([AC_CANONICAL_HOST])dnl m4_require([_LT_DECL_EGREP])dnl m4_require([_LT_FILEUTILS_DEFAULTS])dnl m4_require([_LT_DECL_OBJDUMP])dnl m4_require([_LT_DECL_SED])dnl m4_require([_LT_CHECK_SHELL_FEATURES])dnl m4_require([_LT_PREPARE_MUNGE_PATH_LIST])dnl AC_MSG_CHECKING([dynamic linker characteristics]) m4_if([$1], [], [ if test yes = "$GCC"; then case $host_os in darwin*) lt_awk_arg='/^libraries:/,/LR/' ;; *) lt_awk_arg='/^libraries:/' ;; esac case $host_os in mingw* | cegcc*) lt_sed_strip_eq='s|=\([[A-Za-z]]:\)|\1|g' ;; *) lt_sed_strip_eq='s|=/|/|g' ;; esac lt_search_path_spec=`$CC -print-search-dirs | awk $lt_awk_arg | $SED -e "s/^libraries://" -e $lt_sed_strip_eq` case $lt_search_path_spec in *\;*) # if the path contains ";" then we assume it to be the separator # otherwise default to the standard path separator (i.e. ":") - it is # assumed that no part of a normal pathname contains ";" but that should # okay in the real world where ";" in dirpaths is itself problematic. lt_search_path_spec=`$ECHO "$lt_search_path_spec" | $SED 's/;/ /g'` ;; *) lt_search_path_spec=`$ECHO "$lt_search_path_spec" | $SED "s/$PATH_SEPARATOR/ /g"` ;; esac # Ok, now we have the path, separated by spaces, we can step through it # and add multilib dir if necessary... lt_tmp_lt_search_path_spec= lt_multi_os_dir=/`$CC $CPPFLAGS $CFLAGS $LDFLAGS -print-multi-os-directory 2>/dev/null` # ...but if some path component already ends with the multilib dir we assume # that all is fine and trust -print-search-dirs as is (GCC 4.2? or newer). case "$lt_multi_os_dir; $lt_search_path_spec " in "/; "* | "/.; "* | "/./; "* | *"$lt_multi_os_dir "* | *"$lt_multi_os_dir/ "*) lt_multi_os_dir= ;; esac for lt_sys_path in $lt_search_path_spec; do if test -d "$lt_sys_path$lt_multi_os_dir"; then lt_tmp_lt_search_path_spec="$lt_tmp_lt_search_path_spec $lt_sys_path$lt_multi_os_dir" elif test -n "$lt_multi_os_dir"; then test -d "$lt_sys_path" && \ lt_tmp_lt_search_path_spec="$lt_tmp_lt_search_path_spec $lt_sys_path" fi done lt_search_path_spec=`$ECHO "$lt_tmp_lt_search_path_spec" | awk ' BEGIN {RS = " "; FS = "/|\n";} { lt_foo = ""; lt_count = 0; for (lt_i = NF; lt_i > 0; lt_i--) { if ($lt_i != "" && $lt_i != ".") { if ($lt_i == "..") { lt_count++; } else { if (lt_count == 0) { lt_foo = "/" $lt_i lt_foo; } else { lt_count--; } } } } if (lt_foo != "") { lt_freq[[lt_foo]]++; } if (lt_freq[[lt_foo]] == 1) { print lt_foo; } }'` # AWK program above erroneously prepends '/' to C:/dos/paths # for these hosts. case $host_os in mingw* | cegcc*) lt_search_path_spec=`$ECHO "$lt_search_path_spec" |\ $SED 's|/\([[A-Za-z]]:\)|\1|g'` ;; esac sys_lib_search_path_spec=`$ECHO "$lt_search_path_spec" | $lt_NL2SP` else sys_lib_search_path_spec="/lib /usr/lib /usr/local/lib" fi]) library_names_spec= libname_spec='lib$name' soname_spec= shrext_cmds=.so postinstall_cmds= postuninstall_cmds= finish_cmds= finish_eval= shlibpath_var= shlibpath_overrides_runpath=unknown version_type=none dynamic_linker="$host_os ld.so" sys_lib_dlsearch_path_spec="/lib /usr/lib" need_lib_prefix=unknown hardcode_into_libs=no # when you set need_version to no, make sure it does not cause -set_version # flags to be left without arguments need_version=unknown AC_ARG_VAR([LT_SYS_LIBRARY_PATH], [User-defined run-time library search path.]) case $host_os in aix3*) version_type=linux # correct to gnu/linux during the next big refactor library_names_spec='$libname$release$shared_ext$versuffix $libname.a' shlibpath_var=LIBPATH # AIX 3 has no versioning support, so we append a major version to the name. soname_spec='$libname$release$shared_ext$major' ;; aix[[4-9]]*) version_type=linux # correct to gnu/linux during the next big refactor need_lib_prefix=no need_version=no hardcode_into_libs=yes if test ia64 = "$host_cpu"; then # AIX 5 supports IA64 library_names_spec='$libname$release$shared_ext$major $libname$release$shared_ext$versuffix $libname$shared_ext' shlibpath_var=LD_LIBRARY_PATH else # With GCC up to 2.95.x, collect2 would create an import file # for dependence libraries. The import file would start with # the line '#! .'. This would cause the generated library to # depend on '.', always an invalid library. This was fixed in # development snapshots of GCC prior to 3.0. case $host_os in aix4 | aix4.[[01]] | aix4.[[01]].*) if { echo '#if __GNUC__ > 2 || (__GNUC__ == 2 && __GNUC_MINOR__ >= 97)' echo ' yes ' echo '#endif'; } | $CC -E - | $GREP yes > /dev/null; then : else can_build_shared=no fi ;; esac # Using Import Files as archive members, it is possible to support # filename-based versioning of shared library archives on AIX. While # this would work for both with and without runtime linking, it will # prevent static linking of such archives. So we do filename-based # shared library versioning with .so extension only, which is used # when both runtime linking and shared linking is enabled. # Unfortunately, runtime linking may impact performance, so we do # not want this to be the default eventually. Also, we use the # versioned .so libs for executables only if there is the -brtl # linker flag in LDFLAGS as well, or --with-aix-soname=svr4 only. # To allow for filename-based versioning support, we need to create # libNAME.so.V as an archive file, containing: # *) an Import File, referring to the versioned filename of the # archive as well as the shared archive member, telling the # bitwidth (32 or 64) of that shared object, and providing the # list of exported symbols of that shared object, eventually # decorated with the 'weak' keyword # *) the shared object with the F_LOADONLY flag set, to really avoid # it being seen by the linker. # At run time we better use the real file rather than another symlink, # but for link time we create the symlink libNAME.so -> libNAME.so.V case $with_aix_soname,$aix_use_runtimelinking in # AIX (on Power*) has no versioning support, so currently we cannot hardcode correct # soname into executable. Probably we can add versioning support to # collect2, so additional links can be useful in future. aix,yes) # traditional libtool dynamic_linker='AIX unversionable lib.so' # If using run time linking (on AIX 4.2 or later) use lib.so # instead of lib.a to let people know that these are not # typical AIX shared libraries. library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' ;; aix,no) # traditional AIX only dynamic_linker='AIX lib.a[(]lib.so.V[)]' # We preserve .a as extension for shared libraries through AIX4.2 # and later when we are not doing run time linking. library_names_spec='$libname$release.a $libname.a' soname_spec='$libname$release$shared_ext$major' ;; svr4,*) # full svr4 only dynamic_linker="AIX lib.so.V[(]$shared_archive_member_spec.o[)]" library_names_spec='$libname$release$shared_ext$major $libname$shared_ext' # We do not specify a path in Import Files, so LIBPATH fires. shlibpath_overrides_runpath=yes ;; *,yes) # both, prefer svr4 dynamic_linker="AIX lib.so.V[(]$shared_archive_member_spec.o[)], lib.a[(]lib.so.V[)]" library_names_spec='$libname$release$shared_ext$major $libname$shared_ext' # unpreferred sharedlib libNAME.a needs extra handling postinstall_cmds='test -n "$linkname" || linkname="$realname"~func_stripname "" ".so" "$linkname"~$install_shared_prog "$dir/$func_stripname_result.$libext" "$destdir/$func_stripname_result.$libext"~test -z "$tstripme" || test -z "$striplib" || $striplib "$destdir/$func_stripname_result.$libext"' postuninstall_cmds='for n in $library_names $old_library; do :; done~func_stripname "" ".so" "$n"~test "$func_stripname_result" = "$n" || func_append rmfiles " $odir/$func_stripname_result.$libext"' # We do not specify a path in Import Files, so LIBPATH fires. shlibpath_overrides_runpath=yes ;; *,no) # both, prefer aix dynamic_linker="AIX lib.a[(]lib.so.V[)], lib.so.V[(]$shared_archive_member_spec.o[)]" library_names_spec='$libname$release.a $libname.a' soname_spec='$libname$release$shared_ext$major' # unpreferred sharedlib libNAME.so.V and symlink libNAME.so need extra handling postinstall_cmds='test -z "$dlname" || $install_shared_prog $dir/$dlname $destdir/$dlname~test -z "$tstripme" || test -z "$striplib" || $striplib $destdir/$dlname~test -n "$linkname" || linkname=$realname~func_stripname "" ".a" "$linkname"~(cd "$destdir" && $LN_S -f $dlname $func_stripname_result.so)' postuninstall_cmds='test -z "$dlname" || func_append rmfiles " $odir/$dlname"~for n in $old_library $library_names; do :; done~func_stripname "" ".a" "$n"~func_append rmfiles " $odir/$func_stripname_result.so"' ;; esac shlibpath_var=LIBPATH fi ;; amigaos*) case $host_cpu in powerpc) # Since July 2007 AmigaOS4 officially supports .so libraries. # When compiling the executable, add -use-dynld -Lsobjs: to the compileline. library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' ;; m68k) library_names_spec='$libname.ixlibrary $libname.a' # Create ${libname}_ixlibrary.a entries in /sys/libs. finish_eval='for lib in `ls $libdir/*.ixlibrary 2>/dev/null`; do libname=`func_echo_all "$lib" | $SED '\''s%^.*/\([[^/]]*\)\.ixlibrary$%\1%'\''`; $RM /sys/libs/${libname}_ixlibrary.a; $show "cd /sys/libs && $LN_S $lib ${libname}_ixlibrary.a"; cd /sys/libs && $LN_S $lib ${libname}_ixlibrary.a || exit 1; done' ;; esac ;; beos*) library_names_spec='$libname$shared_ext' dynamic_linker="$host_os ld.so" shlibpath_var=LIBRARY_PATH ;; bsdi[[45]]*) version_type=linux # correct to gnu/linux during the next big refactor need_version=no library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' soname_spec='$libname$release$shared_ext$major' finish_cmds='PATH="\$PATH:/sbin" ldconfig $libdir' shlibpath_var=LD_LIBRARY_PATH sys_lib_search_path_spec="/shlib /usr/lib /usr/X11/lib /usr/contrib/lib /lib /usr/local/lib" sys_lib_dlsearch_path_spec="/shlib /usr/lib /usr/local/lib" # the default ld.so.conf also contains /usr/contrib/lib and # /usr/X11R6/lib (/usr/X11 is a link to /usr/X11R6), but let us allow # libtool to hard-code these into programs ;; cygwin* | mingw* | pw32* | cegcc*) version_type=windows shrext_cmds=.dll need_version=no need_lib_prefix=no case $GCC,$cc_basename in yes,*) # gcc library_names_spec='$libname.dll.a' # DLL is installed to $(libdir)/../bin by postinstall_cmds postinstall_cmds='base_file=`basename \$file`~ dlpath=`$SHELL 2>&1 -c '\''. $dir/'\''\$base_file'\''i; echo \$dlname'\''`~ dldir=$destdir/`dirname \$dlpath`~ test -d \$dldir || mkdir -p \$dldir~ $install_prog $dir/$dlname \$dldir/$dlname~ chmod a+x \$dldir/$dlname~ if test -n '\''$stripme'\'' && test -n '\''$striplib'\''; then eval '\''$striplib \$dldir/$dlname'\'' || exit \$?; fi' postuninstall_cmds='dldll=`$SHELL 2>&1 -c '\''. $file; echo \$dlname'\''`~ dlpath=$dir/\$dldll~ $RM \$dlpath' shlibpath_overrides_runpath=yes case $host_os in cygwin*) # Cygwin DLLs use 'cyg' prefix rather than 'lib' soname_spec='`echo $libname | sed -e 's/^lib/cyg/'``echo $release | $SED -e 's/[[.]]/-/g'`$versuffix$shared_ext' m4_if([$1], [],[ sys_lib_search_path_spec="$sys_lib_search_path_spec /usr/lib/w32api"]) ;; mingw* | cegcc*) # MinGW DLLs use traditional 'lib' prefix soname_spec='$libname`echo $release | $SED -e 's/[[.]]/-/g'`$versuffix$shared_ext' ;; pw32*) # pw32 DLLs use 'pw' prefix rather than 'lib' library_names_spec='`echo $libname | sed -e 's/^lib/pw/'``echo $release | $SED -e 's/[[.]]/-/g'`$versuffix$shared_ext' ;; esac dynamic_linker='Win32 ld.exe' ;; *,cl*) # Native MSVC libname_spec='$name' soname_spec='$libname`echo $release | $SED -e 's/[[.]]/-/g'`$versuffix$shared_ext' library_names_spec='$libname.dll.lib' case $build_os in mingw*) sys_lib_search_path_spec= lt_save_ifs=$IFS IFS=';' for lt_path in $LIB do IFS=$lt_save_ifs # Let DOS variable expansion print the short 8.3 style file name. lt_path=`cd "$lt_path" 2>/dev/null && cmd //C "for %i in (".") do @echo %~si"` sys_lib_search_path_spec="$sys_lib_search_path_spec $lt_path" done IFS=$lt_save_ifs # Convert to MSYS style. sys_lib_search_path_spec=`$ECHO "$sys_lib_search_path_spec" | sed -e 's|\\\\|/|g' -e 's| \\([[a-zA-Z]]\\):| /\\1|g' -e 's|^ ||'` ;; cygwin*) # Convert to unix form, then to dos form, then back to unix form # but this time dos style (no spaces!) so that the unix form looks # like /cygdrive/c/PROGRA~1:/cygdr... sys_lib_search_path_spec=`cygpath --path --unix "$LIB"` sys_lib_search_path_spec=`cygpath --path --dos "$sys_lib_search_path_spec" 2>/dev/null` sys_lib_search_path_spec=`cygpath --path --unix "$sys_lib_search_path_spec" | $SED -e "s/$PATH_SEPARATOR/ /g"` ;; *) sys_lib_search_path_spec=$LIB if $ECHO "$sys_lib_search_path_spec" | [$GREP ';[c-zC-Z]:/' >/dev/null]; then # It is most probably a Windows format PATH. sys_lib_search_path_spec=`$ECHO "$sys_lib_search_path_spec" | $SED -e 's/;/ /g'` else sys_lib_search_path_spec=`$ECHO "$sys_lib_search_path_spec" | $SED -e "s/$PATH_SEPARATOR/ /g"` fi # FIXME: find the short name or the path components, as spaces are # common. (e.g. "Program Files" -> "PROGRA~1") ;; esac # DLL is installed to $(libdir)/../bin by postinstall_cmds postinstall_cmds='base_file=`basename \$file`~ dlpath=`$SHELL 2>&1 -c '\''. $dir/'\''\$base_file'\''i; echo \$dlname'\''`~ dldir=$destdir/`dirname \$dlpath`~ test -d \$dldir || mkdir -p \$dldir~ $install_prog $dir/$dlname \$dldir/$dlname' postuninstall_cmds='dldll=`$SHELL 2>&1 -c '\''. $file; echo \$dlname'\''`~ dlpath=$dir/\$dldll~ $RM \$dlpath' shlibpath_overrides_runpath=yes dynamic_linker='Win32 link.exe' ;; *) # Assume MSVC wrapper library_names_spec='$libname`echo $release | $SED -e 's/[[.]]/-/g'`$versuffix$shared_ext $libname.lib' dynamic_linker='Win32 ld.exe' ;; esac # FIXME: first we should search . and the directory the executable is in shlibpath_var=PATH ;; darwin* | rhapsody*) dynamic_linker="$host_os dyld" version_type=darwin need_lib_prefix=no need_version=no library_names_spec='$libname$release$major$shared_ext $libname$shared_ext' soname_spec='$libname$release$major$shared_ext' shlibpath_overrides_runpath=yes shlibpath_var=DYLD_LIBRARY_PATH shrext_cmds='`test .$module = .yes && echo .so || echo .dylib`' m4_if([$1], [],[ sys_lib_search_path_spec="$sys_lib_search_path_spec /usr/local/lib"]) sys_lib_dlsearch_path_spec='/usr/local/lib /lib /usr/lib' ;; dgux*) version_type=linux # correct to gnu/linux during the next big refactor need_lib_prefix=no need_version=no library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' soname_spec='$libname$release$shared_ext$major' shlibpath_var=LD_LIBRARY_PATH ;; freebsd* | dragonfly*) # DragonFly does not have aout. When/if they implement a new # versioning mechanism, adjust this. if test -x /usr/bin/objformat; then objformat=`/usr/bin/objformat` else case $host_os in freebsd[[23]].*) objformat=aout ;; *) objformat=elf ;; esac fi version_type=freebsd-$objformat case $version_type in freebsd-elf*) library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' soname_spec='$libname$release$shared_ext$major' need_version=no need_lib_prefix=no ;; freebsd-*) library_names_spec='$libname$release$shared_ext$versuffix $libname$shared_ext$versuffix' need_version=yes ;; esac shlibpath_var=LD_LIBRARY_PATH case $host_os in freebsd2.*) shlibpath_overrides_runpath=yes ;; freebsd3.[[01]]* | freebsdelf3.[[01]]*) shlibpath_overrides_runpath=yes hardcode_into_libs=yes ;; freebsd3.[[2-9]]* | freebsdelf3.[[2-9]]* | \ freebsd4.[[0-5]] | freebsdelf4.[[0-5]] | freebsd4.1.1 | freebsdelf4.1.1) shlibpath_overrides_runpath=no hardcode_into_libs=yes ;; *) # from 4.6 on, and DragonFly shlibpath_overrides_runpath=yes hardcode_into_libs=yes ;; esac ;; haiku*) version_type=linux # correct to gnu/linux during the next big refactor need_lib_prefix=no need_version=no dynamic_linker="$host_os runtime_loader" library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' soname_spec='$libname$release$shared_ext$major' shlibpath_var=LIBRARY_PATH shlibpath_overrides_runpath=no sys_lib_dlsearch_path_spec='/boot/home/config/lib /boot/common/lib /boot/system/lib' hardcode_into_libs=yes ;; hpux9* | hpux10* | hpux11*) # Give a soname corresponding to the major version so that dld.sl refuses to # link against other versions. version_type=sunos need_lib_prefix=no need_version=no case $host_cpu in ia64*) shrext_cmds='.so' hardcode_into_libs=yes dynamic_linker="$host_os dld.so" shlibpath_var=LD_LIBRARY_PATH shlibpath_overrides_runpath=yes # Unless +noenvvar is specified. library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' soname_spec='$libname$release$shared_ext$major' if test 32 = "$HPUX_IA64_MODE"; then sys_lib_search_path_spec="/usr/lib/hpux32 /usr/local/lib/hpux32 /usr/local/lib" sys_lib_dlsearch_path_spec=/usr/lib/hpux32 else sys_lib_search_path_spec="/usr/lib/hpux64 /usr/local/lib/hpux64" sys_lib_dlsearch_path_spec=/usr/lib/hpux64 fi ;; hppa*64*) shrext_cmds='.sl' hardcode_into_libs=yes dynamic_linker="$host_os dld.sl" shlibpath_var=LD_LIBRARY_PATH # How should we handle SHLIB_PATH shlibpath_overrides_runpath=yes # Unless +noenvvar is specified. library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' soname_spec='$libname$release$shared_ext$major' sys_lib_search_path_spec="/usr/lib/pa20_64 /usr/ccs/lib/pa20_64" sys_lib_dlsearch_path_spec=$sys_lib_search_path_spec ;; *) shrext_cmds='.sl' dynamic_linker="$host_os dld.sl" shlibpath_var=SHLIB_PATH shlibpath_overrides_runpath=no # +s is required to enable SHLIB_PATH library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' soname_spec='$libname$release$shared_ext$major' ;; esac # HP-UX runs *really* slowly unless shared libraries are mode 555, ... postinstall_cmds='chmod 555 $lib' # or fails outright, so override atomically: install_override_mode=555 ;; interix[[3-9]]*) version_type=linux # correct to gnu/linux during the next big refactor need_lib_prefix=no need_version=no library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' soname_spec='$libname$release$shared_ext$major' dynamic_linker='Interix 3.x ld.so.1 (PE, like ELF)' shlibpath_var=LD_LIBRARY_PATH shlibpath_overrides_runpath=no hardcode_into_libs=yes ;; irix5* | irix6* | nonstopux*) case $host_os in nonstopux*) version_type=nonstopux ;; *) if test yes = "$lt_cv_prog_gnu_ld"; then version_type=linux # correct to gnu/linux during the next big refactor else version_type=irix fi ;; esac need_lib_prefix=no need_version=no soname_spec='$libname$release$shared_ext$major' library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$release$shared_ext $libname$shared_ext' case $host_os in irix5* | nonstopux*) libsuff= shlibsuff= ;; *) case $LD in # libtool.m4 will add one of these switches to LD *-32|*"-32 "|*-melf32bsmip|*"-melf32bsmip ") libsuff= shlibsuff= libmagic=32-bit;; *-n32|*"-n32 "|*-melf32bmipn32|*"-melf32bmipn32 ") libsuff=32 shlibsuff=N32 libmagic=N32;; *-64|*"-64 "|*-melf64bmip|*"-melf64bmip ") libsuff=64 shlibsuff=64 libmagic=64-bit;; *) libsuff= shlibsuff= libmagic=never-match;; esac ;; esac shlibpath_var=LD_LIBRARY${shlibsuff}_PATH shlibpath_overrides_runpath=no sys_lib_search_path_spec="/usr/lib$libsuff /lib$libsuff /usr/local/lib$libsuff" sys_lib_dlsearch_path_spec="/usr/lib$libsuff /lib$libsuff" hardcode_into_libs=yes ;; # No shared lib support for Linux oldld, aout, or coff. linux*oldld* | linux*aout* | linux*coff*) dynamic_linker=no ;; linux*android*) version_type=none # Android doesn't support versioned libraries. need_lib_prefix=no need_version=no library_names_spec='$libname$release$shared_ext' soname_spec='$libname$release$shared_ext' finish_cmds= shlibpath_var=LD_LIBRARY_PATH shlibpath_overrides_runpath=yes # This implies no fast_install, which is unacceptable. # Some rework will be needed to allow for fast_install # before this can be enabled. hardcode_into_libs=yes dynamic_linker='Android linker' # Don't embed -rpath directories since the linker doesn't support them. _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='-L$libdir' ;; # This must be glibc/ELF. linux* | k*bsd*-gnu | kopensolaris*-gnu | gnu*) version_type=linux # correct to gnu/linux during the next big refactor need_lib_prefix=no need_version=no library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' soname_spec='$libname$release$shared_ext$major' finish_cmds='PATH="\$PATH:/sbin" ldconfig -n $libdir' shlibpath_var=LD_LIBRARY_PATH shlibpath_overrides_runpath=no # Some binutils ld are patched to set DT_RUNPATH AC_CACHE_VAL([lt_cv_shlibpath_overrides_runpath], [lt_cv_shlibpath_overrides_runpath=no save_LDFLAGS=$LDFLAGS save_libdir=$libdir eval "libdir=/foo; wl=\"$_LT_TAGVAR(lt_prog_compiler_wl, $1)\"; \ LDFLAGS=\"\$LDFLAGS $_LT_TAGVAR(hardcode_libdir_flag_spec, $1)\"" AC_LINK_IFELSE([AC_LANG_PROGRAM([],[])], [AS_IF([ ($OBJDUMP -p conftest$ac_exeext) 2>/dev/null | grep "RUNPATH.*$libdir" >/dev/null], [lt_cv_shlibpath_overrides_runpath=yes])]) LDFLAGS=$save_LDFLAGS libdir=$save_libdir ]) shlibpath_overrides_runpath=$lt_cv_shlibpath_overrides_runpath # This implies no fast_install, which is unacceptable. # Some rework will be needed to allow for fast_install # before this can be enabled. hardcode_into_libs=yes # Ideally, we could use ldconfig to report *all* directores which are # searched for libraries, however this is still not possible. Aside from not # being certain /sbin/ldconfig is available, command # 'ldconfig -N -X -v | grep ^/' on 64bit Fedora does not report /usr/lib64, # even though it is searched at run-time. Try to do the best guess by # appending ld.so.conf contents (and includes) to the search path. if test -f /etc/ld.so.conf; then lt_ld_extra=`awk '/^include / { system(sprintf("cd /etc; cat %s 2>/dev/null", \[$]2)); skip = 1; } { if (!skip) print \[$]0; skip = 0; }' < /etc/ld.so.conf | $SED -e 's/#.*//;/^[ ]*hwcap[ ]/d;s/[:, ]/ /g;s/=[^=]*$//;s/=[^= ]* / /g;s/"//g;/^$/d' | tr '\n' ' '` sys_lib_dlsearch_path_spec="/lib /usr/lib $lt_ld_extra" fi # We used to test for /lib/ld.so.1 and disable shared libraries on # powerpc, because MkLinux only supported shared libraries with the # GNU dynamic linker. Since this was broken with cross compilers, # most powerpc-linux boxes support dynamic linking these days and # people can always --disable-shared, the test was removed, and we # assume the GNU/Linux dynamic linker is in use. dynamic_linker='GNU/Linux ld.so' ;; netbsd*) version_type=sunos need_lib_prefix=no need_version=no if echo __ELF__ | $CC -E - | $GREP __ELF__ >/dev/null; then library_names_spec='$libname$release$shared_ext$versuffix $libname$shared_ext$versuffix' finish_cmds='PATH="\$PATH:/sbin" ldconfig -m $libdir' dynamic_linker='NetBSD (a.out) ld.so' else library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' soname_spec='$libname$release$shared_ext$major' dynamic_linker='NetBSD ld.elf_so' fi shlibpath_var=LD_LIBRARY_PATH shlibpath_overrides_runpath=yes hardcode_into_libs=yes ;; newsos6) version_type=linux # correct to gnu/linux during the next big refactor library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' shlibpath_var=LD_LIBRARY_PATH shlibpath_overrides_runpath=yes ;; *nto* | *qnx*) version_type=qnx need_lib_prefix=no need_version=no library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' soname_spec='$libname$release$shared_ext$major' shlibpath_var=LD_LIBRARY_PATH shlibpath_overrides_runpath=no hardcode_into_libs=yes dynamic_linker='ldqnx.so' ;; openbsd* | bitrig*) version_type=sunos sys_lib_dlsearch_path_spec=/usr/lib need_lib_prefix=no if test -z "`echo __ELF__ | $CC -E - | $GREP __ELF__`"; then need_version=no else need_version=yes fi library_names_spec='$libname$release$shared_ext$versuffix $libname$shared_ext$versuffix' finish_cmds='PATH="\$PATH:/sbin" ldconfig -m $libdir' shlibpath_var=LD_LIBRARY_PATH shlibpath_overrides_runpath=yes ;; os2*) libname_spec='$name' version_type=windows shrext_cmds=.dll need_version=no need_lib_prefix=no # OS/2 can only load a DLL with a base name of 8 characters or less. soname_spec='`test -n "$os2dllname" && libname="$os2dllname"; v=$($ECHO $release$versuffix | tr -d .-); n=$($ECHO $libname | cut -b -$((8 - ${#v})) | tr . _); $ECHO $n$v`$shared_ext' library_names_spec='${libname}_dll.$libext' dynamic_linker='OS/2 ld.exe' shlibpath_var=BEGINLIBPATH sys_lib_search_path_spec="/lib /usr/lib /usr/local/lib" sys_lib_dlsearch_path_spec=$sys_lib_search_path_spec postinstall_cmds='base_file=`basename \$file`~ dlpath=`$SHELL 2>&1 -c '\''. $dir/'\''\$base_file'\''i; $ECHO \$dlname'\''`~ dldir=$destdir/`dirname \$dlpath`~ test -d \$dldir || mkdir -p \$dldir~ $install_prog $dir/$dlname \$dldir/$dlname~ chmod a+x \$dldir/$dlname~ if test -n '\''$stripme'\'' && test -n '\''$striplib'\''; then eval '\''$striplib \$dldir/$dlname'\'' || exit \$?; fi' postuninstall_cmds='dldll=`$SHELL 2>&1 -c '\''. $file; $ECHO \$dlname'\''`~ dlpath=$dir/\$dldll~ $RM \$dlpath' ;; osf3* | osf4* | osf5*) version_type=osf need_lib_prefix=no need_version=no soname_spec='$libname$release$shared_ext$major' library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' shlibpath_var=LD_LIBRARY_PATH sys_lib_search_path_spec="/usr/shlib /usr/ccs/lib /usr/lib/cmplrs/cc /usr/lib /usr/local/lib /var/shlib" sys_lib_dlsearch_path_spec=$sys_lib_search_path_spec ;; rdos*) dynamic_linker=no ;; solaris*) version_type=linux # correct to gnu/linux during the next big refactor need_lib_prefix=no need_version=no library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' soname_spec='$libname$release$shared_ext$major' shlibpath_var=LD_LIBRARY_PATH shlibpath_overrides_runpath=yes hardcode_into_libs=yes # ldd complains unless libraries are executable postinstall_cmds='chmod +x $lib' ;; sunos4*) version_type=sunos library_names_spec='$libname$release$shared_ext$versuffix $libname$shared_ext$versuffix' finish_cmds='PATH="\$PATH:/usr/etc" ldconfig $libdir' shlibpath_var=LD_LIBRARY_PATH shlibpath_overrides_runpath=yes if test yes = "$with_gnu_ld"; then need_lib_prefix=no fi need_version=yes ;; sysv4 | sysv4.3*) version_type=linux # correct to gnu/linux during the next big refactor library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' soname_spec='$libname$release$shared_ext$major' shlibpath_var=LD_LIBRARY_PATH case $host_vendor in sni) shlibpath_overrides_runpath=no need_lib_prefix=no runpath_var=LD_RUN_PATH ;; siemens) need_lib_prefix=no ;; motorola) need_lib_prefix=no need_version=no shlibpath_overrides_runpath=no sys_lib_search_path_spec='/lib /usr/lib /usr/ccs/lib' ;; esac ;; sysv4*MP*) if test -d /usr/nec; then version_type=linux # correct to gnu/linux during the next big refactor library_names_spec='$libname$shared_ext.$versuffix $libname$shared_ext.$major $libname$shared_ext' soname_spec='$libname$shared_ext.$major' shlibpath_var=LD_LIBRARY_PATH fi ;; sysv5* | sco3.2v5* | sco5v6* | unixware* | OpenUNIX* | sysv4*uw2*) version_type=sco need_lib_prefix=no need_version=no library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext $libname$shared_ext' soname_spec='$libname$release$shared_ext$major' shlibpath_var=LD_LIBRARY_PATH shlibpath_overrides_runpath=yes hardcode_into_libs=yes if test yes = "$with_gnu_ld"; then sys_lib_search_path_spec='/usr/local/lib /usr/gnu/lib /usr/ccs/lib /usr/lib /lib' else sys_lib_search_path_spec='/usr/ccs/lib /usr/lib' case $host_os in sco3.2v5*) sys_lib_search_path_spec="$sys_lib_search_path_spec /lib" ;; esac fi sys_lib_dlsearch_path_spec='/usr/lib' ;; tpf*) # TPF is a cross-target only. Preferred cross-host = GNU/Linux. version_type=linux # correct to gnu/linux during the next big refactor need_lib_prefix=no need_version=no library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' shlibpath_var=LD_LIBRARY_PATH shlibpath_overrides_runpath=no hardcode_into_libs=yes ;; uts4*) version_type=linux # correct to gnu/linux during the next big refactor library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' soname_spec='$libname$release$shared_ext$major' shlibpath_var=LD_LIBRARY_PATH ;; *) dynamic_linker=no ;; esac AC_MSG_RESULT([$dynamic_linker]) test no = "$dynamic_linker" && can_build_shared=no variables_saved_for_relink="PATH $shlibpath_var $runpath_var" if test yes = "$GCC"; then variables_saved_for_relink="$variables_saved_for_relink GCC_EXEC_PREFIX COMPILER_PATH LIBRARY_PATH" fi if test set = "${lt_cv_sys_lib_search_path_spec+set}"; then sys_lib_search_path_spec=$lt_cv_sys_lib_search_path_spec fi if test set = "${lt_cv_sys_lib_dlsearch_path_spec+set}"; then sys_lib_dlsearch_path_spec=$lt_cv_sys_lib_dlsearch_path_spec fi # remember unaugmented sys_lib_dlsearch_path content for libtool script decls... configure_time_dlsearch_path=$sys_lib_dlsearch_path_spec # ... but it needs LT_SYS_LIBRARY_PATH munging for other configure-time code func_munge_path_list sys_lib_dlsearch_path_spec "$LT_SYS_LIBRARY_PATH" # to be used as default LT_SYS_LIBRARY_PATH value in generated libtool configure_time_lt_sys_library_path=$LT_SYS_LIBRARY_PATH _LT_DECL([], [variables_saved_for_relink], [1], [Variables whose values should be saved in libtool wrapper scripts and restored at link time]) _LT_DECL([], [need_lib_prefix], [0], [Do we need the "lib" prefix for modules?]) _LT_DECL([], [need_version], [0], [Do we need a version for libraries?]) _LT_DECL([], [version_type], [0], [Library versioning type]) _LT_DECL([], [runpath_var], [0], [Shared library runtime path variable]) _LT_DECL([], [shlibpath_var], [0],[Shared library path variable]) _LT_DECL([], [shlibpath_overrides_runpath], [0], [Is shlibpath searched before the hard-coded library search path?]) _LT_DECL([], [libname_spec], [1], [Format of library name prefix]) _LT_DECL([], [library_names_spec], [1], [[List of archive names. First name is the real one, the rest are links. The last name is the one that the linker finds with -lNAME]]) _LT_DECL([], [soname_spec], [1], [[The coded name of the library, if different from the real name]]) _LT_DECL([], [install_override_mode], [1], [Permission mode override for installation of shared libraries]) _LT_DECL([], [postinstall_cmds], [2], [Command to use after installation of a shared archive]) _LT_DECL([], [postuninstall_cmds], [2], [Command to use after uninstallation of a shared archive]) _LT_DECL([], [finish_cmds], [2], [Commands used to finish a libtool library installation in a directory]) _LT_DECL([], [finish_eval], [1], [[As "finish_cmds", except a single script fragment to be evaled but not shown]]) _LT_DECL([], [hardcode_into_libs], [0], [Whether we should hardcode library paths into libraries]) _LT_DECL([], [sys_lib_search_path_spec], [2], [Compile-time system search path for libraries]) _LT_DECL([sys_lib_dlsearch_path_spec], [configure_time_dlsearch_path], [2], [Detected run-time system search path for libraries]) _LT_DECL([], [configure_time_lt_sys_library_path], [2], [Explicit LT_SYS_LIBRARY_PATH set during ./configure time]) ])# _LT_SYS_DYNAMIC_LINKER # _LT_PATH_TOOL_PREFIX(TOOL) # -------------------------- # find a file program that can recognize shared library AC_DEFUN([_LT_PATH_TOOL_PREFIX], [m4_require([_LT_DECL_EGREP])dnl AC_MSG_CHECKING([for $1]) AC_CACHE_VAL(lt_cv_path_MAGIC_CMD, [case $MAGIC_CMD in [[\\/*] | ?:[\\/]*]) lt_cv_path_MAGIC_CMD=$MAGIC_CMD # Let the user override the test with a path. ;; *) lt_save_MAGIC_CMD=$MAGIC_CMD lt_save_ifs=$IFS; IFS=$PATH_SEPARATOR dnl $ac_dummy forces splitting on constant user-supplied paths. dnl POSIX.2 word splitting is done only on the output of word expansions, dnl not every word. This closes a longstanding sh security hole. ac_dummy="m4_if([$2], , $PATH, [$2])" for ac_dir in $ac_dummy; do IFS=$lt_save_ifs test -z "$ac_dir" && ac_dir=. if test -f "$ac_dir/$1"; then lt_cv_path_MAGIC_CMD=$ac_dir/"$1" if test -n "$file_magic_test_file"; then case $deplibs_check_method in "file_magic "*) file_magic_regex=`expr "$deplibs_check_method" : "file_magic \(.*\)"` MAGIC_CMD=$lt_cv_path_MAGIC_CMD if eval $file_magic_cmd \$file_magic_test_file 2> /dev/null | $EGREP "$file_magic_regex" > /dev/null; then : else cat <<_LT_EOF 1>&2 *** Warning: the command libtool uses to detect shared libraries, *** $file_magic_cmd, produces output that libtool cannot recognize. *** The result is that libtool may fail to recognize shared libraries *** as such. This will affect the creation of libtool libraries that *** depend on shared libraries, but programs linked with such libtool *** libraries will work regardless of this problem. Nevertheless, you *** may want to report the problem to your system manager and/or to *** bug-libtool@gnu.org _LT_EOF fi ;; esac fi break fi done IFS=$lt_save_ifs MAGIC_CMD=$lt_save_MAGIC_CMD ;; esac]) MAGIC_CMD=$lt_cv_path_MAGIC_CMD if test -n "$MAGIC_CMD"; then AC_MSG_RESULT($MAGIC_CMD) else AC_MSG_RESULT(no) fi _LT_DECL([], [MAGIC_CMD], [0], [Used to examine libraries when file_magic_cmd begins with "file"])dnl ])# _LT_PATH_TOOL_PREFIX # Old name: AU_ALIAS([AC_PATH_TOOL_PREFIX], [_LT_PATH_TOOL_PREFIX]) dnl aclocal-1.4 backwards compatibility: dnl AC_DEFUN([AC_PATH_TOOL_PREFIX], []) # _LT_PATH_MAGIC # -------------- # find a file program that can recognize a shared library m4_defun([_LT_PATH_MAGIC], [_LT_PATH_TOOL_PREFIX(${ac_tool_prefix}file, /usr/bin$PATH_SEPARATOR$PATH) if test -z "$lt_cv_path_MAGIC_CMD"; then if test -n "$ac_tool_prefix"; then _LT_PATH_TOOL_PREFIX(file, /usr/bin$PATH_SEPARATOR$PATH) else MAGIC_CMD=: fi fi ])# _LT_PATH_MAGIC # LT_PATH_LD # ---------- # find the pathname to the GNU or non-GNU linker AC_DEFUN([LT_PATH_LD], [AC_REQUIRE([AC_PROG_CC])dnl AC_REQUIRE([AC_CANONICAL_HOST])dnl AC_REQUIRE([AC_CANONICAL_BUILD])dnl m4_require([_LT_DECL_SED])dnl m4_require([_LT_DECL_EGREP])dnl m4_require([_LT_PROG_ECHO_BACKSLASH])dnl AC_ARG_WITH([gnu-ld], [AS_HELP_STRING([--with-gnu-ld], [assume the C compiler uses GNU ld @<:@default=no@:>@])], [test no = "$withval" || with_gnu_ld=yes], [with_gnu_ld=no])dnl ac_prog=ld if test yes = "$GCC"; then # Check if gcc -print-prog-name=ld gives a path. AC_MSG_CHECKING([for ld used by $CC]) case $host in *-*-mingw*) # gcc leaves a trailing carriage return, which upsets mingw ac_prog=`($CC -print-prog-name=ld) 2>&5 | tr -d '\015'` ;; *) ac_prog=`($CC -print-prog-name=ld) 2>&5` ;; esac case $ac_prog in # Accept absolute paths. [[\\/]]* | ?:[[\\/]]*) re_direlt='/[[^/]][[^/]]*/\.\./' # Canonicalize the pathname of ld ac_prog=`$ECHO "$ac_prog"| $SED 's%\\\\%/%g'` while $ECHO "$ac_prog" | $GREP "$re_direlt" > /dev/null 2>&1; do ac_prog=`$ECHO $ac_prog| $SED "s%$re_direlt%/%"` done test -z "$LD" && LD=$ac_prog ;; "") # If it fails, then pretend we aren't using GCC. ac_prog=ld ;; *) # If it is relative, then search for the first ld in PATH. with_gnu_ld=unknown ;; esac elif test yes = "$with_gnu_ld"; then AC_MSG_CHECKING([for GNU ld]) else AC_MSG_CHECKING([for non-GNU ld]) fi AC_CACHE_VAL(lt_cv_path_LD, [if test -z "$LD"; then lt_save_ifs=$IFS; IFS=$PATH_SEPARATOR for ac_dir in $PATH; do IFS=$lt_save_ifs test -z "$ac_dir" && ac_dir=. if test -f "$ac_dir/$ac_prog" || test -f "$ac_dir/$ac_prog$ac_exeext"; then lt_cv_path_LD=$ac_dir/$ac_prog # Check to see if the program is GNU ld. I'd rather use --version, # but apparently some variants of GNU ld only accept -v. # Break only if it was the GNU/non-GNU ld that we prefer. case `"$lt_cv_path_LD" -v 2>&1 &1 conftest.i cat conftest.i conftest.i >conftest2.i : ${lt_DD:=$DD} AC_PATH_PROGS_FEATURE_CHECK([lt_DD], [dd], [if "$ac_path_lt_DD" bs=32 count=1 conftest.out 2>/dev/null; then cmp -s conftest.i conftest.out \ && ac_cv_path_lt_DD="$ac_path_lt_DD" ac_path_lt_DD_found=: fi]) rm -f conftest.i conftest2.i conftest.out]) ])# _LT_PATH_DD # _LT_CMD_TRUNCATE # ---------------- # find command to truncate a binary pipe m4_defun([_LT_CMD_TRUNCATE], [m4_require([_LT_PATH_DD]) AC_CACHE_CHECK([how to truncate binary pipes], [lt_cv_truncate_bin], [printf 0123456789abcdef0123456789abcdef >conftest.i cat conftest.i conftest.i >conftest2.i lt_cv_truncate_bin= if "$ac_cv_path_lt_DD" bs=32 count=1 conftest.out 2>/dev/null; then cmp -s conftest.i conftest.out \ && lt_cv_truncate_bin="$ac_cv_path_lt_DD bs=4096 count=1" fi rm -f conftest.i conftest2.i conftest.out test -z "$lt_cv_truncate_bin" && lt_cv_truncate_bin="$SED -e 4q"]) _LT_DECL([lt_truncate_bin], [lt_cv_truncate_bin], [1], [Command to truncate a binary pipe]) ])# _LT_CMD_TRUNCATE # _LT_CHECK_MAGIC_METHOD # ---------------------- # how to check for library dependencies # -- PORTME fill in with the dynamic library characteristics m4_defun([_LT_CHECK_MAGIC_METHOD], [m4_require([_LT_DECL_EGREP]) m4_require([_LT_DECL_OBJDUMP]) AC_CACHE_CHECK([how to recognize dependent libraries], lt_cv_deplibs_check_method, [lt_cv_file_magic_cmd='$MAGIC_CMD' lt_cv_file_magic_test_file= lt_cv_deplibs_check_method='unknown' # Need to set the preceding variable on all platforms that support # interlibrary dependencies. # 'none' -- dependencies not supported. # 'unknown' -- same as none, but documents that we really don't know. # 'pass_all' -- all dependencies passed with no checks. # 'test_compile' -- check by making test program. # 'file_magic [[regex]]' -- check by looking for files in library path # that responds to the $file_magic_cmd with a given extended regex. # If you have 'file' or equivalent on your system and you're not sure # whether 'pass_all' will *always* work, you probably want this one. case $host_os in aix[[4-9]]*) lt_cv_deplibs_check_method=pass_all ;; beos*) lt_cv_deplibs_check_method=pass_all ;; bsdi[[45]]*) lt_cv_deplibs_check_method='file_magic ELF [[0-9]][[0-9]]*-bit [[ML]]SB (shared object|dynamic lib)' lt_cv_file_magic_cmd='/usr/bin/file -L' lt_cv_file_magic_test_file=/shlib/libc.so ;; cygwin*) # func_win32_libid is a shell function defined in ltmain.sh lt_cv_deplibs_check_method='file_magic ^x86 archive import|^x86 DLL' lt_cv_file_magic_cmd='func_win32_libid' ;; mingw* | pw32*) # Base MSYS/MinGW do not provide the 'file' command needed by # func_win32_libid shell function, so use a weaker test based on 'objdump', # unless we find 'file', for example because we are cross-compiling. if ( file / ) >/dev/null 2>&1; then lt_cv_deplibs_check_method='file_magic ^x86 archive import|^x86 DLL' lt_cv_file_magic_cmd='func_win32_libid' else # Keep this pattern in sync with the one in func_win32_libid. lt_cv_deplibs_check_method='file_magic file format (pei*-i386(.*architecture: i386)?|pe-arm-wince|pe-x86-64)' lt_cv_file_magic_cmd='$OBJDUMP -f' fi ;; cegcc*) # use the weaker test based on 'objdump'. See mingw*. lt_cv_deplibs_check_method='file_magic file format pe-arm-.*little(.*architecture: arm)?' lt_cv_file_magic_cmd='$OBJDUMP -f' ;; darwin* | rhapsody*) lt_cv_deplibs_check_method=pass_all ;; freebsd* | dragonfly*) if echo __ELF__ | $CC -E - | $GREP __ELF__ > /dev/null; then case $host_cpu in i*86 ) # Not sure whether the presence of OpenBSD here was a mistake. # Let's accept both of them until this is cleared up. lt_cv_deplibs_check_method='file_magic (FreeBSD|OpenBSD|DragonFly)/i[[3-9]]86 (compact )?demand paged shared library' lt_cv_file_magic_cmd=/usr/bin/file lt_cv_file_magic_test_file=`echo /usr/lib/libc.so.*` ;; esac else lt_cv_deplibs_check_method=pass_all fi ;; haiku*) lt_cv_deplibs_check_method=pass_all ;; hpux10.20* | hpux11*) lt_cv_file_magic_cmd=/usr/bin/file case $host_cpu in ia64*) lt_cv_deplibs_check_method='file_magic (s[[0-9]][[0-9]][[0-9]]|ELF-[[0-9]][[0-9]]) shared object file - IA64' lt_cv_file_magic_test_file=/usr/lib/hpux32/libc.so ;; hppa*64*) [lt_cv_deplibs_check_method='file_magic (s[0-9][0-9][0-9]|ELF[ -][0-9][0-9])(-bit)?( [LM]SB)? shared object( file)?[, -]* PA-RISC [0-9]\.[0-9]'] lt_cv_file_magic_test_file=/usr/lib/pa20_64/libc.sl ;; *) lt_cv_deplibs_check_method='file_magic (s[[0-9]][[0-9]][[0-9]]|PA-RISC[[0-9]]\.[[0-9]]) shared library' lt_cv_file_magic_test_file=/usr/lib/libc.sl ;; esac ;; interix[[3-9]]*) # PIC code is broken on Interix 3.x, that's why |\.a not |_pic\.a here lt_cv_deplibs_check_method='match_pattern /lib[[^/]]+(\.so|\.a)$' ;; irix5* | irix6* | nonstopux*) case $LD in *-32|*"-32 ") libmagic=32-bit;; *-n32|*"-n32 ") libmagic=N32;; *-64|*"-64 ") libmagic=64-bit;; *) libmagic=never-match;; esac lt_cv_deplibs_check_method=pass_all ;; # This must be glibc/ELF. linux* | k*bsd*-gnu | kopensolaris*-gnu | gnu*) lt_cv_deplibs_check_method=pass_all ;; netbsd*) if echo __ELF__ | $CC -E - | $GREP __ELF__ > /dev/null; then lt_cv_deplibs_check_method='match_pattern /lib[[^/]]+(\.so\.[[0-9]]+\.[[0-9]]+|_pic\.a)$' else lt_cv_deplibs_check_method='match_pattern /lib[[^/]]+(\.so|_pic\.a)$' fi ;; newos6*) lt_cv_deplibs_check_method='file_magic ELF [[0-9]][[0-9]]*-bit [[ML]]SB (executable|dynamic lib)' lt_cv_file_magic_cmd=/usr/bin/file lt_cv_file_magic_test_file=/usr/lib/libnls.so ;; *nto* | *qnx*) lt_cv_deplibs_check_method=pass_all ;; openbsd* | bitrig*) if test -z "`echo __ELF__ | $CC -E - | $GREP __ELF__`"; then lt_cv_deplibs_check_method='match_pattern /lib[[^/]]+(\.so\.[[0-9]]+\.[[0-9]]+|\.so|_pic\.a)$' else lt_cv_deplibs_check_method='match_pattern /lib[[^/]]+(\.so\.[[0-9]]+\.[[0-9]]+|_pic\.a)$' fi ;; osf3* | osf4* | osf5*) lt_cv_deplibs_check_method=pass_all ;; rdos*) lt_cv_deplibs_check_method=pass_all ;; solaris*) lt_cv_deplibs_check_method=pass_all ;; sysv5* | sco3.2v5* | sco5v6* | unixware* | OpenUNIX* | sysv4*uw2*) lt_cv_deplibs_check_method=pass_all ;; sysv4 | sysv4.3*) case $host_vendor in motorola) lt_cv_deplibs_check_method='file_magic ELF [[0-9]][[0-9]]*-bit [[ML]]SB (shared object|dynamic lib) M[[0-9]][[0-9]]* Version [[0-9]]' lt_cv_file_magic_test_file=`echo /usr/lib/libc.so*` ;; ncr) lt_cv_deplibs_check_method=pass_all ;; sequent) lt_cv_file_magic_cmd='/bin/file' lt_cv_deplibs_check_method='file_magic ELF [[0-9]][[0-9]]*-bit [[LM]]SB (shared object|dynamic lib )' ;; sni) lt_cv_file_magic_cmd='/bin/file' lt_cv_deplibs_check_method="file_magic ELF [[0-9]][[0-9]]*-bit [[LM]]SB dynamic lib" lt_cv_file_magic_test_file=/lib/libc.so ;; siemens) lt_cv_deplibs_check_method=pass_all ;; pc) lt_cv_deplibs_check_method=pass_all ;; esac ;; tpf*) lt_cv_deplibs_check_method=pass_all ;; os2*) lt_cv_deplibs_check_method=pass_all ;; esac ]) file_magic_glob= want_nocaseglob=no if test "$build" = "$host"; then case $host_os in mingw* | pw32*) if ( shopt | grep nocaseglob ) >/dev/null 2>&1; then want_nocaseglob=yes else file_magic_glob=`echo aAbBcCdDeEfFgGhHiIjJkKlLmMnNoOpPqQrRsStTuUvVwWxXyYzZ | $SED -e "s/\(..\)/s\/[[\1]]\/[[\1]]\/g;/g"` fi ;; esac fi file_magic_cmd=$lt_cv_file_magic_cmd deplibs_check_method=$lt_cv_deplibs_check_method test -z "$deplibs_check_method" && deplibs_check_method=unknown _LT_DECL([], [deplibs_check_method], [1], [Method to check whether dependent libraries are shared objects]) _LT_DECL([], [file_magic_cmd], [1], [Command to use when deplibs_check_method = "file_magic"]) _LT_DECL([], [file_magic_glob], [1], [How to find potential files when deplibs_check_method = "file_magic"]) _LT_DECL([], [want_nocaseglob], [1], [Find potential files using nocaseglob when deplibs_check_method = "file_magic"]) ])# _LT_CHECK_MAGIC_METHOD # LT_PATH_NM # ---------- # find the pathname to a BSD- or MS-compatible name lister AC_DEFUN([LT_PATH_NM], [AC_REQUIRE([AC_PROG_CC])dnl AC_CACHE_CHECK([for BSD- or MS-compatible name lister (nm)], lt_cv_path_NM, [if test -n "$NM"; then # Let the user override the test. lt_cv_path_NM=$NM else lt_nm_to_check=${ac_tool_prefix}nm if test -n "$ac_tool_prefix" && test "$build" = "$host"; then lt_nm_to_check="$lt_nm_to_check nm" fi for lt_tmp_nm in $lt_nm_to_check; do lt_save_ifs=$IFS; IFS=$PATH_SEPARATOR for ac_dir in $PATH /usr/ccs/bin/elf /usr/ccs/bin /usr/ucb /bin; do IFS=$lt_save_ifs test -z "$ac_dir" && ac_dir=. tmp_nm=$ac_dir/$lt_tmp_nm if test -f "$tmp_nm" || test -f "$tmp_nm$ac_exeext"; then # Check to see if the nm accepts a BSD-compat flag. # Adding the 'sed 1q' prevents false positives on HP-UX, which says: # nm: unknown option "B" ignored # Tru64's nm complains that /dev/null is an invalid object file # MSYS converts /dev/null to NUL, MinGW nm treats NUL as empty case $build_os in mingw*) lt_bad_file=conftest.nm/nofile ;; *) lt_bad_file=/dev/null ;; esac case `"$tmp_nm" -B $lt_bad_file 2>&1 | sed '1q'` in *$lt_bad_file* | *'Invalid file or object type'*) lt_cv_path_NM="$tmp_nm -B" break 2 ;; *) case `"$tmp_nm" -p /dev/null 2>&1 | sed '1q'` in */dev/null*) lt_cv_path_NM="$tmp_nm -p" break 2 ;; *) lt_cv_path_NM=${lt_cv_path_NM="$tmp_nm"} # keep the first match, but continue # so that we can try to find one that supports BSD flags ;; esac ;; esac fi done IFS=$lt_save_ifs done : ${lt_cv_path_NM=no} fi]) if test no != "$lt_cv_path_NM"; then NM=$lt_cv_path_NM else # Didn't find any BSD compatible name lister, look for dumpbin. if test -n "$DUMPBIN"; then : # Let the user override the test. else AC_CHECK_TOOLS(DUMPBIN, [dumpbin "link -dump"], :) case `$DUMPBIN -symbols -headers /dev/null 2>&1 | sed '1q'` in *COFF*) DUMPBIN="$DUMPBIN -symbols -headers" ;; *) DUMPBIN=: ;; esac fi AC_SUBST([DUMPBIN]) if test : != "$DUMPBIN"; then NM=$DUMPBIN fi fi test -z "$NM" && NM=nm AC_SUBST([NM]) _LT_DECL([], [NM], [1], [A BSD- or MS-compatible name lister])dnl AC_CACHE_CHECK([the name lister ($NM) interface], [lt_cv_nm_interface], [lt_cv_nm_interface="BSD nm" echo "int some_variable = 0;" > conftest.$ac_ext (eval echo "\"\$as_me:$LINENO: $ac_compile\"" >&AS_MESSAGE_LOG_FD) (eval "$ac_compile" 2>conftest.err) cat conftest.err >&AS_MESSAGE_LOG_FD (eval echo "\"\$as_me:$LINENO: $NM \\\"conftest.$ac_objext\\\"\"" >&AS_MESSAGE_LOG_FD) (eval "$NM \"conftest.$ac_objext\"" 2>conftest.err > conftest.out) cat conftest.err >&AS_MESSAGE_LOG_FD (eval echo "\"\$as_me:$LINENO: output\"" >&AS_MESSAGE_LOG_FD) cat conftest.out >&AS_MESSAGE_LOG_FD if $GREP 'External.*some_variable' conftest.out > /dev/null; then lt_cv_nm_interface="MS dumpbin" fi rm -f conftest*]) ])# LT_PATH_NM # Old names: AU_ALIAS([AM_PROG_NM], [LT_PATH_NM]) AU_ALIAS([AC_PROG_NM], [LT_PATH_NM]) dnl aclocal-1.4 backwards compatibility: dnl AC_DEFUN([AM_PROG_NM], []) dnl AC_DEFUN([AC_PROG_NM], []) # _LT_CHECK_SHAREDLIB_FROM_LINKLIB # -------------------------------- # how to determine the name of the shared library # associated with a specific link library. # -- PORTME fill in with the dynamic library characteristics m4_defun([_LT_CHECK_SHAREDLIB_FROM_LINKLIB], [m4_require([_LT_DECL_EGREP]) m4_require([_LT_DECL_OBJDUMP]) m4_require([_LT_DECL_DLLTOOL]) AC_CACHE_CHECK([how to associate runtime and link libraries], lt_cv_sharedlib_from_linklib_cmd, [lt_cv_sharedlib_from_linklib_cmd='unknown' case $host_os in cygwin* | mingw* | pw32* | cegcc*) # two different shell functions defined in ltmain.sh; # decide which one to use based on capabilities of $DLLTOOL case `$DLLTOOL --help 2>&1` in *--identify-strict*) lt_cv_sharedlib_from_linklib_cmd=func_cygming_dll_for_implib ;; *) lt_cv_sharedlib_from_linklib_cmd=func_cygming_dll_for_implib_fallback ;; esac ;; *) # fallback: assume linklib IS sharedlib lt_cv_sharedlib_from_linklib_cmd=$ECHO ;; esac ]) sharedlib_from_linklib_cmd=$lt_cv_sharedlib_from_linklib_cmd test -z "$sharedlib_from_linklib_cmd" && sharedlib_from_linklib_cmd=$ECHO _LT_DECL([], [sharedlib_from_linklib_cmd], [1], [Command to associate shared and link libraries]) ])# _LT_CHECK_SHAREDLIB_FROM_LINKLIB # _LT_PATH_MANIFEST_TOOL # ---------------------- # locate the manifest tool m4_defun([_LT_PATH_MANIFEST_TOOL], [AC_CHECK_TOOL(MANIFEST_TOOL, mt, :) test -z "$MANIFEST_TOOL" && MANIFEST_TOOL=mt AC_CACHE_CHECK([if $MANIFEST_TOOL is a manifest tool], [lt_cv_path_mainfest_tool], [lt_cv_path_mainfest_tool=no echo "$as_me:$LINENO: $MANIFEST_TOOL '-?'" >&AS_MESSAGE_LOG_FD $MANIFEST_TOOL '-?' 2>conftest.err > conftest.out cat conftest.err >&AS_MESSAGE_LOG_FD if $GREP 'Manifest Tool' conftest.out > /dev/null; then lt_cv_path_mainfest_tool=yes fi rm -f conftest*]) if test yes != "$lt_cv_path_mainfest_tool"; then MANIFEST_TOOL=: fi _LT_DECL([], [MANIFEST_TOOL], [1], [Manifest tool])dnl ])# _LT_PATH_MANIFEST_TOOL # _LT_DLL_DEF_P([FILE]) # --------------------- # True iff FILE is a Windows DLL '.def' file. # Keep in sync with func_dll_def_p in the libtool script AC_DEFUN([_LT_DLL_DEF_P], [dnl test DEF = "`$SED -n dnl -e '\''s/^[[ ]]*//'\'' dnl Strip leading whitespace -e '\''/^\(;.*\)*$/d'\'' dnl Delete empty lines and comments -e '\''s/^\(EXPORTS\|LIBRARY\)\([[ ]].*\)*$/DEF/p'\'' dnl -e q dnl Only consider the first "real" line $1`" dnl ])# _LT_DLL_DEF_P # LT_LIB_M # -------- # check for math library AC_DEFUN([LT_LIB_M], [AC_REQUIRE([AC_CANONICAL_HOST])dnl LIBM= case $host in *-*-beos* | *-*-cegcc* | *-*-cygwin* | *-*-haiku* | *-*-pw32* | *-*-darwin*) # These system don't have libm, or don't need it ;; *-ncr-sysv4.3*) AC_CHECK_LIB(mw, _mwvalidcheckl, LIBM=-lmw) AC_CHECK_LIB(m, cos, LIBM="$LIBM -lm") ;; *) AC_CHECK_LIB(m, cos, LIBM=-lm) ;; esac AC_SUBST([LIBM]) ])# LT_LIB_M # Old name: AU_ALIAS([AC_CHECK_LIBM], [LT_LIB_M]) dnl aclocal-1.4 backwards compatibility: dnl AC_DEFUN([AC_CHECK_LIBM], []) # _LT_COMPILER_NO_RTTI([TAGNAME]) # ------------------------------- m4_defun([_LT_COMPILER_NO_RTTI], [m4_require([_LT_TAG_COMPILER])dnl _LT_TAGVAR(lt_prog_compiler_no_builtin_flag, $1)= if test yes = "$GCC"; then case $cc_basename in nvcc*) _LT_TAGVAR(lt_prog_compiler_no_builtin_flag, $1)=' -Xcompiler -fno-builtin' ;; *) _LT_TAGVAR(lt_prog_compiler_no_builtin_flag, $1)=' -fno-builtin' ;; esac _LT_COMPILER_OPTION([if $compiler supports -fno-rtti -fno-exceptions], lt_cv_prog_compiler_rtti_exceptions, [-fno-rtti -fno-exceptions], [], [_LT_TAGVAR(lt_prog_compiler_no_builtin_flag, $1)="$_LT_TAGVAR(lt_prog_compiler_no_builtin_flag, $1) -fno-rtti -fno-exceptions"]) fi _LT_TAGDECL([no_builtin_flag], [lt_prog_compiler_no_builtin_flag], [1], [Compiler flag to turn off builtin functions]) ])# _LT_COMPILER_NO_RTTI # _LT_CMD_GLOBAL_SYMBOLS # ---------------------- m4_defun([_LT_CMD_GLOBAL_SYMBOLS], [AC_REQUIRE([AC_CANONICAL_HOST])dnl AC_REQUIRE([AC_PROG_CC])dnl AC_REQUIRE([AC_PROG_AWK])dnl AC_REQUIRE([LT_PATH_NM])dnl AC_REQUIRE([LT_PATH_LD])dnl m4_require([_LT_DECL_SED])dnl m4_require([_LT_DECL_EGREP])dnl m4_require([_LT_TAG_COMPILER])dnl # Check for command to grab the raw symbol name followed by C symbol from nm. AC_MSG_CHECKING([command to parse $NM output from $compiler object]) AC_CACHE_VAL([lt_cv_sys_global_symbol_pipe], [ # These are sane defaults that work on at least a few old systems. # [They come from Ultrix. What could be older than Ultrix?!! ;)] # Character class describing NM global symbol codes. symcode='[[BCDEGRST]]' # Regexp to match symbols that can be accessed directly from C. sympat='\([[_A-Za-z]][[_A-Za-z0-9]]*\)' # Define system-specific variables. case $host_os in aix*) symcode='[[BCDT]]' ;; cygwin* | mingw* | pw32* | cegcc*) symcode='[[ABCDGISTW]]' ;; hpux*) if test ia64 = "$host_cpu"; then symcode='[[ABCDEGRST]]' fi ;; irix* | nonstopux*) symcode='[[BCDEGRST]]' ;; osf*) symcode='[[BCDEGQRST]]' ;; solaris*) symcode='[[BDRT]]' ;; sco3.2v5*) symcode='[[DT]]' ;; sysv4.2uw2*) symcode='[[DT]]' ;; sysv5* | sco5v6* | unixware* | OpenUNIX*) symcode='[[ABDT]]' ;; sysv4) symcode='[[DFNSTU]]' ;; esac # If we're using GNU nm, then use its standard symbol codes. case `$NM -V 2>&1` in *GNU* | *'with BFD'*) symcode='[[ABCDGIRSTW]]' ;; esac if test "$lt_cv_nm_interface" = "MS dumpbin"; then # Gets list of data symbols to import. lt_cv_sys_global_symbol_to_import="sed -n -e 's/^I .* \(.*\)$/\1/p'" # Adjust the below global symbol transforms to fixup imported variables. lt_cdecl_hook=" -e 's/^I .* \(.*\)$/extern __declspec(dllimport) char \1;/p'" lt_c_name_hook=" -e 's/^I .* \(.*\)$/ {\"\1\", (void *) 0},/p'" lt_c_name_lib_hook="\ -e 's/^I .* \(lib.*\)$/ {\"\1\", (void *) 0},/p'\ -e 's/^I .* \(.*\)$/ {\"lib\1\", (void *) 0},/p'" else # Disable hooks by default. lt_cv_sys_global_symbol_to_import= lt_cdecl_hook= lt_c_name_hook= lt_c_name_lib_hook= fi # Transform an extracted symbol line into a proper C declaration. # Some systems (esp. on ia64) link data and code symbols differently, # so use this general approach. lt_cv_sys_global_symbol_to_cdecl="sed -n"\ $lt_cdecl_hook\ " -e 's/^T .* \(.*\)$/extern int \1();/p'"\ " -e 's/^$symcode$symcode* .* \(.*\)$/extern char \1;/p'" # Transform an extracted symbol line into symbol name and symbol address lt_cv_sys_global_symbol_to_c_name_address="sed -n"\ $lt_c_name_hook\ " -e 's/^: \(.*\) .*$/ {\"\1\", (void *) 0},/p'"\ " -e 's/^$symcode$symcode* .* \(.*\)$/ {\"\1\", (void *) \&\1},/p'" # Transform an extracted symbol line into symbol name with lib prefix and # symbol address. lt_cv_sys_global_symbol_to_c_name_address_lib_prefix="sed -n"\ $lt_c_name_lib_hook\ " -e 's/^: \(.*\) .*$/ {\"\1\", (void *) 0},/p'"\ " -e 's/^$symcode$symcode* .* \(lib.*\)$/ {\"\1\", (void *) \&\1},/p'"\ " -e 's/^$symcode$symcode* .* \(.*\)$/ {\"lib\1\", (void *) \&\1},/p'" # Handle CRLF in mingw tool chain opt_cr= case $build_os in mingw*) opt_cr=`$ECHO 'x\{0,1\}' | tr x '\015'` # option cr in regexp ;; esac # Try without a prefix underscore, then with it. for ac_symprfx in "" "_"; do # Transform symcode, sympat, and symprfx into a raw symbol and a C symbol. symxfrm="\\1 $ac_symprfx\\2 \\2" # Write the raw and C identifiers. if test "$lt_cv_nm_interface" = "MS dumpbin"; then # Fake it for dumpbin and say T for any non-static function, # D for any global variable and I for any imported variable. # Also find C++ and __fastcall symbols from MSVC++, # which start with @ or ?. lt_cv_sys_global_symbol_pipe="$AWK ['"\ " {last_section=section; section=\$ 3};"\ " /^COFF SYMBOL TABLE/{for(i in hide) delete hide[i]};"\ " /Section length .*#relocs.*(pick any)/{hide[last_section]=1};"\ " /^ *Symbol name *: /{split(\$ 0,sn,\":\"); si=substr(sn[2],2)};"\ " /^ *Type *: code/{print \"T\",si,substr(si,length(prfx))};"\ " /^ *Type *: data/{print \"I\",si,substr(si,length(prfx))};"\ " \$ 0!~/External *\|/{next};"\ " / 0+ UNDEF /{next}; / UNDEF \([^|]\)*()/{next};"\ " {if(hide[section]) next};"\ " {f=\"D\"}; \$ 0~/\(\).*\|/{f=\"T\"};"\ " {split(\$ 0,a,/\||\r/); split(a[2],s)};"\ " s[1]~/^[@?]/{print f,s[1],s[1]; next};"\ " s[1]~prfx {split(s[1],t,\"@\"); print f,t[1],substr(t[1],length(prfx))}"\ " ' prfx=^$ac_symprfx]" else lt_cv_sys_global_symbol_pipe="sed -n -e 's/^.*[[ ]]\($symcode$symcode*\)[[ ]][[ ]]*$ac_symprfx$sympat$opt_cr$/$symxfrm/p'" fi lt_cv_sys_global_symbol_pipe="$lt_cv_sys_global_symbol_pipe | sed '/ __gnu_lto/d'" # Check to see that the pipe works correctly. pipe_works=no rm -f conftest* cat > conftest.$ac_ext <<_LT_EOF #ifdef __cplusplus extern "C" { #endif char nm_test_var; void nm_test_func(void); void nm_test_func(void){} #ifdef __cplusplus } #endif int main(){nm_test_var='a';nm_test_func();return(0);} _LT_EOF if AC_TRY_EVAL(ac_compile); then # Now try to grab the symbols. nlist=conftest.nm if AC_TRY_EVAL(NM conftest.$ac_objext \| "$lt_cv_sys_global_symbol_pipe" \> $nlist) && test -s "$nlist"; then # Try sorting and uniquifying the output. if sort "$nlist" | uniq > "$nlist"T; then mv -f "$nlist"T "$nlist" else rm -f "$nlist"T fi # Make sure that we snagged all the symbols we need. if $GREP ' nm_test_var$' "$nlist" >/dev/null; then if $GREP ' nm_test_func$' "$nlist" >/dev/null; then cat <<_LT_EOF > conftest.$ac_ext /* Keep this code in sync between libtool.m4, ltmain, lt_system.h, and tests. */ #if defined _WIN32 || defined __CYGWIN__ || defined _WIN32_WCE /* DATA imports from DLLs on WIN32 can't be const, because runtime relocations are performed -- see ld's documentation on pseudo-relocs. */ # define LT@&t@_DLSYM_CONST #elif defined __osf__ /* This system does not cope well with relocations in const data. */ # define LT@&t@_DLSYM_CONST #else # define LT@&t@_DLSYM_CONST const #endif #ifdef __cplusplus extern "C" { #endif _LT_EOF # Now generate the symbol file. eval "$lt_cv_sys_global_symbol_to_cdecl"' < "$nlist" | $GREP -v main >> conftest.$ac_ext' cat <<_LT_EOF >> conftest.$ac_ext /* The mapping between symbol names and symbols. */ LT@&t@_DLSYM_CONST struct { const char *name; void *address; } lt__PROGRAM__LTX_preloaded_symbols[[]] = { { "@PROGRAM@", (void *) 0 }, _LT_EOF $SED "s/^$symcode$symcode* .* \(.*\)$/ {\"\1\", (void *) \&\1},/" < "$nlist" | $GREP -v main >> conftest.$ac_ext cat <<\_LT_EOF >> conftest.$ac_ext {0, (void *) 0} }; /* This works around a problem in FreeBSD linker */ #ifdef FREEBSD_WORKAROUND static const void *lt_preloaded_setup() { return lt__PROGRAM__LTX_preloaded_symbols; } #endif #ifdef __cplusplus } #endif _LT_EOF # Now try linking the two files. mv conftest.$ac_objext conftstm.$ac_objext lt_globsym_save_LIBS=$LIBS lt_globsym_save_CFLAGS=$CFLAGS LIBS=conftstm.$ac_objext CFLAGS="$CFLAGS$_LT_TAGVAR(lt_prog_compiler_no_builtin_flag, $1)" if AC_TRY_EVAL(ac_link) && test -s conftest$ac_exeext; then pipe_works=yes fi LIBS=$lt_globsym_save_LIBS CFLAGS=$lt_globsym_save_CFLAGS else echo "cannot find nm_test_func in $nlist" >&AS_MESSAGE_LOG_FD fi else echo "cannot find nm_test_var in $nlist" >&AS_MESSAGE_LOG_FD fi else echo "cannot run $lt_cv_sys_global_symbol_pipe" >&AS_MESSAGE_LOG_FD fi else echo "$progname: failed program was:" >&AS_MESSAGE_LOG_FD cat conftest.$ac_ext >&5 fi rm -rf conftest* conftst* # Do not use the global_symbol_pipe unless it works. if test yes = "$pipe_works"; then break else lt_cv_sys_global_symbol_pipe= fi done ]) if test -z "$lt_cv_sys_global_symbol_pipe"; then lt_cv_sys_global_symbol_to_cdecl= fi if test -z "$lt_cv_sys_global_symbol_pipe$lt_cv_sys_global_symbol_to_cdecl"; then AC_MSG_RESULT(failed) else AC_MSG_RESULT(ok) fi # Response file support. if test "$lt_cv_nm_interface" = "MS dumpbin"; then nm_file_list_spec='@' elif $NM --help 2>/dev/null | grep '[[@]]FILE' >/dev/null; then nm_file_list_spec='@' fi _LT_DECL([global_symbol_pipe], [lt_cv_sys_global_symbol_pipe], [1], [Take the output of nm and produce a listing of raw symbols and C names]) _LT_DECL([global_symbol_to_cdecl], [lt_cv_sys_global_symbol_to_cdecl], [1], [Transform the output of nm in a proper C declaration]) _LT_DECL([global_symbol_to_import], [lt_cv_sys_global_symbol_to_import], [1], [Transform the output of nm into a list of symbols to manually relocate]) _LT_DECL([global_symbol_to_c_name_address], [lt_cv_sys_global_symbol_to_c_name_address], [1], [Transform the output of nm in a C name address pair]) _LT_DECL([global_symbol_to_c_name_address_lib_prefix], [lt_cv_sys_global_symbol_to_c_name_address_lib_prefix], [1], [Transform the output of nm in a C name address pair when lib prefix is needed]) _LT_DECL([nm_interface], [lt_cv_nm_interface], [1], [The name lister interface]) _LT_DECL([], [nm_file_list_spec], [1], [Specify filename containing input files for $NM]) ]) # _LT_CMD_GLOBAL_SYMBOLS # _LT_COMPILER_PIC([TAGNAME]) # --------------------------- m4_defun([_LT_COMPILER_PIC], [m4_require([_LT_TAG_COMPILER])dnl _LT_TAGVAR(lt_prog_compiler_wl, $1)= _LT_TAGVAR(lt_prog_compiler_pic, $1)= _LT_TAGVAR(lt_prog_compiler_static, $1)= m4_if([$1], [CXX], [ # C++ specific cases for pic, static, wl, etc. if test yes = "$GXX"; then _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,' _LT_TAGVAR(lt_prog_compiler_static, $1)='-static' case $host_os in aix*) # All AIX code is PIC. if test ia64 = "$host_cpu"; then # AIX 5 now supports IA64 processor _LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic' fi _LT_TAGVAR(lt_prog_compiler_pic, $1)='-fPIC' ;; amigaos*) case $host_cpu in powerpc) # see comment about AmigaOS4 .so support _LT_TAGVAR(lt_prog_compiler_pic, $1)='-fPIC' ;; m68k) # FIXME: we need at least 68020 code to build shared libraries, but # adding the '-m68020' flag to GCC prevents building anything better, # like '-m68040'. _LT_TAGVAR(lt_prog_compiler_pic, $1)='-m68020 -resident32 -malways-restore-a4' ;; esac ;; beos* | irix5* | irix6* | nonstopux* | osf3* | osf4* | osf5*) # PIC is the default for these OSes. ;; mingw* | cygwin* | os2* | pw32* | cegcc*) # This hack is so that the source file can tell whether it is being # built for inclusion in a dll (and should export symbols for example). # Although the cygwin gcc ignores -fPIC, still need this for old-style # (--disable-auto-import) libraries m4_if([$1], [GCJ], [], [_LT_TAGVAR(lt_prog_compiler_pic, $1)='-DDLL_EXPORT']) case $host_os in os2*) _LT_TAGVAR(lt_prog_compiler_static, $1)='$wl-static' ;; esac ;; darwin* | rhapsody*) # PIC is the default on this platform # Common symbols not allowed in MH_DYLIB files _LT_TAGVAR(lt_prog_compiler_pic, $1)='-fno-common' ;; *djgpp*) # DJGPP does not support shared libraries at all _LT_TAGVAR(lt_prog_compiler_pic, $1)= ;; haiku*) # PIC is the default for Haiku. # The "-static" flag exists, but is broken. _LT_TAGVAR(lt_prog_compiler_static, $1)= ;; interix[[3-9]]*) # Interix 3.x gcc -fpic/-fPIC options generate broken code. # Instead, we relocate shared libraries at runtime. ;; sysv4*MP*) if test -d /usr/nec; then _LT_TAGVAR(lt_prog_compiler_pic, $1)=-Kconform_pic fi ;; hpux*) # PIC is the default for 64-bit PA HP-UX, but not for 32-bit # PA HP-UX. On IA64 HP-UX, PIC is the default but the pic flag # sets the default TLS model and affects inlining. case $host_cpu in hppa*64*) ;; *) _LT_TAGVAR(lt_prog_compiler_pic, $1)='-fPIC' ;; esac ;; *qnx* | *nto*) # QNX uses GNU C++, but need to define -shared option too, otherwise # it will coredump. _LT_TAGVAR(lt_prog_compiler_pic, $1)='-fPIC -shared' ;; *) _LT_TAGVAR(lt_prog_compiler_pic, $1)='-fPIC' ;; esac else case $host_os in aix[[4-9]]*) # All AIX code is PIC. if test ia64 = "$host_cpu"; then # AIX 5 now supports IA64 processor _LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic' else _LT_TAGVAR(lt_prog_compiler_static, $1)='-bnso -bI:/lib/syscalls.exp' fi ;; chorus*) case $cc_basename in cxch68*) # Green Hills C++ Compiler # _LT_TAGVAR(lt_prog_compiler_static, $1)="--no_auto_instantiation -u __main -u __premain -u _abort -r $COOL_DIR/lib/libOrb.a $MVME_DIR/lib/CC/libC.a $MVME_DIR/lib/classix/libcx.s.a" ;; esac ;; mingw* | cygwin* | os2* | pw32* | cegcc*) # This hack is so that the source file can tell whether it is being # built for inclusion in a dll (and should export symbols for example). m4_if([$1], [GCJ], [], [_LT_TAGVAR(lt_prog_compiler_pic, $1)='-DDLL_EXPORT']) ;; dgux*) case $cc_basename in ec++*) _LT_TAGVAR(lt_prog_compiler_pic, $1)='-KPIC' ;; ghcx*) # Green Hills C++ Compiler _LT_TAGVAR(lt_prog_compiler_pic, $1)='-pic' ;; *) ;; esac ;; freebsd* | dragonfly*) # FreeBSD uses GNU C++ ;; hpux9* | hpux10* | hpux11*) case $cc_basename in CC*) _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,' _LT_TAGVAR(lt_prog_compiler_static, $1)='$wl-a ${wl}archive' if test ia64 != "$host_cpu"; then _LT_TAGVAR(lt_prog_compiler_pic, $1)='+Z' fi ;; aCC*) _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,' _LT_TAGVAR(lt_prog_compiler_static, $1)='$wl-a ${wl}archive' case $host_cpu in hppa*64*|ia64*) # +Z the default ;; *) _LT_TAGVAR(lt_prog_compiler_pic, $1)='+Z' ;; esac ;; *) ;; esac ;; interix*) # This is c89, which is MS Visual C++ (no shared libs) # Anyone wants to do a port? ;; irix5* | irix6* | nonstopux*) case $cc_basename in CC*) _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,' _LT_TAGVAR(lt_prog_compiler_static, $1)='-non_shared' # CC pic flag -KPIC is the default. ;; *) ;; esac ;; linux* | k*bsd*-gnu | kopensolaris*-gnu | gnu*) case $cc_basename in KCC*) # KAI C++ Compiler _LT_TAGVAR(lt_prog_compiler_wl, $1)='--backend -Wl,' _LT_TAGVAR(lt_prog_compiler_pic, $1)='-fPIC' ;; ecpc* ) # old Intel C++ for x86_64, which still supported -KPIC. _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,' _LT_TAGVAR(lt_prog_compiler_pic, $1)='-KPIC' _LT_TAGVAR(lt_prog_compiler_static, $1)='-static' ;; icpc* ) # Intel C++, used to be incompatible with GCC. # ICC 10 doesn't accept -KPIC any more. _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,' _LT_TAGVAR(lt_prog_compiler_pic, $1)='-fPIC' _LT_TAGVAR(lt_prog_compiler_static, $1)='-static' ;; pgCC* | pgcpp*) # Portland Group C++ compiler _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,' _LT_TAGVAR(lt_prog_compiler_pic, $1)='-fpic' _LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic' ;; cxx*) # Compaq C++ # Make sure the PIC flag is empty. It appears that all Alpha # Linux and Compaq Tru64 Unix objects are PIC. _LT_TAGVAR(lt_prog_compiler_pic, $1)= _LT_TAGVAR(lt_prog_compiler_static, $1)='-non_shared' ;; xlc* | xlC* | bgxl[[cC]]* | mpixl[[cC]]*) # IBM XL 8.0, 9.0 on PPC and BlueGene _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,' _LT_TAGVAR(lt_prog_compiler_pic, $1)='-qpic' _LT_TAGVAR(lt_prog_compiler_static, $1)='-qstaticlink' ;; *) case `$CC -V 2>&1 | sed 5q` in *Sun\ C*) # Sun C++ 5.9 _LT_TAGVAR(lt_prog_compiler_pic, $1)='-KPIC' _LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic' _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Qoption ld ' ;; esac ;; esac ;; lynxos*) ;; m88k*) ;; mvs*) case $cc_basename in cxx*) _LT_TAGVAR(lt_prog_compiler_pic, $1)='-W c,exportall' ;; *) ;; esac ;; netbsd*) ;; *qnx* | *nto*) # QNX uses GNU C++, but need to define -shared option too, otherwise # it will coredump. _LT_TAGVAR(lt_prog_compiler_pic, $1)='-fPIC -shared' ;; osf3* | osf4* | osf5*) case $cc_basename in KCC*) _LT_TAGVAR(lt_prog_compiler_wl, $1)='--backend -Wl,' ;; RCC*) # Rational C++ 2.4.1 _LT_TAGVAR(lt_prog_compiler_pic, $1)='-pic' ;; cxx*) # Digital/Compaq C++ _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,' # Make sure the PIC flag is empty. It appears that all Alpha # Linux and Compaq Tru64 Unix objects are PIC. _LT_TAGVAR(lt_prog_compiler_pic, $1)= _LT_TAGVAR(lt_prog_compiler_static, $1)='-non_shared' ;; *) ;; esac ;; psos*) ;; solaris*) case $cc_basename in CC* | sunCC*) # Sun C++ 4.2, 5.x and Centerline C++ _LT_TAGVAR(lt_prog_compiler_pic, $1)='-KPIC' _LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic' _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Qoption ld ' ;; gcx*) # Green Hills C++ Compiler _LT_TAGVAR(lt_prog_compiler_pic, $1)='-PIC' ;; *) ;; esac ;; sunos4*) case $cc_basename in CC*) # Sun C++ 4.x _LT_TAGVAR(lt_prog_compiler_pic, $1)='-pic' _LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic' ;; lcc*) # Lucid _LT_TAGVAR(lt_prog_compiler_pic, $1)='-pic' ;; *) ;; esac ;; sysv5* | unixware* | sco3.2v5* | sco5v6* | OpenUNIX*) case $cc_basename in CC*) _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,' _LT_TAGVAR(lt_prog_compiler_pic, $1)='-KPIC' _LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic' ;; esac ;; tandem*) case $cc_basename in NCC*) # NonStop-UX NCC 3.20 _LT_TAGVAR(lt_prog_compiler_pic, $1)='-KPIC' ;; *) ;; esac ;; vxworks*) ;; *) _LT_TAGVAR(lt_prog_compiler_can_build_shared, $1)=no ;; esac fi ], [ if test yes = "$GCC"; then _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,' _LT_TAGVAR(lt_prog_compiler_static, $1)='-static' case $host_os in aix*) # All AIX code is PIC. if test ia64 = "$host_cpu"; then # AIX 5 now supports IA64 processor _LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic' fi _LT_TAGVAR(lt_prog_compiler_pic, $1)='-fPIC' ;; amigaos*) case $host_cpu in powerpc) # see comment about AmigaOS4 .so support _LT_TAGVAR(lt_prog_compiler_pic, $1)='-fPIC' ;; m68k) # FIXME: we need at least 68020 code to build shared libraries, but # adding the '-m68020' flag to GCC prevents building anything better, # like '-m68040'. _LT_TAGVAR(lt_prog_compiler_pic, $1)='-m68020 -resident32 -malways-restore-a4' ;; esac ;; beos* | irix5* | irix6* | nonstopux* | osf3* | osf4* | osf5*) # PIC is the default for these OSes. ;; mingw* | cygwin* | pw32* | os2* | cegcc*) # This hack is so that the source file can tell whether it is being # built for inclusion in a dll (and should export symbols for example). # Although the cygwin gcc ignores -fPIC, still need this for old-style # (--disable-auto-import) libraries m4_if([$1], [GCJ], [], [_LT_TAGVAR(lt_prog_compiler_pic, $1)='-DDLL_EXPORT']) case $host_os in os2*) _LT_TAGVAR(lt_prog_compiler_static, $1)='$wl-static' ;; esac ;; darwin* | rhapsody*) # PIC is the default on this platform # Common symbols not allowed in MH_DYLIB files _LT_TAGVAR(lt_prog_compiler_pic, $1)='-fno-common' ;; haiku*) # PIC is the default for Haiku. # The "-static" flag exists, but is broken. _LT_TAGVAR(lt_prog_compiler_static, $1)= ;; hpux*) # PIC is the default for 64-bit PA HP-UX, but not for 32-bit # PA HP-UX. On IA64 HP-UX, PIC is the default but the pic flag # sets the default TLS model and affects inlining. case $host_cpu in hppa*64*) # +Z the default ;; *) _LT_TAGVAR(lt_prog_compiler_pic, $1)='-fPIC' ;; esac ;; interix[[3-9]]*) # Interix 3.x gcc -fpic/-fPIC options generate broken code. # Instead, we relocate shared libraries at runtime. ;; msdosdjgpp*) # Just because we use GCC doesn't mean we suddenly get shared libraries # on systems that don't support them. _LT_TAGVAR(lt_prog_compiler_can_build_shared, $1)=no enable_shared=no ;; *nto* | *qnx*) # QNX uses GNU C++, but need to define -shared option too, otherwise # it will coredump. _LT_TAGVAR(lt_prog_compiler_pic, $1)='-fPIC -shared' ;; sysv4*MP*) if test -d /usr/nec; then _LT_TAGVAR(lt_prog_compiler_pic, $1)=-Kconform_pic fi ;; *) _LT_TAGVAR(lt_prog_compiler_pic, $1)='-fPIC' ;; esac case $cc_basename in nvcc*) # Cuda Compiler Driver 2.2 _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Xlinker ' if test -n "$_LT_TAGVAR(lt_prog_compiler_pic, $1)"; then _LT_TAGVAR(lt_prog_compiler_pic, $1)="-Xcompiler $_LT_TAGVAR(lt_prog_compiler_pic, $1)" fi ;; esac else # PORTME Check for flag to pass linker flags through the system compiler. case $host_os in aix*) _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,' if test ia64 = "$host_cpu"; then # AIX 5 now supports IA64 processor _LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic' else _LT_TAGVAR(lt_prog_compiler_static, $1)='-bnso -bI:/lib/syscalls.exp' fi ;; darwin* | rhapsody*) # PIC is the default on this platform # Common symbols not allowed in MH_DYLIB files _LT_TAGVAR(lt_prog_compiler_pic, $1)='-fno-common' case $cc_basename in nagfor*) # NAG Fortran compiler _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,-Wl,,' _LT_TAGVAR(lt_prog_compiler_pic, $1)='-PIC' _LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic' ;; esac ;; mingw* | cygwin* | pw32* | os2* | cegcc*) # This hack is so that the source file can tell whether it is being # built for inclusion in a dll (and should export symbols for example). m4_if([$1], [GCJ], [], [_LT_TAGVAR(lt_prog_compiler_pic, $1)='-DDLL_EXPORT']) case $host_os in os2*) _LT_TAGVAR(lt_prog_compiler_static, $1)='$wl-static' ;; esac ;; hpux9* | hpux10* | hpux11*) _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,' # PIC is the default for IA64 HP-UX and 64-bit HP-UX, but # not for PA HP-UX. case $host_cpu in hppa*64*|ia64*) # +Z the default ;; *) _LT_TAGVAR(lt_prog_compiler_pic, $1)='+Z' ;; esac # Is there a better lt_prog_compiler_static that works with the bundled CC? _LT_TAGVAR(lt_prog_compiler_static, $1)='$wl-a ${wl}archive' ;; irix5* | irix6* | nonstopux*) _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,' # PIC (with -KPIC) is the default. _LT_TAGVAR(lt_prog_compiler_static, $1)='-non_shared' ;; linux* | k*bsd*-gnu | kopensolaris*-gnu | gnu*) case $cc_basename in # old Intel for x86_64, which still supported -KPIC. ecc*) _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,' _LT_TAGVAR(lt_prog_compiler_pic, $1)='-KPIC' _LT_TAGVAR(lt_prog_compiler_static, $1)='-static' ;; # icc used to be incompatible with GCC. # ICC 10 doesn't accept -KPIC any more. icc* | ifort*) _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,' _LT_TAGVAR(lt_prog_compiler_pic, $1)='-fPIC' _LT_TAGVAR(lt_prog_compiler_static, $1)='-static' ;; # Lahey Fortran 8.1. lf95*) _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,' _LT_TAGVAR(lt_prog_compiler_pic, $1)='--shared' _LT_TAGVAR(lt_prog_compiler_static, $1)='--static' ;; nagfor*) # NAG Fortran compiler _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,-Wl,,' _LT_TAGVAR(lt_prog_compiler_pic, $1)='-PIC' _LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic' ;; tcc*) # Fabrice Bellard et al's Tiny C Compiler _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,' _LT_TAGVAR(lt_prog_compiler_pic, $1)='-fPIC' _LT_TAGVAR(lt_prog_compiler_static, $1)='-static' ;; pgcc* | pgf77* | pgf90* | pgf95* | pgfortran*) # Portland Group compilers (*not* the Pentium gcc compiler, # which looks to be a dead project) _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,' _LT_TAGVAR(lt_prog_compiler_pic, $1)='-fpic' _LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic' ;; ccc*) _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,' # All Alpha code is PIC. _LT_TAGVAR(lt_prog_compiler_static, $1)='-non_shared' ;; xl* | bgxl* | bgf* | mpixl*) # IBM XL C 8.0/Fortran 10.1, 11.1 on PPC and BlueGene _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,' _LT_TAGVAR(lt_prog_compiler_pic, $1)='-qpic' _LT_TAGVAR(lt_prog_compiler_static, $1)='-qstaticlink' ;; *) case `$CC -V 2>&1 | sed 5q` in *Sun\ Ceres\ Fortran* | *Sun*Fortran*\ [[1-7]].* | *Sun*Fortran*\ 8.[[0-3]]*) # Sun Fortran 8.3 passes all unrecognized flags to the linker _LT_TAGVAR(lt_prog_compiler_pic, $1)='-KPIC' _LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic' _LT_TAGVAR(lt_prog_compiler_wl, $1)='' ;; *Sun\ F* | *Sun*Fortran*) _LT_TAGVAR(lt_prog_compiler_pic, $1)='-KPIC' _LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic' _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Qoption ld ' ;; *Sun\ C*) # Sun C 5.9 _LT_TAGVAR(lt_prog_compiler_pic, $1)='-KPIC' _LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic' _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,' ;; *Intel*\ [[CF]]*Compiler*) _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,' _LT_TAGVAR(lt_prog_compiler_pic, $1)='-fPIC' _LT_TAGVAR(lt_prog_compiler_static, $1)='-static' ;; *Portland\ Group*) _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,' _LT_TAGVAR(lt_prog_compiler_pic, $1)='-fpic' _LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic' ;; esac ;; esac ;; newsos6) _LT_TAGVAR(lt_prog_compiler_pic, $1)='-KPIC' _LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic' ;; *nto* | *qnx*) # QNX uses GNU C++, but need to define -shared option too, otherwise # it will coredump. _LT_TAGVAR(lt_prog_compiler_pic, $1)='-fPIC -shared' ;; osf3* | osf4* | osf5*) _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,' # All OSF/1 code is PIC. _LT_TAGVAR(lt_prog_compiler_static, $1)='-non_shared' ;; rdos*) _LT_TAGVAR(lt_prog_compiler_static, $1)='-non_shared' ;; solaris*) _LT_TAGVAR(lt_prog_compiler_pic, $1)='-KPIC' _LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic' case $cc_basename in f77* | f90* | f95* | sunf77* | sunf90* | sunf95*) _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Qoption ld ';; *) _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,';; esac ;; sunos4*) _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Qoption ld ' _LT_TAGVAR(lt_prog_compiler_pic, $1)='-PIC' _LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic' ;; sysv4 | sysv4.2uw2* | sysv4.3*) _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,' _LT_TAGVAR(lt_prog_compiler_pic, $1)='-KPIC' _LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic' ;; sysv4*MP*) if test -d /usr/nec; then _LT_TAGVAR(lt_prog_compiler_pic, $1)='-Kconform_pic' _LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic' fi ;; sysv5* | unixware* | sco3.2v5* | sco5v6* | OpenUNIX*) _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,' _LT_TAGVAR(lt_prog_compiler_pic, $1)='-KPIC' _LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic' ;; unicos*) _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,' _LT_TAGVAR(lt_prog_compiler_can_build_shared, $1)=no ;; uts4*) _LT_TAGVAR(lt_prog_compiler_pic, $1)='-pic' _LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic' ;; *) _LT_TAGVAR(lt_prog_compiler_can_build_shared, $1)=no ;; esac fi ]) case $host_os in # For platforms that do not support PIC, -DPIC is meaningless: *djgpp*) _LT_TAGVAR(lt_prog_compiler_pic, $1)= ;; *) _LT_TAGVAR(lt_prog_compiler_pic, $1)="$_LT_TAGVAR(lt_prog_compiler_pic, $1)@&t@m4_if([$1],[],[ -DPIC],[m4_if([$1],[CXX],[ -DPIC],[])])" ;; esac AC_CACHE_CHECK([for $compiler option to produce PIC], [_LT_TAGVAR(lt_cv_prog_compiler_pic, $1)], [_LT_TAGVAR(lt_cv_prog_compiler_pic, $1)=$_LT_TAGVAR(lt_prog_compiler_pic, $1)]) _LT_TAGVAR(lt_prog_compiler_pic, $1)=$_LT_TAGVAR(lt_cv_prog_compiler_pic, $1) # # Check to make sure the PIC flag actually works. # if test -n "$_LT_TAGVAR(lt_prog_compiler_pic, $1)"; then _LT_COMPILER_OPTION([if $compiler PIC flag $_LT_TAGVAR(lt_prog_compiler_pic, $1) works], [_LT_TAGVAR(lt_cv_prog_compiler_pic_works, $1)], [$_LT_TAGVAR(lt_prog_compiler_pic, $1)@&t@m4_if([$1],[],[ -DPIC],[m4_if([$1],[CXX],[ -DPIC],[])])], [], [case $_LT_TAGVAR(lt_prog_compiler_pic, $1) in "" | " "*) ;; *) _LT_TAGVAR(lt_prog_compiler_pic, $1)=" $_LT_TAGVAR(lt_prog_compiler_pic, $1)" ;; esac], [_LT_TAGVAR(lt_prog_compiler_pic, $1)= _LT_TAGVAR(lt_prog_compiler_can_build_shared, $1)=no]) fi _LT_TAGDECL([pic_flag], [lt_prog_compiler_pic], [1], [Additional compiler flags for building library objects]) _LT_TAGDECL([wl], [lt_prog_compiler_wl], [1], [How to pass a linker flag through the compiler]) # # Check to make sure the static flag actually works. # wl=$_LT_TAGVAR(lt_prog_compiler_wl, $1) eval lt_tmp_static_flag=\"$_LT_TAGVAR(lt_prog_compiler_static, $1)\" _LT_LINKER_OPTION([if $compiler static flag $lt_tmp_static_flag works], _LT_TAGVAR(lt_cv_prog_compiler_static_works, $1), $lt_tmp_static_flag, [], [_LT_TAGVAR(lt_prog_compiler_static, $1)=]) _LT_TAGDECL([link_static_flag], [lt_prog_compiler_static], [1], [Compiler flag to prevent dynamic linking]) ])# _LT_COMPILER_PIC # _LT_LINKER_SHLIBS([TAGNAME]) # ---------------------------- # See if the linker supports building shared libraries. m4_defun([_LT_LINKER_SHLIBS], [AC_REQUIRE([LT_PATH_LD])dnl AC_REQUIRE([LT_PATH_NM])dnl m4_require([_LT_PATH_MANIFEST_TOOL])dnl m4_require([_LT_FILEUTILS_DEFAULTS])dnl m4_require([_LT_DECL_EGREP])dnl m4_require([_LT_DECL_SED])dnl m4_require([_LT_CMD_GLOBAL_SYMBOLS])dnl m4_require([_LT_TAG_COMPILER])dnl AC_MSG_CHECKING([whether the $compiler linker ($LD) supports shared libraries]) m4_if([$1], [CXX], [ _LT_TAGVAR(export_symbols_cmds, $1)='$NM $libobjs $convenience | $global_symbol_pipe | $SED '\''s/.* //'\'' | sort | uniq > $export_symbols' _LT_TAGVAR(exclude_expsyms, $1)=['_GLOBAL_OFFSET_TABLE_|_GLOBAL__F[ID]_.*'] case $host_os in aix[[4-9]]*) # If we're using GNU nm, then we don't want the "-C" option. # -C means demangle to GNU nm, but means don't demangle to AIX nm. # Without the "-l" option, or with the "-B" option, AIX nm treats # weak defined symbols like other global defined symbols, whereas # GNU nm marks them as "W". # While the 'weak' keyword is ignored in the Export File, we need # it in the Import File for the 'aix-soname' feature, so we have # to replace the "-B" option with "-P" for AIX nm. if $NM -V 2>&1 | $GREP 'GNU' > /dev/null; then _LT_TAGVAR(export_symbols_cmds, $1)='$NM -Bpg $libobjs $convenience | awk '\''{ if (((\$ 2 == "T") || (\$ 2 == "D") || (\$ 2 == "B") || (\$ 2 == "W")) && ([substr](\$ 3,1,1) != ".")) { if (\$ 2 == "W") { print \$ 3 " weak" } else { print \$ 3 } } }'\'' | sort -u > $export_symbols' else _LT_TAGVAR(export_symbols_cmds, $1)='`func_echo_all $NM | $SED -e '\''s/B\([[^B]]*\)$/P\1/'\''` -PCpgl $libobjs $convenience | awk '\''{ if (((\$ 2 == "T") || (\$ 2 == "D") || (\$ 2 == "B") || (\$ 2 == "W") || (\$ 2 == "V") || (\$ 2 == "Z")) && ([substr](\$ 1,1,1) != ".")) { if ((\$ 2 == "W") || (\$ 2 == "V") || (\$ 2 == "Z")) { print \$ 1 " weak" } else { print \$ 1 } } }'\'' | sort -u > $export_symbols' fi ;; pw32*) _LT_TAGVAR(export_symbols_cmds, $1)=$ltdll_cmds ;; cygwin* | mingw* | cegcc*) case $cc_basename in cl*) _LT_TAGVAR(exclude_expsyms, $1)='_NULL_IMPORT_DESCRIPTOR|_IMPORT_DESCRIPTOR_.*' ;; *) _LT_TAGVAR(export_symbols_cmds, $1)='$NM $libobjs $convenience | $global_symbol_pipe | $SED -e '\''/^[[BCDGRS]][[ ]]/s/.*[[ ]]\([[^ ]]*\)/\1 DATA/;s/^.*[[ ]]__nm__\([[^ ]]*\)[[ ]][[^ ]]*/\1 DATA/;/^I[[ ]]/d;/^[[AITW]][[ ]]/s/.* //'\'' | sort | uniq > $export_symbols' _LT_TAGVAR(exclude_expsyms, $1)=['[_]+GLOBAL_OFFSET_TABLE_|[_]+GLOBAL__[FID]_.*|[_]+head_[A-Za-z0-9_]+_dll|[A-Za-z0-9_]+_dll_iname'] ;; esac ;; *) _LT_TAGVAR(export_symbols_cmds, $1)='$NM $libobjs $convenience | $global_symbol_pipe | $SED '\''s/.* //'\'' | sort | uniq > $export_symbols' ;; esac ], [ runpath_var= _LT_TAGVAR(allow_undefined_flag, $1)= _LT_TAGVAR(always_export_symbols, $1)=no _LT_TAGVAR(archive_cmds, $1)= _LT_TAGVAR(archive_expsym_cmds, $1)= _LT_TAGVAR(compiler_needs_object, $1)=no _LT_TAGVAR(enable_shared_with_static_runtimes, $1)=no _LT_TAGVAR(export_dynamic_flag_spec, $1)= _LT_TAGVAR(export_symbols_cmds, $1)='$NM $libobjs $convenience | $global_symbol_pipe | $SED '\''s/.* //'\'' | sort | uniq > $export_symbols' _LT_TAGVAR(hardcode_automatic, $1)=no _LT_TAGVAR(hardcode_direct, $1)=no _LT_TAGVAR(hardcode_direct_absolute, $1)=no _LT_TAGVAR(hardcode_libdir_flag_spec, $1)= _LT_TAGVAR(hardcode_libdir_separator, $1)= _LT_TAGVAR(hardcode_minus_L, $1)=no _LT_TAGVAR(hardcode_shlibpath_var, $1)=unsupported _LT_TAGVAR(inherit_rpath, $1)=no _LT_TAGVAR(link_all_deplibs, $1)=unknown _LT_TAGVAR(module_cmds, $1)= _LT_TAGVAR(module_expsym_cmds, $1)= _LT_TAGVAR(old_archive_from_new_cmds, $1)= _LT_TAGVAR(old_archive_from_expsyms_cmds, $1)= _LT_TAGVAR(thread_safe_flag_spec, $1)= _LT_TAGVAR(whole_archive_flag_spec, $1)= # include_expsyms should be a list of space-separated symbols to be *always* # included in the symbol list _LT_TAGVAR(include_expsyms, $1)= # exclude_expsyms can be an extended regexp of symbols to exclude # it will be wrapped by ' (' and ')$', so one must not match beginning or # end of line. Example: 'a|bc|.*d.*' will exclude the symbols 'a' and 'bc', # as well as any symbol that contains 'd'. _LT_TAGVAR(exclude_expsyms, $1)=['_GLOBAL_OFFSET_TABLE_|_GLOBAL__F[ID]_.*'] # Although _GLOBAL_OFFSET_TABLE_ is a valid symbol C name, most a.out # platforms (ab)use it in PIC code, but their linkers get confused if # the symbol is explicitly referenced. Since portable code cannot # rely on this symbol name, it's probably fine to never include it in # preloaded symbol tables. # Exclude shared library initialization/finalization symbols. dnl Note also adjust exclude_expsyms for C++ above. extract_expsyms_cmds= case $host_os in cygwin* | mingw* | pw32* | cegcc*) # FIXME: the MSVC++ port hasn't been tested in a loooong time # When not using gcc, we currently assume that we are using # Microsoft Visual C++. if test yes != "$GCC"; then with_gnu_ld=no fi ;; interix*) # we just hope/assume this is gcc and not c89 (= MSVC++) with_gnu_ld=yes ;; openbsd* | bitrig*) with_gnu_ld=no ;; esac _LT_TAGVAR(ld_shlibs, $1)=yes # On some targets, GNU ld is compatible enough with the native linker # that we're better off using the native interface for both. lt_use_gnu_ld_interface=no if test yes = "$with_gnu_ld"; then case $host_os in aix*) # The AIX port of GNU ld has always aspired to compatibility # with the native linker. However, as the warning in the GNU ld # block says, versions before 2.19.5* couldn't really create working # shared libraries, regardless of the interface used. case `$LD -v 2>&1` in *\ \(GNU\ Binutils\)\ 2.19.5*) ;; *\ \(GNU\ Binutils\)\ 2.[[2-9]]*) ;; *\ \(GNU\ Binutils\)\ [[3-9]]*) ;; *) lt_use_gnu_ld_interface=yes ;; esac ;; *) lt_use_gnu_ld_interface=yes ;; esac fi if test yes = "$lt_use_gnu_ld_interface"; then # If archive_cmds runs LD, not CC, wlarc should be empty wlarc='$wl' # Set some defaults for GNU ld with shared library support. These # are reset later if shared libraries are not supported. Putting them # here allows them to be overridden if necessary. runpath_var=LD_RUN_PATH _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl-rpath $wl$libdir' _LT_TAGVAR(export_dynamic_flag_spec, $1)='$wl--export-dynamic' # ancient GNU ld didn't support --whole-archive et. al. if $LD --help 2>&1 | $GREP 'no-whole-archive' > /dev/null; then _LT_TAGVAR(whole_archive_flag_spec, $1)=$wlarc'--whole-archive$convenience '$wlarc'--no-whole-archive' else _LT_TAGVAR(whole_archive_flag_spec, $1)= fi supports_anon_versioning=no case `$LD -v | $SED -e 's/([^)]\+)\s\+//' 2>&1` in *GNU\ gold*) supports_anon_versioning=yes ;; *\ [[01]].* | *\ 2.[[0-9]].* | *\ 2.10.*) ;; # catch versions < 2.11 *\ 2.11.93.0.2\ *) supports_anon_versioning=yes ;; # RH7.3 ... *\ 2.11.92.0.12\ *) supports_anon_versioning=yes ;; # Mandrake 8.2 ... *\ 2.11.*) ;; # other 2.11 versions *) supports_anon_versioning=yes ;; esac # See if GNU ld supports shared libraries. case $host_os in aix[[3-9]]*) # On AIX/PPC, the GNU linker is very broken if test ia64 != "$host_cpu"; then _LT_TAGVAR(ld_shlibs, $1)=no cat <<_LT_EOF 1>&2 *** Warning: the GNU linker, at least up to release 2.19, is reported *** to be unable to reliably create shared libraries on AIX. *** Therefore, libtool is disabling shared libraries support. If you *** really care for shared libraries, you may want to install binutils *** 2.20 or above, or modify your PATH so that a non-GNU linker is found. *** You will then need to restart the configuration process. _LT_EOF fi ;; amigaos*) case $host_cpu in powerpc) # see comment about AmigaOS4 .so support _LT_TAGVAR(archive_cmds, $1)='$CC -shared $libobjs $deplibs $compiler_flags $wl-soname $wl$soname -o $lib' _LT_TAGVAR(archive_expsym_cmds, $1)='' ;; m68k) _LT_TAGVAR(archive_cmds, $1)='$RM $output_objdir/a2ixlibrary.data~$ECHO "#define NAME $libname" > $output_objdir/a2ixlibrary.data~$ECHO "#define LIBRARY_ID 1" >> $output_objdir/a2ixlibrary.data~$ECHO "#define VERSION $major" >> $output_objdir/a2ixlibrary.data~$ECHO "#define REVISION $revision" >> $output_objdir/a2ixlibrary.data~$AR $AR_FLAGS $lib $libobjs~$RANLIB $lib~(cd $output_objdir && a2ixlibrary -32)' _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='-L$libdir' _LT_TAGVAR(hardcode_minus_L, $1)=yes ;; esac ;; beos*) if $LD --help 2>&1 | $GREP ': supported targets:.* elf' > /dev/null; then _LT_TAGVAR(allow_undefined_flag, $1)=unsupported # Joseph Beckenbach says some releases of gcc # support --undefined. This deserves some investigation. FIXME _LT_TAGVAR(archive_cmds, $1)='$CC -nostart $libobjs $deplibs $compiler_flags $wl-soname $wl$soname -o $lib' else _LT_TAGVAR(ld_shlibs, $1)=no fi ;; cygwin* | mingw* | pw32* | cegcc*) # _LT_TAGVAR(hardcode_libdir_flag_spec, $1) is actually meaningless, # as there is no search path for DLLs. _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='-L$libdir' _LT_TAGVAR(export_dynamic_flag_spec, $1)='$wl--export-all-symbols' _LT_TAGVAR(allow_undefined_flag, $1)=unsupported _LT_TAGVAR(always_export_symbols, $1)=no _LT_TAGVAR(enable_shared_with_static_runtimes, $1)=yes _LT_TAGVAR(export_symbols_cmds, $1)='$NM $libobjs $convenience | $global_symbol_pipe | $SED -e '\''/^[[BCDGRS]][[ ]]/s/.*[[ ]]\([[^ ]]*\)/\1 DATA/;s/^.*[[ ]]__nm__\([[^ ]]*\)[[ ]][[^ ]]*/\1 DATA/;/^I[[ ]]/d;/^[[AITW]][[ ]]/s/.* //'\'' | sort | uniq > $export_symbols' _LT_TAGVAR(exclude_expsyms, $1)=['[_]+GLOBAL_OFFSET_TABLE_|[_]+GLOBAL__[FID]_.*|[_]+head_[A-Za-z0-9_]+_dll|[A-Za-z0-9_]+_dll_iname'] if $LD --help 2>&1 | $GREP 'auto-import' > /dev/null; then _LT_TAGVAR(archive_cmds, $1)='$CC -shared $libobjs $deplibs $compiler_flags -o $output_objdir/$soname $wl--enable-auto-image-base -Xlinker --out-implib -Xlinker $lib' # If the export-symbols file already is a .def file, use it as # is; otherwise, prepend EXPORTS... _LT_TAGVAR(archive_expsym_cmds, $1)='if _LT_DLL_DEF_P([$export_symbols]); then cp $export_symbols $output_objdir/$soname.def; else echo EXPORTS > $output_objdir/$soname.def; cat $export_symbols >> $output_objdir/$soname.def; fi~ $CC -shared $output_objdir/$soname.def $libobjs $deplibs $compiler_flags -o $output_objdir/$soname $wl--enable-auto-image-base -Xlinker --out-implib -Xlinker $lib' else _LT_TAGVAR(ld_shlibs, $1)=no fi ;; haiku*) _LT_TAGVAR(archive_cmds, $1)='$CC -shared $libobjs $deplibs $compiler_flags $wl-soname $wl$soname -o $lib' _LT_TAGVAR(link_all_deplibs, $1)=yes ;; os2*) _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='-L$libdir' _LT_TAGVAR(hardcode_minus_L, $1)=yes _LT_TAGVAR(allow_undefined_flag, $1)=unsupported shrext_cmds=.dll _LT_TAGVAR(archive_cmds, $1)='$ECHO "LIBRARY ${soname%$shared_ext} INITINSTANCE TERMINSTANCE" > $output_objdir/$libname.def~ $ECHO "DESCRIPTION \"$libname\"" >> $output_objdir/$libname.def~ $ECHO "DATA MULTIPLE NONSHARED" >> $output_objdir/$libname.def~ $ECHO EXPORTS >> $output_objdir/$libname.def~ emxexp $libobjs | $SED /"_DLL_InitTerm"/d >> $output_objdir/$libname.def~ $CC -Zdll -Zcrtdll -o $output_objdir/$soname $libobjs $deplibs $compiler_flags $output_objdir/$libname.def~ emximp -o $lib $output_objdir/$libname.def' _LT_TAGVAR(archive_expsym_cmds, $1)='$ECHO "LIBRARY ${soname%$shared_ext} INITINSTANCE TERMINSTANCE" > $output_objdir/$libname.def~ $ECHO "DESCRIPTION \"$libname\"" >> $output_objdir/$libname.def~ $ECHO "DATA MULTIPLE NONSHARED" >> $output_objdir/$libname.def~ $ECHO EXPORTS >> $output_objdir/$libname.def~ prefix_cmds="$SED"~ if test EXPORTS = "`$SED 1q $export_symbols`"; then prefix_cmds="$prefix_cmds -e 1d"; fi~ prefix_cmds="$prefix_cmds -e \"s/^\(.*\)$/_\1/g\""~ cat $export_symbols | $prefix_cmds >> $output_objdir/$libname.def~ $CC -Zdll -Zcrtdll -o $output_objdir/$soname $libobjs $deplibs $compiler_flags $output_objdir/$libname.def~ emximp -o $lib $output_objdir/$libname.def' _LT_TAGVAR(old_archive_From_new_cmds, $1)='emximp -o $output_objdir/${libname}_dll.a $output_objdir/$libname.def' _LT_TAGVAR(enable_shared_with_static_runtimes, $1)=yes ;; interix[[3-9]]*) _LT_TAGVAR(hardcode_direct, $1)=no _LT_TAGVAR(hardcode_shlibpath_var, $1)=no _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl-rpath,$libdir' _LT_TAGVAR(export_dynamic_flag_spec, $1)='$wl-E' # Hack: On Interix 3.x, we cannot compile PIC because of a broken gcc. # Instead, shared libraries are loaded at an image base (0x10000000 by # default) and relocated if they conflict, which is a slow very memory # consuming and fragmenting process. To avoid this, we pick a random, # 256 KiB-aligned image base between 0x50000000 and 0x6FFC0000 at link # time. Moving up from 0x10000000 also allows more sbrk(2) space. _LT_TAGVAR(archive_cmds, $1)='$CC -shared $pic_flag $libobjs $deplibs $compiler_flags $wl-h,$soname $wl--image-base,`expr ${RANDOM-$$} % 4096 / 2 \* 262144 + 1342177280` -o $lib' _LT_TAGVAR(archive_expsym_cmds, $1)='sed "s|^|_|" $export_symbols >$output_objdir/$soname.expsym~$CC -shared $pic_flag $libobjs $deplibs $compiler_flags $wl-h,$soname $wl--retain-symbols-file,$output_objdir/$soname.expsym $wl--image-base,`expr ${RANDOM-$$} % 4096 / 2 \* 262144 + 1342177280` -o $lib' ;; gnu* | linux* | tpf* | k*bsd*-gnu | kopensolaris*-gnu) tmp_diet=no if test linux-dietlibc = "$host_os"; then case $cc_basename in diet\ *) tmp_diet=yes;; # linux-dietlibc with static linking (!diet-dyn) esac fi if $LD --help 2>&1 | $EGREP ': supported targets:.* elf' > /dev/null \ && test no = "$tmp_diet" then tmp_addflag=' $pic_flag' tmp_sharedflag='-shared' case $cc_basename,$host_cpu in pgcc*) # Portland Group C compiler _LT_TAGVAR(whole_archive_flag_spec, $1)='$wl--whole-archive`for conv in $convenience\"\"; do test -n \"$conv\" && new_convenience=\"$new_convenience,$conv\"; done; func_echo_all \"$new_convenience\"` $wl--no-whole-archive' tmp_addflag=' $pic_flag' ;; pgf77* | pgf90* | pgf95* | pgfortran*) # Portland Group f77 and f90 compilers _LT_TAGVAR(whole_archive_flag_spec, $1)='$wl--whole-archive`for conv in $convenience\"\"; do test -n \"$conv\" && new_convenience=\"$new_convenience,$conv\"; done; func_echo_all \"$new_convenience\"` $wl--no-whole-archive' tmp_addflag=' $pic_flag -Mnomain' ;; ecc*,ia64* | icc*,ia64*) # Intel C compiler on ia64 tmp_addflag=' -i_dynamic' ;; efc*,ia64* | ifort*,ia64*) # Intel Fortran compiler on ia64 tmp_addflag=' -i_dynamic -nofor_main' ;; ifc* | ifort*) # Intel Fortran compiler tmp_addflag=' -nofor_main' ;; lf95*) # Lahey Fortran 8.1 _LT_TAGVAR(whole_archive_flag_spec, $1)= tmp_sharedflag='--shared' ;; nagfor*) # NAGFOR 5.3 tmp_sharedflag='-Wl,-shared' ;; xl[[cC]]* | bgxl[[cC]]* | mpixl[[cC]]*) # IBM XL C 8.0 on PPC (deal with xlf below) tmp_sharedflag='-qmkshrobj' tmp_addflag= ;; nvcc*) # Cuda Compiler Driver 2.2 _LT_TAGVAR(whole_archive_flag_spec, $1)='$wl--whole-archive`for conv in $convenience\"\"; do test -n \"$conv\" && new_convenience=\"$new_convenience,$conv\"; done; func_echo_all \"$new_convenience\"` $wl--no-whole-archive' _LT_TAGVAR(compiler_needs_object, $1)=yes ;; esac case `$CC -V 2>&1 | sed 5q` in *Sun\ C*) # Sun C 5.9 _LT_TAGVAR(whole_archive_flag_spec, $1)='$wl--whole-archive`new_convenience=; for conv in $convenience\"\"; do test -z \"$conv\" || new_convenience=\"$new_convenience,$conv\"; done; func_echo_all \"$new_convenience\"` $wl--no-whole-archive' _LT_TAGVAR(compiler_needs_object, $1)=yes tmp_sharedflag='-G' ;; *Sun\ F*) # Sun Fortran 8.3 tmp_sharedflag='-G' ;; esac _LT_TAGVAR(archive_cmds, $1)='$CC '"$tmp_sharedflag""$tmp_addflag"' $libobjs $deplibs $compiler_flags $wl-soname $wl$soname -o $lib' if test yes = "$supports_anon_versioning"; then _LT_TAGVAR(archive_expsym_cmds, $1)='echo "{ global:" > $output_objdir/$libname.ver~ cat $export_symbols | sed -e "s/\(.*\)/\1;/" >> $output_objdir/$libname.ver~ echo "local: *; };" >> $output_objdir/$libname.ver~ $CC '"$tmp_sharedflag""$tmp_addflag"' $libobjs $deplibs $compiler_flags $wl-soname $wl$soname $wl-version-script $wl$output_objdir/$libname.ver -o $lib' fi case $cc_basename in tcc*) _LT_TAGVAR(export_dynamic_flag_spec, $1)='-rdynamic' ;; xlf* | bgf* | bgxlf* | mpixlf*) # IBM XL Fortran 10.1 on PPC cannot create shared libs itself _LT_TAGVAR(whole_archive_flag_spec, $1)='--whole-archive$convenience --no-whole-archive' _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl-rpath $wl$libdir' _LT_TAGVAR(archive_cmds, $1)='$LD -shared $libobjs $deplibs $linker_flags -soname $soname -o $lib' if test yes = "$supports_anon_versioning"; then _LT_TAGVAR(archive_expsym_cmds, $1)='echo "{ global:" > $output_objdir/$libname.ver~ cat $export_symbols | sed -e "s/\(.*\)/\1;/" >> $output_objdir/$libname.ver~ echo "local: *; };" >> $output_objdir/$libname.ver~ $LD -shared $libobjs $deplibs $linker_flags -soname $soname -version-script $output_objdir/$libname.ver -o $lib' fi ;; esac else _LT_TAGVAR(ld_shlibs, $1)=no fi ;; netbsd*) if echo __ELF__ | $CC -E - | $GREP __ELF__ >/dev/null; then _LT_TAGVAR(archive_cmds, $1)='$LD -Bshareable $libobjs $deplibs $linker_flags -o $lib' wlarc= else _LT_TAGVAR(archive_cmds, $1)='$CC -shared $pic_flag $libobjs $deplibs $compiler_flags $wl-soname $wl$soname -o $lib' _LT_TAGVAR(archive_expsym_cmds, $1)='$CC -shared $pic_flag $libobjs $deplibs $compiler_flags $wl-soname $wl$soname $wl-retain-symbols-file $wl$export_symbols -o $lib' fi ;; solaris*) if $LD -v 2>&1 | $GREP 'BFD 2\.8' > /dev/null; then _LT_TAGVAR(ld_shlibs, $1)=no cat <<_LT_EOF 1>&2 *** Warning: The releases 2.8.* of the GNU linker cannot reliably *** create shared libraries on Solaris systems. Therefore, libtool *** is disabling shared libraries support. We urge you to upgrade GNU *** binutils to release 2.9.1 or newer. Another option is to modify *** your PATH or compiler configuration so that the native linker is *** used, and then restart. _LT_EOF elif $LD --help 2>&1 | $GREP ': supported targets:.* elf' > /dev/null; then _LT_TAGVAR(archive_cmds, $1)='$CC -shared $pic_flag $libobjs $deplibs $compiler_flags $wl-soname $wl$soname -o $lib' _LT_TAGVAR(archive_expsym_cmds, $1)='$CC -shared $pic_flag $libobjs $deplibs $compiler_flags $wl-soname $wl$soname $wl-retain-symbols-file $wl$export_symbols -o $lib' else _LT_TAGVAR(ld_shlibs, $1)=no fi ;; sysv5* | sco3.2v5* | sco5v6* | unixware* | OpenUNIX*) case `$LD -v 2>&1` in *\ [[01]].* | *\ 2.[[0-9]].* | *\ 2.1[[0-5]].*) _LT_TAGVAR(ld_shlibs, $1)=no cat <<_LT_EOF 1>&2 *** Warning: Releases of the GNU linker prior to 2.16.91.0.3 cannot *** reliably create shared libraries on SCO systems. Therefore, libtool *** is disabling shared libraries support. We urge you to upgrade GNU *** binutils to release 2.16.91.0.3 or newer. Another option is to modify *** your PATH or compiler configuration so that the native linker is *** used, and then restart. _LT_EOF ;; *) # For security reasons, it is highly recommended that you always # use absolute paths for naming shared libraries, and exclude the # DT_RUNPATH tag from executables and libraries. But doing so # requires that you compile everything twice, which is a pain. if $LD --help 2>&1 | $GREP ': supported targets:.* elf' > /dev/null; then _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl-rpath $wl$libdir' _LT_TAGVAR(archive_cmds, $1)='$CC -shared $libobjs $deplibs $compiler_flags $wl-soname $wl$soname -o $lib' _LT_TAGVAR(archive_expsym_cmds, $1)='$CC -shared $libobjs $deplibs $compiler_flags $wl-soname $wl$soname $wl-retain-symbols-file $wl$export_symbols -o $lib' else _LT_TAGVAR(ld_shlibs, $1)=no fi ;; esac ;; sunos4*) _LT_TAGVAR(archive_cmds, $1)='$LD -assert pure-text -Bshareable -o $lib $libobjs $deplibs $linker_flags' wlarc= _LT_TAGVAR(hardcode_direct, $1)=yes _LT_TAGVAR(hardcode_shlibpath_var, $1)=no ;; *) if $LD --help 2>&1 | $GREP ': supported targets:.* elf' > /dev/null; then _LT_TAGVAR(archive_cmds, $1)='$CC -shared $pic_flag $libobjs $deplibs $compiler_flags $wl-soname $wl$soname -o $lib' _LT_TAGVAR(archive_expsym_cmds, $1)='$CC -shared $pic_flag $libobjs $deplibs $compiler_flags $wl-soname $wl$soname $wl-retain-symbols-file $wl$export_symbols -o $lib' else _LT_TAGVAR(ld_shlibs, $1)=no fi ;; esac if test no = "$_LT_TAGVAR(ld_shlibs, $1)"; then runpath_var= _LT_TAGVAR(hardcode_libdir_flag_spec, $1)= _LT_TAGVAR(export_dynamic_flag_spec, $1)= _LT_TAGVAR(whole_archive_flag_spec, $1)= fi else # PORTME fill in a description of your system's linker (not GNU ld) case $host_os in aix3*) _LT_TAGVAR(allow_undefined_flag, $1)=unsupported _LT_TAGVAR(always_export_symbols, $1)=yes _LT_TAGVAR(archive_expsym_cmds, $1)='$LD -o $output_objdir/$soname $libobjs $deplibs $linker_flags -bE:$export_symbols -T512 -H512 -bM:SRE~$AR $AR_FLAGS $lib $output_objdir/$soname' # Note: this linker hardcodes the directories in LIBPATH if there # are no directories specified by -L. _LT_TAGVAR(hardcode_minus_L, $1)=yes if test yes = "$GCC" && test -z "$lt_prog_compiler_static"; then # Neither direct hardcoding nor static linking is supported with a # broken collect2. _LT_TAGVAR(hardcode_direct, $1)=unsupported fi ;; aix[[4-9]]*) if test ia64 = "$host_cpu"; then # On IA64, the linker does run time linking by default, so we don't # have to do anything special. aix_use_runtimelinking=no exp_sym_flag='-Bexport' no_entry_flag= else # If we're using GNU nm, then we don't want the "-C" option. # -C means demangle to GNU nm, but means don't demangle to AIX nm. # Without the "-l" option, or with the "-B" option, AIX nm treats # weak defined symbols like other global defined symbols, whereas # GNU nm marks them as "W". # While the 'weak' keyword is ignored in the Export File, we need # it in the Import File for the 'aix-soname' feature, so we have # to replace the "-B" option with "-P" for AIX nm. if $NM -V 2>&1 | $GREP 'GNU' > /dev/null; then _LT_TAGVAR(export_symbols_cmds, $1)='$NM -Bpg $libobjs $convenience | awk '\''{ if (((\$ 2 == "T") || (\$ 2 == "D") || (\$ 2 == "B") || (\$ 2 == "W")) && ([substr](\$ 3,1,1) != ".")) { if (\$ 2 == "W") { print \$ 3 " weak" } else { print \$ 3 } } }'\'' | sort -u > $export_symbols' else _LT_TAGVAR(export_symbols_cmds, $1)='`func_echo_all $NM | $SED -e '\''s/B\([[^B]]*\)$/P\1/'\''` -PCpgl $libobjs $convenience | awk '\''{ if (((\$ 2 == "T") || (\$ 2 == "D") || (\$ 2 == "B") || (\$ 2 == "W") || (\$ 2 == "V") || (\$ 2 == "Z")) && ([substr](\$ 1,1,1) != ".")) { if ((\$ 2 == "W") || (\$ 2 == "V") || (\$ 2 == "Z")) { print \$ 1 " weak" } else { print \$ 1 } } }'\'' | sort -u > $export_symbols' fi aix_use_runtimelinking=no # Test if we are trying to use run time linking or normal # AIX style linking. If -brtl is somewhere in LDFLAGS, we # have runtime linking enabled, and use it for executables. # For shared libraries, we enable/disable runtime linking # depending on the kind of the shared library created - # when "with_aix_soname,aix_use_runtimelinking" is: # "aix,no" lib.a(lib.so.V) shared, rtl:no, for executables # "aix,yes" lib.so shared, rtl:yes, for executables # lib.a static archive # "both,no" lib.so.V(shr.o) shared, rtl:yes # lib.a(lib.so.V) shared, rtl:no, for executables # "both,yes" lib.so.V(shr.o) shared, rtl:yes, for executables # lib.a(lib.so.V) shared, rtl:no # "svr4,*" lib.so.V(shr.o) shared, rtl:yes, for executables # lib.a static archive case $host_os in aix4.[[23]]|aix4.[[23]].*|aix[[5-9]]*) for ld_flag in $LDFLAGS; do if (test x-brtl = "x$ld_flag" || test x-Wl,-brtl = "x$ld_flag"); then aix_use_runtimelinking=yes break fi done if test svr4,no = "$with_aix_soname,$aix_use_runtimelinking"; then # With aix-soname=svr4, we create the lib.so.V shared archives only, # so we don't have lib.a shared libs to link our executables. # We have to force runtime linking in this case. aix_use_runtimelinking=yes LDFLAGS="$LDFLAGS -Wl,-brtl" fi ;; esac exp_sym_flag='-bexport' no_entry_flag='-bnoentry' fi # When large executables or shared objects are built, AIX ld can # have problems creating the table of contents. If linking a library # or program results in "error TOC overflow" add -mminimal-toc to # CXXFLAGS/CFLAGS for g++/gcc. In the cases where that is not # enough to fix the problem, add -Wl,-bbigtoc to LDFLAGS. _LT_TAGVAR(archive_cmds, $1)='' _LT_TAGVAR(hardcode_direct, $1)=yes _LT_TAGVAR(hardcode_direct_absolute, $1)=yes _LT_TAGVAR(hardcode_libdir_separator, $1)=':' _LT_TAGVAR(link_all_deplibs, $1)=yes _LT_TAGVAR(file_list_spec, $1)='$wl-f,' case $with_aix_soname,$aix_use_runtimelinking in aix,*) ;; # traditional, no import file svr4,* | *,yes) # use import file # The Import File defines what to hardcode. _LT_TAGVAR(hardcode_direct, $1)=no _LT_TAGVAR(hardcode_direct_absolute, $1)=no ;; esac if test yes = "$GCC"; then case $host_os in aix4.[[012]]|aix4.[[012]].*) # We only want to do this on AIX 4.2 and lower, the check # below for broken collect2 doesn't work under 4.3+ collect2name=`$CC -print-prog-name=collect2` if test -f "$collect2name" && strings "$collect2name" | $GREP resolve_lib_name >/dev/null then # We have reworked collect2 : else # We have old collect2 _LT_TAGVAR(hardcode_direct, $1)=unsupported # It fails to find uninstalled libraries when the uninstalled # path is not listed in the libpath. Setting hardcode_minus_L # to unsupported forces relinking _LT_TAGVAR(hardcode_minus_L, $1)=yes _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='-L$libdir' _LT_TAGVAR(hardcode_libdir_separator, $1)= fi ;; esac shared_flag='-shared' if test yes = "$aix_use_runtimelinking"; then shared_flag="$shared_flag "'$wl-G' fi # Need to ensure runtime linking is disabled for the traditional # shared library, or the linker may eventually find shared libraries # /with/ Import File - we do not want to mix them. shared_flag_aix='-shared' shared_flag_svr4='-shared $wl-G' else # not using gcc if test ia64 = "$host_cpu"; then # VisualAge C++, Version 5.5 for AIX 5L for IA-64, Beta 3 Release # chokes on -Wl,-G. The following line is correct: shared_flag='-G' else if test yes = "$aix_use_runtimelinking"; then shared_flag='$wl-G' else shared_flag='$wl-bM:SRE' fi shared_flag_aix='$wl-bM:SRE' shared_flag_svr4='$wl-G' fi fi _LT_TAGVAR(export_dynamic_flag_spec, $1)='$wl-bexpall' # It seems that -bexpall does not export symbols beginning with # underscore (_), so it is better to generate a list of symbols to export. _LT_TAGVAR(always_export_symbols, $1)=yes if test aix,yes = "$with_aix_soname,$aix_use_runtimelinking"; then # Warning - without using the other runtime loading flags (-brtl), # -berok will link without error, but may produce a broken library. _LT_TAGVAR(allow_undefined_flag, $1)='-berok' # Determine the default libpath from the value encoded in an # empty executable. _LT_SYS_MODULE_PATH_AIX([$1]) _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl-blibpath:$libdir:'"$aix_libpath" _LT_TAGVAR(archive_expsym_cmds, $1)='$CC -o $output_objdir/$soname $libobjs $deplibs $wl'$no_entry_flag' $compiler_flags `if test -n "$allow_undefined_flag"; then func_echo_all "$wl$allow_undefined_flag"; else :; fi` $wl'$exp_sym_flag:\$export_symbols' '$shared_flag else if test ia64 = "$host_cpu"; then _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl-R $libdir:/usr/lib:/lib' _LT_TAGVAR(allow_undefined_flag, $1)="-z nodefs" _LT_TAGVAR(archive_expsym_cmds, $1)="\$CC $shared_flag"' -o $output_objdir/$soname $libobjs $deplibs '"\$wl$no_entry_flag"' $compiler_flags $wl$allow_undefined_flag '"\$wl$exp_sym_flag:\$export_symbols" else # Determine the default libpath from the value encoded in an # empty executable. _LT_SYS_MODULE_PATH_AIX([$1]) _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl-blibpath:$libdir:'"$aix_libpath" # Warning - without using the other run time loading flags, # -berok will link without error, but may produce a broken library. _LT_TAGVAR(no_undefined_flag, $1)=' $wl-bernotok' _LT_TAGVAR(allow_undefined_flag, $1)=' $wl-berok' if test yes = "$with_gnu_ld"; then # We only use this code for GNU lds that support --whole-archive. _LT_TAGVAR(whole_archive_flag_spec, $1)='$wl--whole-archive$convenience $wl--no-whole-archive' else # Exported symbols can be pulled into shared objects from archives _LT_TAGVAR(whole_archive_flag_spec, $1)='$convenience' fi _LT_TAGVAR(archive_cmds_need_lc, $1)=yes _LT_TAGVAR(archive_expsym_cmds, $1)='$RM -r $output_objdir/$realname.d~$MKDIR $output_objdir/$realname.d' # -brtl affects multiple linker settings, -berok does not and is overridden later compiler_flags_filtered='`func_echo_all "$compiler_flags " | $SED -e "s%-brtl\\([[, ]]\\)%-berok\\1%g"`' if test svr4 != "$with_aix_soname"; then # This is similar to how AIX traditionally builds its shared libraries. _LT_TAGVAR(archive_expsym_cmds, $1)="$_LT_TAGVAR(archive_expsym_cmds, $1)"'~$CC '$shared_flag_aix' -o $output_objdir/$realname.d/$soname $libobjs $deplibs $wl-bnoentry '$compiler_flags_filtered'$wl-bE:$export_symbols$allow_undefined_flag~$AR $AR_FLAGS $output_objdir/$libname$release.a $output_objdir/$realname.d/$soname' fi if test aix != "$with_aix_soname"; then _LT_TAGVAR(archive_expsym_cmds, $1)="$_LT_TAGVAR(archive_expsym_cmds, $1)"'~$CC '$shared_flag_svr4' -o $output_objdir/$realname.d/$shared_archive_member_spec.o $libobjs $deplibs $wl-bnoentry '$compiler_flags_filtered'$wl-bE:$export_symbols$allow_undefined_flag~$STRIP -e $output_objdir/$realname.d/$shared_archive_member_spec.o~( func_echo_all "#! $soname($shared_archive_member_spec.o)"; if test shr_64 = "$shared_archive_member_spec"; then func_echo_all "# 64"; else func_echo_all "# 32"; fi; cat $export_symbols ) > $output_objdir/$realname.d/$shared_archive_member_spec.imp~$AR $AR_FLAGS $output_objdir/$soname $output_objdir/$realname.d/$shared_archive_member_spec.o $output_objdir/$realname.d/$shared_archive_member_spec.imp' else # used by -dlpreopen to get the symbols _LT_TAGVAR(archive_expsym_cmds, $1)="$_LT_TAGVAR(archive_expsym_cmds, $1)"'~$MV $output_objdir/$realname.d/$soname $output_objdir' fi _LT_TAGVAR(archive_expsym_cmds, $1)="$_LT_TAGVAR(archive_expsym_cmds, $1)"'~$RM -r $output_objdir/$realname.d' fi fi ;; amigaos*) case $host_cpu in powerpc) # see comment about AmigaOS4 .so support _LT_TAGVAR(archive_cmds, $1)='$CC -shared $libobjs $deplibs $compiler_flags $wl-soname $wl$soname -o $lib' _LT_TAGVAR(archive_expsym_cmds, $1)='' ;; m68k) _LT_TAGVAR(archive_cmds, $1)='$RM $output_objdir/a2ixlibrary.data~$ECHO "#define NAME $libname" > $output_objdir/a2ixlibrary.data~$ECHO "#define LIBRARY_ID 1" >> $output_objdir/a2ixlibrary.data~$ECHO "#define VERSION $major" >> $output_objdir/a2ixlibrary.data~$ECHO "#define REVISION $revision" >> $output_objdir/a2ixlibrary.data~$AR $AR_FLAGS $lib $libobjs~$RANLIB $lib~(cd $output_objdir && a2ixlibrary -32)' _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='-L$libdir' _LT_TAGVAR(hardcode_minus_L, $1)=yes ;; esac ;; bsdi[[45]]*) _LT_TAGVAR(export_dynamic_flag_spec, $1)=-rdynamic ;; cygwin* | mingw* | pw32* | cegcc*) # When not using gcc, we currently assume that we are using # Microsoft Visual C++. # hardcode_libdir_flag_spec is actually meaningless, as there is # no search path for DLLs. case $cc_basename in cl*) # Native MSVC _LT_TAGVAR(hardcode_libdir_flag_spec, $1)=' ' _LT_TAGVAR(allow_undefined_flag, $1)=unsupported _LT_TAGVAR(always_export_symbols, $1)=yes _LT_TAGVAR(file_list_spec, $1)='@' # Tell ltmain to make .lib files, not .a files. libext=lib # Tell ltmain to make .dll files, not .so files. shrext_cmds=.dll # FIXME: Setting linknames here is a bad hack. _LT_TAGVAR(archive_cmds, $1)='$CC -o $output_objdir/$soname $libobjs $compiler_flags $deplibs -Wl,-DLL,-IMPLIB:"$tool_output_objdir$libname.dll.lib"~linknames=' _LT_TAGVAR(archive_expsym_cmds, $1)='if _LT_DLL_DEF_P([$export_symbols]); then cp "$export_symbols" "$output_objdir/$soname.def"; echo "$tool_output_objdir$soname.def" > "$output_objdir/$soname.exp"; else $SED -e '\''s/^/-link -EXPORT:/'\'' < $export_symbols > $output_objdir/$soname.exp; fi~ $CC -o $tool_output_objdir$soname $libobjs $compiler_flags $deplibs "@$tool_output_objdir$soname.exp" -Wl,-DLL,-IMPLIB:"$tool_output_objdir$libname.dll.lib"~ linknames=' # The linker will not automatically build a static lib if we build a DLL. # _LT_TAGVAR(old_archive_from_new_cmds, $1)='true' _LT_TAGVAR(enable_shared_with_static_runtimes, $1)=yes _LT_TAGVAR(exclude_expsyms, $1)='_NULL_IMPORT_DESCRIPTOR|_IMPORT_DESCRIPTOR_.*' _LT_TAGVAR(export_symbols_cmds, $1)='$NM $libobjs $convenience | $global_symbol_pipe | $SED -e '\''/^[[BCDGRS]][[ ]]/s/.*[[ ]]\([[^ ]]*\)/\1,DATA/'\'' | $SED -e '\''/^[[AITW]][[ ]]/s/.*[[ ]]//'\'' | sort | uniq > $export_symbols' # Don't use ranlib _LT_TAGVAR(old_postinstall_cmds, $1)='chmod 644 $oldlib' _LT_TAGVAR(postlink_cmds, $1)='lt_outputfile="@OUTPUT@"~ lt_tool_outputfile="@TOOL_OUTPUT@"~ case $lt_outputfile in *.exe|*.EXE) ;; *) lt_outputfile=$lt_outputfile.exe lt_tool_outputfile=$lt_tool_outputfile.exe ;; esac~ if test : != "$MANIFEST_TOOL" && test -f "$lt_outputfile.manifest"; then $MANIFEST_TOOL -manifest "$lt_tool_outputfile.manifest" -outputresource:"$lt_tool_outputfile" || exit 1; $RM "$lt_outputfile.manifest"; fi' ;; *) # Assume MSVC wrapper _LT_TAGVAR(hardcode_libdir_flag_spec, $1)=' ' _LT_TAGVAR(allow_undefined_flag, $1)=unsupported # Tell ltmain to make .lib files, not .a files. libext=lib # Tell ltmain to make .dll files, not .so files. shrext_cmds=.dll # FIXME: Setting linknames here is a bad hack. _LT_TAGVAR(archive_cmds, $1)='$CC -o $lib $libobjs $compiler_flags `func_echo_all "$deplibs" | $SED '\''s/ -lc$//'\''` -link -dll~linknames=' # The linker will automatically build a .lib file if we build a DLL. _LT_TAGVAR(old_archive_from_new_cmds, $1)='true' # FIXME: Should let the user specify the lib program. _LT_TAGVAR(old_archive_cmds, $1)='lib -OUT:$oldlib$oldobjs$old_deplibs' _LT_TAGVAR(enable_shared_with_static_runtimes, $1)=yes ;; esac ;; darwin* | rhapsody*) _LT_DARWIN_LINKER_FEATURES($1) ;; dgux*) _LT_TAGVAR(archive_cmds, $1)='$LD -G -h $soname -o $lib $libobjs $deplibs $linker_flags' _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='-L$libdir' _LT_TAGVAR(hardcode_shlibpath_var, $1)=no ;; # FreeBSD 2.2.[012] allows us to include c++rt0.o to get C++ constructor # support. Future versions do this automatically, but an explicit c++rt0.o # does not break anything, and helps significantly (at the cost of a little # extra space). freebsd2.2*) _LT_TAGVAR(archive_cmds, $1)='$LD -Bshareable -o $lib $libobjs $deplibs $linker_flags /usr/lib/c++rt0.o' _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='-R$libdir' _LT_TAGVAR(hardcode_direct, $1)=yes _LT_TAGVAR(hardcode_shlibpath_var, $1)=no ;; # Unfortunately, older versions of FreeBSD 2 do not have this feature. freebsd2.*) _LT_TAGVAR(archive_cmds, $1)='$LD -Bshareable -o $lib $libobjs $deplibs $linker_flags' _LT_TAGVAR(hardcode_direct, $1)=yes _LT_TAGVAR(hardcode_minus_L, $1)=yes _LT_TAGVAR(hardcode_shlibpath_var, $1)=no ;; # FreeBSD 3 and greater uses gcc -shared to do shared libraries. freebsd* | dragonfly*) _LT_TAGVAR(archive_cmds, $1)='$CC -shared $pic_flag -o $lib $libobjs $deplibs $compiler_flags' _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='-R$libdir' _LT_TAGVAR(hardcode_direct, $1)=yes _LT_TAGVAR(hardcode_shlibpath_var, $1)=no ;; hpux9*) if test yes = "$GCC"; then _LT_TAGVAR(archive_cmds, $1)='$RM $output_objdir/$soname~$CC -shared $pic_flag $wl+b $wl$install_libdir -o $output_objdir/$soname $libobjs $deplibs $compiler_flags~test "x$output_objdir/$soname" = "x$lib" || mv $output_objdir/$soname $lib' else _LT_TAGVAR(archive_cmds, $1)='$RM $output_objdir/$soname~$LD -b +b $install_libdir -o $output_objdir/$soname $libobjs $deplibs $linker_flags~test "x$output_objdir/$soname" = "x$lib" || mv $output_objdir/$soname $lib' fi _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl+b $wl$libdir' _LT_TAGVAR(hardcode_libdir_separator, $1)=: _LT_TAGVAR(hardcode_direct, $1)=yes # hardcode_minus_L: Not really in the search PATH, # but as the default location of the library. _LT_TAGVAR(hardcode_minus_L, $1)=yes _LT_TAGVAR(export_dynamic_flag_spec, $1)='$wl-E' ;; hpux10*) if test yes,no = "$GCC,$with_gnu_ld"; then _LT_TAGVAR(archive_cmds, $1)='$CC -shared $pic_flag $wl+h $wl$soname $wl+b $wl$install_libdir -o $lib $libobjs $deplibs $compiler_flags' else _LT_TAGVAR(archive_cmds, $1)='$LD -b +h $soname +b $install_libdir -o $lib $libobjs $deplibs $linker_flags' fi if test no = "$with_gnu_ld"; then _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl+b $wl$libdir' _LT_TAGVAR(hardcode_libdir_separator, $1)=: _LT_TAGVAR(hardcode_direct, $1)=yes _LT_TAGVAR(hardcode_direct_absolute, $1)=yes _LT_TAGVAR(export_dynamic_flag_spec, $1)='$wl-E' # hardcode_minus_L: Not really in the search PATH, # but as the default location of the library. _LT_TAGVAR(hardcode_minus_L, $1)=yes fi ;; hpux11*) if test yes,no = "$GCC,$with_gnu_ld"; then case $host_cpu in hppa*64*) _LT_TAGVAR(archive_cmds, $1)='$CC -shared $wl+h $wl$soname -o $lib $libobjs $deplibs $compiler_flags' ;; ia64*) _LT_TAGVAR(archive_cmds, $1)='$CC -shared $pic_flag $wl+h $wl$soname $wl+nodefaultrpath -o $lib $libobjs $deplibs $compiler_flags' ;; *) _LT_TAGVAR(archive_cmds, $1)='$CC -shared $pic_flag $wl+h $wl$soname $wl+b $wl$install_libdir -o $lib $libobjs $deplibs $compiler_flags' ;; esac else case $host_cpu in hppa*64*) _LT_TAGVAR(archive_cmds, $1)='$CC -b $wl+h $wl$soname -o $lib $libobjs $deplibs $compiler_flags' ;; ia64*) _LT_TAGVAR(archive_cmds, $1)='$CC -b $wl+h $wl$soname $wl+nodefaultrpath -o $lib $libobjs $deplibs $compiler_flags' ;; *) m4_if($1, [], [ # Older versions of the 11.00 compiler do not understand -b yet # (HP92453-01 A.11.01.20 doesn't, HP92453-01 B.11.X.35175-35176.GP does) _LT_LINKER_OPTION([if $CC understands -b], _LT_TAGVAR(lt_cv_prog_compiler__b, $1), [-b], [_LT_TAGVAR(archive_cmds, $1)='$CC -b $wl+h $wl$soname $wl+b $wl$install_libdir -o $lib $libobjs $deplibs $compiler_flags'], [_LT_TAGVAR(archive_cmds, $1)='$LD -b +h $soname +b $install_libdir -o $lib $libobjs $deplibs $linker_flags'])], [_LT_TAGVAR(archive_cmds, $1)='$CC -b $wl+h $wl$soname $wl+b $wl$install_libdir -o $lib $libobjs $deplibs $compiler_flags']) ;; esac fi if test no = "$with_gnu_ld"; then _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl+b $wl$libdir' _LT_TAGVAR(hardcode_libdir_separator, $1)=: case $host_cpu in hppa*64*|ia64*) _LT_TAGVAR(hardcode_direct, $1)=no _LT_TAGVAR(hardcode_shlibpath_var, $1)=no ;; *) _LT_TAGVAR(hardcode_direct, $1)=yes _LT_TAGVAR(hardcode_direct_absolute, $1)=yes _LT_TAGVAR(export_dynamic_flag_spec, $1)='$wl-E' # hardcode_minus_L: Not really in the search PATH, # but as the default location of the library. _LT_TAGVAR(hardcode_minus_L, $1)=yes ;; esac fi ;; irix5* | irix6* | nonstopux*) if test yes = "$GCC"; then _LT_TAGVAR(archive_cmds, $1)='$CC -shared $pic_flag $libobjs $deplibs $compiler_flags $wl-soname $wl$soname `test -n "$verstring" && func_echo_all "$wl-set_version $wl$verstring"` $wl-update_registry $wl$output_objdir/so_locations -o $lib' # Try to use the -exported_symbol ld option, if it does not # work, assume that -exports_file does not work either and # implicitly export all symbols. # This should be the same for all languages, so no per-tag cache variable. AC_CACHE_CHECK([whether the $host_os linker accepts -exported_symbol], [lt_cv_irix_exported_symbol], [save_LDFLAGS=$LDFLAGS LDFLAGS="$LDFLAGS -shared $wl-exported_symbol ${wl}foo $wl-update_registry $wl/dev/null" AC_LINK_IFELSE( [AC_LANG_SOURCE( [AC_LANG_CASE([C], [[int foo (void) { return 0; }]], [C++], [[int foo (void) { return 0; }]], [Fortran 77], [[ subroutine foo end]], [Fortran], [[ subroutine foo end]])])], [lt_cv_irix_exported_symbol=yes], [lt_cv_irix_exported_symbol=no]) LDFLAGS=$save_LDFLAGS]) if test yes = "$lt_cv_irix_exported_symbol"; then _LT_TAGVAR(archive_expsym_cmds, $1)='$CC -shared $pic_flag $libobjs $deplibs $compiler_flags $wl-soname $wl$soname `test -n "$verstring" && func_echo_all "$wl-set_version $wl$verstring"` $wl-update_registry $wl$output_objdir/so_locations $wl-exports_file $wl$export_symbols -o $lib' fi else _LT_TAGVAR(archive_cmds, $1)='$CC -shared $libobjs $deplibs $compiler_flags -soname $soname `test -n "$verstring" && func_echo_all "-set_version $verstring"` -update_registry $output_objdir/so_locations -o $lib' _LT_TAGVAR(archive_expsym_cmds, $1)='$CC -shared $libobjs $deplibs $compiler_flags -soname $soname `test -n "$verstring" && func_echo_all "-set_version $verstring"` -update_registry $output_objdir/so_locations -exports_file $export_symbols -o $lib' fi _LT_TAGVAR(archive_cmds_need_lc, $1)='no' _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl-rpath $wl$libdir' _LT_TAGVAR(hardcode_libdir_separator, $1)=: _LT_TAGVAR(inherit_rpath, $1)=yes _LT_TAGVAR(link_all_deplibs, $1)=yes ;; linux*) case $cc_basename in tcc*) # Fabrice Bellard et al's Tiny C Compiler _LT_TAGVAR(ld_shlibs, $1)=yes _LT_TAGVAR(archive_cmds, $1)='$CC -shared $pic_flag -o $lib $libobjs $deplibs $compiler_flags' ;; esac ;; netbsd*) if echo __ELF__ | $CC -E - | $GREP __ELF__ >/dev/null; then _LT_TAGVAR(archive_cmds, $1)='$LD -Bshareable -o $lib $libobjs $deplibs $linker_flags' # a.out else _LT_TAGVAR(archive_cmds, $1)='$LD -shared -o $lib $libobjs $deplibs $linker_flags' # ELF fi _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='-R$libdir' _LT_TAGVAR(hardcode_direct, $1)=yes _LT_TAGVAR(hardcode_shlibpath_var, $1)=no ;; newsos6) _LT_TAGVAR(archive_cmds, $1)='$LD -G -h $soname -o $lib $libobjs $deplibs $linker_flags' _LT_TAGVAR(hardcode_direct, $1)=yes _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl-rpath $wl$libdir' _LT_TAGVAR(hardcode_libdir_separator, $1)=: _LT_TAGVAR(hardcode_shlibpath_var, $1)=no ;; *nto* | *qnx*) ;; openbsd* | bitrig*) if test -f /usr/libexec/ld.so; then _LT_TAGVAR(hardcode_direct, $1)=yes _LT_TAGVAR(hardcode_shlibpath_var, $1)=no _LT_TAGVAR(hardcode_direct_absolute, $1)=yes if test -z "`echo __ELF__ | $CC -E - | $GREP __ELF__`"; then _LT_TAGVAR(archive_cmds, $1)='$CC -shared $pic_flag -o $lib $libobjs $deplibs $compiler_flags' _LT_TAGVAR(archive_expsym_cmds, $1)='$CC -shared $pic_flag -o $lib $libobjs $deplibs $compiler_flags $wl-retain-symbols-file,$export_symbols' _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl-rpath,$libdir' _LT_TAGVAR(export_dynamic_flag_spec, $1)='$wl-E' else _LT_TAGVAR(archive_cmds, $1)='$CC -shared $pic_flag -o $lib $libobjs $deplibs $compiler_flags' _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl-rpath,$libdir' fi else _LT_TAGVAR(ld_shlibs, $1)=no fi ;; os2*) _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='-L$libdir' _LT_TAGVAR(hardcode_minus_L, $1)=yes _LT_TAGVAR(allow_undefined_flag, $1)=unsupported shrext_cmds=.dll _LT_TAGVAR(archive_cmds, $1)='$ECHO "LIBRARY ${soname%$shared_ext} INITINSTANCE TERMINSTANCE" > $output_objdir/$libname.def~ $ECHO "DESCRIPTION \"$libname\"" >> $output_objdir/$libname.def~ $ECHO "DATA MULTIPLE NONSHARED" >> $output_objdir/$libname.def~ $ECHO EXPORTS >> $output_objdir/$libname.def~ emxexp $libobjs | $SED /"_DLL_InitTerm"/d >> $output_objdir/$libname.def~ $CC -Zdll -Zcrtdll -o $output_objdir/$soname $libobjs $deplibs $compiler_flags $output_objdir/$libname.def~ emximp -o $lib $output_objdir/$libname.def' _LT_TAGVAR(archive_expsym_cmds, $1)='$ECHO "LIBRARY ${soname%$shared_ext} INITINSTANCE TERMINSTANCE" > $output_objdir/$libname.def~ $ECHO "DESCRIPTION \"$libname\"" >> $output_objdir/$libname.def~ $ECHO "DATA MULTIPLE NONSHARED" >> $output_objdir/$libname.def~ $ECHO EXPORTS >> $output_objdir/$libname.def~ prefix_cmds="$SED"~ if test EXPORTS = "`$SED 1q $export_symbols`"; then prefix_cmds="$prefix_cmds -e 1d"; fi~ prefix_cmds="$prefix_cmds -e \"s/^\(.*\)$/_\1/g\""~ cat $export_symbols | $prefix_cmds >> $output_objdir/$libname.def~ $CC -Zdll -Zcrtdll -o $output_objdir/$soname $libobjs $deplibs $compiler_flags $output_objdir/$libname.def~ emximp -o $lib $output_objdir/$libname.def' _LT_TAGVAR(old_archive_From_new_cmds, $1)='emximp -o $output_objdir/${libname}_dll.a $output_objdir/$libname.def' _LT_TAGVAR(enable_shared_with_static_runtimes, $1)=yes ;; osf3*) if test yes = "$GCC"; then _LT_TAGVAR(allow_undefined_flag, $1)=' $wl-expect_unresolved $wl\*' _LT_TAGVAR(archive_cmds, $1)='$CC -shared$allow_undefined_flag $libobjs $deplibs $compiler_flags $wl-soname $wl$soname `test -n "$verstring" && func_echo_all "$wl-set_version $wl$verstring"` $wl-update_registry $wl$output_objdir/so_locations -o $lib' else _LT_TAGVAR(allow_undefined_flag, $1)=' -expect_unresolved \*' _LT_TAGVAR(archive_cmds, $1)='$CC -shared$allow_undefined_flag $libobjs $deplibs $compiler_flags -soname $soname `test -n "$verstring" && func_echo_all "-set_version $verstring"` -update_registry $output_objdir/so_locations -o $lib' fi _LT_TAGVAR(archive_cmds_need_lc, $1)='no' _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl-rpath $wl$libdir' _LT_TAGVAR(hardcode_libdir_separator, $1)=: ;; osf4* | osf5*) # as osf3* with the addition of -msym flag if test yes = "$GCC"; then _LT_TAGVAR(allow_undefined_flag, $1)=' $wl-expect_unresolved $wl\*' _LT_TAGVAR(archive_cmds, $1)='$CC -shared$allow_undefined_flag $pic_flag $libobjs $deplibs $compiler_flags $wl-msym $wl-soname $wl$soname `test -n "$verstring" && func_echo_all "$wl-set_version $wl$verstring"` $wl-update_registry $wl$output_objdir/so_locations -o $lib' _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl-rpath $wl$libdir' else _LT_TAGVAR(allow_undefined_flag, $1)=' -expect_unresolved \*' _LT_TAGVAR(archive_cmds, $1)='$CC -shared$allow_undefined_flag $libobjs $deplibs $compiler_flags -msym -soname $soname `test -n "$verstring" && func_echo_all "-set_version $verstring"` -update_registry $output_objdir/so_locations -o $lib' _LT_TAGVAR(archive_expsym_cmds, $1)='for i in `cat $export_symbols`; do printf "%s %s\\n" -exported_symbol "\$i" >> $lib.exp; done; printf "%s\\n" "-hidden">> $lib.exp~ $CC -shared$allow_undefined_flag $wl-input $wl$lib.exp $compiler_flags $libobjs $deplibs -soname $soname `test -n "$verstring" && $ECHO "-set_version $verstring"` -update_registry $output_objdir/so_locations -o $lib~$RM $lib.exp' # Both c and cxx compiler support -rpath directly _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='-rpath $libdir' fi _LT_TAGVAR(archive_cmds_need_lc, $1)='no' _LT_TAGVAR(hardcode_libdir_separator, $1)=: ;; solaris*) _LT_TAGVAR(no_undefined_flag, $1)=' -z defs' if test yes = "$GCC"; then wlarc='$wl' _LT_TAGVAR(archive_cmds, $1)='$CC -shared $pic_flag $wl-z ${wl}text $wl-h $wl$soname -o $lib $libobjs $deplibs $compiler_flags' _LT_TAGVAR(archive_expsym_cmds, $1)='echo "{ global:" > $lib.exp~cat $export_symbols | $SED -e "s/\(.*\)/\1;/" >> $lib.exp~echo "local: *; };" >> $lib.exp~ $CC -shared $pic_flag $wl-z ${wl}text $wl-M $wl$lib.exp $wl-h $wl$soname -o $lib $libobjs $deplibs $compiler_flags~$RM $lib.exp' else case `$CC -V 2>&1` in *"Compilers 5.0"*) wlarc='' _LT_TAGVAR(archive_cmds, $1)='$LD -G$allow_undefined_flag -h $soname -o $lib $libobjs $deplibs $linker_flags' _LT_TAGVAR(archive_expsym_cmds, $1)='echo "{ global:" > $lib.exp~cat $export_symbols | $SED -e "s/\(.*\)/\1;/" >> $lib.exp~echo "local: *; };" >> $lib.exp~ $LD -G$allow_undefined_flag -M $lib.exp -h $soname -o $lib $libobjs $deplibs $linker_flags~$RM $lib.exp' ;; *) wlarc='$wl' _LT_TAGVAR(archive_cmds, $1)='$CC -G$allow_undefined_flag -h $soname -o $lib $libobjs $deplibs $compiler_flags' _LT_TAGVAR(archive_expsym_cmds, $1)='echo "{ global:" > $lib.exp~cat $export_symbols | $SED -e "s/\(.*\)/\1;/" >> $lib.exp~echo "local: *; };" >> $lib.exp~ $CC -G$allow_undefined_flag -M $lib.exp -h $soname -o $lib $libobjs $deplibs $compiler_flags~$RM $lib.exp' ;; esac fi _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='-R$libdir' _LT_TAGVAR(hardcode_shlibpath_var, $1)=no case $host_os in solaris2.[[0-5]] | solaris2.[[0-5]].*) ;; *) # The compiler driver will combine and reorder linker options, # but understands '-z linker_flag'. GCC discards it without '$wl', # but is careful enough not to reorder. # Supported since Solaris 2.6 (maybe 2.5.1?) if test yes = "$GCC"; then _LT_TAGVAR(whole_archive_flag_spec, $1)='$wl-z ${wl}allextract$convenience $wl-z ${wl}defaultextract' else _LT_TAGVAR(whole_archive_flag_spec, $1)='-z allextract$convenience -z defaultextract' fi ;; esac _LT_TAGVAR(link_all_deplibs, $1)=yes ;; sunos4*) if test sequent = "$host_vendor"; then # Use $CC to link under sequent, because it throws in some extra .o # files that make .init and .fini sections work. _LT_TAGVAR(archive_cmds, $1)='$CC -G $wl-h $soname -o $lib $libobjs $deplibs $compiler_flags' else _LT_TAGVAR(archive_cmds, $1)='$LD -assert pure-text -Bstatic -o $lib $libobjs $deplibs $linker_flags' fi _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='-L$libdir' _LT_TAGVAR(hardcode_direct, $1)=yes _LT_TAGVAR(hardcode_minus_L, $1)=yes _LT_TAGVAR(hardcode_shlibpath_var, $1)=no ;; sysv4) case $host_vendor in sni) _LT_TAGVAR(archive_cmds, $1)='$LD -G -h $soname -o $lib $libobjs $deplibs $linker_flags' _LT_TAGVAR(hardcode_direct, $1)=yes # is this really true??? ;; siemens) ## LD is ld it makes a PLAMLIB ## CC just makes a GrossModule. _LT_TAGVAR(archive_cmds, $1)='$LD -G -o $lib $libobjs $deplibs $linker_flags' _LT_TAGVAR(reload_cmds, $1)='$CC -r -o $output$reload_objs' _LT_TAGVAR(hardcode_direct, $1)=no ;; motorola) _LT_TAGVAR(archive_cmds, $1)='$LD -G -h $soname -o $lib $libobjs $deplibs $linker_flags' _LT_TAGVAR(hardcode_direct, $1)=no #Motorola manual says yes, but my tests say they lie ;; esac runpath_var='LD_RUN_PATH' _LT_TAGVAR(hardcode_shlibpath_var, $1)=no ;; sysv4.3*) _LT_TAGVAR(archive_cmds, $1)='$LD -G -h $soname -o $lib $libobjs $deplibs $linker_flags' _LT_TAGVAR(hardcode_shlibpath_var, $1)=no _LT_TAGVAR(export_dynamic_flag_spec, $1)='-Bexport' ;; sysv4*MP*) if test -d /usr/nec; then _LT_TAGVAR(archive_cmds, $1)='$LD -G -h $soname -o $lib $libobjs $deplibs $linker_flags' _LT_TAGVAR(hardcode_shlibpath_var, $1)=no runpath_var=LD_RUN_PATH hardcode_runpath_var=yes _LT_TAGVAR(ld_shlibs, $1)=yes fi ;; sysv4*uw2* | sysv5OpenUNIX* | sysv5UnixWare7.[[01]].[[10]]* | unixware7* | sco3.2v5.0.[[024]]*) _LT_TAGVAR(no_undefined_flag, $1)='$wl-z,text' _LT_TAGVAR(archive_cmds_need_lc, $1)=no _LT_TAGVAR(hardcode_shlibpath_var, $1)=no runpath_var='LD_RUN_PATH' if test yes = "$GCC"; then _LT_TAGVAR(archive_cmds, $1)='$CC -shared $wl-h,$soname -o $lib $libobjs $deplibs $compiler_flags' _LT_TAGVAR(archive_expsym_cmds, $1)='$CC -shared $wl-Bexport:$export_symbols $wl-h,$soname -o $lib $libobjs $deplibs $compiler_flags' else _LT_TAGVAR(archive_cmds, $1)='$CC -G $wl-h,$soname -o $lib $libobjs $deplibs $compiler_flags' _LT_TAGVAR(archive_expsym_cmds, $1)='$CC -G $wl-Bexport:$export_symbols $wl-h,$soname -o $lib $libobjs $deplibs $compiler_flags' fi ;; sysv5* | sco3.2v5* | sco5v6*) # Note: We CANNOT use -z defs as we might desire, because we do not # link with -lc, and that would cause any symbols used from libc to # always be unresolved, which means just about no library would # ever link correctly. If we're not using GNU ld we use -z text # though, which does catch some bad symbols but isn't as heavy-handed # as -z defs. _LT_TAGVAR(no_undefined_flag, $1)='$wl-z,text' _LT_TAGVAR(allow_undefined_flag, $1)='$wl-z,nodefs' _LT_TAGVAR(archive_cmds_need_lc, $1)=no _LT_TAGVAR(hardcode_shlibpath_var, $1)=no _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl-R,$libdir' _LT_TAGVAR(hardcode_libdir_separator, $1)=':' _LT_TAGVAR(link_all_deplibs, $1)=yes _LT_TAGVAR(export_dynamic_flag_spec, $1)='$wl-Bexport' runpath_var='LD_RUN_PATH' if test yes = "$GCC"; then _LT_TAGVAR(archive_cmds, $1)='$CC -shared $wl-h,$soname -o $lib $libobjs $deplibs $compiler_flags' _LT_TAGVAR(archive_expsym_cmds, $1)='$CC -shared $wl-Bexport:$export_symbols $wl-h,$soname -o $lib $libobjs $deplibs $compiler_flags' else _LT_TAGVAR(archive_cmds, $1)='$CC -G $wl-h,$soname -o $lib $libobjs $deplibs $compiler_flags' _LT_TAGVAR(archive_expsym_cmds, $1)='$CC -G $wl-Bexport:$export_symbols $wl-h,$soname -o $lib $libobjs $deplibs $compiler_flags' fi ;; uts4*) _LT_TAGVAR(archive_cmds, $1)='$LD -G -h $soname -o $lib $libobjs $deplibs $linker_flags' _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='-L$libdir' _LT_TAGVAR(hardcode_shlibpath_var, $1)=no ;; *) _LT_TAGVAR(ld_shlibs, $1)=no ;; esac if test sni = "$host_vendor"; then case $host in sysv4 | sysv4.2uw2* | sysv4.3* | sysv5*) _LT_TAGVAR(export_dynamic_flag_spec, $1)='$wl-Blargedynsym' ;; esac fi fi ]) AC_MSG_RESULT([$_LT_TAGVAR(ld_shlibs, $1)]) test no = "$_LT_TAGVAR(ld_shlibs, $1)" && can_build_shared=no _LT_TAGVAR(with_gnu_ld, $1)=$with_gnu_ld _LT_DECL([], [libext], [0], [Old archive suffix (normally "a")])dnl _LT_DECL([], [shrext_cmds], [1], [Shared library suffix (normally ".so")])dnl _LT_DECL([], [extract_expsyms_cmds], [2], [The commands to extract the exported symbol list from a shared archive]) # # Do we need to explicitly link libc? # case "x$_LT_TAGVAR(archive_cmds_need_lc, $1)" in x|xyes) # Assume -lc should be added _LT_TAGVAR(archive_cmds_need_lc, $1)=yes if test yes,yes = "$GCC,$enable_shared"; then case $_LT_TAGVAR(archive_cmds, $1) in *'~'*) # FIXME: we may have to deal with multi-command sequences. ;; '$CC '*) # Test whether the compiler implicitly links with -lc since on some # systems, -lgcc has to come before -lc. If gcc already passes -lc # to ld, don't add -lc before -lgcc. AC_CACHE_CHECK([whether -lc should be explicitly linked in], [lt_cv_]_LT_TAGVAR(archive_cmds_need_lc, $1), [$RM conftest* echo "$lt_simple_compile_test_code" > conftest.$ac_ext if AC_TRY_EVAL(ac_compile) 2>conftest.err; then soname=conftest lib=conftest libobjs=conftest.$ac_objext deplibs= wl=$_LT_TAGVAR(lt_prog_compiler_wl, $1) pic_flag=$_LT_TAGVAR(lt_prog_compiler_pic, $1) compiler_flags=-v linker_flags=-v verstring= output_objdir=. libname=conftest lt_save_allow_undefined_flag=$_LT_TAGVAR(allow_undefined_flag, $1) _LT_TAGVAR(allow_undefined_flag, $1)= if AC_TRY_EVAL(_LT_TAGVAR(archive_cmds, $1) 2\>\&1 \| $GREP \" -lc \" \>/dev/null 2\>\&1) then lt_cv_[]_LT_TAGVAR(archive_cmds_need_lc, $1)=no else lt_cv_[]_LT_TAGVAR(archive_cmds_need_lc, $1)=yes fi _LT_TAGVAR(allow_undefined_flag, $1)=$lt_save_allow_undefined_flag else cat conftest.err 1>&5 fi $RM conftest* ]) _LT_TAGVAR(archive_cmds_need_lc, $1)=$lt_cv_[]_LT_TAGVAR(archive_cmds_need_lc, $1) ;; esac fi ;; esac _LT_TAGDECL([build_libtool_need_lc], [archive_cmds_need_lc], [0], [Whether or not to add -lc for building shared libraries]) _LT_TAGDECL([allow_libtool_libs_with_static_runtimes], [enable_shared_with_static_runtimes], [0], [Whether or not to disallow shared libs when runtime libs are static]) _LT_TAGDECL([], [export_dynamic_flag_spec], [1], [Compiler flag to allow reflexive dlopens]) _LT_TAGDECL([], [whole_archive_flag_spec], [1], [Compiler flag to generate shared objects directly from archives]) _LT_TAGDECL([], [compiler_needs_object], [1], [Whether the compiler copes with passing no objects directly]) _LT_TAGDECL([], [old_archive_from_new_cmds], [2], [Create an old-style archive from a shared archive]) _LT_TAGDECL([], [old_archive_from_expsyms_cmds], [2], [Create a temporary old-style archive to link instead of a shared archive]) _LT_TAGDECL([], [archive_cmds], [2], [Commands used to build a shared archive]) _LT_TAGDECL([], [archive_expsym_cmds], [2]) _LT_TAGDECL([], [module_cmds], [2], [Commands used to build a loadable module if different from building a shared archive.]) _LT_TAGDECL([], [module_expsym_cmds], [2]) _LT_TAGDECL([], [with_gnu_ld], [1], [Whether we are building with GNU ld or not]) _LT_TAGDECL([], [allow_undefined_flag], [1], [Flag that allows shared libraries with undefined symbols to be built]) _LT_TAGDECL([], [no_undefined_flag], [1], [Flag that enforces no undefined symbols]) _LT_TAGDECL([], [hardcode_libdir_flag_spec], [1], [Flag to hardcode $libdir into a binary during linking. This must work even if $libdir does not exist]) _LT_TAGDECL([], [hardcode_libdir_separator], [1], [Whether we need a single "-rpath" flag with a separated argument]) _LT_TAGDECL([], [hardcode_direct], [0], [Set to "yes" if using DIR/libNAME$shared_ext during linking hardcodes DIR into the resulting binary]) _LT_TAGDECL([], [hardcode_direct_absolute], [0], [Set to "yes" if using DIR/libNAME$shared_ext during linking hardcodes DIR into the resulting binary and the resulting library dependency is "absolute", i.e impossible to change by setting $shlibpath_var if the library is relocated]) _LT_TAGDECL([], [hardcode_minus_L], [0], [Set to "yes" if using the -LDIR flag during linking hardcodes DIR into the resulting binary]) _LT_TAGDECL([], [hardcode_shlibpath_var], [0], [Set to "yes" if using SHLIBPATH_VAR=DIR during linking hardcodes DIR into the resulting binary]) _LT_TAGDECL([], [hardcode_automatic], [0], [Set to "yes" if building a shared library automatically hardcodes DIR into the library and all subsequent libraries and executables linked against it]) _LT_TAGDECL([], [inherit_rpath], [0], [Set to yes if linker adds runtime paths of dependent libraries to runtime path list]) _LT_TAGDECL([], [link_all_deplibs], [0], [Whether libtool must link a program against all its dependency libraries]) _LT_TAGDECL([], [always_export_symbols], [0], [Set to "yes" if exported symbols are required]) _LT_TAGDECL([], [export_symbols_cmds], [2], [The commands to list exported symbols]) _LT_TAGDECL([], [exclude_expsyms], [1], [Symbols that should not be listed in the preloaded symbols]) _LT_TAGDECL([], [include_expsyms], [1], [Symbols that must always be exported]) _LT_TAGDECL([], [prelink_cmds], [2], [Commands necessary for linking programs (against libraries) with templates]) _LT_TAGDECL([], [postlink_cmds], [2], [Commands necessary for finishing linking programs]) _LT_TAGDECL([], [file_list_spec], [1], [Specify filename containing input files]) dnl FIXME: Not yet implemented dnl _LT_TAGDECL([], [thread_safe_flag_spec], [1], dnl [Compiler flag to generate thread safe objects]) ])# _LT_LINKER_SHLIBS # _LT_LANG_C_CONFIG([TAG]) # ------------------------ # Ensure that the configuration variables for a C compiler are suitably # defined. These variables are subsequently used by _LT_CONFIG to write # the compiler configuration to 'libtool'. m4_defun([_LT_LANG_C_CONFIG], [m4_require([_LT_DECL_EGREP])dnl lt_save_CC=$CC AC_LANG_PUSH(C) # Source file extension for C test sources. ac_ext=c # Object file extension for compiled C test sources. objext=o _LT_TAGVAR(objext, $1)=$objext # Code to be used in simple compile tests lt_simple_compile_test_code="int some_variable = 0;" # Code to be used in simple link tests lt_simple_link_test_code='int main(){return(0);}' _LT_TAG_COMPILER # Save the default compiler, since it gets overwritten when the other # tags are being tested, and _LT_TAGVAR(compiler, []) is a NOP. compiler_DEFAULT=$CC # save warnings/boilerplate of simple test code _LT_COMPILER_BOILERPLATE _LT_LINKER_BOILERPLATE if test -n "$compiler"; then _LT_COMPILER_NO_RTTI($1) _LT_COMPILER_PIC($1) _LT_COMPILER_C_O($1) _LT_COMPILER_FILE_LOCKS($1) _LT_LINKER_SHLIBS($1) _LT_SYS_DYNAMIC_LINKER($1) _LT_LINKER_HARDCODE_LIBPATH($1) LT_SYS_DLOPEN_SELF _LT_CMD_STRIPLIB # Report what library types will actually be built AC_MSG_CHECKING([if libtool supports shared libraries]) AC_MSG_RESULT([$can_build_shared]) AC_MSG_CHECKING([whether to build shared libraries]) test no = "$can_build_shared" && enable_shared=no # On AIX, shared libraries and static libraries use the same namespace, and # are all built from PIC. case $host_os in aix3*) test yes = "$enable_shared" && enable_static=no if test -n "$RANLIB"; then archive_cmds="$archive_cmds~\$RANLIB \$lib" postinstall_cmds='$RANLIB $lib' fi ;; aix[[4-9]]*) if test ia64 != "$host_cpu"; then case $enable_shared,$with_aix_soname,$aix_use_runtimelinking in yes,aix,yes) ;; # shared object as lib.so file only yes,svr4,*) ;; # shared object as lib.so archive member only yes,*) enable_static=no ;; # shared object in lib.a archive as well esac fi ;; esac AC_MSG_RESULT([$enable_shared]) AC_MSG_CHECKING([whether to build static libraries]) # Make sure either enable_shared or enable_static is yes. test yes = "$enable_shared" || enable_static=yes AC_MSG_RESULT([$enable_static]) _LT_CONFIG($1) fi AC_LANG_POP CC=$lt_save_CC ])# _LT_LANG_C_CONFIG # _LT_LANG_CXX_CONFIG([TAG]) # -------------------------- # Ensure that the configuration variables for a C++ compiler are suitably # defined. These variables are subsequently used by _LT_CONFIG to write # the compiler configuration to 'libtool'. m4_defun([_LT_LANG_CXX_CONFIG], [m4_require([_LT_FILEUTILS_DEFAULTS])dnl m4_require([_LT_DECL_EGREP])dnl m4_require([_LT_PATH_MANIFEST_TOOL])dnl if test -n "$CXX" && ( test no != "$CXX" && ( (test g++ = "$CXX" && `g++ -v >/dev/null 2>&1` ) || (test g++ != "$CXX"))); then AC_PROG_CXXCPP else _lt_caught_CXX_error=yes fi AC_LANG_PUSH(C++) _LT_TAGVAR(archive_cmds_need_lc, $1)=no _LT_TAGVAR(allow_undefined_flag, $1)= _LT_TAGVAR(always_export_symbols, $1)=no _LT_TAGVAR(archive_expsym_cmds, $1)= _LT_TAGVAR(compiler_needs_object, $1)=no _LT_TAGVAR(export_dynamic_flag_spec, $1)= _LT_TAGVAR(hardcode_direct, $1)=no _LT_TAGVAR(hardcode_direct_absolute, $1)=no _LT_TAGVAR(hardcode_libdir_flag_spec, $1)= _LT_TAGVAR(hardcode_libdir_separator, $1)= _LT_TAGVAR(hardcode_minus_L, $1)=no _LT_TAGVAR(hardcode_shlibpath_var, $1)=unsupported _LT_TAGVAR(hardcode_automatic, $1)=no _LT_TAGVAR(inherit_rpath, $1)=no _LT_TAGVAR(module_cmds, $1)= _LT_TAGVAR(module_expsym_cmds, $1)= _LT_TAGVAR(link_all_deplibs, $1)=unknown _LT_TAGVAR(old_archive_cmds, $1)=$old_archive_cmds _LT_TAGVAR(reload_flag, $1)=$reload_flag _LT_TAGVAR(reload_cmds, $1)=$reload_cmds _LT_TAGVAR(no_undefined_flag, $1)= _LT_TAGVAR(whole_archive_flag_spec, $1)= _LT_TAGVAR(enable_shared_with_static_runtimes, $1)=no # Source file extension for C++ test sources. ac_ext=cpp # Object file extension for compiled C++ test sources. objext=o _LT_TAGVAR(objext, $1)=$objext # No sense in running all these tests if we already determined that # the CXX compiler isn't working. Some variables (like enable_shared) # are currently assumed to apply to all compilers on this platform, # and will be corrupted by setting them based on a non-working compiler. if test yes != "$_lt_caught_CXX_error"; then # Code to be used in simple compile tests lt_simple_compile_test_code="int some_variable = 0;" # Code to be used in simple link tests lt_simple_link_test_code='int main(int, char *[[]]) { return(0); }' # ltmain only uses $CC for tagged configurations so make sure $CC is set. _LT_TAG_COMPILER # save warnings/boilerplate of simple test code _LT_COMPILER_BOILERPLATE _LT_LINKER_BOILERPLATE # Allow CC to be a program name with arguments. lt_save_CC=$CC lt_save_CFLAGS=$CFLAGS lt_save_LD=$LD lt_save_GCC=$GCC GCC=$GXX lt_save_with_gnu_ld=$with_gnu_ld lt_save_path_LD=$lt_cv_path_LD if test -n "${lt_cv_prog_gnu_ldcxx+set}"; then lt_cv_prog_gnu_ld=$lt_cv_prog_gnu_ldcxx else $as_unset lt_cv_prog_gnu_ld fi if test -n "${lt_cv_path_LDCXX+set}"; then lt_cv_path_LD=$lt_cv_path_LDCXX else $as_unset lt_cv_path_LD fi test -z "${LDCXX+set}" || LD=$LDCXX CC=${CXX-"c++"} CFLAGS=$CXXFLAGS compiler=$CC _LT_TAGVAR(compiler, $1)=$CC _LT_CC_BASENAME([$compiler]) if test -n "$compiler"; then # We don't want -fno-exception when compiling C++ code, so set the # no_builtin_flag separately if test yes = "$GXX"; then _LT_TAGVAR(lt_prog_compiler_no_builtin_flag, $1)=' -fno-builtin' else _LT_TAGVAR(lt_prog_compiler_no_builtin_flag, $1)= fi if test yes = "$GXX"; then # Set up default GNU C++ configuration LT_PATH_LD # Check if GNU C++ uses GNU ld as the underlying linker, since the # archiving commands below assume that GNU ld is being used. if test yes = "$with_gnu_ld"; then _LT_TAGVAR(archive_cmds, $1)='$CC $pic_flag -shared -nostdlib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags $wl-soname $wl$soname -o $lib' _LT_TAGVAR(archive_expsym_cmds, $1)='$CC $pic_flag -shared -nostdlib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags $wl-soname $wl$soname $wl-retain-symbols-file $wl$export_symbols -o $lib' _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl-rpath $wl$libdir' _LT_TAGVAR(export_dynamic_flag_spec, $1)='$wl--export-dynamic' # If archive_cmds runs LD, not CC, wlarc should be empty # XXX I think wlarc can be eliminated in ltcf-cxx, but I need to # investigate it a little bit more. (MM) wlarc='$wl' # ancient GNU ld didn't support --whole-archive et. al. if eval "`$CC -print-prog-name=ld` --help 2>&1" | $GREP 'no-whole-archive' > /dev/null; then _LT_TAGVAR(whole_archive_flag_spec, $1)=$wlarc'--whole-archive$convenience '$wlarc'--no-whole-archive' else _LT_TAGVAR(whole_archive_flag_spec, $1)= fi else with_gnu_ld=no wlarc= # A generic and very simple default shared library creation # command for GNU C++ for the case where it uses the native # linker, instead of GNU ld. If possible, this setting should # overridden to take advantage of the native linker features on # the platform it is being used on. _LT_TAGVAR(archive_cmds, $1)='$CC -shared -nostdlib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags -o $lib' fi # Commands to make compiler produce verbose output that lists # what "hidden" libraries, object files and flags are used when # linking a shared library. output_verbose_link_cmd='$CC -shared $CFLAGS -v conftest.$objext 2>&1 | $GREP -v "^Configured with:" | $GREP "\-L"' else GXX=no with_gnu_ld=no wlarc= fi # PORTME: fill in a description of your system's C++ link characteristics AC_MSG_CHECKING([whether the $compiler linker ($LD) supports shared libraries]) _LT_TAGVAR(ld_shlibs, $1)=yes case $host_os in aix3*) # FIXME: insert proper C++ library support _LT_TAGVAR(ld_shlibs, $1)=no ;; aix[[4-9]]*) if test ia64 = "$host_cpu"; then # On IA64, the linker does run time linking by default, so we don't # have to do anything special. aix_use_runtimelinking=no exp_sym_flag='-Bexport' no_entry_flag= else aix_use_runtimelinking=no # Test if we are trying to use run time linking or normal # AIX style linking. If -brtl is somewhere in LDFLAGS, we # have runtime linking enabled, and use it for executables. # For shared libraries, we enable/disable runtime linking # depending on the kind of the shared library created - # when "with_aix_soname,aix_use_runtimelinking" is: # "aix,no" lib.a(lib.so.V) shared, rtl:no, for executables # "aix,yes" lib.so shared, rtl:yes, for executables # lib.a static archive # "both,no" lib.so.V(shr.o) shared, rtl:yes # lib.a(lib.so.V) shared, rtl:no, for executables # "both,yes" lib.so.V(shr.o) shared, rtl:yes, for executables # lib.a(lib.so.V) shared, rtl:no # "svr4,*" lib.so.V(shr.o) shared, rtl:yes, for executables # lib.a static archive case $host_os in aix4.[[23]]|aix4.[[23]].*|aix[[5-9]]*) for ld_flag in $LDFLAGS; do case $ld_flag in *-brtl*) aix_use_runtimelinking=yes break ;; esac done if test svr4,no = "$with_aix_soname,$aix_use_runtimelinking"; then # With aix-soname=svr4, we create the lib.so.V shared archives only, # so we don't have lib.a shared libs to link our executables. # We have to force runtime linking in this case. aix_use_runtimelinking=yes LDFLAGS="$LDFLAGS -Wl,-brtl" fi ;; esac exp_sym_flag='-bexport' no_entry_flag='-bnoentry' fi # When large executables or shared objects are built, AIX ld can # have problems creating the table of contents. If linking a library # or program results in "error TOC overflow" add -mminimal-toc to # CXXFLAGS/CFLAGS for g++/gcc. In the cases where that is not # enough to fix the problem, add -Wl,-bbigtoc to LDFLAGS. _LT_TAGVAR(archive_cmds, $1)='' _LT_TAGVAR(hardcode_direct, $1)=yes _LT_TAGVAR(hardcode_direct_absolute, $1)=yes _LT_TAGVAR(hardcode_libdir_separator, $1)=':' _LT_TAGVAR(link_all_deplibs, $1)=yes _LT_TAGVAR(file_list_spec, $1)='$wl-f,' case $with_aix_soname,$aix_use_runtimelinking in aix,*) ;; # no import file svr4,* | *,yes) # use import file # The Import File defines what to hardcode. _LT_TAGVAR(hardcode_direct, $1)=no _LT_TAGVAR(hardcode_direct_absolute, $1)=no ;; esac if test yes = "$GXX"; then case $host_os in aix4.[[012]]|aix4.[[012]].*) # We only want to do this on AIX 4.2 and lower, the check # below for broken collect2 doesn't work under 4.3+ collect2name=`$CC -print-prog-name=collect2` if test -f "$collect2name" && strings "$collect2name" | $GREP resolve_lib_name >/dev/null then # We have reworked collect2 : else # We have old collect2 _LT_TAGVAR(hardcode_direct, $1)=unsupported # It fails to find uninstalled libraries when the uninstalled # path is not listed in the libpath. Setting hardcode_minus_L # to unsupported forces relinking _LT_TAGVAR(hardcode_minus_L, $1)=yes _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='-L$libdir' _LT_TAGVAR(hardcode_libdir_separator, $1)= fi esac shared_flag='-shared' if test yes = "$aix_use_runtimelinking"; then shared_flag=$shared_flag' $wl-G' fi # Need to ensure runtime linking is disabled for the traditional # shared library, or the linker may eventually find shared libraries # /with/ Import File - we do not want to mix them. shared_flag_aix='-shared' shared_flag_svr4='-shared $wl-G' else # not using gcc if test ia64 = "$host_cpu"; then # VisualAge C++, Version 5.5 for AIX 5L for IA-64, Beta 3 Release # chokes on -Wl,-G. The following line is correct: shared_flag='-G' else if test yes = "$aix_use_runtimelinking"; then shared_flag='$wl-G' else shared_flag='$wl-bM:SRE' fi shared_flag_aix='$wl-bM:SRE' shared_flag_svr4='$wl-G' fi fi _LT_TAGVAR(export_dynamic_flag_spec, $1)='$wl-bexpall' # It seems that -bexpall does not export symbols beginning with # underscore (_), so it is better to generate a list of symbols to # export. _LT_TAGVAR(always_export_symbols, $1)=yes if test aix,yes = "$with_aix_soname,$aix_use_runtimelinking"; then # Warning - without using the other runtime loading flags (-brtl), # -berok will link without error, but may produce a broken library. # The "-G" linker flag allows undefined symbols. _LT_TAGVAR(no_undefined_flag, $1)='-bernotok' # Determine the default libpath from the value encoded in an empty # executable. _LT_SYS_MODULE_PATH_AIX([$1]) _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl-blibpath:$libdir:'"$aix_libpath" _LT_TAGVAR(archive_expsym_cmds, $1)='$CC -o $output_objdir/$soname $libobjs $deplibs $wl'$no_entry_flag' $compiler_flags `if test -n "$allow_undefined_flag"; then func_echo_all "$wl$allow_undefined_flag"; else :; fi` $wl'$exp_sym_flag:\$export_symbols' '$shared_flag else if test ia64 = "$host_cpu"; then _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl-R $libdir:/usr/lib:/lib' _LT_TAGVAR(allow_undefined_flag, $1)="-z nodefs" _LT_TAGVAR(archive_expsym_cmds, $1)="\$CC $shared_flag"' -o $output_objdir/$soname $libobjs $deplibs '"\$wl$no_entry_flag"' $compiler_flags $wl$allow_undefined_flag '"\$wl$exp_sym_flag:\$export_symbols" else # Determine the default libpath from the value encoded in an # empty executable. _LT_SYS_MODULE_PATH_AIX([$1]) _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl-blibpath:$libdir:'"$aix_libpath" # Warning - without using the other run time loading flags, # -berok will link without error, but may produce a broken library. _LT_TAGVAR(no_undefined_flag, $1)=' $wl-bernotok' _LT_TAGVAR(allow_undefined_flag, $1)=' $wl-berok' if test yes = "$with_gnu_ld"; then # We only use this code for GNU lds that support --whole-archive. _LT_TAGVAR(whole_archive_flag_spec, $1)='$wl--whole-archive$convenience $wl--no-whole-archive' else # Exported symbols can be pulled into shared objects from archives _LT_TAGVAR(whole_archive_flag_spec, $1)='$convenience' fi _LT_TAGVAR(archive_cmds_need_lc, $1)=yes _LT_TAGVAR(archive_expsym_cmds, $1)='$RM -r $output_objdir/$realname.d~$MKDIR $output_objdir/$realname.d' # -brtl affects multiple linker settings, -berok does not and is overridden later compiler_flags_filtered='`func_echo_all "$compiler_flags " | $SED -e "s%-brtl\\([[, ]]\\)%-berok\\1%g"`' if test svr4 != "$with_aix_soname"; then # This is similar to how AIX traditionally builds its shared # libraries. Need -bnortl late, we may have -brtl in LDFLAGS. _LT_TAGVAR(archive_expsym_cmds, $1)="$_LT_TAGVAR(archive_expsym_cmds, $1)"'~$CC '$shared_flag_aix' -o $output_objdir/$realname.d/$soname $libobjs $deplibs $wl-bnoentry '$compiler_flags_filtered'$wl-bE:$export_symbols$allow_undefined_flag~$AR $AR_FLAGS $output_objdir/$libname$release.a $output_objdir/$realname.d/$soname' fi if test aix != "$with_aix_soname"; then _LT_TAGVAR(archive_expsym_cmds, $1)="$_LT_TAGVAR(archive_expsym_cmds, $1)"'~$CC '$shared_flag_svr4' -o $output_objdir/$realname.d/$shared_archive_member_spec.o $libobjs $deplibs $wl-bnoentry '$compiler_flags_filtered'$wl-bE:$export_symbols$allow_undefined_flag~$STRIP -e $output_objdir/$realname.d/$shared_archive_member_spec.o~( func_echo_all "#! $soname($shared_archive_member_spec.o)"; if test shr_64 = "$shared_archive_member_spec"; then func_echo_all "# 64"; else func_echo_all "# 32"; fi; cat $export_symbols ) > $output_objdir/$realname.d/$shared_archive_member_spec.imp~$AR $AR_FLAGS $output_objdir/$soname $output_objdir/$realname.d/$shared_archive_member_spec.o $output_objdir/$realname.d/$shared_archive_member_spec.imp' else # used by -dlpreopen to get the symbols _LT_TAGVAR(archive_expsym_cmds, $1)="$_LT_TAGVAR(archive_expsym_cmds, $1)"'~$MV $output_objdir/$realname.d/$soname $output_objdir' fi _LT_TAGVAR(archive_expsym_cmds, $1)="$_LT_TAGVAR(archive_expsym_cmds, $1)"'~$RM -r $output_objdir/$realname.d' fi fi ;; beos*) if $LD --help 2>&1 | $GREP ': supported targets:.* elf' > /dev/null; then _LT_TAGVAR(allow_undefined_flag, $1)=unsupported # Joseph Beckenbach says some releases of gcc # support --undefined. This deserves some investigation. FIXME _LT_TAGVAR(archive_cmds, $1)='$CC -nostart $libobjs $deplibs $compiler_flags $wl-soname $wl$soname -o $lib' else _LT_TAGVAR(ld_shlibs, $1)=no fi ;; chorus*) case $cc_basename in *) # FIXME: insert proper C++ library support _LT_TAGVAR(ld_shlibs, $1)=no ;; esac ;; cygwin* | mingw* | pw32* | cegcc*) case $GXX,$cc_basename in ,cl* | no,cl*) # Native MSVC # hardcode_libdir_flag_spec is actually meaningless, as there is # no search path for DLLs. _LT_TAGVAR(hardcode_libdir_flag_spec, $1)=' ' _LT_TAGVAR(allow_undefined_flag, $1)=unsupported _LT_TAGVAR(always_export_symbols, $1)=yes _LT_TAGVAR(file_list_spec, $1)='@' # Tell ltmain to make .lib files, not .a files. libext=lib # Tell ltmain to make .dll files, not .so files. shrext_cmds=.dll # FIXME: Setting linknames here is a bad hack. _LT_TAGVAR(archive_cmds, $1)='$CC -o $output_objdir/$soname $libobjs $compiler_flags $deplibs -Wl,-DLL,-IMPLIB:"$tool_output_objdir$libname.dll.lib"~linknames=' _LT_TAGVAR(archive_expsym_cmds, $1)='if _LT_DLL_DEF_P([$export_symbols]); then cp "$export_symbols" "$output_objdir/$soname.def"; echo "$tool_output_objdir$soname.def" > "$output_objdir/$soname.exp"; else $SED -e '\''s/^/-link -EXPORT:/'\'' < $export_symbols > $output_objdir/$soname.exp; fi~ $CC -o $tool_output_objdir$soname $libobjs $compiler_flags $deplibs "@$tool_output_objdir$soname.exp" -Wl,-DLL,-IMPLIB:"$tool_output_objdir$libname.dll.lib"~ linknames=' # The linker will not automatically build a static lib if we build a DLL. # _LT_TAGVAR(old_archive_from_new_cmds, $1)='true' _LT_TAGVAR(enable_shared_with_static_runtimes, $1)=yes # Don't use ranlib _LT_TAGVAR(old_postinstall_cmds, $1)='chmod 644 $oldlib' _LT_TAGVAR(postlink_cmds, $1)='lt_outputfile="@OUTPUT@"~ lt_tool_outputfile="@TOOL_OUTPUT@"~ case $lt_outputfile in *.exe|*.EXE) ;; *) lt_outputfile=$lt_outputfile.exe lt_tool_outputfile=$lt_tool_outputfile.exe ;; esac~ func_to_tool_file "$lt_outputfile"~ if test : != "$MANIFEST_TOOL" && test -f "$lt_outputfile.manifest"; then $MANIFEST_TOOL -manifest "$lt_tool_outputfile.manifest" -outputresource:"$lt_tool_outputfile" || exit 1; $RM "$lt_outputfile.manifest"; fi' ;; *) # g++ # _LT_TAGVAR(hardcode_libdir_flag_spec, $1) is actually meaningless, # as there is no search path for DLLs. _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='-L$libdir' _LT_TAGVAR(export_dynamic_flag_spec, $1)='$wl--export-all-symbols' _LT_TAGVAR(allow_undefined_flag, $1)=unsupported _LT_TAGVAR(always_export_symbols, $1)=no _LT_TAGVAR(enable_shared_with_static_runtimes, $1)=yes if $LD --help 2>&1 | $GREP 'auto-import' > /dev/null; then _LT_TAGVAR(archive_cmds, $1)='$CC -shared -nostdlib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags -o $output_objdir/$soname $wl--enable-auto-image-base -Xlinker --out-implib -Xlinker $lib' # If the export-symbols file already is a .def file, use it as # is; otherwise, prepend EXPORTS... _LT_TAGVAR(archive_expsym_cmds, $1)='if _LT_DLL_DEF_P([$export_symbols]); then cp $export_symbols $output_objdir/$soname.def; else echo EXPORTS > $output_objdir/$soname.def; cat $export_symbols >> $output_objdir/$soname.def; fi~ $CC -shared -nostdlib $output_objdir/$soname.def $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags -o $output_objdir/$soname $wl--enable-auto-image-base -Xlinker --out-implib -Xlinker $lib' else _LT_TAGVAR(ld_shlibs, $1)=no fi ;; esac ;; darwin* | rhapsody*) _LT_DARWIN_LINKER_FEATURES($1) ;; os2*) _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='-L$libdir' _LT_TAGVAR(hardcode_minus_L, $1)=yes _LT_TAGVAR(allow_undefined_flag, $1)=unsupported shrext_cmds=.dll _LT_TAGVAR(archive_cmds, $1)='$ECHO "LIBRARY ${soname%$shared_ext} INITINSTANCE TERMINSTANCE" > $output_objdir/$libname.def~ $ECHO "DESCRIPTION \"$libname\"" >> $output_objdir/$libname.def~ $ECHO "DATA MULTIPLE NONSHARED" >> $output_objdir/$libname.def~ $ECHO EXPORTS >> $output_objdir/$libname.def~ emxexp $libobjs | $SED /"_DLL_InitTerm"/d >> $output_objdir/$libname.def~ $CC -Zdll -Zcrtdll -o $output_objdir/$soname $libobjs $deplibs $compiler_flags $output_objdir/$libname.def~ emximp -o $lib $output_objdir/$libname.def' _LT_TAGVAR(archive_expsym_cmds, $1)='$ECHO "LIBRARY ${soname%$shared_ext} INITINSTANCE TERMINSTANCE" > $output_objdir/$libname.def~ $ECHO "DESCRIPTION \"$libname\"" >> $output_objdir/$libname.def~ $ECHO "DATA MULTIPLE NONSHARED" >> $output_objdir/$libname.def~ $ECHO EXPORTS >> $output_objdir/$libname.def~ prefix_cmds="$SED"~ if test EXPORTS = "`$SED 1q $export_symbols`"; then prefix_cmds="$prefix_cmds -e 1d"; fi~ prefix_cmds="$prefix_cmds -e \"s/^\(.*\)$/_\1/g\""~ cat $export_symbols | $prefix_cmds >> $output_objdir/$libname.def~ $CC -Zdll -Zcrtdll -o $output_objdir/$soname $libobjs $deplibs $compiler_flags $output_objdir/$libname.def~ emximp -o $lib $output_objdir/$libname.def' _LT_TAGVAR(old_archive_From_new_cmds, $1)='emximp -o $output_objdir/${libname}_dll.a $output_objdir/$libname.def' _LT_TAGVAR(enable_shared_with_static_runtimes, $1)=yes ;; dgux*) case $cc_basename in ec++*) # FIXME: insert proper C++ library support _LT_TAGVAR(ld_shlibs, $1)=no ;; ghcx*) # Green Hills C++ Compiler # FIXME: insert proper C++ library support _LT_TAGVAR(ld_shlibs, $1)=no ;; *) # FIXME: insert proper C++ library support _LT_TAGVAR(ld_shlibs, $1)=no ;; esac ;; freebsd2.*) # C++ shared libraries reported to be fairly broken before # switch to ELF _LT_TAGVAR(ld_shlibs, $1)=no ;; freebsd-elf*) _LT_TAGVAR(archive_cmds_need_lc, $1)=no ;; freebsd* | dragonfly*) # FreeBSD 3 and later use GNU C++ and GNU ld with standard ELF # conventions _LT_TAGVAR(ld_shlibs, $1)=yes ;; haiku*) _LT_TAGVAR(archive_cmds, $1)='$CC -shared $libobjs $deplibs $compiler_flags $wl-soname $wl$soname -o $lib' _LT_TAGVAR(link_all_deplibs, $1)=yes ;; hpux9*) _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl+b $wl$libdir' _LT_TAGVAR(hardcode_libdir_separator, $1)=: _LT_TAGVAR(export_dynamic_flag_spec, $1)='$wl-E' _LT_TAGVAR(hardcode_direct, $1)=yes _LT_TAGVAR(hardcode_minus_L, $1)=yes # Not in the search PATH, # but as the default # location of the library. case $cc_basename in CC*) # FIXME: insert proper C++ library support _LT_TAGVAR(ld_shlibs, $1)=no ;; aCC*) _LT_TAGVAR(archive_cmds, $1)='$RM $output_objdir/$soname~$CC -b $wl+b $wl$install_libdir -o $output_objdir/$soname $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags~test "x$output_objdir/$soname" = "x$lib" || mv $output_objdir/$soname $lib' # Commands to make compiler produce verbose output that lists # what "hidden" libraries, object files and flags are used when # linking a shared library. # # There doesn't appear to be a way to prevent this compiler from # explicitly linking system object files so we need to strip them # from the output so that they don't get included in the library # dependencies. output_verbose_link_cmd='templist=`($CC -b $CFLAGS -v conftest.$objext 2>&1) | $EGREP "\-L"`; list= ; for z in $templist; do case $z in conftest.$objext) list="$list $z";; *.$objext);; *) list="$list $z";;esac; done; func_echo_all "$list"' ;; *) if test yes = "$GXX"; then _LT_TAGVAR(archive_cmds, $1)='$RM $output_objdir/$soname~$CC -shared -nostdlib $pic_flag $wl+b $wl$install_libdir -o $output_objdir/$soname $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags~test "x$output_objdir/$soname" = "x$lib" || mv $output_objdir/$soname $lib' else # FIXME: insert proper C++ library support _LT_TAGVAR(ld_shlibs, $1)=no fi ;; esac ;; hpux10*|hpux11*) if test no = "$with_gnu_ld"; then _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl+b $wl$libdir' _LT_TAGVAR(hardcode_libdir_separator, $1)=: case $host_cpu in hppa*64*|ia64*) ;; *) _LT_TAGVAR(export_dynamic_flag_spec, $1)='$wl-E' ;; esac fi case $host_cpu in hppa*64*|ia64*) _LT_TAGVAR(hardcode_direct, $1)=no _LT_TAGVAR(hardcode_shlibpath_var, $1)=no ;; *) _LT_TAGVAR(hardcode_direct, $1)=yes _LT_TAGVAR(hardcode_direct_absolute, $1)=yes _LT_TAGVAR(hardcode_minus_L, $1)=yes # Not in the search PATH, # but as the default # location of the library. ;; esac case $cc_basename in CC*) # FIXME: insert proper C++ library support _LT_TAGVAR(ld_shlibs, $1)=no ;; aCC*) case $host_cpu in hppa*64*) _LT_TAGVAR(archive_cmds, $1)='$CC -b $wl+h $wl$soname -o $lib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags' ;; ia64*) _LT_TAGVAR(archive_cmds, $1)='$CC -b $wl+h $wl$soname $wl+nodefaultrpath -o $lib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags' ;; *) _LT_TAGVAR(archive_cmds, $1)='$CC -b $wl+h $wl$soname $wl+b $wl$install_libdir -o $lib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags' ;; esac # Commands to make compiler produce verbose output that lists # what "hidden" libraries, object files and flags are used when # linking a shared library. # # There doesn't appear to be a way to prevent this compiler from # explicitly linking system object files so we need to strip them # from the output so that they don't get included in the library # dependencies. output_verbose_link_cmd='templist=`($CC -b $CFLAGS -v conftest.$objext 2>&1) | $GREP "\-L"`; list= ; for z in $templist; do case $z in conftest.$objext) list="$list $z";; *.$objext);; *) list="$list $z";;esac; done; func_echo_all "$list"' ;; *) if test yes = "$GXX"; then if test no = "$with_gnu_ld"; then case $host_cpu in hppa*64*) _LT_TAGVAR(archive_cmds, $1)='$CC -shared -nostdlib -fPIC $wl+h $wl$soname -o $lib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags' ;; ia64*) _LT_TAGVAR(archive_cmds, $1)='$CC -shared -nostdlib $pic_flag $wl+h $wl$soname $wl+nodefaultrpath -o $lib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags' ;; *) _LT_TAGVAR(archive_cmds, $1)='$CC -shared -nostdlib $pic_flag $wl+h $wl$soname $wl+b $wl$install_libdir -o $lib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags' ;; esac fi else # FIXME: insert proper C++ library support _LT_TAGVAR(ld_shlibs, $1)=no fi ;; esac ;; interix[[3-9]]*) _LT_TAGVAR(hardcode_direct, $1)=no _LT_TAGVAR(hardcode_shlibpath_var, $1)=no _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl-rpath,$libdir' _LT_TAGVAR(export_dynamic_flag_spec, $1)='$wl-E' # Hack: On Interix 3.x, we cannot compile PIC because of a broken gcc. # Instead, shared libraries are loaded at an image base (0x10000000 by # default) and relocated if they conflict, which is a slow very memory # consuming and fragmenting process. To avoid this, we pick a random, # 256 KiB-aligned image base between 0x50000000 and 0x6FFC0000 at link # time. Moving up from 0x10000000 also allows more sbrk(2) space. _LT_TAGVAR(archive_cmds, $1)='$CC -shared $pic_flag $libobjs $deplibs $compiler_flags $wl-h,$soname $wl--image-base,`expr ${RANDOM-$$} % 4096 / 2 \* 262144 + 1342177280` -o $lib' _LT_TAGVAR(archive_expsym_cmds, $1)='sed "s|^|_|" $export_symbols >$output_objdir/$soname.expsym~$CC -shared $pic_flag $libobjs $deplibs $compiler_flags $wl-h,$soname $wl--retain-symbols-file,$output_objdir/$soname.expsym $wl--image-base,`expr ${RANDOM-$$} % 4096 / 2 \* 262144 + 1342177280` -o $lib' ;; irix5* | irix6*) case $cc_basename in CC*) # SGI C++ _LT_TAGVAR(archive_cmds, $1)='$CC -shared -all -multigot $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags -soname $soname `test -n "$verstring" && func_echo_all "-set_version $verstring"` -update_registry $output_objdir/so_locations -o $lib' # Archives containing C++ object files must be created using # "CC -ar", where "CC" is the IRIX C++ compiler. This is # necessary to make sure instantiated templates are included # in the archive. _LT_TAGVAR(old_archive_cmds, $1)='$CC -ar -WR,-u -o $oldlib $oldobjs' ;; *) if test yes = "$GXX"; then if test no = "$with_gnu_ld"; then _LT_TAGVAR(archive_cmds, $1)='$CC -shared $pic_flag -nostdlib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags $wl-soname $wl$soname `test -n "$verstring" && func_echo_all "$wl-set_version $wl$verstring"` $wl-update_registry $wl$output_objdir/so_locations -o $lib' else _LT_TAGVAR(archive_cmds, $1)='$CC -shared $pic_flag -nostdlib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags $wl-soname $wl$soname `test -n "$verstring" && func_echo_all "$wl-set_version $wl$verstring"` -o $lib' fi fi _LT_TAGVAR(link_all_deplibs, $1)=yes ;; esac _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl-rpath $wl$libdir' _LT_TAGVAR(hardcode_libdir_separator, $1)=: _LT_TAGVAR(inherit_rpath, $1)=yes ;; linux* | k*bsd*-gnu | kopensolaris*-gnu | gnu*) case $cc_basename in KCC*) # Kuck and Associates, Inc. (KAI) C++ Compiler # KCC will only create a shared library if the output file # ends with ".so" (or ".sl" for HP-UX), so rename the library # to its proper name (with version) after linking. _LT_TAGVAR(archive_cmds, $1)='tempext=`echo $shared_ext | $SED -e '\''s/\([[^()0-9A-Za-z{}]]\)/\\\\\1/g'\''`; templib=`echo $lib | $SED -e "s/\$tempext\..*/.so/"`; $CC $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags --soname $soname -o \$templib; mv \$templib $lib' _LT_TAGVAR(archive_expsym_cmds, $1)='tempext=`echo $shared_ext | $SED -e '\''s/\([[^()0-9A-Za-z{}]]\)/\\\\\1/g'\''`; templib=`echo $lib | $SED -e "s/\$tempext\..*/.so/"`; $CC $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags --soname $soname -o \$templib $wl-retain-symbols-file,$export_symbols; mv \$templib $lib' # Commands to make compiler produce verbose output that lists # what "hidden" libraries, object files and flags are used when # linking a shared library. # # There doesn't appear to be a way to prevent this compiler from # explicitly linking system object files so we need to strip them # from the output so that they don't get included in the library # dependencies. output_verbose_link_cmd='templist=`$CC $CFLAGS -v conftest.$objext -o libconftest$shared_ext 2>&1 | $GREP "ld"`; rm -f libconftest$shared_ext; list= ; for z in $templist; do case $z in conftest.$objext) list="$list $z";; *.$objext);; *) list="$list $z";;esac; done; func_echo_all "$list"' _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl-rpath,$libdir' _LT_TAGVAR(export_dynamic_flag_spec, $1)='$wl--export-dynamic' # Archives containing C++ object files must be created using # "CC -Bstatic", where "CC" is the KAI C++ compiler. _LT_TAGVAR(old_archive_cmds, $1)='$CC -Bstatic -o $oldlib $oldobjs' ;; icpc* | ecpc* ) # Intel C++ with_gnu_ld=yes # version 8.0 and above of icpc choke on multiply defined symbols # if we add $predep_objects and $postdep_objects, however 7.1 and # earlier do not add the objects themselves. case `$CC -V 2>&1` in *"Version 7."*) _LT_TAGVAR(archive_cmds, $1)='$CC -shared $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags $wl-soname $wl$soname -o $lib' _LT_TAGVAR(archive_expsym_cmds, $1)='$CC -shared $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags $wl-soname $wl$soname $wl-retain-symbols-file $wl$export_symbols -o $lib' ;; *) # Version 8.0 or newer tmp_idyn= case $host_cpu in ia64*) tmp_idyn=' -i_dynamic';; esac _LT_TAGVAR(archive_cmds, $1)='$CC -shared'"$tmp_idyn"' $libobjs $deplibs $compiler_flags $wl-soname $wl$soname -o $lib' _LT_TAGVAR(archive_expsym_cmds, $1)='$CC -shared'"$tmp_idyn"' $libobjs $deplibs $compiler_flags $wl-soname $wl$soname $wl-retain-symbols-file $wl$export_symbols -o $lib' ;; esac _LT_TAGVAR(archive_cmds_need_lc, $1)=no _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl-rpath,$libdir' _LT_TAGVAR(export_dynamic_flag_spec, $1)='$wl--export-dynamic' _LT_TAGVAR(whole_archive_flag_spec, $1)='$wl--whole-archive$convenience $wl--no-whole-archive' ;; pgCC* | pgcpp*) # Portland Group C++ compiler case `$CC -V` in *pgCC\ [[1-5]].* | *pgcpp\ [[1-5]].*) _LT_TAGVAR(prelink_cmds, $1)='tpldir=Template.dir~ rm -rf $tpldir~ $CC --prelink_objects --instantiation_dir $tpldir $objs $libobjs $compile_deplibs~ compile_command="$compile_command `find $tpldir -name \*.o | sort | $NL2SP`"' _LT_TAGVAR(old_archive_cmds, $1)='tpldir=Template.dir~ rm -rf $tpldir~ $CC --prelink_objects --instantiation_dir $tpldir $oldobjs$old_deplibs~ $AR $AR_FLAGS $oldlib$oldobjs$old_deplibs `find $tpldir -name \*.o | sort | $NL2SP`~ $RANLIB $oldlib' _LT_TAGVAR(archive_cmds, $1)='tpldir=Template.dir~ rm -rf $tpldir~ $CC --prelink_objects --instantiation_dir $tpldir $predep_objects $libobjs $deplibs $convenience $postdep_objects~ $CC -shared $pic_flag $predep_objects $libobjs $deplibs `find $tpldir -name \*.o | sort | $NL2SP` $postdep_objects $compiler_flags $wl-soname $wl$soname -o $lib' _LT_TAGVAR(archive_expsym_cmds, $1)='tpldir=Template.dir~ rm -rf $tpldir~ $CC --prelink_objects --instantiation_dir $tpldir $predep_objects $libobjs $deplibs $convenience $postdep_objects~ $CC -shared $pic_flag $predep_objects $libobjs $deplibs `find $tpldir -name \*.o | sort | $NL2SP` $postdep_objects $compiler_flags $wl-soname $wl$soname $wl-retain-symbols-file $wl$export_symbols -o $lib' ;; *) # Version 6 and above use weak symbols _LT_TAGVAR(archive_cmds, $1)='$CC -shared $pic_flag $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags $wl-soname $wl$soname -o $lib' _LT_TAGVAR(archive_expsym_cmds, $1)='$CC -shared $pic_flag $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags $wl-soname $wl$soname $wl-retain-symbols-file $wl$export_symbols -o $lib' ;; esac _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl--rpath $wl$libdir' _LT_TAGVAR(export_dynamic_flag_spec, $1)='$wl--export-dynamic' _LT_TAGVAR(whole_archive_flag_spec, $1)='$wl--whole-archive`for conv in $convenience\"\"; do test -n \"$conv\" && new_convenience=\"$new_convenience,$conv\"; done; func_echo_all \"$new_convenience\"` $wl--no-whole-archive' ;; cxx*) # Compaq C++ _LT_TAGVAR(archive_cmds, $1)='$CC -shared $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags $wl-soname $wl$soname -o $lib' _LT_TAGVAR(archive_expsym_cmds, $1)='$CC -shared $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags $wl-soname $wl$soname -o $lib $wl-retain-symbols-file $wl$export_symbols' runpath_var=LD_RUN_PATH _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='-rpath $libdir' _LT_TAGVAR(hardcode_libdir_separator, $1)=: # Commands to make compiler produce verbose output that lists # what "hidden" libraries, object files and flags are used when # linking a shared library. # # There doesn't appear to be a way to prevent this compiler from # explicitly linking system object files so we need to strip them # from the output so that they don't get included in the library # dependencies. output_verbose_link_cmd='templist=`$CC -shared $CFLAGS -v conftest.$objext 2>&1 | $GREP "ld"`; templist=`func_echo_all "$templist" | $SED "s/\(^.*ld.*\)\( .*ld .*$\)/\1/"`; list= ; for z in $templist; do case $z in conftest.$objext) list="$list $z";; *.$objext);; *) list="$list $z";;esac; done; func_echo_all "X$list" | $Xsed' ;; xl* | mpixl* | bgxl*) # IBM XL 8.0 on PPC, with GNU ld _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl-rpath $wl$libdir' _LT_TAGVAR(export_dynamic_flag_spec, $1)='$wl--export-dynamic' _LT_TAGVAR(archive_cmds, $1)='$CC -qmkshrobj $libobjs $deplibs $compiler_flags $wl-soname $wl$soname -o $lib' if test yes = "$supports_anon_versioning"; then _LT_TAGVAR(archive_expsym_cmds, $1)='echo "{ global:" > $output_objdir/$libname.ver~ cat $export_symbols | sed -e "s/\(.*\)/\1;/" >> $output_objdir/$libname.ver~ echo "local: *; };" >> $output_objdir/$libname.ver~ $CC -qmkshrobj $libobjs $deplibs $compiler_flags $wl-soname $wl$soname $wl-version-script $wl$output_objdir/$libname.ver -o $lib' fi ;; *) case `$CC -V 2>&1 | sed 5q` in *Sun\ C*) # Sun C++ 5.9 _LT_TAGVAR(no_undefined_flag, $1)=' -zdefs' _LT_TAGVAR(archive_cmds, $1)='$CC -G$allow_undefined_flag -h$soname -o $lib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags' _LT_TAGVAR(archive_expsym_cmds, $1)='$CC -G$allow_undefined_flag -h$soname -o $lib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags $wl-retain-symbols-file $wl$export_symbols' _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='-R$libdir' _LT_TAGVAR(whole_archive_flag_spec, $1)='$wl--whole-archive`new_convenience=; for conv in $convenience\"\"; do test -z \"$conv\" || new_convenience=\"$new_convenience,$conv\"; done; func_echo_all \"$new_convenience\"` $wl--no-whole-archive' _LT_TAGVAR(compiler_needs_object, $1)=yes # Not sure whether something based on # $CC $CFLAGS -v conftest.$objext -o libconftest$shared_ext 2>&1 # would be better. output_verbose_link_cmd='func_echo_all' # Archives containing C++ object files must be created using # "CC -xar", where "CC" is the Sun C++ compiler. This is # necessary to make sure instantiated templates are included # in the archive. _LT_TAGVAR(old_archive_cmds, $1)='$CC -xar -o $oldlib $oldobjs' ;; esac ;; esac ;; lynxos*) # FIXME: insert proper C++ library support _LT_TAGVAR(ld_shlibs, $1)=no ;; m88k*) # FIXME: insert proper C++ library support _LT_TAGVAR(ld_shlibs, $1)=no ;; mvs*) case $cc_basename in cxx*) # FIXME: insert proper C++ library support _LT_TAGVAR(ld_shlibs, $1)=no ;; *) # FIXME: insert proper C++ library support _LT_TAGVAR(ld_shlibs, $1)=no ;; esac ;; netbsd*) if echo __ELF__ | $CC -E - | $GREP __ELF__ >/dev/null; then _LT_TAGVAR(archive_cmds, $1)='$LD -Bshareable -o $lib $predep_objects $libobjs $deplibs $postdep_objects $linker_flags' wlarc= _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='-R$libdir' _LT_TAGVAR(hardcode_direct, $1)=yes _LT_TAGVAR(hardcode_shlibpath_var, $1)=no fi # Workaround some broken pre-1.5 toolchains output_verbose_link_cmd='$CC -shared $CFLAGS -v conftest.$objext 2>&1 | $GREP conftest.$objext | $SED -e "s:-lgcc -lc -lgcc::"' ;; *nto* | *qnx*) _LT_TAGVAR(ld_shlibs, $1)=yes ;; openbsd* | bitrig*) if test -f /usr/libexec/ld.so; then _LT_TAGVAR(hardcode_direct, $1)=yes _LT_TAGVAR(hardcode_shlibpath_var, $1)=no _LT_TAGVAR(hardcode_direct_absolute, $1)=yes _LT_TAGVAR(archive_cmds, $1)='$CC -shared $pic_flag $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags -o $lib' _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl-rpath,$libdir' if test -z "`echo __ELF__ | $CC -E - | grep __ELF__`"; then _LT_TAGVAR(archive_expsym_cmds, $1)='$CC -shared $pic_flag $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags $wl-retain-symbols-file,$export_symbols -o $lib' _LT_TAGVAR(export_dynamic_flag_spec, $1)='$wl-E' _LT_TAGVAR(whole_archive_flag_spec, $1)=$wlarc'--whole-archive$convenience '$wlarc'--no-whole-archive' fi output_verbose_link_cmd=func_echo_all else _LT_TAGVAR(ld_shlibs, $1)=no fi ;; osf3* | osf4* | osf5*) case $cc_basename in KCC*) # Kuck and Associates, Inc. (KAI) C++ Compiler # KCC will only create a shared library if the output file # ends with ".so" (or ".sl" for HP-UX), so rename the library # to its proper name (with version) after linking. _LT_TAGVAR(archive_cmds, $1)='tempext=`echo $shared_ext | $SED -e '\''s/\([[^()0-9A-Za-z{}]]\)/\\\\\1/g'\''`; templib=`echo "$lib" | $SED -e "s/\$tempext\..*/.so/"`; $CC $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags --soname $soname -o \$templib; mv \$templib $lib' _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl-rpath,$libdir' _LT_TAGVAR(hardcode_libdir_separator, $1)=: # Archives containing C++ object files must be created using # the KAI C++ compiler. case $host in osf3*) _LT_TAGVAR(old_archive_cmds, $1)='$CC -Bstatic -o $oldlib $oldobjs' ;; *) _LT_TAGVAR(old_archive_cmds, $1)='$CC -o $oldlib $oldobjs' ;; esac ;; RCC*) # Rational C++ 2.4.1 # FIXME: insert proper C++ library support _LT_TAGVAR(ld_shlibs, $1)=no ;; cxx*) case $host in osf3*) _LT_TAGVAR(allow_undefined_flag, $1)=' $wl-expect_unresolved $wl\*' _LT_TAGVAR(archive_cmds, $1)='$CC -shared$allow_undefined_flag $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags $wl-soname $soname `test -n "$verstring" && func_echo_all "$wl-set_version $verstring"` -update_registry $output_objdir/so_locations -o $lib' _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl-rpath $wl$libdir' ;; *) _LT_TAGVAR(allow_undefined_flag, $1)=' -expect_unresolved \*' _LT_TAGVAR(archive_cmds, $1)='$CC -shared$allow_undefined_flag $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags -msym -soname $soname `test -n "$verstring" && func_echo_all "-set_version $verstring"` -update_registry $output_objdir/so_locations -o $lib' _LT_TAGVAR(archive_expsym_cmds, $1)='for i in `cat $export_symbols`; do printf "%s %s\\n" -exported_symbol "\$i" >> $lib.exp; done~ echo "-hidden">> $lib.exp~ $CC -shared$allow_undefined_flag $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags -msym -soname $soname $wl-input $wl$lib.exp `test -n "$verstring" && $ECHO "-set_version $verstring"` -update_registry $output_objdir/so_locations -o $lib~ $RM $lib.exp' _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='-rpath $libdir' ;; esac _LT_TAGVAR(hardcode_libdir_separator, $1)=: # Commands to make compiler produce verbose output that lists # what "hidden" libraries, object files and flags are used when # linking a shared library. # # There doesn't appear to be a way to prevent this compiler from # explicitly linking system object files so we need to strip them # from the output so that they don't get included in the library # dependencies. output_verbose_link_cmd='templist=`$CC -shared $CFLAGS -v conftest.$objext 2>&1 | $GREP "ld" | $GREP -v "ld:"`; templist=`func_echo_all "$templist" | $SED "s/\(^.*ld.*\)\( .*ld.*$\)/\1/"`; list= ; for z in $templist; do case $z in conftest.$objext) list="$list $z";; *.$objext);; *) list="$list $z";;esac; done; func_echo_all "$list"' ;; *) if test yes,no = "$GXX,$with_gnu_ld"; then _LT_TAGVAR(allow_undefined_flag, $1)=' $wl-expect_unresolved $wl\*' case $host in osf3*) _LT_TAGVAR(archive_cmds, $1)='$CC -shared -nostdlib $allow_undefined_flag $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags $wl-soname $wl$soname `test -n "$verstring" && func_echo_all "$wl-set_version $wl$verstring"` $wl-update_registry $wl$output_objdir/so_locations -o $lib' ;; *) _LT_TAGVAR(archive_cmds, $1)='$CC -shared $pic_flag -nostdlib $allow_undefined_flag $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags $wl-msym $wl-soname $wl$soname `test -n "$verstring" && func_echo_all "$wl-set_version $wl$verstring"` $wl-update_registry $wl$output_objdir/so_locations -o $lib' ;; esac _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl-rpath $wl$libdir' _LT_TAGVAR(hardcode_libdir_separator, $1)=: # Commands to make compiler produce verbose output that lists # what "hidden" libraries, object files and flags are used when # linking a shared library. output_verbose_link_cmd='$CC -shared $CFLAGS -v conftest.$objext 2>&1 | $GREP -v "^Configured with:" | $GREP "\-L"' else # FIXME: insert proper C++ library support _LT_TAGVAR(ld_shlibs, $1)=no fi ;; esac ;; psos*) # FIXME: insert proper C++ library support _LT_TAGVAR(ld_shlibs, $1)=no ;; sunos4*) case $cc_basename in CC*) # Sun C++ 4.x # FIXME: insert proper C++ library support _LT_TAGVAR(ld_shlibs, $1)=no ;; lcc*) # Lucid # FIXME: insert proper C++ library support _LT_TAGVAR(ld_shlibs, $1)=no ;; *) # FIXME: insert proper C++ library support _LT_TAGVAR(ld_shlibs, $1)=no ;; esac ;; solaris*) case $cc_basename in CC* | sunCC*) # Sun C++ 4.2, 5.x and Centerline C++ _LT_TAGVAR(archive_cmds_need_lc,$1)=yes _LT_TAGVAR(no_undefined_flag, $1)=' -zdefs' _LT_TAGVAR(archive_cmds, $1)='$CC -G$allow_undefined_flag -h$soname -o $lib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags' _LT_TAGVAR(archive_expsym_cmds, $1)='echo "{ global:" > $lib.exp~cat $export_symbols | $SED -e "s/\(.*\)/\1;/" >> $lib.exp~echo "local: *; };" >> $lib.exp~ $CC -G$allow_undefined_flag $wl-M $wl$lib.exp -h$soname -o $lib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags~$RM $lib.exp' _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='-R$libdir' _LT_TAGVAR(hardcode_shlibpath_var, $1)=no case $host_os in solaris2.[[0-5]] | solaris2.[[0-5]].*) ;; *) # The compiler driver will combine and reorder linker options, # but understands '-z linker_flag'. # Supported since Solaris 2.6 (maybe 2.5.1?) _LT_TAGVAR(whole_archive_flag_spec, $1)='-z allextract$convenience -z defaultextract' ;; esac _LT_TAGVAR(link_all_deplibs, $1)=yes output_verbose_link_cmd='func_echo_all' # Archives containing C++ object files must be created using # "CC -xar", where "CC" is the Sun C++ compiler. This is # necessary to make sure instantiated templates are included # in the archive. _LT_TAGVAR(old_archive_cmds, $1)='$CC -xar -o $oldlib $oldobjs' ;; gcx*) # Green Hills C++ Compiler _LT_TAGVAR(archive_cmds, $1)='$CC -shared $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags $wl-h $wl$soname -o $lib' # The C++ compiler must be used to create the archive. _LT_TAGVAR(old_archive_cmds, $1)='$CC $LDFLAGS -archive -o $oldlib $oldobjs' ;; *) # GNU C++ compiler with Solaris linker if test yes,no = "$GXX,$with_gnu_ld"; then _LT_TAGVAR(no_undefined_flag, $1)=' $wl-z ${wl}defs' if $CC --version | $GREP -v '^2\.7' > /dev/null; then _LT_TAGVAR(archive_cmds, $1)='$CC -shared $pic_flag -nostdlib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags $wl-h $wl$soname -o $lib' _LT_TAGVAR(archive_expsym_cmds, $1)='echo "{ global:" > $lib.exp~cat $export_symbols | $SED -e "s/\(.*\)/\1;/" >> $lib.exp~echo "local: *; };" >> $lib.exp~ $CC -shared $pic_flag -nostdlib $wl-M $wl$lib.exp $wl-h $wl$soname -o $lib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags~$RM $lib.exp' # Commands to make compiler produce verbose output that lists # what "hidden" libraries, object files and flags are used when # linking a shared library. output_verbose_link_cmd='$CC -shared $CFLAGS -v conftest.$objext 2>&1 | $GREP -v "^Configured with:" | $GREP "\-L"' else # g++ 2.7 appears to require '-G' NOT '-shared' on this # platform. _LT_TAGVAR(archive_cmds, $1)='$CC -G -nostdlib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags $wl-h $wl$soname -o $lib' _LT_TAGVAR(archive_expsym_cmds, $1)='echo "{ global:" > $lib.exp~cat $export_symbols | $SED -e "s/\(.*\)/\1;/" >> $lib.exp~echo "local: *; };" >> $lib.exp~ $CC -G -nostdlib $wl-M $wl$lib.exp $wl-h $wl$soname -o $lib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags~$RM $lib.exp' # Commands to make compiler produce verbose output that lists # what "hidden" libraries, object files and flags are used when # linking a shared library. output_verbose_link_cmd='$CC -G $CFLAGS -v conftest.$objext 2>&1 | $GREP -v "^Configured with:" | $GREP "\-L"' fi _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl-R $wl$libdir' case $host_os in solaris2.[[0-5]] | solaris2.[[0-5]].*) ;; *) _LT_TAGVAR(whole_archive_flag_spec, $1)='$wl-z ${wl}allextract$convenience $wl-z ${wl}defaultextract' ;; esac fi ;; esac ;; sysv4*uw2* | sysv5OpenUNIX* | sysv5UnixWare7.[[01]].[[10]]* | unixware7* | sco3.2v5.0.[[024]]*) _LT_TAGVAR(no_undefined_flag, $1)='$wl-z,text' _LT_TAGVAR(archive_cmds_need_lc, $1)=no _LT_TAGVAR(hardcode_shlibpath_var, $1)=no runpath_var='LD_RUN_PATH' case $cc_basename in CC*) _LT_TAGVAR(archive_cmds, $1)='$CC -G $wl-h,$soname -o $lib $libobjs $deplibs $compiler_flags' _LT_TAGVAR(archive_expsym_cmds, $1)='$CC -G $wl-Bexport:$export_symbols $wl-h,$soname -o $lib $libobjs $deplibs $compiler_flags' ;; *) _LT_TAGVAR(archive_cmds, $1)='$CC -shared $wl-h,$soname -o $lib $libobjs $deplibs $compiler_flags' _LT_TAGVAR(archive_expsym_cmds, $1)='$CC -shared $wl-Bexport:$export_symbols $wl-h,$soname -o $lib $libobjs $deplibs $compiler_flags' ;; esac ;; sysv5* | sco3.2v5* | sco5v6*) # Note: We CANNOT use -z defs as we might desire, because we do not # link with -lc, and that would cause any symbols used from libc to # always be unresolved, which means just about no library would # ever link correctly. If we're not using GNU ld we use -z text # though, which does catch some bad symbols but isn't as heavy-handed # as -z defs. _LT_TAGVAR(no_undefined_flag, $1)='$wl-z,text' _LT_TAGVAR(allow_undefined_flag, $1)='$wl-z,nodefs' _LT_TAGVAR(archive_cmds_need_lc, $1)=no _LT_TAGVAR(hardcode_shlibpath_var, $1)=no _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl-R,$libdir' _LT_TAGVAR(hardcode_libdir_separator, $1)=':' _LT_TAGVAR(link_all_deplibs, $1)=yes _LT_TAGVAR(export_dynamic_flag_spec, $1)='$wl-Bexport' runpath_var='LD_RUN_PATH' case $cc_basename in CC*) _LT_TAGVAR(archive_cmds, $1)='$CC -G $wl-h,$soname -o $lib $libobjs $deplibs $compiler_flags' _LT_TAGVAR(archive_expsym_cmds, $1)='$CC -G $wl-Bexport:$export_symbols $wl-h,$soname -o $lib $libobjs $deplibs $compiler_flags' _LT_TAGVAR(old_archive_cmds, $1)='$CC -Tprelink_objects $oldobjs~ '"$_LT_TAGVAR(old_archive_cmds, $1)" _LT_TAGVAR(reload_cmds, $1)='$CC -Tprelink_objects $reload_objs~ '"$_LT_TAGVAR(reload_cmds, $1)" ;; *) _LT_TAGVAR(archive_cmds, $1)='$CC -shared $wl-h,$soname -o $lib $libobjs $deplibs $compiler_flags' _LT_TAGVAR(archive_expsym_cmds, $1)='$CC -shared $wl-Bexport:$export_symbols $wl-h,$soname -o $lib $libobjs $deplibs $compiler_flags' ;; esac ;; tandem*) case $cc_basename in NCC*) # NonStop-UX NCC 3.20 # FIXME: insert proper C++ library support _LT_TAGVAR(ld_shlibs, $1)=no ;; *) # FIXME: insert proper C++ library support _LT_TAGVAR(ld_shlibs, $1)=no ;; esac ;; vxworks*) # FIXME: insert proper C++ library support _LT_TAGVAR(ld_shlibs, $1)=no ;; *) # FIXME: insert proper C++ library support _LT_TAGVAR(ld_shlibs, $1)=no ;; esac AC_MSG_RESULT([$_LT_TAGVAR(ld_shlibs, $1)]) test no = "$_LT_TAGVAR(ld_shlibs, $1)" && can_build_shared=no _LT_TAGVAR(GCC, $1)=$GXX _LT_TAGVAR(LD, $1)=$LD ## CAVEAT EMPTOR: ## There is no encapsulation within the following macros, do not change ## the running order or otherwise move them around unless you know exactly ## what you are doing... _LT_SYS_HIDDEN_LIBDEPS($1) _LT_COMPILER_PIC($1) _LT_COMPILER_C_O($1) _LT_COMPILER_FILE_LOCKS($1) _LT_LINKER_SHLIBS($1) _LT_SYS_DYNAMIC_LINKER($1) _LT_LINKER_HARDCODE_LIBPATH($1) _LT_CONFIG($1) fi # test -n "$compiler" CC=$lt_save_CC CFLAGS=$lt_save_CFLAGS LDCXX=$LD LD=$lt_save_LD GCC=$lt_save_GCC with_gnu_ld=$lt_save_with_gnu_ld lt_cv_path_LDCXX=$lt_cv_path_LD lt_cv_path_LD=$lt_save_path_LD lt_cv_prog_gnu_ldcxx=$lt_cv_prog_gnu_ld lt_cv_prog_gnu_ld=$lt_save_with_gnu_ld fi # test yes != "$_lt_caught_CXX_error" AC_LANG_POP ])# _LT_LANG_CXX_CONFIG # _LT_FUNC_STRIPNAME_CNF # ---------------------- # func_stripname_cnf prefix suffix name # strip PREFIX and SUFFIX off of NAME. # PREFIX and SUFFIX must not contain globbing or regex special # characters, hashes, percent signs, but SUFFIX may contain a leading # dot (in which case that matches only a dot). # # This function is identical to the (non-XSI) version of func_stripname, # except this one can be used by m4 code that may be executed by configure, # rather than the libtool script. m4_defun([_LT_FUNC_STRIPNAME_CNF],[dnl AC_REQUIRE([_LT_DECL_SED]) AC_REQUIRE([_LT_PROG_ECHO_BACKSLASH]) func_stripname_cnf () { case @S|@2 in .*) func_stripname_result=`$ECHO "@S|@3" | $SED "s%^@S|@1%%; s%\\\\@S|@2\$%%"`;; *) func_stripname_result=`$ECHO "@S|@3" | $SED "s%^@S|@1%%; s%@S|@2\$%%"`;; esac } # func_stripname_cnf ])# _LT_FUNC_STRIPNAME_CNF # _LT_SYS_HIDDEN_LIBDEPS([TAGNAME]) # --------------------------------- # Figure out "hidden" library dependencies from verbose # compiler output when linking a shared library. # Parse the compiler output and extract the necessary # objects, libraries and library flags. m4_defun([_LT_SYS_HIDDEN_LIBDEPS], [m4_require([_LT_FILEUTILS_DEFAULTS])dnl AC_REQUIRE([_LT_FUNC_STRIPNAME_CNF])dnl # Dependencies to place before and after the object being linked: _LT_TAGVAR(predep_objects, $1)= _LT_TAGVAR(postdep_objects, $1)= _LT_TAGVAR(predeps, $1)= _LT_TAGVAR(postdeps, $1)= _LT_TAGVAR(compiler_lib_search_path, $1)= dnl we can't use the lt_simple_compile_test_code here, dnl because it contains code intended for an executable, dnl not a library. It's possible we should let each dnl tag define a new lt_????_link_test_code variable, dnl but it's only used here... m4_if([$1], [], [cat > conftest.$ac_ext <<_LT_EOF int a; void foo (void) { a = 0; } _LT_EOF ], [$1], [CXX], [cat > conftest.$ac_ext <<_LT_EOF class Foo { public: Foo (void) { a = 0; } private: int a; }; _LT_EOF ], [$1], [F77], [cat > conftest.$ac_ext <<_LT_EOF subroutine foo implicit none integer*4 a a=0 return end _LT_EOF ], [$1], [FC], [cat > conftest.$ac_ext <<_LT_EOF subroutine foo implicit none integer a a=0 return end _LT_EOF ], [$1], [GCJ], [cat > conftest.$ac_ext <<_LT_EOF public class foo { private int a; public void bar (void) { a = 0; } }; _LT_EOF ], [$1], [GO], [cat > conftest.$ac_ext <<_LT_EOF package foo func foo() { } _LT_EOF ]) _lt_libdeps_save_CFLAGS=$CFLAGS case "$CC $CFLAGS " in #( *\ -flto*\ *) CFLAGS="$CFLAGS -fno-lto" ;; *\ -fwhopr*\ *) CFLAGS="$CFLAGS -fno-whopr" ;; *\ -fuse-linker-plugin*\ *) CFLAGS="$CFLAGS -fno-use-linker-plugin" ;; esac dnl Parse the compiler output and extract the necessary dnl objects, libraries and library flags. if AC_TRY_EVAL(ac_compile); then # Parse the compiler output and extract the necessary # objects, libraries and library flags. # Sentinel used to keep track of whether or not we are before # the conftest object file. pre_test_object_deps_done=no for p in `eval "$output_verbose_link_cmd"`; do case $prev$p in -L* | -R* | -l*) # Some compilers place space between "-{L,R}" and the path. # Remove the space. if test x-L = "$p" || test x-R = "$p"; then prev=$p continue fi # Expand the sysroot to ease extracting the directories later. if test -z "$prev"; then case $p in -L*) func_stripname_cnf '-L' '' "$p"; prev=-L; p=$func_stripname_result ;; -R*) func_stripname_cnf '-R' '' "$p"; prev=-R; p=$func_stripname_result ;; -l*) func_stripname_cnf '-l' '' "$p"; prev=-l; p=$func_stripname_result ;; esac fi case $p in =*) func_stripname_cnf '=' '' "$p"; p=$lt_sysroot$func_stripname_result ;; esac if test no = "$pre_test_object_deps_done"; then case $prev in -L | -R) # Internal compiler library paths should come after those # provided the user. The postdeps already come after the # user supplied libs so there is no need to process them. if test -z "$_LT_TAGVAR(compiler_lib_search_path, $1)"; then _LT_TAGVAR(compiler_lib_search_path, $1)=$prev$p else _LT_TAGVAR(compiler_lib_search_path, $1)="${_LT_TAGVAR(compiler_lib_search_path, $1)} $prev$p" fi ;; # The "-l" case would never come before the object being # linked, so don't bother handling this case. esac else if test -z "$_LT_TAGVAR(postdeps, $1)"; then _LT_TAGVAR(postdeps, $1)=$prev$p else _LT_TAGVAR(postdeps, $1)="${_LT_TAGVAR(postdeps, $1)} $prev$p" fi fi prev= ;; *.lto.$objext) ;; # Ignore GCC LTO objects *.$objext) # This assumes that the test object file only shows up # once in the compiler output. if test "$p" = "conftest.$objext"; then pre_test_object_deps_done=yes continue fi if test no = "$pre_test_object_deps_done"; then if test -z "$_LT_TAGVAR(predep_objects, $1)"; then _LT_TAGVAR(predep_objects, $1)=$p else _LT_TAGVAR(predep_objects, $1)="$_LT_TAGVAR(predep_objects, $1) $p" fi else if test -z "$_LT_TAGVAR(postdep_objects, $1)"; then _LT_TAGVAR(postdep_objects, $1)=$p else _LT_TAGVAR(postdep_objects, $1)="$_LT_TAGVAR(postdep_objects, $1) $p" fi fi ;; *) ;; # Ignore the rest. esac done # Clean up. rm -f a.out a.exe else echo "libtool.m4: error: problem compiling $1 test program" fi $RM -f confest.$objext CFLAGS=$_lt_libdeps_save_CFLAGS # PORTME: override above test on systems where it is broken m4_if([$1], [CXX], [case $host_os in interix[[3-9]]*) # Interix 3.5 installs completely hosed .la files for C++, so rather than # hack all around it, let's just trust "g++" to DTRT. _LT_TAGVAR(predep_objects,$1)= _LT_TAGVAR(postdep_objects,$1)= _LT_TAGVAR(postdeps,$1)= ;; esac ]) case " $_LT_TAGVAR(postdeps, $1) " in *" -lc "*) _LT_TAGVAR(archive_cmds_need_lc, $1)=no ;; esac _LT_TAGVAR(compiler_lib_search_dirs, $1)= if test -n "${_LT_TAGVAR(compiler_lib_search_path, $1)}"; then _LT_TAGVAR(compiler_lib_search_dirs, $1)=`echo " ${_LT_TAGVAR(compiler_lib_search_path, $1)}" | $SED -e 's! -L! !g' -e 's!^ !!'` fi _LT_TAGDECL([], [compiler_lib_search_dirs], [1], [The directories searched by this compiler when creating a shared library]) _LT_TAGDECL([], [predep_objects], [1], [Dependencies to place before and after the objects being linked to create a shared library]) _LT_TAGDECL([], [postdep_objects], [1]) _LT_TAGDECL([], [predeps], [1]) _LT_TAGDECL([], [postdeps], [1]) _LT_TAGDECL([], [compiler_lib_search_path], [1], [The library search path used internally by the compiler when linking a shared library]) ])# _LT_SYS_HIDDEN_LIBDEPS # _LT_LANG_F77_CONFIG([TAG]) # -------------------------- # Ensure that the configuration variables for a Fortran 77 compiler are # suitably defined. These variables are subsequently used by _LT_CONFIG # to write the compiler configuration to 'libtool'. m4_defun([_LT_LANG_F77_CONFIG], [AC_LANG_PUSH(Fortran 77) if test -z "$F77" || test no = "$F77"; then _lt_disable_F77=yes fi _LT_TAGVAR(archive_cmds_need_lc, $1)=no _LT_TAGVAR(allow_undefined_flag, $1)= _LT_TAGVAR(always_export_symbols, $1)=no _LT_TAGVAR(archive_expsym_cmds, $1)= _LT_TAGVAR(export_dynamic_flag_spec, $1)= _LT_TAGVAR(hardcode_direct, $1)=no _LT_TAGVAR(hardcode_direct_absolute, $1)=no _LT_TAGVAR(hardcode_libdir_flag_spec, $1)= _LT_TAGVAR(hardcode_libdir_separator, $1)= _LT_TAGVAR(hardcode_minus_L, $1)=no _LT_TAGVAR(hardcode_automatic, $1)=no _LT_TAGVAR(inherit_rpath, $1)=no _LT_TAGVAR(module_cmds, $1)= _LT_TAGVAR(module_expsym_cmds, $1)= _LT_TAGVAR(link_all_deplibs, $1)=unknown _LT_TAGVAR(old_archive_cmds, $1)=$old_archive_cmds _LT_TAGVAR(reload_flag, $1)=$reload_flag _LT_TAGVAR(reload_cmds, $1)=$reload_cmds _LT_TAGVAR(no_undefined_flag, $1)= _LT_TAGVAR(whole_archive_flag_spec, $1)= _LT_TAGVAR(enable_shared_with_static_runtimes, $1)=no # Source file extension for f77 test sources. ac_ext=f # Object file extension for compiled f77 test sources. objext=o _LT_TAGVAR(objext, $1)=$objext # No sense in running all these tests if we already determined that # the F77 compiler isn't working. Some variables (like enable_shared) # are currently assumed to apply to all compilers on this platform, # and will be corrupted by setting them based on a non-working compiler. if test yes != "$_lt_disable_F77"; then # Code to be used in simple compile tests lt_simple_compile_test_code="\ subroutine t return end " # Code to be used in simple link tests lt_simple_link_test_code="\ program t end " # ltmain only uses $CC for tagged configurations so make sure $CC is set. _LT_TAG_COMPILER # save warnings/boilerplate of simple test code _LT_COMPILER_BOILERPLATE _LT_LINKER_BOILERPLATE # Allow CC to be a program name with arguments. lt_save_CC=$CC lt_save_GCC=$GCC lt_save_CFLAGS=$CFLAGS CC=${F77-"f77"} CFLAGS=$FFLAGS compiler=$CC _LT_TAGVAR(compiler, $1)=$CC _LT_CC_BASENAME([$compiler]) GCC=$G77 if test -n "$compiler"; then AC_MSG_CHECKING([if libtool supports shared libraries]) AC_MSG_RESULT([$can_build_shared]) AC_MSG_CHECKING([whether to build shared libraries]) test no = "$can_build_shared" && enable_shared=no # On AIX, shared libraries and static libraries use the same namespace, and # are all built from PIC. case $host_os in aix3*) test yes = "$enable_shared" && enable_static=no if test -n "$RANLIB"; then archive_cmds="$archive_cmds~\$RANLIB \$lib" postinstall_cmds='$RANLIB $lib' fi ;; aix[[4-9]]*) if test ia64 != "$host_cpu"; then case $enable_shared,$with_aix_soname,$aix_use_runtimelinking in yes,aix,yes) ;; # shared object as lib.so file only yes,svr4,*) ;; # shared object as lib.so archive member only yes,*) enable_static=no ;; # shared object in lib.a archive as well esac fi ;; esac AC_MSG_RESULT([$enable_shared]) AC_MSG_CHECKING([whether to build static libraries]) # Make sure either enable_shared or enable_static is yes. test yes = "$enable_shared" || enable_static=yes AC_MSG_RESULT([$enable_static]) _LT_TAGVAR(GCC, $1)=$G77 _LT_TAGVAR(LD, $1)=$LD ## CAVEAT EMPTOR: ## There is no encapsulation within the following macros, do not change ## the running order or otherwise move them around unless you know exactly ## what you are doing... _LT_COMPILER_PIC($1) _LT_COMPILER_C_O($1) _LT_COMPILER_FILE_LOCKS($1) _LT_LINKER_SHLIBS($1) _LT_SYS_DYNAMIC_LINKER($1) _LT_LINKER_HARDCODE_LIBPATH($1) _LT_CONFIG($1) fi # test -n "$compiler" GCC=$lt_save_GCC CC=$lt_save_CC CFLAGS=$lt_save_CFLAGS fi # test yes != "$_lt_disable_F77" AC_LANG_POP ])# _LT_LANG_F77_CONFIG # _LT_LANG_FC_CONFIG([TAG]) # ------------------------- # Ensure that the configuration variables for a Fortran compiler are # suitably defined. These variables are subsequently used by _LT_CONFIG # to write the compiler configuration to 'libtool'. m4_defun([_LT_LANG_FC_CONFIG], [AC_LANG_PUSH(Fortran) if test -z "$FC" || test no = "$FC"; then _lt_disable_FC=yes fi _LT_TAGVAR(archive_cmds_need_lc, $1)=no _LT_TAGVAR(allow_undefined_flag, $1)= _LT_TAGVAR(always_export_symbols, $1)=no _LT_TAGVAR(archive_expsym_cmds, $1)= _LT_TAGVAR(export_dynamic_flag_spec, $1)= _LT_TAGVAR(hardcode_direct, $1)=no _LT_TAGVAR(hardcode_direct_absolute, $1)=no _LT_TAGVAR(hardcode_libdir_flag_spec, $1)= _LT_TAGVAR(hardcode_libdir_separator, $1)= _LT_TAGVAR(hardcode_minus_L, $1)=no _LT_TAGVAR(hardcode_automatic, $1)=no _LT_TAGVAR(inherit_rpath, $1)=no _LT_TAGVAR(module_cmds, $1)= _LT_TAGVAR(module_expsym_cmds, $1)= _LT_TAGVAR(link_all_deplibs, $1)=unknown _LT_TAGVAR(old_archive_cmds, $1)=$old_archive_cmds _LT_TAGVAR(reload_flag, $1)=$reload_flag _LT_TAGVAR(reload_cmds, $1)=$reload_cmds _LT_TAGVAR(no_undefined_flag, $1)= _LT_TAGVAR(whole_archive_flag_spec, $1)= _LT_TAGVAR(enable_shared_with_static_runtimes, $1)=no # Source file extension for fc test sources. ac_ext=${ac_fc_srcext-f} # Object file extension for compiled fc test sources. objext=o _LT_TAGVAR(objext, $1)=$objext # No sense in running all these tests if we already determined that # the FC compiler isn't working. Some variables (like enable_shared) # are currently assumed to apply to all compilers on this platform, # and will be corrupted by setting them based on a non-working compiler. if test yes != "$_lt_disable_FC"; then # Code to be used in simple compile tests lt_simple_compile_test_code="\ subroutine t return end " # Code to be used in simple link tests lt_simple_link_test_code="\ program t end " # ltmain only uses $CC for tagged configurations so make sure $CC is set. _LT_TAG_COMPILER # save warnings/boilerplate of simple test code _LT_COMPILER_BOILERPLATE _LT_LINKER_BOILERPLATE # Allow CC to be a program name with arguments. lt_save_CC=$CC lt_save_GCC=$GCC lt_save_CFLAGS=$CFLAGS CC=${FC-"f95"} CFLAGS=$FCFLAGS compiler=$CC GCC=$ac_cv_fc_compiler_gnu _LT_TAGVAR(compiler, $1)=$CC _LT_CC_BASENAME([$compiler]) if test -n "$compiler"; then AC_MSG_CHECKING([if libtool supports shared libraries]) AC_MSG_RESULT([$can_build_shared]) AC_MSG_CHECKING([whether to build shared libraries]) test no = "$can_build_shared" && enable_shared=no # On AIX, shared libraries and static libraries use the same namespace, and # are all built from PIC. case $host_os in aix3*) test yes = "$enable_shared" && enable_static=no if test -n "$RANLIB"; then archive_cmds="$archive_cmds~\$RANLIB \$lib" postinstall_cmds='$RANLIB $lib' fi ;; aix[[4-9]]*) if test ia64 != "$host_cpu"; then case $enable_shared,$with_aix_soname,$aix_use_runtimelinking in yes,aix,yes) ;; # shared object as lib.so file only yes,svr4,*) ;; # shared object as lib.so archive member only yes,*) enable_static=no ;; # shared object in lib.a archive as well esac fi ;; esac AC_MSG_RESULT([$enable_shared]) AC_MSG_CHECKING([whether to build static libraries]) # Make sure either enable_shared or enable_static is yes. test yes = "$enable_shared" || enable_static=yes AC_MSG_RESULT([$enable_static]) _LT_TAGVAR(GCC, $1)=$ac_cv_fc_compiler_gnu _LT_TAGVAR(LD, $1)=$LD ## CAVEAT EMPTOR: ## There is no encapsulation within the following macros, do not change ## the running order or otherwise move them around unless you know exactly ## what you are doing... _LT_SYS_HIDDEN_LIBDEPS($1) _LT_COMPILER_PIC($1) _LT_COMPILER_C_O($1) _LT_COMPILER_FILE_LOCKS($1) _LT_LINKER_SHLIBS($1) _LT_SYS_DYNAMIC_LINKER($1) _LT_LINKER_HARDCODE_LIBPATH($1) _LT_CONFIG($1) fi # test -n "$compiler" GCC=$lt_save_GCC CC=$lt_save_CC CFLAGS=$lt_save_CFLAGS fi # test yes != "$_lt_disable_FC" AC_LANG_POP ])# _LT_LANG_FC_CONFIG # _LT_LANG_GCJ_CONFIG([TAG]) # -------------------------- # Ensure that the configuration variables for the GNU Java Compiler compiler # are suitably defined. These variables are subsequently used by _LT_CONFIG # to write the compiler configuration to 'libtool'. m4_defun([_LT_LANG_GCJ_CONFIG], [AC_REQUIRE([LT_PROG_GCJ])dnl AC_LANG_SAVE # Source file extension for Java test sources. ac_ext=java # Object file extension for compiled Java test sources. objext=o _LT_TAGVAR(objext, $1)=$objext # Code to be used in simple compile tests lt_simple_compile_test_code="class foo {}" # Code to be used in simple link tests lt_simple_link_test_code='public class conftest { public static void main(String[[]] argv) {}; }' # ltmain only uses $CC for tagged configurations so make sure $CC is set. _LT_TAG_COMPILER # save warnings/boilerplate of simple test code _LT_COMPILER_BOILERPLATE _LT_LINKER_BOILERPLATE # Allow CC to be a program name with arguments. lt_save_CC=$CC lt_save_CFLAGS=$CFLAGS lt_save_GCC=$GCC GCC=yes CC=${GCJ-"gcj"} CFLAGS=$GCJFLAGS compiler=$CC _LT_TAGVAR(compiler, $1)=$CC _LT_TAGVAR(LD, $1)=$LD _LT_CC_BASENAME([$compiler]) # GCJ did not exist at the time GCC didn't implicitly link libc in. _LT_TAGVAR(archive_cmds_need_lc, $1)=no _LT_TAGVAR(old_archive_cmds, $1)=$old_archive_cmds _LT_TAGVAR(reload_flag, $1)=$reload_flag _LT_TAGVAR(reload_cmds, $1)=$reload_cmds if test -n "$compiler"; then _LT_COMPILER_NO_RTTI($1) _LT_COMPILER_PIC($1) _LT_COMPILER_C_O($1) _LT_COMPILER_FILE_LOCKS($1) _LT_LINKER_SHLIBS($1) _LT_LINKER_HARDCODE_LIBPATH($1) _LT_CONFIG($1) fi AC_LANG_RESTORE GCC=$lt_save_GCC CC=$lt_save_CC CFLAGS=$lt_save_CFLAGS ])# _LT_LANG_GCJ_CONFIG # _LT_LANG_GO_CONFIG([TAG]) # -------------------------- # Ensure that the configuration variables for the GNU Go compiler # are suitably defined. These variables are subsequently used by _LT_CONFIG # to write the compiler configuration to 'libtool'. m4_defun([_LT_LANG_GO_CONFIG], [AC_REQUIRE([LT_PROG_GO])dnl AC_LANG_SAVE # Source file extension for Go test sources. ac_ext=go # Object file extension for compiled Go test sources. objext=o _LT_TAGVAR(objext, $1)=$objext # Code to be used in simple compile tests lt_simple_compile_test_code="package main; func main() { }" # Code to be used in simple link tests lt_simple_link_test_code='package main; func main() { }' # ltmain only uses $CC for tagged configurations so make sure $CC is set. _LT_TAG_COMPILER # save warnings/boilerplate of simple test code _LT_COMPILER_BOILERPLATE _LT_LINKER_BOILERPLATE # Allow CC to be a program name with arguments. lt_save_CC=$CC lt_save_CFLAGS=$CFLAGS lt_save_GCC=$GCC GCC=yes CC=${GOC-"gccgo"} CFLAGS=$GOFLAGS compiler=$CC _LT_TAGVAR(compiler, $1)=$CC _LT_TAGVAR(LD, $1)=$LD _LT_CC_BASENAME([$compiler]) # Go did not exist at the time GCC didn't implicitly link libc in. _LT_TAGVAR(archive_cmds_need_lc, $1)=no _LT_TAGVAR(old_archive_cmds, $1)=$old_archive_cmds _LT_TAGVAR(reload_flag, $1)=$reload_flag _LT_TAGVAR(reload_cmds, $1)=$reload_cmds if test -n "$compiler"; then _LT_COMPILER_NO_RTTI($1) _LT_COMPILER_PIC($1) _LT_COMPILER_C_O($1) _LT_COMPILER_FILE_LOCKS($1) _LT_LINKER_SHLIBS($1) _LT_LINKER_HARDCODE_LIBPATH($1) _LT_CONFIG($1) fi AC_LANG_RESTORE GCC=$lt_save_GCC CC=$lt_save_CC CFLAGS=$lt_save_CFLAGS ])# _LT_LANG_GO_CONFIG # _LT_LANG_RC_CONFIG([TAG]) # ------------------------- # Ensure that the configuration variables for the Windows resource compiler # are suitably defined. These variables are subsequently used by _LT_CONFIG # to write the compiler configuration to 'libtool'. m4_defun([_LT_LANG_RC_CONFIG], [AC_REQUIRE([LT_PROG_RC])dnl AC_LANG_SAVE # Source file extension for RC test sources. ac_ext=rc # Object file extension for compiled RC test sources. objext=o _LT_TAGVAR(objext, $1)=$objext # Code to be used in simple compile tests lt_simple_compile_test_code='sample MENU { MENUITEM "&Soup", 100, CHECKED }' # Code to be used in simple link tests lt_simple_link_test_code=$lt_simple_compile_test_code # ltmain only uses $CC for tagged configurations so make sure $CC is set. _LT_TAG_COMPILER # save warnings/boilerplate of simple test code _LT_COMPILER_BOILERPLATE _LT_LINKER_BOILERPLATE # Allow CC to be a program name with arguments. lt_save_CC=$CC lt_save_CFLAGS=$CFLAGS lt_save_GCC=$GCC GCC= CC=${RC-"windres"} CFLAGS= compiler=$CC _LT_TAGVAR(compiler, $1)=$CC _LT_CC_BASENAME([$compiler]) _LT_TAGVAR(lt_cv_prog_compiler_c_o, $1)=yes if test -n "$compiler"; then : _LT_CONFIG($1) fi GCC=$lt_save_GCC AC_LANG_RESTORE CC=$lt_save_CC CFLAGS=$lt_save_CFLAGS ])# _LT_LANG_RC_CONFIG # LT_PROG_GCJ # ----------- AC_DEFUN([LT_PROG_GCJ], [m4_ifdef([AC_PROG_GCJ], [AC_PROG_GCJ], [m4_ifdef([A][M_PROG_GCJ], [A][M_PROG_GCJ], [AC_CHECK_TOOL(GCJ, gcj,) test set = "${GCJFLAGS+set}" || GCJFLAGS="-g -O2" AC_SUBST(GCJFLAGS)])])[]dnl ]) # Old name: AU_ALIAS([LT_AC_PROG_GCJ], [LT_PROG_GCJ]) dnl aclocal-1.4 backwards compatibility: dnl AC_DEFUN([LT_AC_PROG_GCJ], []) # LT_PROG_GO # ---------- AC_DEFUN([LT_PROG_GO], [AC_CHECK_TOOL(GOC, gccgo,) ]) # LT_PROG_RC # ---------- AC_DEFUN([LT_PROG_RC], [AC_CHECK_TOOL(RC, windres,) ]) # Old name: AU_ALIAS([LT_AC_PROG_RC], [LT_PROG_RC]) dnl aclocal-1.4 backwards compatibility: dnl AC_DEFUN([LT_AC_PROG_RC], []) # _LT_DECL_EGREP # -------------- # If we don't have a new enough Autoconf to choose the best grep # available, choose the one first in the user's PATH. m4_defun([_LT_DECL_EGREP], [AC_REQUIRE([AC_PROG_EGREP])dnl AC_REQUIRE([AC_PROG_FGREP])dnl test -z "$GREP" && GREP=grep _LT_DECL([], [GREP], [1], [A grep program that handles long lines]) _LT_DECL([], [EGREP], [1], [An ERE matcher]) _LT_DECL([], [FGREP], [1], [A literal string matcher]) dnl Non-bleeding-edge autoconf doesn't subst GREP, so do it here too AC_SUBST([GREP]) ]) # _LT_DECL_OBJDUMP # -------------- # If we don't have a new enough Autoconf to choose the best objdump # available, choose the one first in the user's PATH. m4_defun([_LT_DECL_OBJDUMP], [AC_CHECK_TOOL(OBJDUMP, objdump, false) test -z "$OBJDUMP" && OBJDUMP=objdump _LT_DECL([], [OBJDUMP], [1], [An object symbol dumper]) AC_SUBST([OBJDUMP]) ]) # _LT_DECL_DLLTOOL # ---------------- # Ensure DLLTOOL variable is set. m4_defun([_LT_DECL_DLLTOOL], [AC_CHECK_TOOL(DLLTOOL, dlltool, false) test -z "$DLLTOOL" && DLLTOOL=dlltool _LT_DECL([], [DLLTOOL], [1], [DLL creation program]) AC_SUBST([DLLTOOL]) ]) # _LT_DECL_SED # ------------ # Check for a fully-functional sed program, that truncates # as few characters as possible. Prefer GNU sed if found. m4_defun([_LT_DECL_SED], [AC_PROG_SED test -z "$SED" && SED=sed Xsed="$SED -e 1s/^X//" _LT_DECL([], [SED], [1], [A sed program that does not truncate output]) _LT_DECL([], [Xsed], ["\$SED -e 1s/^X//"], [Sed that helps us avoid accidentally triggering echo(1) options like -n]) ])# _LT_DECL_SED m4_ifndef([AC_PROG_SED], [ # NOTE: This macro has been submitted for inclusion into # # GNU Autoconf as AC_PROG_SED. When it is available in # # a released version of Autoconf we should remove this # # macro and use it instead. # m4_defun([AC_PROG_SED], [AC_MSG_CHECKING([for a sed that does not truncate output]) AC_CACHE_VAL(lt_cv_path_SED, [# Loop through the user's path and test for sed and gsed. # Then use that list of sed's as ones to test for truncation. as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for lt_ac_prog in sed gsed; do for ac_exec_ext in '' $ac_executable_extensions; do if $as_executable_p "$as_dir/$lt_ac_prog$ac_exec_ext"; then lt_ac_sed_list="$lt_ac_sed_list $as_dir/$lt_ac_prog$ac_exec_ext" fi done done done IFS=$as_save_IFS lt_ac_max=0 lt_ac_count=0 # Add /usr/xpg4/bin/sed as it is typically found on Solaris # along with /bin/sed that truncates output. for lt_ac_sed in $lt_ac_sed_list /usr/xpg4/bin/sed; do test ! -f "$lt_ac_sed" && continue cat /dev/null > conftest.in lt_ac_count=0 echo $ECHO_N "0123456789$ECHO_C" >conftest.in # Check for GNU sed and select it if it is found. if "$lt_ac_sed" --version 2>&1 < /dev/null | grep 'GNU' > /dev/null; then lt_cv_path_SED=$lt_ac_sed break fi while true; do cat conftest.in conftest.in >conftest.tmp mv conftest.tmp conftest.in cp conftest.in conftest.nl echo >>conftest.nl $lt_ac_sed -e 's/a$//' < conftest.nl >conftest.out || break cmp -s conftest.out conftest.nl || break # 10000 chars as input seems more than enough test 10 -lt "$lt_ac_count" && break lt_ac_count=`expr $lt_ac_count + 1` if test "$lt_ac_count" -gt "$lt_ac_max"; then lt_ac_max=$lt_ac_count lt_cv_path_SED=$lt_ac_sed fi done done ]) SED=$lt_cv_path_SED AC_SUBST([SED]) AC_MSG_RESULT([$SED]) ])#AC_PROG_SED ])#m4_ifndef # Old name: AU_ALIAS([LT_AC_PROG_SED], [AC_PROG_SED]) dnl aclocal-1.4 backwards compatibility: dnl AC_DEFUN([LT_AC_PROG_SED], []) # _LT_CHECK_SHELL_FEATURES # ------------------------ # Find out whether the shell is Bourne or XSI compatible, # or has some other useful features. m4_defun([_LT_CHECK_SHELL_FEATURES], [if ( (MAIL=60; unset MAIL) || exit) >/dev/null 2>&1; then lt_unset=unset else lt_unset=false fi _LT_DECL([], [lt_unset], [0], [whether the shell understands "unset"])dnl # test EBCDIC or ASCII case `echo X|tr X '\101'` in A) # ASCII based system # \n is not interpreted correctly by Solaris 8 /usr/ucb/tr lt_SP2NL='tr \040 \012' lt_NL2SP='tr \015\012 \040\040' ;; *) # EBCDIC based system lt_SP2NL='tr \100 \n' lt_NL2SP='tr \r\n \100\100' ;; esac _LT_DECL([SP2NL], [lt_SP2NL], [1], [turn spaces into newlines])dnl _LT_DECL([NL2SP], [lt_NL2SP], [1], [turn newlines into spaces])dnl ])# _LT_CHECK_SHELL_FEATURES # _LT_PATH_CONVERSION_FUNCTIONS # ----------------------------- # Determine what file name conversion functions should be used by # func_to_host_file (and, implicitly, by func_to_host_path). These are needed # for certain cross-compile configurations and native mingw. m4_defun([_LT_PATH_CONVERSION_FUNCTIONS], [AC_REQUIRE([AC_CANONICAL_HOST])dnl AC_REQUIRE([AC_CANONICAL_BUILD])dnl AC_MSG_CHECKING([how to convert $build file names to $host format]) AC_CACHE_VAL(lt_cv_to_host_file_cmd, [case $host in *-*-mingw* ) case $build in *-*-mingw* ) # actually msys lt_cv_to_host_file_cmd=func_convert_file_msys_to_w32 ;; *-*-cygwin* ) lt_cv_to_host_file_cmd=func_convert_file_cygwin_to_w32 ;; * ) # otherwise, assume *nix lt_cv_to_host_file_cmd=func_convert_file_nix_to_w32 ;; esac ;; *-*-cygwin* ) case $build in *-*-mingw* ) # actually msys lt_cv_to_host_file_cmd=func_convert_file_msys_to_cygwin ;; *-*-cygwin* ) lt_cv_to_host_file_cmd=func_convert_file_noop ;; * ) # otherwise, assume *nix lt_cv_to_host_file_cmd=func_convert_file_nix_to_cygwin ;; esac ;; * ) # unhandled hosts (and "normal" native builds) lt_cv_to_host_file_cmd=func_convert_file_noop ;; esac ]) to_host_file_cmd=$lt_cv_to_host_file_cmd AC_MSG_RESULT([$lt_cv_to_host_file_cmd]) _LT_DECL([to_host_file_cmd], [lt_cv_to_host_file_cmd], [0], [convert $build file names to $host format])dnl AC_MSG_CHECKING([how to convert $build file names to toolchain format]) AC_CACHE_VAL(lt_cv_to_tool_file_cmd, [#assume ordinary cross tools, or native build. lt_cv_to_tool_file_cmd=func_convert_file_noop case $host in *-*-mingw* ) case $build in *-*-mingw* ) # actually msys lt_cv_to_tool_file_cmd=func_convert_file_msys_to_w32 ;; esac ;; esac ]) to_tool_file_cmd=$lt_cv_to_tool_file_cmd AC_MSG_RESULT([$lt_cv_to_tool_file_cmd]) _LT_DECL([to_tool_file_cmd], [lt_cv_to_tool_file_cmd], [0], [convert $build files to toolchain format])dnl ])# _LT_PATH_CONVERSION_FUNCTIONS # Helper functions for option handling. -*- Autoconf -*- # # Copyright (C) 2004-2005, 2007-2009, 2011-2015 Free Software # Foundation, Inc. # Written by Gary V. Vaughan, 2004 # # This file is free software; the Free Software Foundation gives # unlimited permission to copy and/or distribute it, with or without # modifications, as long as this notice is preserved. # serial 8 ltoptions.m4 # This is to help aclocal find these macros, as it can't see m4_define. AC_DEFUN([LTOPTIONS_VERSION], [m4_if([1])]) # _LT_MANGLE_OPTION(MACRO-NAME, OPTION-NAME) # ------------------------------------------ m4_define([_LT_MANGLE_OPTION], [[_LT_OPTION_]m4_bpatsubst($1__$2, [[^a-zA-Z0-9_]], [_])]) # _LT_SET_OPTION(MACRO-NAME, OPTION-NAME) # --------------------------------------- # Set option OPTION-NAME for macro MACRO-NAME, and if there is a # matching handler defined, dispatch to it. Other OPTION-NAMEs are # saved as a flag. m4_define([_LT_SET_OPTION], [m4_define(_LT_MANGLE_OPTION([$1], [$2]))dnl m4_ifdef(_LT_MANGLE_DEFUN([$1], [$2]), _LT_MANGLE_DEFUN([$1], [$2]), [m4_warning([Unknown $1 option '$2'])])[]dnl ]) # _LT_IF_OPTION(MACRO-NAME, OPTION-NAME, IF-SET, [IF-NOT-SET]) # ------------------------------------------------------------ # Execute IF-SET if OPTION is set, IF-NOT-SET otherwise. m4_define([_LT_IF_OPTION], [m4_ifdef(_LT_MANGLE_OPTION([$1], [$2]), [$3], [$4])]) # _LT_UNLESS_OPTIONS(MACRO-NAME, OPTION-LIST, IF-NOT-SET) # ------------------------------------------------------- # Execute IF-NOT-SET unless all options in OPTION-LIST for MACRO-NAME # are set. m4_define([_LT_UNLESS_OPTIONS], [m4_foreach([_LT_Option], m4_split(m4_normalize([$2])), [m4_ifdef(_LT_MANGLE_OPTION([$1], _LT_Option), [m4_define([$0_found])])])[]dnl m4_ifdef([$0_found], [m4_undefine([$0_found])], [$3 ])[]dnl ]) # _LT_SET_OPTIONS(MACRO-NAME, OPTION-LIST) # ---------------------------------------- # OPTION-LIST is a space-separated list of Libtool options associated # with MACRO-NAME. If any OPTION has a matching handler declared with # LT_OPTION_DEFINE, dispatch to that macro; otherwise complain about # the unknown option and exit. m4_defun([_LT_SET_OPTIONS], [# Set options m4_foreach([_LT_Option], m4_split(m4_normalize([$2])), [_LT_SET_OPTION([$1], _LT_Option)]) m4_if([$1],[LT_INIT],[ dnl dnl Simply set some default values (i.e off) if boolean options were not dnl specified: _LT_UNLESS_OPTIONS([LT_INIT], [dlopen], [enable_dlopen=no ]) _LT_UNLESS_OPTIONS([LT_INIT], [win32-dll], [enable_win32_dll=no ]) dnl dnl If no reference was made to various pairs of opposing options, then dnl we run the default mode handler for the pair. For example, if neither dnl 'shared' nor 'disable-shared' was passed, we enable building of shared dnl archives by default: _LT_UNLESS_OPTIONS([LT_INIT], [shared disable-shared], [_LT_ENABLE_SHARED]) _LT_UNLESS_OPTIONS([LT_INIT], [static disable-static], [_LT_ENABLE_STATIC]) _LT_UNLESS_OPTIONS([LT_INIT], [pic-only no-pic], [_LT_WITH_PIC]) _LT_UNLESS_OPTIONS([LT_INIT], [fast-install disable-fast-install], [_LT_ENABLE_FAST_INSTALL]) _LT_UNLESS_OPTIONS([LT_INIT], [aix-soname=aix aix-soname=both aix-soname=svr4], [_LT_WITH_AIX_SONAME([aix])]) ]) ])# _LT_SET_OPTIONS # _LT_MANGLE_DEFUN(MACRO-NAME, OPTION-NAME) # ----------------------------------------- m4_define([_LT_MANGLE_DEFUN], [[_LT_OPTION_DEFUN_]m4_bpatsubst(m4_toupper([$1__$2]), [[^A-Z0-9_]], [_])]) # LT_OPTION_DEFINE(MACRO-NAME, OPTION-NAME, CODE) # ----------------------------------------------- m4_define([LT_OPTION_DEFINE], [m4_define(_LT_MANGLE_DEFUN([$1], [$2]), [$3])[]dnl ])# LT_OPTION_DEFINE # dlopen # ------ LT_OPTION_DEFINE([LT_INIT], [dlopen], [enable_dlopen=yes ]) AU_DEFUN([AC_LIBTOOL_DLOPEN], [_LT_SET_OPTION([LT_INIT], [dlopen]) AC_DIAGNOSE([obsolete], [$0: Remove this warning and the call to _LT_SET_OPTION when you put the 'dlopen' option into LT_INIT's first parameter.]) ]) dnl aclocal-1.4 backwards compatibility: dnl AC_DEFUN([AC_LIBTOOL_DLOPEN], []) # win32-dll # --------- # Declare package support for building win32 dll's. LT_OPTION_DEFINE([LT_INIT], [win32-dll], [enable_win32_dll=yes case $host in *-*-cygwin* | *-*-mingw* | *-*-pw32* | *-*-cegcc*) AC_CHECK_TOOL(AS, as, false) AC_CHECK_TOOL(DLLTOOL, dlltool, false) AC_CHECK_TOOL(OBJDUMP, objdump, false) ;; esac test -z "$AS" && AS=as _LT_DECL([], [AS], [1], [Assembler program])dnl test -z "$DLLTOOL" && DLLTOOL=dlltool _LT_DECL([], [DLLTOOL], [1], [DLL creation program])dnl test -z "$OBJDUMP" && OBJDUMP=objdump _LT_DECL([], [OBJDUMP], [1], [Object dumper program])dnl ])# win32-dll AU_DEFUN([AC_LIBTOOL_WIN32_DLL], [AC_REQUIRE([AC_CANONICAL_HOST])dnl _LT_SET_OPTION([LT_INIT], [win32-dll]) AC_DIAGNOSE([obsolete], [$0: Remove this warning and the call to _LT_SET_OPTION when you put the 'win32-dll' option into LT_INIT's first parameter.]) ]) dnl aclocal-1.4 backwards compatibility: dnl AC_DEFUN([AC_LIBTOOL_WIN32_DLL], []) # _LT_ENABLE_SHARED([DEFAULT]) # ---------------------------- # implement the --enable-shared flag, and supports the 'shared' and # 'disable-shared' LT_INIT options. # DEFAULT is either 'yes' or 'no'. If omitted, it defaults to 'yes'. m4_define([_LT_ENABLE_SHARED], [m4_define([_LT_ENABLE_SHARED_DEFAULT], [m4_if($1, no, no, yes)])dnl AC_ARG_ENABLE([shared], [AS_HELP_STRING([--enable-shared@<:@=PKGS@:>@], [build shared libraries @<:@default=]_LT_ENABLE_SHARED_DEFAULT[@:>@])], [p=${PACKAGE-default} case $enableval in yes) enable_shared=yes ;; no) enable_shared=no ;; *) enable_shared=no # Look at the argument we got. We use all the common list separators. lt_save_ifs=$IFS; IFS=$IFS$PATH_SEPARATOR, for pkg in $enableval; do IFS=$lt_save_ifs if test "X$pkg" = "X$p"; then enable_shared=yes fi done IFS=$lt_save_ifs ;; esac], [enable_shared=]_LT_ENABLE_SHARED_DEFAULT) _LT_DECL([build_libtool_libs], [enable_shared], [0], [Whether or not to build shared libraries]) ])# _LT_ENABLE_SHARED LT_OPTION_DEFINE([LT_INIT], [shared], [_LT_ENABLE_SHARED([yes])]) LT_OPTION_DEFINE([LT_INIT], [disable-shared], [_LT_ENABLE_SHARED([no])]) # Old names: AC_DEFUN([AC_ENABLE_SHARED], [_LT_SET_OPTION([LT_INIT], m4_if([$1], [no], [disable-])[shared]) ]) AC_DEFUN([AC_DISABLE_SHARED], [_LT_SET_OPTION([LT_INIT], [disable-shared]) ]) AU_DEFUN([AM_ENABLE_SHARED], [AC_ENABLE_SHARED($@)]) AU_DEFUN([AM_DISABLE_SHARED], [AC_DISABLE_SHARED($@)]) dnl aclocal-1.4 backwards compatibility: dnl AC_DEFUN([AM_ENABLE_SHARED], []) dnl AC_DEFUN([AM_DISABLE_SHARED], []) # _LT_ENABLE_STATIC([DEFAULT]) # ---------------------------- # implement the --enable-static flag, and support the 'static' and # 'disable-static' LT_INIT options. # DEFAULT is either 'yes' or 'no'. If omitted, it defaults to 'yes'. m4_define([_LT_ENABLE_STATIC], [m4_define([_LT_ENABLE_STATIC_DEFAULT], [m4_if($1, no, no, yes)])dnl AC_ARG_ENABLE([static], [AS_HELP_STRING([--enable-static@<:@=PKGS@:>@], [build static libraries @<:@default=]_LT_ENABLE_STATIC_DEFAULT[@:>@])], [p=${PACKAGE-default} case $enableval in yes) enable_static=yes ;; no) enable_static=no ;; *) enable_static=no # Look at the argument we got. We use all the common list separators. lt_save_ifs=$IFS; IFS=$IFS$PATH_SEPARATOR, for pkg in $enableval; do IFS=$lt_save_ifs if test "X$pkg" = "X$p"; then enable_static=yes fi done IFS=$lt_save_ifs ;; esac], [enable_static=]_LT_ENABLE_STATIC_DEFAULT) _LT_DECL([build_old_libs], [enable_static], [0], [Whether or not to build static libraries]) ])# _LT_ENABLE_STATIC LT_OPTION_DEFINE([LT_INIT], [static], [_LT_ENABLE_STATIC([yes])]) LT_OPTION_DEFINE([LT_INIT], [disable-static], [_LT_ENABLE_STATIC([no])]) # Old names: AC_DEFUN([AC_ENABLE_STATIC], [_LT_SET_OPTION([LT_INIT], m4_if([$1], [no], [disable-])[static]) ]) AC_DEFUN([AC_DISABLE_STATIC], [_LT_SET_OPTION([LT_INIT], [disable-static]) ]) AU_DEFUN([AM_ENABLE_STATIC], [AC_ENABLE_STATIC($@)]) AU_DEFUN([AM_DISABLE_STATIC], [AC_DISABLE_STATIC($@)]) dnl aclocal-1.4 backwards compatibility: dnl AC_DEFUN([AM_ENABLE_STATIC], []) dnl AC_DEFUN([AM_DISABLE_STATIC], []) # _LT_ENABLE_FAST_INSTALL([DEFAULT]) # ---------------------------------- # implement the --enable-fast-install flag, and support the 'fast-install' # and 'disable-fast-install' LT_INIT options. # DEFAULT is either 'yes' or 'no'. If omitted, it defaults to 'yes'. m4_define([_LT_ENABLE_FAST_INSTALL], [m4_define([_LT_ENABLE_FAST_INSTALL_DEFAULT], [m4_if($1, no, no, yes)])dnl AC_ARG_ENABLE([fast-install], [AS_HELP_STRING([--enable-fast-install@<:@=PKGS@:>@], [optimize for fast installation @<:@default=]_LT_ENABLE_FAST_INSTALL_DEFAULT[@:>@])], [p=${PACKAGE-default} case $enableval in yes) enable_fast_install=yes ;; no) enable_fast_install=no ;; *) enable_fast_install=no # Look at the argument we got. We use all the common list separators. lt_save_ifs=$IFS; IFS=$IFS$PATH_SEPARATOR, for pkg in $enableval; do IFS=$lt_save_ifs if test "X$pkg" = "X$p"; then enable_fast_install=yes fi done IFS=$lt_save_ifs ;; esac], [enable_fast_install=]_LT_ENABLE_FAST_INSTALL_DEFAULT) _LT_DECL([fast_install], [enable_fast_install], [0], [Whether or not to optimize for fast installation])dnl ])# _LT_ENABLE_FAST_INSTALL LT_OPTION_DEFINE([LT_INIT], [fast-install], [_LT_ENABLE_FAST_INSTALL([yes])]) LT_OPTION_DEFINE([LT_INIT], [disable-fast-install], [_LT_ENABLE_FAST_INSTALL([no])]) # Old names: AU_DEFUN([AC_ENABLE_FAST_INSTALL], [_LT_SET_OPTION([LT_INIT], m4_if([$1], [no], [disable-])[fast-install]) AC_DIAGNOSE([obsolete], [$0: Remove this warning and the call to _LT_SET_OPTION when you put the 'fast-install' option into LT_INIT's first parameter.]) ]) AU_DEFUN([AC_DISABLE_FAST_INSTALL], [_LT_SET_OPTION([LT_INIT], [disable-fast-install]) AC_DIAGNOSE([obsolete], [$0: Remove this warning and the call to _LT_SET_OPTION when you put the 'disable-fast-install' option into LT_INIT's first parameter.]) ]) dnl aclocal-1.4 backwards compatibility: dnl AC_DEFUN([AC_ENABLE_FAST_INSTALL], []) dnl AC_DEFUN([AM_DISABLE_FAST_INSTALL], []) # _LT_WITH_AIX_SONAME([DEFAULT]) # ---------------------------------- # implement the --with-aix-soname flag, and support the `aix-soname=aix' # and `aix-soname=both' and `aix-soname=svr4' LT_INIT options. DEFAULT # is either `aix', `both' or `svr4'. If omitted, it defaults to `aix'. m4_define([_LT_WITH_AIX_SONAME], [m4_define([_LT_WITH_AIX_SONAME_DEFAULT], [m4_if($1, svr4, svr4, m4_if($1, both, both, aix))])dnl shared_archive_member_spec= case $host,$enable_shared in power*-*-aix[[5-9]]*,yes) AC_MSG_CHECKING([which variant of shared library versioning to provide]) AC_ARG_WITH([aix-soname], [AS_HELP_STRING([--with-aix-soname=aix|svr4|both], [shared library versioning (aka "SONAME") variant to provide on AIX, @<:@default=]_LT_WITH_AIX_SONAME_DEFAULT[@:>@.])], [case $withval in aix|svr4|both) ;; *) AC_MSG_ERROR([Unknown argument to --with-aix-soname]) ;; esac lt_cv_with_aix_soname=$with_aix_soname], [AC_CACHE_VAL([lt_cv_with_aix_soname], [lt_cv_with_aix_soname=]_LT_WITH_AIX_SONAME_DEFAULT) with_aix_soname=$lt_cv_with_aix_soname]) AC_MSG_RESULT([$with_aix_soname]) if test aix != "$with_aix_soname"; then # For the AIX way of multilib, we name the shared archive member # based on the bitwidth used, traditionally 'shr.o' or 'shr_64.o', # and 'shr.imp' or 'shr_64.imp', respectively, for the Import File. # Even when GNU compilers ignore OBJECT_MODE but need '-maix64' flag, # the AIX toolchain works better with OBJECT_MODE set (default 32). if test 64 = "${OBJECT_MODE-32}"; then shared_archive_member_spec=shr_64 else shared_archive_member_spec=shr fi fi ;; *) with_aix_soname=aix ;; esac _LT_DECL([], [shared_archive_member_spec], [0], [Shared archive member basename, for filename based shared library versioning on AIX])dnl ])# _LT_WITH_AIX_SONAME LT_OPTION_DEFINE([LT_INIT], [aix-soname=aix], [_LT_WITH_AIX_SONAME([aix])]) LT_OPTION_DEFINE([LT_INIT], [aix-soname=both], [_LT_WITH_AIX_SONAME([both])]) LT_OPTION_DEFINE([LT_INIT], [aix-soname=svr4], [_LT_WITH_AIX_SONAME([svr4])]) # _LT_WITH_PIC([MODE]) # -------------------- # implement the --with-pic flag, and support the 'pic-only' and 'no-pic' # LT_INIT options. # MODE is either 'yes' or 'no'. If omitted, it defaults to 'both'. m4_define([_LT_WITH_PIC], [AC_ARG_WITH([pic], [AS_HELP_STRING([--with-pic@<:@=PKGS@:>@], [try to use only PIC/non-PIC objects @<:@default=use both@:>@])], [lt_p=${PACKAGE-default} case $withval in yes|no) pic_mode=$withval ;; *) pic_mode=default # Look at the argument we got. We use all the common list separators. lt_save_ifs=$IFS; IFS=$IFS$PATH_SEPARATOR, for lt_pkg in $withval; do IFS=$lt_save_ifs if test "X$lt_pkg" = "X$lt_p"; then pic_mode=yes fi done IFS=$lt_save_ifs ;; esac], [pic_mode=m4_default([$1], [default])]) _LT_DECL([], [pic_mode], [0], [What type of objects to build])dnl ])# _LT_WITH_PIC LT_OPTION_DEFINE([LT_INIT], [pic-only], [_LT_WITH_PIC([yes])]) LT_OPTION_DEFINE([LT_INIT], [no-pic], [_LT_WITH_PIC([no])]) # Old name: AU_DEFUN([AC_LIBTOOL_PICMODE], [_LT_SET_OPTION([LT_INIT], [pic-only]) AC_DIAGNOSE([obsolete], [$0: Remove this warning and the call to _LT_SET_OPTION when you put the 'pic-only' option into LT_INIT's first parameter.]) ]) dnl aclocal-1.4 backwards compatibility: dnl AC_DEFUN([AC_LIBTOOL_PICMODE], []) m4_define([_LTDL_MODE], []) LT_OPTION_DEFINE([LTDL_INIT], [nonrecursive], [m4_define([_LTDL_MODE], [nonrecursive])]) LT_OPTION_DEFINE([LTDL_INIT], [recursive], [m4_define([_LTDL_MODE], [recursive])]) LT_OPTION_DEFINE([LTDL_INIT], [subproject], [m4_define([_LTDL_MODE], [subproject])]) m4_define([_LTDL_TYPE], []) LT_OPTION_DEFINE([LTDL_INIT], [installable], [m4_define([_LTDL_TYPE], [installable])]) LT_OPTION_DEFINE([LTDL_INIT], [convenience], [m4_define([_LTDL_TYPE], [convenience])]) # ltsugar.m4 -- libtool m4 base layer. -*-Autoconf-*- # # Copyright (C) 2004-2005, 2007-2008, 2011-2015 Free Software # Foundation, Inc. # Written by Gary V. Vaughan, 2004 # # This file is free software; the Free Software Foundation gives # unlimited permission to copy and/or distribute it, with or without # modifications, as long as this notice is preserved. # serial 6 ltsugar.m4 # This is to help aclocal find these macros, as it can't see m4_define. AC_DEFUN([LTSUGAR_VERSION], [m4_if([0.1])]) # lt_join(SEP, ARG1, [ARG2...]) # ----------------------------- # Produce ARG1SEPARG2...SEPARGn, omitting [] arguments and their # associated separator. # Needed until we can rely on m4_join from Autoconf 2.62, since all earlier # versions in m4sugar had bugs. m4_define([lt_join], [m4_if([$#], [1], [], [$#], [2], [[$2]], [m4_if([$2], [], [], [[$2]_])$0([$1], m4_shift(m4_shift($@)))])]) m4_define([_lt_join], [m4_if([$#$2], [2], [], [m4_if([$2], [], [], [[$1$2]])$0([$1], m4_shift(m4_shift($@)))])]) # lt_car(LIST) # lt_cdr(LIST) # ------------ # Manipulate m4 lists. # These macros are necessary as long as will still need to support # Autoconf-2.59, which quotes differently. m4_define([lt_car], [[$1]]) m4_define([lt_cdr], [m4_if([$#], 0, [m4_fatal([$0: cannot be called without arguments])], [$#], 1, [], [m4_dquote(m4_shift($@))])]) m4_define([lt_unquote], $1) # lt_append(MACRO-NAME, STRING, [SEPARATOR]) # ------------------------------------------ # Redefine MACRO-NAME to hold its former content plus 'SEPARATOR''STRING'. # Note that neither SEPARATOR nor STRING are expanded; they are appended # to MACRO-NAME as is (leaving the expansion for when MACRO-NAME is invoked). # No SEPARATOR is output if MACRO-NAME was previously undefined (different # than defined and empty). # # This macro is needed until we can rely on Autoconf 2.62, since earlier # versions of m4sugar mistakenly expanded SEPARATOR but not STRING. m4_define([lt_append], [m4_define([$1], m4_ifdef([$1], [m4_defn([$1])[$3]])[$2])]) # lt_combine(SEP, PREFIX-LIST, INFIX, SUFFIX1, [SUFFIX2...]) # ---------------------------------------------------------- # Produce a SEP delimited list of all paired combinations of elements of # PREFIX-LIST with SUFFIX1 through SUFFIXn. Each element of the list # has the form PREFIXmINFIXSUFFIXn. # Needed until we can rely on m4_combine added in Autoconf 2.62. m4_define([lt_combine], [m4_if(m4_eval([$# > 3]), [1], [m4_pushdef([_Lt_sep], [m4_define([_Lt_sep], m4_defn([lt_car]))])]]dnl [[m4_foreach([_Lt_prefix], [$2], [m4_foreach([_Lt_suffix], ]m4_dquote(m4_dquote(m4_shift(m4_shift(m4_shift($@)))))[, [_Lt_sep([$1])[]m4_defn([_Lt_prefix])[$3]m4_defn([_Lt_suffix])])])])]) # lt_if_append_uniq(MACRO-NAME, VARNAME, [SEPARATOR], [UNIQ], [NOT-UNIQ]) # ----------------------------------------------------------------------- # Iff MACRO-NAME does not yet contain VARNAME, then append it (delimited # by SEPARATOR if supplied) and expand UNIQ, else NOT-UNIQ. m4_define([lt_if_append_uniq], [m4_ifdef([$1], [m4_if(m4_index([$3]m4_defn([$1])[$3], [$3$2$3]), [-1], [lt_append([$1], [$2], [$3])$4], [$5])], [lt_append([$1], [$2], [$3])$4])]) # lt_dict_add(DICT, KEY, VALUE) # ----------------------------- m4_define([lt_dict_add], [m4_define([$1($2)], [$3])]) # lt_dict_add_subkey(DICT, KEY, SUBKEY, VALUE) # -------------------------------------------- m4_define([lt_dict_add_subkey], [m4_define([$1($2:$3)], [$4])]) # lt_dict_fetch(DICT, KEY, [SUBKEY]) # ---------------------------------- m4_define([lt_dict_fetch], [m4_ifval([$3], m4_ifdef([$1($2:$3)], [m4_defn([$1($2:$3)])]), m4_ifdef([$1($2)], [m4_defn([$1($2)])]))]) # lt_if_dict_fetch(DICT, KEY, [SUBKEY], VALUE, IF-TRUE, [IF-FALSE]) # ----------------------------------------------------------------- m4_define([lt_if_dict_fetch], [m4_if(lt_dict_fetch([$1], [$2], [$3]), [$4], [$5], [$6])]) # lt_dict_filter(DICT, [SUBKEY], VALUE, [SEPARATOR], KEY, [...]) # -------------------------------------------------------------- m4_define([lt_dict_filter], [m4_if([$5], [], [], [lt_join(m4_quote(m4_default([$4], [[, ]])), lt_unquote(m4_split(m4_normalize(m4_foreach(_Lt_key, lt_car([m4_shiftn(4, $@)]), [lt_if_dict_fetch([$1], _Lt_key, [$2], [$3], [_Lt_key ])])))))])[]dnl ]) # ltversion.m4 -- version numbers -*- Autoconf -*- # # Copyright (C) 2004, 2011-2015 Free Software Foundation, Inc. # Written by Scott James Remnant, 2004 # # This file is free software; the Free Software Foundation gives # unlimited permission to copy and/or distribute it, with or without # modifications, as long as this notice is preserved. # @configure_input@ # serial 4179 ltversion.m4 # This file is part of GNU Libtool m4_define([LT_PACKAGE_VERSION], [2.4.6]) m4_define([LT_PACKAGE_REVISION], [2.4.6]) AC_DEFUN([LTVERSION_VERSION], [macro_version='2.4.6' macro_revision='2.4.6' _LT_DECL(, macro_version, 0, [Which release of libtool.m4 was used?]) _LT_DECL(, macro_revision, 0) ]) # lt~obsolete.m4 -- aclocal satisfying obsolete definitions. -*-Autoconf-*- # # Copyright (C) 2004-2005, 2007, 2009, 2011-2015 Free Software # Foundation, Inc. # Written by Scott James Remnant, 2004. # # This file is free software; the Free Software Foundation gives # unlimited permission to copy and/or distribute it, with or without # modifications, as long as this notice is preserved. # serial 5 lt~obsolete.m4 # These exist entirely to fool aclocal when bootstrapping libtool. # # In the past libtool.m4 has provided macros via AC_DEFUN (or AU_DEFUN), # which have later been changed to m4_define as they aren't part of the # exported API, or moved to Autoconf or Automake where they belong. # # The trouble is, aclocal is a bit thick. It'll see the old AC_DEFUN # in /usr/share/aclocal/libtool.m4 and remember it, then when it sees us # using a macro with the same name in our local m4/libtool.m4 it'll # pull the old libtool.m4 in (it doesn't see our shiny new m4_define # and doesn't know about Autoconf macros at all.) # # So we provide this file, which has a silly filename so it's always # included after everything else. This provides aclocal with the # AC_DEFUNs it wants, but when m4 processes it, it doesn't do anything # because those macros already exist, or will be overwritten later. # We use AC_DEFUN over AU_DEFUN for compatibility with aclocal-1.6. # # Anytime we withdraw an AC_DEFUN or AU_DEFUN, remember to add it here. # Yes, that means every name once taken will need to remain here until # we give up compatibility with versions before 1.7, at which point # we need to keep only those names which we still refer to. # This is to help aclocal find these macros, as it can't see m4_define. AC_DEFUN([LTOBSOLETE_VERSION], [m4_if([1])]) m4_ifndef([AC_LIBTOOL_LINKER_OPTION], [AC_DEFUN([AC_LIBTOOL_LINKER_OPTION])]) m4_ifndef([AC_PROG_EGREP], [AC_DEFUN([AC_PROG_EGREP])]) m4_ifndef([_LT_AC_PROG_ECHO_BACKSLASH], [AC_DEFUN([_LT_AC_PROG_ECHO_BACKSLASH])]) m4_ifndef([_LT_AC_SHELL_INIT], [AC_DEFUN([_LT_AC_SHELL_INIT])]) m4_ifndef([_LT_AC_SYS_LIBPATH_AIX], [AC_DEFUN([_LT_AC_SYS_LIBPATH_AIX])]) m4_ifndef([_LT_PROG_LTMAIN], [AC_DEFUN([_LT_PROG_LTMAIN])]) m4_ifndef([_LT_AC_TAGVAR], [AC_DEFUN([_LT_AC_TAGVAR])]) m4_ifndef([AC_LTDL_ENABLE_INSTALL], [AC_DEFUN([AC_LTDL_ENABLE_INSTALL])]) m4_ifndef([AC_LTDL_PREOPEN], [AC_DEFUN([AC_LTDL_PREOPEN])]) m4_ifndef([_LT_AC_SYS_COMPILER], [AC_DEFUN([_LT_AC_SYS_COMPILER])]) m4_ifndef([_LT_AC_LOCK], [AC_DEFUN([_LT_AC_LOCK])]) m4_ifndef([AC_LIBTOOL_SYS_OLD_ARCHIVE], [AC_DEFUN([AC_LIBTOOL_SYS_OLD_ARCHIVE])]) m4_ifndef([_LT_AC_TRY_DLOPEN_SELF], [AC_DEFUN([_LT_AC_TRY_DLOPEN_SELF])]) m4_ifndef([AC_LIBTOOL_PROG_CC_C_O], [AC_DEFUN([AC_LIBTOOL_PROG_CC_C_O])]) m4_ifndef([AC_LIBTOOL_SYS_HARD_LINK_LOCKS], [AC_DEFUN([AC_LIBTOOL_SYS_HARD_LINK_LOCKS])]) m4_ifndef([AC_LIBTOOL_OBJDIR], [AC_DEFUN([AC_LIBTOOL_OBJDIR])]) m4_ifndef([AC_LTDL_OBJDIR], [AC_DEFUN([AC_LTDL_OBJDIR])]) m4_ifndef([AC_LIBTOOL_PROG_LD_HARDCODE_LIBPATH], [AC_DEFUN([AC_LIBTOOL_PROG_LD_HARDCODE_LIBPATH])]) m4_ifndef([AC_LIBTOOL_SYS_LIB_STRIP], [AC_DEFUN([AC_LIBTOOL_SYS_LIB_STRIP])]) m4_ifndef([AC_PATH_MAGIC], [AC_DEFUN([AC_PATH_MAGIC])]) m4_ifndef([AC_PROG_LD_GNU], [AC_DEFUN([AC_PROG_LD_GNU])]) m4_ifndef([AC_PROG_LD_RELOAD_FLAG], [AC_DEFUN([AC_PROG_LD_RELOAD_FLAG])]) m4_ifndef([AC_DEPLIBS_CHECK_METHOD], [AC_DEFUN([AC_DEPLIBS_CHECK_METHOD])]) m4_ifndef([AC_LIBTOOL_PROG_COMPILER_NO_RTTI], [AC_DEFUN([AC_LIBTOOL_PROG_COMPILER_NO_RTTI])]) m4_ifndef([AC_LIBTOOL_SYS_GLOBAL_SYMBOL_PIPE], [AC_DEFUN([AC_LIBTOOL_SYS_GLOBAL_SYMBOL_PIPE])]) m4_ifndef([AC_LIBTOOL_PROG_COMPILER_PIC], [AC_DEFUN([AC_LIBTOOL_PROG_COMPILER_PIC])]) m4_ifndef([AC_LIBTOOL_PROG_LD_SHLIBS], [AC_DEFUN([AC_LIBTOOL_PROG_LD_SHLIBS])]) m4_ifndef([AC_LIBTOOL_POSTDEP_PREDEP], [AC_DEFUN([AC_LIBTOOL_POSTDEP_PREDEP])]) m4_ifndef([LT_AC_PROG_EGREP], [AC_DEFUN([LT_AC_PROG_EGREP])]) m4_ifndef([LT_AC_PROG_SED], [AC_DEFUN([LT_AC_PROG_SED])]) m4_ifndef([_LT_CC_BASENAME], [AC_DEFUN([_LT_CC_BASENAME])]) m4_ifndef([_LT_COMPILER_BOILERPLATE], [AC_DEFUN([_LT_COMPILER_BOILERPLATE])]) m4_ifndef([_LT_LINKER_BOILERPLATE], [AC_DEFUN([_LT_LINKER_BOILERPLATE])]) m4_ifndef([_AC_PROG_LIBTOOL], [AC_DEFUN([_AC_PROG_LIBTOOL])]) m4_ifndef([AC_LIBTOOL_SETUP], [AC_DEFUN([AC_LIBTOOL_SETUP])]) m4_ifndef([_LT_AC_CHECK_DLFCN], [AC_DEFUN([_LT_AC_CHECK_DLFCN])]) m4_ifndef([AC_LIBTOOL_SYS_DYNAMIC_LINKER], [AC_DEFUN([AC_LIBTOOL_SYS_DYNAMIC_LINKER])]) m4_ifndef([_LT_AC_TAGCONFIG], [AC_DEFUN([_LT_AC_TAGCONFIG])]) m4_ifndef([AC_DISABLE_FAST_INSTALL], [AC_DEFUN([AC_DISABLE_FAST_INSTALL])]) m4_ifndef([_LT_AC_LANG_CXX], [AC_DEFUN([_LT_AC_LANG_CXX])]) m4_ifndef([_LT_AC_LANG_F77], [AC_DEFUN([_LT_AC_LANG_F77])]) m4_ifndef([_LT_AC_LANG_GCJ], [AC_DEFUN([_LT_AC_LANG_GCJ])]) m4_ifndef([AC_LIBTOOL_LANG_C_CONFIG], [AC_DEFUN([AC_LIBTOOL_LANG_C_CONFIG])]) m4_ifndef([_LT_AC_LANG_C_CONFIG], [AC_DEFUN([_LT_AC_LANG_C_CONFIG])]) m4_ifndef([AC_LIBTOOL_LANG_CXX_CONFIG], [AC_DEFUN([AC_LIBTOOL_LANG_CXX_CONFIG])]) m4_ifndef([_LT_AC_LANG_CXX_CONFIG], [AC_DEFUN([_LT_AC_LANG_CXX_CONFIG])]) m4_ifndef([AC_LIBTOOL_LANG_F77_CONFIG], [AC_DEFUN([AC_LIBTOOL_LANG_F77_CONFIG])]) m4_ifndef([_LT_AC_LANG_F77_CONFIG], [AC_DEFUN([_LT_AC_LANG_F77_CONFIG])]) m4_ifndef([AC_LIBTOOL_LANG_GCJ_CONFIG], [AC_DEFUN([AC_LIBTOOL_LANG_GCJ_CONFIG])]) m4_ifndef([_LT_AC_LANG_GCJ_CONFIG], [AC_DEFUN([_LT_AC_LANG_GCJ_CONFIG])]) m4_ifndef([AC_LIBTOOL_LANG_RC_CONFIG], [AC_DEFUN([AC_LIBTOOL_LANG_RC_CONFIG])]) m4_ifndef([_LT_AC_LANG_RC_CONFIG], [AC_DEFUN([_LT_AC_LANG_RC_CONFIG])]) m4_ifndef([AC_LIBTOOL_CONFIG], [AC_DEFUN([AC_LIBTOOL_CONFIG])]) m4_ifndef([_LT_AC_FILE_LTDLL_C], [AC_DEFUN([_LT_AC_FILE_LTDLL_C])]) m4_ifndef([_LT_REQUIRED_DARWIN_CHECKS], [AC_DEFUN([_LT_REQUIRED_DARWIN_CHECKS])]) m4_ifndef([_LT_AC_PROG_CXXCPP], [AC_DEFUN([_LT_AC_PROG_CXXCPP])]) m4_ifndef([_LT_PREPARE_SED_QUOTE_VARS], [AC_DEFUN([_LT_PREPARE_SED_QUOTE_VARS])]) m4_ifndef([_LT_PROG_ECHO_BACKSLASH], [AC_DEFUN([_LT_PROG_ECHO_BACKSLASH])]) m4_ifndef([_LT_PROG_F77], [AC_DEFUN([_LT_PROG_F77])]) m4_ifndef([_LT_PROG_FC], [AC_DEFUN([_LT_PROG_FC])]) m4_ifndef([_LT_PROG_CXX], [AC_DEFUN([_LT_PROG_CXX])]) # Copyright (C) 2002-2014 Free Software Foundation, Inc. # # This file is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # AM_AUTOMAKE_VERSION(VERSION) # ---------------------------- # Automake X.Y traces this macro to ensure aclocal.m4 has been # generated from the m4 files accompanying Automake X.Y. # (This private macro should not be called outside this file.) AC_DEFUN([AM_AUTOMAKE_VERSION], [am__api_version='1.15' dnl Some users find AM_AUTOMAKE_VERSION and mistake it for a way to dnl require some minimum version. Point them to the right macro. m4_if([$1], [1.15], [], [AC_FATAL([Do not call $0, use AM_INIT_AUTOMAKE([$1]).])])dnl ]) # _AM_AUTOCONF_VERSION(VERSION) # ----------------------------- # aclocal traces this macro to find the Autoconf version. # This is a private macro too. Using m4_define simplifies # the logic in aclocal, which can simply ignore this definition. m4_define([_AM_AUTOCONF_VERSION], []) # AM_SET_CURRENT_AUTOMAKE_VERSION # ------------------------------- # Call AM_AUTOMAKE_VERSION and AM_AUTOMAKE_VERSION so they can be traced. # This function is AC_REQUIREd by AM_INIT_AUTOMAKE. AC_DEFUN([AM_SET_CURRENT_AUTOMAKE_VERSION], [AM_AUTOMAKE_VERSION([1.15])dnl m4_ifndef([AC_AUTOCONF_VERSION], [m4_copy([m4_PACKAGE_VERSION], [AC_AUTOCONF_VERSION])])dnl _AM_AUTOCONF_VERSION(m4_defn([AC_AUTOCONF_VERSION]))]) # Copyright (C) 2011-2014 Free Software Foundation, Inc. # # This file is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # AM_PROG_AR([ACT-IF-FAIL]) # ------------------------- # Try to determine the archiver interface, and trigger the ar-lib wrapper # if it is needed. If the detection of archiver interface fails, run # ACT-IF-FAIL (default is to abort configure with a proper error message). AC_DEFUN([AM_PROG_AR], [AC_BEFORE([$0], [LT_INIT])dnl AC_BEFORE([$0], [AC_PROG_LIBTOOL])dnl AC_REQUIRE([AM_AUX_DIR_EXPAND])dnl AC_REQUIRE_AUX_FILE([ar-lib])dnl AC_CHECK_TOOLS([AR], [ar lib "link -lib"], [false]) : ${AR=ar} AC_CACHE_CHECK([the archiver ($AR) interface], [am_cv_ar_interface], [AC_LANG_PUSH([C]) am_cv_ar_interface=ar AC_COMPILE_IFELSE([AC_LANG_SOURCE([[int some_variable = 0;]])], [am_ar_try='$AR cru libconftest.a conftest.$ac_objext >&AS_MESSAGE_LOG_FD' AC_TRY_EVAL([am_ar_try]) if test "$ac_status" -eq 0; then am_cv_ar_interface=ar else am_ar_try='$AR -NOLOGO -OUT:conftest.lib conftest.$ac_objext >&AS_MESSAGE_LOG_FD' AC_TRY_EVAL([am_ar_try]) if test "$ac_status" -eq 0; then am_cv_ar_interface=lib else am_cv_ar_interface=unknown fi fi rm -f conftest.lib libconftest.a ]) AC_LANG_POP([C])]) case $am_cv_ar_interface in ar) ;; lib) # Microsoft lib, so override with the ar-lib wrapper script. # FIXME: It is wrong to rewrite AR. # But if we don't then we get into trouble of one sort or another. # A longer-term fix would be to have automake use am__AR in this case, # and then we could set am__AR="$am_aux_dir/ar-lib \$(AR)" or something # similar. AR="$am_aux_dir/ar-lib $AR" ;; unknown) m4_default([$1], [AC_MSG_ERROR([could not determine $AR interface])]) ;; esac AC_SUBST([AR])dnl ]) # Figure out how to run the assembler. -*- Autoconf -*- # Copyright (C) 2001-2014 Free Software Foundation, Inc. # # This file is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # AM_PROG_AS # ---------- AC_DEFUN([AM_PROG_AS], [# By default we simply use the C compiler to build assembly code. AC_REQUIRE([AC_PROG_CC]) test "${CCAS+set}" = set || CCAS=$CC test "${CCASFLAGS+set}" = set || CCASFLAGS=$CFLAGS AC_ARG_VAR([CCAS], [assembler compiler command (defaults to CC)]) AC_ARG_VAR([CCASFLAGS], [assembler compiler flags (defaults to CFLAGS)]) _AM_IF_OPTION([no-dependencies],, [_AM_DEPENDENCIES([CCAS])])dnl ]) # AM_AUX_DIR_EXPAND -*- Autoconf -*- # Copyright (C) 2001-2014 Free Software Foundation, Inc. # # This file is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # For projects using AC_CONFIG_AUX_DIR([foo]), Autoconf sets # $ac_aux_dir to '$srcdir/foo'. In other projects, it is set to # '$srcdir', '$srcdir/..', or '$srcdir/../..'. # # Of course, Automake must honor this variable whenever it calls a # tool from the auxiliary directory. The problem is that $srcdir (and # therefore $ac_aux_dir as well) can be either absolute or relative, # depending on how configure is run. This is pretty annoying, since # it makes $ac_aux_dir quite unusable in subdirectories: in the top # source directory, any form will work fine, but in subdirectories a # relative path needs to be adjusted first. # # $ac_aux_dir/missing # fails when called from a subdirectory if $ac_aux_dir is relative # $top_srcdir/$ac_aux_dir/missing # fails if $ac_aux_dir is absolute, # fails when called from a subdirectory in a VPATH build with # a relative $ac_aux_dir # # The reason of the latter failure is that $top_srcdir and $ac_aux_dir # are both prefixed by $srcdir. In an in-source build this is usually # harmless because $srcdir is '.', but things will broke when you # start a VPATH build or use an absolute $srcdir. # # So we could use something similar to $top_srcdir/$ac_aux_dir/missing, # iff we strip the leading $srcdir from $ac_aux_dir. That would be: # am_aux_dir='\$(top_srcdir)/'`expr "$ac_aux_dir" : "$srcdir//*\(.*\)"` # and then we would define $MISSING as # MISSING="\${SHELL} $am_aux_dir/missing" # This will work as long as MISSING is not called from configure, because # unfortunately $(top_srcdir) has no meaning in configure. # However there are other variables, like CC, which are often used in # configure, and could therefore not use this "fixed" $ac_aux_dir. # # Another solution, used here, is to always expand $ac_aux_dir to an # absolute PATH. The drawback is that using absolute paths prevent a # configured tree to be moved without reconfiguration. AC_DEFUN([AM_AUX_DIR_EXPAND], [AC_REQUIRE([AC_CONFIG_AUX_DIR_DEFAULT])dnl # Expand $ac_aux_dir to an absolute path. am_aux_dir=`cd "$ac_aux_dir" && pwd` ]) # AM_CONDITIONAL -*- Autoconf -*- # Copyright (C) 1997-2014 Free Software Foundation, Inc. # # This file is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # AM_CONDITIONAL(NAME, SHELL-CONDITION) # ------------------------------------- # Define a conditional. AC_DEFUN([AM_CONDITIONAL], [AC_PREREQ([2.52])dnl m4_if([$1], [TRUE], [AC_FATAL([$0: invalid condition: $1])], [$1], [FALSE], [AC_FATAL([$0: invalid condition: $1])])dnl AC_SUBST([$1_TRUE])dnl AC_SUBST([$1_FALSE])dnl _AM_SUBST_NOTMAKE([$1_TRUE])dnl _AM_SUBST_NOTMAKE([$1_FALSE])dnl m4_define([_AM_COND_VALUE_$1], [$2])dnl if $2; then $1_TRUE= $1_FALSE='#' else $1_TRUE='#' $1_FALSE= fi AC_CONFIG_COMMANDS_PRE( [if test -z "${$1_TRUE}" && test -z "${$1_FALSE}"; then AC_MSG_ERROR([[conditional "$1" was never defined. Usually this means the macro was only invoked conditionally.]]) fi])]) # Copyright (C) 1999-2014 Free Software Foundation, Inc. # # This file is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # There are a few dirty hacks below to avoid letting 'AC_PROG_CC' be # written in clear, in which case automake, when reading aclocal.m4, # will think it sees a *use*, and therefore will trigger all it's # C support machinery. Also note that it means that autoscan, seeing # CC etc. in the Makefile, will ask for an AC_PROG_CC use... # _AM_DEPENDENCIES(NAME) # ---------------------- # See how the compiler implements dependency checking. # NAME is "CC", "CXX", "OBJC", "OBJCXX", "UPC", or "GJC". # We try a few techniques and use that to set a single cache variable. # # We don't AC_REQUIRE the corresponding AC_PROG_CC since the latter was # modified to invoke _AM_DEPENDENCIES(CC); we would have a circular # dependency, and given that the user is not expected to run this macro, # just rely on AC_PROG_CC. AC_DEFUN([_AM_DEPENDENCIES], [AC_REQUIRE([AM_SET_DEPDIR])dnl AC_REQUIRE([AM_OUTPUT_DEPENDENCY_COMMANDS])dnl AC_REQUIRE([AM_MAKE_INCLUDE])dnl AC_REQUIRE([AM_DEP_TRACK])dnl m4_if([$1], [CC], [depcc="$CC" am_compiler_list=], [$1], [CXX], [depcc="$CXX" am_compiler_list=], [$1], [OBJC], [depcc="$OBJC" am_compiler_list='gcc3 gcc'], [$1], [OBJCXX], [depcc="$OBJCXX" am_compiler_list='gcc3 gcc'], [$1], [UPC], [depcc="$UPC" am_compiler_list=], [$1], [GCJ], [depcc="$GCJ" am_compiler_list='gcc3 gcc'], [depcc="$$1" am_compiler_list=]) AC_CACHE_CHECK([dependency style of $depcc], [am_cv_$1_dependencies_compiler_type], [if test -z "$AMDEP_TRUE" && test -f "$am_depcomp"; then # We make a subdir and do the tests there. Otherwise we can end up # making bogus files that we don't know about and never remove. For # instance it was reported that on HP-UX the gcc test will end up # making a dummy file named 'D' -- because '-MD' means "put the output # in D". rm -rf conftest.dir mkdir conftest.dir # Copy depcomp to subdir because otherwise we won't find it if we're # using a relative directory. cp "$am_depcomp" conftest.dir cd conftest.dir # We will build objects and dependencies in a subdirectory because # it helps to detect inapplicable dependency modes. For instance # both Tru64's cc and ICC support -MD to output dependencies as a # side effect of compilation, but ICC will put the dependencies in # the current directory while Tru64 will put them in the object # directory. mkdir sub am_cv_$1_dependencies_compiler_type=none if test "$am_compiler_list" = ""; then am_compiler_list=`sed -n ['s/^#*\([a-zA-Z0-9]*\))$/\1/p'] < ./depcomp` fi am__universal=false m4_case([$1], [CC], [case " $depcc " in #( *\ -arch\ *\ -arch\ *) am__universal=true ;; esac], [CXX], [case " $depcc " in #( *\ -arch\ *\ -arch\ *) am__universal=true ;; esac]) for depmode in $am_compiler_list; do # Setup a source with many dependencies, because some compilers # like to wrap large dependency lists on column 80 (with \), and # we should not choose a depcomp mode which is confused by this. # # We need to recreate these files for each test, as the compiler may # overwrite some of them when testing with obscure command lines. # This happens at least with the AIX C compiler. : > sub/conftest.c for i in 1 2 3 4 5 6; do echo '#include "conftst'$i'.h"' >> sub/conftest.c # Using ": > sub/conftst$i.h" creates only sub/conftst1.h with # Solaris 10 /bin/sh. echo '/* dummy */' > sub/conftst$i.h done echo "${am__include} ${am__quote}sub/conftest.Po${am__quote}" > confmf # We check with '-c' and '-o' for the sake of the "dashmstdout" # mode. It turns out that the SunPro C++ compiler does not properly # handle '-M -o', and we need to detect this. Also, some Intel # versions had trouble with output in subdirs. am__obj=sub/conftest.${OBJEXT-o} am__minus_obj="-o $am__obj" case $depmode in gcc) # This depmode causes a compiler race in universal mode. test "$am__universal" = false || continue ;; nosideeffect) # After this tag, mechanisms are not by side-effect, so they'll # only be used when explicitly requested. if test "x$enable_dependency_tracking" = xyes; then continue else break fi ;; msvc7 | msvc7msys | msvisualcpp | msvcmsys) # This compiler won't grok '-c -o', but also, the minuso test has # not run yet. These depmodes are late enough in the game, and # so weak that their functioning should not be impacted. am__obj=conftest.${OBJEXT-o} am__minus_obj= ;; none) break ;; esac if depmode=$depmode \ source=sub/conftest.c object=$am__obj \ depfile=sub/conftest.Po tmpdepfile=sub/conftest.TPo \ $SHELL ./depcomp $depcc -c $am__minus_obj sub/conftest.c \ >/dev/null 2>conftest.err && grep sub/conftst1.h sub/conftest.Po > /dev/null 2>&1 && grep sub/conftst6.h sub/conftest.Po > /dev/null 2>&1 && grep $am__obj sub/conftest.Po > /dev/null 2>&1 && ${MAKE-make} -s -f confmf > /dev/null 2>&1; then # icc doesn't choke on unknown options, it will just issue warnings # or remarks (even with -Werror). So we grep stderr for any message # that says an option was ignored or not supported. # When given -MP, icc 7.0 and 7.1 complain thusly: # icc: Command line warning: ignoring option '-M'; no argument required # The diagnosis changed in icc 8.0: # icc: Command line remark: option '-MP' not supported if (grep 'ignoring option' conftest.err || grep 'not supported' conftest.err) >/dev/null 2>&1; then :; else am_cv_$1_dependencies_compiler_type=$depmode break fi fi done cd .. rm -rf conftest.dir else am_cv_$1_dependencies_compiler_type=none fi ]) AC_SUBST([$1DEPMODE], [depmode=$am_cv_$1_dependencies_compiler_type]) AM_CONDITIONAL([am__fastdep$1], [ test "x$enable_dependency_tracking" != xno \ && test "$am_cv_$1_dependencies_compiler_type" = gcc3]) ]) # AM_SET_DEPDIR # ------------- # Choose a directory name for dependency files. # This macro is AC_REQUIREd in _AM_DEPENDENCIES. AC_DEFUN([AM_SET_DEPDIR], [AC_REQUIRE([AM_SET_LEADING_DOT])dnl AC_SUBST([DEPDIR], ["${am__leading_dot}deps"])dnl ]) # AM_DEP_TRACK # ------------ AC_DEFUN([AM_DEP_TRACK], [AC_ARG_ENABLE([dependency-tracking], [dnl AS_HELP_STRING( [--enable-dependency-tracking], [do not reject slow dependency extractors]) AS_HELP_STRING( [--disable-dependency-tracking], [speeds up one-time build])]) if test "x$enable_dependency_tracking" != xno; then am_depcomp="$ac_aux_dir/depcomp" AMDEPBACKSLASH='\' am__nodep='_no' fi AM_CONDITIONAL([AMDEP], [test "x$enable_dependency_tracking" != xno]) AC_SUBST([AMDEPBACKSLASH])dnl _AM_SUBST_NOTMAKE([AMDEPBACKSLASH])dnl AC_SUBST([am__nodep])dnl _AM_SUBST_NOTMAKE([am__nodep])dnl ]) # Generate code to set up dependency tracking. -*- Autoconf -*- # Copyright (C) 1999-2014 Free Software Foundation, Inc. # # This file is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # _AM_OUTPUT_DEPENDENCY_COMMANDS # ------------------------------ AC_DEFUN([_AM_OUTPUT_DEPENDENCY_COMMANDS], [{ # Older Autoconf quotes --file arguments for eval, but not when files # are listed without --file. Let's play safe and only enable the eval # if we detect the quoting. case $CONFIG_FILES in *\'*) eval set x "$CONFIG_FILES" ;; *) set x $CONFIG_FILES ;; esac shift for mf do # Strip MF so we end up with the name of the file. mf=`echo "$mf" | sed -e 's/:.*$//'` # Check whether this is an Automake generated Makefile or not. # We used to match only the files named 'Makefile.in', but # some people rename them; so instead we look at the file content. # Grep'ing the first line is not enough: some people post-process # each Makefile.in and add a new line on top of each file to say so. # Grep'ing the whole file is not good either: AIX grep has a line # limit of 2048, but all sed's we know have understand at least 4000. if sed -n 's,^#.*generated by automake.*,X,p' "$mf" | grep X >/dev/null 2>&1; then dirpart=`AS_DIRNAME("$mf")` else continue fi # Extract the definition of DEPDIR, am__include, and am__quote # from the Makefile without running 'make'. DEPDIR=`sed -n 's/^DEPDIR = //p' < "$mf"` test -z "$DEPDIR" && continue am__include=`sed -n 's/^am__include = //p' < "$mf"` test -z "$am__include" && continue am__quote=`sed -n 's/^am__quote = //p' < "$mf"` # Find all dependency output files, they are included files with # $(DEPDIR) in their names. We invoke sed twice because it is the # simplest approach to changing $(DEPDIR) to its actual value in the # expansion. for file in `sed -n " s/^$am__include $am__quote\(.*(DEPDIR).*\)$am__quote"'$/\1/p' <"$mf" | \ sed -e 's/\$(DEPDIR)/'"$DEPDIR"'/g'`; do # Make sure the directory exists. test -f "$dirpart/$file" && continue fdir=`AS_DIRNAME(["$file"])` AS_MKDIR_P([$dirpart/$fdir]) # echo "creating $dirpart/$file" echo '# dummy' > "$dirpart/$file" done done } ])# _AM_OUTPUT_DEPENDENCY_COMMANDS # AM_OUTPUT_DEPENDENCY_COMMANDS # ----------------------------- # This macro should only be invoked once -- use via AC_REQUIRE. # # This code is only required when automatic dependency tracking # is enabled. FIXME. This creates each '.P' file that we will # need in order to bootstrap the dependency handling code. AC_DEFUN([AM_OUTPUT_DEPENDENCY_COMMANDS], [AC_CONFIG_COMMANDS([depfiles], [test x"$AMDEP_TRUE" != x"" || _AM_OUTPUT_DEPENDENCY_COMMANDS], [AMDEP_TRUE="$AMDEP_TRUE" ac_aux_dir="$ac_aux_dir"]) ]) # Do all the work for Automake. -*- Autoconf -*- # Copyright (C) 1996-2014 Free Software Foundation, Inc. # # This file is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # This macro actually does too much. Some checks are only needed if # your package does certain things. But this isn't really a big deal. dnl Redefine AC_PROG_CC to automatically invoke _AM_PROG_CC_C_O. m4_define([AC_PROG_CC], m4_defn([AC_PROG_CC]) [_AM_PROG_CC_C_O ]) # AM_INIT_AUTOMAKE(PACKAGE, VERSION, [NO-DEFINE]) # AM_INIT_AUTOMAKE([OPTIONS]) # ----------------------------------------------- # The call with PACKAGE and VERSION arguments is the old style # call (pre autoconf-2.50), which is being phased out. PACKAGE # and VERSION should now be passed to AC_INIT and removed from # the call to AM_INIT_AUTOMAKE. # We support both call styles for the transition. After # the next Automake release, Autoconf can make the AC_INIT # arguments mandatory, and then we can depend on a new Autoconf # release and drop the old call support. AC_DEFUN([AM_INIT_AUTOMAKE], [AC_PREREQ([2.65])dnl dnl Autoconf wants to disallow AM_ names. We explicitly allow dnl the ones we care about. m4_pattern_allow([^AM_[A-Z]+FLAGS$])dnl AC_REQUIRE([AM_SET_CURRENT_AUTOMAKE_VERSION])dnl AC_REQUIRE([AC_PROG_INSTALL])dnl if test "`cd $srcdir && pwd`" != "`pwd`"; then # Use -I$(srcdir) only when $(srcdir) != ., so that make's output # is not polluted with repeated "-I." AC_SUBST([am__isrc], [' -I$(srcdir)'])_AM_SUBST_NOTMAKE([am__isrc])dnl # test to see if srcdir already configured if test -f $srcdir/config.status; then AC_MSG_ERROR([source directory already configured; run "make distclean" there first]) fi fi # test whether we have cygpath if test -z "$CYGPATH_W"; then if (cygpath --version) >/dev/null 2>/dev/null; then CYGPATH_W='cygpath -w' else CYGPATH_W=echo fi fi AC_SUBST([CYGPATH_W]) # Define the identity of the package. dnl Distinguish between old-style and new-style calls. m4_ifval([$2], [AC_DIAGNOSE([obsolete], [$0: two- and three-arguments forms are deprecated.]) m4_ifval([$3], [_AM_SET_OPTION([no-define])])dnl AC_SUBST([PACKAGE], [$1])dnl AC_SUBST([VERSION], [$2])], [_AM_SET_OPTIONS([$1])dnl dnl Diagnose old-style AC_INIT with new-style AM_AUTOMAKE_INIT. m4_if( m4_ifdef([AC_PACKAGE_NAME], [ok]):m4_ifdef([AC_PACKAGE_VERSION], [ok]), [ok:ok],, [m4_fatal([AC_INIT should be called with package and version arguments])])dnl AC_SUBST([PACKAGE], ['AC_PACKAGE_TARNAME'])dnl AC_SUBST([VERSION], ['AC_PACKAGE_VERSION'])])dnl _AM_IF_OPTION([no-define],, [AC_DEFINE_UNQUOTED([PACKAGE], ["$PACKAGE"], [Name of package]) AC_DEFINE_UNQUOTED([VERSION], ["$VERSION"], [Version number of package])])dnl # Some tools Automake needs. AC_REQUIRE([AM_SANITY_CHECK])dnl AC_REQUIRE([AC_ARG_PROGRAM])dnl AM_MISSING_PROG([ACLOCAL], [aclocal-${am__api_version}]) AM_MISSING_PROG([AUTOCONF], [autoconf]) AM_MISSING_PROG([AUTOMAKE], [automake-${am__api_version}]) AM_MISSING_PROG([AUTOHEADER], [autoheader]) AM_MISSING_PROG([MAKEINFO], [makeinfo]) AC_REQUIRE([AM_PROG_INSTALL_SH])dnl AC_REQUIRE([AM_PROG_INSTALL_STRIP])dnl AC_REQUIRE([AC_PROG_MKDIR_P])dnl # For better backward compatibility. To be removed once Automake 1.9.x # dies out for good. For more background, see: # # AC_SUBST([mkdir_p], ['$(MKDIR_P)']) # We need awk for the "check" target (and possibly the TAP driver). The # system "awk" is bad on some platforms. AC_REQUIRE([AC_PROG_AWK])dnl AC_REQUIRE([AC_PROG_MAKE_SET])dnl AC_REQUIRE([AM_SET_LEADING_DOT])dnl _AM_IF_OPTION([tar-ustar], [_AM_PROG_TAR([ustar])], [_AM_IF_OPTION([tar-pax], [_AM_PROG_TAR([pax])], [_AM_PROG_TAR([v7])])]) _AM_IF_OPTION([no-dependencies],, [AC_PROVIDE_IFELSE([AC_PROG_CC], [_AM_DEPENDENCIES([CC])], [m4_define([AC_PROG_CC], m4_defn([AC_PROG_CC])[_AM_DEPENDENCIES([CC])])])dnl AC_PROVIDE_IFELSE([AC_PROG_CXX], [_AM_DEPENDENCIES([CXX])], [m4_define([AC_PROG_CXX], m4_defn([AC_PROG_CXX])[_AM_DEPENDENCIES([CXX])])])dnl AC_PROVIDE_IFELSE([AC_PROG_OBJC], [_AM_DEPENDENCIES([OBJC])], [m4_define([AC_PROG_OBJC], m4_defn([AC_PROG_OBJC])[_AM_DEPENDENCIES([OBJC])])])dnl AC_PROVIDE_IFELSE([AC_PROG_OBJCXX], [_AM_DEPENDENCIES([OBJCXX])], [m4_define([AC_PROG_OBJCXX], m4_defn([AC_PROG_OBJCXX])[_AM_DEPENDENCIES([OBJCXX])])])dnl ]) AC_REQUIRE([AM_SILENT_RULES])dnl dnl The testsuite driver may need to know about EXEEXT, so add the dnl 'am__EXEEXT' conditional if _AM_COMPILER_EXEEXT was seen. This dnl macro is hooked onto _AC_COMPILER_EXEEXT early, see below. AC_CONFIG_COMMANDS_PRE(dnl [m4_provide_if([_AM_COMPILER_EXEEXT], [AM_CONDITIONAL([am__EXEEXT], [test -n "$EXEEXT"])])])dnl # POSIX will say in a future version that running "rm -f" with no argument # is OK; and we want to be able to make that assumption in our Makefile # recipes. So use an aggressive probe to check that the usage we want is # actually supported "in the wild" to an acceptable degree. # See automake bug#10828. # To make any issue more visible, cause the running configure to be aborted # by default if the 'rm' program in use doesn't match our expectations; the # user can still override this though. if rm -f && rm -fr && rm -rf; then : OK; else cat >&2 <<'END' Oops! Your 'rm' program seems unable to run without file operands specified on the command line, even when the '-f' option is present. This is contrary to the behaviour of most rm programs out there, and not conforming with the upcoming POSIX standard: Please tell bug-automake@gnu.org about your system, including the value of your $PATH and any error possibly output before this message. This can help us improve future automake versions. END if test x"$ACCEPT_INFERIOR_RM_PROGRAM" = x"yes"; then echo 'Configuration will proceed anyway, since you have set the' >&2 echo 'ACCEPT_INFERIOR_RM_PROGRAM variable to "yes"' >&2 echo >&2 else cat >&2 <<'END' Aborting the configuration process, to ensure you take notice of the issue. You can download and install GNU coreutils to get an 'rm' implementation that behaves properly: . If you want to complete the configuration process using your problematic 'rm' anyway, export the environment variable ACCEPT_INFERIOR_RM_PROGRAM to "yes", and re-run configure. END AC_MSG_ERROR([Your 'rm' program is bad, sorry.]) fi fi dnl The trailing newline in this macro's definition is deliberate, for dnl backward compatibility and to allow trailing 'dnl'-style comments dnl after the AM_INIT_AUTOMAKE invocation. See automake bug#16841. ]) dnl Hook into '_AC_COMPILER_EXEEXT' early to learn its expansion. Do not dnl add the conditional right here, as _AC_COMPILER_EXEEXT may be further dnl mangled by Autoconf and run in a shell conditional statement. m4_define([_AC_COMPILER_EXEEXT], m4_defn([_AC_COMPILER_EXEEXT])[m4_provide([_AM_COMPILER_EXEEXT])]) # When config.status generates a header, we must update the stamp-h file. # This file resides in the same directory as the config header # that is generated. The stamp files are numbered to have different names. # Autoconf calls _AC_AM_CONFIG_HEADER_HOOK (when defined) in the # loop where config.status creates the headers, so we can generate # our stamp files there. AC_DEFUN([_AC_AM_CONFIG_HEADER_HOOK], [# Compute $1's index in $config_headers. _am_arg=$1 _am_stamp_count=1 for _am_header in $config_headers :; do case $_am_header in $_am_arg | $_am_arg:* ) break ;; * ) _am_stamp_count=`expr $_am_stamp_count + 1` ;; esac done echo "timestamp for $_am_arg" >`AS_DIRNAME(["$_am_arg"])`/stamp-h[]$_am_stamp_count]) # Copyright (C) 2001-2014 Free Software Foundation, Inc. # # This file is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # AM_PROG_INSTALL_SH # ------------------ # Define $install_sh. AC_DEFUN([AM_PROG_INSTALL_SH], [AC_REQUIRE([AM_AUX_DIR_EXPAND])dnl if test x"${install_sh+set}" != xset; then case $am_aux_dir in *\ * | *\ *) install_sh="\${SHELL} '$am_aux_dir/install-sh'" ;; *) install_sh="\${SHELL} $am_aux_dir/install-sh" esac fi AC_SUBST([install_sh])]) # Copyright (C) 2003-2014 Free Software Foundation, Inc. # # This file is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # Check whether the underlying file-system supports filenames # with a leading dot. For instance MS-DOS doesn't. AC_DEFUN([AM_SET_LEADING_DOT], [rm -rf .tst 2>/dev/null mkdir .tst 2>/dev/null if test -d .tst; then am__leading_dot=. else am__leading_dot=_ fi rmdir .tst 2>/dev/null AC_SUBST([am__leading_dot])]) # Check to see how 'make' treats includes. -*- Autoconf -*- # Copyright (C) 2001-2014 Free Software Foundation, Inc. # # This file is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # AM_MAKE_INCLUDE() # ----------------- # Check to see how make treats includes. AC_DEFUN([AM_MAKE_INCLUDE], [am_make=${MAKE-make} cat > confinc << 'END' am__doit: @echo this is the am__doit target .PHONY: am__doit END # If we don't find an include directive, just comment out the code. AC_MSG_CHECKING([for style of include used by $am_make]) am__include="#" am__quote= _am_result=none # First try GNU make style include. echo "include confinc" > confmf # Ignore all kinds of additional output from 'make'. case `$am_make -s -f confmf 2> /dev/null` in #( *the\ am__doit\ target*) am__include=include am__quote= _am_result=GNU ;; esac # Now try BSD make style include. if test "$am__include" = "#"; then echo '.include "confinc"' > confmf case `$am_make -s -f confmf 2> /dev/null` in #( *the\ am__doit\ target*) am__include=.include am__quote="\"" _am_result=BSD ;; esac fi AC_SUBST([am__include]) AC_SUBST([am__quote]) AC_MSG_RESULT([$_am_result]) rm -f confinc confmf ]) # Fake the existence of programs that GNU maintainers use. -*- Autoconf -*- # Copyright (C) 1997-2014 Free Software Foundation, Inc. # # This file is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # AM_MISSING_PROG(NAME, PROGRAM) # ------------------------------ AC_DEFUN([AM_MISSING_PROG], [AC_REQUIRE([AM_MISSING_HAS_RUN]) $1=${$1-"${am_missing_run}$2"} AC_SUBST($1)]) # AM_MISSING_HAS_RUN # ------------------ # Define MISSING if not defined so far and test if it is modern enough. # If it is, set am_missing_run to use it, otherwise, to nothing. AC_DEFUN([AM_MISSING_HAS_RUN], [AC_REQUIRE([AM_AUX_DIR_EXPAND])dnl AC_REQUIRE_AUX_FILE([missing])dnl if test x"${MISSING+set}" != xset; then case $am_aux_dir in *\ * | *\ *) MISSING="\${SHELL} \"$am_aux_dir/missing\"" ;; *) MISSING="\${SHELL} $am_aux_dir/missing" ;; esac fi # Use eval to expand $SHELL if eval "$MISSING --is-lightweight"; then am_missing_run="$MISSING " else am_missing_run= AC_MSG_WARN(['missing' script is too old or missing]) fi ]) # Helper functions for option handling. -*- Autoconf -*- # Copyright (C) 2001-2014 Free Software Foundation, Inc. # # This file is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # _AM_MANGLE_OPTION(NAME) # ----------------------- AC_DEFUN([_AM_MANGLE_OPTION], [[_AM_OPTION_]m4_bpatsubst($1, [[^a-zA-Z0-9_]], [_])]) # _AM_SET_OPTION(NAME) # -------------------- # Set option NAME. Presently that only means defining a flag for this option. AC_DEFUN([_AM_SET_OPTION], [m4_define(_AM_MANGLE_OPTION([$1]), [1])]) # _AM_SET_OPTIONS(OPTIONS) # ------------------------ # OPTIONS is a space-separated list of Automake options. AC_DEFUN([_AM_SET_OPTIONS], [m4_foreach_w([_AM_Option], [$1], [_AM_SET_OPTION(_AM_Option)])]) # _AM_IF_OPTION(OPTION, IF-SET, [IF-NOT-SET]) # ------------------------------------------- # Execute IF-SET if OPTION is set, IF-NOT-SET otherwise. AC_DEFUN([_AM_IF_OPTION], [m4_ifset(_AM_MANGLE_OPTION([$1]), [$2], [$3])]) # Copyright (C) 1999-2014 Free Software Foundation, Inc. # # This file is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # _AM_PROG_CC_C_O # --------------- # Like AC_PROG_CC_C_O, but changed for automake. We rewrite AC_PROG_CC # to automatically call this. AC_DEFUN([_AM_PROG_CC_C_O], [AC_REQUIRE([AM_AUX_DIR_EXPAND])dnl AC_REQUIRE_AUX_FILE([compile])dnl AC_LANG_PUSH([C])dnl AC_CACHE_CHECK( [whether $CC understands -c and -o together], [am_cv_prog_cc_c_o], [AC_LANG_CONFTEST([AC_LANG_PROGRAM([])]) # Make sure it works both with $CC and with simple cc. # Following AC_PROG_CC_C_O, we do the test twice because some # compilers refuse to overwrite an existing .o file with -o, # though they will create one. am_cv_prog_cc_c_o=yes for am_i in 1 2; do if AM_RUN_LOG([$CC -c conftest.$ac_ext -o conftest2.$ac_objext]) \ && test -f conftest2.$ac_objext; then : OK else am_cv_prog_cc_c_o=no break fi done rm -f core conftest* unset am_i]) if test "$am_cv_prog_cc_c_o" != yes; then # Losing compiler, so override with the script. # FIXME: It is wrong to rewrite CC. # But if we don't then we get into trouble of one sort or another. # A longer-term fix would be to have automake use am__CC in this case, # and then we could set am__CC="\$(top_srcdir)/compile \$(CC)" CC="$am_aux_dir/compile $CC" fi AC_LANG_POP([C])]) # For backward compatibility. AC_DEFUN_ONCE([AM_PROG_CC_C_O], [AC_REQUIRE([AC_PROG_CC])]) # Copyright (C) 2001-2014 Free Software Foundation, Inc. # # This file is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # AM_RUN_LOG(COMMAND) # ------------------- # Run COMMAND, save the exit status in ac_status, and log it. # (This has been adapted from Autoconf's _AC_RUN_LOG macro.) AC_DEFUN([AM_RUN_LOG], [{ echo "$as_me:$LINENO: $1" >&AS_MESSAGE_LOG_FD ($1) >&AS_MESSAGE_LOG_FD 2>&AS_MESSAGE_LOG_FD ac_status=$? echo "$as_me:$LINENO: \$? = $ac_status" >&AS_MESSAGE_LOG_FD (exit $ac_status); }]) # Check to make sure that the build environment is sane. -*- Autoconf -*- # Copyright (C) 1996-2014 Free Software Foundation, Inc. # # This file is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # AM_SANITY_CHECK # --------------- AC_DEFUN([AM_SANITY_CHECK], [AC_MSG_CHECKING([whether build environment is sane]) # Reject unsafe characters in $srcdir or the absolute working directory # name. Accept space and tab only in the latter. am_lf=' ' case `pwd` in *[[\\\"\#\$\&\'\`$am_lf]]*) AC_MSG_ERROR([unsafe absolute working directory name]);; esac case $srcdir in *[[\\\"\#\$\&\'\`$am_lf\ \ ]]*) AC_MSG_ERROR([unsafe srcdir value: '$srcdir']);; esac # Do 'set' in a subshell so we don't clobber the current shell's # arguments. Must try -L first in case configure is actually a # symlink; some systems play weird games with the mod time of symlinks # (eg FreeBSD returns the mod time of the symlink's containing # directory). if ( am_has_slept=no for am_try in 1 2; do echo "timestamp, slept: $am_has_slept" > conftest.file set X `ls -Lt "$srcdir/configure" conftest.file 2> /dev/null` if test "$[*]" = "X"; then # -L didn't work. set X `ls -t "$srcdir/configure" conftest.file` fi if test "$[*]" != "X $srcdir/configure conftest.file" \ && test "$[*]" != "X conftest.file $srcdir/configure"; then # If neither matched, then we have a broken ls. This can happen # if, for instance, CONFIG_SHELL is bash and it inherits a # broken ls alias from the environment. This has actually # happened. Such a system could not be considered "sane". AC_MSG_ERROR([ls -t appears to fail. Make sure there is not a broken alias in your environment]) fi if test "$[2]" = conftest.file || test $am_try -eq 2; then break fi # Just in case. sleep 1 am_has_slept=yes done test "$[2]" = conftest.file ) then # Ok. : else AC_MSG_ERROR([newly created file is older than distributed files! Check your system clock]) fi AC_MSG_RESULT([yes]) # If we didn't sleep, we still need to ensure time stamps of config.status and # generated files are strictly newer. am_sleep_pid= if grep 'slept: no' conftest.file >/dev/null 2>&1; then ( sleep 1 ) & am_sleep_pid=$! fi AC_CONFIG_COMMANDS_PRE( [AC_MSG_CHECKING([that generated files are newer than configure]) if test -n "$am_sleep_pid"; then # Hide warnings about reused PIDs. wait $am_sleep_pid 2>/dev/null fi AC_MSG_RESULT([done])]) rm -f conftest.file ]) # Copyright (C) 2009-2014 Free Software Foundation, Inc. # # This file is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # AM_SILENT_RULES([DEFAULT]) # -------------------------- # Enable less verbose build rules; with the default set to DEFAULT # ("yes" being less verbose, "no" or empty being verbose). AC_DEFUN([AM_SILENT_RULES], [AC_ARG_ENABLE([silent-rules], [dnl AS_HELP_STRING( [--enable-silent-rules], [less verbose build output (undo: "make V=1")]) AS_HELP_STRING( [--disable-silent-rules], [verbose build output (undo: "make V=0")])dnl ]) case $enable_silent_rules in @%:@ ((( yes) AM_DEFAULT_VERBOSITY=0;; no) AM_DEFAULT_VERBOSITY=1;; *) AM_DEFAULT_VERBOSITY=m4_if([$1], [yes], [0], [1]);; esac dnl dnl A few 'make' implementations (e.g., NonStop OS and NextStep) dnl do not support nested variable expansions. dnl See automake bug#9928 and bug#10237. am_make=${MAKE-make} AC_CACHE_CHECK([whether $am_make supports nested variables], [am_cv_make_support_nested_variables], [if AS_ECHO([['TRUE=$(BAR$(V)) BAR0=false BAR1=true V=1 am__doit: @$(TRUE) .PHONY: am__doit']]) | $am_make -f - >/dev/null 2>&1; then am_cv_make_support_nested_variables=yes else am_cv_make_support_nested_variables=no fi]) if test $am_cv_make_support_nested_variables = yes; then dnl Using '$V' instead of '$(V)' breaks IRIX make. AM_V='$(V)' AM_DEFAULT_V='$(AM_DEFAULT_VERBOSITY)' else AM_V=$AM_DEFAULT_VERBOSITY AM_DEFAULT_V=$AM_DEFAULT_VERBOSITY fi AC_SUBST([AM_V])dnl AM_SUBST_NOTMAKE([AM_V])dnl AC_SUBST([AM_DEFAULT_V])dnl AM_SUBST_NOTMAKE([AM_DEFAULT_V])dnl AC_SUBST([AM_DEFAULT_VERBOSITY])dnl AM_BACKSLASH='\' AC_SUBST([AM_BACKSLASH])dnl _AM_SUBST_NOTMAKE([AM_BACKSLASH])dnl ]) # Copyright (C) 2001-2014 Free Software Foundation, Inc. # # This file is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # AM_PROG_INSTALL_STRIP # --------------------- # One issue with vendor 'install' (even GNU) is that you can't # specify the program used to strip binaries. This is especially # annoying in cross-compiling environments, where the build's strip # is unlikely to handle the host's binaries. # Fortunately install-sh will honor a STRIPPROG variable, so we # always use install-sh in "make install-strip", and initialize # STRIPPROG with the value of the STRIP variable (set by the user). AC_DEFUN([AM_PROG_INSTALL_STRIP], [AC_REQUIRE([AM_PROG_INSTALL_SH])dnl # Installed binaries are usually stripped using 'strip' when the user # run "make install-strip". However 'strip' might not be the right # tool to use in cross-compilation environments, therefore Automake # will honor the 'STRIP' environment variable to overrule this program. dnl Don't test for $cross_compiling = yes, because it might be 'maybe'. if test "$cross_compiling" != no; then AC_CHECK_TOOL([STRIP], [strip], :) fi INSTALL_STRIP_PROGRAM="\$(install_sh) -c -s" AC_SUBST([INSTALL_STRIP_PROGRAM])]) # Copyright (C) 2006-2014 Free Software Foundation, Inc. # # This file is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # _AM_SUBST_NOTMAKE(VARIABLE) # --------------------------- # Prevent Automake from outputting VARIABLE = @VARIABLE@ in Makefile.in. # This macro is traced by Automake. AC_DEFUN([_AM_SUBST_NOTMAKE]) # AM_SUBST_NOTMAKE(VARIABLE) # -------------------------- # Public sister of _AM_SUBST_NOTMAKE. AC_DEFUN([AM_SUBST_NOTMAKE], [_AM_SUBST_NOTMAKE($@)]) # Check how to create a tarball. -*- Autoconf -*- # Copyright (C) 2004-2014 Free Software Foundation, Inc. # # This file is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # _AM_PROG_TAR(FORMAT) # -------------------- # Check how to create a tarball in format FORMAT. # FORMAT should be one of 'v7', 'ustar', or 'pax'. # # Substitute a variable $(am__tar) that is a command # writing to stdout a FORMAT-tarball containing the directory # $tardir. # tardir=directory && $(am__tar) > result.tar # # Substitute a variable $(am__untar) that extract such # a tarball read from stdin. # $(am__untar) < result.tar # AC_DEFUN([_AM_PROG_TAR], [# Always define AMTAR for backward compatibility. Yes, it's still used # in the wild :-( We should find a proper way to deprecate it ... AC_SUBST([AMTAR], ['$${TAR-tar}']) # We'll loop over all known methods to create a tar archive until one works. _am_tools='gnutar m4_if([$1], [ustar], [plaintar]) pax cpio none' m4_if([$1], [v7], [am__tar='$${TAR-tar} chof - "$$tardir"' am__untar='$${TAR-tar} xf -'], [m4_case([$1], [ustar], [# The POSIX 1988 'ustar' format is defined with fixed-size fields. # There is notably a 21 bits limit for the UID and the GID. In fact, # the 'pax' utility can hang on bigger UID/GID (see automake bug#8343 # and bug#13588). am_max_uid=2097151 # 2^21 - 1 am_max_gid=$am_max_uid # The $UID and $GID variables are not portable, so we need to resort # to the POSIX-mandated id(1) utility. Errors in the 'id' calls # below are definitely unexpected, so allow the users to see them # (that is, avoid stderr redirection). am_uid=`id -u || echo unknown` am_gid=`id -g || echo unknown` AC_MSG_CHECKING([whether UID '$am_uid' is supported by ustar format]) if test $am_uid -le $am_max_uid; then AC_MSG_RESULT([yes]) else AC_MSG_RESULT([no]) _am_tools=none fi AC_MSG_CHECKING([whether GID '$am_gid' is supported by ustar format]) if test $am_gid -le $am_max_gid; then AC_MSG_RESULT([yes]) else AC_MSG_RESULT([no]) _am_tools=none fi], [pax], [], [m4_fatal([Unknown tar format])]) AC_MSG_CHECKING([how to create a $1 tar archive]) # Go ahead even if we have the value already cached. We do so because we # need to set the values for the 'am__tar' and 'am__untar' variables. _am_tools=${am_cv_prog_tar_$1-$_am_tools} for _am_tool in $_am_tools; do case $_am_tool in gnutar) for _am_tar in tar gnutar gtar; do AM_RUN_LOG([$_am_tar --version]) && break done am__tar="$_am_tar --format=m4_if([$1], [pax], [posix], [$1]) -chf - "'"$$tardir"' am__tar_="$_am_tar --format=m4_if([$1], [pax], [posix], [$1]) -chf - "'"$tardir"' am__untar="$_am_tar -xf -" ;; plaintar) # Must skip GNU tar: if it does not support --format= it doesn't create # ustar tarball either. (tar --version) >/dev/null 2>&1 && continue am__tar='tar chf - "$$tardir"' am__tar_='tar chf - "$tardir"' am__untar='tar xf -' ;; pax) am__tar='pax -L -x $1 -w "$$tardir"' am__tar_='pax -L -x $1 -w "$tardir"' am__untar='pax -r' ;; cpio) am__tar='find "$$tardir" -print | cpio -o -H $1 -L' am__tar_='find "$tardir" -print | cpio -o -H $1 -L' am__untar='cpio -i -H $1 -d' ;; none) am__tar=false am__tar_=false am__untar=false ;; esac # If the value was cached, stop now. We just wanted to have am__tar # and am__untar set. test -n "${am_cv_prog_tar_$1}" && break # tar/untar a dummy directory, and stop if the command works. rm -rf conftest.dir mkdir conftest.dir echo GrepMe > conftest.dir/file AM_RUN_LOG([tardir=conftest.dir && eval $am__tar_ >conftest.tar]) rm -rf conftest.dir if test -s conftest.tar; then AM_RUN_LOG([$am__untar /dev/null 2>&1 && break fi done rm -rf conftest.dir AC_CACHE_VAL([am_cv_prog_tar_$1], [am_cv_prog_tar_$1=$_am_tool]) AC_MSG_RESULT([$am_cv_prog_tar_$1])]) AC_SUBST([am__tar]) AC_SUBST([am__untar]) ]) # _AM_PROG_TAR m4_include([acinclude.m4]) libjpeg-turbo-1.4.2/turbojpeg.h0000644000076500007650000017705112600050400013366 00000000000000/* * Copyright (C)2009-2015 D. R. Commander. All Rights Reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * - Neither the name of the libjpeg-turbo Project nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS", * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #ifndef __TURBOJPEG_H__ #define __TURBOJPEG_H__ #if defined(_WIN32) && defined(DLLDEFINE) #define DLLEXPORT __declspec(dllexport) #else #define DLLEXPORT #endif #define DLLCALL /** * @addtogroup TurboJPEG * TurboJPEG API. This API provides an interface for generating, decoding, and * transforming planar YUV and JPEG images in memory. * * @anchor YUVnotes * YUV Image Format Notes * ---------------------- * Technically, the JPEG format uses the YCbCr colorspace (which is technically * not a colorspace but a color transform), but per the convention of the * digital video community, the TurboJPEG API uses "YUV" to refer to an image * format consisting of Y, Cb, and Cr image planes. * * Each plane is simply a 2D array of bytes, each byte representing the value * of one of the components (Y, Cb, or Cr) at a particular location in the * image. The width and height of each plane are determined by the image * width, height, and level of chrominance subsampling. The luminance plane * width is the image width padded to the nearest multiple of the horizontal * subsampling factor (2 in the case of 4:2:0 and 4:2:2, 4 in the case of * 4:1:1, 1 in the case of 4:4:4 or grayscale.) Similarly, the luminance plane * height is the image height padded to the nearest multiple of the vertical * subsampling factor (2 in the case of 4:2:0 or 4:4:0, 1 in the case of 4:4:4 * or grayscale.) This is irrespective of any additional padding that may be * specified as an argument to the various YUV functions. The chrominance * plane width is equal to the luminance plane width divided by the horizontal * subsampling factor, and the chrominance plane height is equal to the * luminance plane height divided by the vertical subsampling factor. * * For example, if the source image is 35 x 35 pixels and 4:2:2 subsampling is * used, then the luminance plane would be 36 x 35 bytes, and each of the * chrominance planes would be 18 x 35 bytes. If you specify a line padding of * 4 bytes on top of this, then the luminance plane would be 36 x 35 bytes, and * each of the chrominance planes would be 20 x 35 bytes. * * @{ */ /** * The number of chrominance subsampling options */ #define TJ_NUMSAMP 6 /** * Chrominance subsampling options. * When pixels are converted from RGB to YCbCr (see #TJCS_YCbCr) or from CMYK * to YCCK (see #TJCS_YCCK) as part of the JPEG compression process, some of * the Cb and Cr (chrominance) components can be discarded or averaged together * to produce a smaller image with little perceptible loss of image clarity * (the human eye is more sensitive to small changes in brightness than to * small changes in color.) This is called "chrominance subsampling". */ enum TJSAMP { /** * 4:4:4 chrominance subsampling (no chrominance subsampling). The JPEG or * YUV image will contain one chrominance component for every pixel in the * source image. */ TJSAMP_444=0, /** * 4:2:2 chrominance subsampling. The JPEG or YUV image will contain one * chrominance component for every 2x1 block of pixels in the source image. */ TJSAMP_422, /** * 4:2:0 chrominance subsampling. The JPEG or YUV image will contain one * chrominance component for every 2x2 block of pixels in the source image. */ TJSAMP_420, /** * Grayscale. The JPEG or YUV image will contain no chrominance components. */ TJSAMP_GRAY, /** * 4:4:0 chrominance subsampling. The JPEG or YUV image will contain one * chrominance component for every 1x2 block of pixels in the source image. * * @note 4:4:0 subsampling is not fully accelerated in libjpeg-turbo. */ TJSAMP_440, /** * 4:1:1 chrominance subsampling. The JPEG or YUV image will contain one * chrominance component for every 4x1 block of pixels in the source image. * JPEG images compressed with 4:1:1 subsampling will be almost exactly the * same size as those compressed with 4:2:0 subsampling, and in the * aggregate, both subsampling methods produce approximately the same * perceptual quality. However, 4:1:1 is better able to reproduce sharp * horizontal features. * * @note 4:1:1 subsampling is not fully accelerated in libjpeg-turbo. */ TJSAMP_411 }; /** * MCU block width (in pixels) for a given level of chrominance subsampling. * MCU block sizes: * - 8x8 for no subsampling or grayscale * - 16x8 for 4:2:2 * - 8x16 for 4:4:0 * - 16x16 for 4:2:0 * - 32x8 for 4:1:1 */ static const int tjMCUWidth[TJ_NUMSAMP] = {8, 16, 16, 8, 8, 32}; /** * MCU block height (in pixels) for a given level of chrominance subsampling. * MCU block sizes: * - 8x8 for no subsampling or grayscale * - 16x8 for 4:2:2 * - 8x16 for 4:4:0 * - 16x16 for 4:2:0 * - 32x8 for 4:1:1 */ static const int tjMCUHeight[TJ_NUMSAMP] = {8, 8, 16, 8, 16, 8}; /** * The number of pixel formats */ #define TJ_NUMPF 12 /** * Pixel formats */ enum TJPF { /** * RGB pixel format. The red, green, and blue components in the image are * stored in 3-byte pixels in the order R, G, B from lowest to highest byte * address within each pixel. */ TJPF_RGB=0, /** * BGR pixel format. The red, green, and blue components in the image are * stored in 3-byte pixels in the order B, G, R from lowest to highest byte * address within each pixel. */ TJPF_BGR, /** * RGBX pixel format. The red, green, and blue components in the image are * stored in 4-byte pixels in the order R, G, B from lowest to highest byte * address within each pixel. The X component is ignored when compressing * and undefined when decompressing. */ TJPF_RGBX, /** * BGRX pixel format. The red, green, and blue components in the image are * stored in 4-byte pixels in the order B, G, R from lowest to highest byte * address within each pixel. The X component is ignored when compressing * and undefined when decompressing. */ TJPF_BGRX, /** * XBGR pixel format. The red, green, and blue components in the image are * stored in 4-byte pixels in the order R, G, B from highest to lowest byte * address within each pixel. The X component is ignored when compressing * and undefined when decompressing. */ TJPF_XBGR, /** * XRGB pixel format. The red, green, and blue components in the image are * stored in 4-byte pixels in the order B, G, R from highest to lowest byte * address within each pixel. The X component is ignored when compressing * and undefined when decompressing. */ TJPF_XRGB, /** * Grayscale pixel format. Each 1-byte pixel represents a luminance * (brightness) level from 0 to 255. */ TJPF_GRAY, /** * RGBA pixel format. This is the same as @ref TJPF_RGBX, except that when * decompressing, the X component is guaranteed to be 0xFF, which can be * interpreted as an opaque alpha channel. */ TJPF_RGBA, /** * BGRA pixel format. This is the same as @ref TJPF_BGRX, except that when * decompressing, the X component is guaranteed to be 0xFF, which can be * interpreted as an opaque alpha channel. */ TJPF_BGRA, /** * ABGR pixel format. This is the same as @ref TJPF_XBGR, except that when * decompressing, the X component is guaranteed to be 0xFF, which can be * interpreted as an opaque alpha channel. */ TJPF_ABGR, /** * ARGB pixel format. This is the same as @ref TJPF_XRGB, except that when * decompressing, the X component is guaranteed to be 0xFF, which can be * interpreted as an opaque alpha channel. */ TJPF_ARGB, /** * CMYK pixel format. Unlike RGB, which is an additive color model used * primarily for display, CMYK (Cyan/Magenta/Yellow/Key) is a subtractive * color model used primarily for printing. In the CMYK color model, the * value of each color component typically corresponds to an amount of cyan, * magenta, yellow, or black ink that is applied to a white background. In * order to convert between CMYK and RGB, it is necessary to use a color * management system (CMS.) A CMS will attempt to map colors within the * printer's gamut to perceptually similar colors in the display's gamut and * vice versa, but the mapping is typically not 1:1 or reversible, nor can it * be defined with a simple formula. Thus, such a conversion is out of scope * for a codec library. However, the TurboJPEG API allows for compressing * CMYK pixels into a YCCK JPEG image (see #TJCS_YCCK) and decompressing YCCK * JPEG images into CMYK pixels. */ TJPF_CMYK }; /** * Red offset (in bytes) for a given pixel format. This specifies the number * of bytes that the red component is offset from the start of the pixel. For * instance, if a pixel of format TJ_BGRX is stored in char pixel[], * then the red component will be pixel[tjRedOffset[TJ_BGRX]]. */ static const int tjRedOffset[TJ_NUMPF] = {0, 2, 0, 2, 3, 1, 0, 0, 2, 3, 1, -1}; /** * Green offset (in bytes) for a given pixel format. This specifies the number * of bytes that the green component is offset from the start of the pixel. * For instance, if a pixel of format TJ_BGRX is stored in * char pixel[], then the green component will be * pixel[tjGreenOffset[TJ_BGRX]]. */ static const int tjGreenOffset[TJ_NUMPF] = {1, 1, 1, 1, 2, 2, 0, 1, 1, 2, 2, -1}; /** * Blue offset (in bytes) for a given pixel format. This specifies the number * of bytes that the Blue component is offset from the start of the pixel. For * instance, if a pixel of format TJ_BGRX is stored in char pixel[], * then the blue component will be pixel[tjBlueOffset[TJ_BGRX]]. */ static const int tjBlueOffset[TJ_NUMPF] = {2, 0, 2, 0, 1, 3, 0, 2, 0, 1, 3, -1}; /** * Pixel size (in bytes) for a given pixel format. */ static const int tjPixelSize[TJ_NUMPF] = {3, 3, 4, 4, 4, 4, 1, 4, 4, 4, 4, 4}; /** * The number of JPEG colorspaces */ #define TJ_NUMCS 5 /** * JPEG colorspaces */ enum TJCS { /** * RGB colorspace. When compressing the JPEG image, the R, G, and B * components in the source image are reordered into image planes, but no * colorspace conversion or subsampling is performed. RGB JPEG images can be * decompressed to any of the extended RGB pixel formats or grayscale, but * they cannot be decompressed to YUV images. */ TJCS_RGB=0, /** * YCbCr colorspace. YCbCr is not an absolute colorspace but rather a * mathematical transformation of RGB designed solely for storage and * transmission. YCbCr images must be converted to RGB before they can * actually be displayed. In the YCbCr colorspace, the Y (luminance) * component represents the black & white portion of the original image, and * the Cb and Cr (chrominance) components represent the color portion of the * original image. Originally, the analog equivalent of this transformation * allowed the same signal to drive both black & white and color televisions, * but JPEG images use YCbCr primarily because it allows the color data to be * optionally subsampled for the purposes of reducing bandwidth or disk * space. YCbCr is the most common JPEG colorspace, and YCbCr JPEG images * can be compressed from and decompressed to any of the extended RGB pixel * formats or grayscale, or they can be decompressed to YUV planar images. */ TJCS_YCbCr, /** * Grayscale colorspace. The JPEG image retains only the luminance data (Y * component), and any color data from the source image is discarded. * Grayscale JPEG images can be compressed from and decompressed to any of * the extended RGB pixel formats or grayscale, or they can be decompressed * to YUV planar images. */ TJCS_GRAY, /** * CMYK colorspace. When compressing the JPEG image, the C, M, Y, and K * components in the source image are reordered into image planes, but no * colorspace conversion or subsampling is performed. CMYK JPEG images can * only be decompressed to CMYK pixels. */ TJCS_CMYK, /** * YCCK colorspace. YCCK (AKA "YCbCrK") is not an absolute colorspace but * rather a mathematical transformation of CMYK designed solely for storage * and transmission. It is to CMYK as YCbCr is to RGB. CMYK pixels can be * reversibly transformed into YCCK, and as with YCbCr, the chrominance * components in the YCCK pixels can be subsampled without incurring major * perceptual loss. YCCK JPEG images can only be compressed from and * decompressed to CMYK pixels. */ TJCS_YCCK }; /** * The uncompressed source/destination image is stored in bottom-up (Windows, * OpenGL) order, not top-down (X11) order. */ #define TJFLAG_BOTTOMUP 2 /** * When decompressing an image that was compressed using chrominance * subsampling, use the fastest chrominance upsampling algorithm available in * the underlying codec. The default is to use smooth upsampling, which * creates a smooth transition between neighboring chrominance components in * order to reduce upsampling artifacts in the decompressed image. */ #define TJFLAG_FASTUPSAMPLE 256 /** * Disable buffer (re)allocation. If passed to #tjCompress2() or * #tjTransform(), this flag will cause those functions to generate an error if * the JPEG image buffer is invalid or too small rather than attempting to * allocate or reallocate that buffer. This reproduces the behavior of earlier * versions of TurboJPEG. */ #define TJFLAG_NOREALLOC 1024 /** * Use the fastest DCT/IDCT algorithm available in the underlying codec. The * default if this flag is not specified is implementation-specific. For * example, the implementation of TurboJPEG for libjpeg[-turbo] uses the fast * algorithm by default when compressing, because this has been shown to have * only a very slight effect on accuracy, but it uses the accurate algorithm * when decompressing, because this has been shown to have a larger effect. */ #define TJFLAG_FASTDCT 2048 /** * Use the most accurate DCT/IDCT algorithm available in the underlying codec. * The default if this flag is not specified is implementation-specific. For * example, the implementation of TurboJPEG for libjpeg[-turbo] uses the fast * algorithm by default when compressing, because this has been shown to have * only a very slight effect on accuracy, but it uses the accurate algorithm * when decompressing, because this has been shown to have a larger effect. */ #define TJFLAG_ACCURATEDCT 4096 /** * The number of transform operations */ #define TJ_NUMXOP 8 /** * Transform operations for #tjTransform() */ enum TJXOP { /** * Do not transform the position of the image pixels */ TJXOP_NONE=0, /** * Flip (mirror) image horizontally. This transform is imperfect if there * are any partial MCU blocks on the right edge (see #TJXOPT_PERFECT.) */ TJXOP_HFLIP, /** * Flip (mirror) image vertically. This transform is imperfect if there are * any partial MCU blocks on the bottom edge (see #TJXOPT_PERFECT.) */ TJXOP_VFLIP, /** * Transpose image (flip/mirror along upper left to lower right axis.) This * transform is always perfect. */ TJXOP_TRANSPOSE, /** * Transverse transpose image (flip/mirror along upper right to lower left * axis.) This transform is imperfect if there are any partial MCU blocks in * the image (see #TJXOPT_PERFECT.) */ TJXOP_TRANSVERSE, /** * Rotate image clockwise by 90 degrees. This transform is imperfect if * there are any partial MCU blocks on the bottom edge (see * #TJXOPT_PERFECT.) */ TJXOP_ROT90, /** * Rotate image 180 degrees. This transform is imperfect if there are any * partial MCU blocks in the image (see #TJXOPT_PERFECT.) */ TJXOP_ROT180, /** * Rotate image counter-clockwise by 90 degrees. This transform is imperfect * if there are any partial MCU blocks on the right edge (see * #TJXOPT_PERFECT.) */ TJXOP_ROT270 }; /** * This option will cause #tjTransform() to return an error if the transform is * not perfect. Lossless transforms operate on MCU blocks, whose size depends * on the level of chrominance subsampling used (see #tjMCUWidth * and #tjMCUHeight.) If the image's width or height is not evenly divisible * by the MCU block size, then there will be partial MCU blocks on the right * and/or bottom edges. It is not possible to move these partial MCU blocks to * the top or left of the image, so any transform that would require that is * "imperfect." If this option is not specified, then any partial MCU blocks * that cannot be transformed will be left in place, which will create * odd-looking strips on the right or bottom edge of the image. */ #define TJXOPT_PERFECT 1 /** * This option will cause #tjTransform() to discard any partial MCU blocks that * cannot be transformed. */ #define TJXOPT_TRIM 2 /** * This option will enable lossless cropping. See #tjTransform() for more * information. */ #define TJXOPT_CROP 4 /** * This option will discard the color data in the input image and produce * a grayscale output image. */ #define TJXOPT_GRAY 8 /** * This option will prevent #tjTransform() from outputting a JPEG image for * this particular transform (this can be used in conjunction with a custom * filter to capture the transformed DCT coefficients without transcoding * them.) */ #define TJXOPT_NOOUTPUT 16 /** * Scaling factor */ typedef struct { /** * Numerator */ int num; /** * Denominator */ int denom; } tjscalingfactor; /** * Cropping region */ typedef struct { /** * The left boundary of the cropping region. This must be evenly divisible * by the MCU block width (see #tjMCUWidth.) */ int x; /** * The upper boundary of the cropping region. This must be evenly divisible * by the MCU block height (see #tjMCUHeight.) */ int y; /** * The width of the cropping region. Setting this to 0 is the equivalent of * setting it to the width of the source JPEG image - x. */ int w; /** * The height of the cropping region. Setting this to 0 is the equivalent of * setting it to the height of the source JPEG image - y. */ int h; } tjregion; /** * Lossless transform */ typedef struct tjtransform { /** * Cropping region */ tjregion r; /** * One of the @ref TJXOP "transform operations" */ int op; /** * The bitwise OR of one of more of the @ref TJXOPT_CROP "transform options" */ int options; /** * Arbitrary data that can be accessed within the body of the callback * function */ void *data; /** * A callback function that can be used to modify the DCT coefficients * after they are losslessly transformed but before they are transcoded to a * new JPEG image. This allows for custom filters or other transformations * to be applied in the frequency domain. * * @param coeffs pointer to an array of transformed DCT coefficients. (NOTE: * this pointer is not guaranteed to be valid once the callback returns, so * applications wishing to hand off the DCT coefficients to another function * or library should make a copy of them within the body of the callback.) * * @param arrayRegion #tjregion structure containing the width and height of * the array pointed to by coeffs as well as its offset relative to * the component plane. TurboJPEG implementations may choose to split each * component plane into multiple DCT coefficient arrays and call the callback * function once for each array. * * @param planeRegion #tjregion structure containing the width and height of * the component plane to which coeffs belongs * * @param componentID ID number of the component plane to which * coeffs belongs (Y, Cb, and Cr have, respectively, ID's of 0, 1, * and 2 in typical JPEG images.) * * @param transformID ID number of the transformed image to which * coeffs belongs. This is the same as the index of the transform * in the transforms array that was passed to #tjTransform(). * * @param transform a pointer to a #tjtransform structure that specifies the * parameters and/or cropping region for this transform * * @return 0 if the callback was successful, or -1 if an error occurred. */ int (*customFilter)(short *coeffs, tjregion arrayRegion, tjregion planeRegion, int componentIndex, int transformIndex, struct tjtransform *transform); } tjtransform; /** * TurboJPEG instance handle */ typedef void* tjhandle; /** * Pad the given width to the nearest 32-bit boundary */ #define TJPAD(width) (((width)+3)&(~3)) /** * Compute the scaled value of dimension using the given scaling * factor. This macro performs the integer equivalent of ceil(dimension * * scalingFactor). */ #define TJSCALED(dimension, scalingFactor) ((dimension * scalingFactor.num \ + scalingFactor.denom - 1) / scalingFactor.denom) #ifdef __cplusplus extern "C" { #endif /** * Create a TurboJPEG compressor instance. * * @return a handle to the newly-created instance, or NULL if an error * occurred (see #tjGetErrorStr().) */ DLLEXPORT tjhandle DLLCALL tjInitCompress(void); /** * Compress an RGB, grayscale, or CMYK image into a JPEG image. * * @param handle a handle to a TurboJPEG compressor or transformer instance * * @param srcBuf pointer to an image buffer containing RGB, grayscale, or * CMYK pixels to be compressed. This buffer is not modified. * * @param width width (in pixels) of the source image * * @param pitch bytes per line in the source image. Normally, this should be * width * #tjPixelSize[pixelFormat] if the image is unpadded, or * #TJPAD(width * #tjPixelSize[pixelFormat]) if each line of the image * is padded to the nearest 32-bit boundary, as is the case for Windows * bitmaps. You can also be clever and use this parameter to skip lines, etc. * Setting this parameter to 0 is the equivalent of setting it to * width * #tjPixelSize[pixelFormat]. * * @param height height (in pixels) of the source image * * @param pixelFormat pixel format of the source image (see @ref TJPF * "Pixel formats".) * * @param jpegBuf address of a pointer to an image buffer that will receive the * JPEG image. TurboJPEG has the ability to reallocate the JPEG buffer * to accommodate the size of the JPEG image. Thus, you can choose to: * -# pre-allocate the JPEG buffer with an arbitrary size using #tjAlloc() and * let TurboJPEG grow the buffer as needed, * -# set *jpegBuf to NULL to tell TurboJPEG to allocate the buffer * for you, or * -# pre-allocate the buffer to a "worst case" size determined by calling * #tjBufSize(). This should ensure that the buffer never has to be * re-allocated (setting #TJFLAG_NOREALLOC guarantees this.) * . * If you choose option 1, *jpegSize should be set to the size of your * pre-allocated buffer. In any case, unless you have set #TJFLAG_NOREALLOC, * you should always check *jpegBuf upon return from this function, as * it may have changed. * * @param jpegSize pointer to an unsigned long variable that holds the size of * the JPEG image buffer. If *jpegBuf points to a pre-allocated * buffer, then *jpegSize should be set to the size of the buffer. * Upon return, *jpegSize will contain the size of the JPEG image (in * bytes.) If *jpegBuf points to a JPEG image buffer that is being * reused from a previous call to one of the JPEG compression functions, then * *jpegSize is ignored. * * @param jpegSubsamp the level of chrominance subsampling to be used when * generating the JPEG image (see @ref TJSAMP * "Chrominance subsampling options".) * * @param jpegQual the image quality of the generated JPEG image (1 = worst, * 100 = best) * * @param flags the bitwise OR of one or more of the @ref TJFLAG_BOTTOMUP * "flags" * * @return 0 if successful, or -1 if an error occurred (see #tjGetErrorStr().) */ DLLEXPORT int DLLCALL tjCompress2(tjhandle handle, unsigned char *srcBuf, int width, int pitch, int height, int pixelFormat, unsigned char **jpegBuf, unsigned long *jpegSize, int jpegSubsamp, int jpegQual, int flags); /** * Compress a YUV planar image into a JPEG image. * * @param handle a handle to a TurboJPEG compressor or transformer instance * * @param srcBuf pointer to an image buffer containing a YUV planar image to be * compressed. The size of this buffer should match the value returned by * #tjBufSizeYUV2() for the given image width, height, padding, and level of * chrominance subsampling. The Y, U (Cb), and V (Cr) image planes should be * stored sequentially in the source buffer (refer to @ref YUVnotes * "YUV Image Format Notes".) This buffer is not modified. * * @param width width (in pixels) of the source image. If the width is not an * even multiple of the MCU block width (see #tjMCUWidth), then an intermediate * buffer copy will be performed within TurboJPEG. * * @param pad the line padding used in the source image. For instance, if each * line in each plane of the YUV image is padded to the nearest multiple of 4 * bytes, then pad should be set to 4. * * @param height height (in pixels) of the source image. If the height is not * an even multiple of the MCU block height (see #tjMCUHeight), then an * intermediate buffer copy will be performed within TurboJPEG. * * @param subsamp the level of chrominance subsampling used in the source * image (see @ref TJSAMP "Chrominance subsampling options".) * * @param jpegBuf address of a pointer to an image buffer that will receive the * JPEG image. TurboJPEG has the ability to reallocate the JPEG buffer to * accommodate the size of the JPEG image. Thus, you can choose to: * -# pre-allocate the JPEG buffer with an arbitrary size using #tjAlloc() and * let TurboJPEG grow the buffer as needed, * -# set *jpegBuf to NULL to tell TurboJPEG to allocate the buffer * for you, or * -# pre-allocate the buffer to a "worst case" size determined by calling * #tjBufSize(). This should ensure that the buffer never has to be * re-allocated (setting #TJFLAG_NOREALLOC guarantees this.) * . * If you choose option 1, *jpegSize should be set to the size of your * pre-allocated buffer. In any case, unless you have set #TJFLAG_NOREALLOC, * you should always check *jpegBuf upon return from this function, as * it may have changed. * * @param jpegSize pointer to an unsigned long variable that holds the size of * the JPEG image buffer. If *jpegBuf points to a pre-allocated * buffer, then *jpegSize should be set to the size of the buffer. * Upon return, *jpegSize will contain the size of the JPEG image (in * bytes.) If *jpegBuf points to a JPEG image buffer that is being * reused from a previous call to one of the JPEG compression functions, then * *jpegSize is ignored. * * @param jpegQual the image quality of the generated JPEG image (1 = worst, * 100 = best) * * @param flags the bitwise OR of one or more of the @ref TJFLAG_BOTTOMUP * "flags" * * @return 0 if successful, or -1 if an error occurred (see #tjGetErrorStr().) */ DLLEXPORT int DLLCALL tjCompressFromYUV(tjhandle handle, unsigned char *srcBuf, int width, int pad, int height, int subsamp, unsigned char **jpegBuf, unsigned long *jpegSize, int jpegQual, int flags); /** * Compress a set of Y, U (Cb), and V (Cr) image planes into a JPEG image. * * @param handle a handle to a TurboJPEG compressor or transformer instance * * @param srcPlanes an array of pointers to Y, U (Cb), and V (Cr) image planes * (or just a Y plane, if compressing a grayscale image) that contain a YUV * image to be compressed. These planes can be contiguous or non-contiguous in * memory. The size of each plane should match the value returned by * #tjPlaneSizeYUV() for the given image width, height, strides, and level of * chrominance subsampling. Refer to @ref YUVnotes "YUV Image Format Notes" * for more details. These image planes are not modified. * * @param width width (in pixels) of the source image. If the width is not an * even multiple of the MCU block width (see #tjMCUWidth), then an intermediate * buffer copy will be performed within TurboJPEG. * * @param strides an array of integers, each specifying the number of bytes per * line in the corresponding plane of the YUV source image. Setting the stride * for any plane to 0 is the same as setting it to the plane width (see * @ref YUVnotes "YUV Image Format Notes".) If strides is NULL, then * the strides for all planes will be set to their respective plane widths. * You can adjust the strides in order to specify an arbitrary amount of line * padding in each plane or to create a JPEG image from a subregion of a larger * YUV planar image. * * @param height height (in pixels) of the source image. If the height is not * an even multiple of the MCU block height (see #tjMCUHeight), then an * intermediate buffer copy will be performed within TurboJPEG. * * @param subsamp the level of chrominance subsampling used in the source * image (see @ref TJSAMP "Chrominance subsampling options".) * * @param jpegBuf address of a pointer to an image buffer that will receive the * JPEG image. TurboJPEG has the ability to reallocate the JPEG buffer to * accommodate the size of the JPEG image. Thus, you can choose to: * -# pre-allocate the JPEG buffer with an arbitrary size using #tjAlloc() and * let TurboJPEG grow the buffer as needed, * -# set *jpegBuf to NULL to tell TurboJPEG to allocate the buffer * for you, or * -# pre-allocate the buffer to a "worst case" size determined by calling * #tjBufSize(). This should ensure that the buffer never has to be * re-allocated (setting #TJFLAG_NOREALLOC guarantees this.) * . * If you choose option 1, *jpegSize should be set to the size of your * pre-allocated buffer. In any case, unless you have set #TJFLAG_NOREALLOC, * you should always check *jpegBuf upon return from this function, as * it may have changed. * * @param jpegSize pointer to an unsigned long variable that holds the size of * the JPEG image buffer. If *jpegBuf points to a pre-allocated * buffer, then *jpegSize should be set to the size of the buffer. * Upon return, *jpegSize will contain the size of the JPEG image (in * bytes.) If *jpegBuf points to a JPEG image buffer that is being * reused from a previous call to one of the JPEG compression functions, then * *jpegSize is ignored. * * @param jpegQual the image quality of the generated JPEG image (1 = worst, * 100 = best) * * @param flags the bitwise OR of one or more of the @ref TJFLAG_BOTTOMUP * "flags" * * @return 0 if successful, or -1 if an error occurred (see #tjGetErrorStr().) */ DLLEXPORT int DLLCALL tjCompressFromYUVPlanes(tjhandle handle, unsigned char **srcPlanes, int width, int *strides, int height, int subsamp, unsigned char **jpegBuf, unsigned long *jpegSize, int jpegQual, int flags); /** * The maximum size of the buffer (in bytes) required to hold a JPEG image with * the given parameters. The number of bytes returned by this function is * larger than the size of the uncompressed source image. The reason for this * is that the JPEG format uses 16-bit coefficients, and it is thus possible * for a very high-quality JPEG image with very high-frequency content to * expand rather than compress when converted to the JPEG format. Such images * represent a very rare corner case, but since there is no way to predict the * size of a JPEG image prior to compression, the corner case has to be * handled. * * @param width width (in pixels) of the image * * @param height height (in pixels) of the image * * @param jpegSubsamp the level of chrominance subsampling to be used when * generating the JPEG image (see @ref TJSAMP * "Chrominance subsampling options".) * * @return the maximum size of the buffer (in bytes) required to hold the * image, or -1 if the arguments are out of bounds. */ DLLEXPORT unsigned long DLLCALL tjBufSize(int width, int height, int jpegSubsamp); /** * The size of the buffer (in bytes) required to hold a YUV planar image with * the given parameters. * * @param width width (in pixels) of the image * * @param pad the width of each line in each plane of the image is padded to * the nearest multiple of this number of bytes (must be a power of 2.) * * @param height height (in pixels) of the image * * @param subsamp level of chrominance subsampling in the image (see * @ref TJSAMP "Chrominance subsampling options".) * * @return the size of the buffer (in bytes) required to hold the image, or * -1 if the arguments are out of bounds. */ DLLEXPORT unsigned long DLLCALL tjBufSizeYUV2(int width, int pad, int height, int subsamp); /** * The size of the buffer (in bytes) required to hold a YUV image plane with * the given parameters. * * @param componentID ID number of the image plane (0 = Y, 1 = U/Cb, 2 = V/Cr) * * @param width width (in pixels) of the YUV image. NOTE: this is the width of * the whole image, not the plane width. * * @param stride bytes per line in the image plane. Setting this to 0 is the * equivalent of setting it to the plane width. * * @param height height (in pixels) of the YUV image. NOTE: this is the height * of the whole image, not the plane height. * * @param subsamp level of chrominance subsampling in the image (see * @ref TJSAMP "Chrominance subsampling options".) * * @return the size of the buffer (in bytes) required to hold the YUV image * plane, or -1 if the arguments are out of bounds. */ DLLEXPORT unsigned long DLLCALL tjPlaneSizeYUV(int componentID, int width, int stride, int height, int subsamp); /** * The plane width of a YUV image plane with the given parameters. Refer to * @ref YUVnotes "YUV Image Format Notes" for a description of plane width. * * @param componentID ID number of the image plane (0 = Y, 1 = U/Cb, 2 = V/Cr) * * @param width width (in pixels) of the YUV image * * @param subsamp level of chrominance subsampling in the image (see * @ref TJSAMP "Chrominance subsampling options".) * * @return the plane width of a YUV image plane with the given parameters, or * -1 if the arguments are out of bounds. */ DLLEXPORT int tjPlaneWidth(int componentID, int width, int subsamp); /** * The plane height of a YUV image plane with the given parameters. Refer to * @ref YUVnotes "YUV Image Format Notes" for a description of plane height. * * @param componentID ID number of the image plane (0 = Y, 1 = U/Cb, 2 = V/Cr) * * @param height height (in pixels) of the YUV image * * @param subsamp level of chrominance subsampling in the image (see * @ref TJSAMP "Chrominance subsampling options".) * * @return the plane height of a YUV image plane with the given parameters, or * -1 if the arguments are out of bounds. */ DLLEXPORT int tjPlaneHeight(int componentID, int height, int subsamp); /** * Encode an RGB or grayscale image into a YUV planar image. This function * uses the accelerated color conversion routines in the underlying * codec but does not execute any of the other steps in the JPEG compression * process. * * @param handle a handle to a TurboJPEG compressor or transformer instance * * @param srcBuf pointer to an image buffer containing RGB or grayscale pixels * to be encoded. This buffer is not modified. * * @param width width (in pixels) of the source image * * @param pitch bytes per line in the source image. Normally, this should be * width * #tjPixelSize[pixelFormat] if the image is unpadded, or * #TJPAD(width * #tjPixelSize[pixelFormat]) if each line of the image * is padded to the nearest 32-bit boundary, as is the case for Windows * bitmaps. You can also be clever and use this parameter to skip lines, etc. * Setting this parameter to 0 is the equivalent of setting it to * width * #tjPixelSize[pixelFormat]. * * @param height height (in pixels) of the source image * * @param pixelFormat pixel format of the source image (see @ref TJPF * "Pixel formats".) * * @param dstBuf pointer to an image buffer that will receive the YUV image. * Use #tjBufSizeYUV2() to determine the appropriate size for this buffer based * on the image width, height, padding, and level of chrominance subsampling. * The Y, U (Cb), and V (Cr) image planes will be stored sequentially in the * buffer (refer to @ref YUVnotes "YUV Image Format Notes".) * * @param pad the width of each line in each plane of the YUV image will be * padded to the nearest multiple of this number of bytes (must be a power of * 2.) To generate images suitable for X Video, pad should be set to * 4. * * @param subsamp the level of chrominance subsampling to be used when * generating the YUV image (see @ref TJSAMP * "Chrominance subsampling options".) To generate images suitable for X * Video, subsamp should be set to @ref TJSAMP_420. This produces an * image compatible with the I420 (AKA "YUV420P") format. * * @param flags the bitwise OR of one or more of the @ref TJFLAG_BOTTOMUP * "flags" * * @return 0 if successful, or -1 if an error occurred (see #tjGetErrorStr().) */ DLLEXPORT int DLLCALL tjEncodeYUV3(tjhandle handle, unsigned char *srcBuf, int width, int pitch, int height, int pixelFormat, unsigned char *dstBuf, int pad, int subsamp, int flags); /** * Encode an RGB or grayscale image into separate Y, U (Cb), and V (Cr) image * planes. This function uses the accelerated color conversion routines in the * underlying codec but does not execute any of the other steps in the JPEG * compression process. * * @param handle a handle to a TurboJPEG compressor or transformer instance * * @param srcBuf pointer to an image buffer containing RGB or grayscale pixels * to be encoded. This buffer is not modified. * * @param width width (in pixels) of the source image * * @param pitch bytes per line in the source image. Normally, this should be * width * #tjPixelSize[pixelFormat] if the image is unpadded, or * #TJPAD(width * #tjPixelSize[pixelFormat]) if each line of the image * is padded to the nearest 32-bit boundary, as is the case for Windows * bitmaps. You can also be clever and use this parameter to skip lines, etc. * Setting this parameter to 0 is the equivalent of setting it to * width * #tjPixelSize[pixelFormat]. * * @param height height (in pixels) of the source image * * @param pixelFormat pixel format of the source image (see @ref TJPF * "Pixel formats".) * * @param dstPlanes an array of pointers to Y, U (Cb), and V (Cr) image planes * (or just a Y plane, if generating a grayscale image) that will receive the * encoded image. These planes can be contiguous or non-contiguous in memory. * Use #tjPlaneSizeYUV() to determine the appropriate size for each plane based * on the image width, height, strides, and level of chrominance subsampling. * Refer to @ref YUVnotes "YUV Image Format Notes" for more details. * * @param strides an array of integers, each specifying the number of bytes per * line in the corresponding plane of the output image. Setting the stride for * any plane to 0 is the same as setting it to the plane width (see * @ref YUVnotes "YUV Image Format Notes".) If strides is NULL, then * the strides for all planes will be set to their respective plane widths. * You can adjust the strides in order to add an arbitrary amount of line * padding to each plane or to encode an RGB or grayscale image into a * subregion of a larger YUV planar image. * * @param subsamp the level of chrominance subsampling to be used when * generating the YUV image (see @ref TJSAMP * "Chrominance subsampling options".) To generate images suitable for X * Video, subsamp should be set to @ref TJSAMP_420. This produces an * image compatible with the I420 (AKA "YUV420P") format. * * @param flags the bitwise OR of one or more of the @ref TJFLAG_BOTTOMUP * "flags" * * @return 0 if successful, or -1 if an error occurred (see #tjGetErrorStr().) */ DLLEXPORT int DLLCALL tjEncodeYUVPlanes(tjhandle handle, unsigned char *srcBuf, int width, int pitch, int height, int pixelFormat, unsigned char **dstPlanes, int *strides, int subsamp, int flags); /** * Create a TurboJPEG decompressor instance. * * @return a handle to the newly-created instance, or NULL if an error * occurred (see #tjGetErrorStr().) */ DLLEXPORT tjhandle DLLCALL tjInitDecompress(void); /** * Retrieve information about a JPEG image without decompressing it. * * @param handle a handle to a TurboJPEG decompressor or transformer instance * * @param jpegBuf pointer to a buffer containing a JPEG image. This buffer is * not modified. * * @param jpegSize size of the JPEG image (in bytes) * * @param width pointer to an integer variable that will receive the width (in * pixels) of the JPEG image * * @param height pointer to an integer variable that will receive the height * (in pixels) of the JPEG image * * @param jpegSubsamp pointer to an integer variable that will receive the * level of chrominance subsampling used when the JPEG image was compressed * (see @ref TJSAMP "Chrominance subsampling options".) * * @param jpegColorspace pointer to an integer variable that will receive one * of the JPEG colorspace constants, indicating the colorspace of the JPEG * image (see @ref TJCS "JPEG colorspaces".) * * @return 0 if successful, or -1 if an error occurred (see #tjGetErrorStr().) */ DLLEXPORT int DLLCALL tjDecompressHeader3(tjhandle handle, unsigned char *jpegBuf, unsigned long jpegSize, int *width, int *height, int *jpegSubsamp, int *jpegColorspace); /** * Returns a list of fractional scaling factors that the JPEG decompressor in * this implementation of TurboJPEG supports. * * @param numscalingfactors pointer to an integer variable that will receive * the number of elements in the list * * @return a pointer to a list of fractional scaling factors, or NULL if an * error is encountered (see #tjGetErrorStr().) */ DLLEXPORT tjscalingfactor* DLLCALL tjGetScalingFactors(int *numscalingfactors); /** * Decompress a JPEG image to an RGB, grayscale, or CMYK image. * * @param handle a handle to a TurboJPEG decompressor or transformer instance * * @param jpegBuf pointer to a buffer containing the JPEG image to decompress. * This buffer is not modified. * * @param jpegSize size of the JPEG image (in bytes) * * @param dstBuf pointer to an image buffer that will receive the decompressed * image. This buffer should normally be pitch * scaledHeight bytes * in size, where scaledHeight can be determined by calling * #TJSCALED() with the JPEG image height and one of the scaling factors * returned by #tjGetScalingFactors(). The dstBuf pointer may also be * used to decompress into a specific region of a larger buffer. * * @param width desired width (in pixels) of the destination image. If this is * different than the width of the JPEG image being decompressed, then * TurboJPEG will use scaling in the JPEG decompressor to generate the largest * possible image that will fit within the desired width. If width is * set to 0, then only the height will be considered when determining the * scaled image size. * * @param pitch bytes per line in the destination image. Normally, this is * scaledWidth * #tjPixelSize[pixelFormat] if the decompressed image * is unpadded, else #TJPAD(scaledWidth * #tjPixelSize[pixelFormat]) * if each line of the decompressed image is padded to the nearest 32-bit * boundary, as is the case for Windows bitmaps. (NOTE: scaledWidth * can be determined by calling #TJSCALED() with the JPEG image width and one * of the scaling factors returned by #tjGetScalingFactors().) You can also be * clever and use the pitch parameter to skip lines, etc. Setting this * parameter to 0 is the equivalent of setting it to * scaledWidth * #tjPixelSize[pixelFormat]. * * @param height desired height (in pixels) of the destination image. If this * is different than the height of the JPEG image being decompressed, then * TurboJPEG will use scaling in the JPEG decompressor to generate the largest * possible image that will fit within the desired height. If height * is set to 0, then only the width will be considered when determining the * scaled image size. * * @param pixelFormat pixel format of the destination image (see @ref * TJPF "Pixel formats".) * * @param flags the bitwise OR of one or more of the @ref TJFLAG_BOTTOMUP * "flags" * * @return 0 if successful, or -1 if an error occurred (see #tjGetErrorStr().) */ DLLEXPORT int DLLCALL tjDecompress2(tjhandle handle, unsigned char *jpegBuf, unsigned long jpegSize, unsigned char *dstBuf, int width, int pitch, int height, int pixelFormat, int flags); /** * Decompress a JPEG image to a YUV planar image. This function performs JPEG * decompression but leaves out the color conversion step, so a planar YUV * image is generated instead of an RGB image. * * @param handle a handle to a TurboJPEG decompressor or transformer instance * * @param jpegBuf pointer to a buffer containing the JPEG image to decompress. * This buffer is not modified. * * @param jpegSize size of the JPEG image (in bytes) * * @param dstBuf pointer to an image buffer that will receive the YUV image. * Use #tjBufSizeYUV2() to determine the appropriate size for this buffer based * on the image width, height, padding, and level of subsampling. The Y, * U (Cb), and V (Cr) image planes will be stored sequentially in the buffer * (refer to @ref YUVnotes "YUV Image Format Notes".) * * @param width desired width (in pixels) of the YUV image. If this is * different than the width of the JPEG image being decompressed, then * TurboJPEG will use scaling in the JPEG decompressor to generate the largest * possible image that will fit within the desired width. If width is * set to 0, then only the height will be considered when determining the * scaled image size. If the scaled width is not an even multiple of the MCU * block width (see #tjMCUWidth), then an intermediate buffer copy will be * performed within TurboJPEG. * * @param pad the width of each line in each plane of the YUV image will be * padded to the nearest multiple of this number of bytes (must be a power of * 2.) To generate images suitable for X Video, pad should be set to * 4. * * @param height desired height (in pixels) of the YUV image. If this is * different than the height of the JPEG image being decompressed, then * TurboJPEG will use scaling in the JPEG decompressor to generate the largest * possible image that will fit within the desired height. If height * is set to 0, then only the width will be considered when determining the * scaled image size. If the scaled height is not an even multiple of the MCU * block height (see #tjMCUHeight), then an intermediate buffer copy will be * performed within TurboJPEG. * * @param flags the bitwise OR of one or more of the @ref TJFLAG_BOTTOMUP * "flags" * * @return 0 if successful, or -1 if an error occurred (see #tjGetErrorStr().) */ DLLEXPORT int DLLCALL tjDecompressToYUV2(tjhandle handle, unsigned char *jpegBuf, unsigned long jpegSize, unsigned char *dstBuf, int width, int pad, int height, int flags); /** * Decompress a JPEG image into separate Y, U (Cb), and V (Cr) image * planes. This function performs JPEG decompression but leaves out the color * conversion step, so a planar YUV image is generated instead of an RGB image. * * @param handle a handle to a TurboJPEG decompressor or transformer instance * * @param jpegBuf pointer to a buffer containing the JPEG image to decompress. * This buffer is not modified. * * @param jpegSize size of the JPEG image (in bytes) * * @param dstPlanes an array of pointers to Y, U (Cb), and V (Cr) image planes * (or just a Y plane, if decompressing a grayscale image) that will receive * the YUV image. These planes can be contiguous or non-contiguous in memory. * Use #tjPlaneSizeYUV() to determine the appropriate size for each plane based * on the scaled image width, scaled image height, strides, and level of * chrominance subsampling. Refer to @ref YUVnotes "YUV Image Format Notes" * for more details. * * @param width desired width (in pixels) of the YUV image. If this is * different than the width of the JPEG image being decompressed, then * TurboJPEG will use scaling in the JPEG decompressor to generate the largest * possible image that will fit within the desired width. If width is * set to 0, then only the height will be considered when determining the * scaled image size. If the scaled width is not an even multiple of the MCU * block width (see #tjMCUWidth), then an intermediate buffer copy will be * performed within TurboJPEG. * * @param strides an array of integers, each specifying the number of bytes per * line in the corresponding plane of the output image. Setting the stride for * any plane to 0 is the same as setting it to the scaled plane width (see * @ref YUVnotes "YUV Image Format Notes".) If strides is NULL, then * the strides for all planes will be set to their respective scaled plane * widths. You can adjust the strides in order to add an arbitrary amount of * line padding to each plane or to decompress the JPEG image into a subregion * of a larger YUV planar image. * * @param height desired height (in pixels) of the YUV image. If this is * different than the height of the JPEG image being decompressed, then * TurboJPEG will use scaling in the JPEG decompressor to generate the largest * possible image that will fit within the desired height. If height * is set to 0, then only the width will be considered when determining the * scaled image size. If the scaled height is not an even multiple of the MCU * block height (see #tjMCUHeight), then an intermediate buffer copy will be * performed within TurboJPEG. * * @param flags the bitwise OR of one or more of the @ref TJFLAG_BOTTOMUP * "flags" * * @return 0 if successful, or -1 if an error occurred (see #tjGetErrorStr().) */ DLLEXPORT int DLLCALL tjDecompressToYUVPlanes(tjhandle handle, unsigned char *jpegBuf, unsigned long jpegSize, unsigned char **dstPlanes, int width, int *strides, int height, int flags); /** * Decode a YUV planar image into an RGB or grayscale image. This function * uses the accelerated color conversion routines in the underlying * codec but does not execute any of the other steps in the JPEG decompression * process. * * @param handle a handle to a TurboJPEG decompressor or transformer instance * * @param srcBuf pointer to an image buffer containing a YUV planar image to be * decoded. The size of this buffer should match the value returned by * #tjBufSizeYUV2() for the given image width, height, padding, and level of * chrominance subsampling. The Y, U (Cb), and V (Cr) image planes should be * stored sequentially in the source buffer (refer to @ref YUVnotes * "YUV Image Format Notes".) This buffer is not modified. * * @param pad Use this parameter to specify that the width of each line in each * plane of the YUV source image is padded to the nearest multiple of this * number of bytes (must be a power of 2.) * * @param subsamp the level of chrominance subsampling used in the YUV source * image (see @ref TJSAMP "Chrominance subsampling options".) * * @param dstBuf pointer to an image buffer that will receive the decoded * image. This buffer should normally be pitch * height bytes in * size, but the dstBuf pointer can also be used to decode into a * specific region of a larger buffer. * * @param width width (in pixels) of the source and destination images * * @param pitch bytes per line in the destination image. Normally, this should * be width * #tjPixelSize[pixelFormat] if the destination image is * unpadded, or #TJPAD(width * #tjPixelSize[pixelFormat]) if each line * of the destination image should be padded to the nearest 32-bit boundary, as * is the case for Windows bitmaps. You can also be clever and use the pitch * parameter to skip lines, etc. Setting this parameter to 0 is the equivalent * of setting it to width * #tjPixelSize[pixelFormat]. * * @param height height (in pixels) of the source and destination images * * @param pixelFormat pixel format of the destination image (see @ref TJPF * "Pixel formats".) * * @param flags the bitwise OR of one or more of the @ref TJFLAG_BOTTOMUP * "flags" * * @return 0 if successful, or -1 if an error occurred (see #tjGetErrorStr().) */ DLLEXPORT int DLLCALL tjDecodeYUV(tjhandle handle, unsigned char *srcBuf, int pad, int subsamp, unsigned char *dstBuf, int width, int pitch, int height, int pixelFormat, int flags); /** * Decode a set of Y, U (Cb), and V (Cr) image planes into an RGB or grayscale * image. This function uses the accelerated color conversion routines in the * underlying codec but does not execute any of the other steps in the JPEG * decompression process. * * @param handle a handle to a TurboJPEG decompressor or transformer instance * * @param srcPlanes an array of pointers to Y, U (Cb), and V (Cr) image planes * (or just a Y plane, if decoding a grayscale image) that contain a YUV image * to be decoded. These planes can be contiguous or non-contiguous in memory. * The size of each plane should match the value returned by #tjPlaneSizeYUV() * for the given image width, height, strides, and level of chrominance * subsampling. Refer to @ref YUVnotes "YUV Image Format Notes" for more * details. These image planes are not modified. * * @param strides an array of integers, each specifying the number of bytes per * line in the corresponding plane of the YUV source image. Setting the stride * for any plane to 0 is the same as setting it to the plane width (see * @ref YUVnotes "YUV Image Format Notes".) If strides is NULL, then * the strides for all planes will be set to their respective plane widths. * You can adjust the strides in order to specify an arbitrary amount of line * padding in each plane or to decode a subregion of a larger YUV planar image. * * @param subsamp the level of chrominance subsampling used in the YUV source * image (see @ref TJSAMP "Chrominance subsampling options".) * * @param dstBuf pointer to an image buffer that will receive the decoded * image. This buffer should normally be pitch * height bytes in * size, but the dstBuf pointer can also be used to decode into a * specific region of a larger buffer. * * @param width width (in pixels) of the source and destination images * * @param pitch bytes per line in the destination image. Normally, this should * be width * #tjPixelSize[pixelFormat] if the destination image is * unpadded, or #TJPAD(width * #tjPixelSize[pixelFormat]) if each line * of the destination image should be padded to the nearest 32-bit boundary, as * is the case for Windows bitmaps. You can also be clever and use the pitch * parameter to skip lines, etc. Setting this parameter to 0 is the equivalent * of setting it to width * #tjPixelSize[pixelFormat]. * * @param height height (in pixels) of the source and destination images * * @param pixelFormat pixel format of the destination image (see @ref TJPF * "Pixel formats".) * * @param flags the bitwise OR of one or more of the @ref TJFLAG_BOTTOMUP * "flags" * * @return 0 if successful, or -1 if an error occurred (see #tjGetErrorStr().) */ DLLEXPORT int DLLCALL tjDecodeYUVPlanes(tjhandle handle, unsigned char **srcPlanes, int *strides, int subsamp, unsigned char *dstBuf, int width, int pitch, int height, int pixelFormat, int flags); /** * Create a new TurboJPEG transformer instance. * * @return a handle to the newly-created instance, or NULL if an error * occurred (see #tjGetErrorStr().) */ DLLEXPORT tjhandle DLLCALL tjInitTransform(void); /** * Losslessly transform a JPEG image into another JPEG image. Lossless * transforms work by moving the raw DCT coefficients from one JPEG image * structure to another without altering the values of the coefficients. While * this is typically faster than decompressing the image, transforming it, and * re-compressing it, lossless transforms are not free. Each lossless * transform requires reading and performing Huffman decoding on all of the * coefficients in the source image, regardless of the size of the destination * image. Thus, this function provides a means of generating multiple * transformed images from the same source or applying multiple * transformations simultaneously, in order to eliminate the need to read the * source coefficients multiple times. * * @param handle a handle to a TurboJPEG transformer instance * * @param jpegBuf pointer to a buffer containing the JPEG source image to * transform. This buffer is not modified. * * @param jpegSize size of the JPEG source image (in bytes) * * @param n the number of transformed JPEG images to generate * * @param dstBufs pointer to an array of n image buffers. dstBufs[i] * will receive a JPEG image that has been transformed using the parameters in * transforms[i]. TurboJPEG has the ability to reallocate the JPEG * buffer to accommodate the size of the JPEG image. Thus, you can choose to: * -# pre-allocate the JPEG buffer with an arbitrary size using #tjAlloc() and * let TurboJPEG grow the buffer as needed, * -# set dstBufs[i] to NULL to tell TurboJPEG to allocate the buffer * for you, or * -# pre-allocate the buffer to a "worst case" size determined by calling * #tjBufSize() with the transformed or cropped width and height. This should * ensure that the buffer never has to be re-allocated (setting * #TJFLAG_NOREALLOC guarantees this.) * . * If you choose option 1, dstSizes[i] should be set to the size of * your pre-allocated buffer. In any case, unless you have set * #TJFLAG_NOREALLOC, you should always check dstBufs[i] upon return * from this function, as it may have changed. * * @param dstSizes pointer to an array of n unsigned long variables that will * receive the actual sizes (in bytes) of each transformed JPEG image. If * dstBufs[i] points to a pre-allocated buffer, then * dstSizes[i] should be set to the size of the buffer. Upon return, * dstSizes[i] will contain the size of the JPEG image (in bytes.) * * @param transforms pointer to an array of n #tjtransform structures, each of * which specifies the transform parameters and/or cropping region for the * corresponding transformed output image. * * @param flags the bitwise OR of one or more of the @ref TJFLAG_BOTTOMUP * "flags" * * @return 0 if successful, or -1 if an error occurred (see #tjGetErrorStr().) */ DLLEXPORT int DLLCALL tjTransform(tjhandle handle, unsigned char *jpegBuf, unsigned long jpegSize, int n, unsigned char **dstBufs, unsigned long *dstSizes, tjtransform *transforms, int flags); /** * Destroy a TurboJPEG compressor, decompressor, or transformer instance. * * @param handle a handle to a TurboJPEG compressor, decompressor or * transformer instance * * @return 0 if successful, or -1 if an error occurred (see #tjGetErrorStr().) */ DLLEXPORT int DLLCALL tjDestroy(tjhandle handle); /** * Allocate an image buffer for use with TurboJPEG. You should always use * this function to allocate the JPEG destination buffer(s) for #tjCompress2() * and #tjTransform() unless you are disabling automatic buffer * (re)allocation (by setting #TJFLAG_NOREALLOC.) * * @param bytes the number of bytes to allocate * * @return a pointer to a newly-allocated buffer with the specified number of * bytes. * * @sa tjFree() */ DLLEXPORT unsigned char* DLLCALL tjAlloc(int bytes); /** * Free an image buffer previously allocated by TurboJPEG. You should always * use this function to free JPEG destination buffer(s) that were automatically * (re)allocated by #tjCompress2() or #tjTransform() or that were manually * allocated using #tjAlloc(). * * @param buffer address of the buffer to free * * @sa tjAlloc() */ DLLEXPORT void DLLCALL tjFree(unsigned char *buffer); /** * Returns a descriptive error message explaining why the last command failed. * * @return a descriptive error message explaining why the last command failed. */ DLLEXPORT char* DLLCALL tjGetErrorStr(void); /* Deprecated functions and macros */ #define TJFLAG_FORCEMMX 8 #define TJFLAG_FORCESSE 16 #define TJFLAG_FORCESSE2 32 #define TJFLAG_FORCESSE3 128 /* Backward compatibility functions and macros (nothing to see here) */ #define NUMSUBOPT TJ_NUMSAMP #define TJ_444 TJSAMP_444 #define TJ_422 TJSAMP_422 #define TJ_420 TJSAMP_420 #define TJ_411 TJSAMP_420 #define TJ_GRAYSCALE TJSAMP_GRAY #define TJ_BGR 1 #define TJ_BOTTOMUP TJFLAG_BOTTOMUP #define TJ_FORCEMMX TJFLAG_FORCEMMX #define TJ_FORCESSE TJFLAG_FORCESSE #define TJ_FORCESSE2 TJFLAG_FORCESSE2 #define TJ_ALPHAFIRST 64 #define TJ_FORCESSE3 TJFLAG_FORCESSE3 #define TJ_FASTUPSAMPLE TJFLAG_FASTUPSAMPLE #define TJ_YUV 512 DLLEXPORT unsigned long DLLCALL TJBUFSIZE(int width, int height); DLLEXPORT unsigned long DLLCALL TJBUFSIZEYUV(int width, int height, int jpegSubsamp); DLLEXPORT unsigned long DLLCALL tjBufSizeYUV(int width, int height, int subsamp); DLLEXPORT int DLLCALL tjCompress(tjhandle handle, unsigned char *srcBuf, int width, int pitch, int height, int pixelSize, unsigned char *dstBuf, unsigned long *compressedSize, int jpegSubsamp, int jpegQual, int flags); DLLEXPORT int DLLCALL tjEncodeYUV(tjhandle handle, unsigned char *srcBuf, int width, int pitch, int height, int pixelSize, unsigned char *dstBuf, int subsamp, int flags); DLLEXPORT int DLLCALL tjEncodeYUV2(tjhandle handle, unsigned char *srcBuf, int width, int pitch, int height, int pixelFormat, unsigned char *dstBuf, int subsamp, int flags); DLLEXPORT int DLLCALL tjDecompressHeader(tjhandle handle, unsigned char *jpegBuf, unsigned long jpegSize, int *width, int *height); DLLEXPORT int DLLCALL tjDecompressHeader2(tjhandle handle, unsigned char *jpegBuf, unsigned long jpegSize, int *width, int *height, int *jpegSubsamp); DLLEXPORT int DLLCALL tjDecompress(tjhandle handle, unsigned char *jpegBuf, unsigned long jpegSize, unsigned char *dstBuf, int width, int pitch, int height, int pixelSize, int flags); DLLEXPORT int DLLCALL tjDecompressToYUV(tjhandle handle, unsigned char *jpegBuf, unsigned long jpegSize, unsigned char *dstBuf, int flags); /** * @} */ #ifdef __cplusplus } #endif #endif libjpeg-turbo-1.4.2/jpegtran.10000644000076500007650000002063512600050400013103 00000000000000.TH JPEGTRAN 1 "21 November 2014" .SH NAME jpegtran \- lossless transformation of JPEG files .SH SYNOPSIS .B jpegtran [ .I options ] [ .I filename ] .LP .SH DESCRIPTION .LP .B jpegtran performs various useful transformations of JPEG files. It can translate the coded representation from one variant of JPEG to another, for example from baseline JPEG to progressive JPEG or vice versa. It can also perform some rearrangements of the image data, for example turning an image from landscape to portrait format by rotation. .PP .B jpegtran works by rearranging the compressed data (DCT coefficients), without ever fully decoding the image. Therefore, its transformations are lossless: there is no image degradation at all, which would not be true if you used .B djpeg followed by .B cjpeg to accomplish the same conversion. But by the same token, .B jpegtran cannot perform lossy operations such as changing the image quality. .PP .B jpegtran reads the named JPEG/JFIF file, or the standard input if no file is named, and produces a JPEG/JFIF file on the standard output. .SH OPTIONS All switch names may be abbreviated; for example, .B \-optimize may be written .B \-opt or .BR \-o . Upper and lower case are equivalent. British spellings are also accepted (e.g., .BR \-optimise ), though for brevity these are not mentioned below. .PP To specify the coded JPEG representation used in the output file, .B jpegtran accepts a subset of the switches recognized by .BR cjpeg : .TP .B \-optimize Perform optimization of entropy encoding parameters. .TP .B \-progressive Create progressive JPEG file. .TP .BI \-restart " N" Emit a JPEG restart marker every N MCU rows, or every N MCU blocks if "B" is attached to the number. .TP .B \-arithmetic Use arithmetic coding. .TP .BI \-scans " file" Use the scan script given in the specified text file. .PP See .BR cjpeg (1) for more details about these switches. If you specify none of these switches, you get a plain baseline-JPEG output file. The quality setting and so forth are determined by the input file. .PP The image can be losslessly transformed by giving one of these switches: .TP .B \-flip horizontal Mirror image horizontally (left-right). .TP .B \-flip vertical Mirror image vertically (top-bottom). .TP .B \-rotate 90 Rotate image 90 degrees clockwise. .TP .B \-rotate 180 Rotate image 180 degrees. .TP .B \-rotate 270 Rotate image 270 degrees clockwise (or 90 ccw). .TP .B \-transpose Transpose image (across UL-to-LR axis). .TP .B \-transverse Transverse transpose (across UR-to-LL axis). .PP The transpose transformation has no restrictions regarding image dimensions. The other transformations operate rather oddly if the image dimensions are not a multiple of the iMCU size (usually 8 or 16 pixels), because they can only transform complete blocks of DCT coefficient data in the desired way. .PP .BR jpegtran 's default behavior when transforming an odd-size image is designed to preserve exact reversibility and mathematical consistency of the transformation set. As stated, transpose is able to flip the entire image area. Horizontal mirroring leaves any partial iMCU column at the right edge untouched, but is able to flip all rows of the image. Similarly, vertical mirroring leaves any partial iMCU row at the bottom edge untouched, but is able to flip all columns. The other transforms can be built up as sequences of transpose and flip operations; for consistency, their actions on edge pixels are defined to be the same as the end result of the corresponding transpose-and-flip sequence. .PP For practical use, you may prefer to discard any untransformable edge pixels rather than having a strange-looking strip along the right and/or bottom edges of a transformed image. To do this, add the .B \-trim switch: .TP .B \-trim Drop non-transformable edge blocks. .IP Obviously, a transformation with .B \-trim is not reversible, so strictly speaking .B jpegtran with this switch is not lossless. Also, the expected mathematical equivalences between the transformations no longer hold. For example, .B \-rot 270 -trim trims only the bottom edge, but .B \-rot 90 -trim followed by .B \-rot 180 -trim trims both edges. .TP .B \-perfect If you are only interested in perfect transformations, add the .B \-perfect switch. This causes .B jpegtran to fail with an error if the transformation is not perfect. .IP For example, you may want to do .IP .B (jpegtran \-rot 90 -perfect .I foo.jpg .B || djpeg .I foo.jpg .B | pnmflip \-r90 | cjpeg) .IP to do a perfect rotation, if available, or an approximated one if not. .TP .B \-crop WxH+X+Y Crop the image to a rectangular region of width W and height H, starting at point X,Y. The lossless crop feature discards data outside of a given image region but losslessly preserves what is inside. Like the rotate and flip transforms, lossless crop is restricted by the current JPEG format; the upper left corner of the selected region must fall on an iMCU boundary. If it doesn't, then it is silently moved up and/or left to the nearest iMCU boundary (the lower right corner is unchanged.) .PP Other not-strictly-lossless transformation switches are: .TP .B \-grayscale Force grayscale output. .IP This option discards the chrominance channels if the input image is YCbCr (ie, a standard color JPEG), resulting in a grayscale JPEG file. The luminance channel is preserved exactly, so this is a better method of reducing to grayscale than decompression, conversion, and recompression. This switch is particularly handy for fixing a monochrome picture that was mistakenly encoded as a color JPEG. (In such a case, the space savings from getting rid of the near-empty chroma channels won't be large; but the decoding time for a grayscale JPEG is substantially less than that for a color JPEG.) .PP .B jpegtran also recognizes these switches that control what to do with "extra" markers, such as comment blocks: .TP .B \-copy none Copy no extra markers from source file. This setting suppresses all comments and other excess baggage present in the source file. .TP .B \-copy comments Copy only comment markers. This setting copies comments from the source file but discards any other data that is inessential for image display. .TP .B \-copy all Copy all extra markers. This setting preserves miscellaneous markers found in the source file, such as JFIF thumbnails, Exif data, and Photoshop settings. In some files, these extra markers can be sizable. .PP The default behavior is \fB-copy comments\fR. (Note: in IJG releases v6 and v6a, \fBjpegtran\fR always did the equivalent of \fB-copy none\fR.) .PP Additional switches recognized by jpegtran are: .TP .BI \-maxmemory " N" Set limit for amount of memory to use in processing large images. Value is in thousands of bytes, or millions of bytes if "M" is attached to the number. For example, .B \-max 4m selects 4000000 bytes. If more space is needed, temporary files will be used. .TP .BI \-outfile " name" Send output image to the named file, not to standard output. .TP .B \-verbose Enable debug printout. More .BR \-v 's give more output. Also, version information is printed at startup. .TP .B \-debug Same as .BR \-verbose . .TP .B \-version Print version information and exit. .SH EXAMPLES .LP This example converts a baseline JPEG file to progressive form: .IP .B jpegtran \-progressive .I foo.jpg .B > .I fooprog.jpg .PP This example rotates an image 90 degrees clockwise, discarding any unrotatable edge pixels: .IP .B jpegtran \-rot 90 -trim .I foo.jpg .B > .I foo90.jpg .SH ENVIRONMENT .TP .B JPEGMEM If this environment variable is set, its value is the default memory limit. The value is specified as described for the .B \-maxmemory switch. .B JPEGMEM overrides the default value specified when the program was compiled, and itself is overridden by an explicit .BR \-maxmemory . .SH SEE ALSO .BR cjpeg (1), .BR djpeg (1), .BR rdjpgcom (1), .BR wrjpgcom (1) .br Wallace, Gregory K. "The JPEG Still Picture Compression Standard", Communications of the ACM, April 1991 (vol. 34, no. 4), pp. 30-44. .SH AUTHOR Independent JPEG Group .PP This file was modified by The libjpeg-turbo Project to include only information relevant to libjpeg-turbo and to wordsmith certain sections. .SH BUGS The transform options can't transform odd-size images perfectly. Use .B \-trim or .B \-perfect if you don't like the results. .PP The entire image is read into memory and then written out again, even in cases where this isn't really necessary. Expect swapping on large images, especially when using the more complex transform options. libjpeg-turbo-1.4.2/jconfigint.h.in0000644000076500007650000000033012600050400014105 00000000000000/* libjpeg-turbo build number */ #undef BUILD /* How to obtain function inlining. */ #undef INLINE /* Define to the full name of this package. */ #undef PACKAGE_NAME /* Version number of package */ #undef VERSION libjpeg-turbo-1.4.2/tjbenchtest.in0000755000076500007650000002661112600050400014057 00000000000000#!/bin/bash set -u set -e trap onexit INT trap onexit TERM trap onexit EXIT onexit() { if [ -d $OUTDIR ]; then rm -rf $OUTDIR fi } runme() { echo \*\*\* $* $* } EXT=bmp IMAGES="vgl_5674_0098.${EXT} vgl_6434_0018a.${EXT} vgl_6548_0026a.${EXT} nightshot_iso_100.${EXT}" IMGDIR=@srcdir@/testimages OUTDIR=`mktemp -d /tmp/__tjbenchtest_output.XXXXXX` EXEDIR=. BMPARG= NSARG= YUVARG= ALLOC=0 ALLOCARG= if [ "$EXT" = "bmp" ]; then BMPARG=-bmp; fi if [ -d $OUTDIR ]; then rm -rf $OUTDIR fi mkdir -p $OUTDIR exec >$EXEDIR/tjbenchtest.log if [ $# -gt 0 ]; then if [ "$1" = "-yuv" ]; then NSARG=-nosmooth YUVARG=-yuv # NOTE: The combination of tjEncodeYUV*() and tjCompressFromYUV*() does not # always produce bitwise-identical results to tjCompress*() if subsampling is # enabled. In both cases, if the image width or height are not evenly # divisible by the MCU width/height, then the bottom and/or right edge are # expanded. However, the libjpeg code performs this expansion prior to # downsampling, and TurboJPEG performs it in tjCompressFromYUV*(), which is # after downsampling. Thus, the two will agree only if the width/height along # each downsampled dimension is an odd number or is evenly divisible by the MCU # width/height. This disagreement basically amounts to a round-off error, but # there is no easy way around it, so for now, we just test the only image that # works. (NOTE: nightshot_iso_100 does not suffer from the above issue, but # it suffers from an unrelated problem whereby the combination of # tjDecompressToYUV*() and tjDecodeYUV*() do not produce bitwise-identical # results to tjDecompress*() if decompression scaling is enabled. This latter # phenomenon is not yet fully understood but is also believed to be some sort # of round-off error.) IMAGES="vgl_6548_0026a.${EXT}" fi if [ "$1" = "-alloc" ]; then ALLOCARG=-alloc ALLOC=1 fi fi # Standard tests for image in $IMAGES; do cp $IMGDIR/$image $OUTDIR basename=`basename $image .${EXT}` runme $EXEDIR/cjpeg -quality 95 -dct fast -grayscale -outfile $OUTDIR/${basename}_GRAY_fast_cjpeg.jpg $IMGDIR/${basename}.${EXT} runme $EXEDIR/cjpeg -quality 95 -dct fast -sample 2x2 -outfile $OUTDIR/${basename}_420_fast_cjpeg.jpg $IMGDIR/${basename}.${EXT} runme $EXEDIR/cjpeg -quality 95 -dct fast -sample 2x1 -outfile $OUTDIR/${basename}_422_fast_cjpeg.jpg $IMGDIR/${basename}.${EXT} runme $EXEDIR/cjpeg -quality 95 -dct fast -sample 1x1 -outfile $OUTDIR/${basename}_444_fast_cjpeg.jpg $IMGDIR/${basename}.${EXT} runme $EXEDIR/cjpeg -quality 95 -dct int -grayscale -outfile $OUTDIR/${basename}_GRAY_accurate_cjpeg.jpg $IMGDIR/${basename}.${EXT} runme $EXEDIR/cjpeg -quality 95 -dct int -sample 2x2 -outfile $OUTDIR/${basename}_420_accurate_cjpeg.jpg $IMGDIR/${basename}.${EXT} runme $EXEDIR/cjpeg -quality 95 -dct int -sample 2x1 -outfile $OUTDIR/${basename}_422_accurate_cjpeg.jpg $IMGDIR/${basename}.${EXT} runme $EXEDIR/cjpeg -quality 95 -dct int -sample 1x1 -outfile $OUTDIR/${basename}_444_accurate_cjpeg.jpg $IMGDIR/${basename}.${EXT} for samp in GRAY 420 422 444; do runme $EXEDIR/djpeg -rgb $NSARG $BMPARG -outfile $OUTDIR/${basename}_${samp}_default_djpeg.${EXT} $OUTDIR/${basename}_${samp}_fast_cjpeg.jpg runme $EXEDIR/djpeg -dct fast -rgb $NSARG $BMPARG -outfile $OUTDIR/${basename}_${samp}_fast_djpeg.${EXT} $OUTDIR/${basename}_${samp}_fast_cjpeg.jpg runme $EXEDIR/djpeg -dct int -rgb $NSARG $BMPARG -outfile $OUTDIR/${basename}_${samp}_accurate_djpeg.${EXT} $OUTDIR/${basename}_${samp}_accurate_cjpeg.jpg done for samp in 420 422; do runme $EXEDIR/djpeg -nosmooth $BMPARG -outfile $OUTDIR/${basename}_${samp}_default_nosmooth_djpeg.${EXT} $OUTDIR/${basename}_${samp}_fast_cjpeg.jpg runme $EXEDIR/djpeg -dct fast -nosmooth $BMPARG -outfile $OUTDIR/${basename}_${samp}_fast_nosmooth_djpeg.${EXT} $OUTDIR/${basename}_${samp}_fast_cjpeg.jpg runme $EXEDIR/djpeg -dct int -nosmooth $BMPARG -outfile $OUTDIR/${basename}_${samp}_accurate_nosmooth_djpeg.${EXT} $OUTDIR/${basename}_${samp}_accurate_cjpeg.jpg done # Compression for dct in accurate fast; do runme $EXEDIR/tjbench $OUTDIR/$image 95 -rgb -quiet -benchtime 0.01 -warmup 0 -${dct}dct $YUVARG $ALLOCARG for samp in GRAY 420 422 444; do runme cmp $OUTDIR/${basename}_${samp}_Q95.jpg $OUTDIR/${basename}_${samp}_${dct}_cjpeg.jpg done done for dct in fast accurate default; do dctarg=-${dct}dct if [ "${dct}" = "default" ]; then dctarg= fi # Tiled compression & decompression runme $EXEDIR/tjbench $OUTDIR/$image 95 -rgb -tile -quiet -benchtime 0.01 -warmup 0 ${dctarg} $YUVARG $ALLOCARG for samp in GRAY 444; do if [ $ALLOC = 1 ]; then runme cmp $OUTDIR/${basename}_${samp}_Q95_full.${EXT} $OUTDIR/${basename}_${samp}_${dct}_djpeg.${EXT} rm $OUTDIR/${basename}_${samp}_Q95_full.${EXT} else for i in $OUTDIR/${basename}_${samp}_Q95_[0-9]*[0-9]x[0-9]*[0-9].${EXT} \ $OUTDIR/${basename}_${samp}_Q95_full.${EXT}; do runme cmp $i $OUTDIR/${basename}_${samp}_${dct}_djpeg.${EXT} rm $i done fi done runme $EXEDIR/tjbench $OUTDIR/$image 95 -rgb -tile -quiet -benchtime 0.01 -warmup 0 -fastupsample ${dctarg} $YUVARG $ALLOCARG for samp in 420 422; do if [ $ALLOC = 1 ]; then runme cmp $OUTDIR/${basename}_${samp}_Q95_full.${EXT} $OUTDIR/${basename}_${samp}_${dct}_nosmooth_djpeg.${EXT} rm $OUTDIR/${basename}_${samp}_Q95_full.${EXT} else for i in $OUTDIR/${basename}_${samp}_Q95_[0-9]*[0-9]x[0-9]*[0-9].${EXT} \ $OUTDIR/${basename}_${samp}_Q95_full.${EXT}; do runme cmp $i $OUTDIR/${basename}_${samp}_${dct}_nosmooth_djpeg.${EXT} rm $i done fi done # Tiled decompression for samp in GRAY 444; do runme $EXEDIR/tjbench $OUTDIR/${basename}_${samp}_Q95.jpg $BMPARG -tile -quiet -benchtime 0.01 -warmup 0 ${dctarg} $YUVARG $ALLOCARG if [ $ALLOC = 1 ]; then runme cmp $OUTDIR/${basename}_${samp}_Q95_full.${EXT} $OUTDIR/${basename}_${samp}_${dct}_djpeg.${EXT} rm $OUTDIR/${basename}_${samp}_Q95_full.${EXT} else for i in $OUTDIR/${basename}_${samp}_Q95_[0-9]*[0-9]x[0-9]*[0-9].${EXT} \ $OUTDIR/${basename}_${samp}_Q95_full.${EXT}; do runme cmp $i $OUTDIR/${basename}_${samp}_${dct}_djpeg.${EXT} rm $i done fi done for samp in 420 422; do runme $EXEDIR/tjbench $OUTDIR/${basename}_${samp}_Q95.jpg $BMPARG -tile -quiet -benchtime 0.01 -warmup 0 -fastupsample ${dctarg} $YUVARG $ALLOCARG if [ $ALLOC = 1 ]; then runme cmp $OUTDIR/${basename}_${samp}_Q95_full.${EXT} $OUTDIR/${basename}_${samp}_${dct}_nosmooth_djpeg.${EXT} rm $OUTDIR/${basename}_${samp}_Q95_full.${EXT} else for i in $OUTDIR/${basename}_${samp}_Q95_[0-9]*[0-9]x[0-9]*[0-9].${EXT} \ $OUTDIR/${basename}_${samp}_Q95_full.${EXT}; do runme cmp $i $OUTDIR/${basename}_${samp}_${dct}_nosmooth_djpeg.${EXT} rm $i done fi done done # Scaled decompression for scale in 2_1 15_8 7_4 13_8 3_2 11_8 5_4 9_8 7_8 3_4 5_8 1_2 3_8 1_4 1_8; do scalearg=`echo $scale | sed s@_@/@g` for samp in GRAY 420 422 444; do runme $EXEDIR/djpeg -rgb -scale ${scalearg} $NSARG $BMPARG -outfile $OUTDIR/${basename}_${samp}_${scale}_djpeg.${EXT} $OUTDIR/${basename}_${samp}_fast_cjpeg.jpg runme $EXEDIR/tjbench $OUTDIR/${basename}_${samp}_Q95.jpg $BMPARG -scale ${scalearg} -quiet -benchtime 0.01 -warmup 0 $YUVARG $ALLOCARG runme cmp $OUTDIR/${basename}_${samp}_Q95_${scale}.${EXT} $OUTDIR/${basename}_${samp}_${scale}_djpeg.${EXT} rm $OUTDIR/${basename}_${samp}_Q95_${scale}.${EXT} done done # Transforms for samp in GRAY 420 422 444; do runme $EXEDIR/jpegtran -flip horizontal -trim -outfile $OUTDIR/${basename}_${samp}_hflip_jpegtran.jpg $OUTDIR/${basename}_${samp}_Q95.jpg runme $EXEDIR/jpegtran -flip vertical -trim -outfile $OUTDIR/${basename}_${samp}_vflip_jpegtran.jpg $OUTDIR/${basename}_${samp}_Q95.jpg runme $EXEDIR/jpegtran -transpose -trim -outfile $OUTDIR/${basename}_${samp}_transpose_jpegtran.jpg $OUTDIR/${basename}_${samp}_Q95.jpg runme $EXEDIR/jpegtran -transverse -trim -outfile $OUTDIR/${basename}_${samp}_transverse_jpegtran.jpg $OUTDIR/${basename}_${samp}_Q95.jpg runme $EXEDIR/jpegtran -rotate 90 -trim -outfile $OUTDIR/${basename}_${samp}_rot90_jpegtran.jpg $OUTDIR/${basename}_${samp}_Q95.jpg runme $EXEDIR/jpegtran -rotate 180 -trim -outfile $OUTDIR/${basename}_${samp}_rot180_jpegtran.jpg $OUTDIR/${basename}_${samp}_Q95.jpg runme $EXEDIR/jpegtran -rotate 270 -trim -outfile $OUTDIR/${basename}_${samp}_rot270_jpegtran.jpg $OUTDIR/${basename}_${samp}_Q95.jpg done for xform in hflip vflip transpose transverse rot90 rot180 rot270; do for samp in GRAY 444; do runme $EXEDIR/djpeg -rgb $BMPARG -outfile $OUTDIR/${basename}_${samp}_${xform}_jpegtran.${EXT} $OUTDIR/${basename}_${samp}_${xform}_jpegtran.jpg runme $EXEDIR/tjbench $OUTDIR/${basename}_${samp}_Q95.jpg $BMPARG -$xform -tile -quiet -benchtime 0.01 -warmup 0 $YUVARG $ALLOCARG if [ $ALLOC = 1 ]; then runme cmp $OUTDIR/${basename}_${samp}_Q95_full.${EXT} $OUTDIR/${basename}_${samp}_${xform}_jpegtran.${EXT} rm $OUTDIR/${basename}_${samp}_Q95_full.${EXT} else for i in $OUTDIR/${basename}_${samp}_Q95_[0-9]*[0-9]x[0-9]*[0-9].${EXT} \ $OUTDIR/${basename}_${samp}_Q95_full.${EXT}; do runme cmp $i $OUTDIR/${basename}_${samp}_${xform}_jpegtran.${EXT} rm $i done fi done for samp in 420 422; do runme $EXEDIR/djpeg -nosmooth -rgb $BMPARG -outfile $OUTDIR/${basename}_${samp}_${xform}_jpegtran.${EXT} $OUTDIR/${basename}_${samp}_${xform}_jpegtran.jpg runme $EXEDIR/tjbench $OUTDIR/${basename}_${samp}_Q95.jpg $BMPARG -$xform -tile -quiet -benchtime 0.01 -warmup 0 -fastupsample $YUVARG $ALLOCARG if [ $ALLOC = 1 ]; then runme cmp $OUTDIR/${basename}_${samp}_Q95_full.${EXT} $OUTDIR/${basename}_${samp}_${xform}_jpegtran.${EXT} rm $OUTDIR/${basename}_${samp}_Q95_full.${EXT} else for i in $OUTDIR/${basename}_${samp}_Q95_[0-9]*[0-9]x[0-9]*[0-9].${EXT} \ $OUTDIR/${basename}_${samp}_Q95_full.${EXT}; do runme cmp $i $OUTDIR/${basename}_${samp}_${xform}_jpegtran.${EXT} rm $i done fi done done # Grayscale transform for xform in hflip vflip transpose transverse rot90 rot180 rot270; do for samp in GRAY 444 422 420; do runme $EXEDIR/tjbench $OUTDIR/${basename}_${samp}_Q95.jpg $BMPARG -$xform -tile -quiet -benchtime 0.01 -warmup 0 -grayscale $YUVARG $ALLOCARG if [ $ALLOC = 1 ]; then runme cmp $OUTDIR/${basename}_${samp}_Q95_full.${EXT} $OUTDIR/${basename}_GRAY_${xform}_jpegtran.${EXT} rm $OUTDIR/${basename}_${samp}_Q95_full.${EXT} else for i in $OUTDIR/${basename}_${samp}_Q95_[0-9]*[0-9]x[0-9]*[0-9].${EXT} \ $OUTDIR/${basename}_${samp}_Q95_full.${EXT}; do runme cmp $i $OUTDIR/${basename}_GRAY_${xform}_jpegtran.${EXT} rm $i done fi done done # Transforms with scaling for xform in hflip vflip transpose transverse rot90 rot180 rot270; do for samp in GRAY 444 422 420; do for scale in 2_1 15_8 7_4 13_8 3_2 11_8 5_4 9_8 7_8 3_4 5_8 1_2 3_8 1_4 1_8; do scalearg=`echo $scale | sed s@_@/@g` runme $EXEDIR/djpeg -rgb -scale ${scalearg} $NSARG $BMPARG -outfile $OUTDIR/${basename}_${samp}_${xform}_${scale}_jpegtran.${EXT} $OUTDIR/${basename}_${samp}_${xform}_jpegtran.jpg runme $EXEDIR/tjbench $OUTDIR/${basename}_${samp}_Q95.jpg $BMPARG -$xform -scale ${scalearg} -quiet -benchtime 0.01 -warmup 0 $YUVARG $ALLOCARG runme cmp $OUTDIR/${basename}_${samp}_Q95_${scale}.${EXT} $OUTDIR/${basename}_${samp}_${xform}_${scale}_jpegtran.${EXT} rm $OUTDIR/${basename}_${samp}_Q95_${scale}.${EXT} done done done done echo SUCCESS! libjpeg-turbo-1.4.2/tjutil.c0000644000076500007650000000417612600050400012670 00000000000000/* * Copyright (C)2011 D. R. Commander. All Rights Reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * - Neither the name of the libjpeg-turbo Project nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS", * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #ifdef _WIN32 #include static double getfreq(void) { LARGE_INTEGER freq; if(!QueryPerformanceFrequency(&freq)) return 0.0; return (double)freq.QuadPart; } static double f=-1.0; double gettime(void) { LARGE_INTEGER t; if(f<0.0) f=getfreq(); if(f==0.0) return (double)GetTickCount()/1000.; else { QueryPerformanceCounter(&t); return (double)t.QuadPart/f; } } #else #include #include double gettime(void) { struct timeval tv; if(gettimeofday(&tv, NULL)<0) return 0.0; else return (double)tv.tv_sec+((double)tv.tv_usec/1000000.); } #endif libjpeg-turbo-1.4.2/bmp.h0000644000076500007650000000350012600050400012126 00000000000000/* * Copyright (C)2011 D. R. Commander. All Rights Reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * - Neither the name of the libjpeg-turbo Project nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS", * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #ifndef __BMP_H__ #define __BMP_H__ #include "./turbojpeg.h" int loadbmp(char *filename, unsigned char **buf, int *w, int *h, int pf, int bottomup); int savebmp(char *filename, unsigned char *buf, int w, int h, int pf, int bottomup); const char *bmpgeterr(void); #endif libjpeg-turbo-1.4.2/jdsample.c0000644000076500007650000004270012600050400013147 00000000000000/* * jdsample.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1991-1996, Thomas G. Lane. * libjpeg-turbo Modifications: * Copyright 2009 Pierre Ossman for Cendio AB * Copyright (C) 2010, D. R. Commander. * Copyright (C) 2014, MIPS Technologies, Inc., California * For conditions of distribution and use, see the accompanying README file. * * This file contains upsampling routines. * * Upsampling input data is counted in "row groups". A row group * is defined to be (v_samp_factor * DCT_scaled_size / min_DCT_scaled_size) * sample rows of each component. Upsampling will normally produce * max_v_samp_factor pixel rows from each row group (but this could vary * if the upsampler is applying a scale factor of its own). * * An excellent reference for image resampling is * Digital Image Warping, George Wolberg, 1990. * Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" #include "jsimd.h" #include "jpegcomp.h" /* Pointer to routine to upsample a single component */ typedef void (*upsample1_ptr) (j_decompress_ptr cinfo, jpeg_component_info * compptr, JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr); /* Private subobject */ typedef struct { struct jpeg_upsampler pub; /* public fields */ /* Color conversion buffer. When using separate upsampling and color * conversion steps, this buffer holds one upsampled row group until it * has been color converted and output. * Note: we do not allocate any storage for component(s) which are full-size, * ie do not need rescaling. The corresponding entry of color_buf[] is * simply set to point to the input data array, thereby avoiding copying. */ JSAMPARRAY color_buf[MAX_COMPONENTS]; /* Per-component upsampling method pointers */ upsample1_ptr methods[MAX_COMPONENTS]; int next_row_out; /* counts rows emitted from color_buf */ JDIMENSION rows_to_go; /* counts rows remaining in image */ /* Height of an input row group for each component. */ int rowgroup_height[MAX_COMPONENTS]; /* These arrays save pixel expansion factors so that int_expand need not * recompute them each time. They are unused for other upsampling methods. */ UINT8 h_expand[MAX_COMPONENTS]; UINT8 v_expand[MAX_COMPONENTS]; } my_upsampler; typedef my_upsampler * my_upsample_ptr; /* * Initialize for an upsampling pass. */ METHODDEF(void) start_pass_upsample (j_decompress_ptr cinfo) { my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; /* Mark the conversion buffer empty */ upsample->next_row_out = cinfo->max_v_samp_factor; /* Initialize total-height counter for detecting bottom of image */ upsample->rows_to_go = cinfo->output_height; } /* * Control routine to do upsampling (and color conversion). * * In this version we upsample each component independently. * We upsample one row group into the conversion buffer, then apply * color conversion a row at a time. */ METHODDEF(void) sep_upsample (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, JDIMENSION in_row_groups_avail, JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail) { my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; int ci; jpeg_component_info * compptr; JDIMENSION num_rows; /* Fill the conversion buffer, if it's empty */ if (upsample->next_row_out >= cinfo->max_v_samp_factor) { for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { /* Invoke per-component upsample method. Notice we pass a POINTER * to color_buf[ci], so that fullsize_upsample can change it. */ (*upsample->methods[ci]) (cinfo, compptr, input_buf[ci] + (*in_row_group_ctr * upsample->rowgroup_height[ci]), upsample->color_buf + ci); } upsample->next_row_out = 0; } /* Color-convert and emit rows */ /* How many we have in the buffer: */ num_rows = (JDIMENSION) (cinfo->max_v_samp_factor - upsample->next_row_out); /* Not more than the distance to the end of the image. Need this test * in case the image height is not a multiple of max_v_samp_factor: */ if (num_rows > upsample->rows_to_go) num_rows = upsample->rows_to_go; /* And not more than what the client can accept: */ out_rows_avail -= *out_row_ctr; if (num_rows > out_rows_avail) num_rows = out_rows_avail; (*cinfo->cconvert->color_convert) (cinfo, upsample->color_buf, (JDIMENSION) upsample->next_row_out, output_buf + *out_row_ctr, (int) num_rows); /* Adjust counts */ *out_row_ctr += num_rows; upsample->rows_to_go -= num_rows; upsample->next_row_out += num_rows; /* When the buffer is emptied, declare this input row group consumed */ if (upsample->next_row_out >= cinfo->max_v_samp_factor) (*in_row_group_ctr)++; } /* * These are the routines invoked by sep_upsample to upsample pixel values * of a single component. One row group is processed per call. */ /* * For full-size components, we just make color_buf[ci] point at the * input buffer, and thus avoid copying any data. Note that this is * safe only because sep_upsample doesn't declare the input row group * "consumed" until we are done color converting and emitting it. */ METHODDEF(void) fullsize_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) { *output_data_ptr = input_data; } /* * This is a no-op version used for "uninteresting" components. * These components will not be referenced by color conversion. */ METHODDEF(void) noop_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) { *output_data_ptr = NULL; /* safety check */ } /* * This version handles any integral sampling ratios. * This is not used for typical JPEG files, so it need not be fast. * Nor, for that matter, is it particularly accurate: the algorithm is * simple replication of the input pixel onto the corresponding output * pixels. The hi-falutin sampling literature refers to this as a * "box filter". A box filter tends to introduce visible artifacts, * so if you are actually going to use 3:1 or 4:1 sampling ratios * you would be well advised to improve this code. */ METHODDEF(void) int_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) { my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; JSAMPARRAY output_data = *output_data_ptr; register JSAMPROW inptr, outptr; register JSAMPLE invalue; register int h; JSAMPROW outend; int h_expand, v_expand; int inrow, outrow; h_expand = upsample->h_expand[compptr->component_index]; v_expand = upsample->v_expand[compptr->component_index]; inrow = outrow = 0; while (outrow < cinfo->max_v_samp_factor) { /* Generate one output row with proper horizontal expansion */ inptr = input_data[inrow]; outptr = output_data[outrow]; outend = outptr + cinfo->output_width; while (outptr < outend) { invalue = *inptr++; /* don't need GETJSAMPLE() here */ for (h = h_expand; h > 0; h--) { *outptr++ = invalue; } } /* Generate any additional output rows by duplicating the first one */ if (v_expand > 1) { jcopy_sample_rows(output_data, outrow, output_data, outrow+1, v_expand-1, cinfo->output_width); } inrow++; outrow += v_expand; } } /* * Fast processing for the common case of 2:1 horizontal and 1:1 vertical. * It's still a box filter. */ METHODDEF(void) h2v1_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) { JSAMPARRAY output_data = *output_data_ptr; register JSAMPROW inptr, outptr; register JSAMPLE invalue; JSAMPROW outend; int inrow; for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) { inptr = input_data[inrow]; outptr = output_data[inrow]; outend = outptr + cinfo->output_width; while (outptr < outend) { invalue = *inptr++; /* don't need GETJSAMPLE() here */ *outptr++ = invalue; *outptr++ = invalue; } } } /* * Fast processing for the common case of 2:1 horizontal and 2:1 vertical. * It's still a box filter. */ METHODDEF(void) h2v2_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) { JSAMPARRAY output_data = *output_data_ptr; register JSAMPROW inptr, outptr; register JSAMPLE invalue; JSAMPROW outend; int inrow, outrow; inrow = outrow = 0; while (outrow < cinfo->max_v_samp_factor) { inptr = input_data[inrow]; outptr = output_data[outrow]; outend = outptr + cinfo->output_width; while (outptr < outend) { invalue = *inptr++; /* don't need GETJSAMPLE() here */ *outptr++ = invalue; *outptr++ = invalue; } jcopy_sample_rows(output_data, outrow, output_data, outrow+1, 1, cinfo->output_width); inrow++; outrow += 2; } } /* * Fancy processing for the common case of 2:1 horizontal and 1:1 vertical. * * The upsampling algorithm is linear interpolation between pixel centers, * also known as a "triangle filter". This is a good compromise between * speed and visual quality. The centers of the output pixels are 1/4 and 3/4 * of the way between input pixel centers. * * A note about the "bias" calculations: when rounding fractional values to * integer, we do not want to always round 0.5 up to the next integer. * If we did that, we'd introduce a noticeable bias towards larger values. * Instead, this code is arranged so that 0.5 will be rounded up or down at * alternate pixel locations (a simple ordered dither pattern). */ METHODDEF(void) h2v1_fancy_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) { JSAMPARRAY output_data = *output_data_ptr; register JSAMPROW inptr, outptr; register int invalue; register JDIMENSION colctr; int inrow; for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) { inptr = input_data[inrow]; outptr = output_data[inrow]; /* Special case for first column */ invalue = GETJSAMPLE(*inptr++); *outptr++ = (JSAMPLE) invalue; *outptr++ = (JSAMPLE) ((invalue * 3 + GETJSAMPLE(*inptr) + 2) >> 2); for (colctr = compptr->downsampled_width - 2; colctr > 0; colctr--) { /* General case: 3/4 * nearer pixel + 1/4 * further pixel */ invalue = GETJSAMPLE(*inptr++) * 3; *outptr++ = (JSAMPLE) ((invalue + GETJSAMPLE(inptr[-2]) + 1) >> 2); *outptr++ = (JSAMPLE) ((invalue + GETJSAMPLE(*inptr) + 2) >> 2); } /* Special case for last column */ invalue = GETJSAMPLE(*inptr); *outptr++ = (JSAMPLE) ((invalue * 3 + GETJSAMPLE(inptr[-1]) + 1) >> 2); *outptr++ = (JSAMPLE) invalue; } } /* * Fancy processing for the common case of 2:1 horizontal and 2:1 vertical. * Again a triangle filter; see comments for h2v1 case, above. * * It is OK for us to reference the adjacent input rows because we demanded * context from the main buffer controller (see initialization code). */ METHODDEF(void) h2v2_fancy_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) { JSAMPARRAY output_data = *output_data_ptr; register JSAMPROW inptr0, inptr1, outptr; #if BITS_IN_JSAMPLE == 8 register int thiscolsum, lastcolsum, nextcolsum; #else register INT32 thiscolsum, lastcolsum, nextcolsum; #endif register JDIMENSION colctr; int inrow, outrow, v; inrow = outrow = 0; while (outrow < cinfo->max_v_samp_factor) { for (v = 0; v < 2; v++) { /* inptr0 points to nearest input row, inptr1 points to next nearest */ inptr0 = input_data[inrow]; if (v == 0) /* next nearest is row above */ inptr1 = input_data[inrow-1]; else /* next nearest is row below */ inptr1 = input_data[inrow+1]; outptr = output_data[outrow++]; /* Special case for first column */ thiscolsum = GETJSAMPLE(*inptr0++) * 3 + GETJSAMPLE(*inptr1++); nextcolsum = GETJSAMPLE(*inptr0++) * 3 + GETJSAMPLE(*inptr1++); *outptr++ = (JSAMPLE) ((thiscolsum * 4 + 8) >> 4); *outptr++ = (JSAMPLE) ((thiscolsum * 3 + nextcolsum + 7) >> 4); lastcolsum = thiscolsum; thiscolsum = nextcolsum; for (colctr = compptr->downsampled_width - 2; colctr > 0; colctr--) { /* General case: 3/4 * nearer pixel + 1/4 * further pixel in each */ /* dimension, thus 9/16, 3/16, 3/16, 1/16 overall */ nextcolsum = GETJSAMPLE(*inptr0++) * 3 + GETJSAMPLE(*inptr1++); *outptr++ = (JSAMPLE) ((thiscolsum * 3 + lastcolsum + 8) >> 4); *outptr++ = (JSAMPLE) ((thiscolsum * 3 + nextcolsum + 7) >> 4); lastcolsum = thiscolsum; thiscolsum = nextcolsum; } /* Special case for last column */ *outptr++ = (JSAMPLE) ((thiscolsum * 3 + lastcolsum + 8) >> 4); *outptr++ = (JSAMPLE) ((thiscolsum * 4 + 7) >> 4); } inrow++; } } /* * Module initialization routine for upsampling. */ GLOBAL(void) jinit_upsampler (j_decompress_ptr cinfo) { my_upsample_ptr upsample; int ci; jpeg_component_info * compptr; boolean need_buffer, do_fancy; int h_in_group, v_in_group, h_out_group, v_out_group; upsample = (my_upsample_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, sizeof(my_upsampler)); cinfo->upsample = (struct jpeg_upsampler *) upsample; upsample->pub.start_pass = start_pass_upsample; upsample->pub.upsample = sep_upsample; upsample->pub.need_context_rows = FALSE; /* until we find out differently */ if (cinfo->CCIR601_sampling) /* this isn't supported */ ERREXIT(cinfo, JERR_CCIR601_NOTIMPL); /* jdmainct.c doesn't support context rows when min_DCT_scaled_size = 1, * so don't ask for it. */ do_fancy = cinfo->do_fancy_upsampling && cinfo->_min_DCT_scaled_size > 1; /* Verify we can handle the sampling factors, select per-component methods, * and create storage as needed. */ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { /* Compute size of an "input group" after IDCT scaling. This many samples * are to be converted to max_h_samp_factor * max_v_samp_factor pixels. */ h_in_group = (compptr->h_samp_factor * compptr->_DCT_scaled_size) / cinfo->_min_DCT_scaled_size; v_in_group = (compptr->v_samp_factor * compptr->_DCT_scaled_size) / cinfo->_min_DCT_scaled_size; h_out_group = cinfo->max_h_samp_factor; v_out_group = cinfo->max_v_samp_factor; upsample->rowgroup_height[ci] = v_in_group; /* save for use later */ need_buffer = TRUE; if (! compptr->component_needed) { /* Don't bother to upsample an uninteresting component. */ upsample->methods[ci] = noop_upsample; need_buffer = FALSE; } else if (h_in_group == h_out_group && v_in_group == v_out_group) { /* Fullsize components can be processed without any work. */ upsample->methods[ci] = fullsize_upsample; need_buffer = FALSE; } else if (h_in_group * 2 == h_out_group && v_in_group == v_out_group) { /* Special cases for 2h1v upsampling */ if (do_fancy && compptr->downsampled_width > 2) { if (jsimd_can_h2v1_fancy_upsample()) upsample->methods[ci] = jsimd_h2v1_fancy_upsample; else upsample->methods[ci] = h2v1_fancy_upsample; } else { if (jsimd_can_h2v1_upsample()) upsample->methods[ci] = jsimd_h2v1_upsample; else upsample->methods[ci] = h2v1_upsample; } } else if (h_in_group * 2 == h_out_group && v_in_group * 2 == v_out_group) { /* Special cases for 2h2v upsampling */ if (do_fancy && compptr->downsampled_width > 2) { if (jsimd_can_h2v2_fancy_upsample()) upsample->methods[ci] = jsimd_h2v2_fancy_upsample; else upsample->methods[ci] = h2v2_fancy_upsample; upsample->pub.need_context_rows = TRUE; } else { if (jsimd_can_h2v2_upsample()) upsample->methods[ci] = jsimd_h2v2_upsample; else upsample->methods[ci] = h2v2_upsample; } } else if ((h_out_group % h_in_group) == 0 && (v_out_group % v_in_group) == 0) { /* Generic integral-factors upsampling method */ #if defined(__mips__) if (jsimd_can_int_upsample()) upsample->methods[ci] = jsimd_int_upsample; else #endif upsample->methods[ci] = int_upsample; upsample->h_expand[ci] = (UINT8) (h_out_group / h_in_group); upsample->v_expand[ci] = (UINT8) (v_out_group / v_in_group); } else ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL); if (need_buffer) { upsample->color_buf[ci] = (*cinfo->mem->alloc_sarray) ((j_common_ptr) cinfo, JPOOL_IMAGE, (JDIMENSION) jround_up((long) cinfo->output_width, (long) cinfo->max_h_samp_factor), (JDIMENSION) cinfo->max_v_samp_factor); } } } libjpeg-turbo-1.4.2/rdjpgcom.10000644000076500007650000000324312600050400013072 00000000000000.TH RDJPGCOM 1 "02 April 2009" .SH NAME rdjpgcom \- display text comments from a JPEG file .SH SYNOPSIS .B rdjpgcom [ .B \-raw ] [ .B \-verbose ] [ .I filename ] .LP .SH DESCRIPTION .LP .B rdjpgcom reads the named JPEG/JFIF file, or the standard input if no file is named, and prints any text comments found in the file on the standard output. .PP The JPEG standard allows "comment" (COM) blocks to occur within a JPEG file. Although the standard doesn't actually define what COM blocks are for, they are widely used to hold user-supplied text strings. This lets you add annotations, titles, index terms, etc to your JPEG files, and later retrieve them as text. COM blocks do not interfere with the image stored in the JPEG file. The maximum size of a COM block is 64K, but you can have as many of them as you like in one JPEG file. .SH OPTIONS .TP .B \-raw Normally .B rdjpgcom escapes non-printable characters in comments, for security reasons. This option avoids that. .PP .B \-verbose Causes .B rdjpgcom to also display the JPEG image dimensions. .PP Switch names may be abbreviated, and are not case sensitive. .SH HINTS .B rdjpgcom does not depend on the IJG JPEG library. Its source code is intended as an illustration of the minimum amount of code required to parse a JPEG file header correctly. .PP In .B \-verbose mode, .B rdjpgcom will also attempt to print the contents of any "APP12" markers as text. Some digital cameras produce APP12 markers containing useful textual information. If you like, you can modify the source code to print other APPn marker types as well. .SH SEE ALSO .BR cjpeg (1), .BR djpeg (1), .BR jpegtran (1), .BR wrjpgcom (1) .SH AUTHOR Independent JPEG Group libjpeg-turbo-1.4.2/bmp.c0000644000076500007650000002323012600050400012123 00000000000000/* * Copyright (C)2011, 2015 D. R. Commander. All Rights Reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * - Neither the name of the libjpeg-turbo Project nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS", * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include "cdjpeg.h" #include #include #include "tjutil.h" #include "bmp.h" /* This duplicates the functionality of the VirtualGL bitmap library using the components from cjpeg and djpeg */ /* Error handling (based on example in example.c) */ static char errStr[JMSG_LENGTH_MAX]="No error"; struct my_error_mgr { struct jpeg_error_mgr pub; jmp_buf setjmp_buffer; }; typedef struct my_error_mgr *my_error_ptr; static void my_error_exit(j_common_ptr cinfo) { my_error_ptr myerr=(my_error_ptr)cinfo->err; (*cinfo->err->output_message)(cinfo); longjmp(myerr->setjmp_buffer, 1); } /* Based on output_message() in jerror.c */ static void my_output_message(j_common_ptr cinfo) { (*cinfo->err->format_message)(cinfo, errStr); } #define _throw(m) {snprintf(errStr, JMSG_LENGTH_MAX, "%s", m); \ retval=-1; goto bailout;} #define _throwunix(m) {snprintf(errStr, JMSG_LENGTH_MAX, "%s\n%s", m, \ strerror(errno)); retval=-1; goto bailout;} static void pixelconvert(unsigned char *srcbuf, int srcpf, int srcbottomup, unsigned char *dstbuf, int dstpf, int dstbottomup, int w, int h) { unsigned char *srcrowptr=srcbuf, *srccolptr; int srcps=tjPixelSize[srcpf]; int srcstride=srcbottomup? -w*srcps:w*srcps; unsigned char *dstrowptr=dstbuf, *dstcolptr; int dstps=tjPixelSize[dstpf]; int dststride=dstbottomup? -w*dstps:w*dstps; int row, col; if(srcbottomup) srcrowptr=&srcbuf[w*srcps*(h-1)]; if(dstbottomup) dstrowptr=&dstbuf[w*dstps*(h-1)]; /* NOTE: These quick & dirty CMYK<->RGB conversion routines are for testing purposes only. Properly converting between CMYK and RGB requires a color management system. */ if(dstpf==TJPF_CMYK) { for(row=0; row1.0) c=1.0; if(c<0.) c=0.; if(m>1.0) m=1.0; if(m<0.) m=0.; if(y>1.0) y=1.0; if(y<0.) y=0.; if(k>1.0) k=1.0; if(k<0.) k=0.; *dstcolptr++=(unsigned char)(255.0-c*255.0+0.5); *dstcolptr++=(unsigned char)(255.0-m*255.0+0.5); *dstcolptr++=(unsigned char)(255.0-y*255.0+0.5); *dstcolptr++=(unsigned char)(255.0-k*255.0+0.5); } } } else if(srcpf==TJPF_CMYK) { for(row=0; row255.0) r=255.0; if(r<0.) r=0.; if(g>255.0) g=255.0; if(g<0.) g=0.; if(b>255.0) b=255.0; if(b<0.) b=0.; dstcolptr[tjRedOffset[dstpf]]=(unsigned char)(r+0.5); dstcolptr[tjGreenOffset[dstpf]]=(unsigned char)(g+0.5); dstcolptr[tjBlueOffset[dstpf]]=(unsigned char)(b+0.5); } } } else { for(row=0; row=TJ_NUMPF) _throw("loadbmp(): Invalid argument"); if((file=fopen(filename, "rb"))==NULL) _throwunix("loadbmp(): Cannot open input file"); cinfo.err=jpeg_std_error(&jerr.pub); jerr.pub.error_exit=my_error_exit; jerr.pub.output_message=my_output_message; if(setjmp(jerr.setjmp_buffer)) { /* If we get here, the JPEG code has signaled an error. */ retval=-1; goto bailout; } jpeg_create_compress(&cinfo); if((tempc=getc(file))<0 || ungetc(tempc, file)==EOF) _throwunix("loadbmp(): Could not read input file") else if(tempc==EOF) _throw("loadbmp(): Input file contains no data"); if(tempc=='B') { if((src=jinit_read_bmp(&cinfo))==NULL) _throw("loadbmp(): Could not initialize bitmap loader"); } else if(tempc=='P') { if((src=jinit_read_ppm(&cinfo))==NULL) _throw("loadbmp(): Could not initialize bitmap loader"); } else _throw("loadbmp(): Unsupported file type"); src->input_file=file; (*src->start_input)(&cinfo, src); (*cinfo.mem->realize_virt_arrays)((j_common_ptr)&cinfo); *w=cinfo.image_width; *h=cinfo.image_height; if(cinfo.input_components==1 && cinfo.in_color_space==JCS_RGB) srcpf=TJPF_GRAY; else srcpf=TJPF_RGB; dstps=tjPixelSize[dstpf]; if((*buf=(unsigned char *)malloc((*w)*(*h)*dstps))==NULL) _throw("loadbmp(): Memory allocation failure"); while(cinfo.next_scanlineget_pixel_rows)(&cinfo, src); for(i=0; ibuffer[i], srcpf, 0, outbuf, dstpf, bottomup, *w, nlines); } cinfo.next_scanline+=nlines; } (*src->finish_input)(&cinfo, src); bailout: jpeg_destroy_compress(&cinfo); if(file) fclose(file); if(retval<0 && buf && *buf) {free(*buf); *buf=NULL;} return retval; } int savebmp(char *filename, unsigned char *buf, int w, int h, int srcpf, int bottomup) { int retval=0, srcps, dstpf; struct jpeg_decompress_struct dinfo; struct my_error_mgr jerr; djpeg_dest_ptr dst; FILE *file=NULL; char *ptr=NULL; memset(&dinfo, 0, sizeof(struct jpeg_decompress_struct)); if(!filename || !buf || w<1 || h<1 || srcpf<0 || srcpf>=TJ_NUMPF) _throw("savebmp(): Invalid argument"); if((file=fopen(filename, "wb"))==NULL) _throwunix("savebmp(): Cannot open output file"); dinfo.err=jpeg_std_error(&jerr.pub); jerr.pub.error_exit=my_error_exit; jerr.pub.output_message=my_output_message; if(setjmp(jerr.setjmp_buffer)) { /* If we get here, the JPEG code has signaled an error. */ retval=-1; goto bailout; } jpeg_create_decompress(&dinfo); if(srcpf==TJPF_GRAY) { dinfo.out_color_components=dinfo.output_components=1; dinfo.out_color_space=JCS_GRAYSCALE; } else { dinfo.out_color_components=dinfo.output_components=3; dinfo.out_color_space=JCS_RGB; } dinfo.image_width=w; dinfo.image_height=h; dinfo.global_state=DSTATE_READY; dinfo.scale_num=dinfo.scale_denom=1; ptr=strrchr(filename, '.'); if(ptr && !strcasecmp(ptr, ".bmp")) { if((dst=jinit_write_bmp(&dinfo, 0))==NULL) _throw("savebmp(): Could not initialize bitmap writer"); } else { if((dst=jinit_write_ppm(&dinfo))==NULL) _throw("savebmp(): Could not initialize PPM writer"); } dst->output_file=file; (*dst->start_output)(&dinfo, dst); (*dinfo.mem->realize_virt_arrays)((j_common_ptr)&dinfo); if(srcpf==TJPF_GRAY) dstpf=srcpf; else dstpf=TJPF_RGB; srcps=tjPixelSize[srcpf]; while(dinfo.output_scanlinebuffer_height; for(i=0; ibuffer[i], dstpf, 0, w, nlines); } (*dst->put_pixel_rows)(&dinfo, dst, nlines); dinfo.output_scanline+=nlines; } (*dst->finish_output)(&dinfo, dst); bailout: jpeg_destroy_decompress(&dinfo); if(file) fclose(file); return retval; } const char *bmpgeterr(void) { return errStr; } libjpeg-turbo-1.4.2/jcparam.c0000644000076500007650000004333712600050400012774 00000000000000/* * jcparam.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1991-1998, Thomas G. Lane. * Modified 2003-2008 by Guido Vollbeding. * libjpeg-turbo Modifications: * Copyright (C) 2009-2011, D. R. Commander. * For conditions of distribution and use, see the accompanying README file. * * This file contains optional default-setting code for the JPEG compressor. * Applications do not have to use this file, but those that don't use it * must know a lot more about the innards of the JPEG code. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" #include "jstdhuff.c" /* * Quantization table setup routines */ GLOBAL(void) jpeg_add_quant_table (j_compress_ptr cinfo, int which_tbl, const unsigned int *basic_table, int scale_factor, boolean force_baseline) /* Define a quantization table equal to the basic_table times * a scale factor (given as a percentage). * If force_baseline is TRUE, the computed quantization table entries * are limited to 1..255 for JPEG baseline compatibility. */ { JQUANT_TBL ** qtblptr; int i; long temp; /* Safety check to ensure start_compress not called yet. */ if (cinfo->global_state != CSTATE_START) ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); if (which_tbl < 0 || which_tbl >= NUM_QUANT_TBLS) ERREXIT1(cinfo, JERR_DQT_INDEX, which_tbl); qtblptr = & cinfo->quant_tbl_ptrs[which_tbl]; if (*qtblptr == NULL) *qtblptr = jpeg_alloc_quant_table((j_common_ptr) cinfo); for (i = 0; i < DCTSIZE2; i++) { temp = ((long) basic_table[i] * scale_factor + 50L) / 100L; /* limit the values to the valid range */ if (temp <= 0L) temp = 1L; if (temp > 32767L) temp = 32767L; /* max quantizer needed for 12 bits */ if (force_baseline && temp > 255L) temp = 255L; /* limit to baseline range if requested */ (*qtblptr)->quantval[i] = (UINT16) temp; } /* Initialize sent_table FALSE so table will be written to JPEG file. */ (*qtblptr)->sent_table = FALSE; } /* These are the sample quantization tables given in JPEG spec section K.1. * The spec says that the values given produce "good" quality, and * when divided by 2, "very good" quality. */ static const unsigned int std_luminance_quant_tbl[DCTSIZE2] = { 16, 11, 10, 16, 24, 40, 51, 61, 12, 12, 14, 19, 26, 58, 60, 55, 14, 13, 16, 24, 40, 57, 69, 56, 14, 17, 22, 29, 51, 87, 80, 62, 18, 22, 37, 56, 68, 109, 103, 77, 24, 35, 55, 64, 81, 104, 113, 92, 49, 64, 78, 87, 103, 121, 120, 101, 72, 92, 95, 98, 112, 100, 103, 99 }; static const unsigned int std_chrominance_quant_tbl[DCTSIZE2] = { 17, 18, 24, 47, 99, 99, 99, 99, 18, 21, 26, 66, 99, 99, 99, 99, 24, 26, 56, 99, 99, 99, 99, 99, 47, 66, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99 }; #if JPEG_LIB_VERSION >= 70 GLOBAL(void) jpeg_default_qtables (j_compress_ptr cinfo, boolean force_baseline) /* Set or change the 'quality' (quantization) setting, using default tables * and straight percentage-scaling quality scales. * This entry point allows different scalings for luminance and chrominance. */ { /* Set up two quantization tables using the specified scaling */ jpeg_add_quant_table(cinfo, 0, std_luminance_quant_tbl, cinfo->q_scale_factor[0], force_baseline); jpeg_add_quant_table(cinfo, 1, std_chrominance_quant_tbl, cinfo->q_scale_factor[1], force_baseline); } #endif GLOBAL(void) jpeg_set_linear_quality (j_compress_ptr cinfo, int scale_factor, boolean force_baseline) /* Set or change the 'quality' (quantization) setting, using default tables * and a straight percentage-scaling quality scale. In most cases it's better * to use jpeg_set_quality (below); this entry point is provided for * applications that insist on a linear percentage scaling. */ { /* Set up two quantization tables using the specified scaling */ jpeg_add_quant_table(cinfo, 0, std_luminance_quant_tbl, scale_factor, force_baseline); jpeg_add_quant_table(cinfo, 1, std_chrominance_quant_tbl, scale_factor, force_baseline); } GLOBAL(int) jpeg_quality_scaling (int quality) /* Convert a user-specified quality rating to a percentage scaling factor * for an underlying quantization table, using our recommended scaling curve. * The input 'quality' factor should be 0 (terrible) to 100 (very good). */ { /* Safety limit on quality factor. Convert 0 to 1 to avoid zero divide. */ if (quality <= 0) quality = 1; if (quality > 100) quality = 100; /* The basic table is used as-is (scaling 100) for a quality of 50. * Qualities 50..100 are converted to scaling percentage 200 - 2*Q; * note that at Q=100 the scaling is 0, which will cause jpeg_add_quant_table * to make all the table entries 1 (hence, minimum quantization loss). * Qualities 1..50 are converted to scaling percentage 5000/Q. */ if (quality < 50) quality = 5000 / quality; else quality = 200 - quality*2; return quality; } GLOBAL(void) jpeg_set_quality (j_compress_ptr cinfo, int quality, boolean force_baseline) /* Set or change the 'quality' (quantization) setting, using default tables. * This is the standard quality-adjusting entry point for typical user * interfaces; only those who want detailed control over quantization tables * would use the preceding three routines directly. */ { /* Convert user 0-100 rating to percentage scaling */ quality = jpeg_quality_scaling(quality); /* Set up standard quality tables */ jpeg_set_linear_quality(cinfo, quality, force_baseline); } /* * Default parameter setup for compression. * * Applications that don't choose to use this routine must do their * own setup of all these parameters. Alternately, you can call this * to establish defaults and then alter parameters selectively. This * is the recommended approach since, if we add any new parameters, * your code will still work (they'll be set to reasonable defaults). */ GLOBAL(void) jpeg_set_defaults (j_compress_ptr cinfo) { int i; /* Safety check to ensure start_compress not called yet. */ if (cinfo->global_state != CSTATE_START) ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); /* Allocate comp_info array large enough for maximum component count. * Array is made permanent in case application wants to compress * multiple images at same param settings. */ if (cinfo->comp_info == NULL) cinfo->comp_info = (jpeg_component_info *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT, MAX_COMPONENTS * sizeof(jpeg_component_info)); /* Initialize everything not dependent on the color space */ #if JPEG_LIB_VERSION >= 70 cinfo->scale_num = 1; /* 1:1 scaling */ cinfo->scale_denom = 1; #endif cinfo->data_precision = BITS_IN_JSAMPLE; /* Set up two quantization tables using default quality of 75 */ jpeg_set_quality(cinfo, 75, TRUE); /* Set up two Huffman tables */ std_huff_tables((j_common_ptr) cinfo); /* Initialize default arithmetic coding conditioning */ for (i = 0; i < NUM_ARITH_TBLS; i++) { cinfo->arith_dc_L[i] = 0; cinfo->arith_dc_U[i] = 1; cinfo->arith_ac_K[i] = 5; } /* Default is no multiple-scan output */ cinfo->scan_info = NULL; cinfo->num_scans = 0; /* Expect normal source image, not raw downsampled data */ cinfo->raw_data_in = FALSE; /* Use Huffman coding, not arithmetic coding, by default */ cinfo->arith_code = FALSE; /* By default, don't do extra passes to optimize entropy coding */ cinfo->optimize_coding = FALSE; /* The standard Huffman tables are only valid for 8-bit data precision. * If the precision is higher, force optimization on so that usable * tables will be computed. This test can be removed if default tables * are supplied that are valid for the desired precision. */ if (cinfo->data_precision > 8) cinfo->optimize_coding = TRUE; /* By default, use the simpler non-cosited sampling alignment */ cinfo->CCIR601_sampling = FALSE; #if JPEG_LIB_VERSION >= 70 /* By default, apply fancy downsampling */ cinfo->do_fancy_downsampling = TRUE; #endif /* No input smoothing */ cinfo->smoothing_factor = 0; /* DCT algorithm preference */ cinfo->dct_method = JDCT_DEFAULT; /* No restart markers */ cinfo->restart_interval = 0; cinfo->restart_in_rows = 0; /* Fill in default JFIF marker parameters. Note that whether the marker * will actually be written is determined by jpeg_set_colorspace. * * By default, the library emits JFIF version code 1.01. * An application that wants to emit JFIF 1.02 extension markers should set * JFIF_minor_version to 2. We could probably get away with just defaulting * to 1.02, but there may still be some decoders in use that will complain * about that; saying 1.01 should minimize compatibility problems. */ cinfo->JFIF_major_version = 1; /* Default JFIF version = 1.01 */ cinfo->JFIF_minor_version = 1; cinfo->density_unit = 0; /* Pixel size is unknown by default */ cinfo->X_density = 1; /* Pixel aspect ratio is square by default */ cinfo->Y_density = 1; /* Choose JPEG colorspace based on input space, set defaults accordingly */ jpeg_default_colorspace(cinfo); } /* * Select an appropriate JPEG colorspace for in_color_space. */ GLOBAL(void) jpeg_default_colorspace (j_compress_ptr cinfo) { switch (cinfo->in_color_space) { case JCS_GRAYSCALE: jpeg_set_colorspace(cinfo, JCS_GRAYSCALE); break; case JCS_RGB: case JCS_EXT_RGB: case JCS_EXT_RGBX: case JCS_EXT_BGR: case JCS_EXT_BGRX: case JCS_EXT_XBGR: case JCS_EXT_XRGB: case JCS_EXT_RGBA: case JCS_EXT_BGRA: case JCS_EXT_ABGR: case JCS_EXT_ARGB: jpeg_set_colorspace(cinfo, JCS_YCbCr); break; case JCS_YCbCr: jpeg_set_colorspace(cinfo, JCS_YCbCr); break; case JCS_CMYK: jpeg_set_colorspace(cinfo, JCS_CMYK); /* By default, no translation */ break; case JCS_YCCK: jpeg_set_colorspace(cinfo, JCS_YCCK); break; case JCS_UNKNOWN: jpeg_set_colorspace(cinfo, JCS_UNKNOWN); break; default: ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE); } } /* * Set the JPEG colorspace, and choose colorspace-dependent default values. */ GLOBAL(void) jpeg_set_colorspace (j_compress_ptr cinfo, J_COLOR_SPACE colorspace) { jpeg_component_info * compptr; int ci; #define SET_COMP(index,id,hsamp,vsamp,quant,dctbl,actbl) \ (compptr = &cinfo->comp_info[index], \ compptr->component_id = (id), \ compptr->h_samp_factor = (hsamp), \ compptr->v_samp_factor = (vsamp), \ compptr->quant_tbl_no = (quant), \ compptr->dc_tbl_no = (dctbl), \ compptr->ac_tbl_no = (actbl) ) /* Safety check to ensure start_compress not called yet. */ if (cinfo->global_state != CSTATE_START) ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); /* For all colorspaces, we use Q and Huff tables 0 for luminance components, * tables 1 for chrominance components. */ cinfo->jpeg_color_space = colorspace; cinfo->write_JFIF_header = FALSE; /* No marker for non-JFIF colorspaces */ cinfo->write_Adobe_marker = FALSE; /* write no Adobe marker by default */ switch (colorspace) { case JCS_GRAYSCALE: cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */ cinfo->num_components = 1; /* JFIF specifies component ID 1 */ SET_COMP(0, 1, 1,1, 0, 0,0); break; case JCS_RGB: cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag RGB */ cinfo->num_components = 3; SET_COMP(0, 0x52 /* 'R' */, 1,1, 0, 0,0); SET_COMP(1, 0x47 /* 'G' */, 1,1, 0, 0,0); SET_COMP(2, 0x42 /* 'B' */, 1,1, 0, 0,0); break; case JCS_YCbCr: cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */ cinfo->num_components = 3; /* JFIF specifies component IDs 1,2,3 */ /* We default to 2x2 subsamples of chrominance */ SET_COMP(0, 1, 2,2, 0, 0,0); SET_COMP(1, 2, 1,1, 1, 1,1); SET_COMP(2, 3, 1,1, 1, 1,1); break; case JCS_CMYK: cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag CMYK */ cinfo->num_components = 4; SET_COMP(0, 0x43 /* 'C' */, 1,1, 0, 0,0); SET_COMP(1, 0x4D /* 'M' */, 1,1, 0, 0,0); SET_COMP(2, 0x59 /* 'Y' */, 1,1, 0, 0,0); SET_COMP(3, 0x4B /* 'K' */, 1,1, 0, 0,0); break; case JCS_YCCK: cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag YCCK */ cinfo->num_components = 4; SET_COMP(0, 1, 2,2, 0, 0,0); SET_COMP(1, 2, 1,1, 1, 1,1); SET_COMP(2, 3, 1,1, 1, 1,1); SET_COMP(3, 4, 2,2, 0, 0,0); break; case JCS_UNKNOWN: cinfo->num_components = cinfo->input_components; if (cinfo->num_components < 1 || cinfo->num_components > MAX_COMPONENTS) ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components, MAX_COMPONENTS); for (ci = 0; ci < cinfo->num_components; ci++) { SET_COMP(ci, ci, 1,1, 0, 0,0); } break; default: ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); } } #ifdef C_PROGRESSIVE_SUPPORTED LOCAL(jpeg_scan_info *) fill_a_scan (jpeg_scan_info * scanptr, int ci, int Ss, int Se, int Ah, int Al) /* Support routine: generate one scan for specified component */ { scanptr->comps_in_scan = 1; scanptr->component_index[0] = ci; scanptr->Ss = Ss; scanptr->Se = Se; scanptr->Ah = Ah; scanptr->Al = Al; scanptr++; return scanptr; } LOCAL(jpeg_scan_info *) fill_scans (jpeg_scan_info * scanptr, int ncomps, int Ss, int Se, int Ah, int Al) /* Support routine: generate one scan for each component */ { int ci; for (ci = 0; ci < ncomps; ci++) { scanptr->comps_in_scan = 1; scanptr->component_index[0] = ci; scanptr->Ss = Ss; scanptr->Se = Se; scanptr->Ah = Ah; scanptr->Al = Al; scanptr++; } return scanptr; } LOCAL(jpeg_scan_info *) fill_dc_scans (jpeg_scan_info * scanptr, int ncomps, int Ah, int Al) /* Support routine: generate interleaved DC scan if possible, else N scans */ { int ci; if (ncomps <= MAX_COMPS_IN_SCAN) { /* Single interleaved DC scan */ scanptr->comps_in_scan = ncomps; for (ci = 0; ci < ncomps; ci++) scanptr->component_index[ci] = ci; scanptr->Ss = scanptr->Se = 0; scanptr->Ah = Ah; scanptr->Al = Al; scanptr++; } else { /* Noninterleaved DC scan for each component */ scanptr = fill_scans(scanptr, ncomps, 0, 0, Ah, Al); } return scanptr; } /* * Create a recommended progressive-JPEG script. * cinfo->num_components and cinfo->jpeg_color_space must be correct. */ GLOBAL(void) jpeg_simple_progression (j_compress_ptr cinfo) { int ncomps = cinfo->num_components; int nscans; jpeg_scan_info * scanptr; /* Safety check to ensure start_compress not called yet. */ if (cinfo->global_state != CSTATE_START) ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); /* Figure space needed for script. Calculation must match code below! */ if (ncomps == 3 && cinfo->jpeg_color_space == JCS_YCbCr) { /* Custom script for YCbCr color images. */ nscans = 10; } else { /* All-purpose script for other color spaces. */ if (ncomps > MAX_COMPS_IN_SCAN) nscans = 6 * ncomps; /* 2 DC + 4 AC scans per component */ else nscans = 2 + 4 * ncomps; /* 2 DC scans; 4 AC scans per component */ } /* Allocate space for script. * We need to put it in the permanent pool in case the application performs * multiple compressions without changing the settings. To avoid a memory * leak if jpeg_simple_progression is called repeatedly for the same JPEG * object, we try to re-use previously allocated space, and we allocate * enough space to handle YCbCr even if initially asked for grayscale. */ if (cinfo->script_space == NULL || cinfo->script_space_size < nscans) { cinfo->script_space_size = MAX(nscans, 10); cinfo->script_space = (jpeg_scan_info *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT, cinfo->script_space_size * sizeof(jpeg_scan_info)); } scanptr = cinfo->script_space; cinfo->scan_info = scanptr; cinfo->num_scans = nscans; if (ncomps == 3 && cinfo->jpeg_color_space == JCS_YCbCr) { /* Custom script for YCbCr color images. */ /* Initial DC scan */ scanptr = fill_dc_scans(scanptr, ncomps, 0, 1); /* Initial AC scan: get some luma data out in a hurry */ scanptr = fill_a_scan(scanptr, 0, 1, 5, 0, 2); /* Chroma data is too small to be worth expending many scans on */ scanptr = fill_a_scan(scanptr, 2, 1, 63, 0, 1); scanptr = fill_a_scan(scanptr, 1, 1, 63, 0, 1); /* Complete spectral selection for luma AC */ scanptr = fill_a_scan(scanptr, 0, 6, 63, 0, 2); /* Refine next bit of luma AC */ scanptr = fill_a_scan(scanptr, 0, 1, 63, 2, 1); /* Finish DC successive approximation */ scanptr = fill_dc_scans(scanptr, ncomps, 1, 0); /* Finish AC successive approximation */ scanptr = fill_a_scan(scanptr, 2, 1, 63, 1, 0); scanptr = fill_a_scan(scanptr, 1, 1, 63, 1, 0); /* Luma bottom bit comes last since it's usually largest scan */ scanptr = fill_a_scan(scanptr, 0, 1, 63, 1, 0); } else { /* All-purpose script for other color spaces. */ /* Successive approximation first pass */ scanptr = fill_dc_scans(scanptr, ncomps, 0, 1); scanptr = fill_scans(scanptr, ncomps, 1, 5, 0, 2); scanptr = fill_scans(scanptr, ncomps, 6, 63, 0, 2); /* Successive approximation second pass */ scanptr = fill_scans(scanptr, ncomps, 1, 63, 2, 1); /* Successive approximation final pass */ scanptr = fill_dc_scans(scanptr, ncomps, 1, 0); scanptr = fill_scans(scanptr, ncomps, 1, 63, 1, 0); } } #endif /* C_PROGRESSIVE_SUPPORTED */ libjpeg-turbo-1.4.2/jcapistd.c0000644000076500007650000001342512600050400013153 00000000000000/* * jcapistd.c * * Copyright (C) 1994-1996, Thomas G. Lane. * This file is part of the Independent JPEG Group's software. * For conditions of distribution and use, see the accompanying README file. * * This file contains application interface code for the compression half * of the JPEG library. These are the "standard" API routines that are * used in the normal full-compression case. They are not used by a * transcoding-only application. Note that if an application links in * jpeg_start_compress, it will end up linking in the entire compressor. * We thus must separate this file from jcapimin.c to avoid linking the * whole compression library into a transcoder. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" /* * Compression initialization. * Before calling this, all parameters and a data destination must be set up. * * We require a write_all_tables parameter as a failsafe check when writing * multiple datastreams from the same compression object. Since prior runs * will have left all the tables marked sent_table=TRUE, a subsequent run * would emit an abbreviated stream (no tables) by default. This may be what * is wanted, but for safety's sake it should not be the default behavior: * programmers should have to make a deliberate choice to emit abbreviated * images. Therefore the documentation and examples should encourage people * to pass write_all_tables=TRUE; then it will take active thought to do the * wrong thing. */ GLOBAL(void) jpeg_start_compress (j_compress_ptr cinfo, boolean write_all_tables) { if (cinfo->global_state != CSTATE_START) ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); if (write_all_tables) jpeg_suppress_tables(cinfo, FALSE); /* mark all tables to be written */ /* (Re)initialize error mgr and destination modules */ (*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo); (*cinfo->dest->init_destination) (cinfo); /* Perform master selection of active modules */ jinit_compress_master(cinfo); /* Set up for the first pass */ (*cinfo->master->prepare_for_pass) (cinfo); /* Ready for application to drive first pass through jpeg_write_scanlines * or jpeg_write_raw_data. */ cinfo->next_scanline = 0; cinfo->global_state = (cinfo->raw_data_in ? CSTATE_RAW_OK : CSTATE_SCANNING); } /* * Write some scanlines of data to the JPEG compressor. * * The return value will be the number of lines actually written. * This should be less than the supplied num_lines only in case that * the data destination module has requested suspension of the compressor, * or if more than image_height scanlines are passed in. * * Note: we warn about excess calls to jpeg_write_scanlines() since * this likely signals an application programmer error. However, * excess scanlines passed in the last valid call are *silently* ignored, * so that the application need not adjust num_lines for end-of-image * when using a multiple-scanline buffer. */ GLOBAL(JDIMENSION) jpeg_write_scanlines (j_compress_ptr cinfo, JSAMPARRAY scanlines, JDIMENSION num_lines) { JDIMENSION row_ctr, rows_left; if (cinfo->global_state != CSTATE_SCANNING) ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); if (cinfo->next_scanline >= cinfo->image_height) WARNMS(cinfo, JWRN_TOO_MUCH_DATA); /* Call progress monitor hook if present */ if (cinfo->progress != NULL) { cinfo->progress->pass_counter = (long) cinfo->next_scanline; cinfo->progress->pass_limit = (long) cinfo->image_height; (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo); } /* Give master control module another chance if this is first call to * jpeg_write_scanlines. This lets output of the frame/scan headers be * delayed so that application can write COM, etc, markers between * jpeg_start_compress and jpeg_write_scanlines. */ if (cinfo->master->call_pass_startup) (*cinfo->master->pass_startup) (cinfo); /* Ignore any extra scanlines at bottom of image. */ rows_left = cinfo->image_height - cinfo->next_scanline; if (num_lines > rows_left) num_lines = rows_left; row_ctr = 0; (*cinfo->main->process_data) (cinfo, scanlines, &row_ctr, num_lines); cinfo->next_scanline += row_ctr; return row_ctr; } /* * Alternate entry point to write raw data. * Processes exactly one iMCU row per call, unless suspended. */ GLOBAL(JDIMENSION) jpeg_write_raw_data (j_compress_ptr cinfo, JSAMPIMAGE data, JDIMENSION num_lines) { JDIMENSION lines_per_iMCU_row; if (cinfo->global_state != CSTATE_RAW_OK) ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); if (cinfo->next_scanline >= cinfo->image_height) { WARNMS(cinfo, JWRN_TOO_MUCH_DATA); return 0; } /* Call progress monitor hook if present */ if (cinfo->progress != NULL) { cinfo->progress->pass_counter = (long) cinfo->next_scanline; cinfo->progress->pass_limit = (long) cinfo->image_height; (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo); } /* Give master control module another chance if this is first call to * jpeg_write_raw_data. This lets output of the frame/scan headers be * delayed so that application can write COM, etc, markers between * jpeg_start_compress and jpeg_write_raw_data. */ if (cinfo->master->call_pass_startup) (*cinfo->master->pass_startup) (cinfo); /* Verify that at least one iMCU row has been passed. */ lines_per_iMCU_row = cinfo->max_v_samp_factor * DCTSIZE; if (num_lines < lines_per_iMCU_row) ERREXIT(cinfo, JERR_BUFFER_SIZE); /* Directly compress the row. */ if (! (*cinfo->coef->compress_data) (cinfo, data)) { /* If compressor did not consume the whole row, suspend processing. */ return 0; } /* OK, we processed one iMCU row. */ cinfo->next_scanline += lines_per_iMCU_row; return lines_per_iMCU_row; } libjpeg-turbo-1.4.2/jconfig.h.in0000644000076500007650000000405712600050400013404 00000000000000/* Version ID for the JPEG library. * Might be useful for tests like "#if JPEG_LIB_VERSION >= 60". */ #define JPEG_LIB_VERSION 62 /* Version 6b */ /* libjpeg-turbo version */ #define LIBJPEG_TURBO_VERSION 0 /* Support arithmetic encoding */ #undef C_ARITH_CODING_SUPPORTED /* Support arithmetic decoding */ #undef D_ARITH_CODING_SUPPORTED /* * Define BITS_IN_JSAMPLE as either * 8 for 8-bit sample values (the usual setting) * 12 for 12-bit sample values * Only 8 and 12 are legal data precisions for lossy JPEG according to the * JPEG standard, and the IJG code does not support anything else! * We do not support run-time selection of data precision, sorry. */ #define BITS_IN_JSAMPLE 8 /* use 8 or 12 */ /* Define to 1 if you have the header file. */ #undef HAVE_LOCALE_H /* Define to 1 if you have the header file. */ #undef HAVE_STDDEF_H /* Define to 1 if you have the header file. */ #undef HAVE_STDLIB_H /* Define to 1 if the system has the type `unsigned char'. */ #undef HAVE_UNSIGNED_CHAR /* Define to 1 if the system has the type `unsigned short'. */ #undef HAVE_UNSIGNED_SHORT /* Compiler does not support pointers to undefined structures. */ #undef INCOMPLETE_TYPES_BROKEN /* Support in-memory source/destination managers */ #undef MEM_SRCDST_SUPPORTED /* Define if you have BSD-like bzero and bcopy in rather than memset/memcpy in . */ #undef NEED_BSD_STRINGS /* Define if you need to include to get size_t. */ #undef NEED_SYS_TYPES_H /* Define if your (broken) compiler shifts signed values as if they were unsigned. */ #undef RIGHT_SHIFT_IS_UNSIGNED /* Use accelerated SIMD routines. */ #undef WITH_SIMD /* Define to 1 if type `char' is unsigned and you are not using gcc. */ #ifndef __CHAR_UNSIGNED__ # undef __CHAR_UNSIGNED__ #endif /* Define to empty if `const' does not conform to ANSI C. */ #undef const /* Define to `unsigned int' if does not define. */ #undef size_t /* The size of `size_t', as computed by sizeof. */ #undef SIZEOF_SIZE_T libjpeg-turbo-1.4.2/jdarith.c0000644000076500007650000006052112600050400012776 00000000000000/* * jdarith.c * * This file was part of the Independent JPEG Group's software: * Developed 1997-2009 by Guido Vollbeding. * It was modified by The libjpeg-turbo Project to include only code relevant * to libjpeg-turbo. * For conditions of distribution and use, see the accompanying README file. * * This file contains portable arithmetic entropy decoding routines for JPEG * (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81). * * Both sequential and progressive modes are supported in this single module. * * Suspension is not currently supported in this module. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" /* Expanded entropy decoder object for arithmetic decoding. */ typedef struct { struct jpeg_entropy_decoder pub; /* public fields */ INT32 c; /* C register, base of coding interval + input bit buffer */ INT32 a; /* A register, normalized size of coding interval */ int ct; /* bit shift counter, # of bits left in bit buffer part of C */ /* init: ct = -16 */ /* run: ct = 0..7 */ /* error: ct = -1 */ int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */ unsigned int restarts_to_go; /* MCUs left in this restart interval */ /* Pointers to statistics areas (these workspaces have image lifespan) */ unsigned char * dc_stats[NUM_ARITH_TBLS]; unsigned char * ac_stats[NUM_ARITH_TBLS]; /* Statistics bin for coding with fixed probability 0.5 */ unsigned char fixed_bin[4]; } arith_entropy_decoder; typedef arith_entropy_decoder * arith_entropy_ptr; /* The following two definitions specify the allocation chunk size * for the statistics area. * According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least * 49 statistics bins for DC, and 245 statistics bins for AC coding. * * We use a compact representation with 1 byte per statistics bin, * thus the numbers directly represent byte sizes. * This 1 byte per statistics bin contains the meaning of the MPS * (more probable symbol) in the highest bit (mask 0x80), and the * index into the probability estimation state machine table * in the lower bits (mask 0x7F). */ #define DC_STAT_BINS 64 #define AC_STAT_BINS 256 LOCAL(int) get_byte (j_decompress_ptr cinfo) /* Read next input byte; we do not support suspension in this module. */ { struct jpeg_source_mgr * src = cinfo->src; if (src->bytes_in_buffer == 0) if (! (*src->fill_input_buffer) (cinfo)) ERREXIT(cinfo, JERR_CANT_SUSPEND); src->bytes_in_buffer--; return GETJOCTET(*src->next_input_byte++); } /* * The core arithmetic decoding routine (common in JPEG and JBIG). * This needs to go as fast as possible. * Machine-dependent optimization facilities * are not utilized in this portable implementation. * However, this code should be fairly efficient and * may be a good base for further optimizations anyway. * * Return value is 0 or 1 (binary decision). * * Note: I've changed the handling of the code base & bit * buffer register C compared to other implementations * based on the standards layout & procedures. * While it also contains both the actual base of the * coding interval (16 bits) and the next-bits buffer, * the cut-point between these two parts is floating * (instead of fixed) with the bit shift counter CT. * Thus, we also need only one (variable instead of * fixed size) shift for the LPS/MPS decision, and * we can get away with any renormalization update * of C (except for new data insertion, of course). * * I've also introduced a new scheme for accessing * the probability estimation state machine table, * derived from Markus Kuhn's JBIG implementation. */ LOCAL(int) arith_decode (j_decompress_ptr cinfo, unsigned char *st) { register arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy; register unsigned char nl, nm; register INT32 qe, temp; register int sv, data; /* Renormalization & data input per section D.2.6 */ while (e->a < 0x8000L) { if (--e->ct < 0) { /* Need to fetch next data byte */ if (cinfo->unread_marker) data = 0; /* stuff zero data */ else { data = get_byte(cinfo); /* read next input byte */ if (data == 0xFF) { /* zero stuff or marker code */ do data = get_byte(cinfo); while (data == 0xFF); /* swallow extra 0xFF bytes */ if (data == 0) data = 0xFF; /* discard stuffed zero byte */ else { /* Note: Different from the Huffman decoder, hitting * a marker while processing the compressed data * segment is legal in arithmetic coding. * The convention is to supply zero data * then until decoding is complete. */ cinfo->unread_marker = data; data = 0; } } } e->c = (e->c << 8) | data; /* insert data into C register */ if ((e->ct += 8) < 0) /* update bit shift counter */ /* Need more initial bytes */ if (++e->ct == 0) /* Got 2 initial bytes -> re-init A and exit loop */ e->a = 0x8000L; /* => e->a = 0x10000L after loop exit */ } e->a <<= 1; } /* Fetch values from our compact representation of Table D.2: * Qe values and probability estimation state machine */ sv = *st; qe = jpeg_aritab[sv & 0x7F]; /* => Qe_Value */ nl = qe & 0xFF; qe >>= 8; /* Next_Index_LPS + Switch_MPS */ nm = qe & 0xFF; qe >>= 8; /* Next_Index_MPS */ /* Decode & estimation procedures per sections D.2.4 & D.2.5 */ temp = e->a - qe; e->a = temp; temp <<= e->ct; if (e->c >= temp) { e->c -= temp; /* Conditional LPS (less probable symbol) exchange */ if (e->a < qe) { e->a = qe; *st = (sv & 0x80) ^ nm; /* Estimate_after_MPS */ } else { e->a = qe; *st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */ sv ^= 0x80; /* Exchange LPS/MPS */ } } else if (e->a < 0x8000L) { /* Conditional MPS (more probable symbol) exchange */ if (e->a < qe) { *st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */ sv ^= 0x80; /* Exchange LPS/MPS */ } else { *st = (sv & 0x80) ^ nm; /* Estimate_after_MPS */ } } return sv >> 7; } /* * Check for a restart marker & resynchronize decoder. */ LOCAL(void) process_restart (j_decompress_ptr cinfo) { arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; int ci; jpeg_component_info * compptr; /* Advance past the RSTn marker */ if (! (*cinfo->marker->read_restart_marker) (cinfo)) ERREXIT(cinfo, JERR_CANT_SUSPEND); /* Re-initialize statistics areas */ for (ci = 0; ci < cinfo->comps_in_scan; ci++) { compptr = cinfo->cur_comp_info[ci]; if (! cinfo->progressive_mode || (cinfo->Ss == 0 && cinfo->Ah == 0)) { MEMZERO(entropy->dc_stats[compptr->dc_tbl_no], DC_STAT_BINS); /* Reset DC predictions to 0 */ entropy->last_dc_val[ci] = 0; entropy->dc_context[ci] = 0; } if (! cinfo->progressive_mode || cinfo->Ss) { MEMZERO(entropy->ac_stats[compptr->ac_tbl_no], AC_STAT_BINS); } } /* Reset arithmetic decoding variables */ entropy->c = 0; entropy->a = 0; entropy->ct = -16; /* force reading 2 initial bytes to fill C */ /* Reset restart counter */ entropy->restarts_to_go = cinfo->restart_interval; } /* * Arithmetic MCU decoding. * Each of these routines decodes and returns one MCU's worth of * arithmetic-compressed coefficients. * The coefficients are reordered from zigzag order into natural array order, * but are not dequantized. * * The i'th block of the MCU is stored into the block pointed to by * MCU_data[i]. WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER. */ /* * MCU decoding for DC initial scan (either spectral selection, * or first pass of successive approximation). */ METHODDEF(boolean) decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) { arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; JBLOCKROW block; unsigned char *st; int blkn, ci, tbl, sign; int v, m; /* Process restart marker if needed */ if (cinfo->restart_interval) { if (entropy->restarts_to_go == 0) process_restart(cinfo); entropy->restarts_to_go--; } if (entropy->ct == -1) return TRUE; /* if error do nothing */ /* Outer loop handles each block in the MCU */ for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { block = MCU_data[blkn]; ci = cinfo->MCU_membership[blkn]; tbl = cinfo->cur_comp_info[ci]->dc_tbl_no; /* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */ /* Table F.4: Point to statistics bin S0 for DC coefficient coding */ st = entropy->dc_stats[tbl] + entropy->dc_context[ci]; /* Figure F.19: Decode_DC_DIFF */ if (arith_decode(cinfo, st) == 0) entropy->dc_context[ci] = 0; else { /* Figure F.21: Decoding nonzero value v */ /* Figure F.22: Decoding the sign of v */ sign = arith_decode(cinfo, st + 1); st += 2; st += sign; /* Figure F.23: Decoding the magnitude category of v */ if ((m = arith_decode(cinfo, st)) != 0) { st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */ while (arith_decode(cinfo, st)) { if ((m <<= 1) == 0x8000) { WARNMS(cinfo, JWRN_ARITH_BAD_CODE); entropy->ct = -1; /* magnitude overflow */ return TRUE; } st += 1; } } /* Section F.1.4.4.1.2: Establish dc_context conditioning category */ if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1)) entropy->dc_context[ci] = 0; /* zero diff category */ else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1)) entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */ else entropy->dc_context[ci] = 4 + (sign * 4); /* small diff category */ v = m; /* Figure F.24: Decoding the magnitude bit pattern of v */ st += 14; while (m >>= 1) if (arith_decode(cinfo, st)) v |= m; v += 1; if (sign) v = -v; entropy->last_dc_val[ci] += v; } /* Scale and output the DC coefficient (assumes jpeg_natural_order[0]=0) */ (*block)[0] = (JCOEF) LEFT_SHIFT(entropy->last_dc_val[ci], cinfo->Al); } return TRUE; } /* * MCU decoding for AC initial scan (either spectral selection, * or first pass of successive approximation). */ METHODDEF(boolean) decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) { arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; JBLOCKROW block; unsigned char *st; int tbl, sign, k; int v, m; /* Process restart marker if needed */ if (cinfo->restart_interval) { if (entropy->restarts_to_go == 0) process_restart(cinfo); entropy->restarts_to_go--; } if (entropy->ct == -1) return TRUE; /* if error do nothing */ /* There is always only one block per MCU */ block = MCU_data[0]; tbl = cinfo->cur_comp_info[0]->ac_tbl_no; /* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */ /* Figure F.20: Decode_AC_coefficients */ for (k = cinfo->Ss; k <= cinfo->Se; k++) { st = entropy->ac_stats[tbl] + 3 * (k - 1); if (arith_decode(cinfo, st)) break; /* EOB flag */ while (arith_decode(cinfo, st + 1) == 0) { st += 3; k++; if (k > cinfo->Se) { WARNMS(cinfo, JWRN_ARITH_BAD_CODE); entropy->ct = -1; /* spectral overflow */ return TRUE; } } /* Figure F.21: Decoding nonzero value v */ /* Figure F.22: Decoding the sign of v */ sign = arith_decode(cinfo, entropy->fixed_bin); st += 2; /* Figure F.23: Decoding the magnitude category of v */ if ((m = arith_decode(cinfo, st)) != 0) { if (arith_decode(cinfo, st)) { m <<= 1; st = entropy->ac_stats[tbl] + (k <= cinfo->arith_ac_K[tbl] ? 189 : 217); while (arith_decode(cinfo, st)) { if ((m <<= 1) == 0x8000) { WARNMS(cinfo, JWRN_ARITH_BAD_CODE); entropy->ct = -1; /* magnitude overflow */ return TRUE; } st += 1; } } } v = m; /* Figure F.24: Decoding the magnitude bit pattern of v */ st += 14; while (m >>= 1) if (arith_decode(cinfo, st)) v |= m; v += 1; if (sign) v = -v; /* Scale and output coefficient in natural (dezigzagged) order */ (*block)[jpeg_natural_order[k]] = (JCOEF) (v << cinfo->Al); } return TRUE; } /* * MCU decoding for DC successive approximation refinement scan. */ METHODDEF(boolean) decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) { arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; unsigned char *st; int p1, blkn; /* Process restart marker if needed */ if (cinfo->restart_interval) { if (entropy->restarts_to_go == 0) process_restart(cinfo); entropy->restarts_to_go--; } st = entropy->fixed_bin; /* use fixed probability estimation */ p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */ /* Outer loop handles each block in the MCU */ for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { /* Encoded data is simply the next bit of the two's-complement DC value */ if (arith_decode(cinfo, st)) MCU_data[blkn][0][0] |= p1; } return TRUE; } /* * MCU decoding for AC successive approximation refinement scan. */ METHODDEF(boolean) decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) { arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; JBLOCKROW block; JCOEFPTR thiscoef; unsigned char *st; int tbl, k, kex; int p1, m1; /* Process restart marker if needed */ if (cinfo->restart_interval) { if (entropy->restarts_to_go == 0) process_restart(cinfo); entropy->restarts_to_go--; } if (entropy->ct == -1) return TRUE; /* if error do nothing */ /* There is always only one block per MCU */ block = MCU_data[0]; tbl = cinfo->cur_comp_info[0]->ac_tbl_no; p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */ m1 = (-1) << cinfo->Al; /* -1 in the bit position being coded */ /* Establish EOBx (previous stage end-of-block) index */ for (kex = cinfo->Se; kex > 0; kex--) if ((*block)[jpeg_natural_order[kex]]) break; for (k = cinfo->Ss; k <= cinfo->Se; k++) { st = entropy->ac_stats[tbl] + 3 * (k - 1); if (k > kex) if (arith_decode(cinfo, st)) break; /* EOB flag */ for (;;) { thiscoef = *block + jpeg_natural_order[k]; if (*thiscoef) { /* previously nonzero coef */ if (arith_decode(cinfo, st + 2)) { if (*thiscoef < 0) *thiscoef += m1; else *thiscoef += p1; } break; } if (arith_decode(cinfo, st + 1)) { /* newly nonzero coef */ if (arith_decode(cinfo, entropy->fixed_bin)) *thiscoef = m1; else *thiscoef = p1; break; } st += 3; k++; if (k > cinfo->Se) { WARNMS(cinfo, JWRN_ARITH_BAD_CODE); entropy->ct = -1; /* spectral overflow */ return TRUE; } } } return TRUE; } /* * Decode one MCU's worth of arithmetic-compressed coefficients. */ METHODDEF(boolean) decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) { arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; jpeg_component_info * compptr; JBLOCKROW block; unsigned char *st; int blkn, ci, tbl, sign, k; int v, m; /* Process restart marker if needed */ if (cinfo->restart_interval) { if (entropy->restarts_to_go == 0) process_restart(cinfo); entropy->restarts_to_go--; } if (entropy->ct == -1) return TRUE; /* if error do nothing */ /* Outer loop handles each block in the MCU */ for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { block = MCU_data[blkn]; ci = cinfo->MCU_membership[blkn]; compptr = cinfo->cur_comp_info[ci]; /* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */ tbl = compptr->dc_tbl_no; /* Table F.4: Point to statistics bin S0 for DC coefficient coding */ st = entropy->dc_stats[tbl] + entropy->dc_context[ci]; /* Figure F.19: Decode_DC_DIFF */ if (arith_decode(cinfo, st) == 0) entropy->dc_context[ci] = 0; else { /* Figure F.21: Decoding nonzero value v */ /* Figure F.22: Decoding the sign of v */ sign = arith_decode(cinfo, st + 1); st += 2; st += sign; /* Figure F.23: Decoding the magnitude category of v */ if ((m = arith_decode(cinfo, st)) != 0) { st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */ while (arith_decode(cinfo, st)) { if ((m <<= 1) == 0x8000) { WARNMS(cinfo, JWRN_ARITH_BAD_CODE); entropy->ct = -1; /* magnitude overflow */ return TRUE; } st += 1; } } /* Section F.1.4.4.1.2: Establish dc_context conditioning category */ if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1)) entropy->dc_context[ci] = 0; /* zero diff category */ else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1)) entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */ else entropy->dc_context[ci] = 4 + (sign * 4); /* small diff category */ v = m; /* Figure F.24: Decoding the magnitude bit pattern of v */ st += 14; while (m >>= 1) if (arith_decode(cinfo, st)) v |= m; v += 1; if (sign) v = -v; entropy->last_dc_val[ci] += v; } (*block)[0] = (JCOEF) entropy->last_dc_val[ci]; /* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */ tbl = compptr->ac_tbl_no; /* Figure F.20: Decode_AC_coefficients */ for (k = 1; k <= DCTSIZE2 - 1; k++) { st = entropy->ac_stats[tbl] + 3 * (k - 1); if (arith_decode(cinfo, st)) break; /* EOB flag */ while (arith_decode(cinfo, st + 1) == 0) { st += 3; k++; if (k > DCTSIZE2 - 1) { WARNMS(cinfo, JWRN_ARITH_BAD_CODE); entropy->ct = -1; /* spectral overflow */ return TRUE; } } /* Figure F.21: Decoding nonzero value v */ /* Figure F.22: Decoding the sign of v */ sign = arith_decode(cinfo, entropy->fixed_bin); st += 2; /* Figure F.23: Decoding the magnitude category of v */ if ((m = arith_decode(cinfo, st)) != 0) { if (arith_decode(cinfo, st)) { m <<= 1; st = entropy->ac_stats[tbl] + (k <= cinfo->arith_ac_K[tbl] ? 189 : 217); while (arith_decode(cinfo, st)) { if ((m <<= 1) == 0x8000) { WARNMS(cinfo, JWRN_ARITH_BAD_CODE); entropy->ct = -1; /* magnitude overflow */ return TRUE; } st += 1; } } } v = m; /* Figure F.24: Decoding the magnitude bit pattern of v */ st += 14; while (m >>= 1) if (arith_decode(cinfo, st)) v |= m; v += 1; if (sign) v = -v; (*block)[jpeg_natural_order[k]] = (JCOEF) v; } } return TRUE; } /* * Initialize for an arithmetic-compressed scan. */ METHODDEF(void) start_pass (j_decompress_ptr cinfo) { arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; int ci, tbl; jpeg_component_info * compptr; if (cinfo->progressive_mode) { /* Validate progressive scan parameters */ if (cinfo->Ss == 0) { if (cinfo->Se != 0) goto bad; } else { /* need not check Ss/Se < 0 since they came from unsigned bytes */ if (cinfo->Se < cinfo->Ss || cinfo->Se > DCTSIZE2 - 1) goto bad; /* AC scans may have only one component */ if (cinfo->comps_in_scan != 1) goto bad; } if (cinfo->Ah != 0) { /* Successive approximation refinement scan: must have Al = Ah-1. */ if (cinfo->Ah-1 != cinfo->Al) goto bad; } if (cinfo->Al > 13) { /* need not check for < 0 */ bad: ERREXIT4(cinfo, JERR_BAD_PROGRESSION, cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al); } /* Update progression status, and verify that scan order is legal. * Note that inter-scan inconsistencies are treated as warnings * not fatal errors ... not clear if this is right way to behave. */ for (ci = 0; ci < cinfo->comps_in_scan; ci++) { int coefi, cindex = cinfo->cur_comp_info[ci]->component_index; int *coef_bit_ptr = & cinfo->coef_bits[cindex][0]; if (cinfo->Ss && coef_bit_ptr[0] < 0) /* AC without prior DC scan */ WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0); for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) { int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi]; if (cinfo->Ah != expected) WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi); coef_bit_ptr[coefi] = cinfo->Al; } } /* Select MCU decoding routine */ if (cinfo->Ah == 0) { if (cinfo->Ss == 0) entropy->pub.decode_mcu = decode_mcu_DC_first; else entropy->pub.decode_mcu = decode_mcu_AC_first; } else { if (cinfo->Ss == 0) entropy->pub.decode_mcu = decode_mcu_DC_refine; else entropy->pub.decode_mcu = decode_mcu_AC_refine; } } else { /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG. * This ought to be an error condition, but we make it a warning. */ if (cinfo->Ss != 0 || cinfo->Ah != 0 || cinfo->Al != 0 || (cinfo->Se < DCTSIZE2 && cinfo->Se != DCTSIZE2 - 1)) WARNMS(cinfo, JWRN_NOT_SEQUENTIAL); /* Select MCU decoding routine */ entropy->pub.decode_mcu = decode_mcu; } /* Allocate & initialize requested statistics areas */ for (ci = 0; ci < cinfo->comps_in_scan; ci++) { compptr = cinfo->cur_comp_info[ci]; if (! cinfo->progressive_mode || (cinfo->Ss == 0 && cinfo->Ah == 0)) { tbl = compptr->dc_tbl_no; if (tbl < 0 || tbl >= NUM_ARITH_TBLS) ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl); if (entropy->dc_stats[tbl] == NULL) entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS); MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS); /* Initialize DC predictions to 0 */ entropy->last_dc_val[ci] = 0; entropy->dc_context[ci] = 0; } if (! cinfo->progressive_mode || cinfo->Ss) { tbl = compptr->ac_tbl_no; if (tbl < 0 || tbl >= NUM_ARITH_TBLS) ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl); if (entropy->ac_stats[tbl] == NULL) entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS); MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS); } } /* Initialize arithmetic decoding variables */ entropy->c = 0; entropy->a = 0; entropy->ct = -16; /* force reading 2 initial bytes to fill C */ /* Initialize restart counter */ entropy->restarts_to_go = cinfo->restart_interval; } /* * Module initialization routine for arithmetic entropy decoding. */ GLOBAL(void) jinit_arith_decoder (j_decompress_ptr cinfo) { arith_entropy_ptr entropy; int i; entropy = (arith_entropy_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, sizeof(arith_entropy_decoder)); cinfo->entropy = (struct jpeg_entropy_decoder *) entropy; entropy->pub.start_pass = start_pass; /* Mark tables unallocated */ for (i = 0; i < NUM_ARITH_TBLS; i++) { entropy->dc_stats[i] = NULL; entropy->ac_stats[i] = NULL; } /* Initialize index for fixed probability estimation */ entropy->fixed_bin[0] = 113; if (cinfo->progressive_mode) { /* Create progression status table */ int *coef_bit_ptr, ci; cinfo->coef_bits = (int (*)[DCTSIZE2]) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, cinfo->num_components*DCTSIZE2*sizeof(int)); coef_bit_ptr = & cinfo->coef_bits[0][0]; for (ci = 0; ci < cinfo->num_components; ci++) for (i = 0; i < DCTSIZE2; i++) *coef_bit_ptr++ = -1; } } libjpeg-turbo-1.4.2/jmemnobs.c0000644000076500007650000000525312600050400013164 00000000000000/* * jmemnobs.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1992-1996, Thomas G. Lane. * It was modified by The libjpeg-turbo Project to include only code and * information relevant to libjpeg-turbo. * For conditions of distribution and use, see the accompanying README file. * * This file provides a really simple implementation of the system- * dependent portion of the JPEG memory manager. This implementation * assumes that no backing-store files are needed: all required space * can be obtained from malloc(). * This is very portable in the sense that it'll compile on almost anything, * but you'd better have lots of main memory (or virtual memory) if you want * to process big images. * Note that the max_memory_to_use option is ignored by this implementation. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" #include "jmemsys.h" /* import the system-dependent declarations */ #ifndef HAVE_STDLIB_H /* should declare malloc(),free() */ extern void * malloc (size_t size); extern void free (void *ptr); #endif /* * Memory allocation and freeing are controlled by the regular library * routines malloc() and free(). */ GLOBAL(void *) jpeg_get_small (j_common_ptr cinfo, size_t sizeofobject) { return (void *) malloc(sizeofobject); } GLOBAL(void) jpeg_free_small (j_common_ptr cinfo, void * object, size_t sizeofobject) { free(object); } /* * "Large" objects are treated the same as "small" ones. */ GLOBAL(void *) jpeg_get_large (j_common_ptr cinfo, size_t sizeofobject) { return (void *) malloc(sizeofobject); } GLOBAL(void) jpeg_free_large (j_common_ptr cinfo, void * object, size_t sizeofobject) { free(object); } /* * This routine computes the total memory space available for allocation. * Here we always say, "we got all you want bud!" */ GLOBAL(size_t) jpeg_mem_available (j_common_ptr cinfo, size_t min_bytes_needed, size_t max_bytes_needed, size_t already_allocated) { return max_bytes_needed; } /* * Backing store (temporary file) management. * Since jpeg_mem_available always promised the moon, * this should never be called and we can just error out. */ GLOBAL(void) jpeg_open_backing_store (j_common_ptr cinfo, backing_store_ptr info, long total_bytes_needed) { ERREXIT(cinfo, JERR_NO_BACKING_STORE); } /* * These routines take care of any system-dependent initialization and * cleanup required. Here, there isn't any. */ GLOBAL(long) jpeg_mem_init (j_common_ptr cinfo) { return 0; /* just set max_memory_to_use to 0 */ } GLOBAL(void) jpeg_mem_term (j_common_ptr cinfo) { /* no work */ } libjpeg-turbo-1.4.2/jdinput.c0000644000076500007650000003363412600050400013033 00000000000000/* * jdinput.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1991-1997, Thomas G. Lane. * libjpeg-turbo Modifications: * Copyright (C) 2010, D. R. Commander. * For conditions of distribution and use, see the accompanying README file. * * This file contains input control logic for the JPEG decompressor. * These routines are concerned with controlling the decompressor's input * processing (marker reading and coefficient decoding). The actual input * reading is done in jdmarker.c, jdhuff.c, and jdphuff.c. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" #include "jpegcomp.h" /* Private state */ typedef struct { struct jpeg_input_controller pub; /* public fields */ boolean inheaders; /* TRUE until first SOS is reached */ } my_input_controller; typedef my_input_controller * my_inputctl_ptr; /* Forward declarations */ METHODDEF(int) consume_markers (j_decompress_ptr cinfo); /* * Routines to calculate various quantities related to the size of the image. */ LOCAL(void) initial_setup (j_decompress_ptr cinfo) /* Called once, when first SOS marker is reached */ { int ci; jpeg_component_info *compptr; /* Make sure image isn't bigger than I can handle */ if ((long) cinfo->image_height > (long) JPEG_MAX_DIMENSION || (long) cinfo->image_width > (long) JPEG_MAX_DIMENSION) ERREXIT1(cinfo, JERR_IMAGE_TOO_BIG, (unsigned int) JPEG_MAX_DIMENSION); /* For now, precision must match compiled-in value... */ if (cinfo->data_precision != BITS_IN_JSAMPLE) ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision); /* Check that number of components won't exceed internal array sizes */ if (cinfo->num_components > MAX_COMPONENTS) ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components, MAX_COMPONENTS); /* Compute maximum sampling factors; check factor validity */ cinfo->max_h_samp_factor = 1; cinfo->max_v_samp_factor = 1; for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { if (compptr->h_samp_factor<=0 || compptr->h_samp_factor>MAX_SAMP_FACTOR || compptr->v_samp_factor<=0 || compptr->v_samp_factor>MAX_SAMP_FACTOR) ERREXIT(cinfo, JERR_BAD_SAMPLING); cinfo->max_h_samp_factor = MAX(cinfo->max_h_samp_factor, compptr->h_samp_factor); cinfo->max_v_samp_factor = MAX(cinfo->max_v_samp_factor, compptr->v_samp_factor); } #if JPEG_LIB_VERSION >=80 cinfo->block_size = DCTSIZE; cinfo->natural_order = jpeg_natural_order; cinfo->lim_Se = DCTSIZE2-1; #endif /* We initialize DCT_scaled_size and min_DCT_scaled_size to DCTSIZE. * In the full decompressor, this will be overridden by jdmaster.c; * but in the transcoder, jdmaster.c is not used, so we must do it here. */ #if JPEG_LIB_VERSION >= 70 cinfo->min_DCT_h_scaled_size = cinfo->min_DCT_v_scaled_size = DCTSIZE; #else cinfo->min_DCT_scaled_size = DCTSIZE; #endif /* Compute dimensions of components */ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { #if JPEG_LIB_VERSION >= 70 compptr->DCT_h_scaled_size = compptr->DCT_v_scaled_size = DCTSIZE; #else compptr->DCT_scaled_size = DCTSIZE; #endif /* Size in DCT blocks */ compptr->width_in_blocks = (JDIMENSION) jdiv_round_up((long) cinfo->image_width * (long) compptr->h_samp_factor, (long) (cinfo->max_h_samp_factor * DCTSIZE)); compptr->height_in_blocks = (JDIMENSION) jdiv_round_up((long) cinfo->image_height * (long) compptr->v_samp_factor, (long) (cinfo->max_v_samp_factor * DCTSIZE)); /* downsampled_width and downsampled_height will also be overridden by * jdmaster.c if we are doing full decompression. The transcoder library * doesn't use these values, but the calling application might. */ /* Size in samples */ compptr->downsampled_width = (JDIMENSION) jdiv_round_up((long) cinfo->image_width * (long) compptr->h_samp_factor, (long) cinfo->max_h_samp_factor); compptr->downsampled_height = (JDIMENSION) jdiv_round_up((long) cinfo->image_height * (long) compptr->v_samp_factor, (long) cinfo->max_v_samp_factor); /* Mark component needed, until color conversion says otherwise */ compptr->component_needed = TRUE; /* Mark no quantization table yet saved for component */ compptr->quant_table = NULL; } /* Compute number of fully interleaved MCU rows. */ cinfo->total_iMCU_rows = (JDIMENSION) jdiv_round_up((long) cinfo->image_height, (long) (cinfo->max_v_samp_factor*DCTSIZE)); /* Decide whether file contains multiple scans */ if (cinfo->comps_in_scan < cinfo->num_components || cinfo->progressive_mode) cinfo->inputctl->has_multiple_scans = TRUE; else cinfo->inputctl->has_multiple_scans = FALSE; } LOCAL(void) per_scan_setup (j_decompress_ptr cinfo) /* Do computations that are needed before processing a JPEG scan */ /* cinfo->comps_in_scan and cinfo->cur_comp_info[] were set from SOS marker */ { int ci, mcublks, tmp; jpeg_component_info *compptr; if (cinfo->comps_in_scan == 1) { /* Noninterleaved (single-component) scan */ compptr = cinfo->cur_comp_info[0]; /* Overall image size in MCUs */ cinfo->MCUs_per_row = compptr->width_in_blocks; cinfo->MCU_rows_in_scan = compptr->height_in_blocks; /* For noninterleaved scan, always one block per MCU */ compptr->MCU_width = 1; compptr->MCU_height = 1; compptr->MCU_blocks = 1; compptr->MCU_sample_width = compptr->_DCT_scaled_size; compptr->last_col_width = 1; /* For noninterleaved scans, it is convenient to define last_row_height * as the number of block rows present in the last iMCU row. */ tmp = (int) (compptr->height_in_blocks % compptr->v_samp_factor); if (tmp == 0) tmp = compptr->v_samp_factor; compptr->last_row_height = tmp; /* Prepare array describing MCU composition */ cinfo->blocks_in_MCU = 1; cinfo->MCU_membership[0] = 0; } else { /* Interleaved (multi-component) scan */ if (cinfo->comps_in_scan <= 0 || cinfo->comps_in_scan > MAX_COMPS_IN_SCAN) ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->comps_in_scan, MAX_COMPS_IN_SCAN); /* Overall image size in MCUs */ cinfo->MCUs_per_row = (JDIMENSION) jdiv_round_up((long) cinfo->image_width, (long) (cinfo->max_h_samp_factor*DCTSIZE)); cinfo->MCU_rows_in_scan = (JDIMENSION) jdiv_round_up((long) cinfo->image_height, (long) (cinfo->max_v_samp_factor*DCTSIZE)); cinfo->blocks_in_MCU = 0; for (ci = 0; ci < cinfo->comps_in_scan; ci++) { compptr = cinfo->cur_comp_info[ci]; /* Sampling factors give # of blocks of component in each MCU */ compptr->MCU_width = compptr->h_samp_factor; compptr->MCU_height = compptr->v_samp_factor; compptr->MCU_blocks = compptr->MCU_width * compptr->MCU_height; compptr->MCU_sample_width = compptr->MCU_width * compptr->_DCT_scaled_size; /* Figure number of non-dummy blocks in last MCU column & row */ tmp = (int) (compptr->width_in_blocks % compptr->MCU_width); if (tmp == 0) tmp = compptr->MCU_width; compptr->last_col_width = tmp; tmp = (int) (compptr->height_in_blocks % compptr->MCU_height); if (tmp == 0) tmp = compptr->MCU_height; compptr->last_row_height = tmp; /* Prepare array describing MCU composition */ mcublks = compptr->MCU_blocks; if (cinfo->blocks_in_MCU + mcublks > D_MAX_BLOCKS_IN_MCU) ERREXIT(cinfo, JERR_BAD_MCU_SIZE); while (mcublks-- > 0) { cinfo->MCU_membership[cinfo->blocks_in_MCU++] = ci; } } } } /* * Save away a copy of the Q-table referenced by each component present * in the current scan, unless already saved during a prior scan. * * In a multiple-scan JPEG file, the encoder could assign different components * the same Q-table slot number, but change table definitions between scans * so that each component uses a different Q-table. (The IJG encoder is not * currently capable of doing this, but other encoders might.) Since we want * to be able to dequantize all the components at the end of the file, this * means that we have to save away the table actually used for each component. * We do this by copying the table at the start of the first scan containing * the component. * The JPEG spec prohibits the encoder from changing the contents of a Q-table * slot between scans of a component using that slot. If the encoder does so * anyway, this decoder will simply use the Q-table values that were current * at the start of the first scan for the component. * * The decompressor output side looks only at the saved quant tables, * not at the current Q-table slots. */ LOCAL(void) latch_quant_tables (j_decompress_ptr cinfo) { int ci, qtblno; jpeg_component_info *compptr; JQUANT_TBL * qtbl; for (ci = 0; ci < cinfo->comps_in_scan; ci++) { compptr = cinfo->cur_comp_info[ci]; /* No work if we already saved Q-table for this component */ if (compptr->quant_table != NULL) continue; /* Make sure specified quantization table is present */ qtblno = compptr->quant_tbl_no; if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS || cinfo->quant_tbl_ptrs[qtblno] == NULL) ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno); /* OK, save away the quantization table */ qtbl = (JQUANT_TBL *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, sizeof(JQUANT_TBL)); MEMCOPY(qtbl, cinfo->quant_tbl_ptrs[qtblno], sizeof(JQUANT_TBL)); compptr->quant_table = qtbl; } } /* * Initialize the input modules to read a scan of compressed data. * The first call to this is done by jdmaster.c after initializing * the entire decompressor (during jpeg_start_decompress). * Subsequent calls come from consume_markers, below. */ METHODDEF(void) start_input_pass (j_decompress_ptr cinfo) { per_scan_setup(cinfo); latch_quant_tables(cinfo); (*cinfo->entropy->start_pass) (cinfo); (*cinfo->coef->start_input_pass) (cinfo); cinfo->inputctl->consume_input = cinfo->coef->consume_data; } /* * Finish up after inputting a compressed-data scan. * This is called by the coefficient controller after it's read all * the expected data of the scan. */ METHODDEF(void) finish_input_pass (j_decompress_ptr cinfo) { cinfo->inputctl->consume_input = consume_markers; } /* * Read JPEG markers before, between, or after compressed-data scans. * Change state as necessary when a new scan is reached. * Return value is JPEG_SUSPENDED, JPEG_REACHED_SOS, or JPEG_REACHED_EOI. * * The consume_input method pointer points either here or to the * coefficient controller's consume_data routine, depending on whether * we are reading a compressed data segment or inter-segment markers. */ METHODDEF(int) consume_markers (j_decompress_ptr cinfo) { my_inputctl_ptr inputctl = (my_inputctl_ptr) cinfo->inputctl; int val; if (inputctl->pub.eoi_reached) /* After hitting EOI, read no further */ return JPEG_REACHED_EOI; val = (*cinfo->marker->read_markers) (cinfo); switch (val) { case JPEG_REACHED_SOS: /* Found SOS */ if (inputctl->inheaders) { /* 1st SOS */ initial_setup(cinfo); inputctl->inheaders = FALSE; /* Note: start_input_pass must be called by jdmaster.c * before any more input can be consumed. jdapimin.c is * responsible for enforcing this sequencing. */ } else { /* 2nd or later SOS marker */ if (! inputctl->pub.has_multiple_scans) ERREXIT(cinfo, JERR_EOI_EXPECTED); /* Oops, I wasn't expecting this! */ start_input_pass(cinfo); } break; case JPEG_REACHED_EOI: /* Found EOI */ inputctl->pub.eoi_reached = TRUE; if (inputctl->inheaders) { /* Tables-only datastream, apparently */ if (cinfo->marker->saw_SOF) ERREXIT(cinfo, JERR_SOF_NO_SOS); } else { /* Prevent infinite loop in coef ctlr's decompress_data routine * if user set output_scan_number larger than number of scans. */ if (cinfo->output_scan_number > cinfo->input_scan_number) cinfo->output_scan_number = cinfo->input_scan_number; } break; case JPEG_SUSPENDED: break; } return val; } /* * Reset state to begin a fresh datastream. */ METHODDEF(void) reset_input_controller (j_decompress_ptr cinfo) { my_inputctl_ptr inputctl = (my_inputctl_ptr) cinfo->inputctl; inputctl->pub.consume_input = consume_markers; inputctl->pub.has_multiple_scans = FALSE; /* "unknown" would be better */ inputctl->pub.eoi_reached = FALSE; inputctl->inheaders = TRUE; /* Reset other modules */ (*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo); (*cinfo->marker->reset_marker_reader) (cinfo); /* Reset progression state -- would be cleaner if entropy decoder did this */ cinfo->coef_bits = NULL; } /* * Initialize the input controller module. * This is called only once, when the decompression object is created. */ GLOBAL(void) jinit_input_controller (j_decompress_ptr cinfo) { my_inputctl_ptr inputctl; /* Create subobject in permanent pool */ inputctl = (my_inputctl_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT, sizeof(my_input_controller)); cinfo->inputctl = (struct jpeg_input_controller *) inputctl; /* Initialize method pointers */ inputctl->pub.consume_input = consume_markers; inputctl->pub.reset_input_controller = reset_input_controller; inputctl->pub.start_input_pass = start_input_pass; inputctl->pub.finish_input_pass = finish_input_pass; /* Initialize state: can't use reset_input_controller since we don't * want to try to reset other modules yet. */ inputctl->pub.has_multiple_scans = FALSE; /* "unknown" would be better */ inputctl->pub.eoi_reached = FALSE; inputctl->inheaders = TRUE; } libjpeg-turbo-1.4.2/jidctflt.c0000644000076500007650000002073112600050400013153 00000000000000/* * jidctflt.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1994-1998, Thomas G. Lane. * Modified 2010 by Guido Vollbeding. * libjpeg-turbo Modifications: * Copyright (C) 2014, D. R. Commander. * For conditions of distribution and use, see the accompanying README file. * * This file contains a floating-point implementation of the * inverse DCT (Discrete Cosine Transform). In the IJG code, this routine * must also perform dequantization of the input coefficients. * * This implementation should be more accurate than either of the integer * IDCT implementations. However, it may not give the same results on all * machines because of differences in roundoff behavior. Speed will depend * on the hardware's floating point capacity. * * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT * on each row (or vice versa, but it's more convenient to emit a row at * a time). Direct algorithms are also available, but they are much more * complex and seem not to be any faster when reduced to code. * * This implementation is based on Arai, Agui, and Nakajima's algorithm for * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in * Japanese, but the algorithm is described in the Pennebaker & Mitchell * JPEG textbook (see REFERENCES section in file README). The following code * is based directly on figure 4-8 in P&M. * While an 8-point DCT cannot be done in less than 11 multiplies, it is * possible to arrange the computation so that many of the multiplies are * simple scalings of the final outputs. These multiplies can then be * folded into the multiplications or divisions by the JPEG quantization * table entries. The AA&N method leaves only 5 multiplies and 29 adds * to be done in the DCT itself. * The primary disadvantage of this method is that with a fixed-point * implementation, accuracy is lost due to imprecise representation of the * scaled quantization values. However, that problem does not arise if * we use floating point arithmetic. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" #include "jdct.h" /* Private declarations for DCT subsystem */ #ifdef DCT_FLOAT_SUPPORTED /* * This module is specialized to the case DCTSIZE = 8. */ #if DCTSIZE != 8 Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ #endif /* Dequantize a coefficient by multiplying it by the multiplier-table * entry; produce a float result. */ #define DEQUANTIZE(coef,quantval) (((FAST_FLOAT) (coef)) * (quantval)) /* * Perform dequantization and inverse DCT on one block of coefficients. */ GLOBAL(void) jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; FAST_FLOAT tmp10, tmp11, tmp12, tmp13; FAST_FLOAT z5, z10, z11, z12, z13; JCOEFPTR inptr; FLOAT_MULT_TYPE * quantptr; FAST_FLOAT * wsptr; JSAMPROW outptr; JSAMPLE *range_limit = cinfo->sample_range_limit; int ctr; FAST_FLOAT workspace[DCTSIZE2]; /* buffers data between passes */ #define _0_125 ((FLOAT_MULT_TYPE)0.125) /* Pass 1: process columns from input, store into work array. */ inptr = coef_block; quantptr = (FLOAT_MULT_TYPE *) compptr->dct_table; wsptr = workspace; for (ctr = DCTSIZE; ctr > 0; ctr--) { /* Due to quantization, we will usually find that many of the input * coefficients are zero, especially the AC terms. We can exploit this * by short-circuiting the IDCT calculation for any column in which all * the AC terms are zero. In that case each output is equal to the * DC coefficient (with scale factor as needed). * With typical images and quantization tables, half or more of the * column DCT calculations can be simplified this way. */ if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 && inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 && inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 && inptr[DCTSIZE*7] == 0) { /* AC terms all zero */ FAST_FLOAT dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0] * _0_125); wsptr[DCTSIZE*0] = dcval; wsptr[DCTSIZE*1] = dcval; wsptr[DCTSIZE*2] = dcval; wsptr[DCTSIZE*3] = dcval; wsptr[DCTSIZE*4] = dcval; wsptr[DCTSIZE*5] = dcval; wsptr[DCTSIZE*6] = dcval; wsptr[DCTSIZE*7] = dcval; inptr++; /* advance pointers to next column */ quantptr++; wsptr++; continue; } /* Even part */ tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0] * _0_125); tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2] * _0_125); tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4] * _0_125); tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6] * _0_125); tmp10 = tmp0 + tmp2; /* phase 3 */ tmp11 = tmp0 - tmp2; tmp13 = tmp1 + tmp3; /* phases 5-3 */ tmp12 = (tmp1 - tmp3) * ((FAST_FLOAT) 1.414213562) - tmp13; /* 2*c4 */ tmp0 = tmp10 + tmp13; /* phase 2 */ tmp3 = tmp10 - tmp13; tmp1 = tmp11 + tmp12; tmp2 = tmp11 - tmp12; /* Odd part */ tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1] * _0_125); tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3] * _0_125); tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5] * _0_125); tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7] * _0_125); z13 = tmp6 + tmp5; /* phase 6 */ z10 = tmp6 - tmp5; z11 = tmp4 + tmp7; z12 = tmp4 - tmp7; tmp7 = z11 + z13; /* phase 5 */ tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); /* 2*c4 */ z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */ tmp10 = z5 - z12 * ((FAST_FLOAT) 1.082392200); /* 2*(c2-c6) */ tmp12 = z5 - z10 * ((FAST_FLOAT) 2.613125930); /* 2*(c2+c6) */ tmp6 = tmp12 - tmp7; /* phase 2 */ tmp5 = tmp11 - tmp6; tmp4 = tmp10 - tmp5; wsptr[DCTSIZE*0] = tmp0 + tmp7; wsptr[DCTSIZE*7] = tmp0 - tmp7; wsptr[DCTSIZE*1] = tmp1 + tmp6; wsptr[DCTSIZE*6] = tmp1 - tmp6; wsptr[DCTSIZE*2] = tmp2 + tmp5; wsptr[DCTSIZE*5] = tmp2 - tmp5; wsptr[DCTSIZE*3] = tmp3 + tmp4; wsptr[DCTSIZE*4] = tmp3 - tmp4; inptr++; /* advance pointers to next column */ quantptr++; wsptr++; } /* Pass 2: process rows from work array, store into output array. */ wsptr = workspace; for (ctr = 0; ctr < DCTSIZE; ctr++) { outptr = output_buf[ctr] + output_col; /* Rows of zeroes can be exploited in the same way as we did with columns. * However, the column calculation has created many nonzero AC terms, so * the simplification applies less often (typically 5% to 10% of the time). * And testing floats for zero is relatively expensive, so we don't bother. */ /* Even part */ /* Apply signed->unsigned and prepare float->int conversion */ z5 = wsptr[0] + ((FAST_FLOAT) CENTERJSAMPLE + (FAST_FLOAT) 0.5); tmp10 = z5 + wsptr[4]; tmp11 = z5 - wsptr[4]; tmp13 = wsptr[2] + wsptr[6]; tmp12 = (wsptr[2] - wsptr[6]) * ((FAST_FLOAT) 1.414213562) - tmp13; tmp0 = tmp10 + tmp13; tmp3 = tmp10 - tmp13; tmp1 = tmp11 + tmp12; tmp2 = tmp11 - tmp12; /* Odd part */ z13 = wsptr[5] + wsptr[3]; z10 = wsptr[5] - wsptr[3]; z11 = wsptr[1] + wsptr[7]; z12 = wsptr[1] - wsptr[7]; tmp7 = z11 + z13; tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */ tmp10 = z5 - z12 * ((FAST_FLOAT) 1.082392200); /* 2*(c2-c6) */ tmp12 = z5 - z10 * ((FAST_FLOAT) 2.613125930); /* 2*(c2+c6) */ tmp6 = tmp12 - tmp7; tmp5 = tmp11 - tmp6; tmp4 = tmp10 - tmp5; /* Final output stage: float->int conversion and range-limit */ outptr[0] = range_limit[((int) (tmp0 + tmp7)) & RANGE_MASK]; outptr[7] = range_limit[((int) (tmp0 - tmp7)) & RANGE_MASK]; outptr[1] = range_limit[((int) (tmp1 + tmp6)) & RANGE_MASK]; outptr[6] = range_limit[((int) (tmp1 - tmp6)) & RANGE_MASK]; outptr[2] = range_limit[((int) (tmp2 + tmp5)) & RANGE_MASK]; outptr[5] = range_limit[((int) (tmp2 - tmp5)) & RANGE_MASK]; outptr[3] = range_limit[((int) (tmp3 + tmp4)) & RANGE_MASK]; outptr[4] = range_limit[((int) (tmp3 - tmp4)) & RANGE_MASK]; wsptr += DCTSIZE; /* advance pointer to next row */ } } #endif /* DCT_FLOAT_SUPPORTED */ libjpeg-turbo-1.4.2/Makefile.in0000644000076500007650000057421712600050415013274 00000000000000# Makefile.in generated by automake 1.15 from Makefile.am. # @configure_input@ # Copyright (C) 1994-2014 Free Software Foundation, Inc. # This Makefile.in is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY, to the extent permitted by law; without # even the implied warranty of MERCHANTABILITY or FITNESS FOR A # PARTICULAR PURPOSE. @SET_MAKE@ VPATH = @srcdir@ am__is_gnu_make = { \ if test -z '$(MAKELEVEL)'; then \ false; \ elif test -n '$(MAKE_HOST)'; then \ true; \ elif test -n '$(MAKE_VERSION)' && test -n '$(CURDIR)'; then \ true; \ else \ false; \ fi; \ } am__make_running_with_option = \ case $${target_option-} in \ ?) ;; \ *) echo "am__make_running_with_option: internal error: invalid" \ "target option '$${target_option-}' specified" >&2; \ exit 1;; \ esac; \ has_opt=no; \ sane_makeflags=$$MAKEFLAGS; \ if $(am__is_gnu_make); then \ sane_makeflags=$$MFLAGS; \ else \ case $$MAKEFLAGS in \ *\\[\ \ ]*) \ bs=\\; \ sane_makeflags=`printf '%s\n' "$$MAKEFLAGS" \ | sed "s/$$bs$$bs[$$bs $$bs ]*//g"`;; \ esac; \ fi; \ skip_next=no; \ strip_trailopt () \ { \ flg=`printf '%s\n' "$$flg" | sed "s/$$1.*$$//"`; \ }; \ for flg in $$sane_makeflags; do \ test $$skip_next = yes && { skip_next=no; continue; }; \ case $$flg in \ *=*|--*) continue;; \ -*I) strip_trailopt 'I'; skip_next=yes;; \ -*I?*) strip_trailopt 'I';; \ -*O) strip_trailopt 'O'; skip_next=yes;; \ -*O?*) strip_trailopt 'O';; \ -*l) strip_trailopt 'l'; skip_next=yes;; \ -*l?*) strip_trailopt 'l';; \ -[dEDm]) skip_next=yes;; \ -[JT]) skip_next=yes;; \ esac; \ case $$flg in \ *$$target_option*) has_opt=yes; break;; \ esac; \ done; \ test $$has_opt = yes am__make_dryrun = (target_option=n; $(am__make_running_with_option)) am__make_keepgoing = (target_option=k; $(am__make_running_with_option)) pkgdatadir = $(datadir)/@PACKAGE@ pkgincludedir = $(includedir)/@PACKAGE@ pkglibdir = $(libdir)/@PACKAGE@ pkglibexecdir = $(libexecdir)/@PACKAGE@ am__cd = CDPATH="$${ZSH_VERSION+.}$(PATH_SEPARATOR)" && cd install_sh_DATA = $(install_sh) -c -m 644 install_sh_PROGRAM = $(install_sh) -c install_sh_SCRIPT = $(install_sh) -c INSTALL_HEADER = $(INSTALL_DATA) transform = $(program_transform_name) NORMAL_INSTALL = : PRE_INSTALL = : POST_INSTALL = : NORMAL_UNINSTALL = : PRE_UNINSTALL = : POST_UNINSTALL = : build_triplet = @build@ host_triplet = @host@ @WITH_TURBOJPEG_TRUE@am__append_1 = libturbojpeg.la @WITH_TURBOJPEG_TRUE@am__append_2 = turbojpeg.h @WITH_ARITH_TRUE@am__append_3 = jaricom.c @WITH_ARITH_ENC_TRUE@am__append_4 = jcarith.c @WITH_ARITH_DEC_TRUE@am__append_5 = jdarith.c @WITH_JAVA_TRUE@@WITH_TURBOJPEG_TRUE@am__append_6 = turbojpeg-jni.c @VERSION_SCRIPT_TRUE@@WITH_TURBOJPEG_TRUE@am__append_7 = $(VERSION_SCRIPT_FLAG)$(srcdir)/$(TJMAPFILE) @VERSION_SCRIPT_TRUE@am__append_8 = $(VERSION_SCRIPT_FLAG)libjpeg.map @WITH_SIMD_TRUE@am__append_9 = simd @WITH_SIMD_FALSE@am__append_10 = jsimd_none.c bin_PROGRAMS = cjpeg$(EXEEXT) djpeg$(EXEEXT) jpegtran$(EXEEXT) \ rdjpgcom$(EXEEXT) wrjpgcom$(EXEEXT) $(am__EXEEXT_1) noinst_PROGRAMS = jcstest$(EXEEXT) $(am__EXEEXT_2) @WITH_TURBOJPEG_TRUE@am__append_11 = tjbench @WITH_TURBOJPEG_TRUE@am__append_12 = tjunittest @WITH_12BIT_FALSE@am__append_13 = rdbmp.c rdtarga.c @WITH_12BIT_FALSE@am__append_14 = -DBMP_SUPPORTED -DTARGA_SUPPORTED @WITH_12BIT_FALSE@am__append_15 = wrbmp.c wrtarga.c @WITH_12BIT_FALSE@am__append_16 = -DBMP_SUPPORTED -DTARGA_SUPPORTED subdir = . ACLOCAL_M4 = $(top_srcdir)/aclocal.m4 am__aclocal_m4_deps = $(top_srcdir)/acinclude.m4 \ $(top_srcdir)/configure.ac am__configure_deps = $(am__aclocal_m4_deps) $(CONFIGURE_DEPENDENCIES) \ $(ACLOCAL_M4) DIST_COMMON = $(srcdir)/Makefile.am $(top_srcdir)/configure \ $(am__configure_deps) $(dist_doc_DATA) $(dist_example_DATA) \ $(am__include_HEADERS_DIST) $(am__DIST_COMMON) am__CONFIG_DISTCLEAN_FILES = config.status config.cache config.log \ configure.lineno config.status.lineno mkinstalldirs = $(install_sh) -d CONFIG_HEADER = config.h jconfig.h jconfigint.h CONFIG_CLEAN_FILES = pkgscripts/libjpeg-turbo.spec.tmpl \ pkgscripts/makecygwinpkg.tmpl pkgscripts/makedpkg.tmpl \ pkgscripts/makemacpkg.tmpl pkgscripts/uninstall.tmpl \ tjbenchtest tjbenchtest.java tjexampletest libjpeg.map CONFIG_CLEAN_VPATH_FILES = am__vpath_adj_setup = srcdirstrip=`echo "$(srcdir)" | sed 's|.|.|g'`; am__vpath_adj = case $$p in \ $(srcdir)/*) f=`echo "$$p" | sed "s|^$$srcdirstrip/||"`;; \ *) f=$$p;; \ esac; am__strip_dir = f=`echo $$p | sed -e 's|^.*/||'`; am__install_max = 40 am__nobase_strip_setup = \ srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*|]/\\\\&/g'` am__nobase_strip = \ for p in $$list; do echo "$$p"; done | sed -e "s|$$srcdirstrip/||" am__nobase_list = $(am__nobase_strip_setup); \ for p in $$list; do echo "$$p $$p"; done | \ sed "s| $$srcdirstrip/| |;"' / .*\//!s/ .*/ ./; s,\( .*\)/[^/]*$$,\1,' | \ $(AWK) 'BEGIN { files["."] = "" } { files[$$2] = files[$$2] " " $$1; \ if (++n[$$2] == $(am__install_max)) \ { print $$2, files[$$2]; n[$$2] = 0; files[$$2] = "" } } \ END { for (dir in files) print dir, files[dir] }' am__base_list = \ sed '$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;s/\n/ /g' | \ sed '$$!N;$$!N;$$!N;$$!N;s/\n/ /g' am__uninstall_files_from_dir = { \ test -z "$$files" \ || { test ! -d "$$dir" && test ! -f "$$dir" && test ! -r "$$dir"; } \ || { echo " ( cd '$$dir' && rm -f" $$files ")"; \ $(am__cd) "$$dir" && rm -f $$files; }; \ } am__installdirs = "$(DESTDIR)$(libdir)" "$(DESTDIR)$(bindir)" \ "$(DESTDIR)$(man1dir)" "$(DESTDIR)$(docdir)" \ "$(DESTDIR)$(exampledir)" "$(DESTDIR)$(includedir)" \ "$(DESTDIR)$(includedir)" LTLIBRARIES = $(lib_LTLIBRARIES) @WITH_SIMD_TRUE@libjpeg_la_DEPENDENCIES = simd/libsimd.la am__libjpeg_la_SOURCES_DIST = jchuff.h jdct.h jdhuff.h jerror.h \ jinclude.h jmemsys.h jmorecfg.h jpegint.h jpeglib.h jversion.h \ jsimd.h jsimddct.h jpegcomp.h jpeg_nbits_table.h jcapimin.c \ jcapistd.c jccoefct.c jccolor.c jcdctmgr.c jchuff.c jcinit.c \ jcmainct.c jcmarker.c jcmaster.c jcomapi.c jcparam.c jcphuff.c \ jcprepct.c jcsample.c jctrans.c jdapimin.c jdapistd.c \ jdatadst.c jdatasrc.c jdcoefct.c jdcolor.c jddctmgr.c jdhuff.c \ jdinput.c jdmainct.c jdmarker.c jdmaster.c jdmerge.c jdphuff.c \ jdpostct.c jdsample.c jdtrans.c jerror.c jfdctflt.c jfdctfst.c \ jfdctint.c jidctflt.c jidctfst.c jidctint.c jidctred.c \ jquant1.c jquant2.c jutils.c jmemmgr.c jmemnobs.c jaricom.c \ jcarith.c jdarith.c jsimd_none.c am__objects_1 = @WITH_ARITH_TRUE@am__objects_2 = jaricom.lo @WITH_ARITH_ENC_TRUE@am__objects_3 = jcarith.lo @WITH_ARITH_DEC_TRUE@am__objects_4 = jdarith.lo @WITH_SIMD_FALSE@am__objects_5 = jsimd_none.lo am_libjpeg_la_OBJECTS = $(am__objects_1) jcapimin.lo jcapistd.lo \ jccoefct.lo jccolor.lo jcdctmgr.lo jchuff.lo jcinit.lo \ jcmainct.lo jcmarker.lo jcmaster.lo jcomapi.lo jcparam.lo \ jcphuff.lo jcprepct.lo jcsample.lo jctrans.lo jdapimin.lo \ jdapistd.lo jdatadst.lo jdatasrc.lo jdcoefct.lo jdcolor.lo \ jddctmgr.lo jdhuff.lo jdinput.lo jdmainct.lo jdmarker.lo \ jdmaster.lo jdmerge.lo jdphuff.lo jdpostct.lo jdsample.lo \ jdtrans.lo jerror.lo jfdctflt.lo jfdctfst.lo jfdctint.lo \ jidctflt.lo jidctfst.lo jidctint.lo jidctred.lo jquant1.lo \ jquant2.lo jutils.lo jmemmgr.lo jmemnobs.lo $(am__objects_2) \ $(am__objects_3) $(am__objects_4) $(am__objects_5) libjpeg_la_OBJECTS = $(am_libjpeg_la_OBJECTS) AM_V_lt = $(am__v_lt_@AM_V@) am__v_lt_ = $(am__v_lt_@AM_DEFAULT_V@) am__v_lt_0 = --silent am__v_lt_1 = libjpeg_la_LINK = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=link $(CCLD) $(AM_CFLAGS) $(CFLAGS) \ $(libjpeg_la_LDFLAGS) $(LDFLAGS) -o $@ @WITH_SIMD_TRUE@libturbojpeg_la_DEPENDENCIES = simd/libsimd.la am__libturbojpeg_la_SOURCES_DIST = jchuff.h jdct.h jdhuff.h jerror.h \ jinclude.h jmemsys.h jmorecfg.h jpegint.h jpeglib.h jversion.h \ jsimd.h jsimddct.h jpegcomp.h jpeg_nbits_table.h jcapimin.c \ jcapistd.c jccoefct.c jccolor.c jcdctmgr.c jchuff.c jcinit.c \ jcmainct.c jcmarker.c jcmaster.c jcomapi.c jcparam.c jcphuff.c \ jcprepct.c jcsample.c jctrans.c jdapimin.c jdapistd.c \ jdatadst.c jdatasrc.c jdcoefct.c jdcolor.c jddctmgr.c jdhuff.c \ jdinput.c jdmainct.c jdmarker.c jdmaster.c jdmerge.c jdphuff.c \ jdpostct.c jdsample.c jdtrans.c jerror.c jfdctflt.c jfdctfst.c \ jfdctint.c jidctflt.c jidctfst.c jidctint.c jidctred.c \ jquant1.c jquant2.c jutils.c jmemmgr.c jmemnobs.c jaricom.c \ jcarith.c jdarith.c jsimd_none.c turbojpeg.c turbojpeg.h \ transupp.c transupp.h jdatadst-tj.c jdatasrc-tj.c \ turbojpeg-jni.c turbojpeg-mapfile turbojpeg-mapfile.jni @WITH_ARITH_TRUE@am__objects_6 = libturbojpeg_la-jaricom.lo @WITH_ARITH_ENC_TRUE@am__objects_7 = libturbojpeg_la-jcarith.lo @WITH_ARITH_DEC_TRUE@am__objects_8 = libturbojpeg_la-jdarith.lo @WITH_SIMD_FALSE@am__objects_9 = libturbojpeg_la-jsimd_none.lo am__objects_10 = $(am__objects_1) libturbojpeg_la-jcapimin.lo \ libturbojpeg_la-jcapistd.lo libturbojpeg_la-jccoefct.lo \ libturbojpeg_la-jccolor.lo libturbojpeg_la-jcdctmgr.lo \ libturbojpeg_la-jchuff.lo libturbojpeg_la-jcinit.lo \ libturbojpeg_la-jcmainct.lo libturbojpeg_la-jcmarker.lo \ libturbojpeg_la-jcmaster.lo libturbojpeg_la-jcomapi.lo \ libturbojpeg_la-jcparam.lo libturbojpeg_la-jcphuff.lo \ libturbojpeg_la-jcprepct.lo libturbojpeg_la-jcsample.lo \ libturbojpeg_la-jctrans.lo libturbojpeg_la-jdapimin.lo \ libturbojpeg_la-jdapistd.lo libturbojpeg_la-jdatadst.lo \ libturbojpeg_la-jdatasrc.lo libturbojpeg_la-jdcoefct.lo \ libturbojpeg_la-jdcolor.lo libturbojpeg_la-jddctmgr.lo \ libturbojpeg_la-jdhuff.lo libturbojpeg_la-jdinput.lo \ libturbojpeg_la-jdmainct.lo libturbojpeg_la-jdmarker.lo \ libturbojpeg_la-jdmaster.lo libturbojpeg_la-jdmerge.lo \ libturbojpeg_la-jdphuff.lo libturbojpeg_la-jdpostct.lo \ libturbojpeg_la-jdsample.lo libturbojpeg_la-jdtrans.lo \ libturbojpeg_la-jerror.lo libturbojpeg_la-jfdctflt.lo \ libturbojpeg_la-jfdctfst.lo libturbojpeg_la-jfdctint.lo \ libturbojpeg_la-jidctflt.lo libturbojpeg_la-jidctfst.lo \ libturbojpeg_la-jidctint.lo libturbojpeg_la-jidctred.lo \ libturbojpeg_la-jquant1.lo libturbojpeg_la-jquant2.lo \ libturbojpeg_la-jutils.lo libturbojpeg_la-jmemmgr.lo \ libturbojpeg_la-jmemnobs.lo $(am__objects_6) $(am__objects_7) \ $(am__objects_8) $(am__objects_9) @WITH_JAVA_TRUE@@WITH_TURBOJPEG_TRUE@am__objects_11 = libturbojpeg_la-turbojpeg-jni.lo @WITH_TURBOJPEG_TRUE@am_libturbojpeg_la_OBJECTS = $(am__objects_10) \ @WITH_TURBOJPEG_TRUE@ libturbojpeg_la-turbojpeg.lo \ @WITH_TURBOJPEG_TRUE@ libturbojpeg_la-transupp.lo \ @WITH_TURBOJPEG_TRUE@ libturbojpeg_la-jdatadst-tj.lo \ @WITH_TURBOJPEG_TRUE@ libturbojpeg_la-jdatasrc-tj.lo \ @WITH_TURBOJPEG_TRUE@ $(am__objects_11) $(am__objects_1) libturbojpeg_la_OBJECTS = $(am_libturbojpeg_la_OBJECTS) libturbojpeg_la_LINK = $(LIBTOOL) $(AM_V_lt) --tag=CC \ $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=link $(CCLD) \ $(libturbojpeg_la_CFLAGS) $(CFLAGS) $(libturbojpeg_la_LDFLAGS) \ $(LDFLAGS) -o $@ @WITH_TURBOJPEG_TRUE@am_libturbojpeg_la_rpath = -rpath $(libdir) @WITH_TURBOJPEG_TRUE@am__EXEEXT_1 = tjbench$(EXEEXT) @WITH_TURBOJPEG_TRUE@am__EXEEXT_2 = tjunittest$(EXEEXT) PROGRAMS = $(bin_PROGRAMS) $(noinst_PROGRAMS) am__cjpeg_SOURCES_DIST = cdjpeg.h cderror.h cdjpeg.c cjpeg.c rdgif.c \ rdppm.c rdswitch.c rdbmp.c rdtarga.c @WITH_12BIT_FALSE@am__objects_12 = cjpeg-rdbmp.$(OBJEXT) \ @WITH_12BIT_FALSE@ cjpeg-rdtarga.$(OBJEXT) am_cjpeg_OBJECTS = cjpeg-cdjpeg.$(OBJEXT) cjpeg-cjpeg.$(OBJEXT) \ cjpeg-rdgif.$(OBJEXT) cjpeg-rdppm.$(OBJEXT) \ cjpeg-rdswitch.$(OBJEXT) $(am__objects_12) cjpeg_OBJECTS = $(am_cjpeg_OBJECTS) cjpeg_DEPENDENCIES = libjpeg.la cjpeg_LINK = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=link $(CCLD) $(cjpeg_CFLAGS) $(CFLAGS) \ $(AM_LDFLAGS) $(LDFLAGS) -o $@ am__djpeg_SOURCES_DIST = cdjpeg.h cderror.h cdjpeg.c djpeg.c \ rdcolmap.c rdswitch.c wrgif.c wrppm.c wrbmp.c wrtarga.c @WITH_12BIT_FALSE@am__objects_13 = djpeg-wrbmp.$(OBJEXT) \ @WITH_12BIT_FALSE@ djpeg-wrtarga.$(OBJEXT) am_djpeg_OBJECTS = djpeg-cdjpeg.$(OBJEXT) djpeg-djpeg.$(OBJEXT) \ djpeg-rdcolmap.$(OBJEXT) djpeg-rdswitch.$(OBJEXT) \ djpeg-wrgif.$(OBJEXT) djpeg-wrppm.$(OBJEXT) $(am__objects_13) djpeg_OBJECTS = $(am_djpeg_OBJECTS) djpeg_DEPENDENCIES = libjpeg.la djpeg_LINK = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=link $(CCLD) $(djpeg_CFLAGS) $(CFLAGS) \ $(AM_LDFLAGS) $(LDFLAGS) -o $@ am_jcstest_OBJECTS = jcstest.$(OBJEXT) jcstest_OBJECTS = $(am_jcstest_OBJECTS) jcstest_DEPENDENCIES = libjpeg.la am_jpegtran_OBJECTS = jpegtran.$(OBJEXT) rdswitch.$(OBJEXT) \ cdjpeg.$(OBJEXT) transupp.$(OBJEXT) jpegtran_OBJECTS = $(am_jpegtran_OBJECTS) jpegtran_DEPENDENCIES = libjpeg.la am_rdjpgcom_OBJECTS = rdjpgcom.$(OBJEXT) rdjpgcom_OBJECTS = $(am_rdjpgcom_OBJECTS) rdjpgcom_DEPENDENCIES = libjpeg.la am__tjbench_SOURCES_DIST = tjbench.c bmp.h bmp.c tjutil.h tjutil.c \ rdbmp.c rdppm.c wrbmp.c wrppm.c @WITH_TURBOJPEG_TRUE@am_tjbench_OBJECTS = tjbench-tjbench.$(OBJEXT) \ @WITH_TURBOJPEG_TRUE@ tjbench-bmp.$(OBJEXT) \ @WITH_TURBOJPEG_TRUE@ tjbench-tjutil.$(OBJEXT) \ @WITH_TURBOJPEG_TRUE@ tjbench-rdbmp.$(OBJEXT) \ @WITH_TURBOJPEG_TRUE@ tjbench-rdppm.$(OBJEXT) \ @WITH_TURBOJPEG_TRUE@ tjbench-wrbmp.$(OBJEXT) \ @WITH_TURBOJPEG_TRUE@ tjbench-wrppm.$(OBJEXT) tjbench_OBJECTS = $(am_tjbench_OBJECTS) @WITH_TURBOJPEG_TRUE@tjbench_DEPENDENCIES = libturbojpeg.la libjpeg.la tjbench_LINK = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=link $(CCLD) $(tjbench_CFLAGS) \ $(CFLAGS) $(AM_LDFLAGS) $(LDFLAGS) -o $@ am__tjunittest_SOURCES_DIST = tjunittest.c tjutil.h tjutil.c @WITH_TURBOJPEG_TRUE@am_tjunittest_OBJECTS = tjunittest.$(OBJEXT) \ @WITH_TURBOJPEG_TRUE@ tjutil.$(OBJEXT) tjunittest_OBJECTS = $(am_tjunittest_OBJECTS) @WITH_TURBOJPEG_TRUE@tjunittest_DEPENDENCIES = libturbojpeg.la am_wrjpgcom_OBJECTS = wrjpgcom.$(OBJEXT) wrjpgcom_OBJECTS = $(am_wrjpgcom_OBJECTS) wrjpgcom_DEPENDENCIES = libjpeg.la AM_V_P = $(am__v_P_@AM_V@) am__v_P_ = $(am__v_P_@AM_DEFAULT_V@) am__v_P_0 = false am__v_P_1 = : AM_V_GEN = $(am__v_GEN_@AM_V@) am__v_GEN_ = $(am__v_GEN_@AM_DEFAULT_V@) am__v_GEN_0 = @echo " GEN " $@; am__v_GEN_1 = AM_V_at = $(am__v_at_@AM_V@) am__v_at_ = $(am__v_at_@AM_DEFAULT_V@) am__v_at_0 = @ am__v_at_1 = DEFAULT_INCLUDES = -I.@am__isrc@ depcomp = $(SHELL) $(top_srcdir)/depcomp am__depfiles_maybe = depfiles am__mv = mv -f COMPILE = $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) \ $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) LTCOMPILE = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) \ $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) \ $(AM_CFLAGS) $(CFLAGS) AM_V_CC = $(am__v_CC_@AM_V@) am__v_CC_ = $(am__v_CC_@AM_DEFAULT_V@) am__v_CC_0 = @echo " CC " $@; am__v_CC_1 = CCLD = $(CC) LINK = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=link $(CCLD) $(AM_CFLAGS) $(CFLAGS) \ $(AM_LDFLAGS) $(LDFLAGS) -o $@ AM_V_CCLD = $(am__v_CCLD_@AM_V@) am__v_CCLD_ = $(am__v_CCLD_@AM_DEFAULT_V@) am__v_CCLD_0 = @echo " CCLD " $@; am__v_CCLD_1 = SOURCES = $(libjpeg_la_SOURCES) $(libturbojpeg_la_SOURCES) \ $(cjpeg_SOURCES) $(djpeg_SOURCES) $(jcstest_SOURCES) \ $(jpegtran_SOURCES) $(rdjpgcom_SOURCES) $(tjbench_SOURCES) \ $(tjunittest_SOURCES) $(wrjpgcom_SOURCES) DIST_SOURCES = $(am__libjpeg_la_SOURCES_DIST) \ $(am__libturbojpeg_la_SOURCES_DIST) $(am__cjpeg_SOURCES_DIST) \ $(am__djpeg_SOURCES_DIST) $(jcstest_SOURCES) \ $(jpegtran_SOURCES) $(rdjpgcom_SOURCES) \ $(am__tjbench_SOURCES_DIST) $(am__tjunittest_SOURCES_DIST) \ $(wrjpgcom_SOURCES) RECURSIVE_TARGETS = all-recursive check-recursive cscopelist-recursive \ ctags-recursive dvi-recursive html-recursive info-recursive \ install-data-recursive install-dvi-recursive \ install-exec-recursive install-html-recursive \ install-info-recursive install-pdf-recursive \ install-ps-recursive install-recursive installcheck-recursive \ installdirs-recursive pdf-recursive ps-recursive \ tags-recursive uninstall-recursive am__can_run_installinfo = \ case $$AM_UPDATE_INFO_DIR in \ n|no|NO) false;; \ *) (install-info --version) >/dev/null 2>&1;; \ esac man1dir = $(mandir)/man1 NROFF = nroff MANS = $(dist_man1_MANS) DATA = $(dist_doc_DATA) $(dist_example_DATA) am__include_HEADERS_DIST = jerror.h jmorecfg.h jpeglib.h turbojpeg.h HEADERS = $(include_HEADERS) $(nodist_include_HEADERS) RECURSIVE_CLEAN_TARGETS = mostlyclean-recursive clean-recursive \ distclean-recursive maintainer-clean-recursive am__recursive_targets = \ $(RECURSIVE_TARGETS) \ $(RECURSIVE_CLEAN_TARGETS) \ $(am__extra_recursive_targets) AM_RECURSIVE_TARGETS = $(am__recursive_targets:-recursive=) TAGS CTAGS \ cscope distdir dist dist-all distcheck am__tagged_files = $(HEADERS) $(SOURCES) $(TAGS_FILES) \ $(LISP)config.h.in jconfig.h.in jconfigint.h.in # Read a list of newline-separated strings from the standard input, # and print each of them once, without duplicates. Input order is # *not* preserved. am__uniquify_input = $(AWK) '\ BEGIN { nonempty = 0; } \ { items[$$0] = 1; nonempty = 1; } \ END { if (nonempty) { for (i in items) print i; }; } \ ' # Make sure the list of sources is unique. This is necessary because, # e.g., the same source file might be shared among _SOURCES variables # for different programs/libraries. am__define_uniq_tagged_files = \ list='$(am__tagged_files)'; \ unique=`for i in $$list; do \ if test -f "$$i"; then echo $$i; else echo $(srcdir)/$$i; fi; \ done | $(am__uniquify_input)` ETAGS = etags CTAGS = ctags CSCOPE = cscope DIST_SUBDIRS = java simd md5 am__DIST_COMMON = $(dist_man1_MANS) $(srcdir)/Makefile.in \ $(srcdir)/config.h.in $(srcdir)/jconfig.h.in \ $(srcdir)/jconfigint.h.in $(srcdir)/libjpeg.map.in \ $(srcdir)/tjbenchtest.in $(srcdir)/tjbenchtest.java.in \ $(srcdir)/tjexampletest.in \ $(top_srcdir)/release/libjpeg-turbo.spec.in \ $(top_srcdir)/release/makecygwinpkg.in \ $(top_srcdir)/release/makedpkg.in \ $(top_srcdir)/release/makemacpkg.in \ $(top_srcdir)/release/uninstall.in README ar-lib compile \ config.guess config.sub depcomp install-sh ltmain.sh missing DISTFILES = $(DIST_COMMON) $(DIST_SOURCES) $(TEXINFOS) $(EXTRA_DIST) distdir = $(PACKAGE)-$(VERSION) top_distdir = $(distdir) am__remove_distdir = \ if test -d "$(distdir)"; then \ find "$(distdir)" -type d ! -perm -200 -exec chmod u+w {} ';' \ && rm -rf "$(distdir)" \ || { sleep 5 && rm -rf "$(distdir)"; }; \ else :; fi am__post_remove_distdir = $(am__remove_distdir) am__relativize = \ dir0=`pwd`; \ sed_first='s,^\([^/]*\)/.*$$,\1,'; \ sed_rest='s,^[^/]*/*,,'; \ sed_last='s,^.*/\([^/]*\)$$,\1,'; \ sed_butlast='s,/*[^/]*$$,,'; \ while test -n "$$dir1"; do \ first=`echo "$$dir1" | sed -e "$$sed_first"`; \ if test "$$first" != "."; then \ if test "$$first" = ".."; then \ dir2=`echo "$$dir0" | sed -e "$$sed_last"`/"$$dir2"; \ dir0=`echo "$$dir0" | sed -e "$$sed_butlast"`; \ else \ first2=`echo "$$dir2" | sed -e "$$sed_first"`; \ if test "$$first2" = "$$first"; then \ dir2=`echo "$$dir2" | sed -e "$$sed_rest"`; \ else \ dir2="../$$dir2"; \ fi; \ dir0="$$dir0"/"$$first"; \ fi; \ fi; \ dir1=`echo "$$dir1" | sed -e "$$sed_rest"`; \ done; \ reldir="$$dir2" DIST_ARCHIVES = $(distdir).tar.gz $(distdir).tar.bz2 GZIP_ENV = --best DIST_TARGETS = dist-bzip2 dist-gzip distuninstallcheck_listfiles = find . -type f -print am__distuninstallcheck_listfiles = $(distuninstallcheck_listfiles) \ | sed 's|^\./|$(prefix)/|' | grep -v '$(infodir)/dir$$' distcleancheck_listfiles = find . -type f -print ACLOCAL = @ACLOCAL@ AMTAR = @AMTAR@ AM_DEFAULT_VERBOSITY = @AM_DEFAULT_VERBOSITY@ AR = @AR@ AUTOCONF = @AUTOCONF@ AUTOHEADER = @AUTOHEADER@ AUTOMAKE = @AUTOMAKE@ AWK = @AWK@ BUILD = @BUILD@ CC = @CC@ CCAS = @CCAS@ CCASDEPMODE = @CCASDEPMODE@ CCASFLAGS = @CCASFLAGS@ CCDEPMODE = @CCDEPMODE@ CFLAGS = @CFLAGS@ CPP = @CPP@ CPPFLAGS = @CPPFLAGS@ CYGPATH_W = @CYGPATH_W@ DEBARCH = @DEBARCH@ DEFS = @DEFS@ DEPDIR = @DEPDIR@ DLLTOOL = @DLLTOOL@ DSYMUTIL = @DSYMUTIL@ DUMPBIN = @DUMPBIN@ ECHO_C = @ECHO_C@ ECHO_N = @ECHO_N@ ECHO_T = @ECHO_T@ EGREP = @EGREP@ EXEEXT = @EXEEXT@ FGREP = @FGREP@ GREP = @GREP@ INSTALL = @INSTALL@ INSTALL_DATA = @INSTALL_DATA@ INSTALL_PROGRAM = @INSTALL_PROGRAM@ INSTALL_SCRIPT = @INSTALL_SCRIPT@ INSTALL_STRIP_PROGRAM = @INSTALL_STRIP_PROGRAM@ JAR = @JAR@ JAVA = @JAVA@ JAVAC = @JAVAC@ JAVACFLAGS = @JAVACFLAGS@ JAVA_RPM_CONTENTS_1 = @JAVA_RPM_CONTENTS_1@ JAVA_RPM_CONTENTS_2 = @JAVA_RPM_CONTENTS_2@ JNI_CFLAGS = @JNI_CFLAGS@ JPEG_LIB_VERSION = @JPEG_LIB_VERSION@ JPEG_LIB_VERSION_DECIMAL = @JPEG_LIB_VERSION_DECIMAL@ LD = @LD@ LDFLAGS = @LDFLAGS@ LIBOBJS = @LIBOBJS@ LIBS = @LIBS@ LIBTOOL = @LIBTOOL@ LIBTOOL_CURRENT = @LIBTOOL_CURRENT@ LIPO = @LIPO@ LN_S = @LN_S@ LTLIBOBJS = @LTLIBOBJS@ LT_SYS_LIBRARY_PATH = @LT_SYS_LIBRARY_PATH@ MAKEINFO = @MAKEINFO@ MANIFEST_TOOL = @MANIFEST_TOOL@ MEM_SRCDST_FUNCTIONS = @MEM_SRCDST_FUNCTIONS@ MKDIR_P = @MKDIR_P@ NAFLAGS = @NAFLAGS@ NASM = @NASM@ NM = @NM@ NMEDIT = @NMEDIT@ OBJDUMP = @OBJDUMP@ OBJEXT = @OBJEXT@ OTOOL = @OTOOL@ OTOOL64 = @OTOOL64@ PACKAGE = @PACKAGE@ PACKAGE_BUGREPORT = @PACKAGE_BUGREPORT@ PACKAGE_NAME = @PACKAGE_NAME@ PACKAGE_STRING = @PACKAGE_STRING@ PACKAGE_TARNAME = @PACKAGE_TARNAME@ PACKAGE_URL = @PACKAGE_URL@ PACKAGE_VERSION = @PACKAGE_VERSION@ PATH_SEPARATOR = @PATH_SEPARATOR@ PKGNAME = @PKGNAME@ RANLIB = @RANLIB@ RPMARCH = @RPMARCH@ RPM_CONFIG_ARGS = @RPM_CONFIG_ARGS@ SED = @SED@ SET_MAKE = @SET_MAKE@ SHELL = @SHELL@ SO_AGE = @SO_AGE@ SO_MAJOR_VERSION = @SO_MAJOR_VERSION@ SO_MINOR_VERSION = @SO_MINOR_VERSION@ STRIP = @STRIP@ VERSION = @VERSION@ VERSION_SCRIPT_FLAG = @VERSION_SCRIPT_FLAG@ WITH_JAVA = @WITH_JAVA@ abs_builddir = @abs_builddir@ abs_srcdir = @abs_srcdir@ abs_top_builddir = @abs_top_builddir@ abs_top_srcdir = @abs_top_srcdir@ ac_ct_AR = @ac_ct_AR@ ac_ct_CC = @ac_ct_CC@ ac_ct_DUMPBIN = @ac_ct_DUMPBIN@ am__include = @am__include@ am__leading_dot = @am__leading_dot@ am__quote = @am__quote@ am__tar = @am__tar@ am__untar = @am__untar@ bindir = @bindir@ build = @build@ build_alias = @build_alias@ build_cpu = @build_cpu@ build_os = @build_os@ build_vendor = @build_vendor@ builddir = @builddir@ datadir = @datadir@ datarootdir = @datarootdir@ docdir = @docdir@ dvidir = @dvidir@ exec_prefix = @exec_prefix@ host = @host@ host_alias = @host_alias@ host_cpu = @host_cpu@ host_os = @host_os@ host_vendor = @host_vendor@ htmldir = @htmldir@ includedir = @includedir@ infodir = @infodir@ install_sh = @install_sh@ libdir = @libdir@ libexecdir = @libexecdir@ localedir = @localedir@ localstatedir = @localstatedir@ mandir = @mandir@ mkdir_p = @mkdir_p@ oldincludedir = @oldincludedir@ pdfdir = @pdfdir@ prefix = @prefix@ program_transform_name = @program_transform_name@ psdir = @psdir@ sbindir = @sbindir@ sharedstatedir = @sharedstatedir@ srcdir = @srcdir@ sysconfdir = @sysconfdir@ target_alias = @target_alias@ top_build_prefix = @top_build_prefix@ top_builddir = @top_builddir@ top_srcdir = @top_srcdir@ lib_LTLIBRARIES = libjpeg.la $(am__append_1) libjpeg_la_LDFLAGS = -version-info \ ${LIBTOOL_CURRENT}:${SO_MINOR_VERSION}:${SO_AGE} -no-undefined \ $(am__append_8) include_HEADERS = jerror.h jmorecfg.h jpeglib.h $(am__append_2) @WITH_TURBOJPEG_TRUE@libturbojpeg_la_LDFLAGS = -version-info 1:0:1 \ @WITH_TURBOJPEG_TRUE@ -no-undefined $(am__append_7) nodist_include_HEADERS = jconfig.h HDRS = jchuff.h jdct.h jdhuff.h jerror.h jinclude.h jmemsys.h jmorecfg.h \ jpegint.h jpeglib.h jversion.h jsimd.h jsimddct.h jpegcomp.h \ jpeg_nbits_table.h libjpeg_la_SOURCES = $(HDRS) jcapimin.c jcapistd.c jccoefct.c \ jccolor.c jcdctmgr.c jchuff.c jcinit.c jcmainct.c jcmarker.c \ jcmaster.c jcomapi.c jcparam.c jcphuff.c jcprepct.c jcsample.c \ jctrans.c jdapimin.c jdapistd.c jdatadst.c jdatasrc.c \ jdcoefct.c jdcolor.c jddctmgr.c jdhuff.c jdinput.c jdmainct.c \ jdmarker.c jdmaster.c jdmerge.c jdphuff.c jdpostct.c \ jdsample.c jdtrans.c jerror.c jfdctflt.c jfdctfst.c jfdctint.c \ jidctflt.c jidctfst.c jidctint.c jidctred.c jquant1.c \ jquant2.c jutils.c jmemmgr.c jmemnobs.c $(am__append_3) \ $(am__append_4) $(am__append_5) $(am__append_10) SUBDIRS = java $(am__append_9) md5 @WITH_TURBOJPEG_TRUE@libturbojpeg_la_SOURCES = $(libjpeg_la_SOURCES) \ @WITH_TURBOJPEG_TRUE@ turbojpeg.c turbojpeg.h transupp.c \ @WITH_TURBOJPEG_TRUE@ transupp.h jdatadst-tj.c jdatasrc-tj.c \ @WITH_TURBOJPEG_TRUE@ $(am__append_6) $(TJMAPFILE) @WITH_JAVA_TRUE@@WITH_TURBOJPEG_TRUE@libturbojpeg_la_CFLAGS = ${JNI_CFLAGS} @WITH_JAVA_FALSE@@WITH_TURBOJPEG_TRUE@TJMAPFILE = turbojpeg-mapfile @WITH_JAVA_TRUE@@WITH_TURBOJPEG_TRUE@TJMAPFILE = turbojpeg-mapfile.jni @WITH_SIMD_TRUE@libjpeg_la_LIBADD = simd/libsimd.la @WITH_SIMD_TRUE@libturbojpeg_la_LIBADD = simd/libsimd.la @WITH_TURBOJPEG_TRUE@tjbench_SOURCES = tjbench.c bmp.h bmp.c tjutil.h tjutil.c rdbmp.c rdppm.c \ @WITH_TURBOJPEG_TRUE@ wrbmp.c wrppm.c @WITH_TURBOJPEG_TRUE@tjbench_LDADD = libturbojpeg.la libjpeg.la -lm @WITH_TURBOJPEG_TRUE@tjbench_CFLAGS = -DBMP_SUPPORTED -DPPM_SUPPORTED @WITH_TURBOJPEG_TRUE@tjunittest_SOURCES = tjunittest.c tjutil.h tjutil.c @WITH_TURBOJPEG_TRUE@tjunittest_LDADD = libturbojpeg.la cjpeg_SOURCES = cdjpeg.h cderror.h cdjpeg.c cjpeg.c rdgif.c rdppm.c \ rdswitch.c $(am__append_13) cjpeg_LDADD = libjpeg.la cjpeg_CFLAGS = -DGIF_SUPPORTED -DPPM_SUPPORTED $(am__append_14) djpeg_SOURCES = cdjpeg.h cderror.h cdjpeg.c djpeg.c rdcolmap.c \ rdswitch.c wrgif.c wrppm.c $(am__append_15) djpeg_LDADD = libjpeg.la djpeg_CFLAGS = -DGIF_SUPPORTED -DPPM_SUPPORTED $(am__append_16) jpegtran_SOURCES = jpegtran.c rdswitch.c cdjpeg.c transupp.c transupp.h jpegtran_LDADD = libjpeg.la rdjpgcom_SOURCES = rdjpgcom.c rdjpgcom_LDADD = libjpeg.la wrjpgcom_SOURCES = wrjpgcom.c wrjpgcom_LDADD = libjpeg.la jcstest_SOURCES = jcstest.c jcstest_LDADD = libjpeg.la dist_man1_MANS = cjpeg.1 djpeg.1 jpegtran.1 rdjpgcom.1 wrjpgcom.1 DOCS = coderules.txt jconfig.txt change.log rdrle.c wrrle.c BUILDING.txt \ ChangeLog.txt dist_doc_DATA = README README-turbo.txt libjpeg.txt structure.txt usage.txt \ wizard.txt exampledir = $(docdir) dist_example_DATA = example.c EXTRA_DIST = win release $(DOCS) testimages CMakeLists.txt \ sharedlib/CMakeLists.txt cmakescripts libjpeg.map.in doc doxygen.config \ doxygen-extra.css jccolext.c jdcolext.c jdcol565.c jdmrgext.c jdmrg565.c \ jstdhuff.c LICENSE.txt @WITH_12BIT_FALSE@TESTORIG = testorig.jpg @WITH_12BIT_TRUE@TESTORIG = testorig12.jpg @WITH_12BIT_FALSE@MD5_JPEG_RGB_ISLOW = 768e970dd57b340ff1b83c9d3d47c77b @WITH_12BIT_TRUE@MD5_JPEG_RGB_ISLOW = 9620f424569594bb9242b48498ad801f @WITH_12BIT_FALSE@MD5_PPM_RGB_ISLOW = 00a257f5393fef8821f2b88ac7421291 @WITH_12BIT_TRUE@MD5_PPM_RGB_ISLOW = f3301d2219783b8b3d942b7239fa50c0 @WITH_12BIT_FALSE@MD5_JPEG_422_IFAST_OPT = 2540287b79d913f91665e660303ab2c8 @WITH_12BIT_TRUE@MD5_JPEG_422_IFAST_OPT = 7322e3bd2f127f7de4b40d4480ce60e4 @WITH_12BIT_FALSE@MD5_PPM_422_IFAST = 35bd6b3f833bad23de82acea847129fa @WITH_12BIT_TRUE@MD5_PPM_422_IFAST = 79807fa552899e66a04708f533e16950 @WITH_12BIT_FALSE@MD5_PPM_422M_IFAST = 8dbc65323d62cca7c91ba02dd1cfa81d @WITH_12BIT_TRUE@MD5_PPM_422M_IFAST = 07737bfe8a7c1c87aaa393a0098d16b0 @WITH_12BIT_FALSE@MD5_JPEG_420_IFAST_Q100_PROG = 990cbe0329c882420a2094da7e5adade @WITH_12BIT_TRUE@MD5_JPEG_420_IFAST_Q100_PROG = a1da220b5604081863a504297ed59e55 @WITH_12BIT_FALSE@MD5_PPM_420_Q100_IFAST = 5a732542015c278ff43635e473a8a294 @WITH_12BIT_TRUE@MD5_PPM_420_Q100_IFAST = 1b3730122709f53d007255e8dfd3305e @WITH_12BIT_FALSE@MD5_PPM_420M_Q100_IFAST = ff692ee9323a3b424894862557c092f1 @WITH_12BIT_TRUE@MD5_PPM_420M_Q100_IFAST = 980a1a3c5bf9510022869d30b7d26566 @WITH_12BIT_FALSE@MD5_JPEG_GRAY_ISLOW = 72b51f894b8f4a10b3ee3066770aa38d @WITH_12BIT_TRUE@MD5_JPEG_GRAY_ISLOW = 235c90707b16e2e069f37c888b2636d9 @WITH_12BIT_FALSE@MD5_PPM_GRAY_ISLOW = 8d3596c56eace32f205deccc229aa5ed @WITH_12BIT_TRUE@MD5_PPM_GRAY_ISLOW = 7213c10af507ad467da5578ca5ee1fca @WITH_12BIT_FALSE@MD5_PPM_GRAY_ISLOW_RGB = 116424ac07b79e5e801f00508eab48ec @WITH_12BIT_TRUE@MD5_PPM_GRAY_ISLOW_RGB = e96ee81c30a6ed422d466338bd3de65d @WITH_12BIT_FALSE@MD5_JPEG_420S_IFAST_OPT = 388708217ac46273ca33086b22827ed8 @WITH_12BIT_TRUE@MD5_JPEG_420S_IFAST_OPT = 7af8e60be4d9c227ec63ac9b6630855e # See README-turbo.txt for more details on why this next bit is necessary. @WITH_12BIT_FALSE@MD5_JPEG_3x2_FLOAT_PROG_SSE = 343e3f8caf8af5986ebaf0bdc13b5c71 @WITH_12BIT_TRUE@MD5_JPEG_3x2_FLOAT_PROG_SSE = a8c17daf77b457725ec929e215b603f8 @WITH_12BIT_FALSE@MD5_PPM_3x2_FLOAT_SSE = 1a75f36e5904d6fc3a85a43da9ad89bb @WITH_12BIT_TRUE@MD5_PPM_3x2_FLOAT_SSE = 42876ab9e5c2f76a87d08db5fbd57956 @WITH_12BIT_FALSE@MD5_JPEG_3x2_FLOAT_PROG_32BIT = 9bca803d2042bd1eb03819e2bf92b3e5 @WITH_12BIT_TRUE@MD5_JPEG_3x2_FLOAT_PROG_32BIT = a8c17daf77b457725ec929e215b603f8 @WITH_12BIT_FALSE@MD5_PPM_3x2_FLOAT_32BIT = f6bfab038438ed8f5522fbd33595dcdc @WITH_12BIT_TRUE@MD5_PPM_3x2_FLOAT_32BIT = 42876ab9e5c2f76a87d08db5fbd57956 @WITH_12BIT_FALSE@MD5_PPM_3x2_FLOAT_64BIT = 0e917a34193ef976b679a6b069b1be26 @WITH_12BIT_TRUE@MD5_PPM_3x2_FLOAT_64BIT = d6fbc71153b3d8ded484dbc17c7b9cf4 @WITH_12BIT_FALSE@MD5_JPEG_3x2_IFAST_PROG = 1ee5d2c1a77f2da495f993c8c7cceca5 @WITH_12BIT_TRUE@MD5_JPEG_3x2_IFAST_PROG = 1396cc2b7185cfe943d408c9d305339e @WITH_12BIT_FALSE@MD5_PPM_3x2_IFAST = fd283664b3b49127984af0a7f118fccd @WITH_12BIT_TRUE@MD5_PPM_3x2_IFAST = 3975985ef6eeb0a2cdc58daa651ccc00 @WITH_12BIT_FALSE@MD5_PPM_420M_ISLOW_2_1 = 9f9de8c0612f8d06869b960b05abf9c9 @WITH_12BIT_TRUE@MD5_PPM_420M_ISLOW_2_1 = 4ca6be2a6f326ff9eaab63e70a8259c0 @WITH_12BIT_FALSE@MD5_PPM_420M_ISLOW_15_8 = b6875bc070720b899566cc06459b63b7 @WITH_12BIT_TRUE@MD5_PPM_420M_ISLOW_15_8 = 12aa9f9534c1b3d7ba047322226365eb @WITH_12BIT_FALSE@MD5_PPM_420M_ISLOW_13_8 = bc3452573c8152f6ae552939ee19f82f @WITH_12BIT_TRUE@MD5_PPM_420M_ISLOW_13_8 = f7e22817c7b25e1393e4ec101e9d4e96 @WITH_12BIT_FALSE@MD5_PPM_420M_ISLOW_11_8 = d8cc73c0aaacd4556569b59437ba00a5 @WITH_12BIT_TRUE@MD5_PPM_420M_ISLOW_11_8 = 800a16f9f4dc9b293197bfe11be10a82 @WITH_12BIT_FALSE@MD5_PPM_420M_ISLOW_9_8 = d25e61bc7eac0002f5b393aa223747b6 @WITH_12BIT_TRUE@MD5_PPM_420M_ISLOW_9_8 = 06b7a92a9bc69f4dc36ec40f1937d55c @WITH_12BIT_FALSE@MD5_PPM_420M_ISLOW_7_8 = ddb564b7c74a09494016d6cd7502a946 @WITH_12BIT_TRUE@MD5_PPM_420M_ISLOW_7_8 = 3ec444a14a4ab4eab88ffc49c48eca43 @WITH_12BIT_FALSE@MD5_PPM_420M_ISLOW_3_4 = 8ed8e68808c3fbc4ea764fc9d2968646 @WITH_12BIT_TRUE@MD5_PPM_420M_ISLOW_3_4 = 3e726b7ea872445b19437d1c1d4f0d93 @WITH_12BIT_FALSE@MD5_PPM_420M_ISLOW_5_8 = a3363274999da2366a024efae6d16c9b @WITH_12BIT_TRUE@MD5_PPM_420M_ISLOW_5_8 = a8a771abdc94301d20ffac119b2caccd @WITH_12BIT_FALSE@MD5_PPM_420M_ISLOW_1_2 = e692a315cea26b988c8e8b29a5dbcd81 @WITH_12BIT_TRUE@MD5_PPM_420M_ISLOW_1_2 = b419124dd5568b085787234866102866 @WITH_12BIT_FALSE@MD5_PPM_420M_ISLOW_3_8 = 79eca9175652ced755155c90e785a996 @WITH_12BIT_TRUE@MD5_PPM_420M_ISLOW_3_8 = 343d19015531b7bbe746124127244fa8 @WITH_12BIT_FALSE@MD5_PPM_420M_ISLOW_1_4 = 79cd778f8bf1a117690052cacdd54eca @WITH_12BIT_TRUE@MD5_PPM_420M_ISLOW_1_4 = 35fd59d866e44659edfa3c18db2a3edb @WITH_12BIT_FALSE@MD5_PPM_420M_ISLOW_1_8 = 391b3d4aca640c8567d6f8745eb2142f @WITH_12BIT_TRUE@MD5_PPM_420M_ISLOW_1_8 = ccaed48ac0aedefda5d4abe4013f4ad7 @WITH_12BIT_FALSE@MD5_JPEG_CROP = b4197f377e621c4e9b1d20471432610d @WITH_12BIT_TRUE@MD5_JPEG_CROP = cdb35ff4b4519392690ea040c56ea99c @WITH_12BIT_FALSE@MD5_BMP_RGB_ISLOW_565 = f07d2e75073e4bb10f6c6f4d36e2e3be @WITH_12BIT_FALSE@MD5_BMP_RGB_ISLOW_565D = 4cfa0928ef3e6bb626d7728c924cfda4 @WITH_12BIT_FALSE@MD5_BMP_422M_IFAST_565 = 3294bd4d9a1f2b3d08ea6020d0db7065 @WITH_12BIT_FALSE@MD5_BMP_422M_IFAST_565D = da98c9c7b6039511be4a79a878a9abc1 @WITH_12BIT_FALSE@MD5_BMP_GRAY_ISLOW_565 = 12f78118e56a2f48b966f792fedf23cc @WITH_12BIT_FALSE@MD5_BMP_GRAY_ISLOW_565D = bdbbd616441a24354c98553df5dc82db @WITH_12BIT_FALSE@MD5_JPEG_420_ISLOW_ARI = e986fb0a637a8d833d96e8a6d6d84ea1 @WITH_12BIT_FALSE@MD5_JPEG_444_ISLOW_PROGARI = 0a8f1c8f66e113c3cf635df0a475a617 @WITH_12BIT_FALSE@MD5_PPM_420M_IFAST_ARI = 72b59a99bcf1de24c5b27d151bde2437 @WITH_12BIT_FALSE@MD5_JPEG_420_ISLOW = 9a68f56bc76e466aa7e52f415d0f4a5f @WITH_12BIT_FALSE@MD5_BMP_420_ISLOW_256 = 4980185e3776e89bd931736e1cddeee6 @WITH_12BIT_FALSE@MD5_BMP_420_ISLOW_565 = bf9d13e16c4923b92e1faa604d7922cb @WITH_12BIT_FALSE@MD5_BMP_420_ISLOW_565D = 6bde71526acc44bcff76f696df8638d2 @WITH_12BIT_FALSE@MD5_BMP_420M_ISLOW_565 = 8dc0185245353cfa32ad97027342216f @WITH_12BIT_FALSE@MD5_BMP_420M_ISLOW_565D = d1be3a3339166255e76fa50a0d70d73e @WITH_TURBOJPEG_TRUE@MD5_PPM_GRAY_TILE = 89d3ca21213d9d864b50b4e4e7de4ca6 @WITH_TURBOJPEG_TRUE@MD5_PPM_420_8x8_TILE = 847fceab15c5b7b911cb986cf0f71de3 @WITH_TURBOJPEG_TRUE@MD5_PPM_420_16x16_TILE = ca45552a93687e078f7137cc4126a7b0 @WITH_TURBOJPEG_TRUE@MD5_PPM_420_32x32_TILE = d8676f1d6b68df358353bba9844f4a00 @WITH_TURBOJPEG_TRUE@MD5_PPM_420_64x64_TILE = 4e4c1a3d7ea4bace4f868bcbe83b7050 @WITH_TURBOJPEG_TRUE@MD5_PPM_420_128x128_TILE = f24c3429c52265832beab9df72a0ceae @WITH_TURBOJPEG_TRUE@MD5_PPM_420M_8x8_TILE = bc25320e1f4c31ce2e610e43e9fd173c @WITH_TURBOJPEG_TRUE@MD5_PPM_420M_TILE = 75ffdf14602258c5c189522af57fa605 @WITH_TURBOJPEG_TRUE@MD5_PPM_422_8x8_TILE = d83dacd9fc73b0a6f10c09acad64eb1e @WITH_TURBOJPEG_TRUE@MD5_PPM_422_16x16_TILE = 35077fb610d72dd743b1eb0cbcfe10fb @WITH_TURBOJPEG_TRUE@MD5_PPM_422_32x32_TILE = e6902ed8a449ecc0f0d6f2bf945f65f7 @WITH_TURBOJPEG_TRUE@MD5_PPM_422_64x64_TILE = 2b4502a8f316cedbde1da7bce3d2231e @WITH_TURBOJPEG_TRUE@MD5_PPM_422_128x128_TILE = f0b5617d578f5e13c8eee215d64d4877 @WITH_TURBOJPEG_TRUE@MD5_PPM_422M_8x8_TILE = 828941d7f41cd6283abd6beffb7fd51d @WITH_TURBOJPEG_TRUE@MD5_PPM_422M_TILE = e877ae1324c4a280b95376f7f018172f @WITH_TURBOJPEG_TRUE@MD5_PPM_444_TILE = 7964e41e67cfb8d0a587c0aa4798f9c3 all: config.h jconfig.h jconfigint.h $(MAKE) $(AM_MAKEFLAGS) all-recursive .SUFFIXES: .SUFFIXES: .c .lo .o .obj am--refresh: Makefile @: $(srcdir)/Makefile.in: $(srcdir)/Makefile.am $(am__configure_deps) @for dep in $?; do \ case '$(am__configure_deps)' in \ *$$dep*) \ echo ' cd $(srcdir) && $(AUTOMAKE) --foreign'; \ $(am__cd) $(srcdir) && $(AUTOMAKE) --foreign \ && exit 0; \ exit 1;; \ esac; \ done; \ echo ' cd $(top_srcdir) && $(AUTOMAKE) --foreign Makefile'; \ $(am__cd) $(top_srcdir) && \ $(AUTOMAKE) --foreign Makefile Makefile: $(srcdir)/Makefile.in $(top_builddir)/config.status @case '$?' in \ *config.status*) \ echo ' $(SHELL) ./config.status'; \ $(SHELL) ./config.status;; \ *) \ echo ' cd $(top_builddir) && $(SHELL) ./config.status $@ $(am__depfiles_maybe)'; \ cd $(top_builddir) && $(SHELL) ./config.status $@ $(am__depfiles_maybe);; \ esac; $(top_builddir)/config.status: $(top_srcdir)/configure $(CONFIG_STATUS_DEPENDENCIES) $(SHELL) ./config.status --recheck $(top_srcdir)/configure: $(am__configure_deps) $(am__cd) $(srcdir) && $(AUTOCONF) $(ACLOCAL_M4): $(am__aclocal_m4_deps) $(am__cd) $(srcdir) && $(ACLOCAL) $(ACLOCAL_AMFLAGS) $(am__aclocal_m4_deps): config.h: stamp-h1 @test -f $@ || rm -f stamp-h1 @test -f $@ || $(MAKE) $(AM_MAKEFLAGS) stamp-h1 stamp-h1: $(srcdir)/config.h.in $(top_builddir)/config.status @rm -f stamp-h1 cd $(top_builddir) && $(SHELL) ./config.status config.h $(srcdir)/config.h.in: $(am__configure_deps) ($(am__cd) $(top_srcdir) && $(AUTOHEADER)) rm -f stamp-h1 touch $@ jconfig.h: stamp-h2 @test -f $@ || rm -f stamp-h2 @test -f $@ || $(MAKE) $(AM_MAKEFLAGS) stamp-h2 stamp-h2: $(srcdir)/jconfig.h.in $(top_builddir)/config.status @rm -f stamp-h2 cd $(top_builddir) && $(SHELL) ./config.status jconfig.h jconfigint.h: stamp-h3 @test -f $@ || rm -f stamp-h3 @test -f $@ || $(MAKE) $(AM_MAKEFLAGS) stamp-h3 stamp-h3: $(srcdir)/jconfigint.h.in $(top_builddir)/config.status @rm -f stamp-h3 cd $(top_builddir) && $(SHELL) ./config.status jconfigint.h distclean-hdr: -rm -f config.h stamp-h1 jconfig.h stamp-h2 jconfigint.h stamp-h3 pkgscripts/libjpeg-turbo.spec.tmpl: $(top_builddir)/config.status $(top_srcdir)/release/libjpeg-turbo.spec.in cd $(top_builddir) && $(SHELL) ./config.status $@ pkgscripts/makecygwinpkg.tmpl: $(top_builddir)/config.status $(top_srcdir)/release/makecygwinpkg.in cd $(top_builddir) && $(SHELL) ./config.status $@ pkgscripts/makedpkg.tmpl: $(top_builddir)/config.status $(top_srcdir)/release/makedpkg.in cd $(top_builddir) && $(SHELL) ./config.status $@ pkgscripts/makemacpkg.tmpl: $(top_builddir)/config.status $(top_srcdir)/release/makemacpkg.in cd $(top_builddir) && $(SHELL) ./config.status $@ pkgscripts/uninstall.tmpl: $(top_builddir)/config.status $(top_srcdir)/release/uninstall.in cd $(top_builddir) && $(SHELL) ./config.status $@ tjbenchtest: $(top_builddir)/config.status $(srcdir)/tjbenchtest.in cd $(top_builddir) && $(SHELL) ./config.status $@ tjbenchtest.java: $(top_builddir)/config.status $(srcdir)/tjbenchtest.java.in cd $(top_builddir) && $(SHELL) ./config.status $@ tjexampletest: $(top_builddir)/config.status $(srcdir)/tjexampletest.in cd $(top_builddir) && $(SHELL) ./config.status $@ libjpeg.map: $(top_builddir)/config.status $(srcdir)/libjpeg.map.in cd $(top_builddir) && $(SHELL) ./config.status $@ install-libLTLIBRARIES: $(lib_LTLIBRARIES) @$(NORMAL_INSTALL) @list='$(lib_LTLIBRARIES)'; test -n "$(libdir)" || list=; \ list2=; for p in $$list; do \ if test -f $$p; then \ list2="$$list2 $$p"; \ else :; fi; \ done; \ test -z "$$list2" || { \ echo " $(MKDIR_P) '$(DESTDIR)$(libdir)'"; \ $(MKDIR_P) "$(DESTDIR)$(libdir)" || exit 1; \ echo " $(LIBTOOL) $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=install $(INSTALL) $(INSTALL_STRIP_FLAG) $$list2 '$(DESTDIR)$(libdir)'"; \ $(LIBTOOL) $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=install $(INSTALL) $(INSTALL_STRIP_FLAG) $$list2 "$(DESTDIR)$(libdir)"; \ } uninstall-libLTLIBRARIES: @$(NORMAL_UNINSTALL) @list='$(lib_LTLIBRARIES)'; test -n "$(libdir)" || list=; \ for p in $$list; do \ $(am__strip_dir) \ echo " $(LIBTOOL) $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=uninstall rm -f '$(DESTDIR)$(libdir)/$$f'"; \ $(LIBTOOL) $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=uninstall rm -f "$(DESTDIR)$(libdir)/$$f"; \ done clean-libLTLIBRARIES: -test -z "$(lib_LTLIBRARIES)" || rm -f $(lib_LTLIBRARIES) @list='$(lib_LTLIBRARIES)'; \ locs=`for p in $$list; do echo $$p; done | \ sed 's|^[^/]*$$|.|; s|/[^/]*$$||; s|$$|/so_locations|' | \ sort -u`; \ test -z "$$locs" || { \ echo rm -f $${locs}; \ rm -f $${locs}; \ } libjpeg.la: $(libjpeg_la_OBJECTS) $(libjpeg_la_DEPENDENCIES) $(EXTRA_libjpeg_la_DEPENDENCIES) $(AM_V_CCLD)$(libjpeg_la_LINK) -rpath $(libdir) $(libjpeg_la_OBJECTS) $(libjpeg_la_LIBADD) $(LIBS) libturbojpeg.la: $(libturbojpeg_la_OBJECTS) $(libturbojpeg_la_DEPENDENCIES) $(EXTRA_libturbojpeg_la_DEPENDENCIES) $(AM_V_CCLD)$(libturbojpeg_la_LINK) $(am_libturbojpeg_la_rpath) $(libturbojpeg_la_OBJECTS) $(libturbojpeg_la_LIBADD) $(LIBS) install-binPROGRAMS: $(bin_PROGRAMS) @$(NORMAL_INSTALL) @list='$(bin_PROGRAMS)'; test -n "$(bindir)" || list=; \ if test -n "$$list"; then \ echo " $(MKDIR_P) '$(DESTDIR)$(bindir)'"; \ $(MKDIR_P) "$(DESTDIR)$(bindir)" || exit 1; \ fi; \ for p in $$list; do echo "$$p $$p"; done | \ sed 's/$(EXEEXT)$$//' | \ while read p p1; do if test -f $$p \ || test -f $$p1 \ ; then echo "$$p"; echo "$$p"; else :; fi; \ done | \ sed -e 'p;s,.*/,,;n;h' \ -e 's|.*|.|' \ -e 'p;x;s,.*/,,;s/$(EXEEXT)$$//;$(transform);s/$$/$(EXEEXT)/' | \ sed 'N;N;N;s,\n, ,g' | \ $(AWK) 'BEGIN { files["."] = ""; dirs["."] = 1 } \ { d=$$3; if (dirs[d] != 1) { print "d", d; dirs[d] = 1 } \ if ($$2 == $$4) files[d] = files[d] " " $$1; \ else { print "f", $$3 "/" $$4, $$1; } } \ END { for (d in files) print "f", d, files[d] }' | \ while read type dir files; do \ if test "$$dir" = .; then dir=; else dir=/$$dir; fi; \ test -z "$$files" || { \ echo " $(INSTALL_PROGRAM_ENV) $(LIBTOOL) $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=install $(INSTALL_PROGRAM) $$files '$(DESTDIR)$(bindir)$$dir'"; \ $(INSTALL_PROGRAM_ENV) $(LIBTOOL) $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=install $(INSTALL_PROGRAM) $$files "$(DESTDIR)$(bindir)$$dir" || exit $$?; \ } \ ; done uninstall-binPROGRAMS: @$(NORMAL_UNINSTALL) @list='$(bin_PROGRAMS)'; test -n "$(bindir)" || list=; \ files=`for p in $$list; do echo "$$p"; done | \ sed -e 'h;s,^.*/,,;s/$(EXEEXT)$$//;$(transform)' \ -e 's/$$/$(EXEEXT)/' \ `; \ test -n "$$list" || exit 0; \ echo " ( cd '$(DESTDIR)$(bindir)' && rm -f" $$files ")"; \ cd "$(DESTDIR)$(bindir)" && rm -f $$files clean-binPROGRAMS: @list='$(bin_PROGRAMS)'; test -n "$$list" || exit 0; \ echo " rm -f" $$list; \ rm -f $$list || exit $$?; \ test -n "$(EXEEXT)" || exit 0; \ list=`for p in $$list; do echo "$$p"; done | sed 's/$(EXEEXT)$$//'`; \ echo " rm -f" $$list; \ rm -f $$list clean-noinstPROGRAMS: @list='$(noinst_PROGRAMS)'; test -n "$$list" || exit 0; \ echo " rm -f" $$list; \ rm -f $$list || exit $$?; \ test -n "$(EXEEXT)" || exit 0; \ list=`for p in $$list; do echo "$$p"; done | sed 's/$(EXEEXT)$$//'`; \ echo " rm -f" $$list; \ rm -f $$list cjpeg$(EXEEXT): $(cjpeg_OBJECTS) $(cjpeg_DEPENDENCIES) $(EXTRA_cjpeg_DEPENDENCIES) @rm -f cjpeg$(EXEEXT) $(AM_V_CCLD)$(cjpeg_LINK) $(cjpeg_OBJECTS) $(cjpeg_LDADD) $(LIBS) djpeg$(EXEEXT): $(djpeg_OBJECTS) $(djpeg_DEPENDENCIES) $(EXTRA_djpeg_DEPENDENCIES) @rm -f djpeg$(EXEEXT) $(AM_V_CCLD)$(djpeg_LINK) $(djpeg_OBJECTS) $(djpeg_LDADD) $(LIBS) jcstest$(EXEEXT): $(jcstest_OBJECTS) $(jcstest_DEPENDENCIES) $(EXTRA_jcstest_DEPENDENCIES) @rm -f jcstest$(EXEEXT) $(AM_V_CCLD)$(LINK) $(jcstest_OBJECTS) $(jcstest_LDADD) $(LIBS) jpegtran$(EXEEXT): $(jpegtran_OBJECTS) $(jpegtran_DEPENDENCIES) $(EXTRA_jpegtran_DEPENDENCIES) @rm -f jpegtran$(EXEEXT) $(AM_V_CCLD)$(LINK) $(jpegtran_OBJECTS) $(jpegtran_LDADD) $(LIBS) rdjpgcom$(EXEEXT): $(rdjpgcom_OBJECTS) $(rdjpgcom_DEPENDENCIES) $(EXTRA_rdjpgcom_DEPENDENCIES) @rm -f rdjpgcom$(EXEEXT) $(AM_V_CCLD)$(LINK) $(rdjpgcom_OBJECTS) $(rdjpgcom_LDADD) $(LIBS) tjbench$(EXEEXT): $(tjbench_OBJECTS) $(tjbench_DEPENDENCIES) $(EXTRA_tjbench_DEPENDENCIES) @rm -f tjbench$(EXEEXT) $(AM_V_CCLD)$(tjbench_LINK) $(tjbench_OBJECTS) $(tjbench_LDADD) $(LIBS) tjunittest$(EXEEXT): $(tjunittest_OBJECTS) $(tjunittest_DEPENDENCIES) $(EXTRA_tjunittest_DEPENDENCIES) @rm -f tjunittest$(EXEEXT) $(AM_V_CCLD)$(LINK) $(tjunittest_OBJECTS) $(tjunittest_LDADD) $(LIBS) wrjpgcom$(EXEEXT): $(wrjpgcom_OBJECTS) $(wrjpgcom_DEPENDENCIES) $(EXTRA_wrjpgcom_DEPENDENCIES) @rm -f wrjpgcom$(EXEEXT) $(AM_V_CCLD)$(LINK) $(wrjpgcom_OBJECTS) $(wrjpgcom_LDADD) $(LIBS) mostlyclean-compile: -rm -f *.$(OBJEXT) distclean-compile: -rm -f *.tab.c @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/cdjpeg.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/cjpeg-cdjpeg.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/cjpeg-cjpeg.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/cjpeg-rdbmp.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/cjpeg-rdgif.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/cjpeg-rdppm.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/cjpeg-rdswitch.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/cjpeg-rdtarga.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/djpeg-cdjpeg.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/djpeg-djpeg.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/djpeg-rdcolmap.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/djpeg-rdswitch.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/djpeg-wrbmp.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/djpeg-wrgif.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/djpeg-wrppm.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/djpeg-wrtarga.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/jaricom.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/jcapimin.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/jcapistd.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/jcarith.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/jccoefct.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/jccolor.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/jcdctmgr.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/jchuff.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/jcinit.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/jcmainct.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/jcmarker.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/jcmaster.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/jcomapi.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/jcparam.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/jcphuff.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/jcprepct.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/jcsample.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/jcstest.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/jctrans.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/jdapimin.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/jdapistd.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/jdarith.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/jdatadst.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/jdatasrc.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/jdcoefct.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/jdcolor.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/jddctmgr.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/jdhuff.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/jdinput.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/jdmainct.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/jdmarker.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/jdmaster.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/jdmerge.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/jdphuff.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/jdpostct.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/jdsample.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/jdtrans.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/jerror.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/jfdctflt.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/jfdctfst.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/jfdctint.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/jidctflt.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/jidctfst.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/jidctint.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/jidctred.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/jmemmgr.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/jmemnobs.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/jpegtran.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/jquant1.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/jquant2.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/jsimd_none.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/jutils.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/libturbojpeg_la-jaricom.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/libturbojpeg_la-jcapimin.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/libturbojpeg_la-jcapistd.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/libturbojpeg_la-jcarith.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/libturbojpeg_la-jccoefct.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/libturbojpeg_la-jccolor.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/libturbojpeg_la-jcdctmgr.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/libturbojpeg_la-jchuff.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/libturbojpeg_la-jcinit.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/libturbojpeg_la-jcmainct.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/libturbojpeg_la-jcmarker.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/libturbojpeg_la-jcmaster.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/libturbojpeg_la-jcomapi.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/libturbojpeg_la-jcparam.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/libturbojpeg_la-jcphuff.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/libturbojpeg_la-jcprepct.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/libturbojpeg_la-jcsample.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/libturbojpeg_la-jctrans.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/libturbojpeg_la-jdapimin.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/libturbojpeg_la-jdapistd.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/libturbojpeg_la-jdarith.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/libturbojpeg_la-jdatadst-tj.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/libturbojpeg_la-jdatadst.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/libturbojpeg_la-jdatasrc-tj.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/libturbojpeg_la-jdatasrc.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/libturbojpeg_la-jdcoefct.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/libturbojpeg_la-jdcolor.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/libturbojpeg_la-jddctmgr.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/libturbojpeg_la-jdhuff.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/libturbojpeg_la-jdinput.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/libturbojpeg_la-jdmainct.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/libturbojpeg_la-jdmarker.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/libturbojpeg_la-jdmaster.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/libturbojpeg_la-jdmerge.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/libturbojpeg_la-jdphuff.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/libturbojpeg_la-jdpostct.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/libturbojpeg_la-jdsample.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/libturbojpeg_la-jdtrans.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/libturbojpeg_la-jerror.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/libturbojpeg_la-jfdctflt.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/libturbojpeg_la-jfdctfst.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/libturbojpeg_la-jfdctint.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/libturbojpeg_la-jidctflt.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/libturbojpeg_la-jidctfst.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/libturbojpeg_la-jidctint.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/libturbojpeg_la-jidctred.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/libturbojpeg_la-jmemmgr.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/libturbojpeg_la-jmemnobs.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/libturbojpeg_la-jquant1.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/libturbojpeg_la-jquant2.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/libturbojpeg_la-jsimd_none.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/libturbojpeg_la-jutils.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/libturbojpeg_la-transupp.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/libturbojpeg_la-turbojpeg-jni.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/libturbojpeg_la-turbojpeg.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/rdjpgcom.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/rdswitch.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/tjbench-bmp.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/tjbench-rdbmp.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/tjbench-rdppm.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/tjbench-tjbench.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/tjbench-tjutil.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/tjbench-wrbmp.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/tjbench-wrppm.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/tjunittest.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/tjutil.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/transupp.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/wrjpgcom.Po@am__quote@ .c.o: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c -o $@ $< .c.obj: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ `$(CYGPATH_W) '$<'` @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c -o $@ `$(CYGPATH_W) '$<'` .c.lo: @am__fastdepCC_TRUE@ $(AM_V_CC)$(LTCOMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LTCOMPILE) -c -o $@ $< libturbojpeg_la-jcapimin.lo: jcapimin.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -MT libturbojpeg_la-jcapimin.lo -MD -MP -MF $(DEPDIR)/libturbojpeg_la-jcapimin.Tpo -c -o libturbojpeg_la-jcapimin.lo `test -f 'jcapimin.c' || echo '$(srcdir)/'`jcapimin.c @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/libturbojpeg_la-jcapimin.Tpo $(DEPDIR)/libturbojpeg_la-jcapimin.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='jcapimin.c' object='libturbojpeg_la-jcapimin.lo' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -c -o libturbojpeg_la-jcapimin.lo `test -f 'jcapimin.c' || echo '$(srcdir)/'`jcapimin.c libturbojpeg_la-jcapistd.lo: jcapistd.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -MT libturbojpeg_la-jcapistd.lo -MD -MP -MF $(DEPDIR)/libturbojpeg_la-jcapistd.Tpo -c -o libturbojpeg_la-jcapistd.lo `test -f 'jcapistd.c' || echo '$(srcdir)/'`jcapistd.c @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/libturbojpeg_la-jcapistd.Tpo $(DEPDIR)/libturbojpeg_la-jcapistd.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='jcapistd.c' object='libturbojpeg_la-jcapistd.lo' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -c -o libturbojpeg_la-jcapistd.lo `test -f 'jcapistd.c' || echo '$(srcdir)/'`jcapistd.c libturbojpeg_la-jccoefct.lo: jccoefct.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -MT libturbojpeg_la-jccoefct.lo -MD -MP -MF $(DEPDIR)/libturbojpeg_la-jccoefct.Tpo -c -o libturbojpeg_la-jccoefct.lo `test -f 'jccoefct.c' || echo '$(srcdir)/'`jccoefct.c @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/libturbojpeg_la-jccoefct.Tpo $(DEPDIR)/libturbojpeg_la-jccoefct.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='jccoefct.c' object='libturbojpeg_la-jccoefct.lo' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -c -o libturbojpeg_la-jccoefct.lo `test -f 'jccoefct.c' || echo '$(srcdir)/'`jccoefct.c libturbojpeg_la-jccolor.lo: jccolor.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -MT libturbojpeg_la-jccolor.lo -MD -MP -MF $(DEPDIR)/libturbojpeg_la-jccolor.Tpo -c -o libturbojpeg_la-jccolor.lo `test -f 'jccolor.c' || echo '$(srcdir)/'`jccolor.c @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/libturbojpeg_la-jccolor.Tpo $(DEPDIR)/libturbojpeg_la-jccolor.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='jccolor.c' object='libturbojpeg_la-jccolor.lo' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -c -o libturbojpeg_la-jccolor.lo `test -f 'jccolor.c' || echo '$(srcdir)/'`jccolor.c libturbojpeg_la-jcdctmgr.lo: jcdctmgr.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -MT libturbojpeg_la-jcdctmgr.lo -MD -MP -MF $(DEPDIR)/libturbojpeg_la-jcdctmgr.Tpo -c -o libturbojpeg_la-jcdctmgr.lo `test -f 'jcdctmgr.c' || echo '$(srcdir)/'`jcdctmgr.c @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/libturbojpeg_la-jcdctmgr.Tpo $(DEPDIR)/libturbojpeg_la-jcdctmgr.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='jcdctmgr.c' object='libturbojpeg_la-jcdctmgr.lo' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -c -o libturbojpeg_la-jcdctmgr.lo `test -f 'jcdctmgr.c' || echo '$(srcdir)/'`jcdctmgr.c libturbojpeg_la-jchuff.lo: jchuff.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -MT libturbojpeg_la-jchuff.lo -MD -MP -MF $(DEPDIR)/libturbojpeg_la-jchuff.Tpo -c -o libturbojpeg_la-jchuff.lo `test -f 'jchuff.c' || echo '$(srcdir)/'`jchuff.c @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/libturbojpeg_la-jchuff.Tpo $(DEPDIR)/libturbojpeg_la-jchuff.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='jchuff.c' object='libturbojpeg_la-jchuff.lo' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -c -o libturbojpeg_la-jchuff.lo `test -f 'jchuff.c' || echo '$(srcdir)/'`jchuff.c libturbojpeg_la-jcinit.lo: jcinit.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -MT libturbojpeg_la-jcinit.lo -MD -MP -MF $(DEPDIR)/libturbojpeg_la-jcinit.Tpo -c -o libturbojpeg_la-jcinit.lo `test -f 'jcinit.c' || echo '$(srcdir)/'`jcinit.c @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/libturbojpeg_la-jcinit.Tpo $(DEPDIR)/libturbojpeg_la-jcinit.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='jcinit.c' object='libturbojpeg_la-jcinit.lo' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -c -o libturbojpeg_la-jcinit.lo `test -f 'jcinit.c' || echo '$(srcdir)/'`jcinit.c libturbojpeg_la-jcmainct.lo: jcmainct.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -MT libturbojpeg_la-jcmainct.lo -MD -MP -MF $(DEPDIR)/libturbojpeg_la-jcmainct.Tpo -c -o libturbojpeg_la-jcmainct.lo `test -f 'jcmainct.c' || echo '$(srcdir)/'`jcmainct.c @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/libturbojpeg_la-jcmainct.Tpo $(DEPDIR)/libturbojpeg_la-jcmainct.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='jcmainct.c' object='libturbojpeg_la-jcmainct.lo' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -c -o libturbojpeg_la-jcmainct.lo `test -f 'jcmainct.c' || echo '$(srcdir)/'`jcmainct.c libturbojpeg_la-jcmarker.lo: jcmarker.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -MT libturbojpeg_la-jcmarker.lo -MD -MP -MF $(DEPDIR)/libturbojpeg_la-jcmarker.Tpo -c -o libturbojpeg_la-jcmarker.lo `test -f 'jcmarker.c' || echo '$(srcdir)/'`jcmarker.c @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/libturbojpeg_la-jcmarker.Tpo $(DEPDIR)/libturbojpeg_la-jcmarker.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='jcmarker.c' object='libturbojpeg_la-jcmarker.lo' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -c -o libturbojpeg_la-jcmarker.lo `test -f 'jcmarker.c' || echo '$(srcdir)/'`jcmarker.c libturbojpeg_la-jcmaster.lo: jcmaster.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -MT libturbojpeg_la-jcmaster.lo -MD -MP -MF $(DEPDIR)/libturbojpeg_la-jcmaster.Tpo -c -o libturbojpeg_la-jcmaster.lo `test -f 'jcmaster.c' || echo '$(srcdir)/'`jcmaster.c @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/libturbojpeg_la-jcmaster.Tpo $(DEPDIR)/libturbojpeg_la-jcmaster.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='jcmaster.c' object='libturbojpeg_la-jcmaster.lo' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -c -o libturbojpeg_la-jcmaster.lo `test -f 'jcmaster.c' || echo '$(srcdir)/'`jcmaster.c libturbojpeg_la-jcomapi.lo: jcomapi.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -MT libturbojpeg_la-jcomapi.lo -MD -MP -MF $(DEPDIR)/libturbojpeg_la-jcomapi.Tpo -c -o libturbojpeg_la-jcomapi.lo `test -f 'jcomapi.c' || echo '$(srcdir)/'`jcomapi.c @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/libturbojpeg_la-jcomapi.Tpo $(DEPDIR)/libturbojpeg_la-jcomapi.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='jcomapi.c' object='libturbojpeg_la-jcomapi.lo' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -c -o libturbojpeg_la-jcomapi.lo `test -f 'jcomapi.c' || echo '$(srcdir)/'`jcomapi.c libturbojpeg_la-jcparam.lo: jcparam.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -MT libturbojpeg_la-jcparam.lo -MD -MP -MF $(DEPDIR)/libturbojpeg_la-jcparam.Tpo -c -o libturbojpeg_la-jcparam.lo `test -f 'jcparam.c' || echo '$(srcdir)/'`jcparam.c @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/libturbojpeg_la-jcparam.Tpo $(DEPDIR)/libturbojpeg_la-jcparam.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='jcparam.c' object='libturbojpeg_la-jcparam.lo' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -c -o libturbojpeg_la-jcparam.lo `test -f 'jcparam.c' || echo '$(srcdir)/'`jcparam.c libturbojpeg_la-jcphuff.lo: jcphuff.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -MT libturbojpeg_la-jcphuff.lo -MD -MP -MF $(DEPDIR)/libturbojpeg_la-jcphuff.Tpo -c -o libturbojpeg_la-jcphuff.lo `test -f 'jcphuff.c' || echo '$(srcdir)/'`jcphuff.c @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/libturbojpeg_la-jcphuff.Tpo $(DEPDIR)/libturbojpeg_la-jcphuff.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='jcphuff.c' object='libturbojpeg_la-jcphuff.lo' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -c -o libturbojpeg_la-jcphuff.lo `test -f 'jcphuff.c' || echo '$(srcdir)/'`jcphuff.c libturbojpeg_la-jcprepct.lo: jcprepct.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -MT libturbojpeg_la-jcprepct.lo -MD -MP -MF $(DEPDIR)/libturbojpeg_la-jcprepct.Tpo -c -o libturbojpeg_la-jcprepct.lo `test -f 'jcprepct.c' || echo '$(srcdir)/'`jcprepct.c @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/libturbojpeg_la-jcprepct.Tpo $(DEPDIR)/libturbojpeg_la-jcprepct.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='jcprepct.c' object='libturbojpeg_la-jcprepct.lo' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -c -o libturbojpeg_la-jcprepct.lo `test -f 'jcprepct.c' || echo '$(srcdir)/'`jcprepct.c libturbojpeg_la-jcsample.lo: jcsample.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -MT libturbojpeg_la-jcsample.lo -MD -MP -MF $(DEPDIR)/libturbojpeg_la-jcsample.Tpo -c -o libturbojpeg_la-jcsample.lo `test -f 'jcsample.c' || echo '$(srcdir)/'`jcsample.c @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/libturbojpeg_la-jcsample.Tpo $(DEPDIR)/libturbojpeg_la-jcsample.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='jcsample.c' object='libturbojpeg_la-jcsample.lo' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -c -o libturbojpeg_la-jcsample.lo `test -f 'jcsample.c' || echo '$(srcdir)/'`jcsample.c libturbojpeg_la-jctrans.lo: jctrans.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -MT libturbojpeg_la-jctrans.lo -MD -MP -MF $(DEPDIR)/libturbojpeg_la-jctrans.Tpo -c -o libturbojpeg_la-jctrans.lo `test -f 'jctrans.c' || echo '$(srcdir)/'`jctrans.c @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/libturbojpeg_la-jctrans.Tpo $(DEPDIR)/libturbojpeg_la-jctrans.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='jctrans.c' object='libturbojpeg_la-jctrans.lo' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -c -o libturbojpeg_la-jctrans.lo `test -f 'jctrans.c' || echo '$(srcdir)/'`jctrans.c libturbojpeg_la-jdapimin.lo: jdapimin.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -MT libturbojpeg_la-jdapimin.lo -MD -MP -MF $(DEPDIR)/libturbojpeg_la-jdapimin.Tpo -c -o libturbojpeg_la-jdapimin.lo `test -f 'jdapimin.c' || echo '$(srcdir)/'`jdapimin.c @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/libturbojpeg_la-jdapimin.Tpo $(DEPDIR)/libturbojpeg_la-jdapimin.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='jdapimin.c' object='libturbojpeg_la-jdapimin.lo' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -c -o libturbojpeg_la-jdapimin.lo `test -f 'jdapimin.c' || echo '$(srcdir)/'`jdapimin.c libturbojpeg_la-jdapistd.lo: jdapistd.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -MT libturbojpeg_la-jdapistd.lo -MD -MP -MF $(DEPDIR)/libturbojpeg_la-jdapistd.Tpo -c -o libturbojpeg_la-jdapistd.lo `test -f 'jdapistd.c' || echo '$(srcdir)/'`jdapistd.c @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/libturbojpeg_la-jdapistd.Tpo $(DEPDIR)/libturbojpeg_la-jdapistd.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='jdapistd.c' object='libturbojpeg_la-jdapistd.lo' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -c -o libturbojpeg_la-jdapistd.lo `test -f 'jdapistd.c' || echo '$(srcdir)/'`jdapistd.c libturbojpeg_la-jdatadst.lo: jdatadst.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -MT libturbojpeg_la-jdatadst.lo -MD -MP -MF $(DEPDIR)/libturbojpeg_la-jdatadst.Tpo -c -o libturbojpeg_la-jdatadst.lo `test -f 'jdatadst.c' || echo '$(srcdir)/'`jdatadst.c @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/libturbojpeg_la-jdatadst.Tpo $(DEPDIR)/libturbojpeg_la-jdatadst.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='jdatadst.c' object='libturbojpeg_la-jdatadst.lo' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -c -o libturbojpeg_la-jdatadst.lo `test -f 'jdatadst.c' || echo '$(srcdir)/'`jdatadst.c libturbojpeg_la-jdatasrc.lo: jdatasrc.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -MT libturbojpeg_la-jdatasrc.lo -MD -MP -MF $(DEPDIR)/libturbojpeg_la-jdatasrc.Tpo -c -o libturbojpeg_la-jdatasrc.lo `test -f 'jdatasrc.c' || echo '$(srcdir)/'`jdatasrc.c @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/libturbojpeg_la-jdatasrc.Tpo $(DEPDIR)/libturbojpeg_la-jdatasrc.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='jdatasrc.c' object='libturbojpeg_la-jdatasrc.lo' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -c -o libturbojpeg_la-jdatasrc.lo `test -f 'jdatasrc.c' || echo '$(srcdir)/'`jdatasrc.c libturbojpeg_la-jdcoefct.lo: jdcoefct.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -MT libturbojpeg_la-jdcoefct.lo -MD -MP -MF $(DEPDIR)/libturbojpeg_la-jdcoefct.Tpo -c -o libturbojpeg_la-jdcoefct.lo `test -f 'jdcoefct.c' || echo '$(srcdir)/'`jdcoefct.c @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/libturbojpeg_la-jdcoefct.Tpo $(DEPDIR)/libturbojpeg_la-jdcoefct.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='jdcoefct.c' object='libturbojpeg_la-jdcoefct.lo' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -c -o libturbojpeg_la-jdcoefct.lo `test -f 'jdcoefct.c' || echo '$(srcdir)/'`jdcoefct.c libturbojpeg_la-jdcolor.lo: jdcolor.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -MT libturbojpeg_la-jdcolor.lo -MD -MP -MF $(DEPDIR)/libturbojpeg_la-jdcolor.Tpo -c -o libturbojpeg_la-jdcolor.lo `test -f 'jdcolor.c' || echo '$(srcdir)/'`jdcolor.c @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/libturbojpeg_la-jdcolor.Tpo $(DEPDIR)/libturbojpeg_la-jdcolor.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='jdcolor.c' object='libturbojpeg_la-jdcolor.lo' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -c -o libturbojpeg_la-jdcolor.lo `test -f 'jdcolor.c' || echo '$(srcdir)/'`jdcolor.c libturbojpeg_la-jddctmgr.lo: jddctmgr.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -MT libturbojpeg_la-jddctmgr.lo -MD -MP -MF $(DEPDIR)/libturbojpeg_la-jddctmgr.Tpo -c -o libturbojpeg_la-jddctmgr.lo `test -f 'jddctmgr.c' || echo '$(srcdir)/'`jddctmgr.c @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/libturbojpeg_la-jddctmgr.Tpo $(DEPDIR)/libturbojpeg_la-jddctmgr.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='jddctmgr.c' object='libturbojpeg_la-jddctmgr.lo' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -c -o libturbojpeg_la-jddctmgr.lo `test -f 'jddctmgr.c' || echo '$(srcdir)/'`jddctmgr.c libturbojpeg_la-jdhuff.lo: jdhuff.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -MT libturbojpeg_la-jdhuff.lo -MD -MP -MF $(DEPDIR)/libturbojpeg_la-jdhuff.Tpo -c -o libturbojpeg_la-jdhuff.lo `test -f 'jdhuff.c' || echo '$(srcdir)/'`jdhuff.c @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/libturbojpeg_la-jdhuff.Tpo $(DEPDIR)/libturbojpeg_la-jdhuff.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='jdhuff.c' object='libturbojpeg_la-jdhuff.lo' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -c -o libturbojpeg_la-jdhuff.lo `test -f 'jdhuff.c' || echo '$(srcdir)/'`jdhuff.c libturbojpeg_la-jdinput.lo: jdinput.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -MT libturbojpeg_la-jdinput.lo -MD -MP -MF $(DEPDIR)/libturbojpeg_la-jdinput.Tpo -c -o libturbojpeg_la-jdinput.lo `test -f 'jdinput.c' || echo '$(srcdir)/'`jdinput.c @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/libturbojpeg_la-jdinput.Tpo $(DEPDIR)/libturbojpeg_la-jdinput.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='jdinput.c' object='libturbojpeg_la-jdinput.lo' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -c -o libturbojpeg_la-jdinput.lo `test -f 'jdinput.c' || echo '$(srcdir)/'`jdinput.c libturbojpeg_la-jdmainct.lo: jdmainct.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -MT libturbojpeg_la-jdmainct.lo -MD -MP -MF $(DEPDIR)/libturbojpeg_la-jdmainct.Tpo -c -o libturbojpeg_la-jdmainct.lo `test -f 'jdmainct.c' || echo '$(srcdir)/'`jdmainct.c @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/libturbojpeg_la-jdmainct.Tpo $(DEPDIR)/libturbojpeg_la-jdmainct.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='jdmainct.c' object='libturbojpeg_la-jdmainct.lo' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -c -o libturbojpeg_la-jdmainct.lo `test -f 'jdmainct.c' || echo '$(srcdir)/'`jdmainct.c libturbojpeg_la-jdmarker.lo: jdmarker.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -MT libturbojpeg_la-jdmarker.lo -MD -MP -MF $(DEPDIR)/libturbojpeg_la-jdmarker.Tpo -c -o libturbojpeg_la-jdmarker.lo `test -f 'jdmarker.c' || echo '$(srcdir)/'`jdmarker.c @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/libturbojpeg_la-jdmarker.Tpo $(DEPDIR)/libturbojpeg_la-jdmarker.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='jdmarker.c' object='libturbojpeg_la-jdmarker.lo' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -c -o libturbojpeg_la-jdmarker.lo `test -f 'jdmarker.c' || echo '$(srcdir)/'`jdmarker.c libturbojpeg_la-jdmaster.lo: jdmaster.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -MT libturbojpeg_la-jdmaster.lo -MD -MP -MF $(DEPDIR)/libturbojpeg_la-jdmaster.Tpo -c -o libturbojpeg_la-jdmaster.lo `test -f 'jdmaster.c' || echo '$(srcdir)/'`jdmaster.c @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/libturbojpeg_la-jdmaster.Tpo $(DEPDIR)/libturbojpeg_la-jdmaster.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='jdmaster.c' object='libturbojpeg_la-jdmaster.lo' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -c -o libturbojpeg_la-jdmaster.lo `test -f 'jdmaster.c' || echo '$(srcdir)/'`jdmaster.c libturbojpeg_la-jdmerge.lo: jdmerge.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -MT libturbojpeg_la-jdmerge.lo -MD -MP -MF $(DEPDIR)/libturbojpeg_la-jdmerge.Tpo -c -o libturbojpeg_la-jdmerge.lo `test -f 'jdmerge.c' || echo '$(srcdir)/'`jdmerge.c @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/libturbojpeg_la-jdmerge.Tpo $(DEPDIR)/libturbojpeg_la-jdmerge.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='jdmerge.c' object='libturbojpeg_la-jdmerge.lo' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -c -o libturbojpeg_la-jdmerge.lo `test -f 'jdmerge.c' || echo '$(srcdir)/'`jdmerge.c libturbojpeg_la-jdphuff.lo: jdphuff.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -MT libturbojpeg_la-jdphuff.lo -MD -MP -MF $(DEPDIR)/libturbojpeg_la-jdphuff.Tpo -c -o libturbojpeg_la-jdphuff.lo `test -f 'jdphuff.c' || echo '$(srcdir)/'`jdphuff.c @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/libturbojpeg_la-jdphuff.Tpo $(DEPDIR)/libturbojpeg_la-jdphuff.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='jdphuff.c' object='libturbojpeg_la-jdphuff.lo' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -c -o libturbojpeg_la-jdphuff.lo `test -f 'jdphuff.c' || echo '$(srcdir)/'`jdphuff.c libturbojpeg_la-jdpostct.lo: jdpostct.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -MT libturbojpeg_la-jdpostct.lo -MD -MP -MF $(DEPDIR)/libturbojpeg_la-jdpostct.Tpo -c -o libturbojpeg_la-jdpostct.lo `test -f 'jdpostct.c' || echo '$(srcdir)/'`jdpostct.c @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/libturbojpeg_la-jdpostct.Tpo $(DEPDIR)/libturbojpeg_la-jdpostct.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='jdpostct.c' object='libturbojpeg_la-jdpostct.lo' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -c -o libturbojpeg_la-jdpostct.lo `test -f 'jdpostct.c' || echo '$(srcdir)/'`jdpostct.c libturbojpeg_la-jdsample.lo: jdsample.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -MT libturbojpeg_la-jdsample.lo -MD -MP -MF $(DEPDIR)/libturbojpeg_la-jdsample.Tpo -c -o libturbojpeg_la-jdsample.lo `test -f 'jdsample.c' || echo '$(srcdir)/'`jdsample.c @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/libturbojpeg_la-jdsample.Tpo $(DEPDIR)/libturbojpeg_la-jdsample.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='jdsample.c' object='libturbojpeg_la-jdsample.lo' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -c -o libturbojpeg_la-jdsample.lo `test -f 'jdsample.c' || echo '$(srcdir)/'`jdsample.c libturbojpeg_la-jdtrans.lo: jdtrans.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -MT libturbojpeg_la-jdtrans.lo -MD -MP -MF $(DEPDIR)/libturbojpeg_la-jdtrans.Tpo -c -o libturbojpeg_la-jdtrans.lo `test -f 'jdtrans.c' || echo '$(srcdir)/'`jdtrans.c @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/libturbojpeg_la-jdtrans.Tpo $(DEPDIR)/libturbojpeg_la-jdtrans.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='jdtrans.c' object='libturbojpeg_la-jdtrans.lo' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -c -o libturbojpeg_la-jdtrans.lo `test -f 'jdtrans.c' || echo '$(srcdir)/'`jdtrans.c libturbojpeg_la-jerror.lo: jerror.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -MT libturbojpeg_la-jerror.lo -MD -MP -MF $(DEPDIR)/libturbojpeg_la-jerror.Tpo -c -o libturbojpeg_la-jerror.lo `test -f 'jerror.c' || echo '$(srcdir)/'`jerror.c @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/libturbojpeg_la-jerror.Tpo $(DEPDIR)/libturbojpeg_la-jerror.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='jerror.c' object='libturbojpeg_la-jerror.lo' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -c -o libturbojpeg_la-jerror.lo `test -f 'jerror.c' || echo '$(srcdir)/'`jerror.c libturbojpeg_la-jfdctflt.lo: jfdctflt.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -MT libturbojpeg_la-jfdctflt.lo -MD -MP -MF $(DEPDIR)/libturbojpeg_la-jfdctflt.Tpo -c -o libturbojpeg_la-jfdctflt.lo `test -f 'jfdctflt.c' || echo '$(srcdir)/'`jfdctflt.c @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/libturbojpeg_la-jfdctflt.Tpo $(DEPDIR)/libturbojpeg_la-jfdctflt.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='jfdctflt.c' object='libturbojpeg_la-jfdctflt.lo' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -c -o libturbojpeg_la-jfdctflt.lo `test -f 'jfdctflt.c' || echo '$(srcdir)/'`jfdctflt.c libturbojpeg_la-jfdctfst.lo: jfdctfst.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -MT libturbojpeg_la-jfdctfst.lo -MD -MP -MF $(DEPDIR)/libturbojpeg_la-jfdctfst.Tpo -c -o libturbojpeg_la-jfdctfst.lo `test -f 'jfdctfst.c' || echo '$(srcdir)/'`jfdctfst.c @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/libturbojpeg_la-jfdctfst.Tpo $(DEPDIR)/libturbojpeg_la-jfdctfst.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='jfdctfst.c' object='libturbojpeg_la-jfdctfst.lo' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -c -o libturbojpeg_la-jfdctfst.lo `test -f 'jfdctfst.c' || echo '$(srcdir)/'`jfdctfst.c libturbojpeg_la-jfdctint.lo: jfdctint.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -MT libturbojpeg_la-jfdctint.lo -MD -MP -MF $(DEPDIR)/libturbojpeg_la-jfdctint.Tpo -c -o libturbojpeg_la-jfdctint.lo `test -f 'jfdctint.c' || echo '$(srcdir)/'`jfdctint.c @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/libturbojpeg_la-jfdctint.Tpo $(DEPDIR)/libturbojpeg_la-jfdctint.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='jfdctint.c' object='libturbojpeg_la-jfdctint.lo' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -c -o libturbojpeg_la-jfdctint.lo `test -f 'jfdctint.c' || echo '$(srcdir)/'`jfdctint.c libturbojpeg_la-jidctflt.lo: jidctflt.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -MT libturbojpeg_la-jidctflt.lo -MD -MP -MF $(DEPDIR)/libturbojpeg_la-jidctflt.Tpo -c -o libturbojpeg_la-jidctflt.lo `test -f 'jidctflt.c' || echo '$(srcdir)/'`jidctflt.c @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/libturbojpeg_la-jidctflt.Tpo $(DEPDIR)/libturbojpeg_la-jidctflt.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='jidctflt.c' object='libturbojpeg_la-jidctflt.lo' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -c -o libturbojpeg_la-jidctflt.lo `test -f 'jidctflt.c' || echo '$(srcdir)/'`jidctflt.c libturbojpeg_la-jidctfst.lo: jidctfst.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -MT libturbojpeg_la-jidctfst.lo -MD -MP -MF $(DEPDIR)/libturbojpeg_la-jidctfst.Tpo -c -o libturbojpeg_la-jidctfst.lo `test -f 'jidctfst.c' || echo '$(srcdir)/'`jidctfst.c @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/libturbojpeg_la-jidctfst.Tpo $(DEPDIR)/libturbojpeg_la-jidctfst.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='jidctfst.c' object='libturbojpeg_la-jidctfst.lo' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -c -o libturbojpeg_la-jidctfst.lo `test -f 'jidctfst.c' || echo '$(srcdir)/'`jidctfst.c libturbojpeg_la-jidctint.lo: jidctint.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -MT libturbojpeg_la-jidctint.lo -MD -MP -MF $(DEPDIR)/libturbojpeg_la-jidctint.Tpo -c -o libturbojpeg_la-jidctint.lo `test -f 'jidctint.c' || echo '$(srcdir)/'`jidctint.c @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/libturbojpeg_la-jidctint.Tpo $(DEPDIR)/libturbojpeg_la-jidctint.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='jidctint.c' object='libturbojpeg_la-jidctint.lo' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -c -o libturbojpeg_la-jidctint.lo `test -f 'jidctint.c' || echo '$(srcdir)/'`jidctint.c libturbojpeg_la-jidctred.lo: jidctred.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -MT libturbojpeg_la-jidctred.lo -MD -MP -MF $(DEPDIR)/libturbojpeg_la-jidctred.Tpo -c -o libturbojpeg_la-jidctred.lo `test -f 'jidctred.c' || echo '$(srcdir)/'`jidctred.c @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/libturbojpeg_la-jidctred.Tpo $(DEPDIR)/libturbojpeg_la-jidctred.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='jidctred.c' object='libturbojpeg_la-jidctred.lo' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -c -o libturbojpeg_la-jidctred.lo `test -f 'jidctred.c' || echo '$(srcdir)/'`jidctred.c libturbojpeg_la-jquant1.lo: jquant1.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -MT libturbojpeg_la-jquant1.lo -MD -MP -MF $(DEPDIR)/libturbojpeg_la-jquant1.Tpo -c -o libturbojpeg_la-jquant1.lo `test -f 'jquant1.c' || echo '$(srcdir)/'`jquant1.c @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/libturbojpeg_la-jquant1.Tpo $(DEPDIR)/libturbojpeg_la-jquant1.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='jquant1.c' object='libturbojpeg_la-jquant1.lo' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -c -o libturbojpeg_la-jquant1.lo `test -f 'jquant1.c' || echo '$(srcdir)/'`jquant1.c libturbojpeg_la-jquant2.lo: jquant2.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -MT libturbojpeg_la-jquant2.lo -MD -MP -MF $(DEPDIR)/libturbojpeg_la-jquant2.Tpo -c -o libturbojpeg_la-jquant2.lo `test -f 'jquant2.c' || echo '$(srcdir)/'`jquant2.c @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/libturbojpeg_la-jquant2.Tpo $(DEPDIR)/libturbojpeg_la-jquant2.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='jquant2.c' object='libturbojpeg_la-jquant2.lo' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -c -o libturbojpeg_la-jquant2.lo `test -f 'jquant2.c' || echo '$(srcdir)/'`jquant2.c libturbojpeg_la-jutils.lo: jutils.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -MT libturbojpeg_la-jutils.lo -MD -MP -MF $(DEPDIR)/libturbojpeg_la-jutils.Tpo -c -o libturbojpeg_la-jutils.lo `test -f 'jutils.c' || echo '$(srcdir)/'`jutils.c @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/libturbojpeg_la-jutils.Tpo $(DEPDIR)/libturbojpeg_la-jutils.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='jutils.c' object='libturbojpeg_la-jutils.lo' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -c -o libturbojpeg_la-jutils.lo `test -f 'jutils.c' || echo '$(srcdir)/'`jutils.c libturbojpeg_la-jmemmgr.lo: jmemmgr.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -MT libturbojpeg_la-jmemmgr.lo -MD -MP -MF $(DEPDIR)/libturbojpeg_la-jmemmgr.Tpo -c -o libturbojpeg_la-jmemmgr.lo `test -f 'jmemmgr.c' || echo '$(srcdir)/'`jmemmgr.c @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/libturbojpeg_la-jmemmgr.Tpo $(DEPDIR)/libturbojpeg_la-jmemmgr.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='jmemmgr.c' object='libturbojpeg_la-jmemmgr.lo' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -c -o libturbojpeg_la-jmemmgr.lo `test -f 'jmemmgr.c' || echo '$(srcdir)/'`jmemmgr.c libturbojpeg_la-jmemnobs.lo: jmemnobs.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -MT libturbojpeg_la-jmemnobs.lo -MD -MP -MF $(DEPDIR)/libturbojpeg_la-jmemnobs.Tpo -c -o libturbojpeg_la-jmemnobs.lo `test -f 'jmemnobs.c' || echo '$(srcdir)/'`jmemnobs.c @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/libturbojpeg_la-jmemnobs.Tpo $(DEPDIR)/libturbojpeg_la-jmemnobs.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='jmemnobs.c' object='libturbojpeg_la-jmemnobs.lo' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -c -o libturbojpeg_la-jmemnobs.lo `test -f 'jmemnobs.c' || echo '$(srcdir)/'`jmemnobs.c libturbojpeg_la-jaricom.lo: jaricom.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -MT libturbojpeg_la-jaricom.lo -MD -MP -MF $(DEPDIR)/libturbojpeg_la-jaricom.Tpo -c -o libturbojpeg_la-jaricom.lo `test -f 'jaricom.c' || echo '$(srcdir)/'`jaricom.c @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/libturbojpeg_la-jaricom.Tpo $(DEPDIR)/libturbojpeg_la-jaricom.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='jaricom.c' object='libturbojpeg_la-jaricom.lo' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -c -o libturbojpeg_la-jaricom.lo `test -f 'jaricom.c' || echo '$(srcdir)/'`jaricom.c libturbojpeg_la-jcarith.lo: jcarith.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -MT libturbojpeg_la-jcarith.lo -MD -MP -MF $(DEPDIR)/libturbojpeg_la-jcarith.Tpo -c -o libturbojpeg_la-jcarith.lo `test -f 'jcarith.c' || echo '$(srcdir)/'`jcarith.c @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/libturbojpeg_la-jcarith.Tpo $(DEPDIR)/libturbojpeg_la-jcarith.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='jcarith.c' object='libturbojpeg_la-jcarith.lo' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -c -o libturbojpeg_la-jcarith.lo `test -f 'jcarith.c' || echo '$(srcdir)/'`jcarith.c libturbojpeg_la-jdarith.lo: jdarith.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -MT libturbojpeg_la-jdarith.lo -MD -MP -MF $(DEPDIR)/libturbojpeg_la-jdarith.Tpo -c -o libturbojpeg_la-jdarith.lo `test -f 'jdarith.c' || echo '$(srcdir)/'`jdarith.c @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/libturbojpeg_la-jdarith.Tpo $(DEPDIR)/libturbojpeg_la-jdarith.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='jdarith.c' object='libturbojpeg_la-jdarith.lo' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -c -o libturbojpeg_la-jdarith.lo `test -f 'jdarith.c' || echo '$(srcdir)/'`jdarith.c libturbojpeg_la-jsimd_none.lo: jsimd_none.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -MT libturbojpeg_la-jsimd_none.lo -MD -MP -MF $(DEPDIR)/libturbojpeg_la-jsimd_none.Tpo -c -o libturbojpeg_la-jsimd_none.lo `test -f 'jsimd_none.c' || echo '$(srcdir)/'`jsimd_none.c @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/libturbojpeg_la-jsimd_none.Tpo $(DEPDIR)/libturbojpeg_la-jsimd_none.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='jsimd_none.c' object='libturbojpeg_la-jsimd_none.lo' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -c -o libturbojpeg_la-jsimd_none.lo `test -f 'jsimd_none.c' || echo '$(srcdir)/'`jsimd_none.c libturbojpeg_la-turbojpeg.lo: turbojpeg.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -MT libturbojpeg_la-turbojpeg.lo -MD -MP -MF $(DEPDIR)/libturbojpeg_la-turbojpeg.Tpo -c -o libturbojpeg_la-turbojpeg.lo `test -f 'turbojpeg.c' || echo '$(srcdir)/'`turbojpeg.c @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/libturbojpeg_la-turbojpeg.Tpo $(DEPDIR)/libturbojpeg_la-turbojpeg.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='turbojpeg.c' object='libturbojpeg_la-turbojpeg.lo' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -c -o libturbojpeg_la-turbojpeg.lo `test -f 'turbojpeg.c' || echo '$(srcdir)/'`turbojpeg.c libturbojpeg_la-transupp.lo: transupp.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -MT libturbojpeg_la-transupp.lo -MD -MP -MF $(DEPDIR)/libturbojpeg_la-transupp.Tpo -c -o libturbojpeg_la-transupp.lo `test -f 'transupp.c' || echo '$(srcdir)/'`transupp.c @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/libturbojpeg_la-transupp.Tpo $(DEPDIR)/libturbojpeg_la-transupp.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='transupp.c' object='libturbojpeg_la-transupp.lo' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -c -o libturbojpeg_la-transupp.lo `test -f 'transupp.c' || echo '$(srcdir)/'`transupp.c libturbojpeg_la-jdatadst-tj.lo: jdatadst-tj.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -MT libturbojpeg_la-jdatadst-tj.lo -MD -MP -MF $(DEPDIR)/libturbojpeg_la-jdatadst-tj.Tpo -c -o libturbojpeg_la-jdatadst-tj.lo `test -f 'jdatadst-tj.c' || echo '$(srcdir)/'`jdatadst-tj.c @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/libturbojpeg_la-jdatadst-tj.Tpo $(DEPDIR)/libturbojpeg_la-jdatadst-tj.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='jdatadst-tj.c' object='libturbojpeg_la-jdatadst-tj.lo' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -c -o libturbojpeg_la-jdatadst-tj.lo `test -f 'jdatadst-tj.c' || echo '$(srcdir)/'`jdatadst-tj.c libturbojpeg_la-jdatasrc-tj.lo: jdatasrc-tj.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -MT libturbojpeg_la-jdatasrc-tj.lo -MD -MP -MF $(DEPDIR)/libturbojpeg_la-jdatasrc-tj.Tpo -c -o libturbojpeg_la-jdatasrc-tj.lo `test -f 'jdatasrc-tj.c' || echo '$(srcdir)/'`jdatasrc-tj.c @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/libturbojpeg_la-jdatasrc-tj.Tpo $(DEPDIR)/libturbojpeg_la-jdatasrc-tj.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='jdatasrc-tj.c' object='libturbojpeg_la-jdatasrc-tj.lo' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -c -o libturbojpeg_la-jdatasrc-tj.lo `test -f 'jdatasrc-tj.c' || echo '$(srcdir)/'`jdatasrc-tj.c libturbojpeg_la-turbojpeg-jni.lo: turbojpeg-jni.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -MT libturbojpeg_la-turbojpeg-jni.lo -MD -MP -MF $(DEPDIR)/libturbojpeg_la-turbojpeg-jni.Tpo -c -o libturbojpeg_la-turbojpeg-jni.lo `test -f 'turbojpeg-jni.c' || echo '$(srcdir)/'`turbojpeg-jni.c @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/libturbojpeg_la-turbojpeg-jni.Tpo $(DEPDIR)/libturbojpeg_la-turbojpeg-jni.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='turbojpeg-jni.c' object='libturbojpeg_la-turbojpeg-jni.lo' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libturbojpeg_la_CFLAGS) $(CFLAGS) -c -o libturbojpeg_la-turbojpeg-jni.lo `test -f 'turbojpeg-jni.c' || echo '$(srcdir)/'`turbojpeg-jni.c cjpeg-cdjpeg.o: cdjpeg.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(cjpeg_CFLAGS) $(CFLAGS) -MT cjpeg-cdjpeg.o -MD -MP -MF $(DEPDIR)/cjpeg-cdjpeg.Tpo -c -o cjpeg-cdjpeg.o `test -f 'cdjpeg.c' || echo '$(srcdir)/'`cdjpeg.c @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/cjpeg-cdjpeg.Tpo $(DEPDIR)/cjpeg-cdjpeg.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='cdjpeg.c' object='cjpeg-cdjpeg.o' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(cjpeg_CFLAGS) $(CFLAGS) -c -o cjpeg-cdjpeg.o `test -f 'cdjpeg.c' || echo '$(srcdir)/'`cdjpeg.c cjpeg-cdjpeg.obj: cdjpeg.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(cjpeg_CFLAGS) $(CFLAGS) -MT cjpeg-cdjpeg.obj -MD -MP -MF $(DEPDIR)/cjpeg-cdjpeg.Tpo -c -o cjpeg-cdjpeg.obj `if test -f 'cdjpeg.c'; then $(CYGPATH_W) 'cdjpeg.c'; else $(CYGPATH_W) '$(srcdir)/cdjpeg.c'; fi` @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/cjpeg-cdjpeg.Tpo $(DEPDIR)/cjpeg-cdjpeg.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='cdjpeg.c' object='cjpeg-cdjpeg.obj' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(cjpeg_CFLAGS) $(CFLAGS) -c -o cjpeg-cdjpeg.obj `if test -f 'cdjpeg.c'; then $(CYGPATH_W) 'cdjpeg.c'; else $(CYGPATH_W) '$(srcdir)/cdjpeg.c'; fi` cjpeg-cjpeg.o: cjpeg.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(cjpeg_CFLAGS) $(CFLAGS) -MT cjpeg-cjpeg.o -MD -MP -MF $(DEPDIR)/cjpeg-cjpeg.Tpo -c -o cjpeg-cjpeg.o `test -f 'cjpeg.c' || echo '$(srcdir)/'`cjpeg.c @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/cjpeg-cjpeg.Tpo $(DEPDIR)/cjpeg-cjpeg.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='cjpeg.c' object='cjpeg-cjpeg.o' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(cjpeg_CFLAGS) $(CFLAGS) -c -o cjpeg-cjpeg.o `test -f 'cjpeg.c' || echo '$(srcdir)/'`cjpeg.c cjpeg-cjpeg.obj: cjpeg.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(cjpeg_CFLAGS) $(CFLAGS) -MT cjpeg-cjpeg.obj -MD -MP -MF $(DEPDIR)/cjpeg-cjpeg.Tpo -c -o cjpeg-cjpeg.obj `if test -f 'cjpeg.c'; then $(CYGPATH_W) 'cjpeg.c'; else $(CYGPATH_W) '$(srcdir)/cjpeg.c'; fi` @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/cjpeg-cjpeg.Tpo $(DEPDIR)/cjpeg-cjpeg.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='cjpeg.c' object='cjpeg-cjpeg.obj' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(cjpeg_CFLAGS) $(CFLAGS) -c -o cjpeg-cjpeg.obj `if test -f 'cjpeg.c'; then $(CYGPATH_W) 'cjpeg.c'; else $(CYGPATH_W) '$(srcdir)/cjpeg.c'; fi` cjpeg-rdgif.o: rdgif.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(cjpeg_CFLAGS) $(CFLAGS) -MT cjpeg-rdgif.o -MD -MP -MF $(DEPDIR)/cjpeg-rdgif.Tpo -c -o cjpeg-rdgif.o `test -f 'rdgif.c' || echo '$(srcdir)/'`rdgif.c @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/cjpeg-rdgif.Tpo $(DEPDIR)/cjpeg-rdgif.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='rdgif.c' object='cjpeg-rdgif.o' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(cjpeg_CFLAGS) $(CFLAGS) -c -o cjpeg-rdgif.o `test -f 'rdgif.c' || echo '$(srcdir)/'`rdgif.c cjpeg-rdgif.obj: rdgif.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(cjpeg_CFLAGS) $(CFLAGS) -MT cjpeg-rdgif.obj -MD -MP -MF $(DEPDIR)/cjpeg-rdgif.Tpo -c -o cjpeg-rdgif.obj `if test -f 'rdgif.c'; then $(CYGPATH_W) 'rdgif.c'; else $(CYGPATH_W) '$(srcdir)/rdgif.c'; fi` @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/cjpeg-rdgif.Tpo $(DEPDIR)/cjpeg-rdgif.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='rdgif.c' object='cjpeg-rdgif.obj' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(cjpeg_CFLAGS) $(CFLAGS) -c -o cjpeg-rdgif.obj `if test -f 'rdgif.c'; then $(CYGPATH_W) 'rdgif.c'; else $(CYGPATH_W) '$(srcdir)/rdgif.c'; fi` cjpeg-rdppm.o: rdppm.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(cjpeg_CFLAGS) $(CFLAGS) -MT cjpeg-rdppm.o -MD -MP -MF $(DEPDIR)/cjpeg-rdppm.Tpo -c -o cjpeg-rdppm.o `test -f 'rdppm.c' || echo '$(srcdir)/'`rdppm.c @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/cjpeg-rdppm.Tpo $(DEPDIR)/cjpeg-rdppm.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='rdppm.c' object='cjpeg-rdppm.o' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(cjpeg_CFLAGS) $(CFLAGS) -c -o cjpeg-rdppm.o `test -f 'rdppm.c' || echo '$(srcdir)/'`rdppm.c cjpeg-rdppm.obj: rdppm.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(cjpeg_CFLAGS) $(CFLAGS) -MT cjpeg-rdppm.obj -MD -MP -MF $(DEPDIR)/cjpeg-rdppm.Tpo -c -o cjpeg-rdppm.obj `if test -f 'rdppm.c'; then $(CYGPATH_W) 'rdppm.c'; else $(CYGPATH_W) '$(srcdir)/rdppm.c'; fi` @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/cjpeg-rdppm.Tpo $(DEPDIR)/cjpeg-rdppm.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='rdppm.c' object='cjpeg-rdppm.obj' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(cjpeg_CFLAGS) $(CFLAGS) -c -o cjpeg-rdppm.obj `if test -f 'rdppm.c'; then $(CYGPATH_W) 'rdppm.c'; else $(CYGPATH_W) '$(srcdir)/rdppm.c'; fi` cjpeg-rdswitch.o: rdswitch.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(cjpeg_CFLAGS) $(CFLAGS) -MT cjpeg-rdswitch.o -MD -MP -MF $(DEPDIR)/cjpeg-rdswitch.Tpo -c -o cjpeg-rdswitch.o `test -f 'rdswitch.c' || echo '$(srcdir)/'`rdswitch.c @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/cjpeg-rdswitch.Tpo $(DEPDIR)/cjpeg-rdswitch.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='rdswitch.c' object='cjpeg-rdswitch.o' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(cjpeg_CFLAGS) $(CFLAGS) -c -o cjpeg-rdswitch.o `test -f 'rdswitch.c' || echo '$(srcdir)/'`rdswitch.c cjpeg-rdswitch.obj: rdswitch.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(cjpeg_CFLAGS) $(CFLAGS) -MT cjpeg-rdswitch.obj -MD -MP -MF $(DEPDIR)/cjpeg-rdswitch.Tpo -c -o cjpeg-rdswitch.obj `if test -f 'rdswitch.c'; then $(CYGPATH_W) 'rdswitch.c'; else $(CYGPATH_W) '$(srcdir)/rdswitch.c'; fi` @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/cjpeg-rdswitch.Tpo $(DEPDIR)/cjpeg-rdswitch.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='rdswitch.c' object='cjpeg-rdswitch.obj' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(cjpeg_CFLAGS) $(CFLAGS) -c -o cjpeg-rdswitch.obj `if test -f 'rdswitch.c'; then $(CYGPATH_W) 'rdswitch.c'; else $(CYGPATH_W) '$(srcdir)/rdswitch.c'; fi` cjpeg-rdbmp.o: rdbmp.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(cjpeg_CFLAGS) $(CFLAGS) -MT cjpeg-rdbmp.o -MD -MP -MF $(DEPDIR)/cjpeg-rdbmp.Tpo -c -o cjpeg-rdbmp.o `test -f 'rdbmp.c' || echo '$(srcdir)/'`rdbmp.c @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/cjpeg-rdbmp.Tpo $(DEPDIR)/cjpeg-rdbmp.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='rdbmp.c' object='cjpeg-rdbmp.o' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(cjpeg_CFLAGS) $(CFLAGS) -c -o cjpeg-rdbmp.o `test -f 'rdbmp.c' || echo '$(srcdir)/'`rdbmp.c cjpeg-rdbmp.obj: rdbmp.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(cjpeg_CFLAGS) $(CFLAGS) -MT cjpeg-rdbmp.obj -MD -MP -MF $(DEPDIR)/cjpeg-rdbmp.Tpo -c -o cjpeg-rdbmp.obj `if test -f 'rdbmp.c'; then $(CYGPATH_W) 'rdbmp.c'; else $(CYGPATH_W) '$(srcdir)/rdbmp.c'; fi` @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/cjpeg-rdbmp.Tpo $(DEPDIR)/cjpeg-rdbmp.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='rdbmp.c' object='cjpeg-rdbmp.obj' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(cjpeg_CFLAGS) $(CFLAGS) -c -o cjpeg-rdbmp.obj `if test -f 'rdbmp.c'; then $(CYGPATH_W) 'rdbmp.c'; else $(CYGPATH_W) '$(srcdir)/rdbmp.c'; fi` cjpeg-rdtarga.o: rdtarga.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(cjpeg_CFLAGS) $(CFLAGS) -MT cjpeg-rdtarga.o -MD -MP -MF $(DEPDIR)/cjpeg-rdtarga.Tpo -c -o cjpeg-rdtarga.o `test -f 'rdtarga.c' || echo '$(srcdir)/'`rdtarga.c @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/cjpeg-rdtarga.Tpo $(DEPDIR)/cjpeg-rdtarga.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='rdtarga.c' object='cjpeg-rdtarga.o' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(cjpeg_CFLAGS) $(CFLAGS) -c -o cjpeg-rdtarga.o `test -f 'rdtarga.c' || echo '$(srcdir)/'`rdtarga.c cjpeg-rdtarga.obj: rdtarga.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(cjpeg_CFLAGS) $(CFLAGS) -MT cjpeg-rdtarga.obj -MD -MP -MF $(DEPDIR)/cjpeg-rdtarga.Tpo -c -o cjpeg-rdtarga.obj `if test -f 'rdtarga.c'; then $(CYGPATH_W) 'rdtarga.c'; else $(CYGPATH_W) '$(srcdir)/rdtarga.c'; fi` @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/cjpeg-rdtarga.Tpo $(DEPDIR)/cjpeg-rdtarga.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='rdtarga.c' object='cjpeg-rdtarga.obj' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(cjpeg_CFLAGS) $(CFLAGS) -c -o cjpeg-rdtarga.obj `if test -f 'rdtarga.c'; then $(CYGPATH_W) 'rdtarga.c'; else $(CYGPATH_W) '$(srcdir)/rdtarga.c'; fi` djpeg-cdjpeg.o: cdjpeg.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(djpeg_CFLAGS) $(CFLAGS) -MT djpeg-cdjpeg.o -MD -MP -MF $(DEPDIR)/djpeg-cdjpeg.Tpo -c -o djpeg-cdjpeg.o `test -f 'cdjpeg.c' || echo '$(srcdir)/'`cdjpeg.c @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/djpeg-cdjpeg.Tpo $(DEPDIR)/djpeg-cdjpeg.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='cdjpeg.c' object='djpeg-cdjpeg.o' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(djpeg_CFLAGS) $(CFLAGS) -c -o djpeg-cdjpeg.o `test -f 'cdjpeg.c' || echo '$(srcdir)/'`cdjpeg.c djpeg-cdjpeg.obj: cdjpeg.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(djpeg_CFLAGS) $(CFLAGS) -MT djpeg-cdjpeg.obj -MD -MP -MF $(DEPDIR)/djpeg-cdjpeg.Tpo -c -o djpeg-cdjpeg.obj `if test -f 'cdjpeg.c'; then $(CYGPATH_W) 'cdjpeg.c'; else $(CYGPATH_W) '$(srcdir)/cdjpeg.c'; fi` @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/djpeg-cdjpeg.Tpo $(DEPDIR)/djpeg-cdjpeg.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='cdjpeg.c' object='djpeg-cdjpeg.obj' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(djpeg_CFLAGS) $(CFLAGS) -c -o djpeg-cdjpeg.obj `if test -f 'cdjpeg.c'; then $(CYGPATH_W) 'cdjpeg.c'; else $(CYGPATH_W) '$(srcdir)/cdjpeg.c'; fi` djpeg-djpeg.o: djpeg.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(djpeg_CFLAGS) $(CFLAGS) -MT djpeg-djpeg.o -MD -MP -MF $(DEPDIR)/djpeg-djpeg.Tpo -c -o djpeg-djpeg.o `test -f 'djpeg.c' || echo '$(srcdir)/'`djpeg.c @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/djpeg-djpeg.Tpo $(DEPDIR)/djpeg-djpeg.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='djpeg.c' object='djpeg-djpeg.o' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(djpeg_CFLAGS) $(CFLAGS) -c -o djpeg-djpeg.o `test -f 'djpeg.c' || echo '$(srcdir)/'`djpeg.c djpeg-djpeg.obj: djpeg.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(djpeg_CFLAGS) $(CFLAGS) -MT djpeg-djpeg.obj -MD -MP -MF $(DEPDIR)/djpeg-djpeg.Tpo -c -o djpeg-djpeg.obj `if test -f 'djpeg.c'; then $(CYGPATH_W) 'djpeg.c'; else $(CYGPATH_W) '$(srcdir)/djpeg.c'; fi` @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/djpeg-djpeg.Tpo $(DEPDIR)/djpeg-djpeg.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='djpeg.c' object='djpeg-djpeg.obj' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(djpeg_CFLAGS) $(CFLAGS) -c -o djpeg-djpeg.obj `if test -f 'djpeg.c'; then $(CYGPATH_W) 'djpeg.c'; else $(CYGPATH_W) '$(srcdir)/djpeg.c'; fi` djpeg-rdcolmap.o: rdcolmap.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(djpeg_CFLAGS) $(CFLAGS) -MT djpeg-rdcolmap.o -MD -MP -MF $(DEPDIR)/djpeg-rdcolmap.Tpo -c -o djpeg-rdcolmap.o `test -f 'rdcolmap.c' || echo '$(srcdir)/'`rdcolmap.c @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/djpeg-rdcolmap.Tpo $(DEPDIR)/djpeg-rdcolmap.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='rdcolmap.c' object='djpeg-rdcolmap.o' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(djpeg_CFLAGS) $(CFLAGS) -c -o djpeg-rdcolmap.o `test -f 'rdcolmap.c' || echo '$(srcdir)/'`rdcolmap.c djpeg-rdcolmap.obj: rdcolmap.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(djpeg_CFLAGS) $(CFLAGS) -MT djpeg-rdcolmap.obj -MD -MP -MF $(DEPDIR)/djpeg-rdcolmap.Tpo -c -o djpeg-rdcolmap.obj `if test -f 'rdcolmap.c'; then $(CYGPATH_W) 'rdcolmap.c'; else $(CYGPATH_W) '$(srcdir)/rdcolmap.c'; fi` @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/djpeg-rdcolmap.Tpo $(DEPDIR)/djpeg-rdcolmap.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='rdcolmap.c' object='djpeg-rdcolmap.obj' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(djpeg_CFLAGS) $(CFLAGS) -c -o djpeg-rdcolmap.obj `if test -f 'rdcolmap.c'; then $(CYGPATH_W) 'rdcolmap.c'; else $(CYGPATH_W) '$(srcdir)/rdcolmap.c'; fi` djpeg-rdswitch.o: rdswitch.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(djpeg_CFLAGS) $(CFLAGS) -MT djpeg-rdswitch.o -MD -MP -MF $(DEPDIR)/djpeg-rdswitch.Tpo -c -o djpeg-rdswitch.o `test -f 'rdswitch.c' || echo '$(srcdir)/'`rdswitch.c @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/djpeg-rdswitch.Tpo $(DEPDIR)/djpeg-rdswitch.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='rdswitch.c' object='djpeg-rdswitch.o' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(djpeg_CFLAGS) $(CFLAGS) -c -o djpeg-rdswitch.o `test -f 'rdswitch.c' || echo '$(srcdir)/'`rdswitch.c djpeg-rdswitch.obj: rdswitch.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(djpeg_CFLAGS) $(CFLAGS) -MT djpeg-rdswitch.obj -MD -MP -MF $(DEPDIR)/djpeg-rdswitch.Tpo -c -o djpeg-rdswitch.obj `if test -f 'rdswitch.c'; then $(CYGPATH_W) 'rdswitch.c'; else $(CYGPATH_W) '$(srcdir)/rdswitch.c'; fi` @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/djpeg-rdswitch.Tpo $(DEPDIR)/djpeg-rdswitch.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='rdswitch.c' object='djpeg-rdswitch.obj' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(djpeg_CFLAGS) $(CFLAGS) -c -o djpeg-rdswitch.obj `if test -f 'rdswitch.c'; then $(CYGPATH_W) 'rdswitch.c'; else $(CYGPATH_W) '$(srcdir)/rdswitch.c'; fi` djpeg-wrgif.o: wrgif.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(djpeg_CFLAGS) $(CFLAGS) -MT djpeg-wrgif.o -MD -MP -MF $(DEPDIR)/djpeg-wrgif.Tpo -c -o djpeg-wrgif.o `test -f 'wrgif.c' || echo '$(srcdir)/'`wrgif.c @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/djpeg-wrgif.Tpo $(DEPDIR)/djpeg-wrgif.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='wrgif.c' object='djpeg-wrgif.o' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(djpeg_CFLAGS) $(CFLAGS) -c -o djpeg-wrgif.o `test -f 'wrgif.c' || echo '$(srcdir)/'`wrgif.c djpeg-wrgif.obj: wrgif.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(djpeg_CFLAGS) $(CFLAGS) -MT djpeg-wrgif.obj -MD -MP -MF $(DEPDIR)/djpeg-wrgif.Tpo -c -o djpeg-wrgif.obj `if test -f 'wrgif.c'; then $(CYGPATH_W) 'wrgif.c'; else $(CYGPATH_W) '$(srcdir)/wrgif.c'; fi` @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/djpeg-wrgif.Tpo $(DEPDIR)/djpeg-wrgif.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='wrgif.c' object='djpeg-wrgif.obj' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(djpeg_CFLAGS) $(CFLAGS) -c -o djpeg-wrgif.obj `if test -f 'wrgif.c'; then $(CYGPATH_W) 'wrgif.c'; else $(CYGPATH_W) '$(srcdir)/wrgif.c'; fi` djpeg-wrppm.o: wrppm.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(djpeg_CFLAGS) $(CFLAGS) -MT djpeg-wrppm.o -MD -MP -MF $(DEPDIR)/djpeg-wrppm.Tpo -c -o djpeg-wrppm.o `test -f 'wrppm.c' || echo '$(srcdir)/'`wrppm.c @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/djpeg-wrppm.Tpo $(DEPDIR)/djpeg-wrppm.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='wrppm.c' object='djpeg-wrppm.o' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(djpeg_CFLAGS) $(CFLAGS) -c -o djpeg-wrppm.o `test -f 'wrppm.c' || echo '$(srcdir)/'`wrppm.c djpeg-wrppm.obj: wrppm.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(djpeg_CFLAGS) $(CFLAGS) -MT djpeg-wrppm.obj -MD -MP -MF $(DEPDIR)/djpeg-wrppm.Tpo -c -o djpeg-wrppm.obj `if test -f 'wrppm.c'; then $(CYGPATH_W) 'wrppm.c'; else $(CYGPATH_W) '$(srcdir)/wrppm.c'; fi` @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/djpeg-wrppm.Tpo $(DEPDIR)/djpeg-wrppm.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='wrppm.c' object='djpeg-wrppm.obj' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(djpeg_CFLAGS) $(CFLAGS) -c -o djpeg-wrppm.obj `if test -f 'wrppm.c'; then $(CYGPATH_W) 'wrppm.c'; else $(CYGPATH_W) '$(srcdir)/wrppm.c'; fi` djpeg-wrbmp.o: wrbmp.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(djpeg_CFLAGS) $(CFLAGS) -MT djpeg-wrbmp.o -MD -MP -MF $(DEPDIR)/djpeg-wrbmp.Tpo -c -o djpeg-wrbmp.o `test -f 'wrbmp.c' || echo '$(srcdir)/'`wrbmp.c @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/djpeg-wrbmp.Tpo $(DEPDIR)/djpeg-wrbmp.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='wrbmp.c' object='djpeg-wrbmp.o' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(djpeg_CFLAGS) $(CFLAGS) -c -o djpeg-wrbmp.o `test -f 'wrbmp.c' || echo '$(srcdir)/'`wrbmp.c djpeg-wrbmp.obj: wrbmp.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(djpeg_CFLAGS) $(CFLAGS) -MT djpeg-wrbmp.obj -MD -MP -MF $(DEPDIR)/djpeg-wrbmp.Tpo -c -o djpeg-wrbmp.obj `if test -f 'wrbmp.c'; then $(CYGPATH_W) 'wrbmp.c'; else $(CYGPATH_W) '$(srcdir)/wrbmp.c'; fi` @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/djpeg-wrbmp.Tpo $(DEPDIR)/djpeg-wrbmp.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='wrbmp.c' object='djpeg-wrbmp.obj' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(djpeg_CFLAGS) $(CFLAGS) -c -o djpeg-wrbmp.obj `if test -f 'wrbmp.c'; then $(CYGPATH_W) 'wrbmp.c'; else $(CYGPATH_W) '$(srcdir)/wrbmp.c'; fi` djpeg-wrtarga.o: wrtarga.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(djpeg_CFLAGS) $(CFLAGS) -MT djpeg-wrtarga.o -MD -MP -MF $(DEPDIR)/djpeg-wrtarga.Tpo -c -o djpeg-wrtarga.o `test -f 'wrtarga.c' || echo '$(srcdir)/'`wrtarga.c @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/djpeg-wrtarga.Tpo $(DEPDIR)/djpeg-wrtarga.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='wrtarga.c' object='djpeg-wrtarga.o' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(djpeg_CFLAGS) $(CFLAGS) -c -o djpeg-wrtarga.o `test -f 'wrtarga.c' || echo '$(srcdir)/'`wrtarga.c djpeg-wrtarga.obj: wrtarga.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(djpeg_CFLAGS) $(CFLAGS) -MT djpeg-wrtarga.obj -MD -MP -MF $(DEPDIR)/djpeg-wrtarga.Tpo -c -o djpeg-wrtarga.obj `if test -f 'wrtarga.c'; then $(CYGPATH_W) 'wrtarga.c'; else $(CYGPATH_W) '$(srcdir)/wrtarga.c'; fi` @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/djpeg-wrtarga.Tpo $(DEPDIR)/djpeg-wrtarga.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='wrtarga.c' object='djpeg-wrtarga.obj' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(djpeg_CFLAGS) $(CFLAGS) -c -o djpeg-wrtarga.obj `if test -f 'wrtarga.c'; then $(CYGPATH_W) 'wrtarga.c'; else $(CYGPATH_W) '$(srcdir)/wrtarga.c'; fi` tjbench-tjbench.o: tjbench.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(tjbench_CFLAGS) $(CFLAGS) -MT tjbench-tjbench.o -MD -MP -MF $(DEPDIR)/tjbench-tjbench.Tpo -c -o tjbench-tjbench.o `test -f 'tjbench.c' || echo '$(srcdir)/'`tjbench.c @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/tjbench-tjbench.Tpo $(DEPDIR)/tjbench-tjbench.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='tjbench.c' object='tjbench-tjbench.o' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(tjbench_CFLAGS) $(CFLAGS) -c -o tjbench-tjbench.o `test -f 'tjbench.c' || echo '$(srcdir)/'`tjbench.c tjbench-tjbench.obj: tjbench.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(tjbench_CFLAGS) $(CFLAGS) -MT tjbench-tjbench.obj -MD -MP -MF $(DEPDIR)/tjbench-tjbench.Tpo -c -o tjbench-tjbench.obj `if test -f 'tjbench.c'; then $(CYGPATH_W) 'tjbench.c'; else $(CYGPATH_W) '$(srcdir)/tjbench.c'; fi` @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/tjbench-tjbench.Tpo $(DEPDIR)/tjbench-tjbench.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='tjbench.c' object='tjbench-tjbench.obj' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(tjbench_CFLAGS) $(CFLAGS) -c -o tjbench-tjbench.obj `if test -f 'tjbench.c'; then $(CYGPATH_W) 'tjbench.c'; else $(CYGPATH_W) '$(srcdir)/tjbench.c'; fi` tjbench-bmp.o: bmp.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(tjbench_CFLAGS) $(CFLAGS) -MT tjbench-bmp.o -MD -MP -MF $(DEPDIR)/tjbench-bmp.Tpo -c -o tjbench-bmp.o `test -f 'bmp.c' || echo '$(srcdir)/'`bmp.c @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/tjbench-bmp.Tpo $(DEPDIR)/tjbench-bmp.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='bmp.c' object='tjbench-bmp.o' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(tjbench_CFLAGS) $(CFLAGS) -c -o tjbench-bmp.o `test -f 'bmp.c' || echo '$(srcdir)/'`bmp.c tjbench-bmp.obj: bmp.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(tjbench_CFLAGS) $(CFLAGS) -MT tjbench-bmp.obj -MD -MP -MF $(DEPDIR)/tjbench-bmp.Tpo -c -o tjbench-bmp.obj `if test -f 'bmp.c'; then $(CYGPATH_W) 'bmp.c'; else $(CYGPATH_W) '$(srcdir)/bmp.c'; fi` @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/tjbench-bmp.Tpo $(DEPDIR)/tjbench-bmp.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='bmp.c' object='tjbench-bmp.obj' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(tjbench_CFLAGS) $(CFLAGS) -c -o tjbench-bmp.obj `if test -f 'bmp.c'; then $(CYGPATH_W) 'bmp.c'; else $(CYGPATH_W) '$(srcdir)/bmp.c'; fi` tjbench-tjutil.o: tjutil.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(tjbench_CFLAGS) $(CFLAGS) -MT tjbench-tjutil.o -MD -MP -MF $(DEPDIR)/tjbench-tjutil.Tpo -c -o tjbench-tjutil.o `test -f 'tjutil.c' || echo '$(srcdir)/'`tjutil.c @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/tjbench-tjutil.Tpo $(DEPDIR)/tjbench-tjutil.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='tjutil.c' object='tjbench-tjutil.o' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(tjbench_CFLAGS) $(CFLAGS) -c -o tjbench-tjutil.o `test -f 'tjutil.c' || echo '$(srcdir)/'`tjutil.c tjbench-tjutil.obj: tjutil.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(tjbench_CFLAGS) $(CFLAGS) -MT tjbench-tjutil.obj -MD -MP -MF $(DEPDIR)/tjbench-tjutil.Tpo -c -o tjbench-tjutil.obj `if test -f 'tjutil.c'; then $(CYGPATH_W) 'tjutil.c'; else $(CYGPATH_W) '$(srcdir)/tjutil.c'; fi` @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/tjbench-tjutil.Tpo $(DEPDIR)/tjbench-tjutil.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='tjutil.c' object='tjbench-tjutil.obj' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(tjbench_CFLAGS) $(CFLAGS) -c -o tjbench-tjutil.obj `if test -f 'tjutil.c'; then $(CYGPATH_W) 'tjutil.c'; else $(CYGPATH_W) '$(srcdir)/tjutil.c'; fi` tjbench-rdbmp.o: rdbmp.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(tjbench_CFLAGS) $(CFLAGS) -MT tjbench-rdbmp.o -MD -MP -MF $(DEPDIR)/tjbench-rdbmp.Tpo -c -o tjbench-rdbmp.o `test -f 'rdbmp.c' || echo '$(srcdir)/'`rdbmp.c @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/tjbench-rdbmp.Tpo $(DEPDIR)/tjbench-rdbmp.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='rdbmp.c' object='tjbench-rdbmp.o' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(tjbench_CFLAGS) $(CFLAGS) -c -o tjbench-rdbmp.o `test -f 'rdbmp.c' || echo '$(srcdir)/'`rdbmp.c tjbench-rdbmp.obj: rdbmp.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(tjbench_CFLAGS) $(CFLAGS) -MT tjbench-rdbmp.obj -MD -MP -MF $(DEPDIR)/tjbench-rdbmp.Tpo -c -o tjbench-rdbmp.obj `if test -f 'rdbmp.c'; then $(CYGPATH_W) 'rdbmp.c'; else $(CYGPATH_W) '$(srcdir)/rdbmp.c'; fi` @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/tjbench-rdbmp.Tpo $(DEPDIR)/tjbench-rdbmp.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='rdbmp.c' object='tjbench-rdbmp.obj' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(tjbench_CFLAGS) $(CFLAGS) -c -o tjbench-rdbmp.obj `if test -f 'rdbmp.c'; then $(CYGPATH_W) 'rdbmp.c'; else $(CYGPATH_W) '$(srcdir)/rdbmp.c'; fi` tjbench-rdppm.o: rdppm.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(tjbench_CFLAGS) $(CFLAGS) -MT tjbench-rdppm.o -MD -MP -MF $(DEPDIR)/tjbench-rdppm.Tpo -c -o tjbench-rdppm.o `test -f 'rdppm.c' || echo '$(srcdir)/'`rdppm.c @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/tjbench-rdppm.Tpo $(DEPDIR)/tjbench-rdppm.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='rdppm.c' object='tjbench-rdppm.o' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(tjbench_CFLAGS) $(CFLAGS) -c -o tjbench-rdppm.o `test -f 'rdppm.c' || echo '$(srcdir)/'`rdppm.c tjbench-rdppm.obj: rdppm.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(tjbench_CFLAGS) $(CFLAGS) -MT tjbench-rdppm.obj -MD -MP -MF $(DEPDIR)/tjbench-rdppm.Tpo -c -o tjbench-rdppm.obj `if test -f 'rdppm.c'; then $(CYGPATH_W) 'rdppm.c'; else $(CYGPATH_W) '$(srcdir)/rdppm.c'; fi` @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/tjbench-rdppm.Tpo $(DEPDIR)/tjbench-rdppm.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='rdppm.c' object='tjbench-rdppm.obj' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(tjbench_CFLAGS) $(CFLAGS) -c -o tjbench-rdppm.obj `if test -f 'rdppm.c'; then $(CYGPATH_W) 'rdppm.c'; else $(CYGPATH_W) '$(srcdir)/rdppm.c'; fi` tjbench-wrbmp.o: wrbmp.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(tjbench_CFLAGS) $(CFLAGS) -MT tjbench-wrbmp.o -MD -MP -MF $(DEPDIR)/tjbench-wrbmp.Tpo -c -o tjbench-wrbmp.o `test -f 'wrbmp.c' || echo '$(srcdir)/'`wrbmp.c @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/tjbench-wrbmp.Tpo $(DEPDIR)/tjbench-wrbmp.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='wrbmp.c' object='tjbench-wrbmp.o' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(tjbench_CFLAGS) $(CFLAGS) -c -o tjbench-wrbmp.o `test -f 'wrbmp.c' || echo '$(srcdir)/'`wrbmp.c tjbench-wrbmp.obj: wrbmp.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(tjbench_CFLAGS) $(CFLAGS) -MT tjbench-wrbmp.obj -MD -MP -MF $(DEPDIR)/tjbench-wrbmp.Tpo -c -o tjbench-wrbmp.obj `if test -f 'wrbmp.c'; then $(CYGPATH_W) 'wrbmp.c'; else $(CYGPATH_W) '$(srcdir)/wrbmp.c'; fi` @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/tjbench-wrbmp.Tpo $(DEPDIR)/tjbench-wrbmp.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='wrbmp.c' object='tjbench-wrbmp.obj' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(tjbench_CFLAGS) $(CFLAGS) -c -o tjbench-wrbmp.obj `if test -f 'wrbmp.c'; then $(CYGPATH_W) 'wrbmp.c'; else $(CYGPATH_W) '$(srcdir)/wrbmp.c'; fi` tjbench-wrppm.o: wrppm.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(tjbench_CFLAGS) $(CFLAGS) -MT tjbench-wrppm.o -MD -MP -MF $(DEPDIR)/tjbench-wrppm.Tpo -c -o tjbench-wrppm.o `test -f 'wrppm.c' || echo '$(srcdir)/'`wrppm.c @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/tjbench-wrppm.Tpo $(DEPDIR)/tjbench-wrppm.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='wrppm.c' object='tjbench-wrppm.o' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(tjbench_CFLAGS) $(CFLAGS) -c -o tjbench-wrppm.o `test -f 'wrppm.c' || echo '$(srcdir)/'`wrppm.c tjbench-wrppm.obj: wrppm.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(tjbench_CFLAGS) $(CFLAGS) -MT tjbench-wrppm.obj -MD -MP -MF $(DEPDIR)/tjbench-wrppm.Tpo -c -o tjbench-wrppm.obj `if test -f 'wrppm.c'; then $(CYGPATH_W) 'wrppm.c'; else $(CYGPATH_W) '$(srcdir)/wrppm.c'; fi` @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/tjbench-wrppm.Tpo $(DEPDIR)/tjbench-wrppm.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='wrppm.c' object='tjbench-wrppm.obj' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(tjbench_CFLAGS) $(CFLAGS) -c -o tjbench-wrppm.obj `if test -f 'wrppm.c'; then $(CYGPATH_W) 'wrppm.c'; else $(CYGPATH_W) '$(srcdir)/wrppm.c'; fi` mostlyclean-libtool: -rm -f *.lo clean-libtool: -rm -rf .libs _libs distclean-libtool: -rm -f libtool config.lt install-man1: $(dist_man1_MANS) @$(NORMAL_INSTALL) @list1='$(dist_man1_MANS)'; \ list2=''; \ test -n "$(man1dir)" \ && test -n "`echo $$list1$$list2`" \ || exit 0; \ echo " $(MKDIR_P) '$(DESTDIR)$(man1dir)'"; \ $(MKDIR_P) "$(DESTDIR)$(man1dir)" || exit 1; \ { for i in $$list1; do echo "$$i"; done; \ if test -n "$$list2"; then \ for i in $$list2; do echo "$$i"; done \ | sed -n '/\.1[a-z]*$$/p'; \ fi; \ } | while read p; do \ if test -f $$p; then d=; else d="$(srcdir)/"; fi; \ echo "$$d$$p"; echo "$$p"; \ done | \ sed -e 'n;s,.*/,,;p;h;s,.*\.,,;s,^[^1][0-9a-z]*$$,1,;x' \ -e 's,\.[0-9a-z]*$$,,;$(transform);G;s,\n,.,' | \ sed 'N;N;s,\n, ,g' | { \ list=; while read file base inst; do \ if test "$$base" = "$$inst"; then list="$$list $$file"; else \ echo " $(INSTALL_DATA) '$$file' '$(DESTDIR)$(man1dir)/$$inst'"; \ $(INSTALL_DATA) "$$file" "$(DESTDIR)$(man1dir)/$$inst" || exit $$?; \ fi; \ done; \ for i in $$list; do echo "$$i"; done | $(am__base_list) | \ while read files; do \ test -z "$$files" || { \ echo " $(INSTALL_DATA) $$files '$(DESTDIR)$(man1dir)'"; \ $(INSTALL_DATA) $$files "$(DESTDIR)$(man1dir)" || exit $$?; }; \ done; } uninstall-man1: @$(NORMAL_UNINSTALL) @list='$(dist_man1_MANS)'; test -n "$(man1dir)" || exit 0; \ files=`{ for i in $$list; do echo "$$i"; done; \ } | sed -e 's,.*/,,;h;s,.*\.,,;s,^[^1][0-9a-z]*$$,1,;x' \ -e 's,\.[0-9a-z]*$$,,;$(transform);G;s,\n,.,'`; \ dir='$(DESTDIR)$(man1dir)'; $(am__uninstall_files_from_dir) install-dist_docDATA: $(dist_doc_DATA) @$(NORMAL_INSTALL) @list='$(dist_doc_DATA)'; test -n "$(docdir)" || list=; \ if test -n "$$list"; then \ echo " $(MKDIR_P) '$(DESTDIR)$(docdir)'"; \ $(MKDIR_P) "$(DESTDIR)$(docdir)" || exit 1; \ fi; \ for p in $$list; do \ if test -f "$$p"; then d=; else d="$(srcdir)/"; fi; \ echo "$$d$$p"; \ done | $(am__base_list) | \ while read files; do \ echo " $(INSTALL_DATA) $$files '$(DESTDIR)$(docdir)'"; \ $(INSTALL_DATA) $$files "$(DESTDIR)$(docdir)" || exit $$?; \ done uninstall-dist_docDATA: @$(NORMAL_UNINSTALL) @list='$(dist_doc_DATA)'; test -n "$(docdir)" || list=; \ files=`for p in $$list; do echo $$p; done | sed -e 's|^.*/||'`; \ dir='$(DESTDIR)$(docdir)'; $(am__uninstall_files_from_dir) install-dist_exampleDATA: $(dist_example_DATA) @$(NORMAL_INSTALL) @list='$(dist_example_DATA)'; test -n "$(exampledir)" || list=; \ if test -n "$$list"; then \ echo " $(MKDIR_P) '$(DESTDIR)$(exampledir)'"; \ $(MKDIR_P) "$(DESTDIR)$(exampledir)" || exit 1; \ fi; \ for p in $$list; do \ if test -f "$$p"; then d=; else d="$(srcdir)/"; fi; \ echo "$$d$$p"; \ done | $(am__base_list) | \ while read files; do \ echo " $(INSTALL_DATA) $$files '$(DESTDIR)$(exampledir)'"; \ $(INSTALL_DATA) $$files "$(DESTDIR)$(exampledir)" || exit $$?; \ done uninstall-dist_exampleDATA: @$(NORMAL_UNINSTALL) @list='$(dist_example_DATA)'; test -n "$(exampledir)" || list=; \ files=`for p in $$list; do echo $$p; done | sed -e 's|^.*/||'`; \ dir='$(DESTDIR)$(exampledir)'; $(am__uninstall_files_from_dir) install-includeHEADERS: $(include_HEADERS) @$(NORMAL_INSTALL) @list='$(include_HEADERS)'; test -n "$(includedir)" || list=; \ if test -n "$$list"; then \ echo " $(MKDIR_P) '$(DESTDIR)$(includedir)'"; \ $(MKDIR_P) "$(DESTDIR)$(includedir)" || exit 1; \ fi; \ for p in $$list; do \ if test -f "$$p"; then d=; else d="$(srcdir)/"; fi; \ echo "$$d$$p"; \ done | $(am__base_list) | \ while read files; do \ echo " $(INSTALL_HEADER) $$files '$(DESTDIR)$(includedir)'"; \ $(INSTALL_HEADER) $$files "$(DESTDIR)$(includedir)" || exit $$?; \ done uninstall-includeHEADERS: @$(NORMAL_UNINSTALL) @list='$(include_HEADERS)'; test -n "$(includedir)" || list=; \ files=`for p in $$list; do echo $$p; done | sed -e 's|^.*/||'`; \ dir='$(DESTDIR)$(includedir)'; $(am__uninstall_files_from_dir) install-nodist_includeHEADERS: $(nodist_include_HEADERS) @$(NORMAL_INSTALL) @list='$(nodist_include_HEADERS)'; test -n "$(includedir)" || list=; \ if test -n "$$list"; then \ echo " $(MKDIR_P) '$(DESTDIR)$(includedir)'"; \ $(MKDIR_P) "$(DESTDIR)$(includedir)" || exit 1; \ fi; \ for p in $$list; do \ if test -f "$$p"; then d=; else d="$(srcdir)/"; fi; \ echo "$$d$$p"; \ done | $(am__base_list) | \ while read files; do \ echo " $(INSTALL_HEADER) $$files '$(DESTDIR)$(includedir)'"; \ $(INSTALL_HEADER) $$files "$(DESTDIR)$(includedir)" || exit $$?; \ done uninstall-nodist_includeHEADERS: @$(NORMAL_UNINSTALL) @list='$(nodist_include_HEADERS)'; test -n "$(includedir)" || list=; \ files=`for p in $$list; do echo $$p; done | sed -e 's|^.*/||'`; \ dir='$(DESTDIR)$(includedir)'; $(am__uninstall_files_from_dir) # This directory's subdirectories are mostly independent; you can cd # into them and run 'make' without going through this Makefile. # To change the values of 'make' variables: instead of editing Makefiles, # (1) if the variable is set in 'config.status', edit 'config.status' # (which will cause the Makefiles to be regenerated when you run 'make'); # (2) otherwise, pass the desired values on the 'make' command line. $(am__recursive_targets): @fail=; \ if $(am__make_keepgoing); then \ failcom='fail=yes'; \ else \ failcom='exit 1'; \ fi; \ dot_seen=no; \ target=`echo $@ | sed s/-recursive//`; \ case "$@" in \ distclean-* | maintainer-clean-*) list='$(DIST_SUBDIRS)' ;; \ *) list='$(SUBDIRS)' ;; \ esac; \ for subdir in $$list; do \ echo "Making $$target in $$subdir"; \ if test "$$subdir" = "."; then \ dot_seen=yes; \ local_target="$$target-am"; \ else \ local_target="$$target"; \ fi; \ ($(am__cd) $$subdir && $(MAKE) $(AM_MAKEFLAGS) $$local_target) \ || eval $$failcom; \ done; \ if test "$$dot_seen" = "no"; then \ $(MAKE) $(AM_MAKEFLAGS) "$$target-am" || exit 1; \ fi; test -z "$$fail" ID: $(am__tagged_files) $(am__define_uniq_tagged_files); mkid -fID $$unique tags: tags-recursive TAGS: tags tags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) set x; \ here=`pwd`; \ if ($(ETAGS) --etags-include --version) >/dev/null 2>&1; then \ include_option=--etags-include; \ empty_fix=.; \ else \ include_option=--include; \ empty_fix=; \ fi; \ list='$(SUBDIRS)'; for subdir in $$list; do \ if test "$$subdir" = .; then :; else \ test ! -f $$subdir/TAGS || \ set "$$@" "$$include_option=$$here/$$subdir/TAGS"; \ fi; \ done; \ $(am__define_uniq_tagged_files); \ shift; \ if test -z "$(ETAGS_ARGS)$$*$$unique"; then :; else \ test -n "$$unique" || unique=$$empty_fix; \ if test $$# -gt 0; then \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ "$$@" $$unique; \ else \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ $$unique; \ fi; \ fi ctags: ctags-recursive CTAGS: ctags ctags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) $(am__define_uniq_tagged_files); \ test -z "$(CTAGS_ARGS)$$unique" \ || $(CTAGS) $(CTAGSFLAGS) $(AM_CTAGSFLAGS) $(CTAGS_ARGS) \ $$unique GTAGS: here=`$(am__cd) $(top_builddir) && pwd` \ && $(am__cd) $(top_srcdir) \ && gtags -i $(GTAGS_ARGS) "$$here" cscope: cscope.files test ! -s cscope.files \ || $(CSCOPE) -b -q $(AM_CSCOPEFLAGS) $(CSCOPEFLAGS) -i cscope.files $(CSCOPE_ARGS) clean-cscope: -rm -f cscope.files cscope.files: clean-cscope cscopelist cscopelist: cscopelist-recursive cscopelist-am: $(am__tagged_files) list='$(am__tagged_files)'; \ case "$(srcdir)" in \ [\\/]* | ?:[\\/]*) sdir="$(srcdir)" ;; \ *) sdir=$(subdir)/$(srcdir) ;; \ esac; \ for i in $$list; do \ if test -f "$$i"; then \ echo "$(subdir)/$$i"; \ else \ echo "$$sdir/$$i"; \ fi; \ done >> $(top_builddir)/cscope.files distclean-tags: -rm -f TAGS ID GTAGS GRTAGS GSYMS GPATH tags -rm -f cscope.out cscope.in.out cscope.po.out cscope.files distdir: $(DISTFILES) $(am__remove_distdir) test -d "$(distdir)" || mkdir "$(distdir)" @srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ topsrcdirstrip=`echo "$(top_srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ list='$(DISTFILES)'; \ dist_files=`for file in $$list; do echo $$file; done | \ sed -e "s|^$$srcdirstrip/||;t" \ -e "s|^$$topsrcdirstrip/|$(top_builddir)/|;t"`; \ case $$dist_files in \ */*) $(MKDIR_P) `echo "$$dist_files" | \ sed '/\//!d;s|^|$(distdir)/|;s,/[^/]*$$,,' | \ sort -u` ;; \ esac; \ for file in $$dist_files; do \ if test -f $$file || test -d $$file; then d=.; else d=$(srcdir); fi; \ if test -d $$d/$$file; then \ dir=`echo "/$$file" | sed -e 's,/[^/]*$$,,'`; \ if test -d "$(distdir)/$$file"; then \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ if test -d $(srcdir)/$$file && test $$d != $(srcdir); then \ cp -fpR $(srcdir)/$$file "$(distdir)$$dir" || exit 1; \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ cp -fpR $$d/$$file "$(distdir)$$dir" || exit 1; \ else \ test -f "$(distdir)/$$file" \ || cp -p $$d/$$file "$(distdir)/$$file" \ || exit 1; \ fi; \ done @list='$(DIST_SUBDIRS)'; for subdir in $$list; do \ if test "$$subdir" = .; then :; else \ $(am__make_dryrun) \ || test -d "$(distdir)/$$subdir" \ || $(MKDIR_P) "$(distdir)/$$subdir" \ || exit 1; \ dir1=$$subdir; dir2="$(distdir)/$$subdir"; \ $(am__relativize); \ new_distdir=$$reldir; \ dir1=$$subdir; dir2="$(top_distdir)"; \ $(am__relativize); \ new_top_distdir=$$reldir; \ echo " (cd $$subdir && $(MAKE) $(AM_MAKEFLAGS) top_distdir="$$new_top_distdir" distdir="$$new_distdir" \\"; \ echo " am__remove_distdir=: am__skip_length_check=: am__skip_mode_fix=: distdir)"; \ ($(am__cd) $$subdir && \ $(MAKE) $(AM_MAKEFLAGS) \ top_distdir="$$new_top_distdir" \ distdir="$$new_distdir" \ am__remove_distdir=: \ am__skip_length_check=: \ am__skip_mode_fix=: \ distdir) \ || exit 1; \ fi; \ done $(MAKE) $(AM_MAKEFLAGS) \ top_distdir="$(top_distdir)" distdir="$(distdir)" \ dist-hook -test -n "$(am__skip_mode_fix)" \ || find "$(distdir)" -type d ! -perm -755 \ -exec chmod u+rwx,go+rx {} \; -o \ ! -type d ! -perm -444 -links 1 -exec chmod a+r {} \; -o \ ! -type d ! -perm -400 -exec chmod a+r {} \; -o \ ! -type d ! -perm -444 -exec $(install_sh) -c -m a+r {} {} \; \ || chmod -R a+r "$(distdir)" dist-gzip: distdir tardir=$(distdir) && $(am__tar) | GZIP=$(GZIP_ENV) gzip -c >$(distdir).tar.gz $(am__post_remove_distdir) dist-bzip2: distdir tardir=$(distdir) && $(am__tar) | BZIP2=$${BZIP2--9} bzip2 -c >$(distdir).tar.bz2 $(am__post_remove_distdir) dist-lzip: distdir tardir=$(distdir) && $(am__tar) | lzip -c $${LZIP_OPT--9} >$(distdir).tar.lz $(am__post_remove_distdir) dist-xz: distdir tardir=$(distdir) && $(am__tar) | XZ_OPT=$${XZ_OPT--e} xz -c >$(distdir).tar.xz $(am__post_remove_distdir) dist-tarZ: distdir @echo WARNING: "Support for distribution archives compressed with" \ "legacy program 'compress' is deprecated." >&2 @echo WARNING: "It will be removed altogether in Automake 2.0" >&2 tardir=$(distdir) && $(am__tar) | compress -c >$(distdir).tar.Z $(am__post_remove_distdir) dist-shar: distdir @echo WARNING: "Support for shar distribution archives is" \ "deprecated." >&2 @echo WARNING: "It will be removed altogether in Automake 2.0" >&2 shar $(distdir) | GZIP=$(GZIP_ENV) gzip -c >$(distdir).shar.gz $(am__post_remove_distdir) dist-zip: distdir -rm -f $(distdir).zip zip -rq $(distdir).zip $(distdir) $(am__post_remove_distdir) dist dist-all: $(MAKE) $(AM_MAKEFLAGS) $(DIST_TARGETS) am__post_remove_distdir='@:' $(am__post_remove_distdir) # This target untars the dist file and tries a VPATH configuration. Then # it guarantees that the distribution is self-contained by making another # tarfile. distcheck: dist case '$(DIST_ARCHIVES)' in \ *.tar.gz*) \ GZIP=$(GZIP_ENV) gzip -dc $(distdir).tar.gz | $(am__untar) ;;\ *.tar.bz2*) \ bzip2 -dc $(distdir).tar.bz2 | $(am__untar) ;;\ *.tar.lz*) \ lzip -dc $(distdir).tar.lz | $(am__untar) ;;\ *.tar.xz*) \ xz -dc $(distdir).tar.xz | $(am__untar) ;;\ *.tar.Z*) \ uncompress -c $(distdir).tar.Z | $(am__untar) ;;\ *.shar.gz*) \ GZIP=$(GZIP_ENV) gzip -dc $(distdir).shar.gz | unshar ;;\ *.zip*) \ unzip $(distdir).zip ;;\ esac chmod -R a-w $(distdir) chmod u+w $(distdir) mkdir $(distdir)/_build $(distdir)/_build/sub $(distdir)/_inst chmod a-w $(distdir) test -d $(distdir)/_build || exit 0; \ dc_install_base=`$(am__cd) $(distdir)/_inst && pwd | sed -e 's,^[^:\\/]:[\\/],/,'` \ && dc_destdir="$${TMPDIR-/tmp}/am-dc-$$$$/" \ && am__cwd=`pwd` \ && $(am__cd) $(distdir)/_build/sub \ && ../../configure \ $(AM_DISTCHECK_CONFIGURE_FLAGS) \ $(DISTCHECK_CONFIGURE_FLAGS) \ --srcdir=../.. --prefix="$$dc_install_base" \ && $(MAKE) $(AM_MAKEFLAGS) \ && $(MAKE) $(AM_MAKEFLAGS) dvi \ && $(MAKE) $(AM_MAKEFLAGS) check \ && $(MAKE) $(AM_MAKEFLAGS) install \ && $(MAKE) $(AM_MAKEFLAGS) installcheck \ && $(MAKE) $(AM_MAKEFLAGS) uninstall \ && $(MAKE) $(AM_MAKEFLAGS) distuninstallcheck_dir="$$dc_install_base" \ distuninstallcheck \ && chmod -R a-w "$$dc_install_base" \ && ({ \ (cd ../.. && umask 077 && mkdir "$$dc_destdir") \ && $(MAKE) $(AM_MAKEFLAGS) DESTDIR="$$dc_destdir" install \ && $(MAKE) $(AM_MAKEFLAGS) DESTDIR="$$dc_destdir" uninstall \ && $(MAKE) $(AM_MAKEFLAGS) DESTDIR="$$dc_destdir" \ distuninstallcheck_dir="$$dc_destdir" distuninstallcheck; \ } || { rm -rf "$$dc_destdir"; exit 1; }) \ && rm -rf "$$dc_destdir" \ && $(MAKE) $(AM_MAKEFLAGS) dist \ && rm -rf $(DIST_ARCHIVES) \ && $(MAKE) $(AM_MAKEFLAGS) distcleancheck \ && cd "$$am__cwd" \ || exit 1 $(am__post_remove_distdir) @(echo "$(distdir) archives ready for distribution: "; \ list='$(DIST_ARCHIVES)'; for i in $$list; do echo $$i; done) | \ sed -e 1h -e 1s/./=/g -e 1p -e 1x -e '$$p' -e '$$x' distuninstallcheck: @test -n '$(distuninstallcheck_dir)' || { \ echo 'ERROR: trying to run $@ with an empty' \ '$$(distuninstallcheck_dir)' >&2; \ exit 1; \ }; \ $(am__cd) '$(distuninstallcheck_dir)' || { \ echo 'ERROR: cannot chdir into $(distuninstallcheck_dir)' >&2; \ exit 1; \ }; \ test `$(am__distuninstallcheck_listfiles) | wc -l` -eq 0 \ || { echo "ERROR: files left after uninstall:" ; \ if test -n "$(DESTDIR)"; then \ echo " (check DESTDIR support)"; \ fi ; \ $(distuninstallcheck_listfiles) ; \ exit 1; } >&2 distcleancheck: distclean @if test '$(srcdir)' = . ; then \ echo "ERROR: distcleancheck can only run from a VPATH build" ; \ exit 1 ; \ fi @test `$(distcleancheck_listfiles) | wc -l` -eq 0 \ || { echo "ERROR: files left in build directory after distclean:" ; \ $(distcleancheck_listfiles) ; \ exit 1; } >&2 check-am: all-am check: check-recursive all-am: Makefile $(LTLIBRARIES) $(PROGRAMS) $(MANS) $(DATA) $(HEADERS) \ config.h jconfig.h jconfigint.h install-binPROGRAMS: install-libLTLIBRARIES installdirs: installdirs-recursive installdirs-am: for dir in "$(DESTDIR)$(libdir)" "$(DESTDIR)$(bindir)" "$(DESTDIR)$(man1dir)" "$(DESTDIR)$(docdir)" "$(DESTDIR)$(exampledir)" "$(DESTDIR)$(includedir)" "$(DESTDIR)$(includedir)"; do \ test -z "$$dir" || $(MKDIR_P) "$$dir"; \ done install: install-recursive install-exec: install-exec-recursive install-data: install-data-recursive uninstall: uninstall-recursive install-am: all-am @$(MAKE) $(AM_MAKEFLAGS) install-exec-am install-data-am installcheck: installcheck-recursive install-strip: if test -z '$(STRIP)'; then \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ install; \ else \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ "INSTALL_PROGRAM_ENV=STRIPPROG='$(STRIP)'" install; \ fi mostlyclean-generic: clean-generic: distclean-generic: -test -z "$(CONFIG_CLEAN_FILES)" || rm -f $(CONFIG_CLEAN_FILES) -test . = "$(srcdir)" || test -z "$(CONFIG_CLEAN_VPATH_FILES)" || rm -f $(CONFIG_CLEAN_VPATH_FILES) maintainer-clean-generic: @echo "This command is intended for maintainers to use" @echo "it deletes files that may require special tools to rebuild." clean: clean-recursive clean-am: clean-binPROGRAMS clean-generic clean-libLTLIBRARIES \ clean-libtool clean-noinstPROGRAMS mostlyclean-am distclean: distclean-recursive -rm -f $(am__CONFIG_DISTCLEAN_FILES) -rm -rf ./$(DEPDIR) -rm -f Makefile distclean-am: clean-am distclean-compile distclean-generic \ distclean-hdr distclean-libtool distclean-tags dvi: dvi-recursive dvi-am: html: html-recursive html-am: info: info-recursive info-am: install-data-am: install-dist_docDATA install-dist_exampleDATA \ install-includeHEADERS install-man \ install-nodist_includeHEADERS install-dvi: install-dvi-recursive install-dvi-am: install-exec-am: install-binPROGRAMS install-libLTLIBRARIES install-html: install-html-recursive install-html-am: install-info: install-info-recursive install-info-am: install-man: install-man1 install-pdf: install-pdf-recursive install-pdf-am: install-ps: install-ps-recursive install-ps-am: installcheck-am: maintainer-clean: maintainer-clean-recursive -rm -f $(am__CONFIG_DISTCLEAN_FILES) -rm -rf $(top_srcdir)/autom4te.cache -rm -rf ./$(DEPDIR) -rm -f Makefile maintainer-clean-am: distclean-am maintainer-clean-generic mostlyclean: mostlyclean-recursive mostlyclean-am: mostlyclean-compile mostlyclean-generic \ mostlyclean-libtool pdf: pdf-recursive pdf-am: ps: ps-recursive ps-am: uninstall-am: uninstall-binPROGRAMS uninstall-dist_docDATA \ uninstall-dist_exampleDATA uninstall-includeHEADERS \ uninstall-libLTLIBRARIES uninstall-man \ uninstall-nodist_includeHEADERS uninstall-man: uninstall-man1 .MAKE: $(am__recursive_targets) all install-am install-strip .PHONY: $(am__recursive_targets) CTAGS GTAGS TAGS all all-am \ am--refresh check check-am clean clean-binPROGRAMS \ clean-cscope clean-generic clean-libLTLIBRARIES clean-libtool \ clean-noinstPROGRAMS cscope cscopelist-am ctags ctags-am dist \ dist-all dist-bzip2 dist-gzip dist-hook dist-lzip dist-shar \ dist-tarZ dist-xz dist-zip distcheck distclean \ distclean-compile distclean-generic distclean-hdr \ distclean-libtool distclean-tags distcleancheck distdir \ distuninstallcheck dvi dvi-am html html-am info info-am \ install install-am install-binPROGRAMS install-data \ install-data-am install-dist_docDATA install-dist_exampleDATA \ install-dvi install-dvi-am install-exec install-exec-am \ install-html install-html-am install-includeHEADERS \ install-info install-info-am install-libLTLIBRARIES \ install-man install-man1 install-nodist_includeHEADERS \ install-pdf install-pdf-am install-ps install-ps-am \ install-strip installcheck installcheck-am installdirs \ installdirs-am maintainer-clean maintainer-clean-generic \ mostlyclean mostlyclean-compile mostlyclean-generic \ mostlyclean-libtool pdf pdf-am ps ps-am tags tags-am uninstall \ uninstall-am uninstall-binPROGRAMS uninstall-dist_docDATA \ uninstall-dist_exampleDATA uninstall-includeHEADERS \ uninstall-libLTLIBRARIES uninstall-man uninstall-man1 \ uninstall-nodist_includeHEADERS .PRECIOUS: Makefile dist-hook: rm -rf `find $(distdir) -name .svn` .PHONY: test test: tjquicktest tjbittest bittest tjquicktest: testclean all @WITH_JAVA_TRUE@@WITH_TURBOJPEG_TRUE@ $(JAVA) -cp java/turbojpeg.jar -Djava.library.path=.libs TJUnitTest @WITH_JAVA_TRUE@@WITH_TURBOJPEG_TRUE@ $(JAVA) -cp java/turbojpeg.jar -Djava.library.path=.libs TJUnitTest -bi @WITH_JAVA_TRUE@@WITH_TURBOJPEG_TRUE@ $(JAVA) -cp java/turbojpeg.jar -Djava.library.path=.libs TJUnitTest -yuv @WITH_JAVA_TRUE@@WITH_TURBOJPEG_TRUE@ $(JAVA) -cp java/turbojpeg.jar -Djava.library.path=.libs TJUnitTest -yuv -noyuvpad @WITH_JAVA_TRUE@@WITH_TURBOJPEG_TRUE@ $(JAVA) -cp java/turbojpeg.jar -Djava.library.path=.libs TJUnitTest -yuv -bi @WITH_JAVA_TRUE@@WITH_TURBOJPEG_TRUE@ $(JAVA) -cp java/turbojpeg.jar -Djava.library.path=.libs TJUnitTest -yuv -bi -noyuvpad @WITH_TURBOJPEG_TRUE@ ./tjunittest @WITH_TURBOJPEG_TRUE@ ./tjunittest -alloc @WITH_TURBOJPEG_TRUE@ ./tjunittest -yuv @WITH_TURBOJPEG_TRUE@ ./tjunittest -yuv -alloc @WITH_TURBOJPEG_TRUE@ ./tjunittest -yuv -noyuvpad echo GREAT SUCCESS! tjbittest: testclean all # Test compressing from/decompressing to an arbitrary subregion of a larger # image buffer @WITH_TURBOJPEG_TRUE@ cp $(srcdir)/testimages/testorig.ppm testout_tile.ppm @WITH_TURBOJPEG_TRUE@ ./tjbench testout_tile.ppm 95 -rgb -quiet -tile -benchtime 0.01 >/dev/null 2>&1 @WITH_TURBOJPEG_TRUE@ for i in 8 16 32 64 128; do \ @WITH_TURBOJPEG_TRUE@ md5/md5cmp $(MD5_PPM_GRAY_TILE) testout_tile_GRAY_Q95_$$i\x$$i.ppm; \ @WITH_TURBOJPEG_TRUE@ done @WITH_TURBOJPEG_TRUE@ md5/md5cmp $(MD5_PPM_420_8x8_TILE) testout_tile_420_Q95_8x8.ppm @WITH_TURBOJPEG_TRUE@ md5/md5cmp $(MD5_PPM_420_16x16_TILE) testout_tile_420_Q95_16x16.ppm @WITH_TURBOJPEG_TRUE@ md5/md5cmp $(MD5_PPM_420_32x32_TILE) testout_tile_420_Q95_32x32.ppm @WITH_TURBOJPEG_TRUE@ md5/md5cmp $(MD5_PPM_420_64x64_TILE) testout_tile_420_Q95_64x64.ppm @WITH_TURBOJPEG_TRUE@ md5/md5cmp $(MD5_PPM_420_128x128_TILE) testout_tile_420_Q95_128x128.ppm @WITH_TURBOJPEG_TRUE@ md5/md5cmp $(MD5_PPM_422_8x8_TILE) testout_tile_422_Q95_8x8.ppm @WITH_TURBOJPEG_TRUE@ md5/md5cmp $(MD5_PPM_422_16x16_TILE) testout_tile_422_Q95_16x16.ppm @WITH_TURBOJPEG_TRUE@ md5/md5cmp $(MD5_PPM_422_32x32_TILE) testout_tile_422_Q95_32x32.ppm @WITH_TURBOJPEG_TRUE@ md5/md5cmp $(MD5_PPM_422_64x64_TILE) testout_tile_422_Q95_64x64.ppm @WITH_TURBOJPEG_TRUE@ md5/md5cmp $(MD5_PPM_422_128x128_TILE) testout_tile_422_Q95_128x128.ppm @WITH_TURBOJPEG_TRUE@ for i in 8 16 32 64 128; do \ @WITH_TURBOJPEG_TRUE@ md5/md5cmp $(MD5_PPM_444_TILE) testout_tile_444_Q95_$$i\x$$i.ppm; \ @WITH_TURBOJPEG_TRUE@ done @WITH_TURBOJPEG_TRUE@ rm testout_tile_GRAY_* testout_tile_420_* testout_tile_422_* testout_tile_444_* @WITH_TURBOJPEG_TRUE@ ./tjbench testout_tile.ppm 95 -rgb -fastupsample -quiet -tile -benchtime 0.01 >/dev/null 2>&1 @WITH_TURBOJPEG_TRUE@ md5/md5cmp $(MD5_PPM_420M_8x8_TILE) testout_tile_420_Q95_8x8.ppm @WITH_TURBOJPEG_TRUE@ for i in 16 32 64 128; do \ @WITH_TURBOJPEG_TRUE@ md5/md5cmp $(MD5_PPM_420M_TILE) testout_tile_420_Q95_$$i\x$$i.ppm; \ @WITH_TURBOJPEG_TRUE@ done @WITH_TURBOJPEG_TRUE@ md5/md5cmp $(MD5_PPM_422M_8x8_TILE) testout_tile_422_Q95_8x8.ppm @WITH_TURBOJPEG_TRUE@ for i in 16 32 64 128; do \ @WITH_TURBOJPEG_TRUE@ md5/md5cmp $(MD5_PPM_422M_TILE) testout_tile_422_Q95_$$i\x$$i.ppm; \ @WITH_TURBOJPEG_TRUE@ done @WITH_TURBOJPEG_TRUE@ rm testout_tile_GRAY_* testout_tile_420_* testout_tile_422_* testout_tile_444_* testout_tile.ppm @WITH_TURBOJPEG_TRUE@ echo GREAT SUCCESS! bittest: testclean all # These tests are carefully crafted to provide full coverage of as many of the # underlying algorithms as possible (including all of the SIMD-accelerated # ones.) # CC: null SAMP: fullsize FDCT: islow ENT: huff ./cjpeg -rgb -dct int -outfile testout_rgb_islow.jpg $(srcdir)/testimages/testorig.ppm md5/md5cmp $(MD5_JPEG_RGB_ISLOW) testout_rgb_islow.jpg # CC: null SAMP: fullsize IDCT: islow ENT: huff ./djpeg -dct int -ppm -outfile testout_rgb_islow.ppm testout_rgb_islow.jpg md5/md5cmp $(MD5_PPM_RGB_ISLOW) testout_rgb_islow.ppm rm testout_rgb_islow.ppm @WITH_12BIT_TRUE@ rm testout_rgb_islow.jpg # CC: RGB->RGB565 SAMP: fullsize IDCT: islow ENT: huff @WITH_12BIT_FALSE@ ./djpeg -dct int -rgb565 -dither none -bmp -outfile testout_rgb_islow_565.bmp testout_rgb_islow.jpg @WITH_12BIT_FALSE@ md5/md5cmp $(MD5_BMP_RGB_ISLOW_565) testout_rgb_islow_565.bmp @WITH_12BIT_FALSE@ rm testout_rgb_islow_565.bmp # CC: RGB->RGB565 (dithered) SAMP: fullsize IDCT: islow ENT: huff @WITH_12BIT_FALSE@ ./djpeg -dct int -rgb565 -bmp -outfile testout_rgb_islow_565D.bmp testout_rgb_islow.jpg @WITH_12BIT_FALSE@ md5/md5cmp $(MD5_BMP_RGB_ISLOW_565D) testout_rgb_islow_565D.bmp @WITH_12BIT_FALSE@ rm testout_rgb_islow_565D.bmp testout_rgb_islow.jpg # CC: RGB->YCC SAMP: fullsize/h2v1 FDCT: ifast ENT: 2-pass huff ./cjpeg -sample 2x1 -dct fast -opt -outfile testout_422_ifast_opt.jpg $(srcdir)/testimages/testorig.ppm md5/md5cmp $(MD5_JPEG_422_IFAST_OPT) testout_422_ifast_opt.jpg # CC: YCC->RGB SAMP: fullsize/h2v1 fancy IDCT: ifast ENT: huff ./djpeg -dct fast -outfile testout_422_ifast.ppm testout_422_ifast_opt.jpg md5/md5cmp $(MD5_PPM_422_IFAST) testout_422_ifast.ppm rm testout_422_ifast.ppm # CC: YCC->RGB SAMP: h2v1 merged IDCT: ifast ENT: huff ./djpeg -dct fast -nosmooth -outfile testout_422m_ifast.ppm testout_422_ifast_opt.jpg md5/md5cmp $(MD5_PPM_422M_IFAST) testout_422m_ifast.ppm rm testout_422m_ifast.ppm @WITH_12BIT_TRUE@ rm testout_422_ifast_opt.jpg # CC: YCC->RGB565 SAMP: h2v1 merged IDCT: ifast ENT: huff @WITH_12BIT_FALSE@ ./djpeg -dct int -nosmooth -rgb565 -dither none -bmp -outfile testout_422m_ifast_565.bmp testout_422_ifast_opt.jpg @WITH_12BIT_FALSE@ md5/md5cmp $(MD5_BMP_422M_IFAST_565) testout_422m_ifast_565.bmp @WITH_12BIT_FALSE@ rm testout_422m_ifast_565.bmp # CC: YCC->RGB565 (dithered) SAMP: h2v1 merged IDCT: ifast ENT: huff @WITH_12BIT_FALSE@ ./djpeg -dct int -nosmooth -rgb565 -bmp -outfile testout_422m_ifast_565D.bmp testout_422_ifast_opt.jpg @WITH_12BIT_FALSE@ md5/md5cmp $(MD5_BMP_422M_IFAST_565D) testout_422m_ifast_565D.bmp @WITH_12BIT_FALSE@ rm testout_422m_ifast_565D.bmp testout_422_ifast_opt.jpg # CC: RGB->YCC SAMP: fullsize/h2v2 FDCT: ifast ENT: prog huff ./cjpeg -sample 2x2 -quality 100 -dct fast -prog -outfile testout_420_q100_ifast_prog.jpg $(srcdir)/testimages/testorig.ppm md5/md5cmp $(MD5_JPEG_420_IFAST_Q100_PROG) testout_420_q100_ifast_prog.jpg # CC: YCC->RGB SAMP: fullsize/h2v2 fancy IDCT: ifast ENT: prog huff ./djpeg -dct fast -outfile testout_420_q100_ifast.ppm testout_420_q100_ifast_prog.jpg md5/md5cmp $(MD5_PPM_420_Q100_IFAST) testout_420_q100_ifast.ppm rm testout_420_q100_ifast.ppm # CC: YCC->RGB SAMP: h2v2 merged IDCT: ifast ENT: prog huff ./djpeg -dct fast -nosmooth -outfile testout_420m_q100_ifast.ppm testout_420_q100_ifast_prog.jpg md5/md5cmp $(MD5_PPM_420M_Q100_IFAST) testout_420m_q100_ifast.ppm rm testout_420m_q100_ifast.ppm testout_420_q100_ifast_prog.jpg # CC: RGB->Gray SAMP: fullsize FDCT: islow ENT: huff ./cjpeg -gray -dct int -outfile testout_gray_islow.jpg $(srcdir)/testimages/testorig.ppm md5/md5cmp $(MD5_JPEG_GRAY_ISLOW) testout_gray_islow.jpg # CC: Gray->Gray SAMP: fullsize IDCT: islow ENT: huff ./djpeg -dct int -outfile testout_gray_islow.ppm testout_gray_islow.jpg md5/md5cmp $(MD5_PPM_GRAY_ISLOW) testout_gray_islow.ppm rm testout_gray_islow.ppm # CC: Gray->RGB SAMP: fullsize IDCT: islow ENT: huff ./djpeg -dct int -rgb -outfile testout_gray_islow_rgb.ppm testout_gray_islow.jpg md5/md5cmp $(MD5_PPM_GRAY_ISLOW_RGB) testout_gray_islow_rgb.ppm rm testout_gray_islow_rgb.ppm @WITH_12BIT_TRUE@ rm testout_gray_islow.jpg # CC: Gray->RGB565 SAMP: fullsize IDCT: islow ENT: huff @WITH_12BIT_FALSE@ ./djpeg -dct int -rgb565 -dither none -bmp -outfile testout_gray_islow_565.bmp testout_gray_islow.jpg @WITH_12BIT_FALSE@ md5/md5cmp $(MD5_BMP_GRAY_ISLOW_565) testout_gray_islow_565.bmp @WITH_12BIT_FALSE@ rm testout_gray_islow_565.bmp # CC: Gray->RGB565 (dithered) SAMP: fullsize IDCT: islow ENT: huff @WITH_12BIT_FALSE@ ./djpeg -dct int -rgb565 -bmp -outfile testout_gray_islow_565D.bmp testout_gray_islow.jpg @WITH_12BIT_FALSE@ md5/md5cmp $(MD5_BMP_GRAY_ISLOW_565D) testout_gray_islow_565D.bmp @WITH_12BIT_FALSE@ rm testout_gray_islow_565D.bmp testout_gray_islow.jpg # CC: RGB->YCC SAMP: fullsize smooth/h2v2 smooth FDCT: islow # ENT: 2-pass huff ./cjpeg -sample 2x2 -smooth 1 -dct int -opt -outfile testout_420s_ifast_opt.jpg $(srcdir)/testimages/testorig.ppm md5/md5cmp $(MD5_JPEG_420S_IFAST_OPT) testout_420s_ifast_opt.jpg rm testout_420s_ifast_opt.jpg # The output of the floating point tests is not validated by default, because # the output differs depending on the type of floating point math used, and # this is only deterministic if the DCT/IDCT are implemented using SIMD # instructions on a particular platform. Pass one of the following on the make # command line to validate the floating point tests against one of the expected # results: # # FLOATTEST=sse validate against the expected results from the libjpeg-turbo # SSE SIMD extensions # FLOATTEST=32bit validate against the expected results from the C code # when running on a 32-bit FPU (or when SSE is being used for # floating point math, which is generally the default with # x86-64 compilers) # FLOATTEST=64bit validate against the exepected results from the C code # when running on a 64-bit FPU # CC: RGB->YCC SAMP: fullsize/int FDCT: float ENT: prog huff ./cjpeg -sample 3x2 -dct float -prog -outfile testout_3x2_float_prog.jpg $(srcdir)/testimages/testorig.ppm if [ "${FLOATTEST}" = "sse" ]; then \ md5/md5cmp $(MD5_JPEG_3x2_FLOAT_PROG_SSE) testout_3x2_float_prog.jpg; \ elif [ "${FLOATTEST}" = "32bit" -o "${FLOATTEST}" = "64bit" ]; then \ md5/md5cmp $(MD5_JPEG_3x2_FLOAT_PROG_32BIT) testout_3x2_float_prog.jpg; \ fi # CC: YCC->RGB SAMP: fullsize/int IDCT: float ENT: prog huff ./djpeg -dct float -outfile testout_3x2_float.ppm testout_3x2_float_prog.jpg if [ "${FLOATTEST}" = "sse" ]; then \ md5/md5cmp $(MD5_PPM_3x2_FLOAT_SSE) testout_3x2_float.ppm; \ elif [ "${FLOATTEST}" = "32bit" ]; then \ md5/md5cmp $(MD5_PPM_3x2_FLOAT_32BIT) testout_3x2_float.ppm; \ elif [ "${FLOATTEST}" = "64bit" ]; then \ md5/md5cmp $(MD5_PPM_3x2_FLOAT_64BIT) testout_3x2_float.ppm; \ fi rm testout_3x2_float.ppm testout_3x2_float_prog.jpg # CC: RGB->YCC SAMP: fullsize/int FDCT: ifast ENT: prog huff ./cjpeg -sample 3x2 -dct fast -prog -outfile testout_3x2_ifast_prog.jpg $(srcdir)/testimages/testorig.ppm md5/md5cmp $(MD5_JPEG_3x2_IFAST_PROG) testout_3x2_ifast_prog.jpg # CC: YCC->RGB SAMP: fullsize/int IDCT: ifast ENT: prog huff ./djpeg -dct fast -outfile testout_3x2_ifast.ppm testout_3x2_ifast_prog.jpg md5/md5cmp $(MD5_PPM_3x2_IFAST) testout_3x2_ifast.ppm rm testout_3x2_ifast.ppm testout_3x2_ifast_prog.jpg # CC: YCC->RGB SAMP: fullsize/h2v2 FDCT: islow ENT: arith @WITH_ARITH_ENC_TRUE@ ./cjpeg -dct int -arithmetic -outfile testout_420_islow_ari.jpg $(srcdir)/testimages/testorig.ppm @WITH_ARITH_ENC_TRUE@ md5/md5cmp $(MD5_JPEG_420_ISLOW_ARI) testout_420_islow_ari.jpg @WITH_ARITH_ENC_TRUE@ rm testout_420_islow_ari.jpg @WITH_ARITH_ENC_TRUE@ ./jpegtran -arithmetic -outfile testout_420_islow_ari.jpg $(srcdir)/testimages/testimgint.jpg @WITH_ARITH_ENC_TRUE@ md5/md5cmp $(MD5_JPEG_420_ISLOW_ARI) testout_420_islow_ari.jpg @WITH_ARITH_ENC_TRUE@ rm testout_420_islow_ari.jpg # CC: YCC->RGB SAMP: fullsize FDCT: islow ENT: prog arith @WITH_ARITH_ENC_TRUE@ ./cjpeg -sample 1x1 -dct int -progressive -arithmetic -outfile testout_444_islow_progari.jpg $(srcdir)/testimages/testorig.ppm @WITH_ARITH_ENC_TRUE@ md5/md5cmp $(MD5_JPEG_444_ISLOW_PROGARI) testout_444_islow_progari.jpg @WITH_ARITH_ENC_TRUE@ rm testout_444_islow_progari.jpg # CC: RGB->YCC SAMP: h2v2 merged IDCT: ifast ENT: arith @WITH_ARITH_DEC_TRUE@ ./djpeg -fast -ppm -outfile testout_420m_ifast_ari.ppm $(srcdir)/testimages/testimgari.jpg @WITH_ARITH_DEC_TRUE@ md5/md5cmp $(MD5_PPM_420M_IFAST_ARI) testout_420m_ifast_ari.ppm @WITH_ARITH_DEC_TRUE@ rm testout_420m_ifast_ari.ppm @WITH_ARITH_DEC_TRUE@ ./jpegtran -outfile testout_420_islow.jpg $(srcdir)/testimages/testimgari.jpg @WITH_ARITH_DEC_TRUE@ md5/md5cmp $(MD5_JPEG_420_ISLOW) testout_420_islow.jpg @WITH_ARITH_DEC_TRUE@ rm testout_420_islow.jpg # CC: YCC->RGB SAMP: h2v2 merged IDCT: 16x16 islow ENT: huff ./djpeg -dct int -scale 2/1 -nosmooth -ppm -outfile testout_420m_islow_2_1.ppm $(srcdir)/testimages/$(TESTORIG) md5/md5cmp $(MD5_PPM_420M_ISLOW_2_1) testout_420m_islow_2_1.ppm rm testout_420m_islow_2_1.ppm # CC: YCC->RGB SAMP: h2v2 merged IDCT: 15x15 islow ENT: huff ./djpeg -dct int -scale 15/8 -nosmooth -ppm -outfile testout_420m_islow_15_8.ppm $(srcdir)/testimages/$(TESTORIG) md5/md5cmp $(MD5_PPM_420M_ISLOW_15_8) testout_420m_islow_15_8.ppm rm testout_420m_islow_15_8.ppm # CC: YCC->RGB SAMP: h2v2 merged IDCT: 13x13 islow ENT: huff ./djpeg -dct int -scale 13/8 -nosmooth -ppm -outfile testout_420m_islow_13_8.ppm $(srcdir)/testimages/$(TESTORIG) md5/md5cmp $(MD5_PPM_420M_ISLOW_13_8) testout_420m_islow_13_8.ppm rm testout_420m_islow_13_8.ppm # CC: YCC->RGB SAMP: h2v2 merged IDCT: 11x11 islow ENT: huff ./djpeg -dct int -scale 11/8 -nosmooth -ppm -outfile testout_420m_islow_11_8.ppm $(srcdir)/testimages/$(TESTORIG) md5/md5cmp $(MD5_PPM_420M_ISLOW_11_8) testout_420m_islow_11_8.ppm rm testout_420m_islow_11_8.ppm # CC: YCC->RGB SAMP: h2v2 merged IDCT: 9x9 islow ENT: huff ./djpeg -dct int -scale 9/8 -nosmooth -ppm -outfile testout_420m_islow_9_8.ppm $(srcdir)/testimages/$(TESTORIG) md5/md5cmp $(MD5_PPM_420M_ISLOW_9_8) testout_420m_islow_9_8.ppm rm testout_420m_islow_9_8.ppm # CC: YCC->RGB SAMP: h2v2 merged IDCT: 7x7 islow/14x14 islow ENT: huff ./djpeg -dct int -scale 7/8 -nosmooth -ppm -outfile testout_420m_islow_7_8.ppm $(srcdir)/testimages/$(TESTORIG) md5/md5cmp $(MD5_PPM_420M_ISLOW_7_8) testout_420m_islow_7_8.ppm rm testout_420m_islow_7_8.ppm # CC: YCC->RGB SAMP: h2v2 merged IDCT: 6x6 islow/12x12 islow ENT: huff ./djpeg -dct int -scale 3/4 -nosmooth -ppm -outfile testout_420m_islow_3_4.ppm $(srcdir)/testimages/$(TESTORIG) md5/md5cmp $(MD5_PPM_420M_ISLOW_3_4) testout_420m_islow_3_4.ppm rm testout_420m_islow_3_4.ppm # CC: YCC->RGB SAMP: h2v2 merged IDCT: 5x5 islow/10x10 islow ENT: huff ./djpeg -dct int -scale 5/8 -nosmooth -ppm -outfile testout_420m_islow_5_8.ppm $(srcdir)/testimages/$(TESTORIG) md5/md5cmp $(MD5_PPM_420M_ISLOW_5_8) testout_420m_islow_5_8.ppm rm testout_420m_islow_5_8.ppm # CC: YCC->RGB SAMP: h2v2 merged IDCT: 4x4 islow/8x8 islow ENT: huff ./djpeg -dct int -scale 1/2 -nosmooth -ppm -outfile testout_420m_islow_1_2.ppm $(srcdir)/testimages/$(TESTORIG) md5/md5cmp $(MD5_PPM_420M_ISLOW_1_2) testout_420m_islow_1_2.ppm rm testout_420m_islow_1_2.ppm # CC: YCC->RGB SAMP: h2v2 merged IDCT: 3x3 islow/6x6 islow ENT: huff ./djpeg -dct int -scale 3/8 -nosmooth -ppm -outfile testout_420m_islow_3_8.ppm $(srcdir)/testimages/$(TESTORIG) md5/md5cmp $(MD5_PPM_420M_ISLOW_3_8) testout_420m_islow_3_8.ppm rm testout_420m_islow_3_8.ppm # CC: YCC->RGB SAMP: h2v2 merged IDCT: 2x2 islow/4x4 islow ENT: huff ./djpeg -dct int -scale 1/4 -nosmooth -ppm -outfile testout_420m_islow_1_4.ppm $(srcdir)/testimages/$(TESTORIG) md5/md5cmp $(MD5_PPM_420M_ISLOW_1_4) testout_420m_islow_1_4.ppm rm testout_420m_islow_1_4.ppm # CC: YCC->RGB SAMP: h2v2 merged IDCT: 1x1 islow/2x2 islow ENT: huff ./djpeg -dct int -scale 1/8 -nosmooth -ppm -outfile testout_420m_islow_1_8.ppm $(srcdir)/testimages/$(TESTORIG) md5/md5cmp $(MD5_PPM_420M_ISLOW_1_8) testout_420m_islow_1_8.ppm rm testout_420m_islow_1_8.ppm # CC: YCC->RGB (dithered) SAMP: h2v2 fancy IDCT: islow ENT: huff @WITH_12BIT_FALSE@ ./djpeg -dct int -colors 256 -bmp -outfile testout_420_islow_256.bmp $(srcdir)/testimages/$(TESTORIG) @WITH_12BIT_FALSE@ md5/md5cmp $(MD5_BMP_420_ISLOW_256) testout_420_islow_256.bmp @WITH_12BIT_FALSE@ rm testout_420_islow_256.bmp # CC: YCC->RGB565 SAMP: h2v2 fancy IDCT: islow ENT: huff @WITH_12BIT_FALSE@ ./djpeg -dct int -rgb565 -dither none -bmp -outfile testout_420_islow_565.bmp $(srcdir)/testimages/$(TESTORIG) @WITH_12BIT_FALSE@ md5/md5cmp $(MD5_BMP_420_ISLOW_565) testout_420_islow_565.bmp @WITH_12BIT_FALSE@ rm testout_420_islow_565.bmp # CC: YCC->RGB565 (dithered) SAMP: h2v2 fancy IDCT: islow ENT: huff @WITH_12BIT_FALSE@ ./djpeg -dct int -rgb565 -bmp -outfile testout_420_islow_565D.bmp $(srcdir)/testimages/$(TESTORIG) @WITH_12BIT_FALSE@ md5/md5cmp $(MD5_BMP_420_ISLOW_565D) testout_420_islow_565D.bmp @WITH_12BIT_FALSE@ rm testout_420_islow_565D.bmp # CC: YCC->RGB565 SAMP: h2v2 merged IDCT: islow ENT: huff @WITH_12BIT_FALSE@ ./djpeg -dct int -nosmooth -rgb565 -dither none -bmp -outfile testout_420m_islow_565.bmp $(srcdir)/testimages/$(TESTORIG) @WITH_12BIT_FALSE@ md5/md5cmp $(MD5_BMP_420M_ISLOW_565) testout_420m_islow_565.bmp @WITH_12BIT_FALSE@ rm testout_420m_islow_565.bmp # CC: YCC->RGB565 (dithered) SAMP: h2v2 merged IDCT: islow ENT: huff @WITH_12BIT_FALSE@ ./djpeg -dct int -nosmooth -rgb565 -bmp -outfile testout_420m_islow_565D.bmp $(srcdir)/testimages/$(TESTORIG) @WITH_12BIT_FALSE@ md5/md5cmp $(MD5_BMP_420M_ISLOW_565D) testout_420m_islow_565D.bmp @WITH_12BIT_FALSE@ rm testout_420m_islow_565D.bmp ./jpegtran -crop 120x90+20+50 -transpose -perfect -outfile testout_crop.jpg $(srcdir)/testimages/$(TESTORIG) md5/md5cmp $(MD5_JPEG_CROP) testout_crop.jpg rm testout_crop.jpg echo GREAT SUCCESS! testclean: rm -f testout* rm -f *_GRAY_*.bmp rm -f *_GRAY_*.png rm -f *_GRAY_*.ppm rm -f *_GRAY_*.jpg rm -f *_GRAY.yuv rm -f *_420_*.bmp rm -f *_420_*.png rm -f *_420_*.ppm rm -f *_420_*.jpg rm -f *_420.yuv rm -f *_422_*.bmp rm -f *_422_*.png rm -f *_422_*.ppm rm -f *_422_*.jpg rm -f *_422.yuv rm -f *_444_*.bmp rm -f *_444_*.png rm -f *_444_*.ppm rm -f *_444_*.jpg rm -f *_444.yuv rm -f *_440_*.bmp rm -f *_440_*.png rm -f *_440_*.ppm rm -f *_440_*.jpg rm -f *_440.yuv rm -f *_411_*.bmp rm -f *_411_*.png rm -f *_411_*.ppm rm -f *_411_*.jpg rm -f *_411.yuv tjtest: sh ./tjbenchtest sh ./tjbenchtest -alloc sh ./tjbenchtest -yuv sh ./tjbenchtest -yuv -alloc @WITH_JAVA_TRUE@ sh ./tjbenchtest.java @WITH_JAVA_TRUE@ sh ./tjbenchtest.java -yuv pkgscripts/libjpeg-turbo.spec: pkgscripts/libjpeg-turbo.spec.tmpl cat pkgscripts/libjpeg-turbo.spec.tmpl | sed s@%{__prefix}@$(prefix)@g | \ sed s@%{__bindir}@$(bindir)@g | sed s@%{__datadir}@$(datadir)@g | \ sed s@%{__docdir}@$(docdir)@g | sed s@%{__includedir}@$(includedir)@g | \ sed s@%{__libdir}@$(libdir)@g | sed s@%{__mandir}@$(mandir)@g \ > pkgscripts/libjpeg-turbo.spec rpm: all pkgscripts/libjpeg-turbo.spec TMPDIR=`mktemp -d /tmp/${PACKAGE_NAME}-build.XXXXXX`; \ mkdir -p $$TMPDIR/RPMS; \ ln -fs `pwd` $$TMPDIR/BUILD; \ rm -f ${PKGNAME}-${VERSION}.${RPMARCH}.rpm; \ rpmbuild -bb --define "_blddir $$TMPDIR/buildroot" \ --define "_topdir $$TMPDIR" \ --target ${RPMARCH} pkgscripts/libjpeg-turbo.spec; \ cp $$TMPDIR/RPMS/${RPMARCH}/${PKGNAME}-${VERSION}-${BUILD}.${RPMARCH}.rpm \ ${PKGNAME}-${VERSION}.${RPMARCH}.rpm; \ rm -rf $$TMPDIR srpm: dist-gzip pkgscripts/libjpeg-turbo.spec TMPDIR=`mktemp -d /tmp/${PACKAGE_NAME}-build.XXXXXX`; \ mkdir -p $$TMPDIR/RPMS; \ mkdir -p $$TMPDIR/SRPMS; \ mkdir -p $$TMPDIR/BUILD; \ mkdir -p $$TMPDIR/SOURCES; \ mkdir -p $$TMPDIR/SPECS; \ rm -f ${PKGNAME}-${VERSION}.src.rpm; \ cp ${PACKAGE_NAME}-${VERSION}.tar.gz $$TMPDIR/SOURCES; \ cat pkgscripts/libjpeg-turbo.spec | sed s/%{_blddir}/%{_tmppath}/g \ | sed s/#--\>//g \ > $$TMPDIR/SPECS/libjpeg-turbo.spec; \ rpmbuild -bs --define "_topdir $$TMPDIR" $$TMPDIR/SPECS/libjpeg-turbo.spec; \ cp $$TMPDIR/SRPMS/${PKGNAME}-${VERSION}-${BUILD}.src.rpm \ ${PKGNAME}-${VERSION}.src.rpm; \ rm -rf $$TMPDIR pkgscripts/makedpkg: pkgscripts/makedpkg.tmpl cat pkgscripts/makedpkg.tmpl | sed s@%{__prefix}@$(prefix)@g | \ sed s@%{__docdir}@$(docdir)@g | sed s@%{__libdir}@$(libdir)@g \ > pkgscripts/makedpkg deb: all pkgscripts/makedpkg sh pkgscripts/makedpkg pkgscripts/uninstall: pkgscripts/uninstall.tmpl cat pkgscripts/uninstall.tmpl | sed s@%{__prefix}@$(prefix)@g | \ sed s@%{__bindir}@$(bindir)@g | sed s@%{__datadir}@$(datadir)@g | \ sed s@%{__includedir}@$(includedir)@g | sed s@%{__libdir}@$(libdir)@g | \ sed s@%{__mandir}@$(mandir)@g > pkgscripts/uninstall pkgscripts/makemacpkg: pkgscripts/makemacpkg.tmpl cat pkgscripts/makemacpkg.tmpl | sed s@%{__prefix}@$(prefix)@g | \ sed s@%{__bindir}@$(bindir)@g | sed s@%{__docdir}@$(docdir)@g | \ sed s@%{__libdir}@$(libdir)@g > pkgscripts/makemacpkg @X86_64_TRUE@udmg: all pkgscripts/makemacpkg pkgscripts/uninstall @X86_64_TRUE@ sh pkgscripts/makemacpkg -build32 ${BUILDDIR32} @X86_64_TRUE@iosdmg: all pkgscripts/makemacpkg pkgscripts/uninstall @X86_64_TRUE@ sh pkgscripts/makemacpkg -build32 ${BUILDDIR32} -buildarmv6 ${BUILDDIRARMV6} -buildarmv7 ${BUILDDIRARMV7} -buildarmv7s ${BUILDDIRARMV7S} -buildarmv8 ${BUILDDIRARMV8} -lipo "${LIPO}" @X86_64_FALSE@iosdmg: all pkgscripts/makemacpkg pkgscripts/uninstall @X86_64_FALSE@ sh pkgscripts/makemacpkg -buildarmv6 ${BUILDDIRARMV6} -buildarmv7 ${BUILDDIRARMV7} -buildarmv7s ${BUILDDIRARMV7S} -buildarmv8 ${BUILDDIRARMV8} -lipo "${LIPO}" dmg: all pkgscripts/makemacpkg pkgscripts/uninstall sh pkgscripts/makemacpkg pkgscripts/makecygwinpkg: pkgscripts/makecygwinpkg.tmpl cat pkgscripts/makecygwinpkg.tmpl | sed s@%{__prefix}@$(prefix)@g | \ sed s@%{__docdir}@$(docdir)@g | sed s@%{__libdir}@$(libdir)@g \ > pkgscripts/makecygwinpkg cygwinpkg: all pkgscripts/makecygwinpkg sh pkgscripts/makecygwinpkg # Tell versions [3.59,3.63) of GNU make to not export all variables. # Otherwise a system limit (for SysV at least) may be exceeded. .NOEXPORT: libjpeg-turbo-1.4.2/doxygen.config0000644000076500007650000000062112600050400014044 00000000000000PROJECT_NAME = TurboJPEG PROJECT_NUMBER = 1.4 OUTPUT_DIRECTORY = doc/ USE_WINDOWS_ENCODING = NO OPTIMIZE_OUTPUT_FOR_C = YES WARN_NO_PARAMDOC = YES GENERATE_LATEX = NO FILE_PATTERNS = turbojpeg.h HIDE_UNDOC_MEMBERS = YES VERBATIM_HEADERS = NO EXTRACT_STATIC = YES JAVADOC_AUTOBRIEF = YES MAX_INITIALIZER_LINES = 0 ALWAYS_DETAILED_SEC = YES HTML_TIMESTAMP = NO HTML_EXTRA_STYLESHEET = doxygen-extra.css libjpeg-turbo-1.4.2/jdatadst.c0000644000076500007650000002162212600050400013146 00000000000000/* * jdatadst.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1994-1996, Thomas G. Lane. * Modified 2009-2012 by Guido Vollbeding. * libjpeg-turbo Modifications: * Copyright (C) 2013, D. R. Commander. * For conditions of distribution and use, see the accompanying README file. * * This file contains compression data destination routines for the case of * emitting JPEG data to memory or to a file (or any stdio stream). * While these routines are sufficient for most applications, * some will want to use a different destination manager. * IMPORTANT: we assume that fwrite() will correctly transcribe an array of * JOCTETs into 8-bit-wide elements on external storage. If char is wider * than 8 bits on your machine, you may need to do some tweaking. */ /* this is not a core library module, so it doesn't define JPEG_INTERNALS */ #include "jinclude.h" #include "jpeglib.h" #include "jerror.h" #ifndef HAVE_STDLIB_H /* should declare malloc(),free() */ extern void * malloc (size_t size); extern void free (void *ptr); #endif /* Expanded data destination object for stdio output */ typedef struct { struct jpeg_destination_mgr pub; /* public fields */ FILE * outfile; /* target stream */ JOCTET * buffer; /* start of buffer */ } my_destination_mgr; typedef my_destination_mgr * my_dest_ptr; #define OUTPUT_BUF_SIZE 4096 /* choose an efficiently fwrite'able size */ #if JPEG_LIB_VERSION >= 80 || defined(MEM_SRCDST_SUPPORTED) /* Expanded data destination object for memory output */ typedef struct { struct jpeg_destination_mgr pub; /* public fields */ unsigned char ** outbuffer; /* target buffer */ unsigned long * outsize; unsigned char * newbuffer; /* newly allocated buffer */ JOCTET * buffer; /* start of buffer */ size_t bufsize; } my_mem_destination_mgr; typedef my_mem_destination_mgr * my_mem_dest_ptr; #endif /* * Initialize destination --- called by jpeg_start_compress * before any data is actually written. */ METHODDEF(void) init_destination (j_compress_ptr cinfo) { my_dest_ptr dest = (my_dest_ptr) cinfo->dest; /* Allocate the output buffer --- it will be released when done with image */ dest->buffer = (JOCTET *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, OUTPUT_BUF_SIZE * sizeof(JOCTET)); dest->pub.next_output_byte = dest->buffer; dest->pub.free_in_buffer = OUTPUT_BUF_SIZE; } #if JPEG_LIB_VERSION >= 80 || defined(MEM_SRCDST_SUPPORTED) METHODDEF(void) init_mem_destination (j_compress_ptr cinfo) { /* no work necessary here */ } #endif /* * Empty the output buffer --- called whenever buffer fills up. * * In typical applications, this should write the entire output buffer * (ignoring the current state of next_output_byte & free_in_buffer), * reset the pointer & count to the start of the buffer, and return TRUE * indicating that the buffer has been dumped. * * In applications that need to be able to suspend compression due to output * overrun, a FALSE return indicates that the buffer cannot be emptied now. * In this situation, the compressor will return to its caller (possibly with * an indication that it has not accepted all the supplied scanlines). The * application should resume compression after it has made more room in the * output buffer. Note that there are substantial restrictions on the use of * suspension --- see the documentation. * * When suspending, the compressor will back up to a convenient restart point * (typically the start of the current MCU). next_output_byte & free_in_buffer * indicate where the restart point will be if the current call returns FALSE. * Data beyond this point will be regenerated after resumption, so do not * write it out when emptying the buffer externally. */ METHODDEF(boolean) empty_output_buffer (j_compress_ptr cinfo) { my_dest_ptr dest = (my_dest_ptr) cinfo->dest; if (JFWRITE(dest->outfile, dest->buffer, OUTPUT_BUF_SIZE) != (size_t) OUTPUT_BUF_SIZE) ERREXIT(cinfo, JERR_FILE_WRITE); dest->pub.next_output_byte = dest->buffer; dest->pub.free_in_buffer = OUTPUT_BUF_SIZE; return TRUE; } #if JPEG_LIB_VERSION >= 80 || defined(MEM_SRCDST_SUPPORTED) METHODDEF(boolean) empty_mem_output_buffer (j_compress_ptr cinfo) { size_t nextsize; JOCTET * nextbuffer; my_mem_dest_ptr dest = (my_mem_dest_ptr) cinfo->dest; /* Try to allocate new buffer with double size */ nextsize = dest->bufsize * 2; nextbuffer = (JOCTET *) malloc(nextsize); if (nextbuffer == NULL) ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 10); MEMCOPY(nextbuffer, dest->buffer, dest->bufsize); if (dest->newbuffer != NULL) free(dest->newbuffer); dest->newbuffer = nextbuffer; dest->pub.next_output_byte = nextbuffer + dest->bufsize; dest->pub.free_in_buffer = dest->bufsize; dest->buffer = nextbuffer; dest->bufsize = nextsize; return TRUE; } #endif /* * Terminate destination --- called by jpeg_finish_compress * after all data has been written. Usually needs to flush buffer. * * NB: *not* called by jpeg_abort or jpeg_destroy; surrounding * application must deal with any cleanup that should happen even * for error exit. */ METHODDEF(void) term_destination (j_compress_ptr cinfo) { my_dest_ptr dest = (my_dest_ptr) cinfo->dest; size_t datacount = OUTPUT_BUF_SIZE - dest->pub.free_in_buffer; /* Write any data remaining in the buffer */ if (datacount > 0) { if (JFWRITE(dest->outfile, dest->buffer, datacount) != datacount) ERREXIT(cinfo, JERR_FILE_WRITE); } fflush(dest->outfile); /* Make sure we wrote the output file OK */ if (ferror(dest->outfile)) ERREXIT(cinfo, JERR_FILE_WRITE); } #if JPEG_LIB_VERSION >= 80 || defined(MEM_SRCDST_SUPPORTED) METHODDEF(void) term_mem_destination (j_compress_ptr cinfo) { my_mem_dest_ptr dest = (my_mem_dest_ptr) cinfo->dest; *dest->outbuffer = dest->buffer; *dest->outsize = (unsigned long)(dest->bufsize - dest->pub.free_in_buffer); } #endif /* * Prepare for output to a stdio stream. * The caller must have already opened the stream, and is responsible * for closing it after finishing compression. */ GLOBAL(void) jpeg_stdio_dest (j_compress_ptr cinfo, FILE * outfile) { my_dest_ptr dest; /* The destination object is made permanent so that multiple JPEG images * can be written to the same file without re-executing jpeg_stdio_dest. * This makes it dangerous to use this manager and a different destination * manager serially with the same JPEG object, because their private object * sizes may be different. Caveat programmer. */ if (cinfo->dest == NULL) { /* first time for this JPEG object? */ cinfo->dest = (struct jpeg_destination_mgr *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT, sizeof(my_destination_mgr)); } dest = (my_dest_ptr) cinfo->dest; dest->pub.init_destination = init_destination; dest->pub.empty_output_buffer = empty_output_buffer; dest->pub.term_destination = term_destination; dest->outfile = outfile; } #if JPEG_LIB_VERSION >= 80 || defined(MEM_SRCDST_SUPPORTED) /* * Prepare for output to a memory buffer. * The caller may supply an own initial buffer with appropriate size. * Otherwise, or when the actual data output exceeds the given size, * the library adapts the buffer size as necessary. * The standard library functions malloc/free are used for allocating * larger memory, so the buffer is available to the application after * finishing compression, and then the application is responsible for * freeing the requested memory. */ GLOBAL(void) jpeg_mem_dest (j_compress_ptr cinfo, unsigned char ** outbuffer, unsigned long * outsize) { my_mem_dest_ptr dest; if (outbuffer == NULL || outsize == NULL) /* sanity check */ ERREXIT(cinfo, JERR_BUFFER_SIZE); /* The destination object is made permanent so that multiple JPEG images * can be written to the same buffer without re-executing jpeg_mem_dest. */ if (cinfo->dest == NULL) { /* first time for this JPEG object? */ cinfo->dest = (struct jpeg_destination_mgr *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT, sizeof(my_mem_destination_mgr)); } dest = (my_mem_dest_ptr) cinfo->dest; dest->pub.init_destination = init_mem_destination; dest->pub.empty_output_buffer = empty_mem_output_buffer; dest->pub.term_destination = term_mem_destination; dest->outbuffer = outbuffer; dest->outsize = outsize; dest->newbuffer = NULL; if (*outbuffer == NULL || *outsize == 0) { /* Allocate initial buffer */ dest->newbuffer = *outbuffer = (unsigned char *) malloc(OUTPUT_BUF_SIZE); if (dest->newbuffer == NULL) ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 10); *outsize = OUTPUT_BUF_SIZE; } dest->pub.next_output_byte = dest->buffer = *outbuffer; dest->pub.free_in_buffer = dest->bufsize = *outsize; } #endif libjpeg-turbo-1.4.2/jdct.h0000644000076500007650000002151412600050400012301 00000000000000/* * jdct.h * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1994-1996, Thomas G. Lane. * It was modified by The libjpeg-turbo Project to include only code relevant * to libjpeg-turbo. * For conditions of distribution and use, see the accompanying README file. * * This include file contains common declarations for the forward and * inverse DCT modules. These declarations are private to the DCT managers * (jcdctmgr.c, jddctmgr.c) and the individual DCT algorithms. * The individual DCT algorithms are kept in separate files to ease * machine-dependent tuning (e.g., assembly coding). */ /* * A forward DCT routine is given a pointer to a work area of type DCTELEM[]; * the DCT is to be performed in-place in that buffer. Type DCTELEM is int * for 8-bit samples, INT32 for 12-bit samples. (NOTE: Floating-point DCT * implementations use an array of type FAST_FLOAT, instead.) * The DCT inputs are expected to be signed (range +-CENTERJSAMPLE). * The DCT outputs are returned scaled up by a factor of 8; they therefore * have a range of +-8K for 8-bit data, +-128K for 12-bit data. This * convention improves accuracy in integer implementations and saves some * work in floating-point ones. * Quantization of the output coefficients is done by jcdctmgr.c. This * step requires an unsigned type and also one with twice the bits. */ #if BITS_IN_JSAMPLE == 8 #ifndef WITH_SIMD typedef int DCTELEM; /* 16 or 32 bits is fine */ typedef unsigned int UDCTELEM; typedef unsigned long long UDCTELEM2; #else typedef short DCTELEM; /* prefer 16 bit with SIMD for parellelism */ typedef unsigned short UDCTELEM; typedef unsigned int UDCTELEM2; #endif #else typedef INT32 DCTELEM; /* must have 32 bits */ typedef unsigned long long UDCTELEM2; #endif /* * An inverse DCT routine is given a pointer to the input JBLOCK and a pointer * to an output sample array. The routine must dequantize the input data as * well as perform the IDCT; for dequantization, it uses the multiplier table * pointed to by compptr->dct_table. The output data is to be placed into the * sample array starting at a specified column. (Any row offset needed will * be applied to the array pointer before it is passed to the IDCT code.) * Note that the number of samples emitted by the IDCT routine is * DCT_scaled_size * DCT_scaled_size. */ /* typedef inverse_DCT_method_ptr is declared in jpegint.h */ /* * Each IDCT routine has its own ideas about the best dct_table element type. */ typedef MULTIPLIER ISLOW_MULT_TYPE; /* short or int, whichever is faster */ #if BITS_IN_JSAMPLE == 8 typedef MULTIPLIER IFAST_MULT_TYPE; /* 16 bits is OK, use short if faster */ #define IFAST_SCALE_BITS 2 /* fractional bits in scale factors */ #else typedef INT32 IFAST_MULT_TYPE; /* need 32 bits for scaled quantizers */ #define IFAST_SCALE_BITS 13 /* fractional bits in scale factors */ #endif typedef FAST_FLOAT FLOAT_MULT_TYPE; /* preferred floating type */ /* * Each IDCT routine is responsible for range-limiting its results and * converting them to unsigned form (0..MAXJSAMPLE). The raw outputs could * be quite far out of range if the input data is corrupt, so a bulletproof * range-limiting step is required. We use a mask-and-table-lookup method * to do the combined operations quickly. See the comments with * prepare_range_limit_table (in jdmaster.c) for more info. */ #define IDCT_range_limit(cinfo) ((cinfo)->sample_range_limit + CENTERJSAMPLE) #define RANGE_MASK (MAXJSAMPLE * 4 + 3) /* 2 bits wider than legal samples */ /* Extern declarations for the forward and inverse DCT routines. */ EXTERN(void) jpeg_fdct_islow (DCTELEM * data); EXTERN(void) jpeg_fdct_ifast (DCTELEM * data); EXTERN(void) jpeg_fdct_float (FAST_FLOAT * data); EXTERN(void) jpeg_idct_islow (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); EXTERN(void) jpeg_idct_ifast (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); EXTERN(void) jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); EXTERN(void) jpeg_idct_7x7 (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); EXTERN(void) jpeg_idct_6x6 (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); EXTERN(void) jpeg_idct_5x5 (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); EXTERN(void) jpeg_idct_4x4 (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); EXTERN(void) jpeg_idct_3x3 (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); EXTERN(void) jpeg_idct_2x2 (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); EXTERN(void) jpeg_idct_1x1 (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); EXTERN(void) jpeg_idct_9x9 (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); EXTERN(void) jpeg_idct_10x10 (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); EXTERN(void) jpeg_idct_11x11 (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); EXTERN(void) jpeg_idct_12x12 (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); EXTERN(void) jpeg_idct_13x13 (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); EXTERN(void) jpeg_idct_14x14 (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); EXTERN(void) jpeg_idct_15x15 (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); EXTERN(void) jpeg_idct_16x16 (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); /* * Macros for handling fixed-point arithmetic; these are used by many * but not all of the DCT/IDCT modules. * * All values are expected to be of type INT32. * Fractional constants are scaled left by CONST_BITS bits. * CONST_BITS is defined within each module using these macros, * and may differ from one module to the next. */ #define ONE ((INT32) 1) #define CONST_SCALE (ONE << CONST_BITS) /* Convert a positive real constant to an integer scaled by CONST_SCALE. * Caution: some C compilers fail to reduce "FIX(constant)" at compile time, * thus causing a lot of useless floating-point operations at run time. */ #define FIX(x) ((INT32) ((x) * CONST_SCALE + 0.5)) /* Descale and correctly round an INT32 value that's scaled by N bits. * We assume RIGHT_SHIFT rounds towards minus infinity, so adding * the fudge factor is correct for either sign of X. */ #define DESCALE(x,n) RIGHT_SHIFT((x) + (ONE << ((n)-1)), n) /* Multiply an INT32 variable by an INT32 constant to yield an INT32 result. * This macro is used only when the two inputs will actually be no more than * 16 bits wide, so that a 16x16->32 bit multiply can be used instead of a * full 32x32 multiply. This provides a useful speedup on many machines. * Unfortunately there is no way to specify a 16x16->32 multiply portably * in C, but some C compilers will do the right thing if you provide the * correct combination of casts. */ #ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */ #define MULTIPLY16C16(var,const) (((INT16) (var)) * ((INT16) (const))) #endif #ifdef SHORTxLCONST_32 /* known to work with Microsoft C 6.0 */ #define MULTIPLY16C16(var,const) (((INT16) (var)) * ((INT32) (const))) #endif #ifndef MULTIPLY16C16 /* default definition */ #define MULTIPLY16C16(var,const) ((var) * (const)) #endif /* Same except both inputs are variables. */ #ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */ #define MULTIPLY16V16(var1,var2) (((INT16) (var1)) * ((INT16) (var2))) #endif #ifndef MULTIPLY16V16 /* default definition */ #define MULTIPLY16V16(var1,var2) ((var1) * (var2)) #endif libjpeg-turbo-1.4.2/jdmarker.c0000644000076500007650000012356612600050400013161 00000000000000/* * jdmarker.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1991-1998, Thomas G. Lane. * libjpeg-turbo Modifications: * Copyright (C) 2012, D. R. Commander. * For conditions of distribution and use, see the accompanying README file. * * This file contains routines to decode JPEG datastream markers. * Most of the complexity arises from our desire to support input * suspension: if not all of the data for a marker is available, * we must exit back to the application. On resumption, we reprocess * the marker. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" typedef enum { /* JPEG marker codes */ M_SOF0 = 0xc0, M_SOF1 = 0xc1, M_SOF2 = 0xc2, M_SOF3 = 0xc3, M_SOF5 = 0xc5, M_SOF6 = 0xc6, M_SOF7 = 0xc7, M_JPG = 0xc8, M_SOF9 = 0xc9, M_SOF10 = 0xca, M_SOF11 = 0xcb, M_SOF13 = 0xcd, M_SOF14 = 0xce, M_SOF15 = 0xcf, M_DHT = 0xc4, M_DAC = 0xcc, M_RST0 = 0xd0, M_RST1 = 0xd1, M_RST2 = 0xd2, M_RST3 = 0xd3, M_RST4 = 0xd4, M_RST5 = 0xd5, M_RST6 = 0xd6, M_RST7 = 0xd7, M_SOI = 0xd8, M_EOI = 0xd9, M_SOS = 0xda, M_DQT = 0xdb, M_DNL = 0xdc, M_DRI = 0xdd, M_DHP = 0xde, M_EXP = 0xdf, M_APP0 = 0xe0, M_APP1 = 0xe1, M_APP2 = 0xe2, M_APP3 = 0xe3, M_APP4 = 0xe4, M_APP5 = 0xe5, M_APP6 = 0xe6, M_APP7 = 0xe7, M_APP8 = 0xe8, M_APP9 = 0xe9, M_APP10 = 0xea, M_APP11 = 0xeb, M_APP12 = 0xec, M_APP13 = 0xed, M_APP14 = 0xee, M_APP15 = 0xef, M_JPG0 = 0xf0, M_JPG13 = 0xfd, M_COM = 0xfe, M_TEM = 0x01, M_ERROR = 0x100 } JPEG_MARKER; /* Private state */ typedef struct { struct jpeg_marker_reader pub; /* public fields */ /* Application-overridable marker processing methods */ jpeg_marker_parser_method process_COM; jpeg_marker_parser_method process_APPn[16]; /* Limit on marker data length to save for each marker type */ unsigned int length_limit_COM; unsigned int length_limit_APPn[16]; /* Status of COM/APPn marker saving */ jpeg_saved_marker_ptr cur_marker; /* NULL if not processing a marker */ unsigned int bytes_read; /* data bytes read so far in marker */ /* Note: cur_marker is not linked into marker_list until it's all read. */ } my_marker_reader; typedef my_marker_reader * my_marker_ptr; /* * Macros for fetching data from the data source module. * * At all times, cinfo->src->next_input_byte and ->bytes_in_buffer reflect * the current restart point; we update them only when we have reached a * suitable place to restart if a suspension occurs. */ /* Declare and initialize local copies of input pointer/count */ #define INPUT_VARS(cinfo) \ struct jpeg_source_mgr * datasrc = (cinfo)->src; \ const JOCTET * next_input_byte = datasrc->next_input_byte; \ size_t bytes_in_buffer = datasrc->bytes_in_buffer /* Unload the local copies --- do this only at a restart boundary */ #define INPUT_SYNC(cinfo) \ ( datasrc->next_input_byte = next_input_byte, \ datasrc->bytes_in_buffer = bytes_in_buffer ) /* Reload the local copies --- used only in MAKE_BYTE_AVAIL */ #define INPUT_RELOAD(cinfo) \ ( next_input_byte = datasrc->next_input_byte, \ bytes_in_buffer = datasrc->bytes_in_buffer ) /* Internal macro for INPUT_BYTE and INPUT_2BYTES: make a byte available. * Note we do *not* do INPUT_SYNC before calling fill_input_buffer, * but we must reload the local copies after a successful fill. */ #define MAKE_BYTE_AVAIL(cinfo,action) \ if (bytes_in_buffer == 0) { \ if (! (*datasrc->fill_input_buffer) (cinfo)) \ { action; } \ INPUT_RELOAD(cinfo); \ } /* Read a byte into variable V. * If must suspend, take the specified action (typically "return FALSE"). */ #define INPUT_BYTE(cinfo,V,action) \ MAKESTMT( MAKE_BYTE_AVAIL(cinfo,action); \ bytes_in_buffer--; \ V = GETJOCTET(*next_input_byte++); ) /* As above, but read two bytes interpreted as an unsigned 16-bit integer. * V should be declared unsigned int or perhaps INT32. */ #define INPUT_2BYTES(cinfo,V,action) \ MAKESTMT( MAKE_BYTE_AVAIL(cinfo,action); \ bytes_in_buffer--; \ V = ((unsigned int) GETJOCTET(*next_input_byte++)) << 8; \ MAKE_BYTE_AVAIL(cinfo,action); \ bytes_in_buffer--; \ V += GETJOCTET(*next_input_byte++); ) /* * Routines to process JPEG markers. * * Entry condition: JPEG marker itself has been read and its code saved * in cinfo->unread_marker; input restart point is just after the marker. * * Exit: if return TRUE, have read and processed any parameters, and have * updated the restart point to point after the parameters. * If return FALSE, was forced to suspend before reaching end of * marker parameters; restart point has not been moved. Same routine * will be called again after application supplies more input data. * * This approach to suspension assumes that all of a marker's parameters * can fit into a single input bufferload. This should hold for "normal" * markers. Some COM/APPn markers might have large parameter segments * that might not fit. If we are simply dropping such a marker, we use * skip_input_data to get past it, and thereby put the problem on the * source manager's shoulders. If we are saving the marker's contents * into memory, we use a slightly different convention: when forced to * suspend, the marker processor updates the restart point to the end of * what it's consumed (ie, the end of the buffer) before returning FALSE. * On resumption, cinfo->unread_marker still contains the marker code, * but the data source will point to the next chunk of marker data. * The marker processor must retain internal state to deal with this. * * Note that we don't bother to avoid duplicate trace messages if a * suspension occurs within marker parameters. Other side effects * require more care. */ LOCAL(boolean) get_soi (j_decompress_ptr cinfo) /* Process an SOI marker */ { int i; TRACEMS(cinfo, 1, JTRC_SOI); if (cinfo->marker->saw_SOI) ERREXIT(cinfo, JERR_SOI_DUPLICATE); /* Reset all parameters that are defined to be reset by SOI */ for (i = 0; i < NUM_ARITH_TBLS; i++) { cinfo->arith_dc_L[i] = 0; cinfo->arith_dc_U[i] = 1; cinfo->arith_ac_K[i] = 5; } cinfo->restart_interval = 0; /* Set initial assumptions for colorspace etc */ cinfo->jpeg_color_space = JCS_UNKNOWN; cinfo->CCIR601_sampling = FALSE; /* Assume non-CCIR sampling??? */ cinfo->saw_JFIF_marker = FALSE; cinfo->JFIF_major_version = 1; /* set default JFIF APP0 values */ cinfo->JFIF_minor_version = 1; cinfo->density_unit = 0; cinfo->X_density = 1; cinfo->Y_density = 1; cinfo->saw_Adobe_marker = FALSE; cinfo->Adobe_transform = 0; cinfo->marker->saw_SOI = TRUE; return TRUE; } LOCAL(boolean) get_sof (j_decompress_ptr cinfo, boolean is_prog, boolean is_arith) /* Process a SOFn marker */ { INT32 length; int c, ci; jpeg_component_info * compptr; INPUT_VARS(cinfo); cinfo->progressive_mode = is_prog; cinfo->arith_code = is_arith; INPUT_2BYTES(cinfo, length, return FALSE); INPUT_BYTE(cinfo, cinfo->data_precision, return FALSE); INPUT_2BYTES(cinfo, cinfo->image_height, return FALSE); INPUT_2BYTES(cinfo, cinfo->image_width, return FALSE); INPUT_BYTE(cinfo, cinfo->num_components, return FALSE); length -= 8; TRACEMS4(cinfo, 1, JTRC_SOF, cinfo->unread_marker, (int) cinfo->image_width, (int) cinfo->image_height, cinfo->num_components); if (cinfo->marker->saw_SOF) ERREXIT(cinfo, JERR_SOF_DUPLICATE); /* We don't support files in which the image height is initially specified */ /* as 0 and is later redefined by DNL. As long as we have to check that, */ /* might as well have a general sanity check. */ if (cinfo->image_height <= 0 || cinfo->image_width <= 0 || cinfo->num_components <= 0) ERREXIT(cinfo, JERR_EMPTY_IMAGE); if (length != (cinfo->num_components * 3)) ERREXIT(cinfo, JERR_BAD_LENGTH); if (cinfo->comp_info == NULL) /* do only once, even if suspend */ cinfo->comp_info = (jpeg_component_info *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, cinfo->num_components * sizeof(jpeg_component_info)); for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { compptr->component_index = ci; INPUT_BYTE(cinfo, compptr->component_id, return FALSE); INPUT_BYTE(cinfo, c, return FALSE); compptr->h_samp_factor = (c >> 4) & 15; compptr->v_samp_factor = (c ) & 15; INPUT_BYTE(cinfo, compptr->quant_tbl_no, return FALSE); TRACEMS4(cinfo, 1, JTRC_SOF_COMPONENT, compptr->component_id, compptr->h_samp_factor, compptr->v_samp_factor, compptr->quant_tbl_no); } cinfo->marker->saw_SOF = TRUE; INPUT_SYNC(cinfo); return TRUE; } LOCAL(boolean) get_sos (j_decompress_ptr cinfo) /* Process a SOS marker */ { INT32 length; int i, ci, n, c, cc, pi; jpeg_component_info * compptr; INPUT_VARS(cinfo); if (! cinfo->marker->saw_SOF) ERREXIT(cinfo, JERR_SOS_NO_SOF); INPUT_2BYTES(cinfo, length, return FALSE); INPUT_BYTE(cinfo, n, return FALSE); /* Number of components */ TRACEMS1(cinfo, 1, JTRC_SOS, n); if (length != (n * 2 + 6) || n < 1 || n > MAX_COMPS_IN_SCAN) ERREXIT(cinfo, JERR_BAD_LENGTH); cinfo->comps_in_scan = n; /* Collect the component-spec parameters */ for (i = 0; i < MAX_COMPS_IN_SCAN; i++) cinfo->cur_comp_info[i] = NULL; for (i = 0; i < n; i++) { INPUT_BYTE(cinfo, cc, return FALSE); INPUT_BYTE(cinfo, c, return FALSE); for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components && ci < MAX_COMPS_IN_SCAN; ci++, compptr++) { if (cc == compptr->component_id && !cinfo->cur_comp_info[ci]) goto id_found; } ERREXIT1(cinfo, JERR_BAD_COMPONENT_ID, cc); id_found: cinfo->cur_comp_info[i] = compptr; compptr->dc_tbl_no = (c >> 4) & 15; compptr->ac_tbl_no = (c ) & 15; TRACEMS3(cinfo, 1, JTRC_SOS_COMPONENT, cc, compptr->dc_tbl_no, compptr->ac_tbl_no); /* This CSi (cc) should differ from the previous CSi */ for (pi = 0; pi < i; pi++) { if (cinfo->cur_comp_info[pi] == compptr) { ERREXIT1(cinfo, JERR_BAD_COMPONENT_ID, cc); } } } /* Collect the additional scan parameters Ss, Se, Ah/Al. */ INPUT_BYTE(cinfo, c, return FALSE); cinfo->Ss = c; INPUT_BYTE(cinfo, c, return FALSE); cinfo->Se = c; INPUT_BYTE(cinfo, c, return FALSE); cinfo->Ah = (c >> 4) & 15; cinfo->Al = (c ) & 15; TRACEMS4(cinfo, 1, JTRC_SOS_PARAMS, cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al); /* Prepare to scan data & restart markers */ cinfo->marker->next_restart_num = 0; /* Count another SOS marker */ cinfo->input_scan_number++; INPUT_SYNC(cinfo); return TRUE; } #ifdef D_ARITH_CODING_SUPPORTED LOCAL(boolean) get_dac (j_decompress_ptr cinfo) /* Process a DAC marker */ { INT32 length; int index, val; INPUT_VARS(cinfo); INPUT_2BYTES(cinfo, length, return FALSE); length -= 2; while (length > 0) { INPUT_BYTE(cinfo, index, return FALSE); INPUT_BYTE(cinfo, val, return FALSE); length -= 2; TRACEMS2(cinfo, 1, JTRC_DAC, index, val); if (index < 0 || index >= (2*NUM_ARITH_TBLS)) ERREXIT1(cinfo, JERR_DAC_INDEX, index); if (index >= NUM_ARITH_TBLS) { /* define AC table */ cinfo->arith_ac_K[index-NUM_ARITH_TBLS] = (UINT8) val; } else { /* define DC table */ cinfo->arith_dc_L[index] = (UINT8) (val & 0x0F); cinfo->arith_dc_U[index] = (UINT8) (val >> 4); if (cinfo->arith_dc_L[index] > cinfo->arith_dc_U[index]) ERREXIT1(cinfo, JERR_DAC_VALUE, val); } } if (length != 0) ERREXIT(cinfo, JERR_BAD_LENGTH); INPUT_SYNC(cinfo); return TRUE; } #else /* ! D_ARITH_CODING_SUPPORTED */ #define get_dac(cinfo) skip_variable(cinfo) #endif /* D_ARITH_CODING_SUPPORTED */ LOCAL(boolean) get_dht (j_decompress_ptr cinfo) /* Process a DHT marker */ { INT32 length; UINT8 bits[17]; UINT8 huffval[256]; int i, index, count; JHUFF_TBL **htblptr; INPUT_VARS(cinfo); INPUT_2BYTES(cinfo, length, return FALSE); length -= 2; while (length > 16) { INPUT_BYTE(cinfo, index, return FALSE); TRACEMS1(cinfo, 1, JTRC_DHT, index); bits[0] = 0; count = 0; for (i = 1; i <= 16; i++) { INPUT_BYTE(cinfo, bits[i], return FALSE); count += bits[i]; } length -= 1 + 16; TRACEMS8(cinfo, 2, JTRC_HUFFBITS, bits[1], bits[2], bits[3], bits[4], bits[5], bits[6], bits[7], bits[8]); TRACEMS8(cinfo, 2, JTRC_HUFFBITS, bits[9], bits[10], bits[11], bits[12], bits[13], bits[14], bits[15], bits[16]); /* Here we just do minimal validation of the counts to avoid walking * off the end of our table space. jdhuff.c will check more carefully. */ if (count > 256 || ((INT32) count) > length) ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); for (i = 0; i < count; i++) INPUT_BYTE(cinfo, huffval[i], return FALSE); MEMZERO(&huffval[count], (256 - count) * sizeof(UINT8)); length -= count; if (index & 0x10) { /* AC table definition */ index -= 0x10; if (index < 0 || index >= NUM_HUFF_TBLS) ERREXIT1(cinfo, JERR_DHT_INDEX, index); htblptr = &cinfo->ac_huff_tbl_ptrs[index]; } else { /* DC table definition */ if (index < 0 || index >= NUM_HUFF_TBLS) ERREXIT1(cinfo, JERR_DHT_INDEX, index); htblptr = &cinfo->dc_huff_tbl_ptrs[index]; } if (*htblptr == NULL) *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo); MEMCOPY((*htblptr)->bits, bits, sizeof((*htblptr)->bits)); MEMCOPY((*htblptr)->huffval, huffval, sizeof((*htblptr)->huffval)); } if (length != 0) ERREXIT(cinfo, JERR_BAD_LENGTH); INPUT_SYNC(cinfo); return TRUE; } LOCAL(boolean) get_dqt (j_decompress_ptr cinfo) /* Process a DQT marker */ { INT32 length; int n, i, prec; unsigned int tmp; JQUANT_TBL *quant_ptr; INPUT_VARS(cinfo); INPUT_2BYTES(cinfo, length, return FALSE); length -= 2; while (length > 0) { INPUT_BYTE(cinfo, n, return FALSE); prec = n >> 4; n &= 0x0F; TRACEMS2(cinfo, 1, JTRC_DQT, n, prec); if (n >= NUM_QUANT_TBLS) ERREXIT1(cinfo, JERR_DQT_INDEX, n); if (cinfo->quant_tbl_ptrs[n] == NULL) cinfo->quant_tbl_ptrs[n] = jpeg_alloc_quant_table((j_common_ptr) cinfo); quant_ptr = cinfo->quant_tbl_ptrs[n]; for (i = 0; i < DCTSIZE2; i++) { if (prec) INPUT_2BYTES(cinfo, tmp, return FALSE); else INPUT_BYTE(cinfo, tmp, return FALSE); /* We convert the zigzag-order table to natural array order. */ quant_ptr->quantval[jpeg_natural_order[i]] = (UINT16) tmp; } if (cinfo->err->trace_level >= 2) { for (i = 0; i < DCTSIZE2; i += 8) { TRACEMS8(cinfo, 2, JTRC_QUANTVALS, quant_ptr->quantval[i], quant_ptr->quantval[i+1], quant_ptr->quantval[i+2], quant_ptr->quantval[i+3], quant_ptr->quantval[i+4], quant_ptr->quantval[i+5], quant_ptr->quantval[i+6], quant_ptr->quantval[i+7]); } } length -= DCTSIZE2+1; if (prec) length -= DCTSIZE2; } if (length != 0) ERREXIT(cinfo, JERR_BAD_LENGTH); INPUT_SYNC(cinfo); return TRUE; } LOCAL(boolean) get_dri (j_decompress_ptr cinfo) /* Process a DRI marker */ { INT32 length; unsigned int tmp; INPUT_VARS(cinfo); INPUT_2BYTES(cinfo, length, return FALSE); if (length != 4) ERREXIT(cinfo, JERR_BAD_LENGTH); INPUT_2BYTES(cinfo, tmp, return FALSE); TRACEMS1(cinfo, 1, JTRC_DRI, tmp); cinfo->restart_interval = tmp; INPUT_SYNC(cinfo); return TRUE; } /* * Routines for processing APPn and COM markers. * These are either saved in memory or discarded, per application request. * APP0 and APP14 are specially checked to see if they are * JFIF and Adobe markers, respectively. */ #define APP0_DATA_LEN 14 /* Length of interesting data in APP0 */ #define APP14_DATA_LEN 12 /* Length of interesting data in APP14 */ #define APPN_DATA_LEN 14 /* Must be the largest of the above!! */ LOCAL(void) examine_app0 (j_decompress_ptr cinfo, JOCTET * data, unsigned int datalen, INT32 remaining) /* Examine first few bytes from an APP0. * Take appropriate action if it is a JFIF marker. * datalen is # of bytes at data[], remaining is length of rest of marker data. */ { INT32 totallen = (INT32) datalen + remaining; if (datalen >= APP0_DATA_LEN && GETJOCTET(data[0]) == 0x4A && GETJOCTET(data[1]) == 0x46 && GETJOCTET(data[2]) == 0x49 && GETJOCTET(data[3]) == 0x46 && GETJOCTET(data[4]) == 0) { /* Found JFIF APP0 marker: save info */ cinfo->saw_JFIF_marker = TRUE; cinfo->JFIF_major_version = GETJOCTET(data[5]); cinfo->JFIF_minor_version = GETJOCTET(data[6]); cinfo->density_unit = GETJOCTET(data[7]); cinfo->X_density = (GETJOCTET(data[8]) << 8) + GETJOCTET(data[9]); cinfo->Y_density = (GETJOCTET(data[10]) << 8) + GETJOCTET(data[11]); /* Check version. * Major version must be 1, anything else signals an incompatible change. * (We used to treat this as an error, but now it's a nonfatal warning, * because some bozo at Hijaak couldn't read the spec.) * Minor version should be 0..2, but process anyway if newer. */ if (cinfo->JFIF_major_version != 1) WARNMS2(cinfo, JWRN_JFIF_MAJOR, cinfo->JFIF_major_version, cinfo->JFIF_minor_version); /* Generate trace messages */ TRACEMS5(cinfo, 1, JTRC_JFIF, cinfo->JFIF_major_version, cinfo->JFIF_minor_version, cinfo->X_density, cinfo->Y_density, cinfo->density_unit); /* Validate thumbnail dimensions and issue appropriate messages */ if (GETJOCTET(data[12]) | GETJOCTET(data[13])) TRACEMS2(cinfo, 1, JTRC_JFIF_THUMBNAIL, GETJOCTET(data[12]), GETJOCTET(data[13])); totallen -= APP0_DATA_LEN; if (totallen != ((INT32)GETJOCTET(data[12]) * (INT32)GETJOCTET(data[13]) * (INT32) 3)) TRACEMS1(cinfo, 1, JTRC_JFIF_BADTHUMBNAILSIZE, (int) totallen); } else if (datalen >= 6 && GETJOCTET(data[0]) == 0x4A && GETJOCTET(data[1]) == 0x46 && GETJOCTET(data[2]) == 0x58 && GETJOCTET(data[3]) == 0x58 && GETJOCTET(data[4]) == 0) { /* Found JFIF "JFXX" extension APP0 marker */ /* The library doesn't actually do anything with these, * but we try to produce a helpful trace message. */ switch (GETJOCTET(data[5])) { case 0x10: TRACEMS1(cinfo, 1, JTRC_THUMB_JPEG, (int) totallen); break; case 0x11: TRACEMS1(cinfo, 1, JTRC_THUMB_PALETTE, (int) totallen); break; case 0x13: TRACEMS1(cinfo, 1, JTRC_THUMB_RGB, (int) totallen); break; default: TRACEMS2(cinfo, 1, JTRC_JFIF_EXTENSION, GETJOCTET(data[5]), (int) totallen); break; } } else { /* Start of APP0 does not match "JFIF" or "JFXX", or too short */ TRACEMS1(cinfo, 1, JTRC_APP0, (int) totallen); } } LOCAL(void) examine_app14 (j_decompress_ptr cinfo, JOCTET * data, unsigned int datalen, INT32 remaining) /* Examine first few bytes from an APP14. * Take appropriate action if it is an Adobe marker. * datalen is # of bytes at data[], remaining is length of rest of marker data. */ { unsigned int version, flags0, flags1, transform; if (datalen >= APP14_DATA_LEN && GETJOCTET(data[0]) == 0x41 && GETJOCTET(data[1]) == 0x64 && GETJOCTET(data[2]) == 0x6F && GETJOCTET(data[3]) == 0x62 && GETJOCTET(data[4]) == 0x65) { /* Found Adobe APP14 marker */ version = (GETJOCTET(data[5]) << 8) + GETJOCTET(data[6]); flags0 = (GETJOCTET(data[7]) << 8) + GETJOCTET(data[8]); flags1 = (GETJOCTET(data[9]) << 8) + GETJOCTET(data[10]); transform = GETJOCTET(data[11]); TRACEMS4(cinfo, 1, JTRC_ADOBE, version, flags0, flags1, transform); cinfo->saw_Adobe_marker = TRUE; cinfo->Adobe_transform = (UINT8) transform; } else { /* Start of APP14 does not match "Adobe", or too short */ TRACEMS1(cinfo, 1, JTRC_APP14, (int) (datalen + remaining)); } } METHODDEF(boolean) get_interesting_appn (j_decompress_ptr cinfo) /* Process an APP0 or APP14 marker without saving it */ { INT32 length; JOCTET b[APPN_DATA_LEN]; unsigned int i, numtoread; INPUT_VARS(cinfo); INPUT_2BYTES(cinfo, length, return FALSE); length -= 2; /* get the interesting part of the marker data */ if (length >= APPN_DATA_LEN) numtoread = APPN_DATA_LEN; else if (length > 0) numtoread = (unsigned int) length; else numtoread = 0; for (i = 0; i < numtoread; i++) INPUT_BYTE(cinfo, b[i], return FALSE); length -= numtoread; /* process it */ switch (cinfo->unread_marker) { case M_APP0: examine_app0(cinfo, (JOCTET *) b, numtoread, length); break; case M_APP14: examine_app14(cinfo, (JOCTET *) b, numtoread, length); break; default: /* can't get here unless jpeg_save_markers chooses wrong processor */ ERREXIT1(cinfo, JERR_UNKNOWN_MARKER, cinfo->unread_marker); break; } /* skip any remaining data -- could be lots */ INPUT_SYNC(cinfo); if (length > 0) (*cinfo->src->skip_input_data) (cinfo, (long) length); return TRUE; } #ifdef SAVE_MARKERS_SUPPORTED METHODDEF(boolean) save_marker (j_decompress_ptr cinfo) /* Save an APPn or COM marker into the marker list */ { my_marker_ptr marker = (my_marker_ptr) cinfo->marker; jpeg_saved_marker_ptr cur_marker = marker->cur_marker; unsigned int bytes_read, data_length; JOCTET * data; INT32 length = 0; INPUT_VARS(cinfo); if (cur_marker == NULL) { /* begin reading a marker */ INPUT_2BYTES(cinfo, length, return FALSE); length -= 2; if (length >= 0) { /* watch out for bogus length word */ /* figure out how much we want to save */ unsigned int limit; if (cinfo->unread_marker == (int) M_COM) limit = marker->length_limit_COM; else limit = marker->length_limit_APPn[cinfo->unread_marker - (int) M_APP0]; if ((unsigned int) length < limit) limit = (unsigned int) length; /* allocate and initialize the marker item */ cur_marker = (jpeg_saved_marker_ptr) (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE, sizeof(struct jpeg_marker_struct) + limit); cur_marker->next = NULL; cur_marker->marker = (UINT8) cinfo->unread_marker; cur_marker->original_length = (unsigned int) length; cur_marker->data_length = limit; /* data area is just beyond the jpeg_marker_struct */ data = cur_marker->data = (JOCTET *) (cur_marker + 1); marker->cur_marker = cur_marker; marker->bytes_read = 0; bytes_read = 0; data_length = limit; } else { /* deal with bogus length word */ bytes_read = data_length = 0; data = NULL; } } else { /* resume reading a marker */ bytes_read = marker->bytes_read; data_length = cur_marker->data_length; data = cur_marker->data + bytes_read; } while (bytes_read < data_length) { INPUT_SYNC(cinfo); /* move the restart point to here */ marker->bytes_read = bytes_read; /* If there's not at least one byte in buffer, suspend */ MAKE_BYTE_AVAIL(cinfo, return FALSE); /* Copy bytes with reasonable rapidity */ while (bytes_read < data_length && bytes_in_buffer > 0) { *data++ = *next_input_byte++; bytes_in_buffer--; bytes_read++; } } /* Done reading what we want to read */ if (cur_marker != NULL) { /* will be NULL if bogus length word */ /* Add new marker to end of list */ if (cinfo->marker_list == NULL) { cinfo->marker_list = cur_marker; } else { jpeg_saved_marker_ptr prev = cinfo->marker_list; while (prev->next != NULL) prev = prev->next; prev->next = cur_marker; } /* Reset pointer & calc remaining data length */ data = cur_marker->data; length = cur_marker->original_length - data_length; } /* Reset to initial state for next marker */ marker->cur_marker = NULL; /* Process the marker if interesting; else just make a generic trace msg */ switch (cinfo->unread_marker) { case M_APP0: examine_app0(cinfo, data, data_length, length); break; case M_APP14: examine_app14(cinfo, data, data_length, length); break; default: TRACEMS2(cinfo, 1, JTRC_MISC_MARKER, cinfo->unread_marker, (int) (data_length + length)); break; } /* skip any remaining data -- could be lots */ INPUT_SYNC(cinfo); /* do before skip_input_data */ if (length > 0) (*cinfo->src->skip_input_data) (cinfo, (long) length); return TRUE; } #endif /* SAVE_MARKERS_SUPPORTED */ METHODDEF(boolean) skip_variable (j_decompress_ptr cinfo) /* Skip over an unknown or uninteresting variable-length marker */ { INT32 length; INPUT_VARS(cinfo); INPUT_2BYTES(cinfo, length, return FALSE); length -= 2; TRACEMS2(cinfo, 1, JTRC_MISC_MARKER, cinfo->unread_marker, (int) length); INPUT_SYNC(cinfo); /* do before skip_input_data */ if (length > 0) (*cinfo->src->skip_input_data) (cinfo, (long) length); return TRUE; } /* * Find the next JPEG marker, save it in cinfo->unread_marker. * Returns FALSE if had to suspend before reaching a marker; * in that case cinfo->unread_marker is unchanged. * * Note that the result might not be a valid marker code, * but it will never be 0 or FF. */ LOCAL(boolean) next_marker (j_decompress_ptr cinfo) { int c; INPUT_VARS(cinfo); for (;;) { INPUT_BYTE(cinfo, c, return FALSE); /* Skip any non-FF bytes. * This may look a bit inefficient, but it will not occur in a valid file. * We sync after each discarded byte so that a suspending data source * can discard the byte from its buffer. */ while (c != 0xFF) { cinfo->marker->discarded_bytes++; INPUT_SYNC(cinfo); INPUT_BYTE(cinfo, c, return FALSE); } /* This loop swallows any duplicate FF bytes. Extra FFs are legal as * pad bytes, so don't count them in discarded_bytes. We assume there * will not be so many consecutive FF bytes as to overflow a suspending * data source's input buffer. */ do { INPUT_BYTE(cinfo, c, return FALSE); } while (c == 0xFF); if (c != 0) break; /* found a valid marker, exit loop */ /* Reach here if we found a stuffed-zero data sequence (FF/00). * Discard it and loop back to try again. */ cinfo->marker->discarded_bytes += 2; INPUT_SYNC(cinfo); } if (cinfo->marker->discarded_bytes != 0) { WARNMS2(cinfo, JWRN_EXTRANEOUS_DATA, cinfo->marker->discarded_bytes, c); cinfo->marker->discarded_bytes = 0; } cinfo->unread_marker = c; INPUT_SYNC(cinfo); return TRUE; } LOCAL(boolean) first_marker (j_decompress_ptr cinfo) /* Like next_marker, but used to obtain the initial SOI marker. */ /* For this marker, we do not allow preceding garbage or fill; otherwise, * we might well scan an entire input file before realizing it ain't JPEG. * If an application wants to process non-JFIF files, it must seek to the * SOI before calling the JPEG library. */ { int c, c2; INPUT_VARS(cinfo); INPUT_BYTE(cinfo, c, return FALSE); INPUT_BYTE(cinfo, c2, return FALSE); if (c != 0xFF || c2 != (int) M_SOI) ERREXIT2(cinfo, JERR_NO_SOI, c, c2); cinfo->unread_marker = c2; INPUT_SYNC(cinfo); return TRUE; } /* * Read markers until SOS or EOI. * * Returns same codes as are defined for jpeg_consume_input: * JPEG_SUSPENDED, JPEG_REACHED_SOS, or JPEG_REACHED_EOI. */ METHODDEF(int) read_markers (j_decompress_ptr cinfo) { /* Outer loop repeats once for each marker. */ for (;;) { /* Collect the marker proper, unless we already did. */ /* NB: first_marker() enforces the requirement that SOI appear first. */ if (cinfo->unread_marker == 0) { if (! cinfo->marker->saw_SOI) { if (! first_marker(cinfo)) return JPEG_SUSPENDED; } else { if (! next_marker(cinfo)) return JPEG_SUSPENDED; } } /* At this point cinfo->unread_marker contains the marker code and the * input point is just past the marker proper, but before any parameters. * A suspension will cause us to return with this state still true. */ switch (cinfo->unread_marker) { case M_SOI: if (! get_soi(cinfo)) return JPEG_SUSPENDED; break; case M_SOF0: /* Baseline */ case M_SOF1: /* Extended sequential, Huffman */ if (! get_sof(cinfo, FALSE, FALSE)) return JPEG_SUSPENDED; break; case M_SOF2: /* Progressive, Huffman */ if (! get_sof(cinfo, TRUE, FALSE)) return JPEG_SUSPENDED; break; case M_SOF9: /* Extended sequential, arithmetic */ if (! get_sof(cinfo, FALSE, TRUE)) return JPEG_SUSPENDED; break; case M_SOF10: /* Progressive, arithmetic */ if (! get_sof(cinfo, TRUE, TRUE)) return JPEG_SUSPENDED; break; /* Currently unsupported SOFn types */ case M_SOF3: /* Lossless, Huffman */ case M_SOF5: /* Differential sequential, Huffman */ case M_SOF6: /* Differential progressive, Huffman */ case M_SOF7: /* Differential lossless, Huffman */ case M_JPG: /* Reserved for JPEG extensions */ case M_SOF11: /* Lossless, arithmetic */ case M_SOF13: /* Differential sequential, arithmetic */ case M_SOF14: /* Differential progressive, arithmetic */ case M_SOF15: /* Differential lossless, arithmetic */ ERREXIT1(cinfo, JERR_SOF_UNSUPPORTED, cinfo->unread_marker); break; case M_SOS: if (! get_sos(cinfo)) return JPEG_SUSPENDED; cinfo->unread_marker = 0; /* processed the marker */ return JPEG_REACHED_SOS; case M_EOI: TRACEMS(cinfo, 1, JTRC_EOI); cinfo->unread_marker = 0; /* processed the marker */ return JPEG_REACHED_EOI; case M_DAC: if (! get_dac(cinfo)) return JPEG_SUSPENDED; break; case M_DHT: if (! get_dht(cinfo)) return JPEG_SUSPENDED; break; case M_DQT: if (! get_dqt(cinfo)) return JPEG_SUSPENDED; break; case M_DRI: if (! get_dri(cinfo)) return JPEG_SUSPENDED; break; case M_APP0: case M_APP1: case M_APP2: case M_APP3: case M_APP4: case M_APP5: case M_APP6: case M_APP7: case M_APP8: case M_APP9: case M_APP10: case M_APP11: case M_APP12: case M_APP13: case M_APP14: case M_APP15: if (! (*((my_marker_ptr) cinfo->marker)->process_APPn[ cinfo->unread_marker - (int) M_APP0]) (cinfo)) return JPEG_SUSPENDED; break; case M_COM: if (! (*((my_marker_ptr) cinfo->marker)->process_COM) (cinfo)) return JPEG_SUSPENDED; break; case M_RST0: /* these are all parameterless */ case M_RST1: case M_RST2: case M_RST3: case M_RST4: case M_RST5: case M_RST6: case M_RST7: case M_TEM: TRACEMS1(cinfo, 1, JTRC_PARMLESS_MARKER, cinfo->unread_marker); break; case M_DNL: /* Ignore DNL ... perhaps the wrong thing */ if (! skip_variable(cinfo)) return JPEG_SUSPENDED; break; default: /* must be DHP, EXP, JPGn, or RESn */ /* For now, we treat the reserved markers as fatal errors since they are * likely to be used to signal incompatible JPEG Part 3 extensions. * Once the JPEG 3 version-number marker is well defined, this code * ought to change! */ ERREXIT1(cinfo, JERR_UNKNOWN_MARKER, cinfo->unread_marker); break; } /* Successfully processed marker, so reset state variable */ cinfo->unread_marker = 0; } /* end loop */ } /* * Read a restart marker, which is expected to appear next in the datastream; * if the marker is not there, take appropriate recovery action. * Returns FALSE if suspension is required. * * This is called by the entropy decoder after it has read an appropriate * number of MCUs. cinfo->unread_marker may be nonzero if the entropy decoder * has already read a marker from the data source. Under normal conditions * cinfo->unread_marker will be reset to 0 before returning; if not reset, * it holds a marker which the decoder will be unable to read past. */ METHODDEF(boolean) read_restart_marker (j_decompress_ptr cinfo) { /* Obtain a marker unless we already did. */ /* Note that next_marker will complain if it skips any data. */ if (cinfo->unread_marker == 0) { if (! next_marker(cinfo)) return FALSE; } if (cinfo->unread_marker == ((int) M_RST0 + cinfo->marker->next_restart_num)) { /* Normal case --- swallow the marker and let entropy decoder continue */ TRACEMS1(cinfo, 3, JTRC_RST, cinfo->marker->next_restart_num); cinfo->unread_marker = 0; } else { /* Uh-oh, the restart markers have been messed up. */ /* Let the data source manager determine how to resync. */ if (! (*cinfo->src->resync_to_restart) (cinfo, cinfo->marker->next_restart_num)) return FALSE; } /* Update next-restart state */ cinfo->marker->next_restart_num = (cinfo->marker->next_restart_num + 1) & 7; return TRUE; } /* * This is the default resync_to_restart method for data source managers * to use if they don't have any better approach. Some data source managers * may be able to back up, or may have additional knowledge about the data * which permits a more intelligent recovery strategy; such managers would * presumably supply their own resync method. * * read_restart_marker calls resync_to_restart if it finds a marker other than * the restart marker it was expecting. (This code is *not* used unless * a nonzero restart interval has been declared.) cinfo->unread_marker is * the marker code actually found (might be anything, except 0 or FF). * The desired restart marker number (0..7) is passed as a parameter. * This routine is supposed to apply whatever error recovery strategy seems * appropriate in order to position the input stream to the next data segment. * Note that cinfo->unread_marker is treated as a marker appearing before * the current data-source input point; usually it should be reset to zero * before returning. * Returns FALSE if suspension is required. * * This implementation is substantially constrained by wanting to treat the * input as a data stream; this means we can't back up. Therefore, we have * only the following actions to work with: * 1. Simply discard the marker and let the entropy decoder resume at next * byte of file. * 2. Read forward until we find another marker, discarding intervening * data. (In theory we could look ahead within the current bufferload, * without having to discard data if we don't find the desired marker. * This idea is not implemented here, in part because it makes behavior * dependent on buffer size and chance buffer-boundary positions.) * 3. Leave the marker unread (by failing to zero cinfo->unread_marker). * This will cause the entropy decoder to process an empty data segment, * inserting dummy zeroes, and then we will reprocess the marker. * * #2 is appropriate if we think the desired marker lies ahead, while #3 is * appropriate if the found marker is a future restart marker (indicating * that we have missed the desired restart marker, probably because it got * corrupted). * We apply #2 or #3 if the found marker is a restart marker no more than * two counts behind or ahead of the expected one. We also apply #2 if the * found marker is not a legal JPEG marker code (it's certainly bogus data). * If the found marker is a restart marker more than 2 counts away, we do #1 * (too much risk that the marker is erroneous; with luck we will be able to * resync at some future point). * For any valid non-restart JPEG marker, we apply #3. This keeps us from * overrunning the end of a scan. An implementation limited to single-scan * files might find it better to apply #2 for markers other than EOI, since * any other marker would have to be bogus data in that case. */ GLOBAL(boolean) jpeg_resync_to_restart (j_decompress_ptr cinfo, int desired) { int marker = cinfo->unread_marker; int action = 1; /* Always put up a warning. */ WARNMS2(cinfo, JWRN_MUST_RESYNC, marker, desired); /* Outer loop handles repeated decision after scanning forward. */ for (;;) { if (marker < (int) M_SOF0) action = 2; /* invalid marker */ else if (marker < (int) M_RST0 || marker > (int) M_RST7) action = 3; /* valid non-restart marker */ else { if (marker == ((int) M_RST0 + ((desired+1) & 7)) || marker == ((int) M_RST0 + ((desired+2) & 7))) action = 3; /* one of the next two expected restarts */ else if (marker == ((int) M_RST0 + ((desired-1) & 7)) || marker == ((int) M_RST0 + ((desired-2) & 7))) action = 2; /* a prior restart, so advance */ else action = 1; /* desired restart or too far away */ } TRACEMS2(cinfo, 4, JTRC_RECOVERY_ACTION, marker, action); switch (action) { case 1: /* Discard marker and let entropy decoder resume processing. */ cinfo->unread_marker = 0; return TRUE; case 2: /* Scan to the next marker, and repeat the decision loop. */ if (! next_marker(cinfo)) return FALSE; marker = cinfo->unread_marker; break; case 3: /* Return without advancing past this marker. */ /* Entropy decoder will be forced to process an empty segment. */ return TRUE; } } /* end loop */ } /* * Reset marker processing state to begin a fresh datastream. */ METHODDEF(void) reset_marker_reader (j_decompress_ptr cinfo) { my_marker_ptr marker = (my_marker_ptr) cinfo->marker; cinfo->comp_info = NULL; /* until allocated by get_sof */ cinfo->input_scan_number = 0; /* no SOS seen yet */ cinfo->unread_marker = 0; /* no pending marker */ marker->pub.saw_SOI = FALSE; /* set internal state too */ marker->pub.saw_SOF = FALSE; marker->pub.discarded_bytes = 0; marker->cur_marker = NULL; } /* * Initialize the marker reader module. * This is called only once, when the decompression object is created. */ GLOBAL(void) jinit_marker_reader (j_decompress_ptr cinfo) { my_marker_ptr marker; int i; /* Create subobject in permanent pool */ marker = (my_marker_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT, sizeof(my_marker_reader)); cinfo->marker = (struct jpeg_marker_reader *) marker; /* Initialize public method pointers */ marker->pub.reset_marker_reader = reset_marker_reader; marker->pub.read_markers = read_markers; marker->pub.read_restart_marker = read_restart_marker; /* Initialize COM/APPn processing. * By default, we examine and then discard APP0 and APP14, * but simply discard COM and all other APPn. */ marker->process_COM = skip_variable; marker->length_limit_COM = 0; for (i = 0; i < 16; i++) { marker->process_APPn[i] = skip_variable; marker->length_limit_APPn[i] = 0; } marker->process_APPn[0] = get_interesting_appn; marker->process_APPn[14] = get_interesting_appn; /* Reset marker processing state */ reset_marker_reader(cinfo); } /* * Control saving of COM and APPn markers into marker_list. */ #ifdef SAVE_MARKERS_SUPPORTED GLOBAL(void) jpeg_save_markers (j_decompress_ptr cinfo, int marker_code, unsigned int length_limit) { my_marker_ptr marker = (my_marker_ptr) cinfo->marker; long maxlength; jpeg_marker_parser_method processor; /* Length limit mustn't be larger than what we can allocate * (should only be a concern in a 16-bit environment). */ maxlength = cinfo->mem->max_alloc_chunk - sizeof(struct jpeg_marker_struct); if (((long) length_limit) > maxlength) length_limit = (unsigned int) maxlength; /* Choose processor routine to use. * APP0/APP14 have special requirements. */ if (length_limit) { processor = save_marker; /* If saving APP0/APP14, save at least enough for our internal use. */ if (marker_code == (int) M_APP0 && length_limit < APP0_DATA_LEN) length_limit = APP0_DATA_LEN; else if (marker_code == (int) M_APP14 && length_limit < APP14_DATA_LEN) length_limit = APP14_DATA_LEN; } else { processor = skip_variable; /* If discarding APP0/APP14, use our regular on-the-fly processor. */ if (marker_code == (int) M_APP0 || marker_code == (int) M_APP14) processor = get_interesting_appn; } if (marker_code == (int) M_COM) { marker->process_COM = processor; marker->length_limit_COM = length_limit; } else if (marker_code >= (int) M_APP0 && marker_code <= (int) M_APP15) { marker->process_APPn[marker_code - (int) M_APP0] = processor; marker->length_limit_APPn[marker_code - (int) M_APP0] = length_limit; } else ERREXIT1(cinfo, JERR_UNKNOWN_MARKER, marker_code); } #endif /* SAVE_MARKERS_SUPPORTED */ /* * Install a special processing method for COM or APPn markers. */ GLOBAL(void) jpeg_set_marker_processor (j_decompress_ptr cinfo, int marker_code, jpeg_marker_parser_method routine) { my_marker_ptr marker = (my_marker_ptr) cinfo->marker; if (marker_code == (int) M_COM) marker->process_COM = routine; else if (marker_code >= (int) M_APP0 && marker_code <= (int) M_APP15) marker->process_APPn[marker_code - (int) M_APP0] = routine; else ERREXIT1(cinfo, JERR_UNKNOWN_MARKER, marker_code); } libjpeg-turbo-1.4.2/cjpeg.10000644000076500007650000003223112600050400012354 00000000000000.TH CJPEG 1 "21 November 2014" .SH NAME cjpeg \- compress an image file to a JPEG file .SH SYNOPSIS .B cjpeg [ .I options ] [ .I filename ] .LP .SH DESCRIPTION .LP .B cjpeg compresses the named image file, or the standard input if no file is named, and produces a JPEG/JFIF file on the standard output. The currently supported input file formats are: PPM (PBMPLUS color format), PGM (PBMPLUS grayscale format), BMP, Targa, and RLE (Utah Raster Toolkit format). (RLE is supported only if the URT library is available.) .SH OPTIONS All switch names may be abbreviated; for example, .B \-grayscale may be written .B \-gray or .BR \-gr . Most of the "basic" switches can be abbreviated to as little as one letter. Upper and lower case are equivalent (thus .B \-BMP is the same as .BR \-bmp ). British spellings are also accepted (e.g., .BR \-greyscale ), though for brevity these are not mentioned below. .PP The basic switches are: .TP .BI \-quality " N[,...]" Scale quantization tables to adjust image quality. Quality is 0 (worst) to 100 (best); default is 75. (See below for more info.) .TP .B \-grayscale Create monochrome JPEG file from color input. Be sure to use this switch when compressing a grayscale BMP file, because .B cjpeg isn't bright enough to notice whether a BMP file uses only shades of gray. By saying .BR \-grayscale , you'll get a smaller JPEG file that takes less time to process. .TP .B \-rgb Create RGB JPEG file. Using this switch suppresses the conversion from RGB colorspace input to the default YCbCr JPEG colorspace. .TP .B \-optimize Perform optimization of entropy encoding parameters. Without this, default encoding parameters are used. .B \-optimize usually makes the JPEG file a little smaller, but .B cjpeg runs somewhat slower and needs much more memory. Image quality and speed of decompression are unaffected by .BR \-optimize . .TP .B \-progressive Create progressive JPEG file (see below). .TP .B \-targa Input file is Targa format. Targa files that contain an "identification" field will not be automatically recognized by .BR cjpeg ; for such files you must specify .B \-targa to make .B cjpeg treat the input as Targa format. For most Targa files, you won't need this switch. .PP The .B \-quality switch lets you trade off compressed file size against quality of the reconstructed image: the higher the quality setting, the larger the JPEG file, and the closer the output image will be to the original input. Normally you want to use the lowest quality setting (smallest file) that decompresses into something visually indistinguishable from the original image. For this purpose the quality setting should be between 50 and 95; the default of 75 is often about right. If you see defects at .B \-quality 75, then go up 5 or 10 counts at a time until you are happy with the output image. (The optimal setting will vary from one image to another.) .PP .B \-quality 100 will generate a quantization table of all 1's, minimizing loss in the quantization step (but there is still information loss in subsampling, as well as roundoff error). This setting is mainly of interest for experimental purposes. Quality values above about 95 are .B not recommended for normal use; the compressed file size goes up dramatically for hardly any gain in output image quality. .PP In the other direction, quality values below 50 will produce very small files of low image quality. Settings around 5 to 10 might be useful in preparing an index of a large image library, for example. Try .B \-quality 2 (or so) for some amusing Cubist effects. (Note: quality values below about 25 generate 2-byte quantization tables, which are considered optional in the JPEG standard. .B cjpeg emits a warning message when you give such a quality value, because some other JPEG programs may be unable to decode the resulting file. Use .B \-baseline if you need to ensure compatibility at low quality values.) .PP The \fB-quality\fR option has been extended in this version of \fBcjpeg\fR to support separate quality settings for luminance and chrominance (or, in general, separate settings for every quantization table slot.) The principle is the same as chrominance subsampling: since the human eye is more sensitive to spatial changes in brightness than spatial changes in color, the chrominance components can be quantized more than the luminance components without incurring any visible image quality loss. However, unlike subsampling, this feature reduces data in the frequency domain instead of the spatial domain, which allows for more fine-grained control. This option is useful in quality-sensitive applications, for which the artifacts generated by subsampling may be unacceptable. .PP The \fB-quality\fR option accepts a comma-separated list of parameters, which respectively refer to the quality levels that should be assigned to the quantization table slots. If there are more q-table slots than parameters, then the last parameter is replicated. Thus, if only one quality parameter is given, this is used for both luminance and chrominance (slots 0 and 1, respectively), preserving the legacy behavior of cjpeg v6b and prior. More (or customized) quantization tables can be set with the \fB-qtables\fR option and assigned to components with the \fB-qslots\fR option (see the "wizard" switches below.) .PP JPEG files generated with separate luminance and chrominance quality are fully compliant with standard JPEG decoders. .PP .BR CAUTION: For this setting to be useful, be sure to pass an argument of \fB-sample 1x1\fR to \fBcjpeg\fR to disable chrominance subsampling. Otherwise, the default subsampling level (2x2, AKA "4:2:0") will be used. .PP The .B \-progressive switch creates a "progressive JPEG" file. In this type of JPEG file, the data is stored in multiple scans of increasing quality. If the file is being transmitted over a slow communications link, the decoder can use the first scan to display a low-quality image very quickly, and can then improve the display with each subsequent scan. The final image is exactly equivalent to a standard JPEG file of the same quality setting, and the total file size is about the same --- often a little smaller. .PP Switches for advanced users: .TP .B \-arithmetic Use arithmetic coding. .B Caution: arithmetic coded JPEG is not yet widely implemented, so many decoders will be unable to view an arithmetic coded JPEG file at all. .TP .B \-dct int Use integer DCT method (default). .TP .B \-dct fast Use fast integer DCT (less accurate). In libjpeg-turbo, the fast method is generally about 5-15% faster than the int method when using the x86/x86-64 SIMD extensions (results may vary with other SIMD implementations, or when using libjpeg-turbo without SIMD extensions.) For quality levels of 90 and below, there should be little or no perceptible difference between the two algorithms. For quality levels above 90, however, the difference between the fast and the int methods becomes more pronounced. With quality=97, for instance, the fast method incurs generally about a 1-3 dB loss (in PSNR) relative to the int method, but this can be larger for some images. Do not use the fast method with quality levels above 97. The algorithm often degenerates at quality=98 and above and can actually produce a more lossy image than if lower quality levels had been used. Also, in libjpeg-turbo, the fast method is not fully accelerated for quality levels above 97, so it will be slower than the int method. .TP .B \-dct float Use floating-point DCT method. The float method is mainly a legacy feature. It does not produce significantly more accurate results than the int method, and it is much slower. The float method may also give different results on different machines due to varying roundoff behavior, whereas the integer methods should give the same results on all machines. .TP .BI \-restart " N" Emit a JPEG restart marker every N MCU rows, or every N MCU blocks if "B" is attached to the number. .B \-restart 0 (the default) means no restart markers. .TP .BI \-smooth " N" Smooth the input image to eliminate dithering noise. N, ranging from 1 to 100, indicates the strength of smoothing. 0 (the default) means no smoothing. .TP .BI \-maxmemory " N" Set limit for amount of memory to use in processing large images. Value is in thousands of bytes, or millions of bytes if "M" is attached to the number. For example, .B \-max 4m selects 4000000 bytes. If more space is needed, temporary files will be used. .TP .BI \-outfile " name" Send output image to the named file, not to standard output. .TP .BI \-memdst Compress to memory instead of a file. This feature was implemented mainly as a way of testing the in-memory destination manager (jpeg_mem_dest()), but it is also useful for benchmarking, since it reduces the I/O overhead. .TP .B \-verbose Enable debug printout. More .BR \-v 's give more output. Also, version information is printed at startup. .TP .B \-debug Same as .BR \-verbose . .TP .B \-version Print version information and exit. .PP The .B \-restart option inserts extra markers that allow a JPEG decoder to resynchronize after a transmission error. Without restart markers, any damage to a compressed file will usually ruin the image from the point of the error to the end of the image; with restart markers, the damage is usually confined to the portion of the image up to the next restart marker. Of course, the restart markers occupy extra space. We recommend .B \-restart 1 for images that will be transmitted across unreliable networks such as Usenet. .PP The .B \-smooth option filters the input to eliminate fine-scale noise. This is often useful when converting dithered images to JPEG: a moderate smoothing factor of 10 to 50 gets rid of dithering patterns in the input file, resulting in a smaller JPEG file and a better-looking image. Too large a smoothing factor will visibly blur the image, however. .PP Switches for wizards: .TP .B \-baseline Force baseline-compatible quantization tables to be generated. This clamps quantization values to 8 bits even at low quality settings. (This switch is poorly named, since it does not ensure that the output is actually baseline JPEG. For example, you can use .B \-baseline and .B \-progressive together.) .TP .BI \-qtables " file" Use the quantization tables given in the specified text file. .TP .BI \-qslots " N[,...]" Select which quantization table to use for each color component. .TP .BI \-sample " HxV[,...]" Set JPEG sampling factors for each color component. .TP .BI \-scans " file" Use the scan script given in the specified text file. .PP The "wizard" switches are intended for experimentation with JPEG. If you don't know what you are doing, \fBdon't use them\fR. These switches are documented further in the file wizard.txt. .SH EXAMPLES .LP This example compresses the PPM file foo.ppm with a quality factor of 60 and saves the output as foo.jpg: .IP .B cjpeg \-quality .I 60 foo.ppm .B > .I foo.jpg .SH HINTS Color GIF files are not the ideal input for JPEG; JPEG is really intended for compressing full-color (24-bit) images. In particular, don't try to convert cartoons, line drawings, and other images that have only a few distinct colors. GIF works great on these, JPEG does not. If you want to convert a GIF to JPEG, you should experiment with .BR cjpeg 's .B \-quality and .B \-smooth options to get a satisfactory conversion. .B \-smooth 10 or so is often helpful. .PP Avoid running an image through a series of JPEG compression/decompression cycles. Image quality loss will accumulate; after ten or so cycles the image may be noticeably worse than it was after one cycle. It's best to use a lossless format while manipulating an image, then convert to JPEG format when you are ready to file the image away. .PP The .B \-optimize option to .B cjpeg is worth using when you are making a "final" version for posting or archiving. It's also a win when you are using low quality settings to make very small JPEG files; the percentage improvement is often a lot more than it is on larger files. (At present, .B \-optimize mode is always selected when generating progressive JPEG files.) .SH ENVIRONMENT .TP .B JPEGMEM If this environment variable is set, its value is the default memory limit. The value is specified as described for the .B \-maxmemory switch. .B JPEGMEM overrides the default value specified when the program was compiled, and itself is overridden by an explicit .BR \-maxmemory . .SH SEE ALSO .BR djpeg (1), .BR jpegtran (1), .BR rdjpgcom (1), .BR wrjpgcom (1) .br .BR ppm (5), .BR pgm (5) .br Wallace, Gregory K. "The JPEG Still Picture Compression Standard", Communications of the ACM, April 1991 (vol. 34, no. 4), pp. 30-44. .SH AUTHOR Independent JPEG Group .PP This file was modified by The libjpeg-turbo Project to include only information relevant to libjpeg-turbo, to wordsmith certain sections, and to describe features not present in libjpeg. .SH BUGS Support for GIF input files was removed in cjpeg v6b due to concerns over the Unisys LZW patent. Although this patent expired in 2006, cjpeg still lacks GIF support, for these historical reasons. (Conversion of GIF files to JPEG is usually a bad idea anyway.) .PP Not all variants of BMP and Targa file formats are supported. .PP The .B \-targa switch is not a bug, it's a feature. (It would be a bug if the Targa format designers had not been clueless.) libjpeg-turbo-1.4.2/jmorecfg.h0000644000076500007650000003316412600050400013155 00000000000000/* * jmorecfg.h * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1991-1997, Thomas G. Lane. * Modified 1997-2009 by Guido Vollbeding. * libjpeg-turbo Modifications: * Copyright (C) 2009, 2011, 2014-2015, D. R. Commander. * For conditions of distribution and use, see the accompanying README file. * * This file contains additional configuration options that customize the * JPEG software for special applications or support machine-dependent * optimizations. Most users will not need to touch this file. */ /* * Maximum number of components (color channels) allowed in JPEG image. * To meet the letter of the JPEG spec, set this to 255. However, darn * few applications need more than 4 channels (maybe 5 for CMYK + alpha * mask). We recommend 10 as a reasonable compromise; use 4 if you are * really short on memory. (Each allowed component costs a hundred or so * bytes of storage, whether actually used in an image or not.) */ #define MAX_COMPONENTS 10 /* maximum number of image components */ /* * Basic data types. * You may need to change these if you have a machine with unusual data * type sizes; for example, "char" not 8 bits, "short" not 16 bits, * or "long" not 32 bits. We don't care whether "int" is 16 or 32 bits, * but it had better be at least 16. */ /* Representation of a single sample (pixel element value). * We frequently allocate large arrays of these, so it's important to keep * them small. But if you have memory to burn and access to char or short * arrays is very slow on your hardware, you might want to change these. */ #if BITS_IN_JSAMPLE == 8 /* JSAMPLE should be the smallest type that will hold the values 0..255. * You can use a signed char by having GETJSAMPLE mask it with 0xFF. */ #ifdef HAVE_UNSIGNED_CHAR typedef unsigned char JSAMPLE; #define GETJSAMPLE(value) ((int) (value)) #else /* not HAVE_UNSIGNED_CHAR */ typedef char JSAMPLE; #ifdef __CHAR_UNSIGNED__ #define GETJSAMPLE(value) ((int) (value)) #else #define GETJSAMPLE(value) ((int) (value) & 0xFF) #endif /* __CHAR_UNSIGNED__ */ #endif /* HAVE_UNSIGNED_CHAR */ #define MAXJSAMPLE 255 #define CENTERJSAMPLE 128 #endif /* BITS_IN_JSAMPLE == 8 */ #if BITS_IN_JSAMPLE == 12 /* JSAMPLE should be the smallest type that will hold the values 0..4095. * On nearly all machines "short" will do nicely. */ typedef short JSAMPLE; #define GETJSAMPLE(value) ((int) (value)) #define MAXJSAMPLE 4095 #define CENTERJSAMPLE 2048 #endif /* BITS_IN_JSAMPLE == 12 */ /* Representation of a DCT frequency coefficient. * This should be a signed value of at least 16 bits; "short" is usually OK. * Again, we allocate large arrays of these, but you can change to int * if you have memory to burn and "short" is really slow. */ typedef short JCOEF; /* Compressed datastreams are represented as arrays of JOCTET. * These must be EXACTLY 8 bits wide, at least once they are written to * external storage. Note that when using the stdio data source/destination * managers, this is also the data type passed to fread/fwrite. */ #ifdef HAVE_UNSIGNED_CHAR typedef unsigned char JOCTET; #define GETJOCTET(value) (value) #else /* not HAVE_UNSIGNED_CHAR */ typedef char JOCTET; #ifdef __CHAR_UNSIGNED__ #define GETJOCTET(value) (value) #else #define GETJOCTET(value) ((value) & 0xFF) #endif /* __CHAR_UNSIGNED__ */ #endif /* HAVE_UNSIGNED_CHAR */ /* These typedefs are used for various table entries and so forth. * They must be at least as wide as specified; but making them too big * won't cost a huge amount of memory, so we don't provide special * extraction code like we did for JSAMPLE. (In other words, these * typedefs live at a different point on the speed/space tradeoff curve.) */ /* UINT8 must hold at least the values 0..255. */ #ifdef HAVE_UNSIGNED_CHAR typedef unsigned char UINT8; #else /* not HAVE_UNSIGNED_CHAR */ #ifdef __CHAR_UNSIGNED__ typedef char UINT8; #else /* not __CHAR_UNSIGNED__ */ typedef short UINT8; #endif /* __CHAR_UNSIGNED__ */ #endif /* HAVE_UNSIGNED_CHAR */ /* UINT16 must hold at least the values 0..65535. */ #ifdef HAVE_UNSIGNED_SHORT typedef unsigned short UINT16; #else /* not HAVE_UNSIGNED_SHORT */ typedef unsigned int UINT16; #endif /* HAVE_UNSIGNED_SHORT */ /* INT16 must hold at least the values -32768..32767. */ #ifndef XMD_H /* X11/xmd.h correctly defines INT16 */ typedef short INT16; #endif /* INT32 must hold at least signed 32-bit values. */ #ifndef XMD_H /* X11/xmd.h correctly defines INT32 */ #ifndef _BASETSD_H_ /* Microsoft defines it in basetsd.h */ #ifndef _BASETSD_H /* MinGW is slightly different */ #ifndef QGLOBAL_H /* Qt defines it in qglobal.h */ #define __INT32_IS_ACTUALLY_LONG typedef long INT32; #endif #endif #endif #endif /* Datatype used for image dimensions. The JPEG standard only supports * images up to 64K*64K due to 16-bit fields in SOF markers. Therefore * "unsigned int" is sufficient on all machines. However, if you need to * handle larger images and you don't mind deviating from the spec, you * can change this datatype. (Note that changing this datatype will * potentially require modifying the SIMD code. The x86-64 SIMD extensions, * in particular, assume a 32-bit JDIMENSION.) */ typedef unsigned int JDIMENSION; #define JPEG_MAX_DIMENSION 65500L /* a tad under 64K to prevent overflows */ /* These macros are used in all function definitions and extern declarations. * You could modify them if you need to change function linkage conventions; * in particular, you'll need to do that to make the library a Windows DLL. * Another application is to make all functions global for use with debuggers * or code profilers that require it. */ /* a function called through method pointers: */ #define METHODDEF(type) static type /* a function used only in its module: */ #define LOCAL(type) static type /* a function referenced thru EXTERNs: */ #define GLOBAL(type) type /* a reference to a GLOBAL function: */ #define EXTERN(type) extern type /* Originally, this macro was used as a way of defining function prototypes * for both modern compilers as well as older compilers that did not support * prototype parameters. libjpeg-turbo has never supported these older, * non-ANSI compilers, but the macro is still included because there is some * software out there that uses it. */ #define JMETHOD(type,methodname,arglist) type (*methodname) arglist /* libjpeg-turbo no longer supports platforms that have far symbols (MS-DOS), * but again, some software relies on this macro. */ #undef FAR #define FAR /* * On a few systems, type boolean and/or its values FALSE, TRUE may appear * in standard header files. Or you may have conflicts with application- * specific header files that you want to include together with these files. * Defining HAVE_BOOLEAN before including jpeglib.h should make it work. */ #ifndef HAVE_BOOLEAN typedef int boolean; #endif #ifndef FALSE /* in case these macros already exist */ #define FALSE 0 /* values of boolean */ #endif #ifndef TRUE #define TRUE 1 #endif /* * The remaining options affect code selection within the JPEG library, * but they don't need to be visible to most applications using the library. * To minimize application namespace pollution, the symbols won't be * defined unless JPEG_INTERNALS or JPEG_INTERNAL_OPTIONS has been defined. */ #ifdef JPEG_INTERNALS #define JPEG_INTERNAL_OPTIONS #endif #ifdef JPEG_INTERNAL_OPTIONS /* * These defines indicate whether to include various optional functions. * Undefining some of these symbols will produce a smaller but less capable * library. Note that you can leave certain source files out of the * compilation/linking process if you've #undef'd the corresponding symbols. * (You may HAVE to do that if your compiler doesn't like null source files.) */ /* Capability options common to encoder and decoder: */ #define DCT_ISLOW_SUPPORTED /* slow but accurate integer algorithm */ #define DCT_IFAST_SUPPORTED /* faster, less accurate integer method */ #define DCT_FLOAT_SUPPORTED /* floating-point: accurate, fast on fast HW */ /* Encoder capability options: */ #define C_MULTISCAN_FILES_SUPPORTED /* Multiple-scan JPEG files? */ #define C_PROGRESSIVE_SUPPORTED /* Progressive JPEG? (Requires MULTISCAN)*/ #define ENTROPY_OPT_SUPPORTED /* Optimization of entropy coding parms? */ /* Note: if you selected 12-bit data precision, it is dangerous to turn off * ENTROPY_OPT_SUPPORTED. The standard Huffman tables are only good for 8-bit * precision, so jchuff.c normally uses entropy optimization to compute * usable tables for higher precision. If you don't want to do optimization, * you'll have to supply different default Huffman tables. * The exact same statements apply for progressive JPEG: the default tables * don't work for progressive mode. (This may get fixed, however.) */ #define INPUT_SMOOTHING_SUPPORTED /* Input image smoothing option? */ /* Decoder capability options: */ #define D_MULTISCAN_FILES_SUPPORTED /* Multiple-scan JPEG files? */ #define D_PROGRESSIVE_SUPPORTED /* Progressive JPEG? (Requires MULTISCAN)*/ #define SAVE_MARKERS_SUPPORTED /* jpeg_save_markers() needed? */ #define BLOCK_SMOOTHING_SUPPORTED /* Block smoothing? (Progressive only) */ #define IDCT_SCALING_SUPPORTED /* Output rescaling via IDCT? */ #undef UPSAMPLE_SCALING_SUPPORTED /* Output rescaling at upsample stage? */ #define UPSAMPLE_MERGING_SUPPORTED /* Fast path for sloppy upsampling? */ #define QUANT_1PASS_SUPPORTED /* 1-pass color quantization? */ #define QUANT_2PASS_SUPPORTED /* 2-pass color quantization? */ /* more capability options later, no doubt */ /* * The RGB_RED, RGB_GREEN, RGB_BLUE, and RGB_PIXELSIZE macros are a vestigial * feature of libjpeg. The idea was that, if an application developer needed * to compress from/decompress to a BGR/BGRX/RGBX/XBGR/XRGB buffer, they could * change these macros, rebuild libjpeg, and link their application statically * with it. In reality, few people ever did this, because there were some * severe restrictions involved (cjpeg and djpeg no longer worked properly, * compressing/decompressing RGB JPEGs no longer worked properly, and the color * quantizer wouldn't work with pixel sizes other than 3.) Further, since all * of the O/S-supplied versions of libjpeg were built with the default values * of RGB_RED, RGB_GREEN, RGB_BLUE, and RGB_PIXELSIZE, many applications have * come to regard these values as immutable. * * The libjpeg-turbo colorspace extensions provide a much cleaner way of * compressing from/decompressing to buffers with arbitrary component orders * and pixel sizes. Thus, we do not support changing the values of RGB_RED, * RGB_GREEN, RGB_BLUE, or RGB_PIXELSIZE. In addition to the restrictions * listed above, changing these values will also break the SIMD extensions and * the regression tests. */ #define RGB_RED 0 /* Offset of Red in an RGB scanline element */ #define RGB_GREEN 1 /* Offset of Green */ #define RGB_BLUE 2 /* Offset of Blue */ #define RGB_PIXELSIZE 3 /* JSAMPLEs per RGB scanline element */ #define JPEG_NUMCS 17 #define EXT_RGB_RED 0 #define EXT_RGB_GREEN 1 #define EXT_RGB_BLUE 2 #define EXT_RGB_PIXELSIZE 3 #define EXT_RGBX_RED 0 #define EXT_RGBX_GREEN 1 #define EXT_RGBX_BLUE 2 #define EXT_RGBX_PIXELSIZE 4 #define EXT_BGR_RED 2 #define EXT_BGR_GREEN 1 #define EXT_BGR_BLUE 0 #define EXT_BGR_PIXELSIZE 3 #define EXT_BGRX_RED 2 #define EXT_BGRX_GREEN 1 #define EXT_BGRX_BLUE 0 #define EXT_BGRX_PIXELSIZE 4 #define EXT_XBGR_RED 3 #define EXT_XBGR_GREEN 2 #define EXT_XBGR_BLUE 1 #define EXT_XBGR_PIXELSIZE 4 #define EXT_XRGB_RED 1 #define EXT_XRGB_GREEN 2 #define EXT_XRGB_BLUE 3 #define EXT_XRGB_PIXELSIZE 4 static const int rgb_red[JPEG_NUMCS] = { -1, -1, RGB_RED, -1, -1, -1, EXT_RGB_RED, EXT_RGBX_RED, EXT_BGR_RED, EXT_BGRX_RED, EXT_XBGR_RED, EXT_XRGB_RED, EXT_RGBX_RED, EXT_BGRX_RED, EXT_XBGR_RED, EXT_XRGB_RED, -1 }; static const int rgb_green[JPEG_NUMCS] = { -1, -1, RGB_GREEN, -1, -1, -1, EXT_RGB_GREEN, EXT_RGBX_GREEN, EXT_BGR_GREEN, EXT_BGRX_GREEN, EXT_XBGR_GREEN, EXT_XRGB_GREEN, EXT_RGBX_GREEN, EXT_BGRX_GREEN, EXT_XBGR_GREEN, EXT_XRGB_GREEN, -1 }; static const int rgb_blue[JPEG_NUMCS] = { -1, -1, RGB_BLUE, -1, -1, -1, EXT_RGB_BLUE, EXT_RGBX_BLUE, EXT_BGR_BLUE, EXT_BGRX_BLUE, EXT_XBGR_BLUE, EXT_XRGB_BLUE, EXT_RGBX_BLUE, EXT_BGRX_BLUE, EXT_XBGR_BLUE, EXT_XRGB_BLUE, -1 }; static const int rgb_pixelsize[JPEG_NUMCS] = { -1, -1, RGB_PIXELSIZE, -1, -1, -1, EXT_RGB_PIXELSIZE, EXT_RGBX_PIXELSIZE, EXT_BGR_PIXELSIZE, EXT_BGRX_PIXELSIZE, EXT_XBGR_PIXELSIZE, EXT_XRGB_PIXELSIZE, EXT_RGBX_PIXELSIZE, EXT_BGRX_PIXELSIZE, EXT_XBGR_PIXELSIZE, EXT_XRGB_PIXELSIZE, -1 }; /* Definitions for speed-related optimizations. */ /* On some machines (notably 68000 series) "int" is 32 bits, but multiplying * two 16-bit shorts is faster than multiplying two ints. Define MULTIPLIER * as short on such a machine. MULTIPLIER must be at least 16 bits wide. */ #ifndef MULTIPLIER #ifndef WITH_SIMD #define MULTIPLIER int /* type for fastest integer multiply */ #else #define MULTIPLIER short /* prefer 16-bit with SIMD for parellelism */ #endif #endif /* FAST_FLOAT should be either float or double, whichever is done faster * by your compiler. (Note that this type is only used in the floating point * DCT routines, so it only matters if you've defined DCT_FLOAT_SUPPORTED.) */ #ifndef FAST_FLOAT #define FAST_FLOAT float #endif #endif /* JPEG_INTERNAL_OPTIONS */ libjpeg-turbo-1.4.2/wrrle.c0000644000076500007650000002224012600050400012500 00000000000000/* * wrrle.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1991-1996, Thomas G. Lane. * It was modified by The libjpeg-turbo Project to include only code and * information relevant to libjpeg-turbo. * For conditions of distribution and use, see the accompanying README file. * * This file contains routines to write output images in RLE format. * The Utah Raster Toolkit library is required (version 3.1 or later). * * These routines may need modification for non-Unix environments or * specialized applications. As they stand, they assume output to * an ordinary stdio stream. * * Based on code contributed by Mike Lijewski, * with updates from Robert Hutchinson. */ #include "cdjpeg.h" /* Common decls for cjpeg/djpeg applications */ #ifdef RLE_SUPPORTED /* rle.h is provided by the Utah Raster Toolkit. */ #include /* * We assume that JSAMPLE has the same representation as rle_pixel, * to wit, "unsigned char". Hence we can't cope with 12- or 16-bit samples. */ #if BITS_IN_JSAMPLE != 8 Sorry, this code only copes with 8-bit JSAMPLEs. /* deliberate syntax err */ #endif /* * Since RLE stores scanlines bottom-to-top, we have to invert the image * from JPEG's top-to-bottom order. To do this, we save the outgoing data * in a virtual array during put_pixel_row calls, then actually emit the * RLE file during finish_output. */ /* * For now, if we emit an RLE color map then it is always 256 entries long, * though not all of the entries need be used. */ #define CMAPBITS 8 #define CMAPLENGTH (1<<(CMAPBITS)) typedef struct { struct djpeg_dest_struct pub; /* public fields */ jvirt_sarray_ptr image; /* virtual array to store the output image */ rle_map *colormap; /* RLE-style color map, or NULL if none */ rle_pixel **rle_row; /* To pass rows to rle_putrow() */ } rle_dest_struct; typedef rle_dest_struct * rle_dest_ptr; /* Forward declarations */ METHODDEF(void) rle_put_pixel_rows (j_decompress_ptr cinfo, djpeg_dest_ptr dinfo, JDIMENSION rows_supplied); /* * Write the file header. * * In this module it's easier to wait till finish_output to write anything. */ METHODDEF(void) start_output_rle (j_decompress_ptr cinfo, djpeg_dest_ptr dinfo) { rle_dest_ptr dest = (rle_dest_ptr) dinfo; size_t cmapsize; int i, ci; #ifdef PROGRESS_REPORT cd_progress_ptr progress = (cd_progress_ptr) cinfo->progress; #endif /* * Make sure the image can be stored in RLE format. * * - RLE stores image dimensions as *signed* 16 bit integers. JPEG * uses unsigned, so we have to check the width. * * - Colorspace is expected to be grayscale or RGB. * * - The number of channels (components) is expected to be 1 (grayscale/ * pseudocolor) or 3 (truecolor/directcolor). * (could be 2 or 4 if using an alpha channel, but we aren't) */ if (cinfo->output_width > 32767 || cinfo->output_height > 32767) ERREXIT2(cinfo, JERR_RLE_DIMENSIONS, cinfo->output_width, cinfo->output_height); if (cinfo->out_color_space != JCS_GRAYSCALE && cinfo->out_color_space != JCS_RGB) ERREXIT(cinfo, JERR_RLE_COLORSPACE); if (cinfo->output_components != 1 && cinfo->output_components != 3) ERREXIT1(cinfo, JERR_RLE_TOOMANYCHANNELS, cinfo->num_components); /* Convert colormap, if any, to RLE format. */ dest->colormap = NULL; if (cinfo->quantize_colors) { /* Allocate storage for RLE-style cmap, zero any extra entries */ cmapsize = cinfo->out_color_components * CMAPLENGTH * sizeof(rle_map); dest->colormap = (rle_map *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, cmapsize); MEMZERO(dest->colormap, cmapsize); /* Save away data in RLE format --- note 8-bit left shift! */ /* Shifting would need adjustment for JSAMPLEs wider than 8 bits. */ for (ci = 0; ci < cinfo->out_color_components; ci++) { for (i = 0; i < cinfo->actual_number_of_colors; i++) { dest->colormap[ci * CMAPLENGTH + i] = GETJSAMPLE(cinfo->colormap[ci][i]) << 8; } } } /* Set the output buffer to the first row */ dest->pub.buffer = (*cinfo->mem->access_virt_sarray) ((j_common_ptr) cinfo, dest->image, (JDIMENSION) 0, (JDIMENSION) 1, TRUE); dest->pub.buffer_height = 1; dest->pub.put_pixel_rows = rle_put_pixel_rows; #ifdef PROGRESS_REPORT if (progress != NULL) { progress->total_extra_passes++; /* count file writing as separate pass */ } #endif } /* * Write some pixel data. * * This routine just saves the data away in a virtual array. */ METHODDEF(void) rle_put_pixel_rows (j_decompress_ptr cinfo, djpeg_dest_ptr dinfo, JDIMENSION rows_supplied) { rle_dest_ptr dest = (rle_dest_ptr) dinfo; if (cinfo->output_scanline < cinfo->output_height) { dest->pub.buffer = (*cinfo->mem->access_virt_sarray) ((j_common_ptr) cinfo, dest->image, cinfo->output_scanline, (JDIMENSION) 1, TRUE); } } /* * Finish up at the end of the file. * * Here is where we really output the RLE file. */ METHODDEF(void) finish_output_rle (j_decompress_ptr cinfo, djpeg_dest_ptr dinfo) { rle_dest_ptr dest = (rle_dest_ptr) dinfo; rle_hdr header; /* Output file information */ rle_pixel **rle_row, *red, *green, *blue; JSAMPROW output_row; char cmapcomment[80]; int row, col; int ci; #ifdef PROGRESS_REPORT cd_progress_ptr progress = (cd_progress_ptr) cinfo->progress; #endif /* Initialize the header info */ header = *rle_hdr_init(NULL); header.rle_file = dest->pub.output_file; header.xmin = 0; header.xmax = cinfo->output_width - 1; header.ymin = 0; header.ymax = cinfo->output_height - 1; header.alpha = 0; header.ncolors = cinfo->output_components; for (ci = 0; ci < cinfo->output_components; ci++) { RLE_SET_BIT(header, ci); } if (cinfo->quantize_colors) { header.ncmap = cinfo->out_color_components; header.cmaplen = CMAPBITS; header.cmap = dest->colormap; /* Add a comment to the output image with the true colormap length. */ sprintf(cmapcomment, "color_map_length=%d", cinfo->actual_number_of_colors); rle_putcom(cmapcomment, &header); } /* Emit the RLE header and color map (if any) */ rle_put_setup(&header); /* Now output the RLE data from our virtual array. * We assume here that rle_pixel is represented the same as JSAMPLE. */ #ifdef PROGRESS_REPORT if (progress != NULL) { progress->pub.pass_limit = cinfo->output_height; progress->pub.pass_counter = 0; (*progress->pub.progress_monitor) ((j_common_ptr) cinfo); } #endif if (cinfo->output_components == 1) { for (row = cinfo->output_height-1; row >= 0; row--) { rle_row = (rle_pixel **) (*cinfo->mem->access_virt_sarray) ((j_common_ptr) cinfo, dest->image, (JDIMENSION) row, (JDIMENSION) 1, FALSE); rle_putrow(rle_row, (int) cinfo->output_width, &header); #ifdef PROGRESS_REPORT if (progress != NULL) { progress->pub.pass_counter++; (*progress->pub.progress_monitor) ((j_common_ptr) cinfo); } #endif } } else { for (row = cinfo->output_height-1; row >= 0; row--) { rle_row = (rle_pixel **) dest->rle_row; output_row = * (*cinfo->mem->access_virt_sarray) ((j_common_ptr) cinfo, dest->image, (JDIMENSION) row, (JDIMENSION) 1, FALSE); red = rle_row[0]; green = rle_row[1]; blue = rle_row[2]; for (col = cinfo->output_width; col > 0; col--) { *red++ = GETJSAMPLE(*output_row++); *green++ = GETJSAMPLE(*output_row++); *blue++ = GETJSAMPLE(*output_row++); } rle_putrow(rle_row, (int) cinfo->output_width, &header); #ifdef PROGRESS_REPORT if (progress != NULL) { progress->pub.pass_counter++; (*progress->pub.progress_monitor) ((j_common_ptr) cinfo); } #endif } } #ifdef PROGRESS_REPORT if (progress != NULL) progress->completed_extra_passes++; #endif /* Emit file trailer */ rle_puteof(&header); fflush(dest->pub.output_file); if (ferror(dest->pub.output_file)) ERREXIT(cinfo, JERR_FILE_WRITE); } /* * The module selection routine for RLE format output. */ GLOBAL(djpeg_dest_ptr) jinit_write_rle (j_decompress_ptr cinfo) { rle_dest_ptr dest; /* Create module interface object, fill in method pointers */ dest = (rle_dest_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, sizeof(rle_dest_struct)); dest->pub.start_output = start_output_rle; dest->pub.finish_output = finish_output_rle; /* Calculate output image dimensions so we can allocate space */ jpeg_calc_output_dimensions(cinfo); /* Allocate a work array for output to the RLE library. */ dest->rle_row = (*cinfo->mem->alloc_sarray) ((j_common_ptr) cinfo, JPOOL_IMAGE, cinfo->output_width, (JDIMENSION) cinfo->output_components); /* Allocate a virtual array to hold the image. */ dest->image = (*cinfo->mem->request_virt_sarray) ((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE, (JDIMENSION) (cinfo->output_width * cinfo->output_components), cinfo->output_height, (JDIMENSION) 1); return (djpeg_dest_ptr) dest; } #endif /* RLE_SUPPORTED */ libjpeg-turbo-1.4.2/wrbmp.c0000644000076500007650000003646112600050400012506 00000000000000/* * wrbmp.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1994-1996, Thomas G. Lane. * libjpeg-turbo Modifications: * Copyright (C) 2013, Linaro Limited. * Copyright (C) 2014, D. R. Commander. * For conditions of distribution and use, see the accompanying README file. * * This file contains routines to write output images in Microsoft "BMP" * format (MS Windows 3.x and OS/2 1.x flavors). * Either 8-bit colormapped or 24-bit full-color format can be written. * No compression is supported. * * These routines may need modification for non-Unix environments or * specialized applications. As they stand, they assume output to * an ordinary stdio stream. * * This code contributed by James Arthur Boucher. */ #include "cdjpeg.h" /* Common decls for cjpeg/djpeg applications */ #include "jconfigint.h" #ifdef BMP_SUPPORTED /* * To support 12-bit JPEG data, we'd have to scale output down to 8 bits. * This is not yet implemented. */ #if BITS_IN_JSAMPLE != 8 Sorry, this code only copes with 8-bit JSAMPLEs. /* deliberate syntax err */ #endif /* * Since BMP stores scanlines bottom-to-top, we have to invert the image * from JPEG's top-to-bottom order. To do this, we save the outgoing data * in a virtual array during put_pixel_row calls, then actually emit the * BMP file during finish_output. The virtual array contains one JSAMPLE per * pixel if the output is grayscale or colormapped, three if it is full color. */ /* Private version of data destination object */ typedef struct { struct djpeg_dest_struct pub; /* public fields */ boolean is_os2; /* saves the OS2 format request flag */ jvirt_sarray_ptr whole_image; /* needed to reverse row order */ JDIMENSION data_width; /* JSAMPLEs per row */ JDIMENSION row_width; /* physical width of one row in the BMP file */ int pad_bytes; /* number of padding bytes needed per row */ JDIMENSION cur_output_row; /* next row# to write to virtual array */ } bmp_dest_struct; typedef bmp_dest_struct * bmp_dest_ptr; /* Forward declarations */ LOCAL(void) write_colormap (j_decompress_ptr cinfo, bmp_dest_ptr dest, int map_colors, int map_entry_size); static INLINE boolean is_big_endian(void) { int test_value = 1; if(*(char *)&test_value != 1) return TRUE; return FALSE; } /* * Write some pixel data. * In this module rows_supplied will always be 1. */ METHODDEF(void) put_pixel_rows (j_decompress_ptr cinfo, djpeg_dest_ptr dinfo, JDIMENSION rows_supplied) /* This version is for writing 24-bit pixels */ { bmp_dest_ptr dest = (bmp_dest_ptr) dinfo; JSAMPARRAY image_ptr; register JSAMPROW inptr, outptr; register JDIMENSION col; int pad; /* Access next row in virtual array */ image_ptr = (*cinfo->mem->access_virt_sarray) ((j_common_ptr) cinfo, dest->whole_image, dest->cur_output_row, (JDIMENSION) 1, TRUE); dest->cur_output_row++; /* Transfer data. Note destination values must be in BGR order * (even though Microsoft's own documents say the opposite). */ inptr = dest->pub.buffer[0]; outptr = image_ptr[0]; if(cinfo->out_color_space == JCS_RGB565) { boolean big_endian = is_big_endian(); unsigned short *inptr2 = (unsigned short *)inptr; for (col = cinfo->output_width; col > 0; col--) { if (big_endian) { outptr[0] = (*inptr2 >> 5) & 0xF8; outptr[1] = ((*inptr2 << 5) & 0xE0) | ((*inptr2 >> 11) & 0x1C); outptr[2] = *inptr2 & 0xF8; } else { outptr[0] = (*inptr2 << 3) & 0xF8; outptr[1] = (*inptr2 >> 3) & 0xFC; outptr[2] = (*inptr2 >> 8) & 0xF8; } outptr += 3; inptr2++; } } else { for (col = cinfo->output_width; col > 0; col--) { outptr[2] = *inptr++; /* can omit GETJSAMPLE() safely */ outptr[1] = *inptr++; outptr[0] = *inptr++; outptr += 3; } } /* Zero out the pad bytes. */ pad = dest->pad_bytes; while (--pad >= 0) *outptr++ = 0; } METHODDEF(void) put_gray_rows (j_decompress_ptr cinfo, djpeg_dest_ptr dinfo, JDIMENSION rows_supplied) /* This version is for grayscale OR quantized color output */ { bmp_dest_ptr dest = (bmp_dest_ptr) dinfo; JSAMPARRAY image_ptr; register JSAMPROW inptr, outptr; register JDIMENSION col; int pad; /* Access next row in virtual array */ image_ptr = (*cinfo->mem->access_virt_sarray) ((j_common_ptr) cinfo, dest->whole_image, dest->cur_output_row, (JDIMENSION) 1, TRUE); dest->cur_output_row++; /* Transfer data. */ inptr = dest->pub.buffer[0]; outptr = image_ptr[0]; for (col = cinfo->output_width; col > 0; col--) { *outptr++ = *inptr++; /* can omit GETJSAMPLE() safely */ } /* Zero out the pad bytes. */ pad = dest->pad_bytes; while (--pad >= 0) *outptr++ = 0; } /* * Startup: normally writes the file header. * In this module we may as well postpone everything until finish_output. */ METHODDEF(void) start_output_bmp (j_decompress_ptr cinfo, djpeg_dest_ptr dinfo) { /* no work here */ } /* * Finish up at the end of the file. * * Here is where we really output the BMP file. * * First, routines to write the Windows and OS/2 variants of the file header. */ LOCAL(void) write_bmp_header (j_decompress_ptr cinfo, bmp_dest_ptr dest) /* Write a Windows-style BMP file header, including colormap if needed */ { char bmpfileheader[14]; char bmpinfoheader[40]; #define PUT_2B(array,offset,value) \ (array[offset] = (char) ((value) & 0xFF), \ array[offset+1] = (char) (((value) >> 8) & 0xFF)) #define PUT_4B(array,offset,value) \ (array[offset] = (char) ((value) & 0xFF), \ array[offset+1] = (char) (((value) >> 8) & 0xFF), \ array[offset+2] = (char) (((value) >> 16) & 0xFF), \ array[offset+3] = (char) (((value) >> 24) & 0xFF)) INT32 headersize, bfSize; int bits_per_pixel, cmap_entries; /* Compute colormap size and total file size */ if (cinfo->out_color_space == JCS_RGB) { if (cinfo->quantize_colors) { /* Colormapped RGB */ bits_per_pixel = 8; cmap_entries = 256; } else { /* Unquantized, full color RGB */ bits_per_pixel = 24; cmap_entries = 0; } } else if (cinfo->out_color_space == JCS_RGB565) { bits_per_pixel = 24; cmap_entries = 0; } else { /* Grayscale output. We need to fake a 256-entry colormap. */ bits_per_pixel = 8; cmap_entries = 256; } /* File size */ headersize = 14 + 40 + cmap_entries * 4; /* Header and colormap */ bfSize = headersize + (INT32) dest->row_width * (INT32) cinfo->output_height; /* Set unused fields of header to 0 */ MEMZERO(bmpfileheader, sizeof(bmpfileheader)); MEMZERO(bmpinfoheader, sizeof(bmpinfoheader)); /* Fill the file header */ bmpfileheader[0] = 0x42; /* first 2 bytes are ASCII 'B', 'M' */ bmpfileheader[1] = 0x4D; PUT_4B(bmpfileheader, 2, bfSize); /* bfSize */ /* we leave bfReserved1 & bfReserved2 = 0 */ PUT_4B(bmpfileheader, 10, headersize); /* bfOffBits */ /* Fill the info header (Microsoft calls this a BITMAPINFOHEADER) */ PUT_2B(bmpinfoheader, 0, 40); /* biSize */ PUT_4B(bmpinfoheader, 4, cinfo->output_width); /* biWidth */ PUT_4B(bmpinfoheader, 8, cinfo->output_height); /* biHeight */ PUT_2B(bmpinfoheader, 12, 1); /* biPlanes - must be 1 */ PUT_2B(bmpinfoheader, 14, bits_per_pixel); /* biBitCount */ /* we leave biCompression = 0, for none */ /* we leave biSizeImage = 0; this is correct for uncompressed data */ if (cinfo->density_unit == 2) { /* if have density in dots/cm, then */ PUT_4B(bmpinfoheader, 24, (INT32) (cinfo->X_density*100)); /* XPels/M */ PUT_4B(bmpinfoheader, 28, (INT32) (cinfo->Y_density*100)); /* XPels/M */ } PUT_2B(bmpinfoheader, 32, cmap_entries); /* biClrUsed */ /* we leave biClrImportant = 0 */ if (JFWRITE(dest->pub.output_file, bmpfileheader, 14) != (size_t) 14) ERREXIT(cinfo, JERR_FILE_WRITE); if (JFWRITE(dest->pub.output_file, bmpinfoheader, 40) != (size_t) 40) ERREXIT(cinfo, JERR_FILE_WRITE); if (cmap_entries > 0) write_colormap(cinfo, dest, cmap_entries, 4); } LOCAL(void) write_os2_header (j_decompress_ptr cinfo, bmp_dest_ptr dest) /* Write an OS2-style BMP file header, including colormap if needed */ { char bmpfileheader[14]; char bmpcoreheader[12]; INT32 headersize, bfSize; int bits_per_pixel, cmap_entries; /* Compute colormap size and total file size */ if (cinfo->out_color_space == JCS_RGB) { if (cinfo->quantize_colors) { /* Colormapped RGB */ bits_per_pixel = 8; cmap_entries = 256; } else { /* Unquantized, full color RGB */ bits_per_pixel = 24; cmap_entries = 0; } } else if (cinfo->out_color_space == JCS_RGB565) { bits_per_pixel = 24; cmap_entries = 0; } else { /* Grayscale output. We need to fake a 256-entry colormap. */ bits_per_pixel = 8; cmap_entries = 256; } /* File size */ headersize = 14 + 12 + cmap_entries * 3; /* Header and colormap */ bfSize = headersize + (INT32) dest->row_width * (INT32) cinfo->output_height; /* Set unused fields of header to 0 */ MEMZERO(bmpfileheader, sizeof(bmpfileheader)); MEMZERO(bmpcoreheader, sizeof(bmpcoreheader)); /* Fill the file header */ bmpfileheader[0] = 0x42; /* first 2 bytes are ASCII 'B', 'M' */ bmpfileheader[1] = 0x4D; PUT_4B(bmpfileheader, 2, bfSize); /* bfSize */ /* we leave bfReserved1 & bfReserved2 = 0 */ PUT_4B(bmpfileheader, 10, headersize); /* bfOffBits */ /* Fill the info header (Microsoft calls this a BITMAPCOREHEADER) */ PUT_2B(bmpcoreheader, 0, 12); /* bcSize */ PUT_2B(bmpcoreheader, 4, cinfo->output_width); /* bcWidth */ PUT_2B(bmpcoreheader, 6, cinfo->output_height); /* bcHeight */ PUT_2B(bmpcoreheader, 8, 1); /* bcPlanes - must be 1 */ PUT_2B(bmpcoreheader, 10, bits_per_pixel); /* bcBitCount */ if (JFWRITE(dest->pub.output_file, bmpfileheader, 14) != (size_t) 14) ERREXIT(cinfo, JERR_FILE_WRITE); if (JFWRITE(dest->pub.output_file, bmpcoreheader, 12) != (size_t) 12) ERREXIT(cinfo, JERR_FILE_WRITE); if (cmap_entries > 0) write_colormap(cinfo, dest, cmap_entries, 3); } /* * Write the colormap. * Windows uses BGR0 map entries; OS/2 uses BGR entries. */ LOCAL(void) write_colormap (j_decompress_ptr cinfo, bmp_dest_ptr dest, int map_colors, int map_entry_size) { JSAMPARRAY colormap = cinfo->colormap; int num_colors = cinfo->actual_number_of_colors; FILE * outfile = dest->pub.output_file; int i; if (colormap != NULL) { if (cinfo->out_color_components == 3) { /* Normal case with RGB colormap */ for (i = 0; i < num_colors; i++) { putc(GETJSAMPLE(colormap[2][i]), outfile); putc(GETJSAMPLE(colormap[1][i]), outfile); putc(GETJSAMPLE(colormap[0][i]), outfile); if (map_entry_size == 4) putc(0, outfile); } } else { /* Grayscale colormap (only happens with grayscale quantization) */ for (i = 0; i < num_colors; i++) { putc(GETJSAMPLE(colormap[0][i]), outfile); putc(GETJSAMPLE(colormap[0][i]), outfile); putc(GETJSAMPLE(colormap[0][i]), outfile); if (map_entry_size == 4) putc(0, outfile); } } } else { /* If no colormap, must be grayscale data. Generate a linear "map". */ for (i = 0; i < 256; i++) { putc(i, outfile); putc(i, outfile); putc(i, outfile); if (map_entry_size == 4) putc(0, outfile); } } /* Pad colormap with zeros to ensure specified number of colormap entries */ if (i > map_colors) ERREXIT1(cinfo, JERR_TOO_MANY_COLORS, i); for (; i < map_colors; i++) { putc(0, outfile); putc(0, outfile); putc(0, outfile); if (map_entry_size == 4) putc(0, outfile); } } METHODDEF(void) finish_output_bmp (j_decompress_ptr cinfo, djpeg_dest_ptr dinfo) { bmp_dest_ptr dest = (bmp_dest_ptr) dinfo; register FILE * outfile = dest->pub.output_file; JSAMPARRAY image_ptr; register JSAMPROW data_ptr; JDIMENSION row; register JDIMENSION col; cd_progress_ptr progress = (cd_progress_ptr) cinfo->progress; /* Write the header and colormap */ if (dest->is_os2) write_os2_header(cinfo, dest); else write_bmp_header(cinfo, dest); /* Write the file body from our virtual array */ for (row = cinfo->output_height; row > 0; row--) { if (progress != NULL) { progress->pub.pass_counter = (long) (cinfo->output_height - row); progress->pub.pass_limit = (long) cinfo->output_height; (*progress->pub.progress_monitor) ((j_common_ptr) cinfo); } image_ptr = (*cinfo->mem->access_virt_sarray) ((j_common_ptr) cinfo, dest->whole_image, row-1, (JDIMENSION) 1, FALSE); data_ptr = image_ptr[0]; for (col = dest->row_width; col > 0; col--) { putc(GETJSAMPLE(*data_ptr), outfile); data_ptr++; } } if (progress != NULL) progress->completed_extra_passes++; /* Make sure we wrote the output file OK */ fflush(outfile); if (ferror(outfile)) ERREXIT(cinfo, JERR_FILE_WRITE); } /* * The module selection routine for BMP format output. */ GLOBAL(djpeg_dest_ptr) jinit_write_bmp (j_decompress_ptr cinfo, boolean is_os2) { bmp_dest_ptr dest; JDIMENSION row_width; /* Create module interface object, fill in method pointers */ dest = (bmp_dest_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, sizeof(bmp_dest_struct)); dest->pub.start_output = start_output_bmp; dest->pub.finish_output = finish_output_bmp; dest->is_os2 = is_os2; if (cinfo->out_color_space == JCS_GRAYSCALE) { dest->pub.put_pixel_rows = put_gray_rows; } else if (cinfo->out_color_space == JCS_RGB) { if (cinfo->quantize_colors) dest->pub.put_pixel_rows = put_gray_rows; else dest->pub.put_pixel_rows = put_pixel_rows; } else if(cinfo->out_color_space == JCS_RGB565 ) { dest->pub.put_pixel_rows = put_pixel_rows; } else { ERREXIT(cinfo, JERR_BMP_COLORSPACE); } /* Calculate output image dimensions so we can allocate space */ jpeg_calc_output_dimensions(cinfo); /* Determine width of rows in the BMP file (padded to 4-byte boundary). */ if (cinfo->out_color_space == JCS_RGB565) { row_width = cinfo->output_width * 2; dest->row_width = dest->data_width = cinfo->output_width * 3; } else { row_width = cinfo->output_width * cinfo->output_components; dest->row_width = dest->data_width = row_width; } while ((dest->row_width & 3) != 0) dest->row_width++; dest->pad_bytes = (int) (dest->row_width - dest->data_width); if (cinfo->out_color_space == JCS_RGB565) { while ((row_width & 3) != 0) row_width++; } else { row_width = dest->row_width; } /* Allocate space for inversion array, prepare for write pass */ dest->whole_image = (*cinfo->mem->request_virt_sarray) ((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE, dest->row_width, cinfo->output_height, (JDIMENSION) 1); dest->cur_output_row = 0; if (cinfo->progress != NULL) { cd_progress_ptr progress = (cd_progress_ptr) cinfo->progress; progress->total_extra_passes++; /* count file input as separate pass */ } /* Create decompressor output buffer. */ dest->pub.buffer = (*cinfo->mem->alloc_sarray) ((j_common_ptr) cinfo, JPOOL_IMAGE, row_width, (JDIMENSION) 1); dest->pub.buffer_height = 1; return (djpeg_dest_ptr) dest; } #endif /* BMP_SUPPORTED */ libjpeg-turbo-1.4.2/jidctint.c0000644000076500007650000031533612600050400013170 00000000000000/* * jidctint.c * * This file was part of the Independent JPEG Group's software. * Copyright (C) 1991-1998, Thomas G. Lane. * Modification developed 2002-2009 by Guido Vollbeding. * libjpeg-turbo Modifications: * Copyright (C) 2015, D. R. Commander * For conditions of distribution and use, see the accompanying README file. * * This file contains a slow-but-accurate integer implementation of the * inverse DCT (Discrete Cosine Transform). In the IJG code, this routine * must also perform dequantization of the input coefficients. * * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT * on each row (or vice versa, but it's more convenient to emit a row at * a time). Direct algorithms are also available, but they are much more * complex and seem not to be any faster when reduced to code. * * This implementation is based on an algorithm described in * C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT * Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics, * Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991. * The primary algorithm described there uses 11 multiplies and 29 adds. * We use their alternate method with 12 multiplies and 32 adds. * The advantage of this method is that no data path contains more than one * multiplication; this allows a very simple and accurate implementation in * scaled fixed-point arithmetic, with a minimal number of shifts. * * We also provide IDCT routines with various output sample block sizes for * direct resolution reduction or enlargement without additional resampling: * NxN (N=1...16) pixels for one 8x8 input DCT block. * * For N<8 we simply take the corresponding low-frequency coefficients of * the 8x8 input DCT block and apply an NxN point IDCT on the sub-block * to yield the downscaled outputs. * This can be seen as direct low-pass downsampling from the DCT domain * point of view rather than the usual spatial domain point of view, * yielding significant computational savings and results at least * as good as common bilinear (averaging) spatial downsampling. * * For N>8 we apply a partial NxN IDCT on the 8 input coefficients as * lower frequencies and higher frequencies assumed to be zero. * It turns out that the computational effort is similar to the 8x8 IDCT * regarding the output size. * Furthermore, the scaling and descaling is the same for all IDCT sizes. * * CAUTION: We rely on the FIX() macro except for the N=1,2,4,8 cases * since there would be too many additional constants to pre-calculate. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" #include "jdct.h" /* Private declarations for DCT subsystem */ #ifdef DCT_ISLOW_SUPPORTED /* * This module is specialized to the case DCTSIZE = 8. */ #if DCTSIZE != 8 Sorry, this code only copes with 8x8 DCT blocks. /* deliberate syntax err */ #endif /* * The poop on this scaling stuff is as follows: * * Each 1-D IDCT step produces outputs which are a factor of sqrt(N) * larger than the true IDCT outputs. The final outputs are therefore * a factor of N larger than desired; since N=8 this can be cured by * a simple right shift at the end of the algorithm. The advantage of * this arrangement is that we save two multiplications per 1-D IDCT, * because the y0 and y4 inputs need not be divided by sqrt(N). * * We have to do addition and subtraction of the integer inputs, which * is no problem, and multiplication by fractional constants, which is * a problem to do in integer arithmetic. We multiply all the constants * by CONST_SCALE and convert them to integer constants (thus retaining * CONST_BITS bits of precision in the constants). After doing a * multiplication we have to divide the product by CONST_SCALE, with proper * rounding, to produce the correct output. This division can be done * cheaply as a right shift of CONST_BITS bits. We postpone shifting * as long as possible so that partial sums can be added together with * full fractional precision. * * The outputs of the first pass are scaled up by PASS1_BITS bits so that * they are represented to better-than-integral precision. These outputs * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word * with the recommended scaling. (To scale up 12-bit sample data further, an * intermediate INT32 array would be needed.) * * To avoid overflow of the 32-bit intermediate results in pass 2, we must * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis * shows that the values given below are the most effective. */ #if BITS_IN_JSAMPLE == 8 #define CONST_BITS 13 #define PASS1_BITS 2 #else #define CONST_BITS 13 #define PASS1_BITS 1 /* lose a little precision to avoid overflow */ #endif /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus * causing a lot of useless floating-point operations at run time. * To get around this we use the following pre-calculated constants. * If you change CONST_BITS you may want to add appropriate values. * (With a reasonable C compiler, you can just rely on the FIX() macro...) */ #if CONST_BITS == 13 #define FIX_0_298631336 ((INT32) 2446) /* FIX(0.298631336) */ #define FIX_0_390180644 ((INT32) 3196) /* FIX(0.390180644) */ #define FIX_0_541196100 ((INT32) 4433) /* FIX(0.541196100) */ #define FIX_0_765366865 ((INT32) 6270) /* FIX(0.765366865) */ #define FIX_0_899976223 ((INT32) 7373) /* FIX(0.899976223) */ #define FIX_1_175875602 ((INT32) 9633) /* FIX(1.175875602) */ #define FIX_1_501321110 ((INT32) 12299) /* FIX(1.501321110) */ #define FIX_1_847759065 ((INT32) 15137) /* FIX(1.847759065) */ #define FIX_1_961570560 ((INT32) 16069) /* FIX(1.961570560) */ #define FIX_2_053119869 ((INT32) 16819) /* FIX(2.053119869) */ #define FIX_2_562915447 ((INT32) 20995) /* FIX(2.562915447) */ #define FIX_3_072711026 ((INT32) 25172) /* FIX(3.072711026) */ #else #define FIX_0_298631336 FIX(0.298631336) #define FIX_0_390180644 FIX(0.390180644) #define FIX_0_541196100 FIX(0.541196100) #define FIX_0_765366865 FIX(0.765366865) #define FIX_0_899976223 FIX(0.899976223) #define FIX_1_175875602 FIX(1.175875602) #define FIX_1_501321110 FIX(1.501321110) #define FIX_1_847759065 FIX(1.847759065) #define FIX_1_961570560 FIX(1.961570560) #define FIX_2_053119869 FIX(2.053119869) #define FIX_2_562915447 FIX(2.562915447) #define FIX_3_072711026 FIX(3.072711026) #endif /* Multiply an INT32 variable by an INT32 constant to yield an INT32 result. * For 8-bit samples with the recommended scaling, all the variable * and constant values involved are no more than 16 bits wide, so a * 16x16->32 bit multiply can be used instead of a full 32x32 multiply. * For 12-bit samples, a full 32-bit multiplication will be needed. */ #if BITS_IN_JSAMPLE == 8 #define MULTIPLY(var,const) MULTIPLY16C16(var,const) #else #define MULTIPLY(var,const) ((var) * (const)) #endif /* Dequantize a coefficient by multiplying it by the multiplier-table * entry; produce an int result. In this module, both inputs and result * are 16 bits or less, so either int or short multiply will work. */ #define DEQUANTIZE(coef,quantval) (((ISLOW_MULT_TYPE) (coef)) * (quantval)) /* * Perform dequantization and inverse DCT on one block of coefficients. */ GLOBAL(void) jpeg_idct_islow (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { INT32 tmp0, tmp1, tmp2, tmp3; INT32 tmp10, tmp11, tmp12, tmp13; INT32 z1, z2, z3, z4, z5; JCOEFPTR inptr; ISLOW_MULT_TYPE * quantptr; int * wsptr; JSAMPROW outptr; JSAMPLE *range_limit = IDCT_range_limit(cinfo); int ctr; int workspace[DCTSIZE2]; /* buffers data between passes */ SHIFT_TEMPS /* Pass 1: process columns from input, store into work array. */ /* Note results are scaled up by sqrt(8) compared to a true IDCT; */ /* furthermore, we scale the results by 2**PASS1_BITS. */ inptr = coef_block; quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; wsptr = workspace; for (ctr = DCTSIZE; ctr > 0; ctr--) { /* Due to quantization, we will usually find that many of the input * coefficients are zero, especially the AC terms. We can exploit this * by short-circuiting the IDCT calculation for any column in which all * the AC terms are zero. In that case each output is equal to the * DC coefficient (with scale factor as needed). * With typical images and quantization tables, half or more of the * column DCT calculations can be simplified this way. */ if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 && inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 && inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 && inptr[DCTSIZE*7] == 0) { /* AC terms all zero */ int dcval = LEFT_SHIFT(DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]), PASS1_BITS); wsptr[DCTSIZE*0] = dcval; wsptr[DCTSIZE*1] = dcval; wsptr[DCTSIZE*2] = dcval; wsptr[DCTSIZE*3] = dcval; wsptr[DCTSIZE*4] = dcval; wsptr[DCTSIZE*5] = dcval; wsptr[DCTSIZE*6] = dcval; wsptr[DCTSIZE*7] = dcval; inptr++; /* advance pointers to next column */ quantptr++; wsptr++; continue; } /* Even part: reverse the even part of the forward DCT. */ /* The rotator is sqrt(2)*c(-6). */ z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); z1 = MULTIPLY(z2 + z3, FIX_0_541196100); tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065); tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865); z2 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); z3 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); tmp0 = LEFT_SHIFT(z2 + z3, CONST_BITS); tmp1 = LEFT_SHIFT(z2 - z3, CONST_BITS); tmp10 = tmp0 + tmp3; tmp13 = tmp0 - tmp3; tmp11 = tmp1 + tmp2; tmp12 = tmp1 - tmp2; /* Odd part per figure 8; the matrix is unitary and hence its * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. */ tmp0 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); tmp1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); tmp2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); tmp3 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); z1 = tmp0 + tmp3; z2 = tmp1 + tmp2; z3 = tmp0 + tmp2; z4 = tmp1 + tmp3; z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */ tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */ tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */ tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */ tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */ z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */ z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */ z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */ z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */ z3 += z5; z4 += z5; tmp0 += z1 + z3; tmp1 += z2 + z4; tmp2 += z2 + z3; tmp3 += z1 + z4; /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */ wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp3, CONST_BITS-PASS1_BITS); wsptr[DCTSIZE*7] = (int) DESCALE(tmp10 - tmp3, CONST_BITS-PASS1_BITS); wsptr[DCTSIZE*1] = (int) DESCALE(tmp11 + tmp2, CONST_BITS-PASS1_BITS); wsptr[DCTSIZE*6] = (int) DESCALE(tmp11 - tmp2, CONST_BITS-PASS1_BITS); wsptr[DCTSIZE*2] = (int) DESCALE(tmp12 + tmp1, CONST_BITS-PASS1_BITS); wsptr[DCTSIZE*5] = (int) DESCALE(tmp12 - tmp1, CONST_BITS-PASS1_BITS); wsptr[DCTSIZE*3] = (int) DESCALE(tmp13 + tmp0, CONST_BITS-PASS1_BITS); wsptr[DCTSIZE*4] = (int) DESCALE(tmp13 - tmp0, CONST_BITS-PASS1_BITS); inptr++; /* advance pointers to next column */ quantptr++; wsptr++; } /* Pass 2: process rows from work array, store into output array. */ /* Note that we must descale the results by a factor of 8 == 2**3, */ /* and also undo the PASS1_BITS scaling. */ wsptr = workspace; for (ctr = 0; ctr < DCTSIZE; ctr++) { outptr = output_buf[ctr] + output_col; /* Rows of zeroes can be exploited in the same way as we did with columns. * However, the column calculation has created many nonzero AC terms, so * the simplification applies less often (typically 5% to 10% of the time). * On machines with very fast multiplication, it's possible that the * test takes more time than it's worth. In that case this section * may be commented out. */ #ifndef NO_ZERO_ROW_TEST if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 && wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) { /* AC terms all zero */ JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3) & RANGE_MASK]; outptr[0] = dcval; outptr[1] = dcval; outptr[2] = dcval; outptr[3] = dcval; outptr[4] = dcval; outptr[5] = dcval; outptr[6] = dcval; outptr[7] = dcval; wsptr += DCTSIZE; /* advance pointer to next row */ continue; } #endif /* Even part: reverse the even part of the forward DCT. */ /* The rotator is sqrt(2)*c(-6). */ z2 = (INT32) wsptr[2]; z3 = (INT32) wsptr[6]; z1 = MULTIPLY(z2 + z3, FIX_0_541196100); tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065); tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865); tmp0 = LEFT_SHIFT((INT32) wsptr[0] + (INT32) wsptr[4], CONST_BITS); tmp1 = LEFT_SHIFT((INT32) wsptr[0] - (INT32) wsptr[4], CONST_BITS); tmp10 = tmp0 + tmp3; tmp13 = tmp0 - tmp3; tmp11 = tmp1 + tmp2; tmp12 = tmp1 - tmp2; /* Odd part per figure 8; the matrix is unitary and hence its * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. */ tmp0 = (INT32) wsptr[7]; tmp1 = (INT32) wsptr[5]; tmp2 = (INT32) wsptr[3]; tmp3 = (INT32) wsptr[1]; z1 = tmp0 + tmp3; z2 = tmp1 + tmp2; z3 = tmp0 + tmp2; z4 = tmp1 + tmp3; z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */ tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */ tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */ tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */ tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */ z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */ z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */ z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */ z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */ z3 += z5; z4 += z5; tmp0 += z1 + z3; tmp1 += z2 + z4; tmp2 += z2 + z3; tmp3 += z1 + z4; /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */ outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp3, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[7] = range_limit[(int) DESCALE(tmp10 - tmp3, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[1] = range_limit[(int) DESCALE(tmp11 + tmp2, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[6] = range_limit[(int) DESCALE(tmp11 - tmp2, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[2] = range_limit[(int) DESCALE(tmp12 + tmp1, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[5] = range_limit[(int) DESCALE(tmp12 - tmp1, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[3] = range_limit[(int) DESCALE(tmp13 + tmp0, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[4] = range_limit[(int) DESCALE(tmp13 - tmp0, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; wsptr += DCTSIZE; /* advance pointer to next row */ } } #ifdef IDCT_SCALING_SUPPORTED /* * Perform dequantization and inverse DCT on one block of coefficients, * producing a 7x7 output block. * * Optimized algorithm with 12 multiplications in the 1-D kernel. * cK represents sqrt(2) * cos(K*pi/14). */ GLOBAL(void) jpeg_idct_7x7 (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { INT32 tmp0, tmp1, tmp2, tmp10, tmp11, tmp12, tmp13; INT32 z1, z2, z3; JCOEFPTR inptr; ISLOW_MULT_TYPE * quantptr; int * wsptr; JSAMPROW outptr; JSAMPLE *range_limit = IDCT_range_limit(cinfo); int ctr; int workspace[7*7]; /* buffers data between passes */ SHIFT_TEMPS /* Pass 1: process columns from input, store into work array. */ inptr = coef_block; quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; wsptr = workspace; for (ctr = 0; ctr < 7; ctr++, inptr++, quantptr++, wsptr++) { /* Even part */ tmp13 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); tmp13 = LEFT_SHIFT(tmp13, CONST_BITS); /* Add fudge factor here for final descale. */ tmp13 += ONE << (CONST_BITS-PASS1_BITS-1); z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); z2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); tmp10 = MULTIPLY(z2 - z3, FIX(0.881747734)); /* c4 */ tmp12 = MULTIPLY(z1 - z2, FIX(0.314692123)); /* c6 */ tmp11 = tmp10 + tmp12 + tmp13 - MULTIPLY(z2, FIX(1.841218003)); /* c2+c4-c6 */ tmp0 = z1 + z3; z2 -= tmp0; tmp0 = MULTIPLY(tmp0, FIX(1.274162392)) + tmp13; /* c2 */ tmp10 += tmp0 - MULTIPLY(z3, FIX(0.077722536)); /* c2-c4-c6 */ tmp12 += tmp0 - MULTIPLY(z1, FIX(2.470602249)); /* c2+c4+c6 */ tmp13 += MULTIPLY(z2, FIX(1.414213562)); /* c0 */ /* Odd part */ z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); tmp1 = MULTIPLY(z1 + z2, FIX(0.935414347)); /* (c3+c1-c5)/2 */ tmp2 = MULTIPLY(z1 - z2, FIX(0.170262339)); /* (c3+c5-c1)/2 */ tmp0 = tmp1 - tmp2; tmp1 += tmp2; tmp2 = MULTIPLY(z2 + z3, - FIX(1.378756276)); /* -c1 */ tmp1 += tmp2; z2 = MULTIPLY(z1 + z3, FIX(0.613604268)); /* c5 */ tmp0 += z2; tmp2 += z2 + MULTIPLY(z3, FIX(1.870828693)); /* c3+c1-c5 */ /* Final output stage */ wsptr[7*0] = (int) RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS-PASS1_BITS); wsptr[7*6] = (int) RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS-PASS1_BITS); wsptr[7*1] = (int) RIGHT_SHIFT(tmp11 + tmp1, CONST_BITS-PASS1_BITS); wsptr[7*5] = (int) RIGHT_SHIFT(tmp11 - tmp1, CONST_BITS-PASS1_BITS); wsptr[7*2] = (int) RIGHT_SHIFT(tmp12 + tmp2, CONST_BITS-PASS1_BITS); wsptr[7*4] = (int) RIGHT_SHIFT(tmp12 - tmp2, CONST_BITS-PASS1_BITS); wsptr[7*3] = (int) RIGHT_SHIFT(tmp13, CONST_BITS-PASS1_BITS); } /* Pass 2: process 7 rows from work array, store into output array. */ wsptr = workspace; for (ctr = 0; ctr < 7; ctr++) { outptr = output_buf[ctr] + output_col; /* Even part */ /* Add fudge factor here for final descale. */ tmp13 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2)); tmp13 = LEFT_SHIFT(tmp13, CONST_BITS); z1 = (INT32) wsptr[2]; z2 = (INT32) wsptr[4]; z3 = (INT32) wsptr[6]; tmp10 = MULTIPLY(z2 - z3, FIX(0.881747734)); /* c4 */ tmp12 = MULTIPLY(z1 - z2, FIX(0.314692123)); /* c6 */ tmp11 = tmp10 + tmp12 + tmp13 - MULTIPLY(z2, FIX(1.841218003)); /* c2+c4-c6 */ tmp0 = z1 + z3; z2 -= tmp0; tmp0 = MULTIPLY(tmp0, FIX(1.274162392)) + tmp13; /* c2 */ tmp10 += tmp0 - MULTIPLY(z3, FIX(0.077722536)); /* c2-c4-c6 */ tmp12 += tmp0 - MULTIPLY(z1, FIX(2.470602249)); /* c2+c4+c6 */ tmp13 += MULTIPLY(z2, FIX(1.414213562)); /* c0 */ /* Odd part */ z1 = (INT32) wsptr[1]; z2 = (INT32) wsptr[3]; z3 = (INT32) wsptr[5]; tmp1 = MULTIPLY(z1 + z2, FIX(0.935414347)); /* (c3+c1-c5)/2 */ tmp2 = MULTIPLY(z1 - z2, FIX(0.170262339)); /* (c3+c5-c1)/2 */ tmp0 = tmp1 - tmp2; tmp1 += tmp2; tmp2 = MULTIPLY(z2 + z3, - FIX(1.378756276)); /* -c1 */ tmp1 += tmp2; z2 = MULTIPLY(z1 + z3, FIX(0.613604268)); /* c5 */ tmp0 += z2; tmp2 += z2 + MULTIPLY(z3, FIX(1.870828693)); /* c3+c1-c5 */ /* Final output stage */ outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp11 + tmp1, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp11 - tmp1, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12 + tmp2, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp12 - tmp2, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp13, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; wsptr += 7; /* advance pointer to next row */ } } /* * Perform dequantization and inverse DCT on one block of coefficients, * producing a reduced-size 6x6 output block. * * Optimized algorithm with 3 multiplications in the 1-D kernel. * cK represents sqrt(2) * cos(K*pi/12). */ GLOBAL(void) jpeg_idct_6x6 (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { INT32 tmp0, tmp1, tmp2, tmp10, tmp11, tmp12; INT32 z1, z2, z3; JCOEFPTR inptr; ISLOW_MULT_TYPE * quantptr; int * wsptr; JSAMPROW outptr; JSAMPLE *range_limit = IDCT_range_limit(cinfo); int ctr; int workspace[6*6]; /* buffers data between passes */ SHIFT_TEMPS /* Pass 1: process columns from input, store into work array. */ inptr = coef_block; quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; wsptr = workspace; for (ctr = 0; ctr < 6; ctr++, inptr++, quantptr++, wsptr++) { /* Even part */ tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); tmp0 = LEFT_SHIFT(tmp0, CONST_BITS); /* Add fudge factor here for final descale. */ tmp0 += ONE << (CONST_BITS-PASS1_BITS-1); tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); tmp10 = MULTIPLY(tmp2, FIX(0.707106781)); /* c4 */ tmp1 = tmp0 + tmp10; tmp11 = RIGHT_SHIFT(tmp0 - tmp10 - tmp10, CONST_BITS-PASS1_BITS); tmp10 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); tmp0 = MULTIPLY(tmp10, FIX(1.224744871)); /* c2 */ tmp10 = tmp1 + tmp0; tmp12 = tmp1 - tmp0; /* Odd part */ z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); tmp1 = MULTIPLY(z1 + z3, FIX(0.366025404)); /* c5 */ tmp0 = tmp1 + LEFT_SHIFT(z1 + z2, CONST_BITS); tmp2 = tmp1 + LEFT_SHIFT(z3 - z2, CONST_BITS); tmp1 = LEFT_SHIFT(z1 - z2 - z3, PASS1_BITS); /* Final output stage */ wsptr[6*0] = (int) RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS-PASS1_BITS); wsptr[6*5] = (int) RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS-PASS1_BITS); wsptr[6*1] = (int) (tmp11 + tmp1); wsptr[6*4] = (int) (tmp11 - tmp1); wsptr[6*2] = (int) RIGHT_SHIFT(tmp12 + tmp2, CONST_BITS-PASS1_BITS); wsptr[6*3] = (int) RIGHT_SHIFT(tmp12 - tmp2, CONST_BITS-PASS1_BITS); } /* Pass 2: process 6 rows from work array, store into output array. */ wsptr = workspace; for (ctr = 0; ctr < 6; ctr++) { outptr = output_buf[ctr] + output_col; /* Even part */ /* Add fudge factor here for final descale. */ tmp0 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2)); tmp0 = LEFT_SHIFT(tmp0, CONST_BITS); tmp2 = (INT32) wsptr[4]; tmp10 = MULTIPLY(tmp2, FIX(0.707106781)); /* c4 */ tmp1 = tmp0 + tmp10; tmp11 = tmp0 - tmp10 - tmp10; tmp10 = (INT32) wsptr[2]; tmp0 = MULTIPLY(tmp10, FIX(1.224744871)); /* c2 */ tmp10 = tmp1 + tmp0; tmp12 = tmp1 - tmp0; /* Odd part */ z1 = (INT32) wsptr[1]; z2 = (INT32) wsptr[3]; z3 = (INT32) wsptr[5]; tmp1 = MULTIPLY(z1 + z3, FIX(0.366025404)); /* c5 */ tmp0 = tmp1 + LEFT_SHIFT(z1 + z2, CONST_BITS); tmp2 = tmp1 + LEFT_SHIFT(z3 - z2, CONST_BITS); tmp1 = LEFT_SHIFT(z1 - z2 - z3, CONST_BITS); /* Final output stage */ outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp11 + tmp1, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp11 - tmp1, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12 + tmp2, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp12 - tmp2, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; wsptr += 6; /* advance pointer to next row */ } } /* * Perform dequantization and inverse DCT on one block of coefficients, * producing a reduced-size 5x5 output block. * * Optimized algorithm with 5 multiplications in the 1-D kernel. * cK represents sqrt(2) * cos(K*pi/10). */ GLOBAL(void) jpeg_idct_5x5 (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { INT32 tmp0, tmp1, tmp10, tmp11, tmp12; INT32 z1, z2, z3; JCOEFPTR inptr; ISLOW_MULT_TYPE * quantptr; int * wsptr; JSAMPROW outptr; JSAMPLE *range_limit = IDCT_range_limit(cinfo); int ctr; int workspace[5*5]; /* buffers data between passes */ SHIFT_TEMPS /* Pass 1: process columns from input, store into work array. */ inptr = coef_block; quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; wsptr = workspace; for (ctr = 0; ctr < 5; ctr++, inptr++, quantptr++, wsptr++) { /* Even part */ tmp12 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); tmp12 = LEFT_SHIFT(tmp12, CONST_BITS); /* Add fudge factor here for final descale. */ tmp12 += ONE << (CONST_BITS-PASS1_BITS-1); tmp0 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); tmp1 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); z1 = MULTIPLY(tmp0 + tmp1, FIX(0.790569415)); /* (c2+c4)/2 */ z2 = MULTIPLY(tmp0 - tmp1, FIX(0.353553391)); /* (c2-c4)/2 */ z3 = tmp12 + z2; tmp10 = z3 + z1; tmp11 = z3 - z1; tmp12 -= LEFT_SHIFT(z2, 2); /* Odd part */ z2 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); z3 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); z1 = MULTIPLY(z2 + z3, FIX(0.831253876)); /* c3 */ tmp0 = z1 + MULTIPLY(z2, FIX(0.513743148)); /* c1-c3 */ tmp1 = z1 - MULTIPLY(z3, FIX(2.176250899)); /* c1+c3 */ /* Final output stage */ wsptr[5*0] = (int) RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS-PASS1_BITS); wsptr[5*4] = (int) RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS-PASS1_BITS); wsptr[5*1] = (int) RIGHT_SHIFT(tmp11 + tmp1, CONST_BITS-PASS1_BITS); wsptr[5*3] = (int) RIGHT_SHIFT(tmp11 - tmp1, CONST_BITS-PASS1_BITS); wsptr[5*2] = (int) RIGHT_SHIFT(tmp12, CONST_BITS-PASS1_BITS); } /* Pass 2: process 5 rows from work array, store into output array. */ wsptr = workspace; for (ctr = 0; ctr < 5; ctr++) { outptr = output_buf[ctr] + output_col; /* Even part */ /* Add fudge factor here for final descale. */ tmp12 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2)); tmp12 = LEFT_SHIFT(tmp12, CONST_BITS); tmp0 = (INT32) wsptr[2]; tmp1 = (INT32) wsptr[4]; z1 = MULTIPLY(tmp0 + tmp1, FIX(0.790569415)); /* (c2+c4)/2 */ z2 = MULTIPLY(tmp0 - tmp1, FIX(0.353553391)); /* (c2-c4)/2 */ z3 = tmp12 + z2; tmp10 = z3 + z1; tmp11 = z3 - z1; tmp12 -= LEFT_SHIFT(z2, 2); /* Odd part */ z2 = (INT32) wsptr[1]; z3 = (INT32) wsptr[3]; z1 = MULTIPLY(z2 + z3, FIX(0.831253876)); /* c3 */ tmp0 = z1 + MULTIPLY(z2, FIX(0.513743148)); /* c1-c3 */ tmp1 = z1 - MULTIPLY(z3, FIX(2.176250899)); /* c1+c3 */ /* Final output stage */ outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp11 + tmp1, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp11 - tmp1, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; wsptr += 5; /* advance pointer to next row */ } } /* * Perform dequantization and inverse DCT on one block of coefficients, * producing a reduced-size 3x3 output block. * * Optimized algorithm with 2 multiplications in the 1-D kernel. * cK represents sqrt(2) * cos(K*pi/6). */ GLOBAL(void) jpeg_idct_3x3 (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { INT32 tmp0, tmp2, tmp10, tmp12; JCOEFPTR inptr; ISLOW_MULT_TYPE * quantptr; int * wsptr; JSAMPROW outptr; JSAMPLE *range_limit = IDCT_range_limit(cinfo); int ctr; int workspace[3*3]; /* buffers data between passes */ SHIFT_TEMPS /* Pass 1: process columns from input, store into work array. */ inptr = coef_block; quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; wsptr = workspace; for (ctr = 0; ctr < 3; ctr++, inptr++, quantptr++, wsptr++) { /* Even part */ tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); tmp0 = LEFT_SHIFT(tmp0, CONST_BITS); /* Add fudge factor here for final descale. */ tmp0 += ONE << (CONST_BITS-PASS1_BITS-1); tmp2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); tmp12 = MULTIPLY(tmp2, FIX(0.707106781)); /* c2 */ tmp10 = tmp0 + tmp12; tmp2 = tmp0 - tmp12 - tmp12; /* Odd part */ tmp12 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); tmp0 = MULTIPLY(tmp12, FIX(1.224744871)); /* c1 */ /* Final output stage */ wsptr[3*0] = (int) RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS-PASS1_BITS); wsptr[3*2] = (int) RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS-PASS1_BITS); wsptr[3*1] = (int) RIGHT_SHIFT(tmp2, CONST_BITS-PASS1_BITS); } /* Pass 2: process 3 rows from work array, store into output array. */ wsptr = workspace; for (ctr = 0; ctr < 3; ctr++) { outptr = output_buf[ctr] + output_col; /* Even part */ /* Add fudge factor here for final descale. */ tmp0 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2)); tmp0 = LEFT_SHIFT(tmp0, CONST_BITS); tmp2 = (INT32) wsptr[2]; tmp12 = MULTIPLY(tmp2, FIX(0.707106781)); /* c2 */ tmp10 = tmp0 + tmp12; tmp2 = tmp0 - tmp12 - tmp12; /* Odd part */ tmp12 = (INT32) wsptr[1]; tmp0 = MULTIPLY(tmp12, FIX(1.224744871)); /* c1 */ /* Final output stage */ outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp2, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; wsptr += 3; /* advance pointer to next row */ } } /* * Perform dequantization and inverse DCT on one block of coefficients, * producing a 9x9 output block. * * Optimized algorithm with 10 multiplications in the 1-D kernel. * cK represents sqrt(2) * cos(K*pi/18). */ GLOBAL(void) jpeg_idct_9x9 (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { INT32 tmp0, tmp1, tmp2, tmp3, tmp10, tmp11, tmp12, tmp13, tmp14; INT32 z1, z2, z3, z4; JCOEFPTR inptr; ISLOW_MULT_TYPE * quantptr; int * wsptr; JSAMPROW outptr; JSAMPLE *range_limit = IDCT_range_limit(cinfo); int ctr; int workspace[8*9]; /* buffers data between passes */ SHIFT_TEMPS /* Pass 1: process columns from input, store into work array. */ inptr = coef_block; quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; wsptr = workspace; for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) { /* Even part */ tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); tmp0 = LEFT_SHIFT(tmp0, CONST_BITS); /* Add fudge factor here for final descale. */ tmp0 += ONE << (CONST_BITS-PASS1_BITS-1); z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); z2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); tmp3 = MULTIPLY(z3, FIX(0.707106781)); /* c6 */ tmp1 = tmp0 + tmp3; tmp2 = tmp0 - tmp3 - tmp3; tmp0 = MULTIPLY(z1 - z2, FIX(0.707106781)); /* c6 */ tmp11 = tmp2 + tmp0; tmp14 = tmp2 - tmp0 - tmp0; tmp0 = MULTIPLY(z1 + z2, FIX(1.328926049)); /* c2 */ tmp2 = MULTIPLY(z1, FIX(1.083350441)); /* c4 */ tmp3 = MULTIPLY(z2, FIX(0.245575608)); /* c8 */ tmp10 = tmp1 + tmp0 - tmp3; tmp12 = tmp1 - tmp0 + tmp2; tmp13 = tmp1 - tmp2 + tmp3; /* Odd part */ z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); z2 = MULTIPLY(z2, - FIX(1.224744871)); /* -c3 */ tmp2 = MULTIPLY(z1 + z3, FIX(0.909038955)); /* c5 */ tmp3 = MULTIPLY(z1 + z4, FIX(0.483689525)); /* c7 */ tmp0 = tmp2 + tmp3 - z2; tmp1 = MULTIPLY(z3 - z4, FIX(1.392728481)); /* c1 */ tmp2 += z2 - tmp1; tmp3 += z2 + tmp1; tmp1 = MULTIPLY(z1 - z3 - z4, FIX(1.224744871)); /* c3 */ /* Final output stage */ wsptr[8*0] = (int) RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS-PASS1_BITS); wsptr[8*8] = (int) RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS-PASS1_BITS); wsptr[8*1] = (int) RIGHT_SHIFT(tmp11 + tmp1, CONST_BITS-PASS1_BITS); wsptr[8*7] = (int) RIGHT_SHIFT(tmp11 - tmp1, CONST_BITS-PASS1_BITS); wsptr[8*2] = (int) RIGHT_SHIFT(tmp12 + tmp2, CONST_BITS-PASS1_BITS); wsptr[8*6] = (int) RIGHT_SHIFT(tmp12 - tmp2, CONST_BITS-PASS1_BITS); wsptr[8*3] = (int) RIGHT_SHIFT(tmp13 + tmp3, CONST_BITS-PASS1_BITS); wsptr[8*5] = (int) RIGHT_SHIFT(tmp13 - tmp3, CONST_BITS-PASS1_BITS); wsptr[8*4] = (int) RIGHT_SHIFT(tmp14, CONST_BITS-PASS1_BITS); } /* Pass 2: process 9 rows from work array, store into output array. */ wsptr = workspace; for (ctr = 0; ctr < 9; ctr++) { outptr = output_buf[ctr] + output_col; /* Even part */ /* Add fudge factor here for final descale. */ tmp0 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2)); tmp0 = LEFT_SHIFT(tmp0, CONST_BITS); z1 = (INT32) wsptr[2]; z2 = (INT32) wsptr[4]; z3 = (INT32) wsptr[6]; tmp3 = MULTIPLY(z3, FIX(0.707106781)); /* c6 */ tmp1 = tmp0 + tmp3; tmp2 = tmp0 - tmp3 - tmp3; tmp0 = MULTIPLY(z1 - z2, FIX(0.707106781)); /* c6 */ tmp11 = tmp2 + tmp0; tmp14 = tmp2 - tmp0 - tmp0; tmp0 = MULTIPLY(z1 + z2, FIX(1.328926049)); /* c2 */ tmp2 = MULTIPLY(z1, FIX(1.083350441)); /* c4 */ tmp3 = MULTIPLY(z2, FIX(0.245575608)); /* c8 */ tmp10 = tmp1 + tmp0 - tmp3; tmp12 = tmp1 - tmp0 + tmp2; tmp13 = tmp1 - tmp2 + tmp3; /* Odd part */ z1 = (INT32) wsptr[1]; z2 = (INT32) wsptr[3]; z3 = (INT32) wsptr[5]; z4 = (INT32) wsptr[7]; z2 = MULTIPLY(z2, - FIX(1.224744871)); /* -c3 */ tmp2 = MULTIPLY(z1 + z3, FIX(0.909038955)); /* c5 */ tmp3 = MULTIPLY(z1 + z4, FIX(0.483689525)); /* c7 */ tmp0 = tmp2 + tmp3 - z2; tmp1 = MULTIPLY(z3 - z4, FIX(1.392728481)); /* c1 */ tmp2 += z2 - tmp1; tmp3 += z2 + tmp1; tmp1 = MULTIPLY(z1 - z3 - z4, FIX(1.224744871)); /* c3 */ /* Final output stage */ outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp11 + tmp1, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp11 - tmp1, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12 + tmp2, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp12 - tmp2, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp13 + tmp3, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp13 - tmp3, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp14, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; wsptr += 8; /* advance pointer to next row */ } } /* * Perform dequantization and inverse DCT on one block of coefficients, * producing a 10x10 output block. * * Optimized algorithm with 12 multiplications in the 1-D kernel. * cK represents sqrt(2) * cos(K*pi/20). */ GLOBAL(void) jpeg_idct_10x10 (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { INT32 tmp10, tmp11, tmp12, tmp13, tmp14; INT32 tmp20, tmp21, tmp22, tmp23, tmp24; INT32 z1, z2, z3, z4, z5; JCOEFPTR inptr; ISLOW_MULT_TYPE * quantptr; int * wsptr; JSAMPROW outptr; JSAMPLE *range_limit = IDCT_range_limit(cinfo); int ctr; int workspace[8*10]; /* buffers data between passes */ SHIFT_TEMPS /* Pass 1: process columns from input, store into work array. */ inptr = coef_block; quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; wsptr = workspace; for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) { /* Even part */ z3 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); z3 = LEFT_SHIFT(z3, CONST_BITS); /* Add fudge factor here for final descale. */ z3 += ONE << (CONST_BITS-PASS1_BITS-1); z4 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); z1 = MULTIPLY(z4, FIX(1.144122806)); /* c4 */ z2 = MULTIPLY(z4, FIX(0.437016024)); /* c8 */ tmp10 = z3 + z1; tmp11 = z3 - z2; tmp22 = RIGHT_SHIFT(z3 - LEFT_SHIFT(z1 - z2, 1), CONST_BITS-PASS1_BITS); /* c0 = (c4-c8)*2 */ z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); z1 = MULTIPLY(z2 + z3, FIX(0.831253876)); /* c6 */ tmp12 = z1 + MULTIPLY(z2, FIX(0.513743148)); /* c2-c6 */ tmp13 = z1 - MULTIPLY(z3, FIX(2.176250899)); /* c2+c6 */ tmp20 = tmp10 + tmp12; tmp24 = tmp10 - tmp12; tmp21 = tmp11 + tmp13; tmp23 = tmp11 - tmp13; /* Odd part */ z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); tmp11 = z2 + z4; tmp13 = z2 - z4; tmp12 = MULTIPLY(tmp13, FIX(0.309016994)); /* (c3-c7)/2 */ z5 = LEFT_SHIFT(z3, CONST_BITS); z2 = MULTIPLY(tmp11, FIX(0.951056516)); /* (c3+c7)/2 */ z4 = z5 + tmp12; tmp10 = MULTIPLY(z1, FIX(1.396802247)) + z2 + z4; /* c1 */ tmp14 = MULTIPLY(z1, FIX(0.221231742)) - z2 + z4; /* c9 */ z2 = MULTIPLY(tmp11, FIX(0.587785252)); /* (c1-c9)/2 */ z4 = z5 - tmp12 - LEFT_SHIFT(tmp13, CONST_BITS - 1); tmp12 = LEFT_SHIFT(z1 - tmp13 - z3, PASS1_BITS); tmp11 = MULTIPLY(z1, FIX(1.260073511)) - z2 - z4; /* c3 */ tmp13 = MULTIPLY(z1, FIX(0.642039522)) - z2 + z4; /* c7 */ /* Final output stage */ wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS); wsptr[8*9] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS); wsptr[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS); wsptr[8*8] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS); wsptr[8*2] = (int) (tmp22 + tmp12); wsptr[8*7] = (int) (tmp22 - tmp12); wsptr[8*3] = (int) RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS-PASS1_BITS); wsptr[8*6] = (int) RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS-PASS1_BITS); wsptr[8*4] = (int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS-PASS1_BITS); wsptr[8*5] = (int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS-PASS1_BITS); } /* Pass 2: process 10 rows from work array, store into output array. */ wsptr = workspace; for (ctr = 0; ctr < 10; ctr++) { outptr = output_buf[ctr] + output_col; /* Even part */ /* Add fudge factor here for final descale. */ z3 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2)); z3 = LEFT_SHIFT(z3, CONST_BITS); z4 = (INT32) wsptr[4]; z1 = MULTIPLY(z4, FIX(1.144122806)); /* c4 */ z2 = MULTIPLY(z4, FIX(0.437016024)); /* c8 */ tmp10 = z3 + z1; tmp11 = z3 - z2; tmp22 = z3 - LEFT_SHIFT(z1 - z2, 1); /* c0 = (c4-c8)*2 */ z2 = (INT32) wsptr[2]; z3 = (INT32) wsptr[6]; z1 = MULTIPLY(z2 + z3, FIX(0.831253876)); /* c6 */ tmp12 = z1 + MULTIPLY(z2, FIX(0.513743148)); /* c2-c6 */ tmp13 = z1 - MULTIPLY(z3, FIX(2.176250899)); /* c2+c6 */ tmp20 = tmp10 + tmp12; tmp24 = tmp10 - tmp12; tmp21 = tmp11 + tmp13; tmp23 = tmp11 - tmp13; /* Odd part */ z1 = (INT32) wsptr[1]; z2 = (INT32) wsptr[3]; z3 = (INT32) wsptr[5]; z3 = LEFT_SHIFT(z3, CONST_BITS); z4 = (INT32) wsptr[7]; tmp11 = z2 + z4; tmp13 = z2 - z4; tmp12 = MULTIPLY(tmp13, FIX(0.309016994)); /* (c3-c7)/2 */ z2 = MULTIPLY(tmp11, FIX(0.951056516)); /* (c3+c7)/2 */ z4 = z3 + tmp12; tmp10 = MULTIPLY(z1, FIX(1.396802247)) + z2 + z4; /* c1 */ tmp14 = MULTIPLY(z1, FIX(0.221231742)) - z2 + z4; /* c9 */ z2 = MULTIPLY(tmp11, FIX(0.587785252)); /* (c1-c9)/2 */ z4 = z3 - tmp12 - LEFT_SHIFT(tmp13, CONST_BITS - 1); tmp12 = LEFT_SHIFT(z1 - tmp13, CONST_BITS) - z3; tmp11 = MULTIPLY(z1, FIX(1.260073511)) - z2 - z4; /* c3 */ tmp13 = MULTIPLY(z1, FIX(0.642039522)) - z2 + z4; /* c7 */ /* Final output stage */ outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; wsptr += 8; /* advance pointer to next row */ } } /* * Perform dequantization and inverse DCT on one block of coefficients, * producing a 11x11 output block. * * Optimized algorithm with 24 multiplications in the 1-D kernel. * cK represents sqrt(2) * cos(K*pi/22). */ GLOBAL(void) jpeg_idct_11x11 (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { INT32 tmp10, tmp11, tmp12, tmp13, tmp14; INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25; INT32 z1, z2, z3, z4; JCOEFPTR inptr; ISLOW_MULT_TYPE * quantptr; int * wsptr; JSAMPROW outptr; JSAMPLE *range_limit = IDCT_range_limit(cinfo); int ctr; int workspace[8*11]; /* buffers data between passes */ SHIFT_TEMPS /* Pass 1: process columns from input, store into work array. */ inptr = coef_block; quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; wsptr = workspace; for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) { /* Even part */ tmp10 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); tmp10 = LEFT_SHIFT(tmp10, CONST_BITS); /* Add fudge factor here for final descale. */ tmp10 += ONE << (CONST_BITS-PASS1_BITS-1); z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); z2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); tmp20 = MULTIPLY(z2 - z3, FIX(2.546640132)); /* c2+c4 */ tmp23 = MULTIPLY(z2 - z1, FIX(0.430815045)); /* c2-c6 */ z4 = z1 + z3; tmp24 = MULTIPLY(z4, - FIX(1.155664402)); /* -(c2-c10) */ z4 -= z2; tmp25 = tmp10 + MULTIPLY(z4, FIX(1.356927976)); /* c2 */ tmp21 = tmp20 + tmp23 + tmp25 - MULTIPLY(z2, FIX(1.821790775)); /* c2+c4+c10-c6 */ tmp20 += tmp25 + MULTIPLY(z3, FIX(2.115825087)); /* c4+c6 */ tmp23 += tmp25 - MULTIPLY(z1, FIX(1.513598477)); /* c6+c8 */ tmp24 += tmp25; tmp22 = tmp24 - MULTIPLY(z3, FIX(0.788749120)); /* c8+c10 */ tmp24 += MULTIPLY(z2, FIX(1.944413522)) - /* c2+c8 */ MULTIPLY(z1, FIX(1.390975730)); /* c4+c10 */ tmp25 = tmp10 - MULTIPLY(z4, FIX(1.414213562)); /* c0 */ /* Odd part */ z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); tmp11 = z1 + z2; tmp14 = MULTIPLY(tmp11 + z3 + z4, FIX(0.398430003)); /* c9 */ tmp11 = MULTIPLY(tmp11, FIX(0.887983902)); /* c3-c9 */ tmp12 = MULTIPLY(z1 + z3, FIX(0.670361295)); /* c5-c9 */ tmp13 = tmp14 + MULTIPLY(z1 + z4, FIX(0.366151574)); /* c7-c9 */ tmp10 = tmp11 + tmp12 + tmp13 - MULTIPLY(z1, FIX(0.923107866)); /* c7+c5+c3-c1-2*c9 */ z1 = tmp14 - MULTIPLY(z2 + z3, FIX(1.163011579)); /* c7+c9 */ tmp11 += z1 + MULTIPLY(z2, FIX(2.073276588)); /* c1+c7+3*c9-c3 */ tmp12 += z1 - MULTIPLY(z3, FIX(1.192193623)); /* c3+c5-c7-c9 */ z1 = MULTIPLY(z2 + z4, - FIX(1.798248910)); /* -(c1+c9) */ tmp11 += z1; tmp13 += z1 + MULTIPLY(z4, FIX(2.102458632)); /* c1+c5+c9-c7 */ tmp14 += MULTIPLY(z2, - FIX(1.467221301)) + /* -(c5+c9) */ MULTIPLY(z3, FIX(1.001388905)) - /* c1-c9 */ MULTIPLY(z4, FIX(1.684843907)); /* c3+c9 */ /* Final output stage */ wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS); wsptr[8*10] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS); wsptr[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS); wsptr[8*9] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS); wsptr[8*2] = (int) RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS-PASS1_BITS); wsptr[8*8] = (int) RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS-PASS1_BITS); wsptr[8*3] = (int) RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS-PASS1_BITS); wsptr[8*7] = (int) RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS-PASS1_BITS); wsptr[8*4] = (int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS-PASS1_BITS); wsptr[8*6] = (int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS-PASS1_BITS); wsptr[8*5] = (int) RIGHT_SHIFT(tmp25, CONST_BITS-PASS1_BITS); } /* Pass 2: process 11 rows from work array, store into output array. */ wsptr = workspace; for (ctr = 0; ctr < 11; ctr++) { outptr = output_buf[ctr] + output_col; /* Even part */ /* Add fudge factor here for final descale. */ tmp10 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2)); tmp10 = LEFT_SHIFT(tmp10, CONST_BITS); z1 = (INT32) wsptr[2]; z2 = (INT32) wsptr[4]; z3 = (INT32) wsptr[6]; tmp20 = MULTIPLY(z2 - z3, FIX(2.546640132)); /* c2+c4 */ tmp23 = MULTIPLY(z2 - z1, FIX(0.430815045)); /* c2-c6 */ z4 = z1 + z3; tmp24 = MULTIPLY(z4, - FIX(1.155664402)); /* -(c2-c10) */ z4 -= z2; tmp25 = tmp10 + MULTIPLY(z4, FIX(1.356927976)); /* c2 */ tmp21 = tmp20 + tmp23 + tmp25 - MULTIPLY(z2, FIX(1.821790775)); /* c2+c4+c10-c6 */ tmp20 += tmp25 + MULTIPLY(z3, FIX(2.115825087)); /* c4+c6 */ tmp23 += tmp25 - MULTIPLY(z1, FIX(1.513598477)); /* c6+c8 */ tmp24 += tmp25; tmp22 = tmp24 - MULTIPLY(z3, FIX(0.788749120)); /* c8+c10 */ tmp24 += MULTIPLY(z2, FIX(1.944413522)) - /* c2+c8 */ MULTIPLY(z1, FIX(1.390975730)); /* c4+c10 */ tmp25 = tmp10 - MULTIPLY(z4, FIX(1.414213562)); /* c0 */ /* Odd part */ z1 = (INT32) wsptr[1]; z2 = (INT32) wsptr[3]; z3 = (INT32) wsptr[5]; z4 = (INT32) wsptr[7]; tmp11 = z1 + z2; tmp14 = MULTIPLY(tmp11 + z3 + z4, FIX(0.398430003)); /* c9 */ tmp11 = MULTIPLY(tmp11, FIX(0.887983902)); /* c3-c9 */ tmp12 = MULTIPLY(z1 + z3, FIX(0.670361295)); /* c5-c9 */ tmp13 = tmp14 + MULTIPLY(z1 + z4, FIX(0.366151574)); /* c7-c9 */ tmp10 = tmp11 + tmp12 + tmp13 - MULTIPLY(z1, FIX(0.923107866)); /* c7+c5+c3-c1-2*c9 */ z1 = tmp14 - MULTIPLY(z2 + z3, FIX(1.163011579)); /* c7+c9 */ tmp11 += z1 + MULTIPLY(z2, FIX(2.073276588)); /* c1+c7+3*c9-c3 */ tmp12 += z1 - MULTIPLY(z3, FIX(1.192193623)); /* c3+c5-c7-c9 */ z1 = MULTIPLY(z2 + z4, - FIX(1.798248910)); /* -(c1+c9) */ tmp11 += z1; tmp13 += z1 + MULTIPLY(z4, FIX(2.102458632)); /* c1+c5+c9-c7 */ tmp14 += MULTIPLY(z2, - FIX(1.467221301)) + /* -(c5+c9) */ MULTIPLY(z3, FIX(1.001388905)) - /* c1-c9 */ MULTIPLY(z4, FIX(1.684843907)); /* c3+c9 */ /* Final output stage */ outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[10] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp25, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; wsptr += 8; /* advance pointer to next row */ } } /* * Perform dequantization and inverse DCT on one block of coefficients, * producing a 12x12 output block. * * Optimized algorithm with 15 multiplications in the 1-D kernel. * cK represents sqrt(2) * cos(K*pi/24). */ GLOBAL(void) jpeg_idct_12x12 (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15; INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25; INT32 z1, z2, z3, z4; JCOEFPTR inptr; ISLOW_MULT_TYPE * quantptr; int * wsptr; JSAMPROW outptr; JSAMPLE *range_limit = IDCT_range_limit(cinfo); int ctr; int workspace[8*12]; /* buffers data between passes */ SHIFT_TEMPS /* Pass 1: process columns from input, store into work array. */ inptr = coef_block; quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; wsptr = workspace; for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) { /* Even part */ z3 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); z3 = LEFT_SHIFT(z3, CONST_BITS); /* Add fudge factor here for final descale. */ z3 += ONE << (CONST_BITS-PASS1_BITS-1); z4 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); z4 = MULTIPLY(z4, FIX(1.224744871)); /* c4 */ tmp10 = z3 + z4; tmp11 = z3 - z4; z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); z4 = MULTIPLY(z1, FIX(1.366025404)); /* c2 */ z1 = LEFT_SHIFT(z1, CONST_BITS); z2 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); z2 = LEFT_SHIFT(z2, CONST_BITS); tmp12 = z1 - z2; tmp21 = z3 + tmp12; tmp24 = z3 - tmp12; tmp12 = z4 + z2; tmp20 = tmp10 + tmp12; tmp25 = tmp10 - tmp12; tmp12 = z4 - z1 - z2; tmp22 = tmp11 + tmp12; tmp23 = tmp11 - tmp12; /* Odd part */ z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); tmp11 = MULTIPLY(z2, FIX(1.306562965)); /* c3 */ tmp14 = MULTIPLY(z2, - FIX_0_541196100); /* -c9 */ tmp10 = z1 + z3; tmp15 = MULTIPLY(tmp10 + z4, FIX(0.860918669)); /* c7 */ tmp12 = tmp15 + MULTIPLY(tmp10, FIX(0.261052384)); /* c5-c7 */ tmp10 = tmp12 + tmp11 + MULTIPLY(z1, FIX(0.280143716)); /* c1-c5 */ tmp13 = MULTIPLY(z3 + z4, - FIX(1.045510580)); /* -(c7+c11) */ tmp12 += tmp13 + tmp14 - MULTIPLY(z3, FIX(1.478575242)); /* c1+c5-c7-c11 */ tmp13 += tmp15 - tmp11 + MULTIPLY(z4, FIX(1.586706681)); /* c1+c11 */ tmp15 += tmp14 - MULTIPLY(z1, FIX(0.676326758)) - /* c7-c11 */ MULTIPLY(z4, FIX(1.982889723)); /* c5+c7 */ z1 -= z4; z2 -= z3; z3 = MULTIPLY(z1 + z2, FIX_0_541196100); /* c9 */ tmp11 = z3 + MULTIPLY(z1, FIX_0_765366865); /* c3-c9 */ tmp14 = z3 - MULTIPLY(z2, FIX_1_847759065); /* c3+c9 */ /* Final output stage */ wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS); wsptr[8*11] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS); wsptr[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS); wsptr[8*10] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS); wsptr[8*2] = (int) RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS-PASS1_BITS); wsptr[8*9] = (int) RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS-PASS1_BITS); wsptr[8*3] = (int) RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS-PASS1_BITS); wsptr[8*8] = (int) RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS-PASS1_BITS); wsptr[8*4] = (int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS-PASS1_BITS); wsptr[8*7] = (int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS-PASS1_BITS); wsptr[8*5] = (int) RIGHT_SHIFT(tmp25 + tmp15, CONST_BITS-PASS1_BITS); wsptr[8*6] = (int) RIGHT_SHIFT(tmp25 - tmp15, CONST_BITS-PASS1_BITS); } /* Pass 2: process 12 rows from work array, store into output array. */ wsptr = workspace; for (ctr = 0; ctr < 12; ctr++) { outptr = output_buf[ctr] + output_col; /* Even part */ /* Add fudge factor here for final descale. */ z3 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2)); z3 = LEFT_SHIFT(z3, CONST_BITS); z4 = (INT32) wsptr[4]; z4 = MULTIPLY(z4, FIX(1.224744871)); /* c4 */ tmp10 = z3 + z4; tmp11 = z3 - z4; z1 = (INT32) wsptr[2]; z4 = MULTIPLY(z1, FIX(1.366025404)); /* c2 */ z1 = LEFT_SHIFT(z1, CONST_BITS); z2 = (INT32) wsptr[6]; z2 = LEFT_SHIFT(z2, CONST_BITS); tmp12 = z1 - z2; tmp21 = z3 + tmp12; tmp24 = z3 - tmp12; tmp12 = z4 + z2; tmp20 = tmp10 + tmp12; tmp25 = tmp10 - tmp12; tmp12 = z4 - z1 - z2; tmp22 = tmp11 + tmp12; tmp23 = tmp11 - tmp12; /* Odd part */ z1 = (INT32) wsptr[1]; z2 = (INT32) wsptr[3]; z3 = (INT32) wsptr[5]; z4 = (INT32) wsptr[7]; tmp11 = MULTIPLY(z2, FIX(1.306562965)); /* c3 */ tmp14 = MULTIPLY(z2, - FIX_0_541196100); /* -c9 */ tmp10 = z1 + z3; tmp15 = MULTIPLY(tmp10 + z4, FIX(0.860918669)); /* c7 */ tmp12 = tmp15 + MULTIPLY(tmp10, FIX(0.261052384)); /* c5-c7 */ tmp10 = tmp12 + tmp11 + MULTIPLY(z1, FIX(0.280143716)); /* c1-c5 */ tmp13 = MULTIPLY(z3 + z4, - FIX(1.045510580)); /* -(c7+c11) */ tmp12 += tmp13 + tmp14 - MULTIPLY(z3, FIX(1.478575242)); /* c1+c5-c7-c11 */ tmp13 += tmp15 - tmp11 + MULTIPLY(z4, FIX(1.586706681)); /* c1+c11 */ tmp15 += tmp14 - MULTIPLY(z1, FIX(0.676326758)) - /* c7-c11 */ MULTIPLY(z4, FIX(1.982889723)); /* c5+c7 */ z1 -= z4; z2 -= z3; z3 = MULTIPLY(z1 + z2, FIX_0_541196100); /* c9 */ tmp11 = z3 + MULTIPLY(z1, FIX_0_765366865); /* c3-c9 */ tmp14 = z3 - MULTIPLY(z2, FIX_1_847759065); /* c3+c9 */ /* Final output stage */ outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[11] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[10] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp25 + tmp15, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp25 - tmp15, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; wsptr += 8; /* advance pointer to next row */ } } /* * Perform dequantization and inverse DCT on one block of coefficients, * producing a 13x13 output block. * * Optimized algorithm with 29 multiplications in the 1-D kernel. * cK represents sqrt(2) * cos(K*pi/26). */ GLOBAL(void) jpeg_idct_13x13 (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15; INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26; INT32 z1, z2, z3, z4; JCOEFPTR inptr; ISLOW_MULT_TYPE * quantptr; int * wsptr; JSAMPROW outptr; JSAMPLE *range_limit = IDCT_range_limit(cinfo); int ctr; int workspace[8*13]; /* buffers data between passes */ SHIFT_TEMPS /* Pass 1: process columns from input, store into work array. */ inptr = coef_block; quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; wsptr = workspace; for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) { /* Even part */ z1 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); z1 = LEFT_SHIFT(z1, CONST_BITS); /* Add fudge factor here for final descale. */ z1 += ONE << (CONST_BITS-PASS1_BITS-1); z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); z3 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); z4 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); tmp10 = z3 + z4; tmp11 = z3 - z4; tmp12 = MULTIPLY(tmp10, FIX(1.155388986)); /* (c4+c6)/2 */ tmp13 = MULTIPLY(tmp11, FIX(0.096834934)) + z1; /* (c4-c6)/2 */ tmp20 = MULTIPLY(z2, FIX(1.373119086)) + tmp12 + tmp13; /* c2 */ tmp22 = MULTIPLY(z2, FIX(0.501487041)) - tmp12 + tmp13; /* c10 */ tmp12 = MULTIPLY(tmp10, FIX(0.316450131)); /* (c8-c12)/2 */ tmp13 = MULTIPLY(tmp11, FIX(0.486914739)) + z1; /* (c8+c12)/2 */ tmp21 = MULTIPLY(z2, FIX(1.058554052)) - tmp12 + tmp13; /* c6 */ tmp25 = MULTIPLY(z2, - FIX(1.252223920)) + tmp12 + tmp13; /* c4 */ tmp12 = MULTIPLY(tmp10, FIX(0.435816023)); /* (c2-c10)/2 */ tmp13 = MULTIPLY(tmp11, FIX(0.937303064)) - z1; /* (c2+c10)/2 */ tmp23 = MULTIPLY(z2, - FIX(0.170464608)) - tmp12 - tmp13; /* c12 */ tmp24 = MULTIPLY(z2, - FIX(0.803364869)) + tmp12 - tmp13; /* c8 */ tmp26 = MULTIPLY(tmp11 - z2, FIX(1.414213562)) + z1; /* c0 */ /* Odd part */ z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); tmp11 = MULTIPLY(z1 + z2, FIX(1.322312651)); /* c3 */ tmp12 = MULTIPLY(z1 + z3, FIX(1.163874945)); /* c5 */ tmp15 = z1 + z4; tmp13 = MULTIPLY(tmp15, FIX(0.937797057)); /* c7 */ tmp10 = tmp11 + tmp12 + tmp13 - MULTIPLY(z1, FIX(2.020082300)); /* c7+c5+c3-c1 */ tmp14 = MULTIPLY(z2 + z3, - FIX(0.338443458)); /* -c11 */ tmp11 += tmp14 + MULTIPLY(z2, FIX(0.837223564)); /* c5+c9+c11-c3 */ tmp12 += tmp14 - MULTIPLY(z3, FIX(1.572116027)); /* c1+c5-c9-c11 */ tmp14 = MULTIPLY(z2 + z4, - FIX(1.163874945)); /* -c5 */ tmp11 += tmp14; tmp13 += tmp14 + MULTIPLY(z4, FIX(2.205608352)); /* c3+c5+c9-c7 */ tmp14 = MULTIPLY(z3 + z4, - FIX(0.657217813)); /* -c9 */ tmp12 += tmp14; tmp13 += tmp14; tmp15 = MULTIPLY(tmp15, FIX(0.338443458)); /* c11 */ tmp14 = tmp15 + MULTIPLY(z1, FIX(0.318774355)) - /* c9-c11 */ MULTIPLY(z2, FIX(0.466105296)); /* c1-c7 */ z1 = MULTIPLY(z3 - z2, FIX(0.937797057)); /* c7 */ tmp14 += z1; tmp15 += z1 + MULTIPLY(z3, FIX(0.384515595)) - /* c3-c7 */ MULTIPLY(z4, FIX(1.742345811)); /* c1+c11 */ /* Final output stage */ wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS); wsptr[8*12] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS); wsptr[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS); wsptr[8*11] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS); wsptr[8*2] = (int) RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS-PASS1_BITS); wsptr[8*10] = (int) RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS-PASS1_BITS); wsptr[8*3] = (int) RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS-PASS1_BITS); wsptr[8*9] = (int) RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS-PASS1_BITS); wsptr[8*4] = (int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS-PASS1_BITS); wsptr[8*8] = (int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS-PASS1_BITS); wsptr[8*5] = (int) RIGHT_SHIFT(tmp25 + tmp15, CONST_BITS-PASS1_BITS); wsptr[8*7] = (int) RIGHT_SHIFT(tmp25 - tmp15, CONST_BITS-PASS1_BITS); wsptr[8*6] = (int) RIGHT_SHIFT(tmp26, CONST_BITS-PASS1_BITS); } /* Pass 2: process 13 rows from work array, store into output array. */ wsptr = workspace; for (ctr = 0; ctr < 13; ctr++) { outptr = output_buf[ctr] + output_col; /* Even part */ /* Add fudge factor here for final descale. */ z1 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2)); z1 = LEFT_SHIFT(z1, CONST_BITS); z2 = (INT32) wsptr[2]; z3 = (INT32) wsptr[4]; z4 = (INT32) wsptr[6]; tmp10 = z3 + z4; tmp11 = z3 - z4; tmp12 = MULTIPLY(tmp10, FIX(1.155388986)); /* (c4+c6)/2 */ tmp13 = MULTIPLY(tmp11, FIX(0.096834934)) + z1; /* (c4-c6)/2 */ tmp20 = MULTIPLY(z2, FIX(1.373119086)) + tmp12 + tmp13; /* c2 */ tmp22 = MULTIPLY(z2, FIX(0.501487041)) - tmp12 + tmp13; /* c10 */ tmp12 = MULTIPLY(tmp10, FIX(0.316450131)); /* (c8-c12)/2 */ tmp13 = MULTIPLY(tmp11, FIX(0.486914739)) + z1; /* (c8+c12)/2 */ tmp21 = MULTIPLY(z2, FIX(1.058554052)) - tmp12 + tmp13; /* c6 */ tmp25 = MULTIPLY(z2, - FIX(1.252223920)) + tmp12 + tmp13; /* c4 */ tmp12 = MULTIPLY(tmp10, FIX(0.435816023)); /* (c2-c10)/2 */ tmp13 = MULTIPLY(tmp11, FIX(0.937303064)) - z1; /* (c2+c10)/2 */ tmp23 = MULTIPLY(z2, - FIX(0.170464608)) - tmp12 - tmp13; /* c12 */ tmp24 = MULTIPLY(z2, - FIX(0.803364869)) + tmp12 - tmp13; /* c8 */ tmp26 = MULTIPLY(tmp11 - z2, FIX(1.414213562)) + z1; /* c0 */ /* Odd part */ z1 = (INT32) wsptr[1]; z2 = (INT32) wsptr[3]; z3 = (INT32) wsptr[5]; z4 = (INT32) wsptr[7]; tmp11 = MULTIPLY(z1 + z2, FIX(1.322312651)); /* c3 */ tmp12 = MULTIPLY(z1 + z3, FIX(1.163874945)); /* c5 */ tmp15 = z1 + z4; tmp13 = MULTIPLY(tmp15, FIX(0.937797057)); /* c7 */ tmp10 = tmp11 + tmp12 + tmp13 - MULTIPLY(z1, FIX(2.020082300)); /* c7+c5+c3-c1 */ tmp14 = MULTIPLY(z2 + z3, - FIX(0.338443458)); /* -c11 */ tmp11 += tmp14 + MULTIPLY(z2, FIX(0.837223564)); /* c5+c9+c11-c3 */ tmp12 += tmp14 - MULTIPLY(z3, FIX(1.572116027)); /* c1+c5-c9-c11 */ tmp14 = MULTIPLY(z2 + z4, - FIX(1.163874945)); /* -c5 */ tmp11 += tmp14; tmp13 += tmp14 + MULTIPLY(z4, FIX(2.205608352)); /* c3+c5+c9-c7 */ tmp14 = MULTIPLY(z3 + z4, - FIX(0.657217813)); /* -c9 */ tmp12 += tmp14; tmp13 += tmp14; tmp15 = MULTIPLY(tmp15, FIX(0.338443458)); /* c11 */ tmp14 = tmp15 + MULTIPLY(z1, FIX(0.318774355)) - /* c9-c11 */ MULTIPLY(z2, FIX(0.466105296)); /* c1-c7 */ z1 = MULTIPLY(z3 - z2, FIX(0.937797057)); /* c7 */ tmp14 += z1; tmp15 += z1 + MULTIPLY(z3, FIX(0.384515595)) - /* c3-c7 */ MULTIPLY(z4, FIX(1.742345811)); /* c1+c11 */ /* Final output stage */ outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[12] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[11] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[10] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp25 + tmp15, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp25 - tmp15, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp26, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; wsptr += 8; /* advance pointer to next row */ } } /* * Perform dequantization and inverse DCT on one block of coefficients, * producing a 14x14 output block. * * Optimized algorithm with 20 multiplications in the 1-D kernel. * cK represents sqrt(2) * cos(K*pi/28). */ GLOBAL(void) jpeg_idct_14x14 (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16; INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26; INT32 z1, z2, z3, z4; JCOEFPTR inptr; ISLOW_MULT_TYPE * quantptr; int * wsptr; JSAMPROW outptr; JSAMPLE *range_limit = IDCT_range_limit(cinfo); int ctr; int workspace[8*14]; /* buffers data between passes */ SHIFT_TEMPS /* Pass 1: process columns from input, store into work array. */ inptr = coef_block; quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; wsptr = workspace; for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) { /* Even part */ z1 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); z1 = LEFT_SHIFT(z1, CONST_BITS); /* Add fudge factor here for final descale. */ z1 += ONE << (CONST_BITS-PASS1_BITS-1); z4 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); z2 = MULTIPLY(z4, FIX(1.274162392)); /* c4 */ z3 = MULTIPLY(z4, FIX(0.314692123)); /* c12 */ z4 = MULTIPLY(z4, FIX(0.881747734)); /* c8 */ tmp10 = z1 + z2; tmp11 = z1 + z3; tmp12 = z1 - z4; tmp23 = RIGHT_SHIFT(z1 - LEFT_SHIFT(z2 + z3 - z4, 1), CONST_BITS-PASS1_BITS); /* c0 = (c4+c12-c8)*2 */ z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); z2 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); z3 = MULTIPLY(z1 + z2, FIX(1.105676686)); /* c6 */ tmp13 = z3 + MULTIPLY(z1, FIX(0.273079590)); /* c2-c6 */ tmp14 = z3 - MULTIPLY(z2, FIX(1.719280954)); /* c6+c10 */ tmp15 = MULTIPLY(z1, FIX(0.613604268)) - /* c10 */ MULTIPLY(z2, FIX(1.378756276)); /* c2 */ tmp20 = tmp10 + tmp13; tmp26 = tmp10 - tmp13; tmp21 = tmp11 + tmp14; tmp25 = tmp11 - tmp14; tmp22 = tmp12 + tmp15; tmp24 = tmp12 - tmp15; /* Odd part */ z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); tmp13 = LEFT_SHIFT(z4, CONST_BITS); tmp14 = z1 + z3; tmp11 = MULTIPLY(z1 + z2, FIX(1.334852607)); /* c3 */ tmp12 = MULTIPLY(tmp14, FIX(1.197448846)); /* c5 */ tmp10 = tmp11 + tmp12 + tmp13 - MULTIPLY(z1, FIX(1.126980169)); /* c3+c5-c1 */ tmp14 = MULTIPLY(tmp14, FIX(0.752406978)); /* c9 */ tmp16 = tmp14 - MULTIPLY(z1, FIX(1.061150426)); /* c9+c11-c13 */ z1 -= z2; tmp15 = MULTIPLY(z1, FIX(0.467085129)) - tmp13; /* c11 */ tmp16 += tmp15; z1 += z4; z4 = MULTIPLY(z2 + z3, - FIX(0.158341681)) - tmp13; /* -c13 */ tmp11 += z4 - MULTIPLY(z2, FIX(0.424103948)); /* c3-c9-c13 */ tmp12 += z4 - MULTIPLY(z3, FIX(2.373959773)); /* c3+c5-c13 */ z4 = MULTIPLY(z3 - z2, FIX(1.405321284)); /* c1 */ tmp14 += z4 + tmp13 - MULTIPLY(z3, FIX(1.6906431334)); /* c1+c9-c11 */ tmp15 += z4 + MULTIPLY(z2, FIX(0.674957567)); /* c1+c11-c5 */ tmp13 = LEFT_SHIFT(z1 - z3, PASS1_BITS); /* Final output stage */ wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS); wsptr[8*13] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS); wsptr[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS); wsptr[8*12] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS); wsptr[8*2] = (int) RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS-PASS1_BITS); wsptr[8*11] = (int) RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS-PASS1_BITS); wsptr[8*3] = (int) (tmp23 + tmp13); wsptr[8*10] = (int) (tmp23 - tmp13); wsptr[8*4] = (int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS-PASS1_BITS); wsptr[8*9] = (int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS-PASS1_BITS); wsptr[8*5] = (int) RIGHT_SHIFT(tmp25 + tmp15, CONST_BITS-PASS1_BITS); wsptr[8*8] = (int) RIGHT_SHIFT(tmp25 - tmp15, CONST_BITS-PASS1_BITS); wsptr[8*6] = (int) RIGHT_SHIFT(tmp26 + tmp16, CONST_BITS-PASS1_BITS); wsptr[8*7] = (int) RIGHT_SHIFT(tmp26 - tmp16, CONST_BITS-PASS1_BITS); } /* Pass 2: process 14 rows from work array, store into output array. */ wsptr = workspace; for (ctr = 0; ctr < 14; ctr++) { outptr = output_buf[ctr] + output_col; /* Even part */ /* Add fudge factor here for final descale. */ z1 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2)); z1 = LEFT_SHIFT(z1, CONST_BITS); z4 = (INT32) wsptr[4]; z2 = MULTIPLY(z4, FIX(1.274162392)); /* c4 */ z3 = MULTIPLY(z4, FIX(0.314692123)); /* c12 */ z4 = MULTIPLY(z4, FIX(0.881747734)); /* c8 */ tmp10 = z1 + z2; tmp11 = z1 + z3; tmp12 = z1 - z4; tmp23 = z1 - LEFT_SHIFT(z2 + z3 - z4, 1); /* c0 = (c4+c12-c8)*2 */ z1 = (INT32) wsptr[2]; z2 = (INT32) wsptr[6]; z3 = MULTIPLY(z1 + z2, FIX(1.105676686)); /* c6 */ tmp13 = z3 + MULTIPLY(z1, FIX(0.273079590)); /* c2-c6 */ tmp14 = z3 - MULTIPLY(z2, FIX(1.719280954)); /* c6+c10 */ tmp15 = MULTIPLY(z1, FIX(0.613604268)) - /* c10 */ MULTIPLY(z2, FIX(1.378756276)); /* c2 */ tmp20 = tmp10 + tmp13; tmp26 = tmp10 - tmp13; tmp21 = tmp11 + tmp14; tmp25 = tmp11 - tmp14; tmp22 = tmp12 + tmp15; tmp24 = tmp12 - tmp15; /* Odd part */ z1 = (INT32) wsptr[1]; z2 = (INT32) wsptr[3]; z3 = (INT32) wsptr[5]; z4 = (INT32) wsptr[7]; z4 = LEFT_SHIFT(z4, CONST_BITS); tmp14 = z1 + z3; tmp11 = MULTIPLY(z1 + z2, FIX(1.334852607)); /* c3 */ tmp12 = MULTIPLY(tmp14, FIX(1.197448846)); /* c5 */ tmp10 = tmp11 + tmp12 + z4 - MULTIPLY(z1, FIX(1.126980169)); /* c3+c5-c1 */ tmp14 = MULTIPLY(tmp14, FIX(0.752406978)); /* c9 */ tmp16 = tmp14 - MULTIPLY(z1, FIX(1.061150426)); /* c9+c11-c13 */ z1 -= z2; tmp15 = MULTIPLY(z1, FIX(0.467085129)) - z4; /* c11 */ tmp16 += tmp15; tmp13 = MULTIPLY(z2 + z3, - FIX(0.158341681)) - z4; /* -c13 */ tmp11 += tmp13 - MULTIPLY(z2, FIX(0.424103948)); /* c3-c9-c13 */ tmp12 += tmp13 - MULTIPLY(z3, FIX(2.373959773)); /* c3+c5-c13 */ tmp13 = MULTIPLY(z3 - z2, FIX(1.405321284)); /* c1 */ tmp14 += tmp13 + z4 - MULTIPLY(z3, FIX(1.6906431334)); /* c1+c9-c11 */ tmp15 += tmp13 + MULTIPLY(z2, FIX(0.674957567)); /* c1+c11-c5 */ tmp13 = LEFT_SHIFT(z1 - z3, CONST_BITS) + z4; /* Final output stage */ outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[13] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[12] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[11] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[10] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp25 + tmp15, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp25 - tmp15, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp26 + tmp16, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp26 - tmp16, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; wsptr += 8; /* advance pointer to next row */ } } /* * Perform dequantization and inverse DCT on one block of coefficients, * producing a 15x15 output block. * * Optimized algorithm with 22 multiplications in the 1-D kernel. * cK represents sqrt(2) * cos(K*pi/30). */ GLOBAL(void) jpeg_idct_15x15 (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16; INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26, tmp27; INT32 z1, z2, z3, z4; JCOEFPTR inptr; ISLOW_MULT_TYPE * quantptr; int * wsptr; JSAMPROW outptr; JSAMPLE *range_limit = IDCT_range_limit(cinfo); int ctr; int workspace[8*15]; /* buffers data between passes */ SHIFT_TEMPS /* Pass 1: process columns from input, store into work array. */ inptr = coef_block; quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; wsptr = workspace; for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) { /* Even part */ z1 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); z1 = LEFT_SHIFT(z1, CONST_BITS); /* Add fudge factor here for final descale. */ z1 += ONE << (CONST_BITS-PASS1_BITS-1); z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); z3 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); z4 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); tmp10 = MULTIPLY(z4, FIX(0.437016024)); /* c12 */ tmp11 = MULTIPLY(z4, FIX(1.144122806)); /* c6 */ tmp12 = z1 - tmp10; tmp13 = z1 + tmp11; z1 -= LEFT_SHIFT(tmp11 - tmp10, 1); /* c0 = (c6-c12)*2 */ z4 = z2 - z3; z3 += z2; tmp10 = MULTIPLY(z3, FIX(1.337628990)); /* (c2+c4)/2 */ tmp11 = MULTIPLY(z4, FIX(0.045680613)); /* (c2-c4)/2 */ z2 = MULTIPLY(z2, FIX(1.439773946)); /* c4+c14 */ tmp20 = tmp13 + tmp10 + tmp11; tmp23 = tmp12 - tmp10 + tmp11 + z2; tmp10 = MULTIPLY(z3, FIX(0.547059574)); /* (c8+c14)/2 */ tmp11 = MULTIPLY(z4, FIX(0.399234004)); /* (c8-c14)/2 */ tmp25 = tmp13 - tmp10 - tmp11; tmp26 = tmp12 + tmp10 - tmp11 - z2; tmp10 = MULTIPLY(z3, FIX(0.790569415)); /* (c6+c12)/2 */ tmp11 = MULTIPLY(z4, FIX(0.353553391)); /* (c6-c12)/2 */ tmp21 = tmp12 + tmp10 + tmp11; tmp24 = tmp13 - tmp10 + tmp11; tmp11 += tmp11; tmp22 = z1 + tmp11; /* c10 = c6-c12 */ tmp27 = z1 - tmp11 - tmp11; /* c0 = (c6-c12)*2 */ /* Odd part */ z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); z4 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); z3 = MULTIPLY(z4, FIX(1.224744871)); /* c5 */ z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); tmp13 = z2 - z4; tmp15 = MULTIPLY(z1 + tmp13, FIX(0.831253876)); /* c9 */ tmp11 = tmp15 + MULTIPLY(z1, FIX(0.513743148)); /* c3-c9 */ tmp14 = tmp15 - MULTIPLY(tmp13, FIX(2.176250899)); /* c3+c9 */ tmp13 = MULTIPLY(z2, - FIX(0.831253876)); /* -c9 */ tmp15 = MULTIPLY(z2, - FIX(1.344997024)); /* -c3 */ z2 = z1 - z4; tmp12 = z3 + MULTIPLY(z2, FIX(1.406466353)); /* c1 */ tmp10 = tmp12 + MULTIPLY(z4, FIX(2.457431844)) - tmp15; /* c1+c7 */ tmp16 = tmp12 - MULTIPLY(z1, FIX(1.112434820)) + tmp13; /* c1-c13 */ tmp12 = MULTIPLY(z2, FIX(1.224744871)) - z3; /* c5 */ z2 = MULTIPLY(z1 + z4, FIX(0.575212477)); /* c11 */ tmp13 += z2 + MULTIPLY(z1, FIX(0.475753014)) - z3; /* c7-c11 */ tmp15 += z2 - MULTIPLY(z4, FIX(0.869244010)) + z3; /* c11+c13 */ /* Final output stage */ wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS); wsptr[8*14] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS); wsptr[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS); wsptr[8*13] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS); wsptr[8*2] = (int) RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS-PASS1_BITS); wsptr[8*12] = (int) RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS-PASS1_BITS); wsptr[8*3] = (int) RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS-PASS1_BITS); wsptr[8*11] = (int) RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS-PASS1_BITS); wsptr[8*4] = (int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS-PASS1_BITS); wsptr[8*10] = (int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS-PASS1_BITS); wsptr[8*5] = (int) RIGHT_SHIFT(tmp25 + tmp15, CONST_BITS-PASS1_BITS); wsptr[8*9] = (int) RIGHT_SHIFT(tmp25 - tmp15, CONST_BITS-PASS1_BITS); wsptr[8*6] = (int) RIGHT_SHIFT(tmp26 + tmp16, CONST_BITS-PASS1_BITS); wsptr[8*8] = (int) RIGHT_SHIFT(tmp26 - tmp16, CONST_BITS-PASS1_BITS); wsptr[8*7] = (int) RIGHT_SHIFT(tmp27, CONST_BITS-PASS1_BITS); } /* Pass 2: process 15 rows from work array, store into output array. */ wsptr = workspace; for (ctr = 0; ctr < 15; ctr++) { outptr = output_buf[ctr] + output_col; /* Even part */ /* Add fudge factor here for final descale. */ z1 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2)); z1 = LEFT_SHIFT(z1, CONST_BITS); z2 = (INT32) wsptr[2]; z3 = (INT32) wsptr[4]; z4 = (INT32) wsptr[6]; tmp10 = MULTIPLY(z4, FIX(0.437016024)); /* c12 */ tmp11 = MULTIPLY(z4, FIX(1.144122806)); /* c6 */ tmp12 = z1 - tmp10; tmp13 = z1 + tmp11; z1 -= LEFT_SHIFT(tmp11 - tmp10, 1); /* c0 = (c6-c12)*2 */ z4 = z2 - z3; z3 += z2; tmp10 = MULTIPLY(z3, FIX(1.337628990)); /* (c2+c4)/2 */ tmp11 = MULTIPLY(z4, FIX(0.045680613)); /* (c2-c4)/2 */ z2 = MULTIPLY(z2, FIX(1.439773946)); /* c4+c14 */ tmp20 = tmp13 + tmp10 + tmp11; tmp23 = tmp12 - tmp10 + tmp11 + z2; tmp10 = MULTIPLY(z3, FIX(0.547059574)); /* (c8+c14)/2 */ tmp11 = MULTIPLY(z4, FIX(0.399234004)); /* (c8-c14)/2 */ tmp25 = tmp13 - tmp10 - tmp11; tmp26 = tmp12 + tmp10 - tmp11 - z2; tmp10 = MULTIPLY(z3, FIX(0.790569415)); /* (c6+c12)/2 */ tmp11 = MULTIPLY(z4, FIX(0.353553391)); /* (c6-c12)/2 */ tmp21 = tmp12 + tmp10 + tmp11; tmp24 = tmp13 - tmp10 + tmp11; tmp11 += tmp11; tmp22 = z1 + tmp11; /* c10 = c6-c12 */ tmp27 = z1 - tmp11 - tmp11; /* c0 = (c6-c12)*2 */ /* Odd part */ z1 = (INT32) wsptr[1]; z2 = (INT32) wsptr[3]; z4 = (INT32) wsptr[5]; z3 = MULTIPLY(z4, FIX(1.224744871)); /* c5 */ z4 = (INT32) wsptr[7]; tmp13 = z2 - z4; tmp15 = MULTIPLY(z1 + tmp13, FIX(0.831253876)); /* c9 */ tmp11 = tmp15 + MULTIPLY(z1, FIX(0.513743148)); /* c3-c9 */ tmp14 = tmp15 - MULTIPLY(tmp13, FIX(2.176250899)); /* c3+c9 */ tmp13 = MULTIPLY(z2, - FIX(0.831253876)); /* -c9 */ tmp15 = MULTIPLY(z2, - FIX(1.344997024)); /* -c3 */ z2 = z1 - z4; tmp12 = z3 + MULTIPLY(z2, FIX(1.406466353)); /* c1 */ tmp10 = tmp12 + MULTIPLY(z4, FIX(2.457431844)) - tmp15; /* c1+c7 */ tmp16 = tmp12 - MULTIPLY(z1, FIX(1.112434820)) + tmp13; /* c1-c13 */ tmp12 = MULTIPLY(z2, FIX(1.224744871)) - z3; /* c5 */ z2 = MULTIPLY(z1 + z4, FIX(0.575212477)); /* c11 */ tmp13 += z2 + MULTIPLY(z1, FIX(0.475753014)) - z3; /* c7-c11 */ tmp15 += z2 - MULTIPLY(z4, FIX(0.869244010)) + z3; /* c11+c13 */ /* Final output stage */ outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[14] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[13] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[12] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[11] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[10] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp25 + tmp15, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp25 - tmp15, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp26 + tmp16, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp26 - tmp16, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp27, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; wsptr += 8; /* advance pointer to next row */ } } /* * Perform dequantization and inverse DCT on one block of coefficients, * producing a 16x16 output block. * * Optimized algorithm with 28 multiplications in the 1-D kernel. * cK represents sqrt(2) * cos(K*pi/32). */ GLOBAL(void) jpeg_idct_16x16 (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { INT32 tmp0, tmp1, tmp2, tmp3, tmp10, tmp11, tmp12, tmp13; INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26, tmp27; INT32 z1, z2, z3, z4; JCOEFPTR inptr; ISLOW_MULT_TYPE * quantptr; int * wsptr; JSAMPROW outptr; JSAMPLE *range_limit = IDCT_range_limit(cinfo); int ctr; int workspace[8*16]; /* buffers data between passes */ SHIFT_TEMPS /* Pass 1: process columns from input, store into work array. */ inptr = coef_block; quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; wsptr = workspace; for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) { /* Even part */ tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); tmp0 = LEFT_SHIFT(tmp0, CONST_BITS); /* Add fudge factor here for final descale. */ tmp0 += 1 << (CONST_BITS-PASS1_BITS-1); z1 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); tmp1 = MULTIPLY(z1, FIX(1.306562965)); /* c4[16] = c2[8] */ tmp2 = MULTIPLY(z1, FIX_0_541196100); /* c12[16] = c6[8] */ tmp10 = tmp0 + tmp1; tmp11 = tmp0 - tmp1; tmp12 = tmp0 + tmp2; tmp13 = tmp0 - tmp2; z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); z2 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); z3 = z1 - z2; z4 = MULTIPLY(z3, FIX(0.275899379)); /* c14[16] = c7[8] */ z3 = MULTIPLY(z3, FIX(1.387039845)); /* c2[16] = c1[8] */ tmp0 = z3 + MULTIPLY(z2, FIX_2_562915447); /* (c6+c2)[16] = (c3+c1)[8] */ tmp1 = z4 + MULTIPLY(z1, FIX_0_899976223); /* (c6-c14)[16] = (c3-c7)[8] */ tmp2 = z3 - MULTIPLY(z1, FIX(0.601344887)); /* (c2-c10)[16] = (c1-c5)[8] */ tmp3 = z4 - MULTIPLY(z2, FIX(0.509795579)); /* (c10-c14)[16] = (c5-c7)[8] */ tmp20 = tmp10 + tmp0; tmp27 = tmp10 - tmp0; tmp21 = tmp12 + tmp1; tmp26 = tmp12 - tmp1; tmp22 = tmp13 + tmp2; tmp25 = tmp13 - tmp2; tmp23 = tmp11 + tmp3; tmp24 = tmp11 - tmp3; /* Odd part */ z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); tmp11 = z1 + z3; tmp1 = MULTIPLY(z1 + z2, FIX(1.353318001)); /* c3 */ tmp2 = MULTIPLY(tmp11, FIX(1.247225013)); /* c5 */ tmp3 = MULTIPLY(z1 + z4, FIX(1.093201867)); /* c7 */ tmp10 = MULTIPLY(z1 - z4, FIX(0.897167586)); /* c9 */ tmp11 = MULTIPLY(tmp11, FIX(0.666655658)); /* c11 */ tmp12 = MULTIPLY(z1 - z2, FIX(0.410524528)); /* c13 */ tmp0 = tmp1 + tmp2 + tmp3 - MULTIPLY(z1, FIX(2.286341144)); /* c7+c5+c3-c1 */ tmp13 = tmp10 + tmp11 + tmp12 - MULTIPLY(z1, FIX(1.835730603)); /* c9+c11+c13-c15 */ z1 = MULTIPLY(z2 + z3, FIX(0.138617169)); /* c15 */ tmp1 += z1 + MULTIPLY(z2, FIX(0.071888074)); /* c9+c11-c3-c15 */ tmp2 += z1 - MULTIPLY(z3, FIX(1.125726048)); /* c5+c7+c15-c3 */ z1 = MULTIPLY(z3 - z2, FIX(1.407403738)); /* c1 */ tmp11 += z1 - MULTIPLY(z3, FIX(0.766367282)); /* c1+c11-c9-c13 */ tmp12 += z1 + MULTIPLY(z2, FIX(1.971951411)); /* c1+c5+c13-c7 */ z2 += z4; z1 = MULTIPLY(z2, - FIX(0.666655658)); /* -c11 */ tmp1 += z1; tmp3 += z1 + MULTIPLY(z4, FIX(1.065388962)); /* c3+c11+c15-c7 */ z2 = MULTIPLY(z2, - FIX(1.247225013)); /* -c5 */ tmp10 += z2 + MULTIPLY(z4, FIX(3.141271809)); /* c1+c5+c9-c13 */ tmp12 += z2; z2 = MULTIPLY(z3 + z4, - FIX(1.353318001)); /* -c3 */ tmp2 += z2; tmp3 += z2; z2 = MULTIPLY(z4 - z3, FIX(0.410524528)); /* c13 */ tmp10 += z2; tmp11 += z2; /* Final output stage */ wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp0, CONST_BITS-PASS1_BITS); wsptr[8*15] = (int) RIGHT_SHIFT(tmp20 - tmp0, CONST_BITS-PASS1_BITS); wsptr[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp1, CONST_BITS-PASS1_BITS); wsptr[8*14] = (int) RIGHT_SHIFT(tmp21 - tmp1, CONST_BITS-PASS1_BITS); wsptr[8*2] = (int) RIGHT_SHIFT(tmp22 + tmp2, CONST_BITS-PASS1_BITS); wsptr[8*13] = (int) RIGHT_SHIFT(tmp22 - tmp2, CONST_BITS-PASS1_BITS); wsptr[8*3] = (int) RIGHT_SHIFT(tmp23 + tmp3, CONST_BITS-PASS1_BITS); wsptr[8*12] = (int) RIGHT_SHIFT(tmp23 - tmp3, CONST_BITS-PASS1_BITS); wsptr[8*4] = (int) RIGHT_SHIFT(tmp24 + tmp10, CONST_BITS-PASS1_BITS); wsptr[8*11] = (int) RIGHT_SHIFT(tmp24 - tmp10, CONST_BITS-PASS1_BITS); wsptr[8*5] = (int) RIGHT_SHIFT(tmp25 + tmp11, CONST_BITS-PASS1_BITS); wsptr[8*10] = (int) RIGHT_SHIFT(tmp25 - tmp11, CONST_BITS-PASS1_BITS); wsptr[8*6] = (int) RIGHT_SHIFT(tmp26 + tmp12, CONST_BITS-PASS1_BITS); wsptr[8*9] = (int) RIGHT_SHIFT(tmp26 - tmp12, CONST_BITS-PASS1_BITS); wsptr[8*7] = (int) RIGHT_SHIFT(tmp27 + tmp13, CONST_BITS-PASS1_BITS); wsptr[8*8] = (int) RIGHT_SHIFT(tmp27 - tmp13, CONST_BITS-PASS1_BITS); } /* Pass 2: process 16 rows from work array, store into output array. */ wsptr = workspace; for (ctr = 0; ctr < 16; ctr++) { outptr = output_buf[ctr] + output_col; /* Even part */ /* Add fudge factor here for final descale. */ tmp0 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2)); tmp0 = LEFT_SHIFT(tmp0, CONST_BITS); z1 = (INT32) wsptr[4]; tmp1 = MULTIPLY(z1, FIX(1.306562965)); /* c4[16] = c2[8] */ tmp2 = MULTIPLY(z1, FIX_0_541196100); /* c12[16] = c6[8] */ tmp10 = tmp0 + tmp1; tmp11 = tmp0 - tmp1; tmp12 = tmp0 + tmp2; tmp13 = tmp0 - tmp2; z1 = (INT32) wsptr[2]; z2 = (INT32) wsptr[6]; z3 = z1 - z2; z4 = MULTIPLY(z3, FIX(0.275899379)); /* c14[16] = c7[8] */ z3 = MULTIPLY(z3, FIX(1.387039845)); /* c2[16] = c1[8] */ tmp0 = z3 + MULTIPLY(z2, FIX_2_562915447); /* (c6+c2)[16] = (c3+c1)[8] */ tmp1 = z4 + MULTIPLY(z1, FIX_0_899976223); /* (c6-c14)[16] = (c3-c7)[8] */ tmp2 = z3 - MULTIPLY(z1, FIX(0.601344887)); /* (c2-c10)[16] = (c1-c5)[8] */ tmp3 = z4 - MULTIPLY(z2, FIX(0.509795579)); /* (c10-c14)[16] = (c5-c7)[8] */ tmp20 = tmp10 + tmp0; tmp27 = tmp10 - tmp0; tmp21 = tmp12 + tmp1; tmp26 = tmp12 - tmp1; tmp22 = tmp13 + tmp2; tmp25 = tmp13 - tmp2; tmp23 = tmp11 + tmp3; tmp24 = tmp11 - tmp3; /* Odd part */ z1 = (INT32) wsptr[1]; z2 = (INT32) wsptr[3]; z3 = (INT32) wsptr[5]; z4 = (INT32) wsptr[7]; tmp11 = z1 + z3; tmp1 = MULTIPLY(z1 + z2, FIX(1.353318001)); /* c3 */ tmp2 = MULTIPLY(tmp11, FIX(1.247225013)); /* c5 */ tmp3 = MULTIPLY(z1 + z4, FIX(1.093201867)); /* c7 */ tmp10 = MULTIPLY(z1 - z4, FIX(0.897167586)); /* c9 */ tmp11 = MULTIPLY(tmp11, FIX(0.666655658)); /* c11 */ tmp12 = MULTIPLY(z1 - z2, FIX(0.410524528)); /* c13 */ tmp0 = tmp1 + tmp2 + tmp3 - MULTIPLY(z1, FIX(2.286341144)); /* c7+c5+c3-c1 */ tmp13 = tmp10 + tmp11 + tmp12 - MULTIPLY(z1, FIX(1.835730603)); /* c9+c11+c13-c15 */ z1 = MULTIPLY(z2 + z3, FIX(0.138617169)); /* c15 */ tmp1 += z1 + MULTIPLY(z2, FIX(0.071888074)); /* c9+c11-c3-c15 */ tmp2 += z1 - MULTIPLY(z3, FIX(1.125726048)); /* c5+c7+c15-c3 */ z1 = MULTIPLY(z3 - z2, FIX(1.407403738)); /* c1 */ tmp11 += z1 - MULTIPLY(z3, FIX(0.766367282)); /* c1+c11-c9-c13 */ tmp12 += z1 + MULTIPLY(z2, FIX(1.971951411)); /* c1+c5+c13-c7 */ z2 += z4; z1 = MULTIPLY(z2, - FIX(0.666655658)); /* -c11 */ tmp1 += z1; tmp3 += z1 + MULTIPLY(z4, FIX(1.065388962)); /* c3+c11+c15-c7 */ z2 = MULTIPLY(z2, - FIX(1.247225013)); /* -c5 */ tmp10 += z2 + MULTIPLY(z4, FIX(3.141271809)); /* c1+c5+c9-c13 */ tmp12 += z2; z2 = MULTIPLY(z3 + z4, - FIX(1.353318001)); /* -c3 */ tmp2 += z2; tmp3 += z2; z2 = MULTIPLY(z4 - z3, FIX(0.410524528)); /* c13 */ tmp10 += z2; tmp11 += z2; /* Final output stage */ outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp0, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[15] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp0, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp1, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[14] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp1, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp2, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[13] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp2, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp3, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[12] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp3, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp10, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[11] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp10, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp25 + tmp11, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[10] = range_limit[(int) RIGHT_SHIFT(tmp25 - tmp11, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp26 + tmp12, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp26 - tmp12, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp27 + tmp13, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp27 - tmp13, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; wsptr += 8; /* advance pointer to next row */ } } #endif /* IDCT_SCALING_SUPPORTED */ #endif /* DCT_ISLOW_SUPPORTED */ libjpeg-turbo-1.4.2/jfdctfst.c0000644000076500007650000001675112600050400013166 00000000000000/* * jfdctfst.c * * Copyright (C) 1994-1996, Thomas G. Lane. * This file is part of the Independent JPEG Group's software. * For conditions of distribution and use, see the accompanying README file. * * This file contains a fast, not so accurate integer implementation of the * forward DCT (Discrete Cosine Transform). * * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT * on each column. Direct algorithms are also available, but they are * much more complex and seem not to be any faster when reduced to code. * * This implementation is based on Arai, Agui, and Nakajima's algorithm for * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in * Japanese, but the algorithm is described in the Pennebaker & Mitchell * JPEG textbook (see REFERENCES section in file README). The following code * is based directly on figure 4-8 in P&M. * While an 8-point DCT cannot be done in less than 11 multiplies, it is * possible to arrange the computation so that many of the multiplies are * simple scalings of the final outputs. These multiplies can then be * folded into the multiplications or divisions by the JPEG quantization * table entries. The AA&N method leaves only 5 multiplies and 29 adds * to be done in the DCT itself. * The primary disadvantage of this method is that with fixed-point math, * accuracy is lost due to imprecise representation of the scaled * quantization values. The smaller the quantization table entry, the less * precise the scaled value, so this implementation does worse with high- * quality-setting files than with low-quality ones. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" #include "jdct.h" /* Private declarations for DCT subsystem */ #ifdef DCT_IFAST_SUPPORTED /* * This module is specialized to the case DCTSIZE = 8. */ #if DCTSIZE != 8 Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ #endif /* Scaling decisions are generally the same as in the LL&M algorithm; * see jfdctint.c for more details. However, we choose to descale * (right shift) multiplication products as soon as they are formed, * rather than carrying additional fractional bits into subsequent additions. * This compromises accuracy slightly, but it lets us save a few shifts. * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples) * everywhere except in the multiplications proper; this saves a good deal * of work on 16-bit-int machines. * * Again to save a few shifts, the intermediate results between pass 1 and * pass 2 are not upscaled, but are represented only to integral precision. * * A final compromise is to represent the multiplicative constants to only * 8 fractional bits, rather than 13. This saves some shifting work on some * machines, and may also reduce the cost of multiplication (since there * are fewer one-bits in the constants). */ #define CONST_BITS 8 /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus * causing a lot of useless floating-point operations at run time. * To get around this we use the following pre-calculated constants. * If you change CONST_BITS you may want to add appropriate values. * (With a reasonable C compiler, you can just rely on the FIX() macro...) */ #if CONST_BITS == 8 #define FIX_0_382683433 ((INT32) 98) /* FIX(0.382683433) */ #define FIX_0_541196100 ((INT32) 139) /* FIX(0.541196100) */ #define FIX_0_707106781 ((INT32) 181) /* FIX(0.707106781) */ #define FIX_1_306562965 ((INT32) 334) /* FIX(1.306562965) */ #else #define FIX_0_382683433 FIX(0.382683433) #define FIX_0_541196100 FIX(0.541196100) #define FIX_0_707106781 FIX(0.707106781) #define FIX_1_306562965 FIX(1.306562965) #endif /* We can gain a little more speed, with a further compromise in accuracy, * by omitting the addition in a descaling shift. This yields an incorrectly * rounded result half the time... */ #ifndef USE_ACCURATE_ROUNDING #undef DESCALE #define DESCALE(x,n) RIGHT_SHIFT(x, n) #endif /* Multiply a DCTELEM variable by an INT32 constant, and immediately * descale to yield a DCTELEM result. */ #define MULTIPLY(var,const) ((DCTELEM) DESCALE((var) * (const), CONST_BITS)) /* * Perform the forward DCT on one block of samples. */ GLOBAL(void) jpeg_fdct_ifast (DCTELEM * data) { DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; DCTELEM tmp10, tmp11, tmp12, tmp13; DCTELEM z1, z2, z3, z4, z5, z11, z13; DCTELEM *dataptr; int ctr; SHIFT_TEMPS /* Pass 1: process rows. */ dataptr = data; for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { tmp0 = dataptr[0] + dataptr[7]; tmp7 = dataptr[0] - dataptr[7]; tmp1 = dataptr[1] + dataptr[6]; tmp6 = dataptr[1] - dataptr[6]; tmp2 = dataptr[2] + dataptr[5]; tmp5 = dataptr[2] - dataptr[5]; tmp3 = dataptr[3] + dataptr[4]; tmp4 = dataptr[3] - dataptr[4]; /* Even part */ tmp10 = tmp0 + tmp3; /* phase 2 */ tmp13 = tmp0 - tmp3; tmp11 = tmp1 + tmp2; tmp12 = tmp1 - tmp2; dataptr[0] = tmp10 + tmp11; /* phase 3 */ dataptr[4] = tmp10 - tmp11; z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */ dataptr[2] = tmp13 + z1; /* phase 5 */ dataptr[6] = tmp13 - z1; /* Odd part */ tmp10 = tmp4 + tmp5; /* phase 2 */ tmp11 = tmp5 + tmp6; tmp12 = tmp6 + tmp7; /* The rotator is modified from fig 4-8 to avoid extra negations. */ z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */ z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */ z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */ z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */ z11 = tmp7 + z3; /* phase 5 */ z13 = tmp7 - z3; dataptr[5] = z13 + z2; /* phase 6 */ dataptr[3] = z13 - z2; dataptr[1] = z11 + z4; dataptr[7] = z11 - z4; dataptr += DCTSIZE; /* advance pointer to next row */ } /* Pass 2: process columns. */ dataptr = data; for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7]; tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7]; tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6]; tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6]; tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5]; tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5]; tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4]; tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4]; /* Even part */ tmp10 = tmp0 + tmp3; /* phase 2 */ tmp13 = tmp0 - tmp3; tmp11 = tmp1 + tmp2; tmp12 = tmp1 - tmp2; dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */ dataptr[DCTSIZE*4] = tmp10 - tmp11; z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */ dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */ dataptr[DCTSIZE*6] = tmp13 - z1; /* Odd part */ tmp10 = tmp4 + tmp5; /* phase 2 */ tmp11 = tmp5 + tmp6; tmp12 = tmp6 + tmp7; /* The rotator is modified from fig 4-8 to avoid extra negations. */ z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */ z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */ z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */ z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */ z11 = tmp7 + z3; /* phase 5 */ z13 = tmp7 - z3; dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */ dataptr[DCTSIZE*3] = z13 - z2; dataptr[DCTSIZE*1] = z11 + z4; dataptr[DCTSIZE*7] = z11 - z4; dataptr++; /* advance pointer to next column */ } } #endif /* DCT_IFAST_SUPPORTED */ libjpeg-turbo-1.4.2/jccolor.c0000644000076500007650000005662012600050400013011 00000000000000/* * jccolor.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1991-1996, Thomas G. Lane. * libjpeg-turbo Modifications: * Copyright 2009 Pierre Ossman for Cendio AB * Copyright (C) 2009-2012, 2015 D. R. Commander. * Copyright (C) 2014, MIPS Technologies, Inc., California * For conditions of distribution and use, see the accompanying README file. * * This file contains input colorspace conversion routines. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" #include "jsimd.h" #include "jconfigint.h" /* Private subobject */ typedef struct { struct jpeg_color_converter pub; /* public fields */ /* Private state for RGB->YCC conversion */ INT32 * rgb_ycc_tab; /* => table for RGB to YCbCr conversion */ } my_color_converter; typedef my_color_converter * my_cconvert_ptr; /**************** RGB -> YCbCr conversion: most common case **************/ /* * YCbCr is defined per CCIR 601-1, except that Cb and Cr are * normalized to the range 0..MAXJSAMPLE rather than -0.5 .. 0.5. * The conversion equations to be implemented are therefore * Y = 0.29900 * R + 0.58700 * G + 0.11400 * B * Cb = -0.16874 * R - 0.33126 * G + 0.50000 * B + CENTERJSAMPLE * Cr = 0.50000 * R - 0.41869 * G - 0.08131 * B + CENTERJSAMPLE * (These numbers are derived from TIFF 6.0 section 21, dated 3-June-92.) * Note: older versions of the IJG code used a zero offset of MAXJSAMPLE/2, * rather than CENTERJSAMPLE, for Cb and Cr. This gave equal positive and * negative swings for Cb/Cr, but meant that grayscale values (Cb=Cr=0) * were not represented exactly. Now we sacrifice exact representation of * maximum red and maximum blue in order to get exact grayscales. * * To avoid floating-point arithmetic, we represent the fractional constants * as integers scaled up by 2^16 (about 4 digits precision); we have to divide * the products by 2^16, with appropriate rounding, to get the correct answer. * * For even more speed, we avoid doing any multiplications in the inner loop * by precalculating the constants times R,G,B for all possible values. * For 8-bit JSAMPLEs this is very reasonable (only 256 entries per table); * for 12-bit samples it is still acceptable. It's not very reasonable for * 16-bit samples, but if you want lossless storage you shouldn't be changing * colorspace anyway. * The CENTERJSAMPLE offsets and the rounding fudge-factor of 0.5 are included * in the tables to save adding them separately in the inner loop. */ #define SCALEBITS 16 /* speediest right-shift on some machines */ #define CBCR_OFFSET ((INT32) CENTERJSAMPLE << SCALEBITS) #define ONE_HALF ((INT32) 1 << (SCALEBITS-1)) #define FIX(x) ((INT32) ((x) * (1L< Y section */ #define G_Y_OFF (1*(MAXJSAMPLE+1)) /* offset to G => Y section */ #define B_Y_OFF (2*(MAXJSAMPLE+1)) /* etc. */ #define R_CB_OFF (3*(MAXJSAMPLE+1)) #define G_CB_OFF (4*(MAXJSAMPLE+1)) #define B_CB_OFF (5*(MAXJSAMPLE+1)) #define R_CR_OFF B_CB_OFF /* B=>Cb, R=>Cr are the same */ #define G_CR_OFF (6*(MAXJSAMPLE+1)) #define B_CR_OFF (7*(MAXJSAMPLE+1)) #define TABLE_SIZE (8*(MAXJSAMPLE+1)) /* Include inline routines for colorspace extensions */ #include "jccolext.c" #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_PIXELSIZE #define RGB_RED EXT_RGB_RED #define RGB_GREEN EXT_RGB_GREEN #define RGB_BLUE EXT_RGB_BLUE #define RGB_PIXELSIZE EXT_RGB_PIXELSIZE #define rgb_ycc_convert_internal extrgb_ycc_convert_internal #define rgb_gray_convert_internal extrgb_gray_convert_internal #define rgb_rgb_convert_internal extrgb_rgb_convert_internal #include "jccolext.c" #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_PIXELSIZE #undef rgb_ycc_convert_internal #undef rgb_gray_convert_internal #undef rgb_rgb_convert_internal #define RGB_RED EXT_RGBX_RED #define RGB_GREEN EXT_RGBX_GREEN #define RGB_BLUE EXT_RGBX_BLUE #define RGB_PIXELSIZE EXT_RGBX_PIXELSIZE #define rgb_ycc_convert_internal extrgbx_ycc_convert_internal #define rgb_gray_convert_internal extrgbx_gray_convert_internal #define rgb_rgb_convert_internal extrgbx_rgb_convert_internal #include "jccolext.c" #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_PIXELSIZE #undef rgb_ycc_convert_internal #undef rgb_gray_convert_internal #undef rgb_rgb_convert_internal #define RGB_RED EXT_BGR_RED #define RGB_GREEN EXT_BGR_GREEN #define RGB_BLUE EXT_BGR_BLUE #define RGB_PIXELSIZE EXT_BGR_PIXELSIZE #define rgb_ycc_convert_internal extbgr_ycc_convert_internal #define rgb_gray_convert_internal extbgr_gray_convert_internal #define rgb_rgb_convert_internal extbgr_rgb_convert_internal #include "jccolext.c" #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_PIXELSIZE #undef rgb_ycc_convert_internal #undef rgb_gray_convert_internal #undef rgb_rgb_convert_internal #define RGB_RED EXT_BGRX_RED #define RGB_GREEN EXT_BGRX_GREEN #define RGB_BLUE EXT_BGRX_BLUE #define RGB_PIXELSIZE EXT_BGRX_PIXELSIZE #define rgb_ycc_convert_internal extbgrx_ycc_convert_internal #define rgb_gray_convert_internal extbgrx_gray_convert_internal #define rgb_rgb_convert_internal extbgrx_rgb_convert_internal #include "jccolext.c" #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_PIXELSIZE #undef rgb_ycc_convert_internal #undef rgb_gray_convert_internal #undef rgb_rgb_convert_internal #define RGB_RED EXT_XBGR_RED #define RGB_GREEN EXT_XBGR_GREEN #define RGB_BLUE EXT_XBGR_BLUE #define RGB_PIXELSIZE EXT_XBGR_PIXELSIZE #define rgb_ycc_convert_internal extxbgr_ycc_convert_internal #define rgb_gray_convert_internal extxbgr_gray_convert_internal #define rgb_rgb_convert_internal extxbgr_rgb_convert_internal #include "jccolext.c" #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_PIXELSIZE #undef rgb_ycc_convert_internal #undef rgb_gray_convert_internal #undef rgb_rgb_convert_internal #define RGB_RED EXT_XRGB_RED #define RGB_GREEN EXT_XRGB_GREEN #define RGB_BLUE EXT_XRGB_BLUE #define RGB_PIXELSIZE EXT_XRGB_PIXELSIZE #define rgb_ycc_convert_internal extxrgb_ycc_convert_internal #define rgb_gray_convert_internal extxrgb_gray_convert_internal #define rgb_rgb_convert_internal extxrgb_rgb_convert_internal #include "jccolext.c" #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_PIXELSIZE #undef rgb_ycc_convert_internal #undef rgb_gray_convert_internal #undef rgb_rgb_convert_internal /* * Initialize for RGB->YCC colorspace conversion. */ METHODDEF(void) rgb_ycc_start (j_compress_ptr cinfo) { my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; INT32 * rgb_ycc_tab; INT32 i; /* Allocate and fill in the conversion tables. */ cconvert->rgb_ycc_tab = rgb_ycc_tab = (INT32 *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, (TABLE_SIZE * sizeof(INT32))); for (i = 0; i <= MAXJSAMPLE; i++) { rgb_ycc_tab[i+R_Y_OFF] = FIX(0.29900) * i; rgb_ycc_tab[i+G_Y_OFF] = FIX(0.58700) * i; rgb_ycc_tab[i+B_Y_OFF] = FIX(0.11400) * i + ONE_HALF; rgb_ycc_tab[i+R_CB_OFF] = (-FIX(0.16874)) * i; rgb_ycc_tab[i+G_CB_OFF] = (-FIX(0.33126)) * i; /* We use a rounding fudge-factor of 0.5-epsilon for Cb and Cr. * This ensures that the maximum output will round to MAXJSAMPLE * not MAXJSAMPLE+1, and thus that we don't have to range-limit. */ rgb_ycc_tab[i+B_CB_OFF] = FIX(0.50000) * i + CBCR_OFFSET + ONE_HALF-1; /* B=>Cb and R=>Cr tables are the same rgb_ycc_tab[i+R_CR_OFF] = FIX(0.50000) * i + CBCR_OFFSET + ONE_HALF-1; */ rgb_ycc_tab[i+G_CR_OFF] = (-FIX(0.41869)) * i; rgb_ycc_tab[i+B_CR_OFF] = (-FIX(0.08131)) * i; } } /* * Convert some rows of samples to the JPEG colorspace. */ METHODDEF(void) rgb_ycc_convert (j_compress_ptr cinfo, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows) { switch (cinfo->in_color_space) { case JCS_EXT_RGB: extrgb_ycc_convert_internal(cinfo, input_buf, output_buf, output_row, num_rows); break; case JCS_EXT_RGBX: case JCS_EXT_RGBA: extrgbx_ycc_convert_internal(cinfo, input_buf, output_buf, output_row, num_rows); break; case JCS_EXT_BGR: extbgr_ycc_convert_internal(cinfo, input_buf, output_buf, output_row, num_rows); break; case JCS_EXT_BGRX: case JCS_EXT_BGRA: extbgrx_ycc_convert_internal(cinfo, input_buf, output_buf, output_row, num_rows); break; case JCS_EXT_XBGR: case JCS_EXT_ABGR: extxbgr_ycc_convert_internal(cinfo, input_buf, output_buf, output_row, num_rows); break; case JCS_EXT_XRGB: case JCS_EXT_ARGB: extxrgb_ycc_convert_internal(cinfo, input_buf, output_buf, output_row, num_rows); break; default: rgb_ycc_convert_internal(cinfo, input_buf, output_buf, output_row, num_rows); break; } } /**************** Cases other than RGB -> YCbCr **************/ /* * Convert some rows of samples to the JPEG colorspace. */ METHODDEF(void) rgb_gray_convert (j_compress_ptr cinfo, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows) { switch (cinfo->in_color_space) { case JCS_EXT_RGB: extrgb_gray_convert_internal(cinfo, input_buf, output_buf, output_row, num_rows); break; case JCS_EXT_RGBX: case JCS_EXT_RGBA: extrgbx_gray_convert_internal(cinfo, input_buf, output_buf, output_row, num_rows); break; case JCS_EXT_BGR: extbgr_gray_convert_internal(cinfo, input_buf, output_buf, output_row, num_rows); break; case JCS_EXT_BGRX: case JCS_EXT_BGRA: extbgrx_gray_convert_internal(cinfo, input_buf, output_buf, output_row, num_rows); break; case JCS_EXT_XBGR: case JCS_EXT_ABGR: extxbgr_gray_convert_internal(cinfo, input_buf, output_buf, output_row, num_rows); break; case JCS_EXT_XRGB: case JCS_EXT_ARGB: extxrgb_gray_convert_internal(cinfo, input_buf, output_buf, output_row, num_rows); break; default: rgb_gray_convert_internal(cinfo, input_buf, output_buf, output_row, num_rows); break; } } /* * Extended RGB to plain RGB conversion */ METHODDEF(void) rgb_rgb_convert (j_compress_ptr cinfo, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows) { switch (cinfo->in_color_space) { case JCS_EXT_RGB: extrgb_rgb_convert_internal(cinfo, input_buf, output_buf, output_row, num_rows); break; case JCS_EXT_RGBX: case JCS_EXT_RGBA: extrgbx_rgb_convert_internal(cinfo, input_buf, output_buf, output_row, num_rows); break; case JCS_EXT_BGR: extbgr_rgb_convert_internal(cinfo, input_buf, output_buf, output_row, num_rows); break; case JCS_EXT_BGRX: case JCS_EXT_BGRA: extbgrx_rgb_convert_internal(cinfo, input_buf, output_buf, output_row, num_rows); break; case JCS_EXT_XBGR: case JCS_EXT_ABGR: extxbgr_rgb_convert_internal(cinfo, input_buf, output_buf, output_row, num_rows); break; case JCS_EXT_XRGB: case JCS_EXT_ARGB: extxrgb_rgb_convert_internal(cinfo, input_buf, output_buf, output_row, num_rows); break; default: rgb_rgb_convert_internal(cinfo, input_buf, output_buf, output_row, num_rows); break; } } /* * Convert some rows of samples to the JPEG colorspace. * This version handles Adobe-style CMYK->YCCK conversion, * where we convert R=1-C, G=1-M, and B=1-Y to YCbCr using the same * conversion as above, while passing K (black) unchanged. * We assume rgb_ycc_start has been called. */ METHODDEF(void) cmyk_ycck_convert (j_compress_ptr cinfo, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows) { my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; register int r, g, b; register INT32 * ctab = cconvert->rgb_ycc_tab; register JSAMPROW inptr; register JSAMPROW outptr0, outptr1, outptr2, outptr3; register JDIMENSION col; JDIMENSION num_cols = cinfo->image_width; while (--num_rows >= 0) { inptr = *input_buf++; outptr0 = output_buf[0][output_row]; outptr1 = output_buf[1][output_row]; outptr2 = output_buf[2][output_row]; outptr3 = output_buf[3][output_row]; output_row++; for (col = 0; col < num_cols; col++) { r = MAXJSAMPLE - GETJSAMPLE(inptr[0]); g = MAXJSAMPLE - GETJSAMPLE(inptr[1]); b = MAXJSAMPLE - GETJSAMPLE(inptr[2]); /* K passes through as-is */ outptr3[col] = inptr[3]; /* don't need GETJSAMPLE here */ inptr += 4; /* If the inputs are 0..MAXJSAMPLE, the outputs of these equations * must be too; we do not need an explicit range-limiting operation. * Hence the value being shifted is never negative, and we don't * need the general RIGHT_SHIFT macro. */ /* Y */ outptr0[col] = (JSAMPLE) ((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF]) >> SCALEBITS); /* Cb */ outptr1[col] = (JSAMPLE) ((ctab[r+R_CB_OFF] + ctab[g+G_CB_OFF] + ctab[b+B_CB_OFF]) >> SCALEBITS); /* Cr */ outptr2[col] = (JSAMPLE) ((ctab[r+R_CR_OFF] + ctab[g+G_CR_OFF] + ctab[b+B_CR_OFF]) >> SCALEBITS); } } } /* * Convert some rows of samples to the JPEG colorspace. * This version handles grayscale output with no conversion. * The source can be either plain grayscale or YCbCr (since Y == gray). */ METHODDEF(void) grayscale_convert (j_compress_ptr cinfo, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows) { register JSAMPROW inptr; register JSAMPROW outptr; register JDIMENSION col; JDIMENSION num_cols = cinfo->image_width; int instride = cinfo->input_components; while (--num_rows >= 0) { inptr = *input_buf++; outptr = output_buf[0][output_row]; output_row++; for (col = 0; col < num_cols; col++) { outptr[col] = inptr[0]; /* don't need GETJSAMPLE() here */ inptr += instride; } } } /* * Convert some rows of samples to the JPEG colorspace. * This version handles multi-component colorspaces without conversion. * We assume input_components == num_components. */ METHODDEF(void) null_convert (j_compress_ptr cinfo, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows) { register JSAMPROW inptr; register JSAMPROW outptr, outptr0, outptr1, outptr2, outptr3; register JDIMENSION col; register int ci; int nc = cinfo->num_components; JDIMENSION num_cols = cinfo->image_width; if (nc == 3) { while (--num_rows >= 0) { inptr = *input_buf++; outptr0 = output_buf[0][output_row]; outptr1 = output_buf[1][output_row]; outptr2 = output_buf[2][output_row]; output_row++; for (col = 0; col < num_cols; col++) { outptr0[col] = *inptr++; outptr1[col] = *inptr++; outptr2[col] = *inptr++; } } } else if (nc == 4) { while (--num_rows >= 0) { inptr = *input_buf++; outptr0 = output_buf[0][output_row]; outptr1 = output_buf[1][output_row]; outptr2 = output_buf[2][output_row]; outptr3 = output_buf[3][output_row]; output_row++; for (col = 0; col < num_cols; col++) { outptr0[col] = *inptr++; outptr1[col] = *inptr++; outptr2[col] = *inptr++; outptr3[col] = *inptr++; } } } else { while (--num_rows >= 0) { /* It seems fastest to make a separate pass for each component. */ for (ci = 0; ci < nc; ci++) { inptr = *input_buf; outptr = output_buf[ci][output_row]; for (col = 0; col < num_cols; col++) { outptr[col] = inptr[ci]; /* don't need GETJSAMPLE() here */ inptr += nc; } } input_buf++; output_row++; } } } /* * Empty method for start_pass. */ METHODDEF(void) null_method (j_compress_ptr cinfo) { /* no work needed */ } /* * Module initialization routine for input colorspace conversion. */ GLOBAL(void) jinit_color_converter (j_compress_ptr cinfo) { my_cconvert_ptr cconvert; cconvert = (my_cconvert_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, sizeof(my_color_converter)); cinfo->cconvert = (struct jpeg_color_converter *) cconvert; /* set start_pass to null method until we find out differently */ cconvert->pub.start_pass = null_method; /* Make sure input_components agrees with in_color_space */ switch (cinfo->in_color_space) { case JCS_GRAYSCALE: if (cinfo->input_components != 1) ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE); break; case JCS_RGB: case JCS_EXT_RGB: case JCS_EXT_RGBX: case JCS_EXT_BGR: case JCS_EXT_BGRX: case JCS_EXT_XBGR: case JCS_EXT_XRGB: case JCS_EXT_RGBA: case JCS_EXT_BGRA: case JCS_EXT_ABGR: case JCS_EXT_ARGB: if (cinfo->input_components != rgb_pixelsize[cinfo->in_color_space]) ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE); break; case JCS_YCbCr: if (cinfo->input_components != 3) ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE); break; case JCS_CMYK: case JCS_YCCK: if (cinfo->input_components != 4) ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE); break; default: /* JCS_UNKNOWN can be anything */ if (cinfo->input_components < 1) ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE); break; } /* Check num_components, set conversion method based on requested space */ switch (cinfo->jpeg_color_space) { case JCS_GRAYSCALE: if (cinfo->num_components != 1) ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); if (cinfo->in_color_space == JCS_GRAYSCALE) cconvert->pub.color_convert = grayscale_convert; else if (cinfo->in_color_space == JCS_RGB || cinfo->in_color_space == JCS_EXT_RGB || cinfo->in_color_space == JCS_EXT_RGBX || cinfo->in_color_space == JCS_EXT_BGR || cinfo->in_color_space == JCS_EXT_BGRX || cinfo->in_color_space == JCS_EXT_XBGR || cinfo->in_color_space == JCS_EXT_XRGB || cinfo->in_color_space == JCS_EXT_RGBA || cinfo->in_color_space == JCS_EXT_BGRA || cinfo->in_color_space == JCS_EXT_ABGR || cinfo->in_color_space == JCS_EXT_ARGB) { if (jsimd_can_rgb_gray()) cconvert->pub.color_convert = jsimd_rgb_gray_convert; else { cconvert->pub.start_pass = rgb_ycc_start; cconvert->pub.color_convert = rgb_gray_convert; } } else if (cinfo->in_color_space == JCS_YCbCr) cconvert->pub.color_convert = grayscale_convert; else ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); break; case JCS_RGB: if (cinfo->num_components != 3) ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); if (rgb_red[cinfo->in_color_space] == 0 && rgb_green[cinfo->in_color_space] == 1 && rgb_blue[cinfo->in_color_space] == 2 && rgb_pixelsize[cinfo->in_color_space] == 3) { #if defined(__mips__) if (jsimd_c_can_null_convert()) cconvert->pub.color_convert = jsimd_c_null_convert; else #endif cconvert->pub.color_convert = null_convert; } else if (cinfo->in_color_space == JCS_RGB || cinfo->in_color_space == JCS_EXT_RGB || cinfo->in_color_space == JCS_EXT_RGBX || cinfo->in_color_space == JCS_EXT_BGR || cinfo->in_color_space == JCS_EXT_BGRX || cinfo->in_color_space == JCS_EXT_XBGR || cinfo->in_color_space == JCS_EXT_XRGB || cinfo->in_color_space == JCS_EXT_RGBA || cinfo->in_color_space == JCS_EXT_BGRA || cinfo->in_color_space == JCS_EXT_ABGR || cinfo->in_color_space == JCS_EXT_ARGB) cconvert->pub.color_convert = rgb_rgb_convert; else ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); break; case JCS_YCbCr: if (cinfo->num_components != 3) ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); if (cinfo->in_color_space == JCS_RGB || cinfo->in_color_space == JCS_EXT_RGB || cinfo->in_color_space == JCS_EXT_RGBX || cinfo->in_color_space == JCS_EXT_BGR || cinfo->in_color_space == JCS_EXT_BGRX || cinfo->in_color_space == JCS_EXT_XBGR || cinfo->in_color_space == JCS_EXT_XRGB || cinfo->in_color_space == JCS_EXT_RGBA || cinfo->in_color_space == JCS_EXT_BGRA || cinfo->in_color_space == JCS_EXT_ABGR || cinfo->in_color_space == JCS_EXT_ARGB) { if (jsimd_can_rgb_ycc()) cconvert->pub.color_convert = jsimd_rgb_ycc_convert; else { cconvert->pub.start_pass = rgb_ycc_start; cconvert->pub.color_convert = rgb_ycc_convert; } } else if (cinfo->in_color_space == JCS_YCbCr) { #if defined(__mips__) if (jsimd_c_can_null_convert()) cconvert->pub.color_convert = jsimd_c_null_convert; else #endif cconvert->pub.color_convert = null_convert; } else ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); break; case JCS_CMYK: if (cinfo->num_components != 4) ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); if (cinfo->in_color_space == JCS_CMYK) { #if defined(__mips__) if (jsimd_c_can_null_convert()) cconvert->pub.color_convert = jsimd_c_null_convert; else #endif cconvert->pub.color_convert = null_convert; } else ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); break; case JCS_YCCK: if (cinfo->num_components != 4) ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); if (cinfo->in_color_space == JCS_CMYK) { cconvert->pub.start_pass = rgb_ycc_start; cconvert->pub.color_convert = cmyk_ycck_convert; } else if (cinfo->in_color_space == JCS_YCCK) { #if defined(__mips__) if (jsimd_c_can_null_convert()) cconvert->pub.color_convert = jsimd_c_null_convert; else #endif cconvert->pub.color_convert = null_convert; } else ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); break; default: /* allow null conversion of JCS_UNKNOWN */ if (cinfo->jpeg_color_space != cinfo->in_color_space || cinfo->num_components != cinfo->input_components) ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); #if defined(__mips__) if (jsimd_c_can_null_convert()) cconvert->pub.color_convert = jsimd_c_null_convert; else #endif cconvert->pub.color_convert = null_convert; break; } } libjpeg-turbo-1.4.2/jerror.c0000644000076500007650000001736312600050400012662 00000000000000/* * jerror.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1991-1998, Thomas G. Lane. * It was modified by The libjpeg-turbo Project to include only code relevant * to libjpeg-turbo. * For conditions of distribution and use, see the accompanying README file. * * This file contains simple error-reporting and trace-message routines. * These are suitable for Unix-like systems and others where writing to * stderr is the right thing to do. Many applications will want to replace * some or all of these routines. * * If you define USE_WINDOWS_MESSAGEBOX in jconfig.h or in the makefile, * you get a Windows-specific hack to display error messages in a dialog box. * It ain't much, but it beats dropping error messages into the bit bucket, * which is what happens to output to stderr under most Windows C compilers. * * These routines are used by both the compression and decompression code. */ /* this is not a core library module, so it doesn't define JPEG_INTERNALS */ #include "jinclude.h" #include "jpeglib.h" #include "jversion.h" #include "jerror.h" #ifdef USE_WINDOWS_MESSAGEBOX #include #endif #ifndef EXIT_FAILURE /* define exit() codes if not provided */ #define EXIT_FAILURE 1 #endif /* * Create the message string table. * We do this from the master message list in jerror.h by re-reading * jerror.h with a suitable definition for macro JMESSAGE. * The message table is made an external symbol just in case any applications * want to refer to it directly. */ #define JMESSAGE(code,string) string , const char * const jpeg_std_message_table[] = { #include "jerror.h" NULL }; /* * Error exit handler: must not return to caller. * * Applications may override this if they want to get control back after * an error. Typically one would longjmp somewhere instead of exiting. * The setjmp buffer can be made a private field within an expanded error * handler object. Note that the info needed to generate an error message * is stored in the error object, so you can generate the message now or * later, at your convenience. * You should make sure that the JPEG object is cleaned up (with jpeg_abort * or jpeg_destroy) at some point. */ METHODDEF(void) error_exit (j_common_ptr cinfo) { /* Always display the message */ (*cinfo->err->output_message) (cinfo); /* Let the memory manager delete any temp files before we die */ jpeg_destroy(cinfo); exit(EXIT_FAILURE); } /* * Actual output of an error or trace message. * Applications may override this method to send JPEG messages somewhere * other than stderr. * * On Windows, printing to stderr is generally completely useless, * so we provide optional code to produce an error-dialog popup. * Most Windows applications will still prefer to override this routine, * but if they don't, it'll do something at least marginally useful. * * NOTE: to use the library in an environment that doesn't support the * C stdio library, you may have to delete the call to fprintf() entirely, * not just not use this routine. */ METHODDEF(void) output_message (j_common_ptr cinfo) { char buffer[JMSG_LENGTH_MAX]; /* Create the message */ (*cinfo->err->format_message) (cinfo, buffer); #ifdef USE_WINDOWS_MESSAGEBOX /* Display it in a message dialog box */ MessageBox(GetActiveWindow(), buffer, "JPEG Library Error", MB_OK | MB_ICONERROR); #else /* Send it to stderr, adding a newline */ fprintf(stderr, "%s\n", buffer); #endif } /* * Decide whether to emit a trace or warning message. * msg_level is one of: * -1: recoverable corrupt-data warning, may want to abort. * 0: important advisory messages (always display to user). * 1: first level of tracing detail. * 2,3,...: successively more detailed tracing messages. * An application might override this method if it wanted to abort on warnings * or change the policy about which messages to display. */ METHODDEF(void) emit_message (j_common_ptr cinfo, int msg_level) { struct jpeg_error_mgr * err = cinfo->err; if (msg_level < 0) { /* It's a warning message. Since corrupt files may generate many warnings, * the policy implemented here is to show only the first warning, * unless trace_level >= 3. */ if (err->num_warnings == 0 || err->trace_level >= 3) (*err->output_message) (cinfo); /* Always count warnings in num_warnings. */ err->num_warnings++; } else { /* It's a trace message. Show it if trace_level >= msg_level. */ if (err->trace_level >= msg_level) (*err->output_message) (cinfo); } } /* * Format a message string for the most recent JPEG error or message. * The message is stored into buffer, which should be at least JMSG_LENGTH_MAX * characters. Note that no '\n' character is added to the string. * Few applications should need to override this method. */ METHODDEF(void) format_message (j_common_ptr cinfo, char * buffer) { struct jpeg_error_mgr * err = cinfo->err; int msg_code = err->msg_code; const char * msgtext = NULL; const char * msgptr; char ch; boolean isstring; /* Look up message string in proper table */ if (msg_code > 0 && msg_code <= err->last_jpeg_message) { msgtext = err->jpeg_message_table[msg_code]; } else if (err->addon_message_table != NULL && msg_code >= err->first_addon_message && msg_code <= err->last_addon_message) { msgtext = err->addon_message_table[msg_code - err->first_addon_message]; } /* Defend against bogus message number */ if (msgtext == NULL) { err->msg_parm.i[0] = msg_code; msgtext = err->jpeg_message_table[0]; } /* Check for string parameter, as indicated by %s in the message text */ isstring = FALSE; msgptr = msgtext; while ((ch = *msgptr++) != '\0') { if (ch == '%') { if (*msgptr == 's') isstring = TRUE; break; } } /* Format the message into the passed buffer */ if (isstring) sprintf(buffer, msgtext, err->msg_parm.s); else sprintf(buffer, msgtext, err->msg_parm.i[0], err->msg_parm.i[1], err->msg_parm.i[2], err->msg_parm.i[3], err->msg_parm.i[4], err->msg_parm.i[5], err->msg_parm.i[6], err->msg_parm.i[7]); } /* * Reset error state variables at start of a new image. * This is called during compression startup to reset trace/error * processing to default state, without losing any application-specific * method pointers. An application might possibly want to override * this method if it has additional error processing state. */ METHODDEF(void) reset_error_mgr (j_common_ptr cinfo) { cinfo->err->num_warnings = 0; /* trace_level is not reset since it is an application-supplied parameter */ cinfo->err->msg_code = 0; /* may be useful as a flag for "no error" */ } /* * Fill in the standard error-handling methods in a jpeg_error_mgr object. * Typical call is: * struct jpeg_compress_struct cinfo; * struct jpeg_error_mgr err; * * cinfo.err = jpeg_std_error(&err); * after which the application may override some of the methods. */ GLOBAL(struct jpeg_error_mgr *) jpeg_std_error (struct jpeg_error_mgr * err) { err->error_exit = error_exit; err->emit_message = emit_message; err->output_message = output_message; err->format_message = format_message; err->reset_error_mgr = reset_error_mgr; err->trace_level = 0; /* default = no tracing */ err->num_warnings = 0; /* no warnings emitted yet */ err->msg_code = 0; /* may be useful as a flag for "no error" */ /* Initialize message table pointers */ err->jpeg_message_table = jpeg_std_message_table; err->last_jpeg_message = (int) JMSG_LASTMSGCODE - 1; err->addon_message_table = NULL; err->first_addon_message = 0; /* for safety */ err->last_addon_message = 0; return err; } libjpeg-turbo-1.4.2/configure.ac0000644000076500007650000004442712600050400013502 00000000000000# -*- Autoconf -*- # Process this file with autoconf to produce a configure script. AC_PREREQ([2.56]) AC_INIT([libjpeg-turbo], [1.4.2]) AM_INIT_AUTOMAKE([-Wall foreign dist-bzip2]) AC_PREFIX_DEFAULT(/opt/libjpeg-turbo) m4_ifdef([AM_SILENT_RULES], [AM_SILENT_RULES([yes])]) # Checks for programs. SAVED_CFLAGS=${CFLAGS} SAVED_CPPFLAGS=${CPPFLAGS} AC_PROG_CPP AC_PROG_CC m4_ifdef([AM_PROG_AR], [AM_PROG_AR]) AM_PROG_AS AM_PROG_CC_C_O AC_PROG_INSTALL AC_PROG_LIBTOOL AC_PROG_LN_S AC_ARG_WITH([build-date], [Use custom build string to enable reproducible builds (default: YYMMDD)], [BUILD="$with_build_date"], [BUILD=`date +%Y%m%d`]) # When the prefix is /opt/libjpeg-turbo, we assume that an "official" binary is # being created, and thus we install things into specific locations. old_prefix=${prefix} if test "x$prefix" = "xNONE" -a "x$ac_default_prefix" != "x"; then prefix=$ac_default_prefix fi DATADIR=`eval echo ${datadir}` DATADIR=`eval echo $DATADIR` if test "$DATADIR" = "/opt/libjpeg-turbo/share"; then datadir='${prefix}' fi DATADIR=`eval echo ${datarootdir}` DATADIR=`eval echo $DATADIR` if test "$DATADIR" = "/opt/libjpeg-turbo/share"; then datarootdir='${prefix}' fi DOCDIR=`eval echo ${docdir}` DOCDIR=`eval echo $DOCDIR` if test "$DOCDIR" = "/opt/libjpeg-turbo/doc/libjpeg-turbo"; then docdir='${datadir}/doc' fi old_exec_prefix=${exec_prefix} if test "x$exec_prefix" = "xNONE"; then exec_prefix=${prefix} fi AC_CHECK_SIZEOF(size_t) if test "x${libdir}" = 'x${exec_prefix}/lib' -o "x${libdir}" = 'x${prefix}/lib'; then LIBDIR=`eval echo ${libdir}` LIBDIR=`eval echo $LIBDIR` if test "$LIBDIR" = "/opt/libjpeg-turbo/lib"; then case $host_os in darwin*) ;; *) if test "${ac_cv_sizeof_size_t}" = "8"; then libdir='${exec_prefix}/lib64' elif test "${ac_cv_sizeof_size_t}" = "4"; then libdir='${exec_prefix}/lib32' fi ;; esac fi fi exec_prefix=${old_exec_prefix} prefix=${old_prefix} # Check whether compiler supports pointers to undefined structures AC_MSG_CHECKING(whether compiler supports pointers to undefined structures) AC_TRY_COMPILE([ typedef struct undefined_structure * undef_struct_ptr; ], , AC_MSG_RESULT(yes), [AC_MSG_RESULT(no) AC_DEFINE([INCOMPLETE_TYPES_BROKEN], [1], [Compiler does not support pointers to undefined structures.])]) if test "x${GCC}" = "xyes"; then if test "x${SAVED_CFLAGS}" = "x"; then CFLAGS=-O3 fi if test "x${SAVED_CPPFLAGS}" = "x"; then CPPFLAGS=-Wall fi fi AC_CHECK_DECL([__SUNPRO_C], [SUNCC="yes"], [SUNCC="no"]) if test "x${SUNCC}" = "xyes"; then if test "x${SAVED_CFLAGS}" = "x"; then CFLAGS=-xO5 fi fi # Checks for libraries. # Checks for header files. AC_HEADER_STDC AC_CHECK_HEADERS([stddef.h stdlib.h locale.h string.h]) AC_CHECK_HEADER([sys/types.h], AC_DEFINE([NEED_SYS_TYPES_H], 1, [Define if you need to include to get size_t.])) # Checks for typedefs, structures, and compiler characteristics. AC_C_CONST AC_C_CHAR_UNSIGNED AC_C_INLINE AC_TYPE_SIZE_T AC_CHECK_TYPES([unsigned char, unsigned short]) AC_MSG_CHECKING([if right shift is signed]) AC_TRY_RUN( [#include int is_shifting_signed (long arg) { long res = arg >> 4; if (res == -0x7F7E80CL) return 1; /* right shift is signed */ /* see if unsigned-shift hack will fix it. */ /* we can't just test exact value since it depends on width of long... */ res |= (~0L) << (32-4); if (res == -0x7F7E80CL) return 0; /* right shift is unsigned */ printf("Right shift isn't acting as I expect it to.\n"); printf("I fear the JPEG software will not work at all.\n\n"); return 0; /* try it with unsigned anyway */ } int main (void) { exit(is_shifting_signed(-0x7F7E80B1L)); }], [AC_MSG_RESULT(no) AC_DEFINE([RIGHT_SHIFT_IS_UNSIGNED], 1, [Define if your (broken) compiler shifts signed values as if they were unsigned.])], [AC_MSG_RESULT(yes)], [AC_MSG_RESULT(Assuming that right shift is signed on target machine.)]) # Checks for library functions. AC_CHECK_FUNCS([memset memcpy], [], [AC_DEFINE([NEED_BSD_STRINGS], 1, [Define if you have BSD-like bzero and bcopy in rather than memset/memcpy in .])]) AC_MSG_CHECKING([libjpeg API version]) AC_ARG_VAR(JPEG_LIB_VERSION, [libjpeg API version (62, 70, or 80)]) if test "x$JPEG_LIB_VERSION" = "x"; then AC_ARG_WITH([jpeg7], AC_HELP_STRING([--with-jpeg7], [Emulate libjpeg v7 API/ABI (this makes libjpeg-turbo backward incompatible with libjpeg v6b.)])) AC_ARG_WITH([jpeg8], AC_HELP_STRING([--with-jpeg8], [Emulate libjpeg v8 API/ABI (this makes libjpeg-turbo backward incompatible with libjpeg v6b.)])) if test "x${with_jpeg8}" = "xyes"; then JPEG_LIB_VERSION=80 else if test "x${with_jpeg7}" = "xyes"; then JPEG_LIB_VERSION=70 else JPEG_LIB_VERSION=62 fi fi fi JPEG_LIB_VERSION_DECIMAL=`expr $JPEG_LIB_VERSION / 10`.`expr $JPEG_LIB_VERSION % 10` AC_SUBST(JPEG_LIB_VERSION_DECIMAL) AC_MSG_RESULT([$JPEG_LIB_VERSION_DECIMAL]) AC_DEFINE_UNQUOTED(JPEG_LIB_VERSION, [$JPEG_LIB_VERSION], [libjpeg API version]) AC_ARG_VAR(SO_MAJOR_VERSION, [Major version of the libjpeg-turbo shared library (default is determined by the API version)]) AC_ARG_VAR(SO_MINOR_VERSION, [Minor version of the libjpeg-turbo shared library (default is determined by the API version)]) if test "x$SO_MAJOR_VERSION" = "x"; then case "$JPEG_LIB_VERSION" in 62) SO_MAJOR_VERSION=$JPEG_LIB_VERSION ;; *) SO_MAJOR_VERSION=`expr $JPEG_LIB_VERSION / 10` ;; esac fi if test "x$SO_MINOR_VERSION" = "x"; then case "$JPEG_LIB_VERSION" in 80) SO_MINOR_VERSION=2 ;; *) SO_MINOR_VERSION=0 ;; esac fi RPM_CONFIG_ARGS= # Memory source/destination managers SO_AGE=0 MEM_SRCDST_FUNCTIONS= if test "x${with_jpeg8}" != "xyes"; then AC_MSG_CHECKING([whether to include in-memory source/destination managers]) AC_ARG_WITH([mem-srcdst], AC_HELP_STRING([--without-mem-srcdst], [Do not include in-memory source/destination manager functions when emulating the libjpeg v6b or v7 API/ABI])) if test "x$with_mem_srcdst" != "xno"; then AC_MSG_RESULT(yes) AC_DEFINE([MEM_SRCDST_SUPPORTED], [1], [Support in-memory source/destination managers]) SO_AGE=1 MEM_SRCDST_FUNCTIONS="global: jpeg_mem_dest; jpeg_mem_src;"; else AC_MSG_RESULT(no) RPM_CONFIG_ARGS="$RPM_CONFIG_ARGS --without-mem-srcdst" fi fi AC_MSG_CHECKING([libjpeg shared library version]) AC_MSG_RESULT([$SO_MAJOR_VERSION.$SO_AGE.$SO_MINOR_VERSION]) LIBTOOL_CURRENT=`expr $SO_MAJOR_VERSION + $SO_AGE` AC_SUBST(LIBTOOL_CURRENT) AC_SUBST(SO_MAJOR_VERSION) AC_SUBST(SO_MINOR_VERSION) AC_SUBST(SO_AGE) AC_SUBST(MEM_SRCDST_FUNCTIONS) AC_DEFINE_UNQUOTED(LIBJPEG_TURBO_VERSION, [$VERSION], [libjpeg-turbo version]) VERSION_SCRIPT=yes AC_ARG_ENABLE([ld-version-script], AS_HELP_STRING([--disable-ld-version-script], [Disable linker version script for libjpeg-turbo (default is to use linker version script if the linker supports it)]), [VERSION_SCRIPT=$enableval], []) AC_MSG_CHECKING([whether the linker supports version scripts]) SAVED_LDFLAGS="$LDFLAGS" LDFLAGS="$LDFLAGS -Wl,--version-script,conftest.map" cat > conftest.map <&2 exit 1;; esac shift;; -o) chowncmd="$chownprog $2" shift;; -s) stripcmd=$stripprog;; -t) is_target_a_directory=always dst_arg=$2 # Protect names problematic for 'test' and other utilities. case $dst_arg in -* | [=\(\)!]) dst_arg=./$dst_arg;; esac shift;; -T) is_target_a_directory=never;; --version) echo "$0 $scriptversion"; exit $?;; --) shift break;; -*) echo "$0: invalid option: $1" >&2 exit 1;; *) break;; esac shift done # We allow the use of options -d and -T together, by making -d # take the precedence; this is for compatibility with GNU install. if test -n "$dir_arg"; then if test -n "$dst_arg"; then echo "$0: target directory not allowed when installing a directory." >&2 exit 1 fi fi if test $# -ne 0 && test -z "$dir_arg$dst_arg"; then # When -d is used, all remaining arguments are directories to create. # When -t is used, the destination is already specified. # Otherwise, the last argument is the destination. Remove it from $@. for arg do if test -n "$dst_arg"; then # $@ is not empty: it contains at least $arg. set fnord "$@" "$dst_arg" shift # fnord fi shift # arg dst_arg=$arg # Protect names problematic for 'test' and other utilities. case $dst_arg in -* | [=\(\)!]) dst_arg=./$dst_arg;; esac done fi if test $# -eq 0; then if test -z "$dir_arg"; then echo "$0: no input file specified." >&2 exit 1 fi # It's OK to call 'install-sh -d' without argument. # This can happen when creating conditional directories. exit 0 fi if test -z "$dir_arg"; then if test $# -gt 1 || test "$is_target_a_directory" = always; then if test ! -d "$dst_arg"; then echo "$0: $dst_arg: Is not a directory." >&2 exit 1 fi fi fi if test -z "$dir_arg"; then do_exit='(exit $ret); exit $ret' trap "ret=129; $do_exit" 1 trap "ret=130; $do_exit" 2 trap "ret=141; $do_exit" 13 trap "ret=143; $do_exit" 15 # Set umask so as not to create temps with too-generous modes. # However, 'strip' requires both read and write access to temps. case $mode in # Optimize common cases. *644) cp_umask=133;; *755) cp_umask=22;; *[0-7]) if test -z "$stripcmd"; then u_plus_rw= else u_plus_rw='% 200' fi cp_umask=`expr '(' 777 - $mode % 1000 ')' $u_plus_rw`;; *) if test -z "$stripcmd"; then u_plus_rw= else u_plus_rw=,u+rw fi cp_umask=$mode$u_plus_rw;; esac fi for src do # Protect names problematic for 'test' and other utilities. case $src in -* | [=\(\)!]) src=./$src;; esac if test -n "$dir_arg"; then dst=$src dstdir=$dst test -d "$dstdir" dstdir_status=$? else # Waiting for this to be detected by the "$cpprog $src $dsttmp" command # might cause directories to be created, which would be especially bad # if $src (and thus $dsttmp) contains '*'. if test ! -f "$src" && test ! -d "$src"; then echo "$0: $src does not exist." >&2 exit 1 fi if test -z "$dst_arg"; then echo "$0: no destination specified." >&2 exit 1 fi dst=$dst_arg # If destination is a directory, append the input filename; won't work # if double slashes aren't ignored. if test -d "$dst"; then if test "$is_target_a_directory" = never; then echo "$0: $dst_arg: Is a directory" >&2 exit 1 fi dstdir=$dst dst=$dstdir/`basename "$src"` dstdir_status=0 else dstdir=`dirname "$dst"` test -d "$dstdir" dstdir_status=$? fi fi obsolete_mkdir_used=false if test $dstdir_status != 0; then case $posix_mkdir in '') # Create intermediate dirs using mode 755 as modified by the umask. # This is like FreeBSD 'install' as of 1997-10-28. umask=`umask` case $stripcmd.$umask in # Optimize common cases. *[2367][2367]) mkdir_umask=$umask;; .*0[02][02] | .[02][02] | .[02]) mkdir_umask=22;; *[0-7]) mkdir_umask=`expr $umask + 22 \ - $umask % 100 % 40 + $umask % 20 \ - $umask % 10 % 4 + $umask % 2 `;; *) mkdir_umask=$umask,go-w;; esac # With -d, create the new directory with the user-specified mode. # Otherwise, rely on $mkdir_umask. if test -n "$dir_arg"; then mkdir_mode=-m$mode else mkdir_mode= fi posix_mkdir=false case $umask in *[123567][0-7][0-7]) # POSIX mkdir -p sets u+wx bits regardless of umask, which # is incompatible with FreeBSD 'install' when (umask & 300) != 0. ;; *) tmpdir=${TMPDIR-/tmp}/ins$RANDOM-$$ trap 'ret=$?; rmdir "$tmpdir/d" "$tmpdir" 2>/dev/null; exit $ret' 0 if (umask $mkdir_umask && exec $mkdirprog $mkdir_mode -p -- "$tmpdir/d") >/dev/null 2>&1 then if test -z "$dir_arg" || { # Check for POSIX incompatibilities with -m. # HP-UX 11.23 and IRIX 6.5 mkdir -m -p sets group- or # other-writable bit of parent directory when it shouldn't. # FreeBSD 6.1 mkdir -m -p sets mode of existing directory. ls_ld_tmpdir=`ls -ld "$tmpdir"` case $ls_ld_tmpdir in d????-?r-*) different_mode=700;; d????-?--*) different_mode=755;; *) false;; esac && $mkdirprog -m$different_mode -p -- "$tmpdir" && { ls_ld_tmpdir_1=`ls -ld "$tmpdir"` test "$ls_ld_tmpdir" = "$ls_ld_tmpdir_1" } } then posix_mkdir=: fi rmdir "$tmpdir/d" "$tmpdir" else # Remove any dirs left behind by ancient mkdir implementations. rmdir ./$mkdir_mode ./-p ./-- 2>/dev/null fi trap '' 0;; esac;; esac if $posix_mkdir && ( umask $mkdir_umask && $doit_exec $mkdirprog $mkdir_mode -p -- "$dstdir" ) then : else # The umask is ridiculous, or mkdir does not conform to POSIX, # or it failed possibly due to a race condition. Create the # directory the slow way, step by step, checking for races as we go. case $dstdir in /*) prefix='/';; [-=\(\)!]*) prefix='./';; *) prefix='';; esac oIFS=$IFS IFS=/ set -f set fnord $dstdir shift set +f IFS=$oIFS prefixes= for d do test X"$d" = X && continue prefix=$prefix$d if test -d "$prefix"; then prefixes= else if $posix_mkdir; then (umask=$mkdir_umask && $doit_exec $mkdirprog $mkdir_mode -p -- "$dstdir") && break # Don't fail if two instances are running concurrently. test -d "$prefix" || exit 1 else case $prefix in *\'*) qprefix=`echo "$prefix" | sed "s/'/'\\\\\\\\''/g"`;; *) qprefix=$prefix;; esac prefixes="$prefixes '$qprefix'" fi fi prefix=$prefix/ done if test -n "$prefixes"; then # Don't fail if two instances are running concurrently. (umask $mkdir_umask && eval "\$doit_exec \$mkdirprog $prefixes") || test -d "$dstdir" || exit 1 obsolete_mkdir_used=true fi fi fi if test -n "$dir_arg"; then { test -z "$chowncmd" || $doit $chowncmd "$dst"; } && { test -z "$chgrpcmd" || $doit $chgrpcmd "$dst"; } && { test "$obsolete_mkdir_used$chowncmd$chgrpcmd" = false || test -z "$chmodcmd" || $doit $chmodcmd $mode "$dst"; } || exit 1 else # Make a couple of temp file names in the proper directory. dsttmp=$dstdir/_inst.$$_ rmtmp=$dstdir/_rm.$$_ # Trap to clean up those temp files at exit. trap 'ret=$?; rm -f "$dsttmp" "$rmtmp" && exit $ret' 0 # Copy the file name to the temp name. (umask $cp_umask && $doit_exec $cpprog "$src" "$dsttmp") && # and set any options; do chmod last to preserve setuid bits. # # If any of these fail, we abort the whole thing. If we want to # ignore errors from any of these, just make sure not to ignore # errors from the above "$doit $cpprog $src $dsttmp" command. # { test -z "$chowncmd" || $doit $chowncmd "$dsttmp"; } && { test -z "$chgrpcmd" || $doit $chgrpcmd "$dsttmp"; } && { test -z "$stripcmd" || $doit $stripcmd "$dsttmp"; } && { test -z "$chmodcmd" || $doit $chmodcmd $mode "$dsttmp"; } && # If -C, don't bother to copy if it wouldn't change the file. if $copy_on_change && old=`LC_ALL=C ls -dlL "$dst" 2>/dev/null` && new=`LC_ALL=C ls -dlL "$dsttmp" 2>/dev/null` && set -f && set X $old && old=:$2:$4:$5:$6 && set X $new && new=:$2:$4:$5:$6 && set +f && test "$old" = "$new" && $cmpprog "$dst" "$dsttmp" >/dev/null 2>&1 then rm -f "$dsttmp" else # Rename the file to the real destination. $doit $mvcmd -f "$dsttmp" "$dst" 2>/dev/null || # The rename failed, perhaps because mv can't rename something else # to itself, or perhaps because mv is so ancient that it does not # support -f. { # Now remove or move aside any old file at destination location. # We try this two ways since rm can't unlink itself on some # systems and the destination file might be busy for other # reasons. In this case, the final cleanup might fail but the new # file should still install successfully. { test ! -f "$dst" || $doit $rmcmd -f "$dst" 2>/dev/null || { $doit $mvcmd -f "$dst" "$rmtmp" 2>/dev/null && { $doit $rmcmd -f "$rmtmp" 2>/dev/null; :; } } || { echo "$0: cannot unlink or rename $dst" >&2 (exit 1); exit 1 } } && # Now rename the file to the real destination. $doit $mvcmd "$dsttmp" "$dst" } fi || exit 1 trap '' 0 fi done # Local variables: # eval: (add-hook 'write-file-hooks 'time-stamp) # time-stamp-start: "scriptversion=" # time-stamp-format: "%:y-%02m-%02d.%02H" # time-stamp-time-zone: "UTC" # time-stamp-end: "; # UTC" # End: libjpeg-turbo-1.4.2/jaricom.c0000644000076500007650000001171212600050400012773 00000000000000/* * jaricom.c * * Developed 1997-2009 by Guido Vollbeding. * This file is part of the Independent JPEG Group's software. * For conditions of distribution and use, see the accompanying README file. * * This file contains probability estimation tables for common use in * arithmetic entropy encoding and decoding routines. * * This data represents Table D.2 in the JPEG spec (ISO/IEC IS 10918-1 * and CCITT Recommendation ITU-T T.81) and Table 24 in the JBIG spec * (ISO/IEC IS 11544 and CCITT Recommendation ITU-T T.82). */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" /* The following #define specifies the packing of the four components * into the compact INT32 representation. * Note that this formula must match the actual arithmetic encoder * and decoder implementation. The implementation has to be changed * if this formula is changed. * The current organization is leaned on Markus Kuhn's JBIG * implementation (jbig_tab.c). */ #define V(i,a,b,c,d) (((INT32)a << 16) | ((INT32)c << 8) | ((INT32)d << 7) | b) const INT32 jpeg_aritab[113+1] = { /* * Index, Qe_Value, Next_Index_LPS, Next_Index_MPS, Switch_MPS */ V( 0, 0x5a1d, 1, 1, 1 ), V( 1, 0x2586, 14, 2, 0 ), V( 2, 0x1114, 16, 3, 0 ), V( 3, 0x080b, 18, 4, 0 ), V( 4, 0x03d8, 20, 5, 0 ), V( 5, 0x01da, 23, 6, 0 ), V( 6, 0x00e5, 25, 7, 0 ), V( 7, 0x006f, 28, 8, 0 ), V( 8, 0x0036, 30, 9, 0 ), V( 9, 0x001a, 33, 10, 0 ), V( 10, 0x000d, 35, 11, 0 ), V( 11, 0x0006, 9, 12, 0 ), V( 12, 0x0003, 10, 13, 0 ), V( 13, 0x0001, 12, 13, 0 ), V( 14, 0x5a7f, 15, 15, 1 ), V( 15, 0x3f25, 36, 16, 0 ), V( 16, 0x2cf2, 38, 17, 0 ), V( 17, 0x207c, 39, 18, 0 ), V( 18, 0x17b9, 40, 19, 0 ), V( 19, 0x1182, 42, 20, 0 ), V( 20, 0x0cef, 43, 21, 0 ), V( 21, 0x09a1, 45, 22, 0 ), V( 22, 0x072f, 46, 23, 0 ), V( 23, 0x055c, 48, 24, 0 ), V( 24, 0x0406, 49, 25, 0 ), V( 25, 0x0303, 51, 26, 0 ), V( 26, 0x0240, 52, 27, 0 ), V( 27, 0x01b1, 54, 28, 0 ), V( 28, 0x0144, 56, 29, 0 ), V( 29, 0x00f5, 57, 30, 0 ), V( 30, 0x00b7, 59, 31, 0 ), V( 31, 0x008a, 60, 32, 0 ), V( 32, 0x0068, 62, 33, 0 ), V( 33, 0x004e, 63, 34, 0 ), V( 34, 0x003b, 32, 35, 0 ), V( 35, 0x002c, 33, 9, 0 ), V( 36, 0x5ae1, 37, 37, 1 ), V( 37, 0x484c, 64, 38, 0 ), V( 38, 0x3a0d, 65, 39, 0 ), V( 39, 0x2ef1, 67, 40, 0 ), V( 40, 0x261f, 68, 41, 0 ), V( 41, 0x1f33, 69, 42, 0 ), V( 42, 0x19a8, 70, 43, 0 ), V( 43, 0x1518, 72, 44, 0 ), V( 44, 0x1177, 73, 45, 0 ), V( 45, 0x0e74, 74, 46, 0 ), V( 46, 0x0bfb, 75, 47, 0 ), V( 47, 0x09f8, 77, 48, 0 ), V( 48, 0x0861, 78, 49, 0 ), V( 49, 0x0706, 79, 50, 0 ), V( 50, 0x05cd, 48, 51, 0 ), V( 51, 0x04de, 50, 52, 0 ), V( 52, 0x040f, 50, 53, 0 ), V( 53, 0x0363, 51, 54, 0 ), V( 54, 0x02d4, 52, 55, 0 ), V( 55, 0x025c, 53, 56, 0 ), V( 56, 0x01f8, 54, 57, 0 ), V( 57, 0x01a4, 55, 58, 0 ), V( 58, 0x0160, 56, 59, 0 ), V( 59, 0x0125, 57, 60, 0 ), V( 60, 0x00f6, 58, 61, 0 ), V( 61, 0x00cb, 59, 62, 0 ), V( 62, 0x00ab, 61, 63, 0 ), V( 63, 0x008f, 61, 32, 0 ), V( 64, 0x5b12, 65, 65, 1 ), V( 65, 0x4d04, 80, 66, 0 ), V( 66, 0x412c, 81, 67, 0 ), V( 67, 0x37d8, 82, 68, 0 ), V( 68, 0x2fe8, 83, 69, 0 ), V( 69, 0x293c, 84, 70, 0 ), V( 70, 0x2379, 86, 71, 0 ), V( 71, 0x1edf, 87, 72, 0 ), V( 72, 0x1aa9, 87, 73, 0 ), V( 73, 0x174e, 72, 74, 0 ), V( 74, 0x1424, 72, 75, 0 ), V( 75, 0x119c, 74, 76, 0 ), V( 76, 0x0f6b, 74, 77, 0 ), V( 77, 0x0d51, 75, 78, 0 ), V( 78, 0x0bb6, 77, 79, 0 ), V( 79, 0x0a40, 77, 48, 0 ), V( 80, 0x5832, 80, 81, 1 ), V( 81, 0x4d1c, 88, 82, 0 ), V( 82, 0x438e, 89, 83, 0 ), V( 83, 0x3bdd, 90, 84, 0 ), V( 84, 0x34ee, 91, 85, 0 ), V( 85, 0x2eae, 92, 86, 0 ), V( 86, 0x299a, 93, 87, 0 ), V( 87, 0x2516, 86, 71, 0 ), V( 88, 0x5570, 88, 89, 1 ), V( 89, 0x4ca9, 95, 90, 0 ), V( 90, 0x44d9, 96, 91, 0 ), V( 91, 0x3e22, 97, 92, 0 ), V( 92, 0x3824, 99, 93, 0 ), V( 93, 0x32b4, 99, 94, 0 ), V( 94, 0x2e17, 93, 86, 0 ), V( 95, 0x56a8, 95, 96, 1 ), V( 96, 0x4f46, 101, 97, 0 ), V( 97, 0x47e5, 102, 98, 0 ), V( 98, 0x41cf, 103, 99, 0 ), V( 99, 0x3c3d, 104, 100, 0 ), V( 100, 0x375e, 99, 93, 0 ), V( 101, 0x5231, 105, 102, 0 ), V( 102, 0x4c0f, 106, 103, 0 ), V( 103, 0x4639, 107, 104, 0 ), V( 104, 0x415e, 103, 99, 0 ), V( 105, 0x5627, 105, 106, 1 ), V( 106, 0x50e7, 108, 107, 0 ), V( 107, 0x4b85, 109, 103, 0 ), V( 108, 0x5597, 110, 109, 0 ), V( 109, 0x504f, 111, 107, 0 ), V( 110, 0x5a10, 110, 111, 1 ), V( 111, 0x5522, 112, 109, 0 ), V( 112, 0x59eb, 112, 111, 1 ), /* * This last entry is used for fixed probability estimate of 0.5 * as recommended in Section 10.3 Table 5 of ITU-T Rec. T.851. */ V( 113, 0x5a1d, 113, 113, 0 ) }; libjpeg-turbo-1.4.2/jdatasrc-tj.c0000644000076500007650000001474012600050400013561 00000000000000/* * jdatasrc-tj.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1994-1996, Thomas G. Lane. * Modified 2009-2011 by Guido Vollbeding. * libjpeg-turbo Modifications: * Copyright (C) 2011, D. R. Commander. * For conditions of distribution and use, see the accompanying README file. * * This file contains decompression data source routines for the case of * reading JPEG data from memory or from a file (or any stdio stream). * While these routines are sufficient for most applications, * some will want to use a different source manager. * IMPORTANT: we assume that fread() will correctly transcribe an array of * JOCTETs from 8-bit-wide elements on external storage. If char is wider * than 8 bits on your machine, you may need to do some tweaking. */ /* this is not a core library module, so it doesn't define JPEG_INTERNALS */ #include "jinclude.h" #include "jpeglib.h" #include "jerror.h" /* * Initialize source --- called by jpeg_read_header * before any data is actually read. */ METHODDEF(void) init_mem_source (j_decompress_ptr cinfo) { /* no work necessary here */ } /* * Fill the input buffer --- called whenever buffer is emptied. * * In typical applications, this should read fresh data into the buffer * (ignoring the current state of next_input_byte & bytes_in_buffer), * reset the pointer & count to the start of the buffer, and return TRUE * indicating that the buffer has been reloaded. It is not necessary to * fill the buffer entirely, only to obtain at least one more byte. * * There is no such thing as an EOF return. If the end of the file has been * reached, the routine has a choice of ERREXIT() or inserting fake data into * the buffer. In most cases, generating a warning message and inserting a * fake EOI marker is the best course of action --- this will allow the * decompressor to output however much of the image is there. However, * the resulting error message is misleading if the real problem is an empty * input file, so we handle that case specially. * * In applications that need to be able to suspend compression due to input * not being available yet, a FALSE return indicates that no more data can be * obtained right now, but more may be forthcoming later. In this situation, * the decompressor will return to its caller (with an indication of the * number of scanlines it has read, if any). The application should resume * decompression after it has loaded more data into the input buffer. Note * that there are substantial restrictions on the use of suspension --- see * the documentation. * * When suspending, the decompressor will back up to a convenient restart point * (typically the start of the current MCU). next_input_byte & bytes_in_buffer * indicate where the restart point will be if the current call returns FALSE. * Data beyond this point must be rescanned after resumption, so move it to * the front of the buffer rather than discarding it. */ METHODDEF(boolean) fill_mem_input_buffer (j_decompress_ptr cinfo) { static const JOCTET mybuffer[4] = { (JOCTET) 0xFF, (JOCTET) JPEG_EOI, 0, 0 }; /* The whole JPEG data is expected to reside in the supplied memory * buffer, so any request for more data beyond the given buffer size * is treated as an error. */ WARNMS(cinfo, JWRN_JPEG_EOF); /* Insert a fake EOI marker */ cinfo->src->next_input_byte = mybuffer; cinfo->src->bytes_in_buffer = 2; return TRUE; } /* * Skip data --- used to skip over a potentially large amount of * uninteresting data (such as an APPn marker). * * Writers of suspendable-input applications must note that skip_input_data * is not granted the right to give a suspension return. If the skip extends * beyond the data currently in the buffer, the buffer can be marked empty so * that the next read will cause a fill_input_buffer call that can suspend. * Arranging for additional bytes to be discarded before reloading the input * buffer is the application writer's problem. */ METHODDEF(void) skip_input_data (j_decompress_ptr cinfo, long num_bytes) { struct jpeg_source_mgr * src = cinfo->src; /* Just a dumb implementation for now. Could use fseek() except * it doesn't work on pipes. Not clear that being smart is worth * any trouble anyway --- large skips are infrequent. */ if (num_bytes > 0) { while (num_bytes > (long) src->bytes_in_buffer) { num_bytes -= (long) src->bytes_in_buffer; (void) (*src->fill_input_buffer) (cinfo); /* note we assume that fill_input_buffer will never return FALSE, * so suspension need not be handled. */ } src->next_input_byte += (size_t) num_bytes; src->bytes_in_buffer -= (size_t) num_bytes; } } /* * An additional method that can be provided by data source modules is the * resync_to_restart method for error recovery in the presence of RST markers. * For the moment, this source module just uses the default resync method * provided by the JPEG library. That method assumes that no backtracking * is possible. */ /* * Terminate source --- called by jpeg_finish_decompress * after all data has been read. Often a no-op. * * NB: *not* called by jpeg_abort or jpeg_destroy; surrounding * application must deal with any cleanup that should happen even * for error exit. */ METHODDEF(void) term_source (j_decompress_ptr cinfo) { /* no work necessary here */ } /* * Prepare for input from a supplied memory buffer. * The buffer must contain the whole JPEG data. */ GLOBAL(void) jpeg_mem_src_tj (j_decompress_ptr cinfo, unsigned char * inbuffer, unsigned long insize) { struct jpeg_source_mgr * src; if (inbuffer == NULL || insize == 0) /* Treat empty input as fatal error */ ERREXIT(cinfo, JERR_INPUT_EMPTY); /* The source object is made permanent so that a series of JPEG images * can be read from the same buffer by calling jpeg_mem_src only before * the first one. */ if (cinfo->src == NULL) { /* first time for this JPEG object? */ cinfo->src = (struct jpeg_source_mgr *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT, sizeof(struct jpeg_source_mgr)); } src = cinfo->src; src->init_source = init_mem_source; src->fill_input_buffer = fill_mem_input_buffer; src->skip_input_data = skip_input_data; src->resync_to_restart = jpeg_resync_to_restart; /* use default method */ src->term_source = term_source; src->bytes_in_buffer = (size_t) insize; src->next_input_byte = (JOCTET *) inbuffer; } libjpeg-turbo-1.4.2/rdjpgcom.c0000644000076500007650000003532412600050400013161 00000000000000/* * rdjpgcom.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1994-1997, Thomas G. Lane. * Modified 2009 by Bill Allombert, Guido Vollbeding. * It was modified by The libjpeg-turbo Project to include only code relevant * to libjpeg-turbo. * For conditions of distribution and use, see the accompanying README file. * * This file contains a very simple stand-alone application that displays * the text in COM (comment) markers in a JFIF file. * This may be useful as an example of the minimum logic needed to parse * JPEG markers. */ #define JPEG_CJPEG_DJPEG /* to get the command-line config symbols */ #include "jinclude.h" /* get auto-config symbols, */ #ifdef HAVE_LOCALE_H #include /* Bill Allombert: use locale for isprint */ #endif #include /* to declare isupper(), tolower() */ #ifdef USE_SETMODE #include /* to declare setmode()'s parameter macros */ /* If you have setmode() but not , just delete this line: */ #include /* to declare setmode() */ #endif #ifdef USE_CCOMMAND /* command-line reader for Macintosh */ #ifdef __MWERKS__ #include /* Metrowerks needs this */ #include /* ... and this */ #endif #ifdef THINK_C #include /* Think declares it here */ #endif #endif #ifdef DONT_USE_B_MODE /* define mode parameters for fopen() */ #define READ_BINARY "r" #else #define READ_BINARY "rb" #endif #ifndef EXIT_FAILURE /* define exit() codes if not provided */ #define EXIT_FAILURE 1 #endif #ifndef EXIT_SUCCESS #define EXIT_SUCCESS 0 #endif /* * These macros are used to read the input file. * To reuse this code in another application, you might need to change these. */ static FILE * infile; /* input JPEG file */ /* Return next input byte, or EOF if no more */ #define NEXTBYTE() getc(infile) /* Error exit handler */ #define ERREXIT(msg) (fprintf(stderr, "%s\n", msg), exit(EXIT_FAILURE)) /* Read one byte, testing for EOF */ static int read_1_byte (void) { int c; c = NEXTBYTE(); if (c == EOF) ERREXIT("Premature EOF in JPEG file"); return c; } /* Read 2 bytes, convert to unsigned int */ /* All 2-byte quantities in JPEG markers are MSB first */ static unsigned int read_2_bytes (void) { int c1, c2; c1 = NEXTBYTE(); if (c1 == EOF) ERREXIT("Premature EOF in JPEG file"); c2 = NEXTBYTE(); if (c2 == EOF) ERREXIT("Premature EOF in JPEG file"); return (((unsigned int) c1) << 8) + ((unsigned int) c2); } /* * JPEG markers consist of one or more 0xFF bytes, followed by a marker * code byte (which is not an FF). Here are the marker codes of interest * in this program. (See jdmarker.c for a more complete list.) */ #define M_SOF0 0xC0 /* Start Of Frame N */ #define M_SOF1 0xC1 /* N indicates which compression process */ #define M_SOF2 0xC2 /* Only SOF0-SOF2 are now in common use */ #define M_SOF3 0xC3 #define M_SOF5 0xC5 /* NB: codes C4 and CC are NOT SOF markers */ #define M_SOF6 0xC6 #define M_SOF7 0xC7 #define M_SOF9 0xC9 #define M_SOF10 0xCA #define M_SOF11 0xCB #define M_SOF13 0xCD #define M_SOF14 0xCE #define M_SOF15 0xCF #define M_SOI 0xD8 /* Start Of Image (beginning of datastream) */ #define M_EOI 0xD9 /* End Of Image (end of datastream) */ #define M_SOS 0xDA /* Start Of Scan (begins compressed data) */ #define M_APP0 0xE0 /* Application-specific marker, type N */ #define M_APP12 0xEC /* (we don't bother to list all 16 APPn's) */ #define M_COM 0xFE /* COMment */ /* * Find the next JPEG marker and return its marker code. * We expect at least one FF byte, possibly more if the compressor used FFs * to pad the file. * There could also be non-FF garbage between markers. The treatment of such * garbage is unspecified; we choose to skip over it but emit a warning msg. * NB: this routine must not be used after seeing SOS marker, since it will * not deal correctly with FF/00 sequences in the compressed image data... */ static int next_marker (void) { int c; int discarded_bytes = 0; /* Find 0xFF byte; count and skip any non-FFs. */ c = read_1_byte(); while (c != 0xFF) { discarded_bytes++; c = read_1_byte(); } /* Get marker code byte, swallowing any duplicate FF bytes. Extra FFs * are legal as pad bytes, so don't count them in discarded_bytes. */ do { c = read_1_byte(); } while (c == 0xFF); if (discarded_bytes != 0) { fprintf(stderr, "Warning: garbage data found in JPEG file\n"); } return c; } /* * Read the initial marker, which should be SOI. * For a JFIF file, the first two bytes of the file should be literally * 0xFF M_SOI. To be more general, we could use next_marker, but if the * input file weren't actually JPEG at all, next_marker might read the whole * file and then return a misleading error message... */ static int first_marker (void) { int c1, c2; c1 = NEXTBYTE(); c2 = NEXTBYTE(); if (c1 != 0xFF || c2 != M_SOI) ERREXIT("Not a JPEG file"); return c2; } /* * Most types of marker are followed by a variable-length parameter segment. * This routine skips over the parameters for any marker we don't otherwise * want to process. * Note that we MUST skip the parameter segment explicitly in order not to * be fooled by 0xFF bytes that might appear within the parameter segment; * such bytes do NOT introduce new markers. */ static void skip_variable (void) /* Skip over an unknown or uninteresting variable-length marker */ { unsigned int length; /* Get the marker parameter length count */ length = read_2_bytes(); /* Length includes itself, so must be at least 2 */ if (length < 2) ERREXIT("Erroneous JPEG marker length"); length -= 2; /* Skip over the remaining bytes */ while (length > 0) { (void) read_1_byte(); length--; } } /* * Process a COM marker. * We want to print out the marker contents as legible text; * we must guard against non-text junk and varying newline representations. */ static void process_COM (int raw) { unsigned int length; int ch; int lastch = 0; /* Bill Allombert: set locale properly for isprint */ #ifdef HAVE_LOCALE_H setlocale(LC_CTYPE, ""); #endif /* Get the marker parameter length count */ length = read_2_bytes(); /* Length includes itself, so must be at least 2 */ if (length < 2) ERREXIT("Erroneous JPEG marker length"); length -= 2; while (length > 0) { ch = read_1_byte(); if (raw) { putc(ch, stdout); /* Emit the character in a readable form. * Nonprintables are converted to \nnn form, * while \ is converted to \\. * Newlines in CR, CR/LF, or LF form will be printed as one newline. */ } else if (ch == '\r') { printf("\n"); } else if (ch == '\n') { if (lastch != '\r') printf("\n"); } else if (ch == '\\') { printf("\\\\"); } else if (isprint(ch)) { putc(ch, stdout); } else { printf("\\%03o", ch); } lastch = ch; length--; } printf("\n"); /* Bill Allombert: revert to C locale */ #ifdef HAVE_LOCALE_H setlocale(LC_CTYPE, "C"); #endif } /* * Process a SOFn marker. * This code is only needed if you want to know the image dimensions... */ static void process_SOFn (int marker) { unsigned int length; unsigned int image_height, image_width; int data_precision, num_components; const char * process; int ci; length = read_2_bytes(); /* usual parameter length count */ data_precision = read_1_byte(); image_height = read_2_bytes(); image_width = read_2_bytes(); num_components = read_1_byte(); switch (marker) { case M_SOF0: process = "Baseline"; break; case M_SOF1: process = "Extended sequential"; break; case M_SOF2: process = "Progressive"; break; case M_SOF3: process = "Lossless"; break; case M_SOF5: process = "Differential sequential"; break; case M_SOF6: process = "Differential progressive"; break; case M_SOF7: process = "Differential lossless"; break; case M_SOF9: process = "Extended sequential, arithmetic coding"; break; case M_SOF10: process = "Progressive, arithmetic coding"; break; case M_SOF11: process = "Lossless, arithmetic coding"; break; case M_SOF13: process = "Differential sequential, arithmetic coding"; break; case M_SOF14: process = "Differential progressive, arithmetic coding"; break; case M_SOF15: process = "Differential lossless, arithmetic coding"; break; default: process = "Unknown"; break; } printf("JPEG image is %uw * %uh, %d color components, %d bits per sample\n", image_width, image_height, num_components, data_precision); printf("JPEG process: %s\n", process); if (length != (unsigned int) (8 + num_components * 3)) ERREXIT("Bogus SOF marker length"); for (ci = 0; ci < num_components; ci++) { (void) read_1_byte(); /* Component ID code */ (void) read_1_byte(); /* H, V sampling factors */ (void) read_1_byte(); /* Quantization table number */ } } /* * Parse the marker stream until SOS or EOI is seen; * display any COM markers. * While the companion program wrjpgcom will always insert COM markers before * SOFn, other implementations might not, so we scan to SOS before stopping. * If we were only interested in the image dimensions, we would stop at SOFn. * (Conversely, if we only cared about COM markers, there would be no need * for special code to handle SOFn; we could treat it like other markers.) */ static int scan_JPEG_header (int verbose, int raw) { int marker; /* Expect SOI at start of file */ if (first_marker() != M_SOI) ERREXIT("Expected SOI marker first"); /* Scan miscellaneous markers until we reach SOS. */ for (;;) { marker = next_marker(); switch (marker) { /* Note that marker codes 0xC4, 0xC8, 0xCC are not, and must not be, * treated as SOFn. C4 in particular is actually DHT. */ case M_SOF0: /* Baseline */ case M_SOF1: /* Extended sequential, Huffman */ case M_SOF2: /* Progressive, Huffman */ case M_SOF3: /* Lossless, Huffman */ case M_SOF5: /* Differential sequential, Huffman */ case M_SOF6: /* Differential progressive, Huffman */ case M_SOF7: /* Differential lossless, Huffman */ case M_SOF9: /* Extended sequential, arithmetic */ case M_SOF10: /* Progressive, arithmetic */ case M_SOF11: /* Lossless, arithmetic */ case M_SOF13: /* Differential sequential, arithmetic */ case M_SOF14: /* Differential progressive, arithmetic */ case M_SOF15: /* Differential lossless, arithmetic */ if (verbose) process_SOFn(marker); else skip_variable(); break; case M_SOS: /* stop before hitting compressed data */ return marker; case M_EOI: /* in case it's a tables-only JPEG stream */ return marker; case M_COM: process_COM(raw); break; case M_APP12: /* Some digital camera makers put useful textual information into * APP12 markers, so we print those out too when in -verbose mode. */ if (verbose) { printf("APP12 contains:\n"); process_COM(raw); } else skip_variable(); break; default: /* Anything else just gets skipped */ skip_variable(); /* we assume it has a parameter count... */ break; } } /* end loop */ } /* Command line parsing code */ static const char * progname; /* program name for error messages */ static void usage (void) /* complain about bad command line */ { fprintf(stderr, "rdjpgcom displays any textual comments in a JPEG file.\n"); fprintf(stderr, "Usage: %s [switches] [inputfile]\n", progname); fprintf(stderr, "Switches (names may be abbreviated):\n"); fprintf(stderr, " -raw Display non-printable characters in comments (unsafe)\n"); fprintf(stderr, " -verbose Also display dimensions of JPEG image\n"); exit(EXIT_FAILURE); } static int keymatch (char * arg, const char * keyword, int minchars) /* Case-insensitive matching of (possibly abbreviated) keyword switches. */ /* keyword is the constant keyword (must be lower case already), */ /* minchars is length of minimum legal abbreviation. */ { register int ca, ck; register int nmatched = 0; while ((ca = *arg++) != '\0') { if ((ck = *keyword++) == '\0') return 0; /* arg longer than keyword, no good */ if (isupper(ca)) /* force arg to lcase (assume ck is already) */ ca = tolower(ca); if (ca != ck) return 0; /* no good */ nmatched++; /* count matched characters */ } /* reached end of argument; fail if it's too short for unique abbrev */ if (nmatched < minchars) return 0; return 1; /* A-OK */ } /* * The main program. */ int main (int argc, char **argv) { int argn; char * arg; int verbose = 0, raw = 0; /* On Mac, fetch a command line. */ #ifdef USE_CCOMMAND argc = ccommand(&argv); #endif progname = argv[0]; if (progname == NULL || progname[0] == 0) progname = "rdjpgcom"; /* in case C library doesn't provide it */ /* Parse switches, if any */ for (argn = 1; argn < argc; argn++) { arg = argv[argn]; if (arg[0] != '-') break; /* not switch, must be file name */ arg++; /* advance over '-' */ if (keymatch(arg, "verbose", 1)) { verbose++; } else if (keymatch(arg, "raw", 1)) { raw = 1; } else usage(); } /* Open the input file. */ /* Unix style: expect zero or one file name */ if (argn < argc-1) { fprintf(stderr, "%s: only one input file\n", progname); usage(); } if (argn < argc) { if ((infile = fopen(argv[argn], READ_BINARY)) == NULL) { fprintf(stderr, "%s: can't open %s\n", progname, argv[argn]); exit(EXIT_FAILURE); } } else { /* default input file is stdin */ #ifdef USE_SETMODE /* need to hack file mode? */ setmode(fileno(stdin), O_BINARY); #endif #ifdef USE_FDOPEN /* need to re-open in binary mode? */ if ((infile = fdopen(fileno(stdin), READ_BINARY)) == NULL) { fprintf(stderr, "%s: can't open stdin\n", progname); exit(EXIT_FAILURE); } #else infile = stdin; #endif } /* Scan the JPEG headers. */ (void) scan_JPEG_header(verbose, raw); /* All done. */ exit(EXIT_SUCCESS); return 0; /* suppress no-return-value warnings */ } libjpeg-turbo-1.4.2/wrjpgcom.10000644000076500007650000000510312600050400013112 00000000000000.TH WRJPGCOM 1 "15 June 1995" .SH NAME wrjpgcom \- insert text comments into a JPEG file .SH SYNOPSIS .B wrjpgcom [ .B \-replace ] [ .BI \-comment " text" ] [ .BI \-cfile " name" ] [ .I filename ] .LP .SH DESCRIPTION .LP .B wrjpgcom reads the named JPEG/JFIF file, or the standard input if no file is named, and generates a new JPEG/JFIF file on standard output. A comment block is added to the file. .PP The JPEG standard allows "comment" (COM) blocks to occur within a JPEG file. Although the standard doesn't actually define what COM blocks are for, they are widely used to hold user-supplied text strings. This lets you add annotations, titles, index terms, etc to your JPEG files, and later retrieve them as text. COM blocks do not interfere with the image stored in the JPEG file. The maximum size of a COM block is 64K, but you can have as many of them as you like in one JPEG file. .PP .B wrjpgcom adds a COM block, containing text you provide, to a JPEG file. Ordinarily, the COM block is added after any existing COM blocks; but you can delete the old COM blocks if you wish. .SH OPTIONS Switch names may be abbreviated, and are not case sensitive. .TP .B \-replace Delete any existing COM blocks from the file. .TP .BI \-comment " text" Supply text for new COM block on command line. .TP .BI \-cfile " name" Read text for new COM block from named file. .PP If you have only one line of comment text to add, you can provide it on the command line with .BR \-comment . The comment text must be surrounded with quotes so that it is treated as a single argument. Longer comments can be read from a text file. .PP If you give neither .B \-comment nor .BR \-cfile , then .B wrjpgcom will read the comment text from standard input. (In this case an input image file name MUST be supplied, so that the source JPEG file comes from somewhere else.) You can enter multiple lines, up to 64KB worth. Type an end-of-file indicator (usually control-D) to terminate the comment text entry. .PP .B wrjpgcom will not add a COM block if the provided comment string is empty. Therefore \fB\-replace \-comment ""\fR can be used to delete all COM blocks from a file. .SH EXAMPLES .LP Add a short comment to in.jpg, producing out.jpg: .IP .B wrjpgcom \-c \fI"View of my back yard" in.jpg .B > .I out.jpg .PP Attach a long comment previously stored in comment.txt: .IP .B wrjpgcom .I in.jpg .B < .I comment.txt .B > .I out.jpg .PP or equivalently .IP .B wrjpgcom .B -cfile .I comment.txt .B < .I in.jpg .B > .I out.jpg .SH SEE ALSO .BR cjpeg (1), .BR djpeg (1), .BR jpegtran (1), .BR rdjpgcom (1) .SH AUTHOR Independent JPEG Group libjpeg-turbo-1.4.2/sharedlib/0000755000076500007650000000000012600050445013227 500000000000000libjpeg-turbo-1.4.2/sharedlib/CMakeLists.txt0000755000076500007650000000516612600050400015711 00000000000000# Anything that must be linked against the shared C library on Windows must # be built in this subdirectory, because CMake doesn't allow us to override # the compiler flags for each build type except at directory scope. Note # to CMake developers: Add a COMPILE_FLAGS_ target property, or # better yet, provide a friendly way of configuring a Windows target to use the # static C library. if(MSVC) # Build all configurations against shared C library foreach(var CMAKE_C_FLAGS CMAKE_C_FLAGS_DEBUG CMAKE_C_FLAGS_RELEASE CMAKE_C_FLAGS_MINSIZEREL CMAKE_C_FLAGS_RELWITHDEBINFO) if(${var} MATCHES "/MT") string(REGEX REPLACE "/MT" "/MD" ${var} "${${var}}") endif() endforeach() endif() foreach(src ${JPEG_SOURCES}) set(JPEG_SRCS ${JPEG_SRCS} ${CMAKE_SOURCE_DIR}/${src}) endforeach() if(WITH_SIMD) # This tells CMake that the "source" files haven't been generated yet set_source_files_properties(${SIMD_OBJS} PROPERTIES GENERATED 1) endif() if(WITH_MEM_SRCDST AND NOT WITH_JPEG8) add_library(jpeg SHARED ${JPEG_SRCS} ${SIMD_OBJS} ${CMAKE_SOURCE_DIR}/win/jpeg${DLL_VERSION}-memsrcdst.def) else() add_library(jpeg SHARED ${JPEG_SRCS} ${SIMD_OBJS} ${CMAKE_SOURCE_DIR}/win/jpeg${DLL_VERSION}.def) endif() set_target_properties(jpeg PROPERTIES SOVERSION ${DLL_VERSION} VERSION ${FULLVERSION}) if(MSVC) set_target_properties(jpeg PROPERTIES SUFFIX ${DLL_VERSION}.dll) elseif(MINGW OR CYGWIN) set_target_properties(jpeg PROPERTIES SUFFIX -${DLL_VERSION}.dll) endif(MSVC) if(WITH_SIMD) add_dependencies(jpeg simd) endif() if(WITH_12BIT) set(COMPILE_FLAGS "-DGIF_SUPPORTED -DPPM_SUPPORTED -DUSE_SETMODE") else() set(COMPILE_FLAGS "-DBMP_SUPPORTED -DGIF_SUPPORTED -DPPM_SUPPORTED -DTARGA_SUPPORTED -DUSE_SETMODE") set(CJPEG_BMP_SOURCES ../rdbmp.c ../rdtarga.c) set(DJPEG_BMP_SOURCES ../wrbmp.c ../wrtarga.c) endif() add_executable(cjpeg ../cjpeg.c ../cdjpeg.c ../rdgif.c ../rdppm.c ../rdswitch.c ${CJPEG_BMP_SOURCES}) set_property(TARGET cjpeg PROPERTY COMPILE_FLAGS ${COMPILE_FLAGS}) target_link_libraries(cjpeg jpeg) add_executable(djpeg ../djpeg.c ../cdjpeg.c ../rdcolmap.c ../rdswitch.c ../wrgif.c ../wrppm.c ${DJPEG_BMP_SOURCES}) set_property(TARGET djpeg PROPERTY COMPILE_FLAGS ${COMPILE_FLAGS}) target_link_libraries(djpeg jpeg) add_executable(jpegtran ../jpegtran.c ../cdjpeg.c ../rdswitch.c ../transupp.c) target_link_libraries(jpegtran jpeg) set_property(TARGET jpegtran PROPERTY COMPILE_FLAGS "-DUSE_SETMODE") add_executable(jcstest ../jcstest.c) target_link_libraries(jcstest jpeg) install(TARGETS jpeg cjpeg djpeg jpegtran ARCHIVE DESTINATION lib LIBRARY DESTINATION lib RUNTIME DESTINATION bin) libjpeg-turbo-1.4.2/jcomapi.c0000644000076500007650000000624412600050400012775 00000000000000/* * jcomapi.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1994-1997, Thomas G. Lane.0 * It was modified by The libjpeg-turbo Project to include only code relevant * to libjpeg-turbo. * For conditions of distribution and use, see the accompanying README file. * * This file contains application interface routines that are used for both * compression and decompression. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" /* * Abort processing of a JPEG compression or decompression operation, * but don't destroy the object itself. * * For this, we merely clean up all the nonpermanent memory pools. * Note that temp files (virtual arrays) are not allowed to belong to * the permanent pool, so we will be able to close all temp files here. * Closing a data source or destination, if necessary, is the application's * responsibility. */ GLOBAL(void) jpeg_abort (j_common_ptr cinfo) { int pool; /* Do nothing if called on a not-initialized or destroyed JPEG object. */ if (cinfo->mem == NULL) return; /* Releasing pools in reverse order might help avoid fragmentation * with some (brain-damaged) malloc libraries. */ for (pool = JPOOL_NUMPOOLS-1; pool > JPOOL_PERMANENT; pool--) { (*cinfo->mem->free_pool) (cinfo, pool); } /* Reset overall state for possible reuse of object */ if (cinfo->is_decompressor) { cinfo->global_state = DSTATE_START; /* Try to keep application from accessing now-deleted marker list. * A bit kludgy to do it here, but this is the most central place. */ ((j_decompress_ptr) cinfo)->marker_list = NULL; } else { cinfo->global_state = CSTATE_START; } } /* * Destruction of a JPEG object. * * Everything gets deallocated except the master jpeg_compress_struct itself * and the error manager struct. Both of these are supplied by the application * and must be freed, if necessary, by the application. (Often they are on * the stack and so don't need to be freed anyway.) * Closing a data source or destination, if necessary, is the application's * responsibility. */ GLOBAL(void) jpeg_destroy (j_common_ptr cinfo) { /* We need only tell the memory manager to release everything. */ /* NB: mem pointer is NULL if memory mgr failed to initialize. */ if (cinfo->mem != NULL) (*cinfo->mem->self_destruct) (cinfo); cinfo->mem = NULL; /* be safe if jpeg_destroy is called twice */ cinfo->global_state = 0; /* mark it destroyed */ } /* * Convenience routines for allocating quantization and Huffman tables. * (Would jutils.c be a more reasonable place to put these?) */ GLOBAL(JQUANT_TBL *) jpeg_alloc_quant_table (j_common_ptr cinfo) { JQUANT_TBL *tbl; tbl = (JQUANT_TBL *) (*cinfo->mem->alloc_small) (cinfo, JPOOL_PERMANENT, sizeof(JQUANT_TBL)); tbl->sent_table = FALSE; /* make sure this is false in any new table */ return tbl; } GLOBAL(JHUFF_TBL *) jpeg_alloc_huff_table (j_common_ptr cinfo) { JHUFF_TBL *tbl; tbl = (JHUFF_TBL *) (*cinfo->mem->alloc_small) (cinfo, JPOOL_PERMANENT, sizeof(JHUFF_TBL)); tbl->sent_table = FALSE; /* make sure this is false in any new table */ return tbl; } libjpeg-turbo-1.4.2/depcomp0000755000076500007650000005601612600050415012574 00000000000000#! /bin/sh # depcomp - compile a program generating dependencies as side-effects scriptversion=2013-05-30.07; # UTC # Copyright (C) 1999-2014 Free Software Foundation, Inc. # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2, or (at your option) # any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # You should have received a copy of the GNU General Public License # along with this program. If not, see . # As a special exception to the GNU General Public License, if you # distribute this file as part of a program that contains a # configuration script generated by Autoconf, you may include it under # the same distribution terms that you use for the rest of that program. # Originally written by Alexandre Oliva . case $1 in '') echo "$0: No command. Try '$0 --help' for more information." 1>&2 exit 1; ;; -h | --h*) cat <<\EOF Usage: depcomp [--help] [--version] PROGRAM [ARGS] Run PROGRAMS ARGS to compile a file, generating dependencies as side-effects. Environment variables: depmode Dependency tracking mode. source Source file read by 'PROGRAMS ARGS'. object Object file output by 'PROGRAMS ARGS'. DEPDIR directory where to store dependencies. depfile Dependency file to output. tmpdepfile Temporary file to use when outputting dependencies. libtool Whether libtool is used (yes/no). Report bugs to . EOF exit $? ;; -v | --v*) echo "depcomp $scriptversion" exit $? ;; esac # Get the directory component of the given path, and save it in the # global variables '$dir'. Note that this directory component will # be either empty or ending with a '/' character. This is deliberate. set_dir_from () { case $1 in */*) dir=`echo "$1" | sed -e 's|/[^/]*$|/|'`;; *) dir=;; esac } # Get the suffix-stripped basename of the given path, and save it the # global variable '$base'. set_base_from () { base=`echo "$1" | sed -e 's|^.*/||' -e 's/\.[^.]*$//'` } # If no dependency file was actually created by the compiler invocation, # we still have to create a dummy depfile, to avoid errors with the # Makefile "include basename.Plo" scheme. make_dummy_depfile () { echo "#dummy" > "$depfile" } # Factor out some common post-processing of the generated depfile. # Requires the auxiliary global variable '$tmpdepfile' to be set. aix_post_process_depfile () { # If the compiler actually managed to produce a dependency file, # post-process it. if test -f "$tmpdepfile"; then # Each line is of the form 'foo.o: dependency.h'. # Do two passes, one to just change these to # $object: dependency.h # and one to simply output # dependency.h: # which is needed to avoid the deleted-header problem. { sed -e "s,^.*\.[$lower]*:,$object:," < "$tmpdepfile" sed -e "s,^.*\.[$lower]*:[$tab ]*,," -e 's,$,:,' < "$tmpdepfile" } > "$depfile" rm -f "$tmpdepfile" else make_dummy_depfile fi } # A tabulation character. tab=' ' # A newline character. nl=' ' # Character ranges might be problematic outside the C locale. # These definitions help. upper=ABCDEFGHIJKLMNOPQRSTUVWXYZ lower=abcdefghijklmnopqrstuvwxyz digits=0123456789 alpha=${upper}${lower} if test -z "$depmode" || test -z "$source" || test -z "$object"; then echo "depcomp: Variables source, object and depmode must be set" 1>&2 exit 1 fi # Dependencies for sub/bar.o or sub/bar.obj go into sub/.deps/bar.Po. depfile=${depfile-`echo "$object" | sed 's|[^\\/]*$|'${DEPDIR-.deps}'/&|;s|\.\([^.]*\)$|.P\1|;s|Pobj$|Po|'`} tmpdepfile=${tmpdepfile-`echo "$depfile" | sed 's/\.\([^.]*\)$/.T\1/'`} rm -f "$tmpdepfile" # Avoid interferences from the environment. gccflag= dashmflag= # Some modes work just like other modes, but use different flags. We # parameterize here, but still list the modes in the big case below, # to make depend.m4 easier to write. Note that we *cannot* use a case # here, because this file can only contain one case statement. if test "$depmode" = hp; then # HP compiler uses -M and no extra arg. gccflag=-M depmode=gcc fi if test "$depmode" = dashXmstdout; then # This is just like dashmstdout with a different argument. dashmflag=-xM depmode=dashmstdout fi cygpath_u="cygpath -u -f -" if test "$depmode" = msvcmsys; then # This is just like msvisualcpp but w/o cygpath translation. # Just convert the backslash-escaped backslashes to single forward # slashes to satisfy depend.m4 cygpath_u='sed s,\\\\,/,g' depmode=msvisualcpp fi if test "$depmode" = msvc7msys; then # This is just like msvc7 but w/o cygpath translation. # Just convert the backslash-escaped backslashes to single forward # slashes to satisfy depend.m4 cygpath_u='sed s,\\\\,/,g' depmode=msvc7 fi if test "$depmode" = xlc; then # IBM C/C++ Compilers xlc/xlC can output gcc-like dependency information. gccflag=-qmakedep=gcc,-MF depmode=gcc fi case "$depmode" in gcc3) ## gcc 3 implements dependency tracking that does exactly what ## we want. Yay! Note: for some reason libtool 1.4 doesn't like ## it if -MD -MP comes after the -MF stuff. Hmm. ## Unfortunately, FreeBSD c89 acceptance of flags depends upon ## the command line argument order; so add the flags where they ## appear in depend2.am. Note that the slowdown incurred here ## affects only configure: in makefiles, %FASTDEP% shortcuts this. for arg do case $arg in -c) set fnord "$@" -MT "$object" -MD -MP -MF "$tmpdepfile" "$arg" ;; *) set fnord "$@" "$arg" ;; esac shift # fnord shift # $arg done "$@" stat=$? if test $stat -ne 0; then rm -f "$tmpdepfile" exit $stat fi mv "$tmpdepfile" "$depfile" ;; gcc) ## Note that this doesn't just cater to obsosete pre-3.x GCC compilers. ## but also to in-use compilers like IMB xlc/xlC and the HP C compiler. ## (see the conditional assignment to $gccflag above). ## There are various ways to get dependency output from gcc. Here's ## why we pick this rather obscure method: ## - Don't want to use -MD because we'd like the dependencies to end ## up in a subdir. Having to rename by hand is ugly. ## (We might end up doing this anyway to support other compilers.) ## - The DEPENDENCIES_OUTPUT environment variable makes gcc act like ## -MM, not -M (despite what the docs say). Also, it might not be ## supported by the other compilers which use the 'gcc' depmode. ## - Using -M directly means running the compiler twice (even worse ## than renaming). if test -z "$gccflag"; then gccflag=-MD, fi "$@" -Wp,"$gccflag$tmpdepfile" stat=$? if test $stat -ne 0; then rm -f "$tmpdepfile" exit $stat fi rm -f "$depfile" echo "$object : \\" > "$depfile" # The second -e expression handles DOS-style file names with drive # letters. sed -e 's/^[^:]*: / /' \ -e 's/^['$alpha']:\/[^:]*: / /' < "$tmpdepfile" >> "$depfile" ## This next piece of magic avoids the "deleted header file" problem. ## The problem is that when a header file which appears in a .P file ## is deleted, the dependency causes make to die (because there is ## typically no way to rebuild the header). We avoid this by adding ## dummy dependencies for each header file. Too bad gcc doesn't do ## this for us directly. ## Some versions of gcc put a space before the ':'. On the theory ## that the space means something, we add a space to the output as ## well. hp depmode also adds that space, but also prefixes the VPATH ## to the object. Take care to not repeat it in the output. ## Some versions of the HPUX 10.20 sed can't process this invocation ## correctly. Breaking it into two sed invocations is a workaround. tr ' ' "$nl" < "$tmpdepfile" \ | sed -e 's/^\\$//' -e '/^$/d' -e "s|.*$object$||" -e '/:$/d' \ | sed -e 's/$/ :/' >> "$depfile" rm -f "$tmpdepfile" ;; hp) # This case exists only to let depend.m4 do its work. It works by # looking at the text of this script. This case will never be run, # since it is checked for above. exit 1 ;; sgi) if test "$libtool" = yes; then "$@" "-Wp,-MDupdate,$tmpdepfile" else "$@" -MDupdate "$tmpdepfile" fi stat=$? if test $stat -ne 0; then rm -f "$tmpdepfile" exit $stat fi rm -f "$depfile" if test -f "$tmpdepfile"; then # yes, the sourcefile depend on other files echo "$object : \\" > "$depfile" # Clip off the initial element (the dependent). Don't try to be # clever and replace this with sed code, as IRIX sed won't handle # lines with more than a fixed number of characters (4096 in # IRIX 6.2 sed, 8192 in IRIX 6.5). We also remove comment lines; # the IRIX cc adds comments like '#:fec' to the end of the # dependency line. tr ' ' "$nl" < "$tmpdepfile" \ | sed -e 's/^.*\.o://' -e 's/#.*$//' -e '/^$/ d' \ | tr "$nl" ' ' >> "$depfile" echo >> "$depfile" # The second pass generates a dummy entry for each header file. tr ' ' "$nl" < "$tmpdepfile" \ | sed -e 's/^.*\.o://' -e 's/#.*$//' -e '/^$/ d' -e 's/$/:/' \ >> "$depfile" else make_dummy_depfile fi rm -f "$tmpdepfile" ;; xlc) # This case exists only to let depend.m4 do its work. It works by # looking at the text of this script. This case will never be run, # since it is checked for above. exit 1 ;; aix) # The C for AIX Compiler uses -M and outputs the dependencies # in a .u file. In older versions, this file always lives in the # current directory. Also, the AIX compiler puts '$object:' at the # start of each line; $object doesn't have directory information. # Version 6 uses the directory in both cases. set_dir_from "$object" set_base_from "$object" if test "$libtool" = yes; then tmpdepfile1=$dir$base.u tmpdepfile2=$base.u tmpdepfile3=$dir.libs/$base.u "$@" -Wc,-M else tmpdepfile1=$dir$base.u tmpdepfile2=$dir$base.u tmpdepfile3=$dir$base.u "$@" -M fi stat=$? if test $stat -ne 0; then rm -f "$tmpdepfile1" "$tmpdepfile2" "$tmpdepfile3" exit $stat fi for tmpdepfile in "$tmpdepfile1" "$tmpdepfile2" "$tmpdepfile3" do test -f "$tmpdepfile" && break done aix_post_process_depfile ;; tcc) # tcc (Tiny C Compiler) understand '-MD -MF file' since version 0.9.26 # FIXME: That version still under development at the moment of writing. # Make that this statement remains true also for stable, released # versions. # It will wrap lines (doesn't matter whether long or short) with a # trailing '\', as in: # # foo.o : \ # foo.c \ # foo.h \ # # It will put a trailing '\' even on the last line, and will use leading # spaces rather than leading tabs (at least since its commit 0394caf7 # "Emit spaces for -MD"). "$@" -MD -MF "$tmpdepfile" stat=$? if test $stat -ne 0; then rm -f "$tmpdepfile" exit $stat fi rm -f "$depfile" # Each non-empty line is of the form 'foo.o : \' or ' dep.h \'. # We have to change lines of the first kind to '$object: \'. sed -e "s|.*:|$object :|" < "$tmpdepfile" > "$depfile" # And for each line of the second kind, we have to emit a 'dep.h:' # dummy dependency, to avoid the deleted-header problem. sed -n -e 's|^ *\(.*\) *\\$|\1:|p' < "$tmpdepfile" >> "$depfile" rm -f "$tmpdepfile" ;; ## The order of this option in the case statement is important, since the ## shell code in configure will try each of these formats in the order ## listed in this file. A plain '-MD' option would be understood by many ## compilers, so we must ensure this comes after the gcc and icc options. pgcc) # Portland's C compiler understands '-MD'. # Will always output deps to 'file.d' where file is the root name of the # source file under compilation, even if file resides in a subdirectory. # The object file name does not affect the name of the '.d' file. # pgcc 10.2 will output # foo.o: sub/foo.c sub/foo.h # and will wrap long lines using '\' : # foo.o: sub/foo.c ... \ # sub/foo.h ... \ # ... set_dir_from "$object" # Use the source, not the object, to determine the base name, since # that's sadly what pgcc will do too. set_base_from "$source" tmpdepfile=$base.d # For projects that build the same source file twice into different object # files, the pgcc approach of using the *source* file root name can cause # problems in parallel builds. Use a locking strategy to avoid stomping on # the same $tmpdepfile. lockdir=$base.d-lock trap " echo '$0: caught signal, cleaning up...' >&2 rmdir '$lockdir' exit 1 " 1 2 13 15 numtries=100 i=$numtries while test $i -gt 0; do # mkdir is a portable test-and-set. if mkdir "$lockdir" 2>/dev/null; then # This process acquired the lock. "$@" -MD stat=$? # Release the lock. rmdir "$lockdir" break else # If the lock is being held by a different process, wait # until the winning process is done or we timeout. while test -d "$lockdir" && test $i -gt 0; do sleep 1 i=`expr $i - 1` done fi i=`expr $i - 1` done trap - 1 2 13 15 if test $i -le 0; then echo "$0: failed to acquire lock after $numtries attempts" >&2 echo "$0: check lockdir '$lockdir'" >&2 exit 1 fi if test $stat -ne 0; then rm -f "$tmpdepfile" exit $stat fi rm -f "$depfile" # Each line is of the form `foo.o: dependent.h', # or `foo.o: dep1.h dep2.h \', or ` dep3.h dep4.h \'. # Do two passes, one to just change these to # `$object: dependent.h' and one to simply `dependent.h:'. sed "s,^[^:]*:,$object :," < "$tmpdepfile" > "$depfile" # Some versions of the HPUX 10.20 sed can't process this invocation # correctly. Breaking it into two sed invocations is a workaround. sed 's,^[^:]*: \(.*\)$,\1,;s/^\\$//;/^$/d;/:$/d' < "$tmpdepfile" \ | sed -e 's/$/ :/' >> "$depfile" rm -f "$tmpdepfile" ;; hp2) # The "hp" stanza above does not work with aCC (C++) and HP's ia64 # compilers, which have integrated preprocessors. The correct option # to use with these is +Maked; it writes dependencies to a file named # 'foo.d', which lands next to the object file, wherever that # happens to be. # Much of this is similar to the tru64 case; see comments there. set_dir_from "$object" set_base_from "$object" if test "$libtool" = yes; then tmpdepfile1=$dir$base.d tmpdepfile2=$dir.libs/$base.d "$@" -Wc,+Maked else tmpdepfile1=$dir$base.d tmpdepfile2=$dir$base.d "$@" +Maked fi stat=$? if test $stat -ne 0; then rm -f "$tmpdepfile1" "$tmpdepfile2" exit $stat fi for tmpdepfile in "$tmpdepfile1" "$tmpdepfile2" do test -f "$tmpdepfile" && break done if test -f "$tmpdepfile"; then sed -e "s,^.*\.[$lower]*:,$object:," "$tmpdepfile" > "$depfile" # Add 'dependent.h:' lines. sed -ne '2,${ s/^ *// s/ \\*$// s/$/:/ p }' "$tmpdepfile" >> "$depfile" else make_dummy_depfile fi rm -f "$tmpdepfile" "$tmpdepfile2" ;; tru64) # The Tru64 compiler uses -MD to generate dependencies as a side # effect. 'cc -MD -o foo.o ...' puts the dependencies into 'foo.o.d'. # At least on Alpha/Redhat 6.1, Compaq CCC V6.2-504 seems to put # dependencies in 'foo.d' instead, so we check for that too. # Subdirectories are respected. set_dir_from "$object" set_base_from "$object" if test "$libtool" = yes; then # Libtool generates 2 separate objects for the 2 libraries. These # two compilations output dependencies in $dir.libs/$base.o.d and # in $dir$base.o.d. We have to check for both files, because # one of the two compilations can be disabled. We should prefer # $dir$base.o.d over $dir.libs/$base.o.d because the latter is # automatically cleaned when .libs/ is deleted, while ignoring # the former would cause a distcleancheck panic. tmpdepfile1=$dir$base.o.d # libtool 1.5 tmpdepfile2=$dir.libs/$base.o.d # Likewise. tmpdepfile3=$dir.libs/$base.d # Compaq CCC V6.2-504 "$@" -Wc,-MD else tmpdepfile1=$dir$base.d tmpdepfile2=$dir$base.d tmpdepfile3=$dir$base.d "$@" -MD fi stat=$? if test $stat -ne 0; then rm -f "$tmpdepfile1" "$tmpdepfile2" "$tmpdepfile3" exit $stat fi for tmpdepfile in "$tmpdepfile1" "$tmpdepfile2" "$tmpdepfile3" do test -f "$tmpdepfile" && break done # Same post-processing that is required for AIX mode. aix_post_process_depfile ;; msvc7) if test "$libtool" = yes; then showIncludes=-Wc,-showIncludes else showIncludes=-showIncludes fi "$@" $showIncludes > "$tmpdepfile" stat=$? grep -v '^Note: including file: ' "$tmpdepfile" if test $stat -ne 0; then rm -f "$tmpdepfile" exit $stat fi rm -f "$depfile" echo "$object : \\" > "$depfile" # The first sed program below extracts the file names and escapes # backslashes for cygpath. The second sed program outputs the file # name when reading, but also accumulates all include files in the # hold buffer in order to output them again at the end. This only # works with sed implementations that can handle large buffers. sed < "$tmpdepfile" -n ' /^Note: including file: *\(.*\)/ { s//\1/ s/\\/\\\\/g p }' | $cygpath_u | sort -u | sed -n ' s/ /\\ /g s/\(.*\)/'"$tab"'\1 \\/p s/.\(.*\) \\/\1:/ H $ { s/.*/'"$tab"'/ G p }' >> "$depfile" echo >> "$depfile" # make sure the fragment doesn't end with a backslash rm -f "$tmpdepfile" ;; msvc7msys) # This case exists only to let depend.m4 do its work. It works by # looking at the text of this script. This case will never be run, # since it is checked for above. exit 1 ;; #nosideeffect) # This comment above is used by automake to tell side-effect # dependency tracking mechanisms from slower ones. dashmstdout) # Important note: in order to support this mode, a compiler *must* # always write the preprocessed file to stdout, regardless of -o. "$@" || exit $? # Remove the call to Libtool. if test "$libtool" = yes; then while test "X$1" != 'X--mode=compile'; do shift done shift fi # Remove '-o $object'. IFS=" " for arg do case $arg in -o) shift ;; $object) shift ;; *) set fnord "$@" "$arg" shift # fnord shift # $arg ;; esac done test -z "$dashmflag" && dashmflag=-M # Require at least two characters before searching for ':' # in the target name. This is to cope with DOS-style filenames: # a dependency such as 'c:/foo/bar' could be seen as target 'c' otherwise. "$@" $dashmflag | sed "s|^[$tab ]*[^:$tab ][^:][^:]*:[$tab ]*|$object: |" > "$tmpdepfile" rm -f "$depfile" cat < "$tmpdepfile" > "$depfile" # Some versions of the HPUX 10.20 sed can't process this sed invocation # correctly. Breaking it into two sed invocations is a workaround. tr ' ' "$nl" < "$tmpdepfile" \ | sed -e 's/^\\$//' -e '/^$/d' -e '/:$/d' \ | sed -e 's/$/ :/' >> "$depfile" rm -f "$tmpdepfile" ;; dashXmstdout) # This case only exists to satisfy depend.m4. It is never actually # run, as this mode is specially recognized in the preamble. exit 1 ;; makedepend) "$@" || exit $? # Remove any Libtool call if test "$libtool" = yes; then while test "X$1" != 'X--mode=compile'; do shift done shift fi # X makedepend shift cleared=no eat=no for arg do case $cleared in no) set ""; shift cleared=yes ;; esac if test $eat = yes; then eat=no continue fi case "$arg" in -D*|-I*) set fnord "$@" "$arg"; shift ;; # Strip any option that makedepend may not understand. Remove # the object too, otherwise makedepend will parse it as a source file. -arch) eat=yes ;; -*|$object) ;; *) set fnord "$@" "$arg"; shift ;; esac done obj_suffix=`echo "$object" | sed 's/^.*\././'` touch "$tmpdepfile" ${MAKEDEPEND-makedepend} -o"$obj_suffix" -f"$tmpdepfile" "$@" rm -f "$depfile" # makedepend may prepend the VPATH from the source file name to the object. # No need to regex-escape $object, excess matching of '.' is harmless. sed "s|^.*\($object *:\)|\1|" "$tmpdepfile" > "$depfile" # Some versions of the HPUX 10.20 sed can't process the last invocation # correctly. Breaking it into two sed invocations is a workaround. sed '1,2d' "$tmpdepfile" \ | tr ' ' "$nl" \ | sed -e 's/^\\$//' -e '/^$/d' -e '/:$/d' \ | sed -e 's/$/ :/' >> "$depfile" rm -f "$tmpdepfile" "$tmpdepfile".bak ;; cpp) # Important note: in order to support this mode, a compiler *must* # always write the preprocessed file to stdout. "$@" || exit $? # Remove the call to Libtool. if test "$libtool" = yes; then while test "X$1" != 'X--mode=compile'; do shift done shift fi # Remove '-o $object'. IFS=" " for arg do case $arg in -o) shift ;; $object) shift ;; *) set fnord "$@" "$arg" shift # fnord shift # $arg ;; esac done "$@" -E \ | sed -n -e '/^# [0-9][0-9]* "\([^"]*\)".*/ s:: \1 \\:p' \ -e '/^#line [0-9][0-9]* "\([^"]*\)".*/ s:: \1 \\:p' \ | sed '$ s: \\$::' > "$tmpdepfile" rm -f "$depfile" echo "$object : \\" > "$depfile" cat < "$tmpdepfile" >> "$depfile" sed < "$tmpdepfile" '/^$/d;s/^ //;s/ \\$//;s/$/ :/' >> "$depfile" rm -f "$tmpdepfile" ;; msvisualcpp) # Important note: in order to support this mode, a compiler *must* # always write the preprocessed file to stdout. "$@" || exit $? # Remove the call to Libtool. if test "$libtool" = yes; then while test "X$1" != 'X--mode=compile'; do shift done shift fi IFS=" " for arg do case "$arg" in -o) shift ;; $object) shift ;; "-Gm"|"/Gm"|"-Gi"|"/Gi"|"-ZI"|"/ZI") set fnord "$@" shift shift ;; *) set fnord "$@" "$arg" shift shift ;; esac done "$@" -E 2>/dev/null | sed -n '/^#line [0-9][0-9]* "\([^"]*\)"/ s::\1:p' | $cygpath_u | sort -u > "$tmpdepfile" rm -f "$depfile" echo "$object : \\" > "$depfile" sed < "$tmpdepfile" -n -e 's% %\\ %g' -e '/^\(.*\)$/ s::'"$tab"'\1 \\:p' >> "$depfile" echo "$tab" >> "$depfile" sed < "$tmpdepfile" -n -e 's% %\\ %g' -e '/^\(.*\)$/ s::\1\::p' >> "$depfile" rm -f "$tmpdepfile" ;; msvcmsys) # This case exists only to let depend.m4 do its work. It works by # looking at the text of this script. This case will never be run, # since it is checked for above. exit 1 ;; none) exec "$@" ;; *) echo "Unknown depmode $depmode" 1>&2 exit 1 ;; esac exit 0 # Local Variables: # mode: shell-script # sh-indentation: 2 # eval: (add-hook 'write-file-hooks 'time-stamp) # time-stamp-start: "scriptversion=" # time-stamp-format: "%:y-%02m-%02d.%02H" # time-stamp-time-zone: "UTC" # time-stamp-end: "; # UTC" # End: libjpeg-turbo-1.4.2/jdmrgext.c0000644000076500007650000001361012600050400013172 00000000000000/* * jdmrgext.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1994-1996, Thomas G. Lane. * libjpeg-turbo Modifications: * Copyright (C) 2011, D. R. Commander. * For conditions of distribution and use, see the accompanying README file. * * This file contains code for merged upsampling/color conversion. */ /* This file is included by jdmerge.c */ /* * Upsample and color convert for the case of 2:1 horizontal and 1:1 vertical. */ INLINE LOCAL(void) h2v1_merged_upsample_internal (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf) { my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; register int y, cred, cgreen, cblue; int cb, cr; register JSAMPROW outptr; JSAMPROW inptr0, inptr1, inptr2; JDIMENSION col; /* copy these pointers into registers if possible */ register JSAMPLE * range_limit = cinfo->sample_range_limit; int * Crrtab = upsample->Cr_r_tab; int * Cbbtab = upsample->Cb_b_tab; INT32 * Crgtab = upsample->Cr_g_tab; INT32 * Cbgtab = upsample->Cb_g_tab; SHIFT_TEMPS inptr0 = input_buf[0][in_row_group_ctr]; inptr1 = input_buf[1][in_row_group_ctr]; inptr2 = input_buf[2][in_row_group_ctr]; outptr = output_buf[0]; /* Loop for each pair of output pixels */ for (col = cinfo->output_width >> 1; col > 0; col--) { /* Do the chroma part of the calculation */ cb = GETJSAMPLE(*inptr1++); cr = GETJSAMPLE(*inptr2++); cred = Crrtab[cr]; cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS); cblue = Cbbtab[cb]; /* Fetch 2 Y values and emit 2 pixels */ y = GETJSAMPLE(*inptr0++); outptr[RGB_RED] = range_limit[y + cred]; outptr[RGB_GREEN] = range_limit[y + cgreen]; outptr[RGB_BLUE] = range_limit[y + cblue]; #ifdef RGB_ALPHA outptr[RGB_ALPHA] = 0xFF; #endif outptr += RGB_PIXELSIZE; y = GETJSAMPLE(*inptr0++); outptr[RGB_RED] = range_limit[y + cred]; outptr[RGB_GREEN] = range_limit[y + cgreen]; outptr[RGB_BLUE] = range_limit[y + cblue]; #ifdef RGB_ALPHA outptr[RGB_ALPHA] = 0xFF; #endif outptr += RGB_PIXELSIZE; } /* If image width is odd, do the last output column separately */ if (cinfo->output_width & 1) { cb = GETJSAMPLE(*inptr1); cr = GETJSAMPLE(*inptr2); cred = Crrtab[cr]; cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS); cblue = Cbbtab[cb]; y = GETJSAMPLE(*inptr0); outptr[RGB_RED] = range_limit[y + cred]; outptr[RGB_GREEN] = range_limit[y + cgreen]; outptr[RGB_BLUE] = range_limit[y + cblue]; #ifdef RGB_ALPHA outptr[RGB_ALPHA] = 0xFF; #endif } } /* * Upsample and color convert for the case of 2:1 horizontal and 2:1 vertical. */ INLINE LOCAL(void) h2v2_merged_upsample_internal (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf) { my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; register int y, cred, cgreen, cblue; int cb, cr; register JSAMPROW outptr0, outptr1; JSAMPROW inptr00, inptr01, inptr1, inptr2; JDIMENSION col; /* copy these pointers into registers if possible */ register JSAMPLE * range_limit = cinfo->sample_range_limit; int * Crrtab = upsample->Cr_r_tab; int * Cbbtab = upsample->Cb_b_tab; INT32 * Crgtab = upsample->Cr_g_tab; INT32 * Cbgtab = upsample->Cb_g_tab; SHIFT_TEMPS inptr00 = input_buf[0][in_row_group_ctr*2]; inptr01 = input_buf[0][in_row_group_ctr*2 + 1]; inptr1 = input_buf[1][in_row_group_ctr]; inptr2 = input_buf[2][in_row_group_ctr]; outptr0 = output_buf[0]; outptr1 = output_buf[1]; /* Loop for each group of output pixels */ for (col = cinfo->output_width >> 1; col > 0; col--) { /* Do the chroma part of the calculation */ cb = GETJSAMPLE(*inptr1++); cr = GETJSAMPLE(*inptr2++); cred = Crrtab[cr]; cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS); cblue = Cbbtab[cb]; /* Fetch 4 Y values and emit 4 pixels */ y = GETJSAMPLE(*inptr00++); outptr0[RGB_RED] = range_limit[y + cred]; outptr0[RGB_GREEN] = range_limit[y + cgreen]; outptr0[RGB_BLUE] = range_limit[y + cblue]; #ifdef RGB_ALPHA outptr0[RGB_ALPHA] = 0xFF; #endif outptr0 += RGB_PIXELSIZE; y = GETJSAMPLE(*inptr00++); outptr0[RGB_RED] = range_limit[y + cred]; outptr0[RGB_GREEN] = range_limit[y + cgreen]; outptr0[RGB_BLUE] = range_limit[y + cblue]; #ifdef RGB_ALPHA outptr0[RGB_ALPHA] = 0xFF; #endif outptr0 += RGB_PIXELSIZE; y = GETJSAMPLE(*inptr01++); outptr1[RGB_RED] = range_limit[y + cred]; outptr1[RGB_GREEN] = range_limit[y + cgreen]; outptr1[RGB_BLUE] = range_limit[y + cblue]; #ifdef RGB_ALPHA outptr1[RGB_ALPHA] = 0xFF; #endif outptr1 += RGB_PIXELSIZE; y = GETJSAMPLE(*inptr01++); outptr1[RGB_RED] = range_limit[y + cred]; outptr1[RGB_GREEN] = range_limit[y + cgreen]; outptr1[RGB_BLUE] = range_limit[y + cblue]; #ifdef RGB_ALPHA outptr1[RGB_ALPHA] = 0xFF; #endif outptr1 += RGB_PIXELSIZE; } /* If image width is odd, do the last output column separately */ if (cinfo->output_width & 1) { cb = GETJSAMPLE(*inptr1); cr = GETJSAMPLE(*inptr2); cred = Crrtab[cr]; cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS); cblue = Cbbtab[cb]; y = GETJSAMPLE(*inptr00); outptr0[RGB_RED] = range_limit[y + cred]; outptr0[RGB_GREEN] = range_limit[y + cgreen]; outptr0[RGB_BLUE] = range_limit[y + cblue]; #ifdef RGB_ALPHA outptr0[RGB_ALPHA] = 0xFF; #endif y = GETJSAMPLE(*inptr01); outptr1[RGB_RED] = range_limit[y + cred]; outptr1[RGB_GREEN] = range_limit[y + cgreen]; outptr1[RGB_BLUE] = range_limit[y + cblue]; #ifdef RGB_ALPHA outptr1[RGB_ALPHA] = 0xFF; #endif } } libjpeg-turbo-1.4.2/turbojpeg-jni.c0000644000076500007650000012244412600050400014133 00000000000000/* * Copyright (C)2011-2014 D. R. Commander. All Rights Reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * - Neither the name of the libjpeg-turbo Project nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS", * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include #include #include "turbojpeg.h" #ifdef WIN32 #include "tjutil.h" #endif #include #include "java/org_libjpegturbo_turbojpeg_TJCompressor.h" #include "java/org_libjpegturbo_turbojpeg_TJDecompressor.h" #include "java/org_libjpegturbo_turbojpeg_TJ.h" #define PAD(v, p) ((v+(p)-1)&(~((p)-1))) #define _throw(msg) { \ jclass _exccls=(*env)->FindClass(env, "java/lang/Exception"); \ if(!_exccls) goto bailout; \ (*env)->ThrowNew(env, _exccls, msg); \ goto bailout; \ } #define bailif0(f) {if(!(f)) { \ char temps[80]; \ snprintf(temps, 80, "Unexpected NULL condition in line %d", __LINE__); \ _throw(temps); \ }} #define gethandle() \ jclass _cls=(*env)->GetObjectClass(env, obj); \ jfieldID _fid; \ if(!_cls) goto bailout; \ bailif0(_fid=(*env)->GetFieldID(env, _cls, "handle", "J")); \ handle=(tjhandle)(size_t)(*env)->GetLongField(env, obj, _fid); \ #ifdef _WIN32 #define setenv(envvar, value, dummy) _putenv_s(envvar, value) #endif #define prop2env(property, envvar) \ { \ if((jName=(*env)->NewStringUTF(env, property))!=NULL \ && (jValue=(*env)->CallStaticObjectMethod(env, cls, mid, jName))!=NULL) \ { \ if((value=(*env)->GetStringUTFChars(env, jValue, 0))!=NULL) \ { \ setenv(envvar, value, 1); \ (*env)->ReleaseStringUTFChars(env, jValue, value); \ } \ } \ } int ProcessSystemProperties(JNIEnv *env) { jclass cls; jmethodID mid; jstring jName, jValue; const char *value; bailif0(cls=(*env)->FindClass(env, "java/lang/System")); bailif0(mid=(*env)->GetStaticMethodID(env, cls, "getProperty", "(Ljava/lang/String;)Ljava/lang/String;")); prop2env("turbojpeg.optimize", "TJ_OPTIMIZE"); prop2env("turbojpeg.arithmetic", "TJ_ARITHMETIC"); prop2env("turbojpeg.restart", "TJ_RESTART"); prop2env("turbojpeg.progressive", "TJ_PROGRESSIVE"); return 0; bailout: return -1; } /* TurboJPEG 1.2.x: TJ::bufSize() */ JNIEXPORT jint JNICALL Java_org_libjpegturbo_turbojpeg_TJ_bufSize (JNIEnv *env, jclass cls, jint width, jint height, jint jpegSubsamp) { jint retval=(jint)tjBufSize(width, height, jpegSubsamp); if(retval==-1) _throw(tjGetErrorStr()); bailout: return retval; } /* TurboJPEG 1.4.x: TJ::bufSizeYUV() */ JNIEXPORT jint JNICALL Java_org_libjpegturbo_turbojpeg_TJ_bufSizeYUV__IIII (JNIEnv *env, jclass cls, jint width, jint pad, jint height, jint subsamp) { jint retval=(jint)tjBufSizeYUV2(width, pad, height, subsamp); if(retval==-1) _throw(tjGetErrorStr()); bailout: return retval; } /* TurboJPEG 1.2.x: TJ::bufSizeYUV() */ JNIEXPORT jint JNICALL Java_org_libjpegturbo_turbojpeg_TJ_bufSizeYUV__III (JNIEnv *env, jclass cls, jint width, jint height, jint subsamp) { return Java_org_libjpegturbo_turbojpeg_TJ_bufSizeYUV__IIII(env, cls, width, 4, height, subsamp); } /* TurboJPEG 1.4.x: TJ::planeSizeYUV() */ JNIEXPORT jint JNICALL Java_org_libjpegturbo_turbojpeg_TJ_planeSizeYUV__IIIII (JNIEnv *env, jclass cls, jint componentID, jint width, jint stride, jint height, jint subsamp) { jint retval=(jint)tjPlaneSizeYUV(componentID, width, stride, height, subsamp); if(retval==-1) _throw(tjGetErrorStr()); bailout: return retval; } /* TurboJPEG 1.4.x: TJ::planeWidth() */ JNIEXPORT jint JNICALL Java_org_libjpegturbo_turbojpeg_TJ_planeWidth__III (JNIEnv *env, jclass cls, jint componentID, jint width, jint subsamp) { jint retval=(jint)tjPlaneWidth(componentID, width, subsamp); if(retval==-1) _throw(tjGetErrorStr()); bailout: return retval; } /* TurboJPEG 1.4.x: TJ::planeHeight() */ JNIEXPORT jint JNICALL Java_org_libjpegturbo_turbojpeg_TJ_planeHeight__III (JNIEnv *env, jclass cls, jint componentID, jint height, jint subsamp) { jint retval=(jint)tjPlaneHeight(componentID, height, subsamp); if(retval==-1) _throw(tjGetErrorStr()); bailout: return retval; } /* TurboJPEG 1.2.x: TJCompressor::init() */ JNIEXPORT void JNICALL Java_org_libjpegturbo_turbojpeg_TJCompressor_init (JNIEnv *env, jobject obj) { jclass cls; jfieldID fid; tjhandle handle; if((handle=tjInitCompress())==NULL) _throw(tjGetErrorStr()); bailif0(cls=(*env)->GetObjectClass(env, obj)); bailif0(fid=(*env)->GetFieldID(env, cls, "handle", "J")); (*env)->SetLongField(env, obj, fid, (size_t)handle); bailout: return; } static jint TJCompressor_compress (JNIEnv *env, jobject obj, jarray src, jint srcElementSize, jint x, jint y, jint width, jint pitch, jint height, jint pf, jbyteArray dst, jint jpegSubsamp, jint jpegQual, jint flags) { tjhandle handle=0; unsigned long jpegSize=0; jsize arraySize=0, actualPitch; unsigned char *srcBuf=NULL, *jpegBuf=NULL; gethandle(); if(pf<0 || pf>=org_libjpegturbo_turbojpeg_TJ_NUMPF || width<1 || height<1 || pitch<0) _throw("Invalid argument in compress()"); if(org_libjpegturbo_turbojpeg_TJ_NUMPF!=TJ_NUMPF) _throw("Mismatch between Java and C API"); actualPitch=(pitch==0)? width*tjPixelSize[pf]:pitch; arraySize=(y+height-1)*actualPitch + (x+width)*tjPixelSize[pf]; if((*env)->GetArrayLength(env, src)*srcElementSizeGetArrayLength(env, dst)<(jsize)jpegSize) _throw("Destination buffer is not large enough"); bailif0(srcBuf=(*env)->GetPrimitiveArrayCritical(env, src, 0)); bailif0(jpegBuf=(*env)->GetPrimitiveArrayCritical(env, dst, 0)); if(ProcessSystemProperties(env)<0) goto bailout; if(tjCompress2(handle, &srcBuf[y*actualPitch + x*tjPixelSize[pf]], width, pitch, height, pf, &jpegBuf, &jpegSize, jpegSubsamp, jpegQual, flags|TJFLAG_NOREALLOC)==-1) _throw(tjGetErrorStr()); bailout: if(jpegBuf) (*env)->ReleasePrimitiveArrayCritical(env, dst, jpegBuf, 0); if(srcBuf) (*env)->ReleasePrimitiveArrayCritical(env, src, srcBuf, 0); return (jint)jpegSize; } /* TurboJPEG 1.3.x: TJCompressor::compress() byte source */ JNIEXPORT jint JNICALL Java_org_libjpegturbo_turbojpeg_TJCompressor_compress___3BIIIIII_3BIII (JNIEnv *env, jobject obj, jbyteArray src, jint x, jint y, jint width, jint pitch, jint height, jint pf, jbyteArray dst, jint jpegSubsamp, jint jpegQual, jint flags) { return TJCompressor_compress(env, obj, src, 1, x, y, width, pitch, height, pf, dst, jpegSubsamp, jpegQual, flags); } /* TurboJPEG 1.2.x: TJCompressor::compress() byte source */ JNIEXPORT jint JNICALL Java_org_libjpegturbo_turbojpeg_TJCompressor_compress___3BIIII_3BIII (JNIEnv *env, jobject obj, jbyteArray src, jint width, jint pitch, jint height, jint pf, jbyteArray dst, jint jpegSubsamp, jint jpegQual, jint flags) { return TJCompressor_compress(env, obj, src, 1, 0, 0, width, pitch, height, pf, dst, jpegSubsamp, jpegQual, flags); } /* TurboJPEG 1.3.x: TJCompressor::compress() int source */ JNIEXPORT jint JNICALL Java_org_libjpegturbo_turbojpeg_TJCompressor_compress___3IIIIIII_3BIII (JNIEnv *env, jobject obj, jintArray src, jint x, jint y, jint width, jint stride, jint height, jint pf, jbyteArray dst, jint jpegSubsamp, jint jpegQual, jint flags) { if(pf<0 || pf>=org_libjpegturbo_turbojpeg_TJ_NUMPF) _throw("Invalid argument in compress()"); if(tjPixelSize[pf]!=sizeof(jint)) _throw("Pixel format must be 32-bit when compressing from an integer buffer."); return TJCompressor_compress(env, obj, src, sizeof(jint), x, y, width, stride*sizeof(jint), height, pf, dst, jpegSubsamp, jpegQual, flags); bailout: return 0; } /* TurboJPEG 1.2.x: TJCompressor::compress() int source */ JNIEXPORT jint JNICALL Java_org_libjpegturbo_turbojpeg_TJCompressor_compress___3IIIII_3BIII (JNIEnv *env, jobject obj, jintArray src, jint width, jint stride, jint height, jint pf, jbyteArray dst, jint jpegSubsamp, jint jpegQual, jint flags) { if(pf<0 || pf>=org_libjpegturbo_turbojpeg_TJ_NUMPF) _throw("Invalid argument in compress()"); if(tjPixelSize[pf]!=sizeof(jint)) _throw("Pixel format must be 32-bit when compressing from an integer buffer."); return TJCompressor_compress(env, obj, src, sizeof(jint), 0, 0, width, stride*sizeof(jint), height, pf, dst, jpegSubsamp, jpegQual, flags); bailout: return 0; } /* TurboJPEG 1.4.x: TJCompressor::compressFromYUV() */ JNIEXPORT jint JNICALL Java_org_libjpegturbo_turbojpeg_TJCompressor_compressFromYUV___3_3B_3II_3III_3BII (JNIEnv *env, jobject obj, jobjectArray srcobjs, jintArray jSrcOffsets, jint width, jintArray jSrcStrides, jint height, jint subsamp, jbyteArray dst, jint jpegQual, jint flags) { tjhandle handle=0; unsigned long jpegSize=0; jbyteArray jSrcPlanes[3]={NULL, NULL, NULL}; unsigned char *srcPlanes[3], *jpegBuf=NULL; int *srcOffsets=NULL, *srcStrides=NULL; int nc=(subsamp==org_libjpegturbo_turbojpeg_TJ_SAMP_GRAY? 1:3), i; gethandle(); if(subsamp<0 || subsamp>=org_libjpegturbo_turbojpeg_TJ_NUMSAMP) _throw("Invalid argument in compressFromYUV()"); if(org_libjpegturbo_turbojpeg_TJ_NUMSAMP!=TJ_NUMSAMP) _throw("Mismatch between Java and C API"); if((*env)->GetArrayLength(env, srcobjs)GetArrayLength(env, jSrcOffsets)GetArrayLength(env, jSrcStrides)GetArrayLength(env, dst)<(jsize)jpegSize) _throw("Destination buffer is not large enough"); bailif0(srcOffsets=(*env)->GetPrimitiveArrayCritical(env, jSrcOffsets, 0)); bailif0(srcStrides=(*env)->GetPrimitiveArrayCritical(env, jSrcStrides, 0)); for(i=0; iGetObjectArrayElement(env, srcobjs, i)); if((*env)->GetArrayLength(env, jSrcPlanes[i])GetPrimitiveArrayCritical(env, jSrcPlanes[i], 0)); srcPlanes[i]=&srcPlanes[i][srcOffsets[i]]; } bailif0(jpegBuf=(*env)->GetPrimitiveArrayCritical(env, dst, 0)); if(ProcessSystemProperties(env)<0) goto bailout; if(tjCompressFromYUVPlanes(handle, srcPlanes, width, srcStrides, height, subsamp, &jpegBuf, &jpegSize, jpegQual, flags|TJFLAG_NOREALLOC)==-1) _throw(tjGetErrorStr()); bailout: if(jpegBuf) (*env)->ReleasePrimitiveArrayCritical(env, dst, jpegBuf, 0); for(i=0; iReleasePrimitiveArrayCritical(env, jSrcPlanes[i], srcPlanes[i], 0); } if(srcStrides) (*env)->ReleasePrimitiveArrayCritical(env, jSrcStrides, srcStrides, 0); if(srcOffsets) (*env)->ReleasePrimitiveArrayCritical(env, jSrcOffsets, srcOffsets, 0); return (jint)jpegSize; } static void TJCompressor_encodeYUV (JNIEnv *env, jobject obj, jarray src, jint srcElementSize, jint x, jint y, jint width, jint pitch, jint height, jint pf, jobjectArray dstobjs, jintArray jDstOffsets, jintArray jDstStrides, jint subsamp, jint flags) { tjhandle handle=0; jsize arraySize=0, actualPitch; jbyteArray jDstPlanes[3]={NULL, NULL, NULL}; unsigned char *srcBuf=NULL, *dstPlanes[3]; int *dstOffsets=NULL, *dstStrides=NULL; int nc=(subsamp==org_libjpegturbo_turbojpeg_TJ_SAMP_GRAY? 1:3), i; gethandle(); if(pf<0 || pf>=org_libjpegturbo_turbojpeg_TJ_NUMPF || width<1 || height<1 || pitch<0 || subsamp<0 || subsamp>=org_libjpegturbo_turbojpeg_TJ_NUMSAMP) _throw("Invalid argument in encodeYUV()"); if(org_libjpegturbo_turbojpeg_TJ_NUMPF!=TJ_NUMPF || org_libjpegturbo_turbojpeg_TJ_NUMSAMP!=TJ_NUMSAMP) _throw("Mismatch between Java and C API"); if((*env)->GetArrayLength(env, dstobjs)GetArrayLength(env, jDstOffsets)GetArrayLength(env, jDstStrides)GetArrayLength(env, src)*srcElementSizeGetPrimitiveArrayCritical(env, jDstOffsets, 0)); bailif0(dstStrides=(*env)->GetPrimitiveArrayCritical(env, jDstStrides, 0)); for(i=0; iGetObjectArrayElement(env, dstobjs, i)); if((*env)->GetArrayLength(env, jDstPlanes[i])GetPrimitiveArrayCritical(env, jDstPlanes[i], 0)); dstPlanes[i]=&dstPlanes[i][dstOffsets[i]]; } bailif0(srcBuf=(*env)->GetPrimitiveArrayCritical(env, src, 0)); if(tjEncodeYUVPlanes(handle, &srcBuf[y*actualPitch + x*tjPixelSize[pf]], width, pitch, height, pf, dstPlanes, dstStrides, subsamp, flags)==-1) _throw(tjGetErrorStr()); bailout: if(srcBuf) (*env)->ReleasePrimitiveArrayCritical(env, src, srcBuf, 0); for(i=0; iReleasePrimitiveArrayCritical(env, jDstPlanes[i], dstPlanes[i], 0); } if(dstStrides) (*env)->ReleasePrimitiveArrayCritical(env, jDstStrides, dstStrides, 0); if(dstOffsets) (*env)->ReleasePrimitiveArrayCritical(env, jDstOffsets, dstOffsets, 0); return; } /* TurboJPEG 1.4.x: TJCompressor::encodeYUV() byte source */ JNIEXPORT void JNICALL Java_org_libjpegturbo_turbojpeg_TJCompressor_encodeYUV___3BIIIIII_3_3B_3I_3III (JNIEnv *env, jobject obj, jbyteArray src, jint x, jint y, jint width, jint pitch, jint height, jint pf, jobjectArray dstobjs, jintArray jDstOffsets, jintArray jDstStrides, jint subsamp, jint flags) { TJCompressor_encodeYUV(env, obj, src, 1, x, y, width, pitch, height, pf, dstobjs, jDstOffsets, jDstStrides, subsamp, flags); } /* TurboJPEG 1.4.x: TJCompressor::encodeYUV() int source */ JNIEXPORT void JNICALL Java_org_libjpegturbo_turbojpeg_TJCompressor_encodeYUV___3IIIIIII_3_3B_3I_3III (JNIEnv *env, jobject obj, jintArray src, jint x, jint y, jint width, jint stride, jint height, jint pf, jobjectArray dstobjs, jintArray jDstOffsets, jintArray jDstStrides, jint subsamp, jint flags) { if(pf<0 || pf>=org_libjpegturbo_turbojpeg_TJ_NUMPF) _throw("Invalid argument in encodeYUV()"); if(tjPixelSize[pf]!=sizeof(jint)) _throw("Pixel format must be 32-bit when encoding from an integer buffer."); TJCompressor_encodeYUV(env, obj, src, sizeof(jint), x, y, width, stride*sizeof(jint), height, pf, dstobjs, jDstOffsets, jDstStrides, subsamp, flags); bailout: return; } JNIEXPORT void JNICALL TJCompressor_encodeYUV_12 (JNIEnv *env, jobject obj, jarray src, jint srcElementSize, jint width, jint pitch, jint height, jint pf, jbyteArray dst, jint subsamp, jint flags) { tjhandle handle=0; jsize arraySize=0; unsigned char *srcBuf=NULL, *dstBuf=NULL; gethandle(); if(pf<0 || pf>=org_libjpegturbo_turbojpeg_TJ_NUMPF || width<1 || height<1 || pitch<0) _throw("Invalid argument in encodeYUV()"); if(org_libjpegturbo_turbojpeg_TJ_NUMPF!=TJ_NUMPF) _throw("Mismatch between Java and C API"); arraySize=(pitch==0)? width*tjPixelSize[pf]*height:pitch*height; if((*env)->GetArrayLength(env, src)*srcElementSizeGetArrayLength(env, dst) <(jsize)tjBufSizeYUV(width, height, subsamp)) _throw("Destination buffer is not large enough"); bailif0(srcBuf=(*env)->GetPrimitiveArrayCritical(env, src, 0)); bailif0(dstBuf=(*env)->GetPrimitiveArrayCritical(env, dst, 0)); if(tjEncodeYUV2(handle, srcBuf, width, pitch, height, pf, dstBuf, subsamp, flags)==-1) _throw(tjGetErrorStr()); bailout: if(dstBuf) (*env)->ReleasePrimitiveArrayCritical(env, dst, dstBuf, 0); if(srcBuf) (*env)->ReleasePrimitiveArrayCritical(env, src, srcBuf, 0); return; } /* TurboJPEG 1.2.x: TJCompressor::encodeYUV() byte source */ JNIEXPORT void JNICALL Java_org_libjpegturbo_turbojpeg_TJCompressor_encodeYUV___3BIIII_3BII (JNIEnv *env, jobject obj, jbyteArray src, jint width, jint pitch, jint height, jint pf, jbyteArray dst, jint subsamp, jint flags) { TJCompressor_encodeYUV_12(env, obj, src, 1, width, pitch, height, pf, dst, subsamp, flags); } /* TurboJPEG 1.2.x: TJCompressor::encodeYUV() int source */ JNIEXPORT void JNICALL Java_org_libjpegturbo_turbojpeg_TJCompressor_encodeYUV___3IIIII_3BII (JNIEnv *env, jobject obj, jintArray src, jint width, jint stride, jint height, jint pf, jbyteArray dst, jint subsamp, jint flags) { if(pf<0 || pf>=org_libjpegturbo_turbojpeg_TJ_NUMPF) _throw("Invalid argument in encodeYUV()"); if(tjPixelSize[pf]!=sizeof(jint)) _throw("Pixel format must be 32-bit when encoding from an integer buffer."); TJCompressor_encodeYUV_12(env, obj, src, sizeof(jint), width, stride*sizeof(jint), height, pf, dst, subsamp, flags); bailout: return; } /* TurboJPEG 1.2.x: TJCompressor::destroy() */ JNIEXPORT void JNICALL Java_org_libjpegturbo_turbojpeg_TJCompressor_destroy (JNIEnv *env, jobject obj) { tjhandle handle=0; gethandle(); if(tjDestroy(handle)==-1) _throw(tjGetErrorStr()); (*env)->SetLongField(env, obj, _fid, 0); bailout: return; } /* TurboJPEG 1.2.x: TJDecompressor::init() */ JNIEXPORT void JNICALL Java_org_libjpegturbo_turbojpeg_TJDecompressor_init (JNIEnv *env, jobject obj) { jclass cls; jfieldID fid; tjhandle handle; if((handle=tjInitDecompress())==NULL) _throw(tjGetErrorStr()); bailif0(cls=(*env)->GetObjectClass(env, obj)); bailif0(fid=(*env)->GetFieldID(env, cls, "handle", "J")); (*env)->SetLongField(env, obj, fid, (size_t)handle); bailout: return; } /* TurboJPEG 1.2.x: TJDecompressor::getScalingFactors() */ JNIEXPORT jobjectArray JNICALL Java_org_libjpegturbo_turbojpeg_TJ_getScalingFactors (JNIEnv *env, jclass cls) { jclass sfcls=NULL; jfieldID fid=0; tjscalingfactor *sf=NULL; int n=0, i; jobject sfobj=NULL; jobjectArray sfjava=NULL; if((sf=tjGetScalingFactors(&n))==NULL || n==0) _throw(tjGetErrorStr()); bailif0(sfcls=(*env)->FindClass(env, "org/libjpegturbo/turbojpeg/TJScalingFactor")); bailif0(sfjava=(jobjectArray)(*env)->NewObjectArray(env, n, sfcls, 0)); for(i=0; iAllocObject(env, sfcls)); bailif0(fid=(*env)->GetFieldID(env, sfcls, "num", "I")); (*env)->SetIntField(env, sfobj, fid, sf[i].num); bailif0(fid=(*env)->GetFieldID(env, sfcls, "denom", "I")); (*env)->SetIntField(env, sfobj, fid, sf[i].denom); (*env)->SetObjectArrayElement(env, sfjava, i, sfobj); } bailout: return sfjava; } /* TurboJPEG 1.2.x: TJDecompressor::decompressHeader() */ JNIEXPORT void JNICALL Java_org_libjpegturbo_turbojpeg_TJDecompressor_decompressHeader (JNIEnv *env, jobject obj, jbyteArray src, jint jpegSize) { tjhandle handle=0; unsigned char *jpegBuf=NULL; int width=0, height=0, jpegSubsamp=-1, jpegColorspace=-1; gethandle(); if((*env)->GetArrayLength(env, src)GetPrimitiveArrayCritical(env, src, 0)); if(tjDecompressHeader3(handle, jpegBuf, (unsigned long)jpegSize, &width, &height, &jpegSubsamp, &jpegColorspace)==-1) _throw(tjGetErrorStr()); (*env)->ReleasePrimitiveArrayCritical(env, src, jpegBuf, 0); jpegBuf=NULL; bailif0(_fid=(*env)->GetFieldID(env, _cls, "jpegSubsamp", "I")); (*env)->SetIntField(env, obj, _fid, jpegSubsamp); if((_fid=(*env)->GetFieldID(env, _cls, "jpegColorspace", "I"))==0) (*env)->ExceptionClear(env); else (*env)->SetIntField(env, obj, _fid, jpegColorspace); bailif0(_fid=(*env)->GetFieldID(env, _cls, "jpegWidth", "I")); (*env)->SetIntField(env, obj, _fid, width); bailif0(_fid=(*env)->GetFieldID(env, _cls, "jpegHeight", "I")); (*env)->SetIntField(env, obj, _fid, height); bailout: if(jpegBuf) (*env)->ReleasePrimitiveArrayCritical(env, src, jpegBuf, 0); return; } static void TJDecompressor_decompress (JNIEnv *env, jobject obj, jbyteArray src, jint jpegSize, jarray dst, jint dstElementSize, jint x, jint y, jint width, jint pitch, jint height, jint pf, jint flags) { tjhandle handle=0; jsize arraySize=0, actualPitch; unsigned char *jpegBuf=NULL, *dstBuf=NULL; gethandle(); if(pf<0 || pf>=org_libjpegturbo_turbojpeg_TJ_NUMPF) _throw("Invalid argument in decompress()"); if(org_libjpegturbo_turbojpeg_TJ_NUMPF!=TJ_NUMPF) _throw("Mismatch between Java and C API"); if((*env)->GetArrayLength(env, src)GetArrayLength(env, dst)*dstElementSizeGetPrimitiveArrayCritical(env, src, 0)); bailif0(dstBuf=(*env)->GetPrimitiveArrayCritical(env, dst, 0)); if(tjDecompress2(handle, jpegBuf, (unsigned long)jpegSize, &dstBuf[y*actualPitch + x*tjPixelSize[pf]], width, pitch, height, pf, flags)==-1) _throw(tjGetErrorStr()); bailout: if(dstBuf) (*env)->ReleasePrimitiveArrayCritical(env, dst, dstBuf, 0); if(jpegBuf) (*env)->ReleasePrimitiveArrayCritical(env, src, jpegBuf, 0); return; } /* TurboJPEG 1.3.x: TJDecompressor::decompress() byte destination */ JNIEXPORT void JNICALL Java_org_libjpegturbo_turbojpeg_TJDecompressor_decompress___3BI_3BIIIIIII (JNIEnv *env, jobject obj, jbyteArray src, jint jpegSize, jbyteArray dst, jint x, jint y, jint width, jint pitch, jint height, jint pf, jint flags) { TJDecompressor_decompress(env, obj, src, jpegSize, dst, 1, x, y, width, pitch, height, pf, flags); } /* TurboJPEG 1.2.x: TJDecompressor::decompress() byte destination */ JNIEXPORT void JNICALL Java_org_libjpegturbo_turbojpeg_TJDecompressor_decompress___3BI_3BIIIII (JNIEnv *env, jobject obj, jbyteArray src, jint jpegSize, jbyteArray dst, jint width, jint pitch, jint height, jint pf, jint flags) { TJDecompressor_decompress(env, obj, src, jpegSize, dst, 1, 0, 0, width, pitch, height, pf, flags); } /* TurboJPEG 1.3.x: TJDecompressor::decompress() int destination */ JNIEXPORT void JNICALL Java_org_libjpegturbo_turbojpeg_TJDecompressor_decompress___3BI_3IIIIIIII (JNIEnv *env, jobject obj, jbyteArray src, jint jpegSize, jintArray dst, jint x, jint y, jint width, jint stride, jint height, jint pf, jint flags) { if(pf<0 || pf>=org_libjpegturbo_turbojpeg_TJ_NUMPF) _throw("Invalid argument in decompress()"); if(tjPixelSize[pf]!=sizeof(jint)) _throw("Pixel format must be 32-bit when decompressing to an integer buffer."); TJDecompressor_decompress(env, obj, src, jpegSize, dst, sizeof(jint), x, y, width, stride*sizeof(jint), height, pf, flags); bailout: return; } /* TurboJPEG 1.2.x: TJDecompressor::decompress() int destination */ JNIEXPORT void JNICALL Java_org_libjpegturbo_turbojpeg_TJDecompressor_decompress___3BI_3IIIIII (JNIEnv *env, jobject obj, jbyteArray src, jint jpegSize, jintArray dst, jint width, jint stride, jint height, jint pf, jint flags) { if(pf<0 || pf>=org_libjpegturbo_turbojpeg_TJ_NUMPF) _throw("Invalid argument in decompress()"); if(tjPixelSize[pf]!=sizeof(jint)) _throw("Pixel format must be 32-bit when decompressing to an integer buffer."); TJDecompressor_decompress(env, obj, src, jpegSize, dst, sizeof(jint), 0, 0, width, stride*sizeof(jint), height, pf, flags); bailout: return; } /* TurboJPEG 1.4.x: TJDecompressor::decompressToYUV() */ JNIEXPORT void JNICALL Java_org_libjpegturbo_turbojpeg_TJDecompressor_decompressToYUV___3BI_3_3B_3II_3III (JNIEnv *env, jobject obj, jbyteArray src, jint jpegSize, jobjectArray dstobjs, jintArray jDstOffsets, jint desiredWidth, jintArray jDstStrides, jint desiredHeight, jint flags) { tjhandle handle=0; jbyteArray jDstPlanes[3]={NULL, NULL, NULL}; unsigned char *jpegBuf=NULL, *dstPlanes[3]; int *dstOffsets=NULL, *dstStrides=NULL; int jpegSubsamp=-1, jpegWidth=0, jpegHeight=0; int nc=0, i, width, height, scaledWidth, scaledHeight, nsf=0; tjscalingfactor *sf; gethandle(); if((*env)->GetArrayLength(env, src)GetFieldID(env, _cls, "jpegSubsamp", "I")); jpegSubsamp=(int)(*env)->GetIntField(env, obj, _fid); bailif0(_fid=(*env)->GetFieldID(env, _cls, "jpegWidth", "I")); jpegWidth=(int)(*env)->GetIntField(env, obj, _fid); bailif0(_fid=(*env)->GetFieldID(env, _cls, "jpegHeight", "I")); jpegHeight=(int)(*env)->GetIntField(env, obj, _fid); nc=(jpegSubsamp==org_libjpegturbo_turbojpeg_TJ_SAMP_GRAY? 1:3); width=desiredWidth; height=desiredHeight; if(width==0) width=jpegWidth; if(height==0) height=jpegHeight; sf=tjGetScalingFactors(&nsf); if(!sf || nsf<1) _throw(tjGetErrorStr()); for(i=0; iGetPrimitiveArrayCritical(env, jDstOffsets, 0)); bailif0(dstStrides=(*env)->GetPrimitiveArrayCritical(env, jDstStrides, 0)); for(i=0; iGetObjectArrayElement(env, dstobjs, i)); if((*env)->GetArrayLength(env, jDstPlanes[i])GetPrimitiveArrayCritical(env, jDstPlanes[i], 0)); dstPlanes[i]=&dstPlanes[i][dstOffsets[i]]; } bailif0(jpegBuf=(*env)->GetPrimitiveArrayCritical(env, src, 0)); if(tjDecompressToYUVPlanes(handle, jpegBuf, (unsigned long)jpegSize, dstPlanes, desiredWidth, dstStrides, desiredHeight, flags)==-1) _throw(tjGetErrorStr()); bailout: if(jpegBuf) (*env)->ReleasePrimitiveArrayCritical(env, src, jpegBuf, 0); for(i=0; iReleasePrimitiveArrayCritical(env, jDstPlanes[i], dstPlanes[i], 0); } if(dstStrides) (*env)->ReleasePrimitiveArrayCritical(env, jDstStrides, dstStrides, 0); if(dstOffsets) (*env)->ReleasePrimitiveArrayCritical(env, jDstOffsets, dstOffsets, 0); return; } /* TurboJPEG 1.2.x: TJDecompressor::decompressToYUV() */ JNIEXPORT void JNICALL Java_org_libjpegturbo_turbojpeg_TJDecompressor_decompressToYUV___3BI_3BI (JNIEnv *env, jobject obj, jbyteArray src, jint jpegSize, jbyteArray dst, jint flags) { tjhandle handle=0; unsigned char *jpegBuf=NULL, *dstBuf=NULL; int jpegSubsamp=-1, jpegWidth=0, jpegHeight=0; gethandle(); if((*env)->GetArrayLength(env, src)GetFieldID(env, _cls, "jpegSubsamp", "I")); jpegSubsamp=(int)(*env)->GetIntField(env, obj, _fid); bailif0(_fid=(*env)->GetFieldID(env, _cls, "jpegWidth", "I")); jpegWidth=(int)(*env)->GetIntField(env, obj, _fid); bailif0(_fid=(*env)->GetFieldID(env, _cls, "jpegHeight", "I")); jpegHeight=(int)(*env)->GetIntField(env, obj, _fid); if((*env)->GetArrayLength(env, dst) <(jsize)tjBufSizeYUV(jpegWidth, jpegHeight, jpegSubsamp)) _throw("Destination buffer is not large enough"); bailif0(jpegBuf=(*env)->GetPrimitiveArrayCritical(env, src, 0)); bailif0(dstBuf=(*env)->GetPrimitiveArrayCritical(env, dst, 0)); if(tjDecompressToYUV(handle, jpegBuf, (unsigned long)jpegSize, dstBuf, flags)==-1) _throw(tjGetErrorStr()); bailout: if(dstBuf) (*env)->ReleasePrimitiveArrayCritical(env, dst, dstBuf, 0); if(jpegBuf) (*env)->ReleasePrimitiveArrayCritical(env, src, jpegBuf, 0); return; } static void TJDecompressor_decodeYUV (JNIEnv *env, jobject obj, jobjectArray srcobjs, jintArray jSrcOffsets, jintArray jSrcStrides, jint subsamp, jarray dst, jint dstElementSize, jint x, jint y, jint width, jint pitch, jint height, jint pf, jint flags) { tjhandle handle=0; jsize arraySize=0, actualPitch; jbyteArray jSrcPlanes[3]={NULL, NULL, NULL}; unsigned char *srcPlanes[3], *dstBuf=NULL; int *srcOffsets=NULL, *srcStrides=NULL; int nc=(subsamp==org_libjpegturbo_turbojpeg_TJ_SAMP_GRAY? 1:3), i; gethandle(); if(pf<0 || pf>=org_libjpegturbo_turbojpeg_TJ_NUMPF || subsamp<0 || subsamp>=org_libjpegturbo_turbojpeg_TJ_NUMSAMP) _throw("Invalid argument in decodeYUV()"); if(org_libjpegturbo_turbojpeg_TJ_NUMPF!=TJ_NUMPF || org_libjpegturbo_turbojpeg_TJ_NUMSAMP!=TJ_NUMSAMP) _throw("Mismatch between Java and C API"); if((*env)->GetArrayLength(env, srcobjs)GetArrayLength(env, jSrcOffsets)GetArrayLength(env, jSrcStrides)GetArrayLength(env, dst)*dstElementSizeGetPrimitiveArrayCritical(env, jSrcOffsets, 0)); bailif0(srcStrides=(*env)->GetPrimitiveArrayCritical(env, jSrcStrides, 0)); for(i=0; iGetObjectArrayElement(env, srcobjs, i)); if((*env)->GetArrayLength(env, jSrcPlanes[i])GetPrimitiveArrayCritical(env, jSrcPlanes[i], 0)); srcPlanes[i]=&srcPlanes[i][srcOffsets[i]]; } bailif0(dstBuf=(*env)->GetPrimitiveArrayCritical(env, dst, 0)); if(tjDecodeYUVPlanes(handle, srcPlanes, srcStrides, subsamp, &dstBuf[y*actualPitch + x*tjPixelSize[pf]], width, pitch, height, pf, flags)==-1) _throw(tjGetErrorStr()); bailout: if(dstBuf) (*env)->ReleasePrimitiveArrayCritical(env, dst, dstBuf, 0); for(i=0; iReleasePrimitiveArrayCritical(env, jSrcPlanes[i], srcPlanes[i], 0); } if(srcStrides) (*env)->ReleasePrimitiveArrayCritical(env, jSrcStrides, srcStrides, 0); if(srcOffsets) (*env)->ReleasePrimitiveArrayCritical(env, jSrcOffsets, srcOffsets, 0); return; } /* TurboJPEG 1.4.x: TJDecompressor::decodeYUV() byte destination */ JNIEXPORT void JNICALL Java_org_libjpegturbo_turbojpeg_TJDecompressor_decodeYUV___3_3B_3I_3II_3BIIIIIII (JNIEnv *env, jobject obj, jobjectArray srcobjs, jintArray jSrcOffsets, jintArray jSrcStrides, jint subsamp, jbyteArray dst, jint x, jint y, jint width, jint pitch, jint height, jint pf, jint flags) { TJDecompressor_decodeYUV(env, obj, srcobjs, jSrcOffsets, jSrcStrides, subsamp, dst, 1, x, y, width, pitch, height, pf, flags); } /* TurboJPEG 1.4.x: TJDecompressor::decodeYUV() int destination */ JNIEXPORT void JNICALL Java_org_libjpegturbo_turbojpeg_TJDecompressor_decodeYUV___3_3B_3I_3II_3IIIIIIII (JNIEnv *env, jobject obj, jobjectArray srcobjs, jintArray jSrcOffsets, jintArray jSrcStrides, jint subsamp, jintArray dst, jint x, jint y, jint width, jint stride, jint height, jint pf, jint flags) { if(pf<0 || pf>=org_libjpegturbo_turbojpeg_TJ_NUMPF) _throw("Invalid argument in decodeYUV()"); if(tjPixelSize[pf]!=sizeof(jint)) _throw("Pixel format must be 32-bit when decoding to an integer buffer."); TJDecompressor_decodeYUV(env, obj, srcobjs, jSrcOffsets, jSrcStrides, subsamp, dst, sizeof(jint), x, y, width, stride*sizeof(jint), height, pf, flags); bailout: return; } /* TurboJPEG 1.2.x: TJTransformer::init() */ JNIEXPORT void JNICALL Java_org_libjpegturbo_turbojpeg_TJTransformer_init (JNIEnv *env, jobject obj) { jclass cls; jfieldID fid; tjhandle handle; if((handle=tjInitTransform())==NULL) _throw(tjGetErrorStr()); bailif0(cls=(*env)->GetObjectClass(env, obj)); bailif0(fid=(*env)->GetFieldID(env, cls, "handle", "J")); (*env)->SetLongField(env, obj, fid, (size_t)handle); bailout: return; } typedef struct _JNICustomFilterParams { JNIEnv *env; jobject tobj; jobject cfobj; } JNICustomFilterParams; static int JNICustomFilter(short *coeffs, tjregion arrayRegion, tjregion planeRegion, int componentIndex, int transformIndex, tjtransform *transform) { JNICustomFilterParams *params=(JNICustomFilterParams *)transform->data; JNIEnv *env=params->env; jobject tobj=params->tobj, cfobj=params->cfobj; jobject arrayRegionObj, planeRegionObj, bufobj, borobj; jclass cls; jmethodID mid; jfieldID fid; bailif0(bufobj=(*env)->NewDirectByteBuffer(env, coeffs, sizeof(short)*arrayRegion.w*arrayRegion.h)); bailif0(cls=(*env)->FindClass(env, "java/nio/ByteOrder")); bailif0(mid=(*env)->GetStaticMethodID(env, cls, "nativeOrder", "()Ljava/nio/ByteOrder;")); bailif0(borobj=(*env)->CallStaticObjectMethod(env, cls, mid)); bailif0(cls=(*env)->GetObjectClass(env, bufobj)); bailif0(mid=(*env)->GetMethodID(env, cls, "order", "(Ljava/nio/ByteOrder;)Ljava/nio/ByteBuffer;")); (*env)->CallObjectMethod(env, bufobj, mid, borobj); bailif0(mid=(*env)->GetMethodID(env, cls, "asShortBuffer", "()Ljava/nio/ShortBuffer;")); bailif0(bufobj=(*env)->CallObjectMethod(env, bufobj, mid)); bailif0(cls=(*env)->FindClass(env, "java/awt/Rectangle")); bailif0(arrayRegionObj=(*env)->AllocObject(env, cls)); bailif0(fid=(*env)->GetFieldID(env, cls, "x", "I")); (*env)->SetIntField(env, arrayRegionObj, fid, arrayRegion.x); bailif0(fid=(*env)->GetFieldID(env, cls, "y", "I")); (*env)->SetIntField(env, arrayRegionObj, fid, arrayRegion.y); bailif0(fid=(*env)->GetFieldID(env, cls, "width", "I")); (*env)->SetIntField(env, arrayRegionObj, fid, arrayRegion.w); bailif0(fid=(*env)->GetFieldID(env, cls, "height", "I")); (*env)->SetIntField(env, arrayRegionObj, fid, arrayRegion.h); bailif0(planeRegionObj=(*env)->AllocObject(env, cls)); bailif0(fid=(*env)->GetFieldID(env, cls, "x", "I")); (*env)->SetIntField(env, planeRegionObj, fid, planeRegion.x); bailif0(fid=(*env)->GetFieldID(env, cls, "y", "I")); (*env)->SetIntField(env, planeRegionObj, fid, planeRegion.y); bailif0(fid=(*env)->GetFieldID(env, cls, "width", "I")); (*env)->SetIntField(env, planeRegionObj, fid, planeRegion.w); bailif0(fid=(*env)->GetFieldID(env, cls, "height", "I")); (*env)->SetIntField(env, planeRegionObj, fid, planeRegion.h); bailif0(cls=(*env)->GetObjectClass(env, cfobj)); bailif0(mid=(*env)->GetMethodID(env, cls, "customFilter", "(Ljava/nio/ShortBuffer;Ljava/awt/Rectangle;Ljava/awt/Rectangle;IILorg/libjpegturbo/turbojpeg/TJTransform;)V")); (*env)->CallVoidMethod(env, cfobj, mid, bufobj, arrayRegionObj, planeRegionObj, componentIndex, transformIndex, tobj); return 0; bailout: return -1; } /* TurboJPEG 1.2.x: TJTransformer::transform() */ JNIEXPORT jintArray JNICALL Java_org_libjpegturbo_turbojpeg_TJTransformer_transform (JNIEnv *env, jobject obj, jbyteArray jsrcBuf, jint jpegSize, jobjectArray dstobjs, jobjectArray tobjs, jint flags) { tjhandle handle=0; int i; unsigned char *jpegBuf=NULL, **dstBufs=NULL; jsize n=0; unsigned long *dstSizes=NULL; tjtransform *t=NULL; jbyteArray *jdstBufs=NULL; int jpegWidth=0, jpegHeight=0, jpegSubsamp; jintArray jdstSizes=0; jint *dstSizesi=NULL; JNICustomFilterParams *params=NULL; gethandle(); if((*env)->GetArrayLength(env, jsrcBuf)GetFieldID(env, _cls, "jpegWidth", "I")); jpegWidth=(int)(*env)->GetIntField(env, obj, _fid); bailif0(_fid=(*env)->GetFieldID(env, _cls, "jpegHeight", "I")); jpegHeight=(int)(*env)->GetIntField(env, obj, _fid); bailif0(_fid=(*env)->GetFieldID(env, _cls, "jpegSubsamp", "I")); jpegSubsamp=(int)(*env)->GetIntField(env, obj, _fid); n=(*env)->GetArrayLength(env, dstobjs); if(n!=(*env)->GetArrayLength(env, tobjs)) _throw("Mismatch between size of transforms array and destination buffers array"); if((dstBufs=(unsigned char **)malloc(sizeof(unsigned char *)*n))==NULL) _throw("Memory allocation failure"); if((jdstBufs=(jbyteArray *)malloc(sizeof(jbyteArray)*n))==NULL) _throw("Memory allocation failure"); if((dstSizes=(unsigned long *)malloc(sizeof(unsigned long)*n))==NULL) _throw("Memory allocation failure"); if((t=(tjtransform *)malloc(sizeof(tjtransform)*n))==NULL) _throw("Memory allocation failure"); if((params=(JNICustomFilterParams *)malloc(sizeof(JNICustomFilterParams)*n)) ==NULL) _throw("Memory allocation failure"); for(i=0; iGetObjectArrayElement(env, tobjs, i)); bailif0(_cls=(*env)->GetObjectClass(env, tobj)); bailif0(_fid=(*env)->GetFieldID(env, _cls, "op", "I")); t[i].op=(*env)->GetIntField(env, tobj, _fid); bailif0(_fid=(*env)->GetFieldID(env, _cls, "options", "I")); t[i].options=(*env)->GetIntField(env, tobj, _fid); bailif0(_fid=(*env)->GetFieldID(env, _cls, "x", "I")); t[i].r.x=(*env)->GetIntField(env, tobj, _fid); bailif0(_fid=(*env)->GetFieldID(env, _cls, "y", "I")); t[i].r.y=(*env)->GetIntField(env, tobj, _fid); bailif0(_fid=(*env)->GetFieldID(env, _cls, "width", "I")); t[i].r.w=(*env)->GetIntField(env, tobj, _fid); bailif0(_fid=(*env)->GetFieldID(env, _cls, "height", "I")); t[i].r.h=(*env)->GetIntField(env, tobj, _fid); bailif0(_fid=(*env)->GetFieldID(env, _cls, "cf", "Lorg/libjpegturbo/turbojpeg/TJCustomFilter;")); cfobj=(*env)->GetObjectField(env, tobj, _fid); if(cfobj) { params[i].env=env; params[i].tobj=tobj; params[i].cfobj=cfobj; t[i].customFilter=JNICustomFilter; t[i].data=(void *)¶ms[i]; } } for(i=0; iGetObjectArrayElement(env, dstobjs, i)); if((unsigned long)(*env)->GetArrayLength(env, jdstBufs[i]) GetPrimitiveArrayCritical(env, jsrcBuf, 0)); for(i=0; iGetPrimitiveArrayCritical(env, jdstBufs[i], 0)); if(tjTransform(handle, jpegBuf, jpegSize, n, dstBufs, dstSizes, t, flags|TJFLAG_NOREALLOC)==-1) _throw(tjGetErrorStr()); for(i=0; iReleasePrimitiveArrayCritical(env, jdstBufs[i], dstBufs[i], 0); dstBufs[i]=NULL; } (*env)->ReleasePrimitiveArrayCritical(env, jsrcBuf, jpegBuf, 0); jpegBuf=NULL; jdstSizes=(*env)->NewIntArray(env, n); bailif0(dstSizesi=(*env)->GetIntArrayElements(env, jdstSizes, 0)); for(i=0; iReleaseIntArrayElements(env, jdstSizes, dstSizesi, 0); if(dstBufs) { for(i=0; iReleasePrimitiveArrayCritical(env, jdstBufs[i], dstBufs[i], 0); } free(dstBufs); } if(jpegBuf) (*env)->ReleasePrimitiveArrayCritical(env, jsrcBuf, jpegBuf, 0); if(jdstBufs) free(jdstBufs); if(dstSizes) free(dstSizes); if(t) free(t); return jdstSizes; } /* TurboJPEG 1.2.x: TJDecompressor::destroy() */ JNIEXPORT void JNICALL Java_org_libjpegturbo_turbojpeg_TJDecompressor_destroy (JNIEnv *env, jobject obj) { Java_org_libjpegturbo_turbojpeg_TJCompressor_destroy(env, obj); } libjpeg-turbo-1.4.2/ar-lib0000755000076500007650000001330212600050414012301 00000000000000#! /bin/sh # Wrapper for Microsoft lib.exe me=ar-lib scriptversion=2012-03-01.08; # UTC # Copyright (C) 2010-2014 Free Software Foundation, Inc. # Written by Peter Rosin . # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2, or (at your option) # any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see . # As a special exception to the GNU General Public License, if you # distribute this file as part of a program that contains a # configuration script generated by Autoconf, you may include it under # the same distribution terms that you use for the rest of that program. # This file is maintained in Automake, please report # bugs to or send patches to # . # func_error message func_error () { echo "$me: $1" 1>&2 exit 1 } file_conv= # func_file_conv build_file # Convert a $build file to $host form and store it in $file # Currently only supports Windows hosts. func_file_conv () { file=$1 case $file in / | /[!/]*) # absolute file, and not a UNC file if test -z "$file_conv"; then # lazily determine how to convert abs files case `uname -s` in MINGW*) file_conv=mingw ;; CYGWIN*) file_conv=cygwin ;; *) file_conv=wine ;; esac fi case $file_conv in mingw) file=`cmd //C echo "$file " | sed -e 's/"\(.*\) " *$/\1/'` ;; cygwin) file=`cygpath -m "$file" || echo "$file"` ;; wine) file=`winepath -w "$file" || echo "$file"` ;; esac ;; esac } # func_at_file at_file operation archive # Iterate over all members in AT_FILE performing OPERATION on ARCHIVE # for each of them. # When interpreting the content of the @FILE, do NOT use func_file_conv, # since the user would need to supply preconverted file names to # binutils ar, at least for MinGW. func_at_file () { operation=$2 archive=$3 at_file_contents=`cat "$1"` eval set x "$at_file_contents" shift for member do $AR -NOLOGO $operation:"$member" "$archive" || exit $? done } case $1 in '') func_error "no command. Try '$0 --help' for more information." ;; -h | --h*) cat <global_state == DSTATE_READY) { /* First call: initialize active modules */ transdecode_master_selection(cinfo); cinfo->global_state = DSTATE_RDCOEFS; } if (cinfo->global_state == DSTATE_RDCOEFS) { /* Absorb whole file into the coef buffer */ for (;;) { int retcode; /* Call progress monitor hook if present */ if (cinfo->progress != NULL) (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo); /* Absorb some more input */ retcode = (*cinfo->inputctl->consume_input) (cinfo); if (retcode == JPEG_SUSPENDED) return NULL; if (retcode == JPEG_REACHED_EOI) break; /* Advance progress counter if appropriate */ if (cinfo->progress != NULL && (retcode == JPEG_ROW_COMPLETED || retcode == JPEG_REACHED_SOS)) { if (++cinfo->progress->pass_counter >= cinfo->progress->pass_limit) { /* startup underestimated number of scans; ratchet up one scan */ cinfo->progress->pass_limit += (long) cinfo->total_iMCU_rows; } } } /* Set state so that jpeg_finish_decompress does the right thing */ cinfo->global_state = DSTATE_STOPPING; } /* At this point we should be in state DSTATE_STOPPING if being used * standalone, or in state DSTATE_BUFIMAGE if being invoked to get access * to the coefficients during a full buffered-image-mode decompression. */ if ((cinfo->global_state == DSTATE_STOPPING || cinfo->global_state == DSTATE_BUFIMAGE) && cinfo->buffered_image) { return cinfo->coef->coef_arrays; } /* Oops, improper usage */ ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); return NULL; /* keep compiler happy */ } /* * Master selection of decompression modules for transcoding. * This substitutes for jdmaster.c's initialization of the full decompressor. */ LOCAL(void) transdecode_master_selection (j_decompress_ptr cinfo) { /* This is effectively a buffered-image operation. */ cinfo->buffered_image = TRUE; #if JPEG_LIB_VERSION >= 80 /* Compute output image dimensions and related values. */ jpeg_core_output_dimensions(cinfo); #endif /* Entropy decoding: either Huffman or arithmetic coding. */ if (cinfo->arith_code) { #ifdef D_ARITH_CODING_SUPPORTED jinit_arith_decoder(cinfo); #else ERREXIT(cinfo, JERR_ARITH_NOTIMPL); #endif } else { if (cinfo->progressive_mode) { #ifdef D_PROGRESSIVE_SUPPORTED jinit_phuff_decoder(cinfo); #else ERREXIT(cinfo, JERR_NOT_COMPILED); #endif } else jinit_huff_decoder(cinfo); } /* Always get a full-image coefficient buffer. */ jinit_d_coef_controller(cinfo, TRUE); /* We can now tell the memory manager to allocate virtual arrays. */ (*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo); /* Initialize input side of decompressor to consume first scan. */ (*cinfo->inputctl->start_input_pass) (cinfo); /* Initialize progress monitoring. */ if (cinfo->progress != NULL) { int nscans; /* Estimate number of scans to set pass_limit. */ if (cinfo->progressive_mode) { /* Arbitrarily estimate 2 interleaved DC scans + 3 AC scans/component. */ nscans = 2 + 3 * cinfo->num_components; } else if (cinfo->inputctl->has_multiple_scans) { /* For a nonprogressive multiscan file, estimate 1 scan per component. */ nscans = cinfo->num_components; } else { nscans = 1; } cinfo->progress->pass_counter = 0L; cinfo->progress->pass_limit = (long) cinfo->total_iMCU_rows * nscans; cinfo->progress->completed_passes = 0; cinfo->progress->total_passes = 1; } } libjpeg-turbo-1.4.2/libjpeg.txt0000644000076500007650000047717412600050400013402 00000000000000USING THE IJG JPEG LIBRARY This file was part of the Independent JPEG Group's software: Copyright (C) 1994-2011, Thomas G. Lane, Guido Vollbeding. libjpeg-turbo Modifications: Copyright (C) 2010, 2014, D. R. Commander. For conditions of distribution and use, see the accompanying README file. This file describes how to use the IJG JPEG library within an application program. Read it if you want to write a program that uses the library. The file example.c provides heavily commented skeleton code for calling the JPEG library. Also see jpeglib.h (the include file to be used by application programs) for full details about data structures and function parameter lists. The library source code, of course, is the ultimate reference. Note that there have been *major* changes from the application interface presented by IJG version 4 and earlier versions. The old design had several inherent limitations, and it had accumulated a lot of cruft as we added features while trying to minimize application-interface changes. We have sacrificed backward compatibility in the version 5 rewrite, but we think the improvements justify this. TABLE OF CONTENTS ----------------- Overview: Functions provided by the library Outline of typical usage Basic library usage: Data formats Compression details Decompression details Mechanics of usage: include files, linking, etc Advanced features: Compression parameter selection Decompression parameter selection Special color spaces Error handling Compressed data handling (source and destination managers) I/O suspension Progressive JPEG support Buffered-image mode Abbreviated datastreams and multiple images Special markers Raw (downsampled) image data Really raw data: DCT coefficients Progress monitoring Memory management Memory usage Library compile-time options Portability considerations You should read at least the overview and basic usage sections before trying to program with the library. The sections on advanced features can be read if and when you need them. OVERVIEW ======== Functions provided by the library --------------------------------- The IJG JPEG library provides C code to read and write JPEG-compressed image files. The surrounding application program receives or supplies image data a scanline at a time, using a straightforward uncompressed image format. All details of color conversion and other preprocessing/postprocessing can be handled by the library. The library includes a substantial amount of code that is not covered by the JPEG standard but is necessary for typical applications of JPEG. These functions preprocess the image before JPEG compression or postprocess it after decompression. They include colorspace conversion, downsampling/upsampling, and color quantization. The application indirectly selects use of this code by specifying the format in which it wishes to supply or receive image data. For example, if colormapped output is requested, then the decompression library automatically invokes color quantization. A wide range of quality vs. speed tradeoffs are possible in JPEG processing, and even more so in decompression postprocessing. The decompression library provides multiple implementations that cover most of the useful tradeoffs, ranging from very-high-quality down to fast-preview operation. On the compression side we have generally not provided low-quality choices, since compression is normally less time-critical. It should be understood that the low-quality modes may not meet the JPEG standard's accuracy requirements; nonetheless, they are useful for viewers. A word about functions *not* provided by the library. We handle a subset of the ISO JPEG standard; most baseline, extended-sequential, and progressive JPEG processes are supported. (Our subset includes all features now in common use.) Unsupported ISO options include: * Hierarchical storage * Lossless JPEG * DNL marker * Nonintegral subsampling ratios We support both 8- and 12-bit data precision, but this is a compile-time choice rather than a run-time choice; hence it is difficult to use both precisions in a single application. By itself, the library handles only interchange JPEG datastreams --- in particular the widely used JFIF file format. The library can be used by surrounding code to process interchange or abbreviated JPEG datastreams that are embedded in more complex file formats. (For example, this library is used by the free LIBTIFF library to support JPEG compression in TIFF.) Outline of typical usage ------------------------ The rough outline of a JPEG compression operation is: Allocate and initialize a JPEG compression object Specify the destination for the compressed data (eg, a file) Set parameters for compression, including image size & colorspace jpeg_start_compress(...); while (scan lines remain to be written) jpeg_write_scanlines(...); jpeg_finish_compress(...); Release the JPEG compression object A JPEG compression object holds parameters and working state for the JPEG library. We make creation/destruction of the object separate from starting or finishing compression of an image; the same object can be re-used for a series of image compression operations. This makes it easy to re-use the same parameter settings for a sequence of images. Re-use of a JPEG object also has important implications for processing abbreviated JPEG datastreams, as discussed later. The image data to be compressed is supplied to jpeg_write_scanlines() from in-memory buffers. If the application is doing file-to-file compression, reading image data from the source file is the application's responsibility. The library emits compressed data by calling a "data destination manager", which typically will write the data into a file; but the application can provide its own destination manager to do something else. Similarly, the rough outline of a JPEG decompression operation is: Allocate and initialize a JPEG decompression object Specify the source of the compressed data (eg, a file) Call jpeg_read_header() to obtain image info Set parameters for decompression jpeg_start_decompress(...); while (scan lines remain to be read) jpeg_read_scanlines(...); jpeg_finish_decompress(...); Release the JPEG decompression object This is comparable to the compression outline except that reading the datastream header is a separate step. This is helpful because information about the image's size, colorspace, etc is available when the application selects decompression parameters. For example, the application can choose an output scaling ratio that will fit the image into the available screen size. The decompression library obtains compressed data by calling a data source manager, which typically will read the data from a file; but other behaviors can be obtained with a custom source manager. Decompressed data is delivered into in-memory buffers passed to jpeg_read_scanlines(). It is possible to abort an incomplete compression or decompression operation by calling jpeg_abort(); or, if you do not need to retain the JPEG object, simply release it by calling jpeg_destroy(). JPEG compression and decompression objects are two separate struct types. However, they share some common fields, and certain routines such as jpeg_destroy() can work on either type of object. The JPEG library has no static variables: all state is in the compression or decompression object. Therefore it is possible to process multiple compression and decompression operations concurrently, using multiple JPEG objects. Both compression and decompression can be done in an incremental memory-to- memory fashion, if suitable source/destination managers are used. See the section on "I/O suspension" for more details. BASIC LIBRARY USAGE =================== Data formats ------------ Before diving into procedural details, it is helpful to understand the image data format that the JPEG library expects or returns. The standard input image format is a rectangular array of pixels, with each pixel having the same number of "component" or "sample" values (color channels). You must specify how many components there are and the colorspace interpretation of the components. Most applications will use RGB data (three components per pixel) or grayscale data (one component per pixel). PLEASE NOTE THAT RGB DATA IS THREE SAMPLES PER PIXEL, GRAYSCALE ONLY ONE. A remarkable number of people manage to miss this, only to find that their programs don't work with grayscale JPEG files. There is no provision for colormapped input. JPEG files are always full-color or full grayscale (or sometimes another colorspace such as CMYK). You can feed in a colormapped image by expanding it to full-color format. However JPEG often doesn't work very well with source data that has been colormapped, because of dithering noise. This is discussed in more detail in the JPEG FAQ and the other references mentioned in the README file. Pixels are stored by scanlines, with each scanline running from left to right. The component values for each pixel are adjacent in the row; for example, R,G,B,R,G,B,R,G,B,... for 24-bit RGB color. Each scanline is an array of data type JSAMPLE --- which is typically "unsigned char", unless you've changed jmorecfg.h. (You can also change the RGB pixel layout, say to B,G,R order, by modifying jmorecfg.h. But see the restrictions listed in that file before doing so.) A 2-D array of pixels is formed by making a list of pointers to the starts of scanlines; so the scanlines need not be physically adjacent in memory. Even if you process just one scanline at a time, you must make a one-element pointer array to conform to this structure. Pointers to JSAMPLE rows are of type JSAMPROW, and the pointer to the pointer array is of type JSAMPARRAY. The library accepts or supplies one or more complete scanlines per call. It is not possible to process part of a row at a time. Scanlines are always processed top-to-bottom. You can process an entire image in one call if you have it all in memory, but usually it's simplest to process one scanline at a time. For best results, source data values should have the precision specified by BITS_IN_JSAMPLE (normally 8 bits). For instance, if you choose to compress data that's only 6 bits/channel, you should left-justify each value in a byte before passing it to the compressor. If you need to compress data that has more than 8 bits/channel, compile with BITS_IN_JSAMPLE = 12. (See "Library compile-time options", later.) The data format returned by the decompressor is the same in all details, except that colormapped output is supported. (Again, a JPEG file is never colormapped. But you can ask the decompressor to perform on-the-fly color quantization to deliver colormapped output.) If you request colormapped output then the returned data array contains a single JSAMPLE per pixel; its value is an index into a color map. The color map is represented as a 2-D JSAMPARRAY in which each row holds the values of one color component, that is, colormap[i][j] is the value of the i'th color component for pixel value (map index) j. Note that since the colormap indexes are stored in JSAMPLEs, the maximum number of colors is limited by the size of JSAMPLE (ie, at most 256 colors for an 8-bit JPEG library). Compression details ------------------- Here we revisit the JPEG compression outline given in the overview. 1. Allocate and initialize a JPEG compression object. A JPEG compression object is a "struct jpeg_compress_struct". (It also has a bunch of subsidiary structures which are allocated via malloc(), but the application doesn't control those directly.) This struct can be just a local variable in the calling routine, if a single routine is going to execute the whole JPEG compression sequence. Otherwise it can be static or allocated from malloc(). You will also need a structure representing a JPEG error handler. The part of this that the library cares about is a "struct jpeg_error_mgr". If you are providing your own error handler, you'll typically want to embed the jpeg_error_mgr struct in a larger structure; this is discussed later under "Error handling". For now we'll assume you are just using the default error handler. The default error handler will print JPEG error/warning messages on stderr, and it will call exit() if a fatal error occurs. You must initialize the error handler structure, store a pointer to it into the JPEG object's "err" field, and then call jpeg_create_compress() to initialize the rest of the JPEG object. Typical code for this step, if you are using the default error handler, is struct jpeg_compress_struct cinfo; struct jpeg_error_mgr jerr; ... cinfo.err = jpeg_std_error(&jerr); jpeg_create_compress(&cinfo); jpeg_create_compress allocates a small amount of memory, so it could fail if you are out of memory. In that case it will exit via the error handler; that's why the error handler must be initialized first. 2. Specify the destination for the compressed data (eg, a file). As previously mentioned, the JPEG library delivers compressed data to a "data destination" module. The library includes one data destination module which knows how to write to a stdio stream. You can use your own destination module if you want to do something else, as discussed later. If you use the standard destination module, you must open the target stdio stream beforehand. Typical code for this step looks like: FILE * outfile; ... if ((outfile = fopen(filename, "wb")) == NULL) { fprintf(stderr, "can't open %s\n", filename); exit(1); } jpeg_stdio_dest(&cinfo, outfile); where the last line invokes the standard destination module. WARNING: it is critical that the binary compressed data be delivered to the output file unchanged. On non-Unix systems the stdio library may perform newline translation or otherwise corrupt binary data. To suppress this behavior, you may need to use a "b" option to fopen (as shown above), or use setmode() or another routine to put the stdio stream in binary mode. See cjpeg.c and djpeg.c for code that has been found to work on many systems. You can select the data destination after setting other parameters (step 3), if that's more convenient. You may not change the destination between calling jpeg_start_compress() and jpeg_finish_compress(). 3. Set parameters for compression, including image size & colorspace. You must supply information about the source image by setting the following fields in the JPEG object (cinfo structure): image_width Width of image, in pixels image_height Height of image, in pixels input_components Number of color channels (samples per pixel) in_color_space Color space of source image The image dimensions are, hopefully, obvious. JPEG supports image dimensions of 1 to 64K pixels in either direction. The input color space is typically RGB or grayscale, and input_components is 3 or 1 accordingly. (See "Special color spaces", later, for more info.) The in_color_space field must be assigned one of the J_COLOR_SPACE enum constants, typically JCS_RGB or JCS_GRAYSCALE. JPEG has a large number of compression parameters that determine how the image is encoded. Most applications don't need or want to know about all these parameters. You can set all the parameters to reasonable defaults by calling jpeg_set_defaults(); then, if there are particular values you want to change, you can do so after that. The "Compression parameter selection" section tells about all the parameters. You must set in_color_space correctly before calling jpeg_set_defaults(), because the defaults depend on the source image colorspace. However the other three source image parameters need not be valid until you call jpeg_start_compress(). There's no harm in calling jpeg_set_defaults() more than once, if that happens to be convenient. Typical code for a 24-bit RGB source image is cinfo.image_width = Width; /* image width and height, in pixels */ cinfo.image_height = Height; cinfo.input_components = 3; /* # of color components per pixel */ cinfo.in_color_space = JCS_RGB; /* colorspace of input image */ jpeg_set_defaults(&cinfo); /* Make optional parameter settings here */ 4. jpeg_start_compress(...); After you have established the data destination and set all the necessary source image info and other parameters, call jpeg_start_compress() to begin a compression cycle. This will initialize internal state, allocate working storage, and emit the first few bytes of the JPEG datastream header. Typical code: jpeg_start_compress(&cinfo, TRUE); The "TRUE" parameter ensures that a complete JPEG interchange datastream will be written. This is appropriate in most cases. If you think you might want to use an abbreviated datastream, read the section on abbreviated datastreams, below. Once you have called jpeg_start_compress(), you may not alter any JPEG parameters or other fields of the JPEG object until you have completed the compression cycle. 5. while (scan lines remain to be written) jpeg_write_scanlines(...); Now write all the required image data by calling jpeg_write_scanlines() one or more times. You can pass one or more scanlines in each call, up to the total image height. In most applications it is convenient to pass just one or a few scanlines at a time. The expected format for the passed data is discussed under "Data formats", above. Image data should be written in top-to-bottom scanline order. The JPEG spec contains some weasel wording about how top and bottom are application-defined terms (a curious interpretation of the English language...) but if you want your files to be compatible with everyone else's, you WILL use top-to-bottom order. If the source data must be read in bottom-to-top order, you can use the JPEG library's virtual array mechanism to invert the data efficiently. Examples of this can be found in the sample application cjpeg. The library maintains a count of the number of scanlines written so far in the next_scanline field of the JPEG object. Usually you can just use this variable as the loop counter, so that the loop test looks like "while (cinfo.next_scanline < cinfo.image_height)". Code for this step depends heavily on the way that you store the source data. example.c shows the following code for the case of a full-size 2-D source array containing 3-byte RGB pixels: JSAMPROW row_pointer[1]; /* pointer to a single row */ int row_stride; /* physical row width in buffer */ row_stride = image_width * 3; /* JSAMPLEs per row in image_buffer */ while (cinfo.next_scanline < cinfo.image_height) { row_pointer[0] = & image_buffer[cinfo.next_scanline * row_stride]; jpeg_write_scanlines(&cinfo, row_pointer, 1); } jpeg_write_scanlines() returns the number of scanlines actually written. This will normally be equal to the number passed in, so you can usually ignore the return value. It is different in just two cases: * If you try to write more scanlines than the declared image height, the additional scanlines are ignored. * If you use a suspending data destination manager, output buffer overrun will cause the compressor to return before accepting all the passed lines. This feature is discussed under "I/O suspension", below. The normal stdio destination manager will NOT cause this to happen. In any case, the return value is the same as the change in the value of next_scanline. 6. jpeg_finish_compress(...); After all the image data has been written, call jpeg_finish_compress() to complete the compression cycle. This step is ESSENTIAL to ensure that the last bufferload of data is written to the data destination. jpeg_finish_compress() also releases working memory associated with the JPEG object. Typical code: jpeg_finish_compress(&cinfo); If using the stdio destination manager, don't forget to close the output stdio stream (if necessary) afterwards. If you have requested a multi-pass operating mode, such as Huffman code optimization, jpeg_finish_compress() will perform the additional passes using data buffered by the first pass. In this case jpeg_finish_compress() may take quite a while to complete. With the default compression parameters, this will not happen. It is an error to call jpeg_finish_compress() before writing the necessary total number of scanlines. If you wish to abort compression, call jpeg_abort() as discussed below. After completing a compression cycle, you may dispose of the JPEG object as discussed next, or you may use it to compress another image. In that case return to step 2, 3, or 4 as appropriate. If you do not change the destination manager, the new datastream will be written to the same target. If you do not change any JPEG parameters, the new datastream will be written with the same parameters as before. Note that you can change the input image dimensions freely between cycles, but if you change the input colorspace, you should call jpeg_set_defaults() to adjust for the new colorspace; and then you'll need to repeat all of step 3. 7. Release the JPEG compression object. When you are done with a JPEG compression object, destroy it by calling jpeg_destroy_compress(). This will free all subsidiary memory (regardless of the previous state of the object). Or you can call jpeg_destroy(), which works for either compression or decompression objects --- this may be more convenient if you are sharing code between compression and decompression cases. (Actually, these routines are equivalent except for the declared type of the passed pointer. To avoid gripes from ANSI C compilers, jpeg_destroy() should be passed a j_common_ptr.) If you allocated the jpeg_compress_struct structure from malloc(), freeing it is your responsibility --- jpeg_destroy() won't. Ditto for the error handler structure. Typical code: jpeg_destroy_compress(&cinfo); 8. Aborting. If you decide to abort a compression cycle before finishing, you can clean up in either of two ways: * If you don't need the JPEG object any more, just call jpeg_destroy_compress() or jpeg_destroy() to release memory. This is legitimate at any point after calling jpeg_create_compress() --- in fact, it's safe even if jpeg_create_compress() fails. * If you want to re-use the JPEG object, call jpeg_abort_compress(), or call jpeg_abort() which works on both compression and decompression objects. This will return the object to an idle state, releasing any working memory. jpeg_abort() is allowed at any time after successful object creation. Note that cleaning up the data destination, if required, is your responsibility; neither of these routines will call term_destination(). (See "Compressed data handling", below, for more about that.) jpeg_destroy() and jpeg_abort() are the only safe calls to make on a JPEG object that has reported an error by calling error_exit (see "Error handling" for more info). The internal state of such an object is likely to be out of whack. Either of these two routines will return the object to a known state. Decompression details --------------------- Here we revisit the JPEG decompression outline given in the overview. 1. Allocate and initialize a JPEG decompression object. This is just like initialization for compression, as discussed above, except that the object is a "struct jpeg_decompress_struct" and you call jpeg_create_decompress(). Error handling is exactly the same. Typical code: struct jpeg_decompress_struct cinfo; struct jpeg_error_mgr jerr; ... cinfo.err = jpeg_std_error(&jerr); jpeg_create_decompress(&cinfo); (Both here and in the IJG code, we usually use variable name "cinfo" for both compression and decompression objects.) 2. Specify the source of the compressed data (eg, a file). As previously mentioned, the JPEG library reads compressed data from a "data source" module. The library includes one data source module which knows how to read from a stdio stream. You can use your own source module if you want to do something else, as discussed later. If you use the standard source module, you must open the source stdio stream beforehand. Typical code for this step looks like: FILE * infile; ... if ((infile = fopen(filename, "rb")) == NULL) { fprintf(stderr, "can't open %s\n", filename); exit(1); } jpeg_stdio_src(&cinfo, infile); where the last line invokes the standard source module. WARNING: it is critical that the binary compressed data be read unchanged. On non-Unix systems the stdio library may perform newline translation or otherwise corrupt binary data. To suppress this behavior, you may need to use a "b" option to fopen (as shown above), or use setmode() or another routine to put the stdio stream in binary mode. See cjpeg.c and djpeg.c for code that has been found to work on many systems. You may not change the data source between calling jpeg_read_header() and jpeg_finish_decompress(). If you wish to read a series of JPEG images from a single source file, you should repeat the jpeg_read_header() to jpeg_finish_decompress() sequence without reinitializing either the JPEG object or the data source module; this prevents buffered input data from being discarded. 3. Call jpeg_read_header() to obtain image info. Typical code for this step is just jpeg_read_header(&cinfo, TRUE); This will read the source datastream header markers, up to the beginning of the compressed data proper. On return, the image dimensions and other info have been stored in the JPEG object. The application may wish to consult this information before selecting decompression parameters. More complex code is necessary if * A suspending data source is used --- in that case jpeg_read_header() may return before it has read all the header data. See "I/O suspension", below. The normal stdio source manager will NOT cause this to happen. * Abbreviated JPEG files are to be processed --- see the section on abbreviated datastreams. Standard applications that deal only in interchange JPEG files need not be concerned with this case either. It is permissible to stop at this point if you just wanted to find out the image dimensions and other header info for a JPEG file. In that case, call jpeg_destroy() when you are done with the JPEG object, or call jpeg_abort() to return it to an idle state before selecting a new data source and reading another header. 4. Set parameters for decompression. jpeg_read_header() sets appropriate default decompression parameters based on the properties of the image (in particular, its colorspace). However, you may well want to alter these defaults before beginning the decompression. For example, the default is to produce full color output from a color file. If you want colormapped output you must ask for it. Other options allow the returned image to be scaled and allow various speed/quality tradeoffs to be selected. "Decompression parameter selection", below, gives details. If the defaults are appropriate, nothing need be done at this step. Note that all default values are set by each call to jpeg_read_header(). If you reuse a decompression object, you cannot expect your parameter settings to be preserved across cycles, as you can for compression. You must set desired parameter values each time. 5. jpeg_start_decompress(...); Once the parameter values are satisfactory, call jpeg_start_decompress() to begin decompression. This will initialize internal state, allocate working memory, and prepare for returning data. Typical code is just jpeg_start_decompress(&cinfo); If you have requested a multi-pass operating mode, such as 2-pass color quantization, jpeg_start_decompress() will do everything needed before data output can begin. In this case jpeg_start_decompress() may take quite a while to complete. With a single-scan (non progressive) JPEG file and default decompression parameters, this will not happen; jpeg_start_decompress() will return quickly. After this call, the final output image dimensions, including any requested scaling, are available in the JPEG object; so is the selected colormap, if colormapped output has been requested. Useful fields include output_width image width and height, as scaled output_height out_color_components # of color components in out_color_space output_components # of color components returned per pixel colormap the selected colormap, if any actual_number_of_colors number of entries in colormap output_components is 1 (a colormap index) when quantizing colors; otherwise it equals out_color_components. It is the number of JSAMPLE values that will be emitted per pixel in the output arrays. Typically you will need to allocate data buffers to hold the incoming image. You will need output_width * output_components JSAMPLEs per scanline in your output buffer, and a total of output_height scanlines will be returned. Note: if you are using the JPEG library's internal memory manager to allocate data buffers (as djpeg does), then the manager's protocol requires that you request large buffers *before* calling jpeg_start_decompress(). This is a little tricky since the output_XXX fields are not normally valid then. You can make them valid by calling jpeg_calc_output_dimensions() after setting the relevant parameters (scaling, output color space, and quantization flag). 6. while (scan lines remain to be read) jpeg_read_scanlines(...); Now you can read the decompressed image data by calling jpeg_read_scanlines() one or more times. At each call, you pass in the maximum number of scanlines to be read (ie, the height of your working buffer); jpeg_read_scanlines() will return up to that many lines. The return value is the number of lines actually read. The format of the returned data is discussed under "Data formats", above. Don't forget that grayscale and color JPEGs will return different data formats! Image data is returned in top-to-bottom scanline order. If you must write out the image in bottom-to-top order, you can use the JPEG library's virtual array mechanism to invert the data efficiently. Examples of this can be found in the sample application djpeg. The library maintains a count of the number of scanlines returned so far in the output_scanline field of the JPEG object. Usually you can just use this variable as the loop counter, so that the loop test looks like "while (cinfo.output_scanline < cinfo.output_height)". (Note that the test should NOT be against image_height, unless you never use scaling. The image_height field is the height of the original unscaled image.) The return value always equals the change in the value of output_scanline. If you don't use a suspending data source, it is safe to assume that jpeg_read_scanlines() reads at least one scanline per call, until the bottom of the image has been reached. If you use a buffer larger than one scanline, it is NOT safe to assume that jpeg_read_scanlines() fills it. (The current implementation returns only a few scanlines per call, no matter how large a buffer you pass.) So you must always provide a loop that calls jpeg_read_scanlines() repeatedly until the whole image has been read. 7. jpeg_finish_decompress(...); After all the image data has been read, call jpeg_finish_decompress() to complete the decompression cycle. This causes working memory associated with the JPEG object to be released. Typical code: jpeg_finish_decompress(&cinfo); If using the stdio source manager, don't forget to close the source stdio stream if necessary. It is an error to call jpeg_finish_decompress() before reading the correct total number of scanlines. If you wish to abort decompression, call jpeg_abort() as discussed below. After completing a decompression cycle, you may dispose of the JPEG object as discussed next, or you may use it to decompress another image. In that case return to step 2 or 3 as appropriate. If you do not change the source manager, the next image will be read from the same source. 8. Release the JPEG decompression object. When you are done with a JPEG decompression object, destroy it by calling jpeg_destroy_decompress() or jpeg_destroy(). The previous discussion of destroying compression objects applies here too. Typical code: jpeg_destroy_decompress(&cinfo); 9. Aborting. You can abort a decompression cycle by calling jpeg_destroy_decompress() or jpeg_destroy() if you don't need the JPEG object any more, or jpeg_abort_decompress() or jpeg_abort() if you want to reuse the object. The previous discussion of aborting compression cycles applies here too. Mechanics of usage: include files, linking, etc ----------------------------------------------- Applications using the JPEG library should include the header file jpeglib.h to obtain declarations of data types and routines. Before including jpeglib.h, include system headers that define at least the typedefs FILE and size_t. On ANSI-conforming systems, including is sufficient; on older Unix systems, you may need to define size_t. If the application needs to refer to individual JPEG library error codes, also include jerror.h to define those symbols. jpeglib.h indirectly includes the files jconfig.h and jmorecfg.h. If you are installing the JPEG header files in a system directory, you will want to install all four files: jpeglib.h, jerror.h, jconfig.h, jmorecfg.h. The most convenient way to include the JPEG code into your executable program is to prepare a library file ("libjpeg.a", or a corresponding name on non-Unix machines) and reference it at your link step. If you use only half of the library (only compression or only decompression), only that much code will be included from the library, unless your linker is hopelessly brain-damaged. The supplied makefiles build libjpeg.a automatically (see install.txt). While you can build the JPEG library as a shared library if the whim strikes you, we don't really recommend it. The trouble with shared libraries is that at some point you'll probably try to substitute a new version of the library without recompiling the calling applications. That generally doesn't work because the parameter struct declarations usually change with each new version. In other words, the library's API is *not* guaranteed binary compatible across versions; we only try to ensure source-code compatibility. (In hindsight, it might have been smarter to hide the parameter structs from applications and introduce a ton of access functions instead. Too late now, however.) It may be worth pointing out that the core JPEG library does not actually require the stdio library: only the default source/destination managers and error handler need it. You can use the library in a stdio-less environment if you replace those modules and use jmemnobs.c (or another memory manager of your own devising). More info about the minimum system library requirements may be found in jinclude.h. ADVANCED FEATURES ================= Compression parameter selection ------------------------------- This section describes all the optional parameters you can set for JPEG compression, as well as the "helper" routines provided to assist in this task. Proper setting of some parameters requires detailed understanding of the JPEG standard; if you don't know what a parameter is for, it's best not to mess with it! See REFERENCES in the README file for pointers to more info about JPEG. It's a good idea to call jpeg_set_defaults() first, even if you plan to set all the parameters; that way your code is more likely to work with future JPEG libraries that have additional parameters. For the same reason, we recommend you use a helper routine where one is provided, in preference to twiddling cinfo fields directly. The helper routines are: jpeg_set_defaults (j_compress_ptr cinfo) This routine sets all JPEG parameters to reasonable defaults, using only the input image's color space (field in_color_space, which must already be set in cinfo). Many applications will only need to use this routine and perhaps jpeg_set_quality(). jpeg_set_colorspace (j_compress_ptr cinfo, J_COLOR_SPACE colorspace) Sets the JPEG file's colorspace (field jpeg_color_space) as specified, and sets other color-space-dependent parameters appropriately. See "Special color spaces", below, before using this. A large number of parameters, including all per-component parameters, are set by this routine; if you want to twiddle individual parameters you should call jpeg_set_colorspace() before rather than after. jpeg_default_colorspace (j_compress_ptr cinfo) Selects an appropriate JPEG colorspace based on cinfo->in_color_space, and calls jpeg_set_colorspace(). This is actually a subroutine of jpeg_set_defaults(). It's broken out in case you want to change just the colorspace-dependent JPEG parameters. jpeg_set_quality (j_compress_ptr cinfo, int quality, boolean force_baseline) Constructs JPEG quantization tables appropriate for the indicated quality setting. The quality value is expressed on the 0..100 scale recommended by IJG (cjpeg's "-quality" switch uses this routine). Note that the exact mapping from quality values to tables may change in future IJG releases as more is learned about DCT quantization. If the force_baseline parameter is TRUE, then the quantization table entries are constrained to the range 1..255 for full JPEG baseline compatibility. In the current implementation, this only makes a difference for quality settings below 25, and it effectively prevents very small/low quality files from being generated. The IJG decoder is capable of reading the non-baseline files generated at low quality settings when force_baseline is FALSE, but other decoders may not be. jpeg_set_linear_quality (j_compress_ptr cinfo, int scale_factor, boolean force_baseline) Same as jpeg_set_quality() except that the generated tables are the sample tables given in the JPEC spec section K.1, multiplied by the specified scale factor (which is expressed as a percentage; thus scale_factor = 100 reproduces the spec's tables). Note that larger scale factors give lower quality. This entry point is useful for conforming to the Adobe PostScript DCT conventions, but we do not recommend linear scaling as a user-visible quality scale otherwise. force_baseline again constrains the computed table entries to 1..255. int jpeg_quality_scaling (int quality) Converts a value on the IJG-recommended quality scale to a linear scaling percentage. Note that this routine may change or go away in future releases --- IJG may choose to adopt a scaling method that can't be expressed as a simple scalar multiplier, in which case the premise of this routine collapses. Caveat user. jpeg_default_qtables (j_compress_ptr cinfo, boolean force_baseline) [libjpeg v7+ API/ABI emulation only] Set default quantization tables with linear q_scale_factor[] values (see below). jpeg_add_quant_table (j_compress_ptr cinfo, int which_tbl, const unsigned int *basic_table, int scale_factor, boolean force_baseline) Allows an arbitrary quantization table to be created. which_tbl indicates which table slot to fill. basic_table points to an array of 64 unsigned ints given in normal array order. These values are multiplied by scale_factor/100 and then clamped to the range 1..65535 (or to 1..255 if force_baseline is TRUE). CAUTION: prior to library version 6a, jpeg_add_quant_table expected the basic table to be given in JPEG zigzag order. If you need to write code that works with either older or newer versions of this routine, you must check the library version number. Something like "#if JPEG_LIB_VERSION >= 61" is the right test. jpeg_simple_progression (j_compress_ptr cinfo) Generates a default scan script for writing a progressive-JPEG file. This is the recommended method of creating a progressive file, unless you want to make a custom scan sequence. You must ensure that the JPEG color space is set correctly before calling this routine. Compression parameters (cinfo fields) include: J_DCT_METHOD dct_method Selects the algorithm used for the DCT step. Choices are: JDCT_ISLOW: slow but accurate integer algorithm JDCT_IFAST: faster, less accurate integer method JDCT_FLOAT: floating-point method JDCT_DEFAULT: default method (normally JDCT_ISLOW) JDCT_FASTEST: fastest method (normally JDCT_IFAST) In libjpeg-turbo, JDCT_IFAST is generally about 5-15% faster than JDCT_ISLOW when using the x86/x86-64 SIMD extensions (results may vary with other SIMD implementations, or when using libjpeg-turbo without SIMD extensions.) For quality levels of 90 and below, there should be little or no perceptible difference between the two algorithms. For quality levels above 90, however, the difference between JDCT_IFAST and JDCT_ISLOW becomes more pronounced. With quality=97, for instance, JDCT_IFAST incurs generally about a 1-3 dB loss (in PSNR) relative to JDCT_ISLOW, but this can be larger for some images. Do not use JDCT_IFAST with quality levels above 97. The algorithm often degenerates at quality=98 and above and can actually produce a more lossy image than if lower quality levels had been used. Also, in libjpeg-turbo, JDCT_IFAST is not fully accelerated for quality levels above 97, so it will be slower than JDCT_ISLOW. JDCT_FLOAT is mainly a legacy feature. It does not produce significantly more accurate results than the ISLOW method, and it is much slower. The FLOAT method may also give different results on different machines due to varying roundoff behavior, whereas the integer methods should give the same results on all machines. J_COLOR_SPACE jpeg_color_space int num_components The JPEG color space and corresponding number of components; see "Special color spaces", below, for more info. We recommend using jpeg_set_color_space() if you want to change these. boolean optimize_coding TRUE causes the compressor to compute optimal Huffman coding tables for the image. This requires an extra pass over the data and therefore costs a good deal of space and time. The default is FALSE, which tells the compressor to use the supplied or default Huffman tables. In most cases optimal tables save only a few percent of file size compared to the default tables. Note that when this is TRUE, you need not supply Huffman tables at all, and any you do supply will be overwritten. unsigned int restart_interval int restart_in_rows To emit restart markers in the JPEG file, set one of these nonzero. Set restart_interval to specify the exact interval in MCU blocks. Set restart_in_rows to specify the interval in MCU rows. (If restart_in_rows is not 0, then restart_interval is set after the image width in MCUs is computed.) Defaults are zero (no restarts). One restart marker per MCU row is often a good choice. NOTE: the overhead of restart markers is higher in grayscale JPEG files than in color files, and MUCH higher in progressive JPEGs. If you use restarts, you may want to use larger intervals in those cases. const jpeg_scan_info * scan_info int num_scans By default, scan_info is NULL; this causes the compressor to write a single-scan sequential JPEG file. If not NULL, scan_info points to an array of scan definition records of length num_scans. The compressor will then write a JPEG file having one scan for each scan definition record. This is used to generate noninterleaved or progressive JPEG files. The library checks that the scan array defines a valid JPEG scan sequence. (jpeg_simple_progression creates a suitable scan definition array for progressive JPEG.) This is discussed further under "Progressive JPEG support". int smoothing_factor If non-zero, the input image is smoothed; the value should be 1 for minimal smoothing to 100 for maximum smoothing. Consult jcsample.c for details of the smoothing algorithm. The default is zero. boolean write_JFIF_header If TRUE, a JFIF APP0 marker is emitted. jpeg_set_defaults() and jpeg_set_colorspace() set this TRUE if a JFIF-legal JPEG color space (ie, YCbCr or grayscale) is selected, otherwise FALSE. UINT8 JFIF_major_version UINT8 JFIF_minor_version The version number to be written into the JFIF marker. jpeg_set_defaults() initializes the version to 1.01 (major=minor=1). You should set it to 1.02 (major=1, minor=2) if you plan to write any JFIF 1.02 extension markers. UINT8 density_unit UINT16 X_density UINT16 Y_density The resolution information to be written into the JFIF marker; not used otherwise. density_unit may be 0 for unknown, 1 for dots/inch, or 2 for dots/cm. The default values are 0,1,1 indicating square pixels of unknown size. boolean write_Adobe_marker If TRUE, an Adobe APP14 marker is emitted. jpeg_set_defaults() and jpeg_set_colorspace() set this TRUE if JPEG color space RGB, CMYK, or YCCK is selected, otherwise FALSE. It is generally a bad idea to set both write_JFIF_header and write_Adobe_marker. In fact, you probably shouldn't change the default settings at all --- the default behavior ensures that the JPEG file's color space can be recognized by the decoder. JQUANT_TBL * quant_tbl_ptrs[NUM_QUANT_TBLS] Pointers to coefficient quantization tables, one per table slot, or NULL if no table is defined for a slot. Usually these should be set via one of the above helper routines; jpeg_add_quant_table() is general enough to define any quantization table. The other routines will set up table slot 0 for luminance quality and table slot 1 for chrominance. int q_scale_factor[NUM_QUANT_TBLS] [libjpeg v7+ API/ABI emulation only] Linear quantization scaling factors (0-100, default 100) for use with jpeg_default_qtables(). See rdswitch.c and cjpeg.c for an example of usage. Note that the q_scale_factor[] values use "linear" scales, so JPEG quality levels chosen by the user must be converted to these scales using jpeg_quality_scaling(). Here is an example that corresponds to cjpeg -quality 90,70: jpeg_set_defaults(cinfo); /* Set luminance quality 90. */ cinfo->q_scale_factor[0] = jpeg_quality_scaling(90); /* Set chrominance quality 70. */ cinfo->q_scale_factor[1] = jpeg_quality_scaling(70); jpeg_default_qtables(cinfo, force_baseline); CAUTION: Setting separate quality levels for chrominance and luminance is mainly only useful if chrominance subsampling is disabled. 2x2 chrominance subsampling (AKA "4:2:0") is the default, but you can explicitly disable subsampling as follows: cinfo->comp_info[0].v_samp_factor = 1; cinfo->comp_info[0].h_samp_factor = 1; JHUFF_TBL * dc_huff_tbl_ptrs[NUM_HUFF_TBLS] JHUFF_TBL * ac_huff_tbl_ptrs[NUM_HUFF_TBLS] Pointers to Huffman coding tables, one per table slot, or NULL if no table is defined for a slot. Slots 0 and 1 are filled with the JPEG sample tables by jpeg_set_defaults(). If you need to allocate more table structures, jpeg_alloc_huff_table() may be used. Note that optimal Huffman tables can be computed for an image by setting optimize_coding, as discussed above; there's seldom any need to mess with providing your own Huffman tables. [libjpeg v7+ API/ABI emulation only] The actual dimensions of the JPEG image that will be written to the file are given by the following fields. These are computed from the input image dimensions and the compression parameters by jpeg_start_compress(). You can also call jpeg_calc_jpeg_dimensions() to obtain the values that will result from the current parameter settings. This can be useful if you are trying to pick a scaling ratio that will get close to a desired target size. JDIMENSION jpeg_width Actual dimensions of output image. JDIMENSION jpeg_height Per-component parameters are stored in the struct cinfo.comp_info[i] for component number i. Note that components here refer to components of the JPEG color space, *not* the source image color space. A suitably large comp_info[] array is allocated by jpeg_set_defaults(); if you choose not to use that routine, it's up to you to allocate the array. int component_id The one-byte identifier code to be recorded in the JPEG file for this component. For the standard color spaces, we recommend you leave the default values alone. int h_samp_factor int v_samp_factor Horizontal and vertical sampling factors for the component; must be 1..4 according to the JPEG standard. Note that larger sampling factors indicate a higher-resolution component; many people find this behavior quite unintuitive. The default values are 2,2 for luminance components and 1,1 for chrominance components, except for grayscale where 1,1 is used. int quant_tbl_no Quantization table number for component. The default value is 0 for luminance components and 1 for chrominance components. int dc_tbl_no int ac_tbl_no DC and AC entropy coding table numbers. The default values are 0 for luminance components and 1 for chrominance components. int component_index Must equal the component's index in comp_info[]. (Beginning in release v6, the compressor library will fill this in automatically; you don't have to.) Decompression parameter selection --------------------------------- Decompression parameter selection is somewhat simpler than compression parameter selection, since all of the JPEG internal parameters are recorded in the source file and need not be supplied by the application. (Unless you are working with abbreviated files, in which case see "Abbreviated datastreams", below.) Decompression parameters control the postprocessing done on the image to deliver it in a format suitable for the application's use. Many of the parameters control speed/quality tradeoffs, in which faster decompression may be obtained at the price of a poorer-quality image. The defaults select the highest quality (slowest) processing. The following fields in the JPEG object are set by jpeg_read_header() and may be useful to the application in choosing decompression parameters: JDIMENSION image_width Width and height of image JDIMENSION image_height int num_components Number of color components J_COLOR_SPACE jpeg_color_space Colorspace of image boolean saw_JFIF_marker TRUE if a JFIF APP0 marker was seen UINT8 JFIF_major_version Version information from JFIF marker UINT8 JFIF_minor_version UINT8 density_unit Resolution data from JFIF marker UINT16 X_density UINT16 Y_density boolean saw_Adobe_marker TRUE if an Adobe APP14 marker was seen UINT8 Adobe_transform Color transform code from Adobe marker The JPEG color space, unfortunately, is something of a guess since the JPEG standard proper does not provide a way to record it. In practice most files adhere to the JFIF or Adobe conventions, and the decoder will recognize these correctly. See "Special color spaces", below, for more info. The decompression parameters that determine the basic properties of the returned image are: J_COLOR_SPACE out_color_space Output color space. jpeg_read_header() sets an appropriate default based on jpeg_color_space; typically it will be RGB or grayscale. The application can change this field to request output in a different colorspace. For example, set it to JCS_GRAYSCALE to get grayscale output from a color file. (This is useful for previewing: grayscale output is faster than full color since the color components need not be processed.) Note that not all possible color space transforms are currently implemented; you may need to extend jdcolor.c if you want an unusual conversion. unsigned int scale_num, scale_denom Scale the image by the fraction scale_num/scale_denom. Default is 1/1, or no scaling. Currently, the only supported scaling ratios are M/8 with all M from 1 to 16, or any reduced fraction thereof (such as 1/2, 3/4, etc.) (The library design allows for arbitrary scaling ratios but this is not likely to be implemented any time soon.) Smaller scaling ratios permit significantly faster decoding since fewer pixels need be processed and a simpler IDCT method can be used. boolean quantize_colors If set TRUE, colormapped output will be delivered. Default is FALSE, meaning that full-color output will be delivered. The next three parameters are relevant only if quantize_colors is TRUE. int desired_number_of_colors Maximum number of colors to use in generating a library-supplied color map (the actual number of colors is returned in a different field). Default 256. Ignored when the application supplies its own color map. boolean two_pass_quantize If TRUE, an extra pass over the image is made to select a custom color map for the image. This usually looks a lot better than the one-size- fits-all colormap that is used otherwise. Default is TRUE. Ignored when the application supplies its own color map. J_DITHER_MODE dither_mode Selects color dithering method. Supported values are: JDITHER_NONE no dithering: fast, very low quality JDITHER_ORDERED ordered dither: moderate speed and quality JDITHER_FS Floyd-Steinberg dither: slow, high quality Default is JDITHER_FS. (At present, ordered dither is implemented only in the single-pass, standard-colormap case. If you ask for ordered dither when two_pass_quantize is TRUE or when you supply an external color map, you'll get F-S dithering.) When quantize_colors is TRUE, the target color map is described by the next two fields. colormap is set to NULL by jpeg_read_header(). The application can supply a color map by setting colormap non-NULL and setting actual_number_of_colors to the map size. Otherwise, jpeg_start_decompress() selects a suitable color map and sets these two fields itself. [Implementation restriction: at present, an externally supplied colormap is only accepted for 3-component output color spaces.] JSAMPARRAY colormap The color map, represented as a 2-D pixel array of out_color_components rows and actual_number_of_colors columns. Ignored if not quantizing. CAUTION: if the JPEG library creates its own colormap, the storage pointed to by this field is released by jpeg_finish_decompress(). Copy the colormap somewhere else first, if you want to save it. int actual_number_of_colors The number of colors in the color map. Additional decompression parameters that the application may set include: J_DCT_METHOD dct_method Selects the algorithm used for the DCT step. Choices are: JDCT_ISLOW: slow but accurate integer algorithm JDCT_IFAST: faster, less accurate integer method JDCT_FLOAT: floating-point method JDCT_DEFAULT: default method (normally JDCT_ISLOW) JDCT_FASTEST: fastest method (normally JDCT_IFAST) In libjpeg-turbo, JDCT_IFAST is generally about 5-15% faster than JDCT_ISLOW when using the x86/x86-64 SIMD extensions (results may vary with other SIMD implementations, or when using libjpeg-turbo without SIMD extensions.) If the JPEG image was compressed using a quality level of 85 or below, then there should be little or no perceptible difference between the two algorithms. When decompressing images that were compressed using quality levels above 85, however, the difference between JDCT_IFAST and JDCT_ISLOW becomes more pronounced. With images compressed using quality=97, for instance, JDCT_IFAST incurs generally about a 4-6 dB loss (in PSNR) relative to JDCT_ISLOW, but this can be larger for some images. If you can avoid it, do not use JDCT_IFAST when decompressing images that were compressed using quality levels above 97. The algorithm often degenerates for such images and can actually produce a more lossy output image than if the JPEG image had been compressed using lower quality levels. JDCT_FLOAT is mainly a legacy feature. It does not produce significantly more accurate results than the ISLOW method, and it is much slower. The FLOAT method may also give different results on different machines due to varying roundoff behavior, whereas the integer methods should give the same results on all machines. boolean do_fancy_upsampling If TRUE, do careful upsampling of chroma components. If FALSE, a faster but sloppier method is used. Default is TRUE. The visual impact of the sloppier method is often very small. boolean do_block_smoothing If TRUE, interblock smoothing is applied in early stages of decoding progressive JPEG files; if FALSE, not. Default is TRUE. Early progression stages look "fuzzy" with smoothing, "blocky" without. In any case, block smoothing ceases to be applied after the first few AC coefficients are known to full accuracy, so it is relevant only when using buffered-image mode for progressive images. boolean enable_1pass_quant boolean enable_external_quant boolean enable_2pass_quant These are significant only in buffered-image mode, which is described in its own section below. The output image dimensions are given by the following fields. These are computed from the source image dimensions and the decompression parameters by jpeg_start_decompress(). You can also call jpeg_calc_output_dimensions() to obtain the values that will result from the current parameter settings. This can be useful if you are trying to pick a scaling ratio that will get close to a desired target size. It's also important if you are using the JPEG library's memory manager to allocate output buffer space, because you are supposed to request such buffers *before* jpeg_start_decompress(). JDIMENSION output_width Actual dimensions of output image. JDIMENSION output_height int out_color_components Number of color components in out_color_space. int output_components Number of color components returned. int rec_outbuf_height Recommended height of scanline buffer. When quantizing colors, output_components is 1, indicating a single color map index per pixel. Otherwise it equals out_color_components. The output arrays are required to be output_width * output_components JSAMPLEs wide. rec_outbuf_height is the recommended minimum height (in scanlines) of the buffer passed to jpeg_read_scanlines(). If the buffer is smaller, the library will still work, but time will be wasted due to unnecessary data copying. In high-quality modes, rec_outbuf_height is always 1, but some faster, lower-quality modes set it to larger values (typically 2 to 4). If you are going to ask for a high-speed processing mode, you may as well go to the trouble of honoring rec_outbuf_height so as to avoid data copying. (An output buffer larger than rec_outbuf_height lines is OK, but won't provide any material speed improvement over that height.) Special color spaces -------------------- The JPEG standard itself is "color blind" and doesn't specify any particular color space. It is customary to convert color data to a luminance/chrominance color space before compressing, since this permits greater compression. The existing de-facto JPEG file format standards specify YCbCr or grayscale data (JFIF), or grayscale, RGB, YCbCr, CMYK, or YCCK (Adobe). For special applications such as multispectral images, other color spaces can be used, but it must be understood that such files will be unportable. The JPEG library can handle the most common colorspace conversions (namely RGB <=> YCbCr and CMYK <=> YCCK). It can also deal with data of an unknown color space, passing it through without conversion. If you deal extensively with an unusual color space, you can easily extend the library to understand additional color spaces and perform appropriate conversions. For compression, the source data's color space is specified by field in_color_space. This is transformed to the JPEG file's color space given by jpeg_color_space. jpeg_set_defaults() chooses a reasonable JPEG color space depending on in_color_space, but you can override this by calling jpeg_set_colorspace(). Of course you must select a supported transformation. jccolor.c currently supports the following transformations: RGB => YCbCr RGB => GRAYSCALE YCbCr => GRAYSCALE CMYK => YCCK plus the null transforms: GRAYSCALE => GRAYSCALE, RGB => RGB, YCbCr => YCbCr, CMYK => CMYK, YCCK => YCCK, and UNKNOWN => UNKNOWN. The de-facto file format standards (JFIF and Adobe) specify APPn markers that indicate the color space of the JPEG file. It is important to ensure that these are written correctly, or omitted if the JPEG file's color space is not one of the ones supported by the de-facto standards. jpeg_set_colorspace() will set the compression parameters to include or omit the APPn markers properly, so long as it is told the truth about the JPEG color space. For example, if you are writing some random 3-component color space without conversion, don't try to fake out the library by setting in_color_space and jpeg_color_space to JCS_YCbCr; use JCS_UNKNOWN. You may want to write an APPn marker of your own devising to identify the colorspace --- see "Special markers", below. When told that the color space is UNKNOWN, the library will default to using luminance-quality compression parameters for all color components. You may well want to change these parameters. See the source code for jpeg_set_colorspace(), in jcparam.c, for details. For decompression, the JPEG file's color space is given in jpeg_color_space, and this is transformed to the output color space out_color_space. jpeg_read_header's setting of jpeg_color_space can be relied on if the file conforms to JFIF or Adobe conventions, but otherwise it is no better than a guess. If you know the JPEG file's color space for certain, you can override jpeg_read_header's guess by setting jpeg_color_space. jpeg_read_header also selects a default output color space based on (its guess of) jpeg_color_space; set out_color_space to override this. Again, you must select a supported transformation. jdcolor.c currently supports YCbCr => RGB YCbCr => GRAYSCALE RGB => GRAYSCALE GRAYSCALE => RGB YCCK => CMYK as well as the null transforms. (Since GRAYSCALE=>RGB is provided, an application can force grayscale JPEGs to look like color JPEGs if it only wants to handle one case.) The two-pass color quantizer, jquant2.c, is specialized to handle RGB data (it weights distances appropriately for RGB colors). You'll need to modify the code if you want to use it for non-RGB output color spaces. Note that jquant2.c is used to map to an application-supplied colormap as well as for the normal two-pass colormap selection process. CAUTION: it appears that Adobe Photoshop writes inverted data in CMYK JPEG files: 0 represents 100% ink coverage, rather than 0% ink as you'd expect. This is arguably a bug in Photoshop, but if you need to work with Photoshop CMYK files, you will have to deal with it in your application. We cannot "fix" this in the library by inverting the data during the CMYK<=>YCCK transform, because that would break other applications, notably Ghostscript. Photoshop versions prior to 3.0 write EPS files containing JPEG-encoded CMYK data in the same inverted-YCCK representation used in bare JPEG files, but the surrounding PostScript code performs an inversion using the PS image operator. I am told that Photoshop 3.0 will write uninverted YCCK in EPS/JPEG files, and will omit the PS-level inversion. (But the data polarity used in bare JPEG files will not change in 3.0.) In either case, the JPEG library must not invert the data itself, or else Ghostscript would read these EPS files incorrectly. Error handling -------------- When the default error handler is used, any error detected inside the JPEG routines will cause a message to be printed on stderr, followed by exit(). You can supply your own error handling routines to override this behavior and to control the treatment of nonfatal warnings and trace/debug messages. The file example.c illustrates the most common case, which is to have the application regain control after an error rather than exiting. The JPEG library never writes any message directly; it always goes through the error handling routines. Three classes of messages are recognized: * Fatal errors: the library cannot continue. * Warnings: the library can continue, but the data is corrupt, and a damaged output image is likely to result. * Trace/informational messages. These come with a trace level indicating the importance of the message; you can control the verbosity of the program by adjusting the maximum trace level that will be displayed. You may, if you wish, simply replace the entire JPEG error handling module (jerror.c) with your own code. However, you can avoid code duplication by only replacing some of the routines depending on the behavior you need. This is accomplished by calling jpeg_std_error() as usual, but then overriding some of the method pointers in the jpeg_error_mgr struct, as illustrated by example.c. All of the error handling routines will receive a pointer to the JPEG object (a j_common_ptr which points to either a jpeg_compress_struct or a jpeg_decompress_struct; if you need to tell which, test the is_decompressor field). This struct includes a pointer to the error manager struct in its "err" field. Frequently, custom error handler routines will need to access additional data which is not known to the JPEG library or the standard error handler. The most convenient way to do this is to embed either the JPEG object or the jpeg_error_mgr struct in a larger structure that contains additional fields; then casting the passed pointer provides access to the additional fields. Again, see example.c for one way to do it. (Beginning with IJG version 6b, there is also a void pointer "client_data" in each JPEG object, which the application can also use to find related data. The library does not touch client_data at all.) The individual methods that you might wish to override are: error_exit (j_common_ptr cinfo) Receives control for a fatal error. Information sufficient to generate the error message has been stored in cinfo->err; call output_message to display it. Control must NOT return to the caller; generally this routine will exit() or longjmp() somewhere. Typically you would override this routine to get rid of the exit() default behavior. Note that if you continue processing, you should clean up the JPEG object with jpeg_abort() or jpeg_destroy(). output_message (j_common_ptr cinfo) Actual output of any JPEG message. Override this to send messages somewhere other than stderr. Note that this method does not know how to generate a message, only where to send it. format_message (j_common_ptr cinfo, char * buffer) Constructs a readable error message string based on the error info stored in cinfo->err. This method is called by output_message. Few applications should need to override this method. One possible reason for doing so is to implement dynamic switching of error message language. emit_message (j_common_ptr cinfo, int msg_level) Decide whether or not to emit a warning or trace message; if so, calls output_message. The main reason for overriding this method would be to abort on warnings. msg_level is -1 for warnings, 0 and up for trace messages. Only error_exit() and emit_message() are called from the rest of the JPEG library; the other two are internal to the error handler. The actual message texts are stored in an array of strings which is pointed to by the field err->jpeg_message_table. The messages are numbered from 0 to err->last_jpeg_message, and it is these code numbers that are used in the JPEG library code. You could replace the message texts (for instance, with messages in French or German) by changing the message table pointer. See jerror.h for the default texts. CAUTION: this table will almost certainly change or grow from one library version to the next. It may be useful for an application to add its own message texts that are handled by the same mechanism. The error handler supports a second "add-on" message table for this purpose. To define an addon table, set the pointer err->addon_message_table and the message numbers err->first_addon_message and err->last_addon_message. If you number the addon messages beginning at 1000 or so, you won't have to worry about conflicts with the library's built-in messages. See the sample applications cjpeg/djpeg for an example of using addon messages (the addon messages are defined in cderror.h). Actual invocation of the error handler is done via macros defined in jerror.h: ERREXITn(...) for fatal errors WARNMSn(...) for corrupt-data warnings TRACEMSn(...) for trace and informational messages. These macros store the message code and any additional parameters into the error handler struct, then invoke the error_exit() or emit_message() method. The variants of each macro are for varying numbers of additional parameters. The additional parameters are inserted into the generated message using standard printf() format codes. See jerror.h and jerror.c for further details. Compressed data handling (source and destination managers) ---------------------------------------------------------- The JPEG compression library sends its compressed data to a "destination manager" module. The default destination manager just writes the data to a memory buffer or to a stdio stream, but you can provide your own manager to do something else. Similarly, the decompression library calls a "source manager" to obtain the compressed data; you can provide your own source manager if you want the data to come from somewhere other than a memory buffer or a stdio stream. In both cases, compressed data is processed a bufferload at a time: the destination or source manager provides a work buffer, and the library invokes the manager only when the buffer is filled or emptied. (You could define a one-character buffer to force the manager to be invoked for each byte, but that would be rather inefficient.) The buffer's size and location are controlled by the manager, not by the library. For example, the memory source manager just makes the buffer pointer and length point to the original data in memory. In this case the buffer-reload procedure will be invoked only if the decompressor ran off the end of the datastream, which would indicate an erroneous datastream. The work buffer is defined as an array of datatype JOCTET, which is generally "char" or "unsigned char". On a machine where char is not exactly 8 bits wide, you must define JOCTET as a wider data type and then modify the data source and destination modules to transcribe the work arrays into 8-bit units on external storage. A data destination manager struct contains a pointer and count defining the next byte to write in the work buffer and the remaining free space: JOCTET * next_output_byte; /* => next byte to write in buffer */ size_t free_in_buffer; /* # of byte spaces remaining in buffer */ The library increments the pointer and decrements the count until the buffer is filled. The manager's empty_output_buffer method must reset the pointer and count. The manager is expected to remember the buffer's starting address and total size in private fields not visible to the library. A data destination manager provides three methods: init_destination (j_compress_ptr cinfo) Initialize destination. This is called by jpeg_start_compress() before any data is actually written. It must initialize next_output_byte and free_in_buffer. free_in_buffer must be initialized to a positive value. empty_output_buffer (j_compress_ptr cinfo) This is called whenever the buffer has filled (free_in_buffer reaches zero). In typical applications, it should write out the *entire* buffer (use the saved start address and buffer length; ignore the current state of next_output_byte and free_in_buffer). Then reset the pointer & count to the start of the buffer, and return TRUE indicating that the buffer has been dumped. free_in_buffer must be set to a positive value when TRUE is returned. A FALSE return should only be used when I/O suspension is desired (this operating mode is discussed in the next section). term_destination (j_compress_ptr cinfo) Terminate destination --- called by jpeg_finish_compress() after all data has been written. In most applications, this must flush any data remaining in the buffer. Use either next_output_byte or free_in_buffer to determine how much data is in the buffer. term_destination() is NOT called by jpeg_abort() or jpeg_destroy(). If you want the destination manager to be cleaned up during an abort, you must do it yourself. You will also need code to create a jpeg_destination_mgr struct, fill in its method pointers, and insert a pointer to the struct into the "dest" field of the JPEG compression object. This can be done in-line in your setup code if you like, but it's probably cleaner to provide a separate routine similar to the jpeg_stdio_dest() or jpeg_mem_dest() routines of the supplied destination managers. Decompression source managers follow a parallel design, but with some additional frammishes. The source manager struct contains a pointer and count defining the next byte to read from the work buffer and the number of bytes remaining: const JOCTET * next_input_byte; /* => next byte to read from buffer */ size_t bytes_in_buffer; /* # of bytes remaining in buffer */ The library increments the pointer and decrements the count until the buffer is emptied. The manager's fill_input_buffer method must reset the pointer and count. In most applications, the manager must remember the buffer's starting address and total size in private fields not visible to the library. A data source manager provides five methods: init_source (j_decompress_ptr cinfo) Initialize source. This is called by jpeg_read_header() before any data is actually read. Unlike init_destination(), it may leave bytes_in_buffer set to 0 (in which case a fill_input_buffer() call will occur immediately). fill_input_buffer (j_decompress_ptr cinfo) This is called whenever bytes_in_buffer has reached zero and more data is wanted. In typical applications, it should read fresh data into the buffer (ignoring the current state of next_input_byte and bytes_in_buffer), reset the pointer & count to the start of the buffer, and return TRUE indicating that the buffer has been reloaded. It is not necessary to fill the buffer entirely, only to obtain at least one more byte. bytes_in_buffer MUST be set to a positive value if TRUE is returned. A FALSE return should only be used when I/O suspension is desired (this mode is discussed in the next section). skip_input_data (j_decompress_ptr cinfo, long num_bytes) Skip num_bytes worth of data. The buffer pointer and count should be advanced over num_bytes input bytes, refilling the buffer as needed. This is used to skip over a potentially large amount of uninteresting data (such as an APPn marker). In some applications it may be possible to optimize away the reading of the skipped data, but it's not clear that being smart is worth much trouble; large skips are uncommon. bytes_in_buffer may be zero on return. A zero or negative skip count should be treated as a no-op. resync_to_restart (j_decompress_ptr cinfo, int desired) This routine is called only when the decompressor has failed to find a restart (RSTn) marker where one is expected. Its mission is to find a suitable point for resuming decompression. For most applications, we recommend that you just use the default resync procedure, jpeg_resync_to_restart(). However, if you are able to back up in the input data stream, or if you have a-priori knowledge about the likely location of restart markers, you may be able to do better. Read the read_restart_marker() and jpeg_resync_to_restart() routines in jdmarker.c if you think you'd like to implement your own resync procedure. term_source (j_decompress_ptr cinfo) Terminate source --- called by jpeg_finish_decompress() after all data has been read. Often a no-op. For both fill_input_buffer() and skip_input_data(), there is no such thing as an EOF return. If the end of the file has been reached, the routine has a choice of exiting via ERREXIT() or inserting fake data into the buffer. In most cases, generating a warning message and inserting a fake EOI marker is the best course of action --- this will allow the decompressor to output however much of the image is there. In pathological cases, the decompressor may swallow the EOI and again demand data ... just keep feeding it fake EOIs. jdatasrc.c illustrates the recommended error recovery behavior. term_source() is NOT called by jpeg_abort() or jpeg_destroy(). If you want the source manager to be cleaned up during an abort, you must do it yourself. You will also need code to create a jpeg_source_mgr struct, fill in its method pointers, and insert a pointer to the struct into the "src" field of the JPEG decompression object. This can be done in-line in your setup code if you like, but it's probably cleaner to provide a separate routine similar to the jpeg_stdio_src() or jpeg_mem_src() routines of the supplied source managers. For more information, consult the memory and stdio source and destination managers in jdatasrc.c and jdatadst.c. I/O suspension -------------- Some applications need to use the JPEG library as an incremental memory-to- memory filter: when the compressed data buffer is filled or emptied, they want control to return to the outer loop, rather than expecting that the buffer can be emptied or reloaded within the data source/destination manager subroutine. The library supports this need by providing an "I/O suspension" mode, which we describe in this section. The I/O suspension mode is not a panacea: nothing is guaranteed about the maximum amount of time spent in any one call to the library, so it will not eliminate response-time problems in single-threaded applications. If you need guaranteed response time, we suggest you "bite the bullet" and implement a real multi-tasking capability. To use I/O suspension, cooperation is needed between the calling application and the data source or destination manager; you will always need a custom source/destination manager. (Please read the previous section if you haven't already.) The basic idea is that the empty_output_buffer() or fill_input_buffer() routine is a no-op, merely returning FALSE to indicate that it has done nothing. Upon seeing this, the JPEG library suspends operation and returns to its caller. The surrounding application is responsible for emptying or refilling the work buffer before calling the JPEG library again. Compression suspension: For compression suspension, use an empty_output_buffer() routine that returns FALSE; typically it will not do anything else. This will cause the compressor to return to the caller of jpeg_write_scanlines(), with the return value indicating that not all the supplied scanlines have been accepted. The application must make more room in the output buffer, adjust the output buffer pointer/count appropriately, and then call jpeg_write_scanlines() again, pointing to the first unconsumed scanline. When forced to suspend, the compressor will backtrack to a convenient stopping point (usually the start of the current MCU); it will regenerate some output data when restarted. Therefore, although empty_output_buffer() is only called when the buffer is filled, you should NOT write out the entire buffer after a suspension. Write only the data up to the current position of next_output_byte/free_in_buffer. The data beyond that point will be regenerated after resumption. Because of the backtracking behavior, a good-size output buffer is essential for efficiency; you don't want the compressor to suspend often. (In fact, an overly small buffer could lead to infinite looping, if a single MCU required more data than would fit in the buffer.) We recommend a buffer of at least several Kbytes. You may want to insert explicit code to ensure that you don't call jpeg_write_scanlines() unless there is a reasonable amount of space in the output buffer; in other words, flush the buffer before trying to compress more data. The compressor does not allow suspension while it is trying to write JPEG markers at the beginning and end of the file. This means that: * At the beginning of a compression operation, there must be enough free space in the output buffer to hold the header markers (typically 600 or so bytes). The recommended buffer size is bigger than this anyway, so this is not a problem as long as you start with an empty buffer. However, this restriction might catch you if you insert large special markers, such as a JFIF thumbnail image, without flushing the buffer afterwards. * When you call jpeg_finish_compress(), there must be enough space in the output buffer to emit any buffered data and the final EOI marker. In the current implementation, half a dozen bytes should suffice for this, but for safety's sake we recommend ensuring that at least 100 bytes are free before calling jpeg_finish_compress(). A more significant restriction is that jpeg_finish_compress() cannot suspend. This means you cannot use suspension with multi-pass operating modes, namely Huffman code optimization and multiple-scan output. Those modes write the whole file during jpeg_finish_compress(), which will certainly result in buffer overrun. (Note that this restriction applies only to compression, not decompression. The decompressor supports input suspension in all of its operating modes.) Decompression suspension: For decompression suspension, use a fill_input_buffer() routine that simply returns FALSE (except perhaps during error recovery, as discussed below). This will cause the decompressor to return to its caller with an indication that suspension has occurred. This can happen at four places: * jpeg_read_header(): will return JPEG_SUSPENDED. * jpeg_start_decompress(): will return FALSE, rather than its usual TRUE. * jpeg_read_scanlines(): will return the number of scanlines already completed (possibly 0). * jpeg_finish_decompress(): will return FALSE, rather than its usual TRUE. The surrounding application must recognize these cases, load more data into the input buffer, and repeat the call. In the case of jpeg_read_scanlines(), increment the passed pointers past any scanlines successfully read. Just as with compression, the decompressor will typically backtrack to a convenient restart point before suspending. When fill_input_buffer() is called, next_input_byte/bytes_in_buffer point to the current restart point, which is where the decompressor will backtrack to if FALSE is returned. The data beyond that position must NOT be discarded if you suspend; it needs to be re-read upon resumption. In most implementations, you'll need to shift this data down to the start of your work buffer and then load more data after it. Again, this behavior means that a several-Kbyte work buffer is essential for decent performance; furthermore, you should load a reasonable amount of new data before resuming decompression. (If you loaded, say, only one new byte each time around, you could waste a LOT of cycles.) The skip_input_data() source manager routine requires special care in a suspension scenario. This routine is NOT granted the ability to suspend the decompressor; it can decrement bytes_in_buffer to zero, but no more. If the requested skip distance exceeds the amount of data currently in the input buffer, then skip_input_data() must set bytes_in_buffer to zero and record the additional skip distance somewhere else. The decompressor will immediately call fill_input_buffer(), which should return FALSE, which will cause a suspension return. The surrounding application must then arrange to discard the recorded number of bytes before it resumes loading the input buffer. (Yes, this design is rather baroque, but it avoids complexity in the far more common case where a non-suspending source manager is used.) If the input data has been exhausted, we recommend that you emit a warning and insert dummy EOI markers just as a non-suspending data source manager would do. This can be handled either in the surrounding application logic or within fill_input_buffer(); the latter is probably more efficient. If fill_input_buffer() knows that no more data is available, it can set the pointer/count to point to a dummy EOI marker and then return TRUE just as though it had read more data in a non-suspending situation. The decompressor does not attempt to suspend within standard JPEG markers; instead it will backtrack to the start of the marker and reprocess the whole marker next time. Hence the input buffer must be large enough to hold the longest standard marker in the file. Standard JPEG markers should normally not exceed a few hundred bytes each (DHT tables are typically the longest). We recommend at least a 2K buffer for performance reasons, which is much larger than any correct marker is likely to be. For robustness against damaged marker length counts, you may wish to insert a test in your application for the case that the input buffer is completely full and yet the decoder has suspended without consuming any data --- otherwise, if this situation did occur, it would lead to an endless loop. (The library can't provide this test since it has no idea whether "the buffer is full", or even whether there is a fixed-size input buffer.) The input buffer would need to be 64K to allow for arbitrary COM or APPn markers, but these are handled specially: they are either saved into allocated memory, or skipped over by calling skip_input_data(). In the former case, suspension is handled correctly, and in the latter case, the problem of buffer overrun is placed on skip_input_data's shoulders, as explained above. Note that if you provide your own marker handling routine for large markers, you should consider how to deal with buffer overflow. Multiple-buffer management: In some applications it is desirable to store the compressed data in a linked list of buffer areas, so as to avoid data copying. This can be handled by having empty_output_buffer() or fill_input_buffer() set the pointer and count to reference the next available buffer; FALSE is returned only if no more buffers are available. Although seemingly straightforward, there is a pitfall in this approach: the backtrack that occurs when FALSE is returned could back up into an earlier buffer. For example, when fill_input_buffer() is called, the current pointer & count indicate the backtrack restart point. Since fill_input_buffer() will set the pointer and count to refer to a new buffer, the restart position must be saved somewhere else. Suppose a second call to fill_input_buffer() occurs in the same library call, and no additional input data is available, so fill_input_buffer must return FALSE. If the JPEG library has not moved the pointer/count forward in the current buffer, then *the correct restart point is the saved position in the prior buffer*. Prior buffers may be discarded only after the library establishes a restart point within a later buffer. Similar remarks apply for output into a chain of buffers. The library will never attempt to backtrack over a skip_input_data() call, so any skipped data can be permanently discarded. You still have to deal with the case of skipping not-yet-received data, however. It's much simpler to use only a single buffer; when fill_input_buffer() is called, move any unconsumed data (beyond the current pointer/count) down to the beginning of this buffer and then load new data into the remaining buffer space. This approach requires a little more data copying but is far easier to get right. Progressive JPEG support ------------------------ Progressive JPEG rearranges the stored data into a series of scans of increasing quality. In situations where a JPEG file is transmitted across a slow communications link, a decoder can generate a low-quality image very quickly from the first scan, then gradually improve the displayed quality as more scans are received. The final image after all scans are complete is identical to that of a regular (sequential) JPEG file of the same quality setting. Progressive JPEG files are often slightly smaller than equivalent sequential JPEG files, but the possibility of incremental display is the main reason for using progressive JPEG. The IJG encoder library generates progressive JPEG files when given a suitable "scan script" defining how to divide the data into scans. Creation of progressive JPEG files is otherwise transparent to the encoder. Progressive JPEG files can also be read transparently by the decoder library. If the decoding application simply uses the library as defined above, it will receive a final decoded image without any indication that the file was progressive. Of course, this approach does not allow incremental display. To perform incremental display, an application needs to use the decoder library's "buffered-image" mode, in which it receives a decoded image multiple times. Each displayed scan requires about as much work to decode as a full JPEG image of the same size, so the decoder must be fairly fast in relation to the data transmission rate in order to make incremental display useful. However, it is possible to skip displaying the image and simply add the incoming bits to the decoder's coefficient buffer. This is fast because only Huffman decoding need be done, not IDCT, upsampling, colorspace conversion, etc. The IJG decoder library allows the application to switch dynamically between displaying the image and simply absorbing the incoming bits. A properly coded application can automatically adapt the number of display passes to suit the time available as the image is received. Also, a final higher-quality display cycle can be performed from the buffered data after the end of the file is reached. Progressive compression: To create a progressive JPEG file (or a multiple-scan sequential JPEG file), set the scan_info cinfo field to point to an array of scan descriptors, and perform compression as usual. Instead of constructing your own scan list, you can call the jpeg_simple_progression() helper routine to create a recommended progression sequence; this method should be used by all applications that don't want to get involved in the nitty-gritty of progressive scan sequence design. (If you want to provide user control of scan sequences, you may wish to borrow the scan script reading code found in rdswitch.c, so that you can read scan script files just like cjpeg's.) When scan_info is not NULL, the compression library will store DCT'd data into a buffer array as jpeg_write_scanlines() is called, and will emit all the requested scans during jpeg_finish_compress(). This implies that multiple-scan output cannot be created with a suspending data destination manager, since jpeg_finish_compress() does not support suspension. We should also note that the compressor currently forces Huffman optimization mode when creating a progressive JPEG file, because the default Huffman tables are unsuitable for progressive files. Progressive decompression: When buffered-image mode is not used, the decoder library will read all of a multi-scan file during jpeg_start_decompress(), so that it can provide a final decoded image. (Here "multi-scan" means either progressive or multi-scan sequential.) This makes multi-scan files transparent to the decoding application. However, existing applications that used suspending input with version 5 of the IJG library will need to be modified to check for a suspension return from jpeg_start_decompress(). To perform incremental display, an application must use the library's buffered-image mode. This is described in the next section. Buffered-image mode ------------------- In buffered-image mode, the library stores the partially decoded image in a coefficient buffer, from which it can be read out as many times as desired. This mode is typically used for incremental display of progressive JPEG files, but it can be used with any JPEG file. Each scan of a progressive JPEG file adds more data (more detail) to the buffered image. The application can display in lockstep with the source file (one display pass per input scan), or it can allow input processing to outrun display processing. By making input and display processing run independently, it is possible for the application to adapt progressive display to a wide range of data transmission rates. The basic control flow for buffered-image decoding is jpeg_create_decompress() set data source jpeg_read_header() set overall decompression parameters cinfo.buffered_image = TRUE; /* select buffered-image mode */ jpeg_start_decompress() for (each output pass) { adjust output decompression parameters if required jpeg_start_output() /* start a new output pass */ for (all scanlines in image) { jpeg_read_scanlines() display scanlines } jpeg_finish_output() /* terminate output pass */ } jpeg_finish_decompress() jpeg_destroy_decompress() This differs from ordinary unbuffered decoding in that there is an additional level of looping. The application can choose how many output passes to make and how to display each pass. The simplest approach to displaying progressive images is to do one display pass for each scan appearing in the input file. In this case the outer loop condition is typically while (! jpeg_input_complete(&cinfo)) and the start-output call should read jpeg_start_output(&cinfo, cinfo.input_scan_number); The second parameter to jpeg_start_output() indicates which scan of the input file is to be displayed; the scans are numbered starting at 1 for this purpose. (You can use a loop counter starting at 1 if you like, but using the library's input scan counter is easier.) The library automatically reads data as necessary to complete each requested scan, and jpeg_finish_output() advances to the next scan or end-of-image marker (hence input_scan_number will be incremented by the time control arrives back at jpeg_start_output()). With this technique, data is read from the input file only as needed, and input and output processing run in lockstep. After reading the final scan and reaching the end of the input file, the buffered image remains available; it can be read additional times by repeating the jpeg_start_output()/jpeg_read_scanlines()/jpeg_finish_output() sequence. For example, a useful technique is to use fast one-pass color quantization for display passes made while the image is arriving, followed by a final display pass using two-pass quantization for highest quality. This is done by changing the library parameters before the final output pass. Changing parameters between passes is discussed in detail below. In general the last scan of a progressive file cannot be recognized as such until after it is read, so a post-input display pass is the best approach if you want special processing in the final pass. When done with the image, be sure to call jpeg_finish_decompress() to release the buffered image (or just use jpeg_destroy_decompress()). If input data arrives faster than it can be displayed, the application can cause the library to decode input data in advance of what's needed to produce output. This is done by calling the routine jpeg_consume_input(). The return value is one of the following: JPEG_REACHED_SOS: reached an SOS marker (the start of a new scan) JPEG_REACHED_EOI: reached the EOI marker (end of image) JPEG_ROW_COMPLETED: completed reading one MCU row of compressed data JPEG_SCAN_COMPLETED: completed reading last MCU row of current scan JPEG_SUSPENDED: suspended before completing any of the above (JPEG_SUSPENDED can occur only if a suspending data source is used.) This routine can be called at any time after initializing the JPEG object. It reads some additional data and returns when one of the indicated significant events occurs. (If called after the EOI marker is reached, it will immediately return JPEG_REACHED_EOI without attempting to read more data.) The library's output processing will automatically call jpeg_consume_input() whenever the output processing overtakes the input; thus, simple lockstep display requires no direct calls to jpeg_consume_input(). But by adding calls to jpeg_consume_input(), you can absorb data in advance of what is being displayed. This has two benefits: * You can limit buildup of unprocessed data in your input buffer. * You can eliminate extra display passes by paying attention to the state of the library's input processing. The first of these benefits only requires interspersing calls to jpeg_consume_input() with your display operations and any other processing you may be doing. To avoid wasting cycles due to backtracking, it's best to call jpeg_consume_input() only after a hundred or so new bytes have arrived. This is discussed further under "I/O suspension", above. (Note: the JPEG library currently is not thread-safe. You must not call jpeg_consume_input() from one thread of control if a different library routine is working on the same JPEG object in another thread.) When input arrives fast enough that more than one new scan is available before you start a new output pass, you may as well skip the output pass corresponding to the completed scan. This occurs for free if you pass cinfo.input_scan_number as the target scan number to jpeg_start_output(). The input_scan_number field is simply the index of the scan currently being consumed by the input processor. You can ensure that this is up-to-date by emptying the input buffer just before calling jpeg_start_output(): call jpeg_consume_input() repeatedly until it returns JPEG_SUSPENDED or JPEG_REACHED_EOI. The target scan number passed to jpeg_start_output() is saved in the cinfo.output_scan_number field. The library's output processing calls jpeg_consume_input() whenever the current input scan number and row within that scan is less than or equal to the current output scan number and row. Thus, input processing can "get ahead" of the output processing but is not allowed to "fall behind". You can achieve several different effects by manipulating this interlock rule. For example, if you pass a target scan number greater than the current input scan number, the output processor will wait until that scan starts to arrive before producing any output. (To avoid an infinite loop, the target scan number is automatically reset to the last scan number when the end of image is reached. Thus, if you specify a large target scan number, the library will just absorb the entire input file and then perform an output pass. This is effectively the same as what jpeg_start_decompress() does when you don't select buffered-image mode.) When you pass a target scan number equal to the current input scan number, the image is displayed no faster than the current input scan arrives. The final possibility is to pass a target scan number less than the current input scan number; this disables the input/output interlock and causes the output processor to simply display whatever it finds in the image buffer, without waiting for input. (However, the library will not accept a target scan number less than one, so you can't avoid waiting for the first scan.) When data is arriving faster than the output display processing can advance through the image, jpeg_consume_input() will store data into the buffered image beyond the point at which the output processing is reading data out again. If the input arrives fast enough, it may "wrap around" the buffer to the point where the input is more than one whole scan ahead of the output. If the output processing simply proceeds through its display pass without paying attention to the input, the effect seen on-screen is that the lower part of the image is one or more scans better in quality than the upper part. Then, when the next output scan is started, you have a choice of what target scan number to use. The recommended choice is to use the current input scan number at that time, which implies that you've skipped the output scans corresponding to the input scans that were completed while you processed the previous output scan. In this way, the decoder automatically adapts its speed to the arriving data, by skipping output scans as necessary to keep up with the arriving data. When using this strategy, you'll want to be sure that you perform a final output pass after receiving all the data; otherwise your last display may not be full quality across the whole screen. So the right outer loop logic is something like this: do { absorb any waiting input by calling jpeg_consume_input() final_pass = jpeg_input_complete(&cinfo); adjust output decompression parameters if required jpeg_start_output(&cinfo, cinfo.input_scan_number); ... jpeg_finish_output() } while (! final_pass); rather than quitting as soon as jpeg_input_complete() returns TRUE. This arrangement makes it simple to use higher-quality decoding parameters for the final pass. But if you don't want to use special parameters for the final pass, the right loop logic is like this: for (;;) { absorb any waiting input by calling jpeg_consume_input() jpeg_start_output(&cinfo, cinfo.input_scan_number); ... jpeg_finish_output() if (jpeg_input_complete(&cinfo) && cinfo.input_scan_number == cinfo.output_scan_number) break; } In this case you don't need to know in advance whether an output pass is to be the last one, so it's not necessary to have reached EOF before starting the final output pass; rather, what you want to test is whether the output pass was performed in sync with the final input scan. This form of the loop will avoid an extra output pass whenever the decoder is able (or nearly able) to keep up with the incoming data. When the data transmission speed is high, you might begin a display pass, then find that much or all of the file has arrived before you can complete the pass. (You can detect this by noting the JPEG_REACHED_EOI return code from jpeg_consume_input(), or equivalently by testing jpeg_input_complete().) In this situation you may wish to abort the current display pass and start a new one using the newly arrived information. To do so, just call jpeg_finish_output() and then start a new pass with jpeg_start_output(). A variant strategy is to abort and restart display if more than one complete scan arrives during an output pass; this can be detected by noting JPEG_REACHED_SOS returns and/or examining cinfo.input_scan_number. This idea should be employed with caution, however, since the display process might never get to the bottom of the image before being aborted, resulting in the lower part of the screen being several passes worse than the upper. In most cases it's probably best to abort an output pass only if the whole file has arrived and you want to begin the final output pass immediately. When receiving data across a communication link, we recommend always using the current input scan number for the output target scan number; if a higher-quality final pass is to be done, it should be started (aborting any incomplete output pass) as soon as the end of file is received. However, many other strategies are possible. For example, the application can examine the parameters of the current input scan and decide whether to display it or not. If the scan contains only chroma data, one might choose not to use it as the target scan, expecting that the scan will be small and will arrive quickly. To skip to the next scan, call jpeg_consume_input() until it returns JPEG_REACHED_SOS or JPEG_REACHED_EOI. Or just use the next higher number as the target scan for jpeg_start_output(); but that method doesn't let you inspect the next scan's parameters before deciding to display it. In buffered-image mode, jpeg_start_decompress() never performs input and thus never suspends. An application that uses input suspension with buffered-image mode must be prepared for suspension returns from these routines: * jpeg_start_output() performs input only if you request 2-pass quantization and the target scan isn't fully read yet. (This is discussed below.) * jpeg_read_scanlines(), as always, returns the number of scanlines that it was able to produce before suspending. * jpeg_finish_output() will read any markers following the target scan, up to the end of the file or the SOS marker that begins another scan. (But it reads no input if jpeg_consume_input() has already reached the end of the file or a SOS marker beyond the target output scan.) * jpeg_finish_decompress() will read until the end of file, and thus can suspend if the end hasn't already been reached (as can be tested by calling jpeg_input_complete()). jpeg_start_output(), jpeg_finish_output(), and jpeg_finish_decompress() all return TRUE if they completed their tasks, FALSE if they had to suspend. In the event of a FALSE return, the application must load more input data and repeat the call. Applications that use non-suspending data sources need not check the return values of these three routines. It is possible to change decoding parameters between output passes in the buffered-image mode. The decoder library currently supports only very limited changes of parameters. ONLY THE FOLLOWING parameter changes are allowed after jpeg_start_decompress() is called: * dct_method can be changed before each call to jpeg_start_output(). For example, one could use a fast DCT method for early scans, changing to a higher quality method for the final scan. * dither_mode can be changed before each call to jpeg_start_output(); of course this has no impact if not using color quantization. Typically one would use ordered dither for initial passes, then switch to Floyd-Steinberg dither for the final pass. Caution: changing dither mode can cause more memory to be allocated by the library. Although the amount of memory involved is not large (a scanline or so), it may cause the initial max_memory_to_use specification to be exceeded, which in the worst case would result in an out-of-memory failure. * do_block_smoothing can be changed before each call to jpeg_start_output(). This setting is relevant only when decoding a progressive JPEG image. During the first DC-only scan, block smoothing provides a very "fuzzy" look instead of the very "blocky" look seen without it; which is better seems a matter of personal taste. But block smoothing is nearly always a win during later stages, especially when decoding a successive-approximation image: smoothing helps to hide the slight blockiness that otherwise shows up on smooth gradients until the lowest coefficient bits are sent. * Color quantization mode can be changed under the rules described below. You *cannot* change between full-color and quantized output (because that would alter the required I/O buffer sizes), but you can change which quantization method is used. When generating color-quantized output, changing quantization method is a very useful way of switching between high-speed and high-quality display. The library allows you to change among its three quantization methods: 1. Single-pass quantization to a fixed color cube. Selected by cinfo.two_pass_quantize = FALSE and cinfo.colormap = NULL. 2. Single-pass quantization to an application-supplied colormap. Selected by setting cinfo.colormap to point to the colormap (the value of two_pass_quantize is ignored); also set cinfo.actual_number_of_colors. 3. Two-pass quantization to a colormap chosen specifically for the image. Selected by cinfo.two_pass_quantize = TRUE and cinfo.colormap = NULL. (This is the default setting selected by jpeg_read_header, but it is probably NOT what you want for the first pass of progressive display!) These methods offer successively better quality and lesser speed. However, only the first method is available for quantizing in non-RGB color spaces. IMPORTANT: because the different quantizer methods have very different working-storage requirements, the library requires you to indicate which one(s) you intend to use before you call jpeg_start_decompress(). (If we did not require this, the max_memory_to_use setting would be a complete fiction.) You do this by setting one or more of these three cinfo fields to TRUE: enable_1pass_quant Fixed color cube colormap enable_external_quant Externally-supplied colormap enable_2pass_quant Two-pass custom colormap All three are initialized FALSE by jpeg_read_header(). But jpeg_start_decompress() automatically sets TRUE the one selected by the current two_pass_quantize and colormap settings, so you only need to set the enable flags for any other quantization methods you plan to change to later. After setting the enable flags correctly at jpeg_start_decompress() time, you can change to any enabled quantization method by setting two_pass_quantize and colormap properly just before calling jpeg_start_output(). The following special rules apply: 1. You must explicitly set cinfo.colormap to NULL when switching to 1-pass or 2-pass mode from a different mode, or when you want the 2-pass quantizer to be re-run to generate a new colormap. 2. To switch to an external colormap, or to change to a different external colormap than was used on the prior pass, you must call jpeg_new_colormap() after setting cinfo.colormap. NOTE: if you want to use the same colormap as was used in the prior pass, you should not do either of these things. This will save some nontrivial switchover costs. (These requirements exist because cinfo.colormap will always be non-NULL after completing a prior output pass, since both the 1-pass and 2-pass quantizers set it to point to their output colormaps. Thus you have to do one of these two things to notify the library that something has changed. Yup, it's a bit klugy, but it's necessary to do it this way for backwards compatibility.) Note that in buffered-image mode, the library generates any requested colormap during jpeg_start_output(), not during jpeg_start_decompress(). When using two-pass quantization, jpeg_start_output() makes a pass over the buffered image to determine the optimum color map; it therefore may take a significant amount of time, whereas ordinarily it does little work. The progress monitor hook is called during this pass, if defined. It is also important to realize that if the specified target scan number is greater than or equal to the current input scan number, jpeg_start_output() will attempt to consume input as it makes this pass. If you use a suspending data source, you need to check for a FALSE return from jpeg_start_output() under these conditions. The combination of 2-pass quantization and a not-yet-fully-read target scan is the only case in which jpeg_start_output() will consume input. Application authors who support buffered-image mode may be tempted to use it for all JPEG images, even single-scan ones. This will work, but it is inefficient: there is no need to create an image-sized coefficient buffer for single-scan images. Requesting buffered-image mode for such an image wastes memory. Worse, it can cost time on large images, since the buffered data has to be swapped out or written to a temporary file. If you are concerned about maximum performance on baseline JPEG files, you should use buffered-image mode only when the incoming file actually has multiple scans. This can be tested by calling jpeg_has_multiple_scans(), which will return a correct result at any time after jpeg_read_header() completes. It is also worth noting that when you use jpeg_consume_input() to let input processing get ahead of output processing, the resulting pattern of access to the coefficient buffer is quite nonsequential. It's best to use the memory manager jmemnobs.c if you can (ie, if you have enough real or virtual main memory). If not, at least make sure that max_memory_to_use is set as high as possible. If the JPEG memory manager has to use a temporary file, you will probably see a lot of disk traffic and poor performance. (This could be improved with additional work on the memory manager, but we haven't gotten around to it yet.) In some applications it may be convenient to use jpeg_consume_input() for all input processing, including reading the initial markers; that is, you may wish to call jpeg_consume_input() instead of jpeg_read_header() during startup. This works, but note that you must check for JPEG_REACHED_SOS and JPEG_REACHED_EOI return codes as the equivalent of jpeg_read_header's codes. Once the first SOS marker has been reached, you must call jpeg_start_decompress() before jpeg_consume_input() will consume more input; it'll just keep returning JPEG_REACHED_SOS until you do. If you read a tables-only file this way, jpeg_consume_input() will return JPEG_REACHED_EOI without ever returning JPEG_REACHED_SOS; be sure to check for this case. If this happens, the decompressor will not read any more input until you call jpeg_abort() to reset it. It is OK to call jpeg_consume_input() even when not using buffered-image mode, but in that case it's basically a no-op after the initial markers have been read: it will just return JPEG_SUSPENDED. Abbreviated datastreams and multiple images ------------------------------------------- A JPEG compression or decompression object can be reused to process multiple images. This saves a small amount of time per image by eliminating the "create" and "destroy" operations, but that isn't the real purpose of the feature. Rather, reuse of an object provides support for abbreviated JPEG datastreams. Object reuse can also simplify processing a series of images in a single input or output file. This section explains these features. A JPEG file normally contains several hundred bytes worth of quantization and Huffman tables. In a situation where many images will be stored or transmitted with identical tables, this may represent an annoying overhead. The JPEG standard therefore permits tables to be omitted. The standard defines three classes of JPEG datastreams: * "Interchange" datastreams contain an image and all tables needed to decode the image. These are the usual kind of JPEG file. * "Abbreviated image" datastreams contain an image, but are missing some or all of the tables needed to decode that image. * "Abbreviated table specification" (henceforth "tables-only") datastreams contain only table specifications. To decode an abbreviated image, it is necessary to load the missing table(s) into the decoder beforehand. This can be accomplished by reading a separate tables-only file. A variant scheme uses a series of images in which the first image is an interchange (complete) datastream, while subsequent ones are abbreviated and rely on the tables loaded by the first image. It is assumed that once the decoder has read a table, it will remember that table until a new definition for the same table number is encountered. It is the application designer's responsibility to figure out how to associate the correct tables with an abbreviated image. While abbreviated datastreams can be useful in a closed environment, their use is strongly discouraged in any situation where data exchange with other applications might be needed. Caveat designer. The JPEG library provides support for reading and writing any combination of tables-only datastreams and abbreviated images. In both compression and decompression objects, a quantization or Huffman table will be retained for the lifetime of the object, unless it is overwritten by a new table definition. To create abbreviated image datastreams, it is only necessary to tell the compressor not to emit some or all of the tables it is using. Each quantization and Huffman table struct contains a boolean field "sent_table", which normally is initialized to FALSE. For each table used by the image, the header-writing process emits the table and sets sent_table = TRUE unless it is already TRUE. (In normal usage, this prevents outputting the same table definition multiple times, as would otherwise occur because the chroma components typically share tables.) Thus, setting this field to TRUE before calling jpeg_start_compress() will prevent the table from being written at all. If you want to create a "pure" abbreviated image file containing no tables, just call "jpeg_suppress_tables(&cinfo, TRUE)" after constructing all the tables. If you want to emit some but not all tables, you'll need to set the individual sent_table fields directly. To create an abbreviated image, you must also call jpeg_start_compress() with a second parameter of FALSE, not TRUE. Otherwise jpeg_start_compress() will force all the sent_table fields to FALSE. (This is a safety feature to prevent abbreviated images from being created accidentally.) To create a tables-only file, perform the same parameter setup that you normally would, but instead of calling jpeg_start_compress() and so on, call jpeg_write_tables(&cinfo). This will write an abbreviated datastream containing only SOI, DQT and/or DHT markers, and EOI. All the quantization and Huffman tables that are currently defined in the compression object will be emitted unless their sent_tables flag is already TRUE, and then all the sent_tables flags will be set TRUE. A sure-fire way to create matching tables-only and abbreviated image files is to proceed as follows: create JPEG compression object set JPEG parameters set destination to tables-only file jpeg_write_tables(&cinfo); set destination to image file jpeg_start_compress(&cinfo, FALSE); write data... jpeg_finish_compress(&cinfo); Since the JPEG parameters are not altered between writing the table file and the abbreviated image file, the same tables are sure to be used. Of course, you can repeat the jpeg_start_compress() ... jpeg_finish_compress() sequence many times to produce many abbreviated image files matching the table file. You cannot suppress output of the computed Huffman tables when Huffman optimization is selected. (If you could, there'd be no way to decode the image...) Generally, you don't want to set optimize_coding = TRUE when you are trying to produce abbreviated files. In some cases you might want to compress an image using tables which are not stored in the application, but are defined in an interchange or tables-only file readable by the application. This can be done by setting up a JPEG decompression object to read the specification file, then copying the tables into your compression object. See jpeg_copy_critical_parameters() for an example of copying quantization tables. To read abbreviated image files, you simply need to load the proper tables into the decompression object before trying to read the abbreviated image. If the proper tables are stored in the application program, you can just allocate the table structs and fill in their contents directly. For example, to load a fixed quantization table into table slot "n": if (cinfo.quant_tbl_ptrs[n] == NULL) cinfo.quant_tbl_ptrs[n] = jpeg_alloc_quant_table((j_common_ptr) &cinfo); quant_ptr = cinfo.quant_tbl_ptrs[n]; /* quant_ptr is JQUANT_TBL* */ for (i = 0; i < 64; i++) { /* Qtable[] is desired quantization table, in natural array order */ quant_ptr->quantval[i] = Qtable[i]; } Code to load a fixed Huffman table is typically (for AC table "n"): if (cinfo.ac_huff_tbl_ptrs[n] == NULL) cinfo.ac_huff_tbl_ptrs[n] = jpeg_alloc_huff_table((j_common_ptr) &cinfo); huff_ptr = cinfo.ac_huff_tbl_ptrs[n]; /* huff_ptr is JHUFF_TBL* */ for (i = 1; i <= 16; i++) { /* counts[i] is number of Huffman codes of length i bits, i=1..16 */ huff_ptr->bits[i] = counts[i]; } for (i = 0; i < 256; i++) { /* symbols[] is the list of Huffman symbols, in code-length order */ huff_ptr->huffval[i] = symbols[i]; } (Note that trying to set cinfo.quant_tbl_ptrs[n] to point directly at a constant JQUANT_TBL object is not safe. If the incoming file happened to contain a quantization table definition, your master table would get overwritten! Instead allocate a working table copy and copy the master table into it, as illustrated above. Ditto for Huffman tables, of course.) You might want to read the tables from a tables-only file, rather than hard-wiring them into your application. The jpeg_read_header() call is sufficient to read a tables-only file. You must pass a second parameter of FALSE to indicate that you do not require an image to be present. Thus, the typical scenario is create JPEG decompression object set source to tables-only file jpeg_read_header(&cinfo, FALSE); set source to abbreviated image file jpeg_read_header(&cinfo, TRUE); set decompression parameters jpeg_start_decompress(&cinfo); read data... jpeg_finish_decompress(&cinfo); In some cases, you may want to read a file without knowing whether it contains an image or just tables. In that case, pass FALSE and check the return value from jpeg_read_header(): it will be JPEG_HEADER_OK if an image was found, JPEG_HEADER_TABLES_ONLY if only tables were found. (A third return value, JPEG_SUSPENDED, is possible when using a suspending data source manager.) Note that jpeg_read_header() will not complain if you read an abbreviated image for which you haven't loaded the missing tables; the missing-table check occurs later, in jpeg_start_decompress(). It is possible to read a series of images from a single source file by repeating the jpeg_read_header() ... jpeg_finish_decompress() sequence, without releasing/recreating the JPEG object or the data source module. (If you did reinitialize, any partial bufferload left in the data source buffer at the end of one image would be discarded, causing you to lose the start of the next image.) When you use this method, stored tables are automatically carried forward, so some of the images can be abbreviated images that depend on tables from earlier images. If you intend to write a series of images into a single destination file, you might want to make a specialized data destination module that doesn't flush the output buffer at term_destination() time. This would speed things up by some trifling amount. Of course, you'd need to remember to flush the buffer after the last image. You can make the later images be abbreviated ones by passing FALSE to jpeg_start_compress(). Special markers --------------- Some applications may need to insert or extract special data in the JPEG datastream. The JPEG standard provides marker types "COM" (comment) and "APP0" through "APP15" (application) to hold application-specific data. Unfortunately, the use of these markers is not specified by the standard. COM markers are fairly widely used to hold user-supplied text. The JFIF file format spec uses APP0 markers with specified initial strings to hold certain data. Adobe applications use APP14 markers beginning with the string "Adobe" for miscellaneous data. Other APPn markers are rarely seen, but might contain almost anything. If you wish to store user-supplied text, we recommend you use COM markers and place readable 7-bit ASCII text in them. Newline conventions are not standardized --- expect to find LF (Unix style), CR/LF (DOS style), or CR (Mac style). A robust COM reader should be able to cope with random binary garbage, including nulls, since some applications generate COM markers containing non-ASCII junk. (But yours should not be one of them.) For program-supplied data, use an APPn marker, and be sure to begin it with an identifying string so that you can tell whether the marker is actually yours. It's probably best to avoid using APP0 or APP14 for any private markers. (NOTE: the upcoming SPIFF standard will use APP8 markers; we recommend you not use APP8 markers for any private purposes, either.) Keep in mind that at most 65533 bytes can be put into one marker, but you can have as many markers as you like. By default, the IJG compression library will write a JFIF APP0 marker if the selected JPEG colorspace is grayscale or YCbCr, or an Adobe APP14 marker if the selected colorspace is RGB, CMYK, or YCCK. You can disable this, but we don't recommend it. The decompression library will recognize JFIF and Adobe markers and will set the JPEG colorspace properly when one is found. You can write special markers immediately following the datastream header by calling jpeg_write_marker() after jpeg_start_compress() and before the first call to jpeg_write_scanlines(). When you do this, the markers appear after the SOI and the JFIF APP0 and Adobe APP14 markers (if written), but before all else. Specify the marker type parameter as "JPEG_COM" for COM or "JPEG_APP0 + n" for APPn. (Actually, jpeg_write_marker will let you write any marker type, but we don't recommend writing any other kinds of marker.) For example, to write a user comment string pointed to by comment_text: jpeg_write_marker(cinfo, JPEG_COM, comment_text, strlen(comment_text)); If it's not convenient to store all the marker data in memory at once, you can instead call jpeg_write_m_header() followed by multiple calls to jpeg_write_m_byte(). If you do it this way, it's your responsibility to call jpeg_write_m_byte() exactly the number of times given in the length parameter to jpeg_write_m_header(). (This method lets you empty the output buffer partway through a marker, which might be important when using a suspending data destination module. In any case, if you are using a suspending destination, you should flush its buffer after inserting any special markers. See "I/O suspension".) Or, if you prefer to synthesize the marker byte sequence yourself, you can just cram it straight into the data destination module. If you are writing JFIF 1.02 extension markers (thumbnail images), don't forget to set cinfo.JFIF_minor_version = 2 so that the encoder will write the correct JFIF version number in the JFIF header marker. The library's default is to write version 1.01, but that's wrong if you insert any 1.02 extension markers. (We could probably get away with just defaulting to 1.02, but there used to be broken decoders that would complain about unknown minor version numbers. To reduce compatibility risks it's safest not to write 1.02 unless you are actually using 1.02 extensions.) When reading, two methods of handling special markers are available: 1. You can ask the library to save the contents of COM and/or APPn markers into memory, and then examine them at your leisure afterwards. 2. You can supply your own routine to process COM and/or APPn markers on-the-fly as they are read. The first method is simpler to use, especially if you are using a suspending data source; writing a marker processor that copes with input suspension is not easy (consider what happens if the marker is longer than your available input buffer). However, the second method conserves memory since the marker data need not be kept around after it's been processed. For either method, you'd normally set up marker handling after creating a decompression object and before calling jpeg_read_header(), because the markers of interest will typically be near the head of the file and so will be scanned by jpeg_read_header. Once you've established a marker handling method, it will be used for the life of that decompression object (potentially many datastreams), unless you change it. Marker handling is determined separately for COM markers and for each APPn marker code. To save the contents of special markers in memory, call jpeg_save_markers(cinfo, marker_code, length_limit) where marker_code is the marker type to save, JPEG_COM or JPEG_APP0+n. (To arrange to save all the special marker types, you need to call this routine 17 times, for COM and APP0-APP15.) If the incoming marker is longer than length_limit data bytes, only length_limit bytes will be saved; this parameter allows you to avoid chewing up memory when you only need to see the first few bytes of a potentially large marker. If you want to save all the data, set length_limit to 0xFFFF; that is enough since marker lengths are only 16 bits. As a special case, setting length_limit to 0 prevents that marker type from being saved at all. (That is the default behavior, in fact.) After jpeg_read_header() completes, you can examine the special markers by following the cinfo->marker_list pointer chain. All the special markers in the file appear in this list, in order of their occurrence in the file (but omitting any markers of types you didn't ask for). Both the original data length and the saved data length are recorded for each list entry; the latter will not exceed length_limit for the particular marker type. Note that these lengths exclude the marker length word, whereas the stored representation within the JPEG file includes it. (Hence the maximum data length is really only 65533.) It is possible that additional special markers appear in the file beyond the SOS marker at which jpeg_read_header stops; if so, the marker list will be extended during reading of the rest of the file. This is not expected to be common, however. If you are short on memory you may want to reset the length limit to zero for all marker types after finishing jpeg_read_header, to ensure that the max_memory_to_use setting cannot be exceeded due to addition of later markers. The marker list remains stored until you call jpeg_finish_decompress or jpeg_abort, at which point the memory is freed and the list is set to empty. (jpeg_destroy also releases the storage, of course.) Note that the library is internally interested in APP0 and APP14 markers; if you try to set a small nonzero length limit on these types, the library will silently force the length up to the minimum it wants. (But you can set a zero length limit to prevent them from being saved at all.) Also, in a 16-bit environment, the maximum length limit may be constrained to less than 65533 by malloc() limitations. It is therefore best not to assume that the effective length limit is exactly what you set it to be. If you want to supply your own marker-reading routine, you do it by calling jpeg_set_marker_processor(). A marker processor routine must have the signature boolean jpeg_marker_parser_method (j_decompress_ptr cinfo) Although the marker code is not explicitly passed, the routine can find it in cinfo->unread_marker. At the time of call, the marker proper has been read from the data source module. The processor routine is responsible for reading the marker length word and the remaining parameter bytes, if any. Return TRUE to indicate success. (FALSE should be returned only if you are using a suspending data source and it tells you to suspend. See the standard marker processors in jdmarker.c for appropriate coding methods if you need to use a suspending data source.) If you override the default APP0 or APP14 processors, it is up to you to recognize JFIF and Adobe markers if you want colorspace recognition to occur properly. We recommend copying and extending the default processors if you want to do that. (A better idea is to save these marker types for later examination by calling jpeg_save_markers(); that method doesn't interfere with the library's own processing of these markers.) jpeg_set_marker_processor() and jpeg_save_markers() are mutually exclusive --- if you call one it overrides any previous call to the other, for the particular marker type specified. A simple example of an external COM processor can be found in djpeg.c. Also, see jpegtran.c for an example of using jpeg_save_markers. Raw (downsampled) image data ---------------------------- Some applications need to supply already-downsampled image data to the JPEG compressor, or to receive raw downsampled data from the decompressor. The library supports this requirement by allowing the application to write or read raw data, bypassing the normal preprocessing or postprocessing steps. The interface is different from the standard one and is somewhat harder to use. If your interest is merely in bypassing color conversion, we recommend that you use the standard interface and simply set jpeg_color_space = in_color_space (or jpeg_color_space = out_color_space for decompression). The mechanism described in this section is necessary only to supply or receive downsampled image data, in which not all components have the same dimensions. To compress raw data, you must supply the data in the colorspace to be used in the JPEG file (please read the earlier section on Special color spaces) and downsampled to the sampling factors specified in the JPEG parameters. You must supply the data in the format used internally by the JPEG library, namely a JSAMPIMAGE array. This is an array of pointers to two-dimensional arrays, each of type JSAMPARRAY. Each 2-D array holds the values for one color component. This structure is necessary since the components are of different sizes. If the image dimensions are not a multiple of the MCU size, you must also pad the data correctly (usually, this is done by replicating the last column and/or row). The data must be padded to a multiple of a DCT block in each component: that is, each downsampled row must contain a multiple of 8 valid samples, and there must be a multiple of 8 sample rows for each component. (For applications such as conversion of digital TV images, the standard image size is usually a multiple of the DCT block size, so that no padding need actually be done.) The procedure for compression of raw data is basically the same as normal compression, except that you call jpeg_write_raw_data() in place of jpeg_write_scanlines(). Before calling jpeg_start_compress(), you must do the following: * Set cinfo->raw_data_in to TRUE. (It is set FALSE by jpeg_set_defaults().) This notifies the library that you will be supplying raw data. * Ensure jpeg_color_space is correct --- an explicit jpeg_set_colorspace() call is a good idea. Note that since color conversion is bypassed, in_color_space is ignored, except that jpeg_set_defaults() uses it to choose the default jpeg_color_space setting. * Ensure the sampling factors, cinfo->comp_info[i].h_samp_factor and cinfo->comp_info[i].v_samp_factor, are correct. Since these indicate the dimensions of the data you are supplying, it's wise to set them explicitly, rather than assuming the library's defaults are what you want. To pass raw data to the library, call jpeg_write_raw_data() in place of jpeg_write_scanlines(). The two routines work similarly except that jpeg_write_raw_data takes a JSAMPIMAGE data array rather than JSAMPARRAY. The scanlines count passed to and returned from jpeg_write_raw_data is measured in terms of the component with the largest v_samp_factor. jpeg_write_raw_data() processes one MCU row per call, which is to say v_samp_factor*DCTSIZE sample rows of each component. The passed num_lines value must be at least max_v_samp_factor*DCTSIZE, and the return value will be exactly that amount (or possibly some multiple of that amount, in future library versions). This is true even on the last call at the bottom of the image; don't forget to pad your data as necessary. The required dimensions of the supplied data can be computed for each component as cinfo->comp_info[i].width_in_blocks*DCTSIZE samples per row cinfo->comp_info[i].height_in_blocks*DCTSIZE rows in image after jpeg_start_compress() has initialized those fields. If the valid data is smaller than this, it must be padded appropriately. For some sampling factors and image sizes, additional dummy DCT blocks are inserted to make the image a multiple of the MCU dimensions. The library creates such dummy blocks itself; it does not read them from your supplied data. Therefore you need never pad by more than DCTSIZE samples. An example may help here. Assume 2h2v downsampling of YCbCr data, that is cinfo->comp_info[0].h_samp_factor = 2 for Y cinfo->comp_info[0].v_samp_factor = 2 cinfo->comp_info[1].h_samp_factor = 1 for Cb cinfo->comp_info[1].v_samp_factor = 1 cinfo->comp_info[2].h_samp_factor = 1 for Cr cinfo->comp_info[2].v_samp_factor = 1 and suppose that the nominal image dimensions (cinfo->image_width and cinfo->image_height) are 101x101 pixels. Then jpeg_start_compress() will compute downsampled_width = 101 and width_in_blocks = 13 for Y, downsampled_width = 51 and width_in_blocks = 7 for Cb and Cr (and the same for the height fields). You must pad the Y data to at least 13*8 = 104 columns and rows, the Cb/Cr data to at least 7*8 = 56 columns and rows. The MCU height is max_v_samp_factor = 2 DCT rows so you must pass at least 16 scanlines on each call to jpeg_write_raw_data(), which is to say 16 actual sample rows of Y and 8 each of Cb and Cr. A total of 7 MCU rows are needed, so you must pass a total of 7*16 = 112 "scanlines". The last DCT block row of Y data is dummy, so it doesn't matter what you pass for it in the data arrays, but the scanlines count must total up to 112 so that all of the Cb and Cr data gets passed. Output suspension is supported with raw-data compression: if the data destination module suspends, jpeg_write_raw_data() will return 0. In this case the same data rows must be passed again on the next call. Decompression with raw data output implies bypassing all postprocessing: you cannot ask for rescaling or color quantization, for instance. More seriously, you must deal with the color space and sampling factors present in the incoming file. If your application only handles, say, 2h1v YCbCr data, you must check for and fail on other color spaces or other sampling factors. The library will not convert to a different color space for you. To obtain raw data output, set cinfo->raw_data_out = TRUE before jpeg_start_decompress() (it is set FALSE by jpeg_read_header()). Be sure to verify that the color space and sampling factors are ones you can handle. Then call jpeg_read_raw_data() in place of jpeg_read_scanlines(). The decompression process is otherwise the same as usual. jpeg_read_raw_data() returns one MCU row per call, and thus you must pass a buffer of at least max_v_samp_factor*DCTSIZE scanlines (scanline counting is the same as for raw-data compression). The buffer you pass must be large enough to hold the actual data plus padding to DCT-block boundaries. As with compression, any entirely dummy DCT blocks are not processed so you need not allocate space for them, but the total scanline count includes them. The above example of computing buffer dimensions for raw-data compression is equally valid for decompression. Input suspension is supported with raw-data decompression: if the data source module suspends, jpeg_read_raw_data() will return 0. You can also use buffered-image mode to read raw data in multiple passes. Really raw data: DCT coefficients --------------------------------- It is possible to read or write the contents of a JPEG file as raw DCT coefficients. This facility is mainly intended for use in lossless transcoding between different JPEG file formats. Other possible applications include lossless cropping of a JPEG image, lossless reassembly of a multi-strip or multi-tile TIFF/JPEG file into a single JPEG datastream, etc. To read the contents of a JPEG file as DCT coefficients, open the file and do jpeg_read_header() as usual. But instead of calling jpeg_start_decompress() and jpeg_read_scanlines(), call jpeg_read_coefficients(). This will read the entire image into a set of virtual coefficient-block arrays, one array per component. The return value is a pointer to an array of virtual-array descriptors. Each virtual array can be accessed directly using the JPEG memory manager's access_virt_barray method (see Memory management, below, and also read structure.txt's discussion of virtual array handling). Or, for simple transcoding to a different JPEG file format, the array list can just be handed directly to jpeg_write_coefficients(). Each block in the block arrays contains quantized coefficient values in normal array order (not JPEG zigzag order). The block arrays contain only DCT blocks containing real data; any entirely-dummy blocks added to fill out interleaved MCUs at the right or bottom edges of the image are discarded during reading and are not stored in the block arrays. (The size of each block array can be determined from the width_in_blocks and height_in_blocks fields of the component's comp_info entry.) This is also the data format expected by jpeg_write_coefficients(). When you are done using the virtual arrays, call jpeg_finish_decompress() to release the array storage and return the decompression object to an idle state; or just call jpeg_destroy() if you don't need to reuse the object. If you use a suspending data source, jpeg_read_coefficients() will return NULL if it is forced to suspend; a non-NULL return value indicates successful completion. You need not test for a NULL return value when using a non-suspending data source. It is also possible to call jpeg_read_coefficients() to obtain access to the decoder's coefficient arrays during a normal decode cycle in buffered-image mode. This frammish might be useful for progressively displaying an incoming image and then re-encoding it without loss. To do this, decode in buffered- image mode as discussed previously, then call jpeg_read_coefficients() after the last jpeg_finish_output() call. The arrays will be available for your use until you call jpeg_finish_decompress(). To write the contents of a JPEG file as DCT coefficients, you must provide the DCT coefficients stored in virtual block arrays. You can either pass block arrays read from an input JPEG file by jpeg_read_coefficients(), or allocate virtual arrays from the JPEG compression object and fill them yourself. In either case, jpeg_write_coefficients() is substituted for jpeg_start_compress() and jpeg_write_scanlines(). Thus the sequence is * Create compression object * Set all compression parameters as necessary * Request virtual arrays if needed * jpeg_write_coefficients() * jpeg_finish_compress() * Destroy or re-use compression object jpeg_write_coefficients() is passed a pointer to an array of virtual block array descriptors; the number of arrays is equal to cinfo.num_components. The virtual arrays need only have been requested, not realized, before jpeg_write_coefficients() is called. A side-effect of jpeg_write_coefficients() is to realize any virtual arrays that have been requested from the compression object's memory manager. Thus, when obtaining the virtual arrays from the compression object, you should fill the arrays after calling jpeg_write_coefficients(). The data is actually written out when you call jpeg_finish_compress(); jpeg_write_coefficients() only writes the file header. When writing raw DCT coefficients, it is crucial that the JPEG quantization tables and sampling factors match the way the data was encoded, or the resulting file will be invalid. For transcoding from an existing JPEG file, we recommend using jpeg_copy_critical_parameters(). This routine initializes all the compression parameters to default values (like jpeg_set_defaults()), then copies the critical information from a source decompression object. The decompression object should have just been used to read the entire JPEG input file --- that is, it should be awaiting jpeg_finish_decompress(). jpeg_write_coefficients() marks all tables stored in the compression object as needing to be written to the output file (thus, it acts like jpeg_start_compress(cinfo, TRUE)). This is for safety's sake, to avoid emitting abbreviated JPEG files by accident. If you really want to emit an abbreviated JPEG file, call jpeg_suppress_tables(), or set the tables' individual sent_table flags, between calling jpeg_write_coefficients() and jpeg_finish_compress(). Progress monitoring ------------------- Some applications may need to regain control from the JPEG library every so often. The typical use of this feature is to produce a percent-done bar or other progress display. (For a simple example, see cjpeg.c or djpeg.c.) Although you do get control back frequently during the data-transferring pass (the jpeg_read_scanlines or jpeg_write_scanlines loop), any additional passes will occur inside jpeg_finish_compress or jpeg_start_decompress; those routines may take a long time to execute, and you don't get control back until they are done. You can define a progress-monitor routine which will be called periodically by the library. No guarantees are made about how often this call will occur, so we don't recommend you use it for mouse tracking or anything like that. At present, a call will occur once per MCU row, scanline, or sample row group, whichever unit is convenient for the current processing mode; so the wider the image, the longer the time between calls. During the data transferring pass, only one call occurs per call of jpeg_read_scanlines or jpeg_write_scanlines, so don't pass a large number of scanlines at once if you want fine resolution in the progress count. (If you really need to use the callback mechanism for time-critical tasks like mouse tracking, you could insert additional calls inside some of the library's inner loops.) To establish a progress-monitor callback, create a struct jpeg_progress_mgr, fill in its progress_monitor field with a pointer to your callback routine, and set cinfo->progress to point to the struct. The callback will be called whenever cinfo->progress is non-NULL. (This pointer is set to NULL by jpeg_create_compress or jpeg_create_decompress; the library will not change it thereafter. So if you allocate dynamic storage for the progress struct, make sure it will live as long as the JPEG object does. Allocating from the JPEG memory manager with lifetime JPOOL_PERMANENT will work nicely.) You can use the same callback routine for both compression and decompression. The jpeg_progress_mgr struct contains four fields which are set by the library: long pass_counter; /* work units completed in this pass */ long pass_limit; /* total number of work units in this pass */ int completed_passes; /* passes completed so far */ int total_passes; /* total number of passes expected */ During any one pass, pass_counter increases from 0 up to (not including) pass_limit; the step size is usually but not necessarily 1. The pass_limit value may change from one pass to another. The expected total number of passes is in total_passes, and the number of passes already completed is in completed_passes. Thus the fraction of work completed may be estimated as completed_passes + (pass_counter/pass_limit) -------------------------------------------- total_passes ignoring the fact that the passes may not be equal amounts of work. When decompressing, pass_limit can even change within a pass, because it depends on the number of scans in the JPEG file, which isn't always known in advance. The computed fraction-of-work-done may jump suddenly (if the library discovers it has overestimated the number of scans) or even decrease (in the opposite case). It is not wise to put great faith in the work estimate. When using the decompressor's buffered-image mode, the progress monitor work estimate is likely to be completely unhelpful, because the library has no way to know how many output passes will be demanded of it. Currently, the library sets total_passes based on the assumption that there will be one more output pass if the input file end hasn't yet been read (jpeg_input_complete() isn't TRUE), but no more output passes if the file end has been reached when the output pass is started. This means that total_passes will rise as additional output passes are requested. If you have a way of determining the input file size, estimating progress based on the fraction of the file that's been read will probably be more useful than using the library's value. Memory management ----------------- This section covers some key facts about the JPEG library's built-in memory manager. For more info, please read structure.txt's section about the memory manager, and consult the source code if necessary. All memory and temporary file allocation within the library is done via the memory manager. If necessary, you can replace the "back end" of the memory manager to control allocation yourself (for example, if you don't want the library to use malloc() and free() for some reason). Some data is allocated "permanently" and will not be freed until the JPEG object is destroyed. Most data is allocated "per image" and is freed by jpeg_finish_compress, jpeg_finish_decompress, or jpeg_abort. You can call the memory manager yourself to allocate structures that will automatically be freed at these times. Typical code for this is ptr = (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, size); Use JPOOL_PERMANENT to get storage that lasts as long as the JPEG object. Use alloc_large instead of alloc_small for anything bigger than a few Kbytes. There are also alloc_sarray and alloc_barray routines that automatically build 2-D sample or block arrays. The library's minimum space requirements to process an image depend on the image's width, but not on its height, because the library ordinarily works with "strip" buffers that are as wide as the image but just a few rows high. Some operating modes (eg, two-pass color quantization) require full-image buffers. Such buffers are treated as "virtual arrays": only the current strip need be in memory, and the rest can be swapped out to a temporary file. If you use the simplest memory manager back end (jmemnobs.c), then no temporary files are used; virtual arrays are simply malloc()'d. Images bigger than memory can be processed only if your system supports virtual memory. The other memory manager back ends support temporary files of various flavors and thus work in machines without virtual memory. They may also be useful on Unix machines if you need to process images that exceed available swap space. When using temporary files, the library will make the in-memory buffers for its virtual arrays just big enough to stay within a "maximum memory" setting. Your application can set this limit by setting cinfo->mem->max_memory_to_use after creating the JPEG object. (Of course, there is still a minimum size for the buffers, so the max-memory setting is effective only if it is bigger than the minimum space needed.) If you allocate any large structures yourself, you must allocate them before jpeg_start_compress() or jpeg_start_decompress() in order to have them counted against the max memory limit. Also keep in mind that space allocated with alloc_small() is ignored, on the assumption that it's too small to be worth worrying about; so a reasonable safety margin should be left when setting max_memory_to_use. Memory usage ------------ Working memory requirements while performing compression or decompression depend on image dimensions, image characteristics (such as colorspace and JPEG process), and operating mode (application-selected options). As of v6b, the decompressor requires: 1. About 24K in more-or-less-fixed-size data. This varies a bit depending on operating mode and image characteristics (particularly color vs. grayscale), but it doesn't depend on image dimensions. 2. Strip buffers (of size proportional to the image width) for IDCT and upsampling results. The worst case for commonly used sampling factors is about 34 bytes * width in pixels for a color image. A grayscale image only needs about 8 bytes per pixel column. 3. A full-image DCT coefficient buffer is needed to decode a multi-scan JPEG file (including progressive JPEGs), or whenever you select buffered-image mode. This takes 2 bytes/coefficient. At typical 2x2 sampling, that's 3 bytes per pixel for a color image. Worst case (1x1 sampling) requires 6 bytes/pixel. For grayscale, figure 2 bytes/pixel. 4. To perform 2-pass color quantization, the decompressor also needs a 128K color lookup table and a full-image pixel buffer (3 bytes/pixel). This does not count any memory allocated by the application, such as a buffer to hold the final output image. The above figures are valid for 8-bit JPEG data precision and a machine with 32-bit ints. For 12-bit JPEG data, double the size of the strip buffers and quantization pixel buffer. The "fixed-size" data will be somewhat smaller with 16-bit ints, larger with 64-bit ints. Also, CMYK or other unusual color spaces will require different amounts of space. The full-image coefficient and pixel buffers, if needed at all, do not have to be fully RAM resident; you can have the library use temporary files instead when the total memory usage would exceed a limit you set. (But if your OS supports virtual memory, it's probably better to just use jmemnobs and let the OS do the swapping.) The compressor's memory requirements are similar, except that it has no need for color quantization. Also, it needs a full-image DCT coefficient buffer if Huffman-table optimization is asked for, even if progressive mode is not requested. If you need more detailed information about memory usage in a particular situation, you can enable the MEM_STATS code in jmemmgr.c. Library compile-time options ---------------------------- A number of compile-time options are available by modifying jmorecfg.h. The JPEG standard provides for both the baseline 8-bit DCT process and a 12-bit DCT process. The IJG code supports 12-bit lossy JPEG if you define BITS_IN_JSAMPLE as 12 rather than 8. Note that this causes JSAMPLE to be larger than a char, so it affects the surrounding application's image data. The sample applications cjpeg and djpeg can support 12-bit mode only for PPM and GIF file formats; you must disable the other file formats to compile a 12-bit cjpeg or djpeg. (install.txt has more information about that.) At present, a 12-bit library can handle *only* 12-bit images, not both precisions. Note that a 12-bit library always compresses in Huffman optimization mode, in order to generate valid Huffman tables. This is necessary because our default Huffman tables only cover 8-bit data. If you need to output 12-bit files in one pass, you'll have to supply suitable default Huffman tables. You may also want to supply your own DCT quantization tables; the existing quality-scaling code has been developed for 8-bit use, and probably doesn't generate especially good tables for 12-bit. The maximum number of components (color channels) in the image is determined by MAX_COMPONENTS. The JPEG standard allows up to 255 components, but we expect that few applications will need more than four or so. On machines with unusual data type sizes, you may be able to improve performance or reduce memory space by tweaking the various typedefs in jmorecfg.h. In particular, on some RISC CPUs, access to arrays of "short"s is quite slow; consider trading memory for speed by making JCOEF, INT16, and UINT16 be "int" or "unsigned int". UINT8 is also a candidate to become int. You probably don't want to make JSAMPLE be int unless you have lots of memory to burn. You can reduce the size of the library by compiling out various optional functions. To do this, undefine xxx_SUPPORTED symbols as necessary. You can also save a few K by not having text error messages in the library; the standard error message table occupies about 5Kb. This is particularly reasonable for embedded applications where there's no good way to display a message anyway. To do this, remove the creation of the message table (jpeg_std_message_table[]) from jerror.c, and alter format_message to do something reasonable without it. You could output the numeric value of the message code number, for example. If you do this, you can also save a couple more K by modifying the TRACEMSn() macros in jerror.h to expand to nothing; you don't need trace capability anyway, right? Portability considerations -------------------------- The JPEG library has been written to be extremely portable; the sample applications cjpeg and djpeg are slightly less so. This section summarizes the design goals in this area. (If you encounter any bugs that cause the library to be less portable than is claimed here, we'd appreciate hearing about them.) The code works fine on ANSI C and C++ compilers, using any of the popular system include file setups, and some not-so-popular ones too. The code is not dependent on the exact sizes of the C data types. As distributed, we make the assumptions that char is at least 8 bits wide short is at least 16 bits wide int is at least 16 bits wide long is at least 32 bits wide (These are the minimum requirements of the ANSI C standard.) Wider types will work fine, although memory may be used inefficiently if char is much larger than 8 bits or short is much bigger than 16 bits. The code should work equally well with 16- or 32-bit ints. In a system where these assumptions are not met, you may be able to make the code work by modifying the typedefs in jmorecfg.h. However, you will probably have difficulty if int is less than 16 bits wide, since references to plain int abound in the code. char can be either signed or unsigned, although the code runs faster if an unsigned char type is available. If char is wider than 8 bits, you will need to redefine JOCTET and/or provide custom data source/destination managers so that JOCTET represents exactly 8 bits of data on external storage. The JPEG library proper does not assume ASCII representation of characters. But some of the image file I/O modules in cjpeg/djpeg do have ASCII dependencies in file-header manipulation; so does cjpeg's select_file_type() routine. The JPEG library does not rely heavily on the C library. In particular, C stdio is used only by the data source/destination modules and the error handler, all of which are application-replaceable. (cjpeg/djpeg are more heavily dependent on stdio.) malloc and free are called only from the memory manager "back end" module, so you can use a different memory allocator by replacing that one file. More info about porting the code may be gleaned by reading jconfig.txt, jmorecfg.h, and jinclude.h. libjpeg-turbo-1.4.2/jcmaster.c0000644000076500007650000005172212600050400013164 00000000000000/* * jcmaster.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1991-1997, Thomas G. Lane. * Modified 2003-2010 by Guido Vollbeding. * libjpeg-turbo Modifications: * Copyright (C) 2010, D. R. Commander. * For conditions of distribution and use, see the accompanying README file. * * This file contains master control logic for the JPEG compressor. * These routines are concerned with parameter validation, initial setup, * and inter-pass control (determining the number of passes and the work * to be done in each pass). */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" #include "jpegcomp.h" /* Private state */ typedef enum { main_pass, /* input data, also do first output step */ huff_opt_pass, /* Huffman code optimization pass */ output_pass /* data output pass */ } c_pass_type; typedef struct { struct jpeg_comp_master pub; /* public fields */ c_pass_type pass_type; /* the type of the current pass */ int pass_number; /* # of passes completed */ int total_passes; /* total # of passes needed */ int scan_number; /* current index in scan_info[] */ } my_comp_master; typedef my_comp_master * my_master_ptr; /* * Support routines that do various essential calculations. */ #if JPEG_LIB_VERSION >= 70 /* * Compute JPEG image dimensions and related values. * NOTE: this is exported for possible use by application. * Hence it mustn't do anything that can't be done twice. */ GLOBAL(void) jpeg_calc_jpeg_dimensions (j_compress_ptr cinfo) /* Do computations that are needed before master selection phase */ { /* Hardwire it to "no scaling" */ cinfo->jpeg_width = cinfo->image_width; cinfo->jpeg_height = cinfo->image_height; cinfo->min_DCT_h_scaled_size = DCTSIZE; cinfo->min_DCT_v_scaled_size = DCTSIZE; } #endif LOCAL(void) initial_setup (j_compress_ptr cinfo, boolean transcode_only) /* Do computations that are needed before master selection phase */ { int ci; jpeg_component_info *compptr; long samplesperrow; JDIMENSION jd_samplesperrow; #if JPEG_LIB_VERSION >= 70 #if JPEG_LIB_VERSION >= 80 if (!transcode_only) #endif jpeg_calc_jpeg_dimensions(cinfo); #endif /* Sanity check on image dimensions */ if (cinfo->_jpeg_height <= 0 || cinfo->_jpeg_width <= 0 || cinfo->num_components <= 0 || cinfo->input_components <= 0) ERREXIT(cinfo, JERR_EMPTY_IMAGE); /* Make sure image isn't bigger than I can handle */ if ((long) cinfo->_jpeg_height > (long) JPEG_MAX_DIMENSION || (long) cinfo->_jpeg_width > (long) JPEG_MAX_DIMENSION) ERREXIT1(cinfo, JERR_IMAGE_TOO_BIG, (unsigned int) JPEG_MAX_DIMENSION); /* Width of an input scanline must be representable as JDIMENSION. */ samplesperrow = (long) cinfo->image_width * (long) cinfo->input_components; jd_samplesperrow = (JDIMENSION) samplesperrow; if ((long) jd_samplesperrow != samplesperrow) ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); /* For now, precision must match compiled-in value... */ if (cinfo->data_precision != BITS_IN_JSAMPLE) ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision); /* Check that number of components won't exceed internal array sizes */ if (cinfo->num_components > MAX_COMPONENTS) ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components, MAX_COMPONENTS); /* Compute maximum sampling factors; check factor validity */ cinfo->max_h_samp_factor = 1; cinfo->max_v_samp_factor = 1; for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { if (compptr->h_samp_factor<=0 || compptr->h_samp_factor>MAX_SAMP_FACTOR || compptr->v_samp_factor<=0 || compptr->v_samp_factor>MAX_SAMP_FACTOR) ERREXIT(cinfo, JERR_BAD_SAMPLING); cinfo->max_h_samp_factor = MAX(cinfo->max_h_samp_factor, compptr->h_samp_factor); cinfo->max_v_samp_factor = MAX(cinfo->max_v_samp_factor, compptr->v_samp_factor); } /* Compute dimensions of components */ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { /* Fill in the correct component_index value; don't rely on application */ compptr->component_index = ci; /* For compression, we never do DCT scaling. */ #if JPEG_LIB_VERSION >= 70 compptr->DCT_h_scaled_size = compptr->DCT_v_scaled_size = DCTSIZE; #else compptr->DCT_scaled_size = DCTSIZE; #endif /* Size in DCT blocks */ compptr->width_in_blocks = (JDIMENSION) jdiv_round_up((long) cinfo->_jpeg_width * (long) compptr->h_samp_factor, (long) (cinfo->max_h_samp_factor * DCTSIZE)); compptr->height_in_blocks = (JDIMENSION) jdiv_round_up((long) cinfo->_jpeg_height * (long) compptr->v_samp_factor, (long) (cinfo->max_v_samp_factor * DCTSIZE)); /* Size in samples */ compptr->downsampled_width = (JDIMENSION) jdiv_round_up((long) cinfo->_jpeg_width * (long) compptr->h_samp_factor, (long) cinfo->max_h_samp_factor); compptr->downsampled_height = (JDIMENSION) jdiv_round_up((long) cinfo->_jpeg_height * (long) compptr->v_samp_factor, (long) cinfo->max_v_samp_factor); /* Mark component needed (this flag isn't actually used for compression) */ compptr->component_needed = TRUE; } /* Compute number of fully interleaved MCU rows (number of times that * main controller will call coefficient controller). */ cinfo->total_iMCU_rows = (JDIMENSION) jdiv_round_up((long) cinfo->_jpeg_height, (long) (cinfo->max_v_samp_factor*DCTSIZE)); } #ifdef C_MULTISCAN_FILES_SUPPORTED LOCAL(void) validate_script (j_compress_ptr cinfo) /* Verify that the scan script in cinfo->scan_info[] is valid; also * determine whether it uses progressive JPEG, and set cinfo->progressive_mode. */ { const jpeg_scan_info * scanptr; int scanno, ncomps, ci, coefi, thisi; int Ss, Se, Ah, Al; boolean component_sent[MAX_COMPONENTS]; #ifdef C_PROGRESSIVE_SUPPORTED int * last_bitpos_ptr; int last_bitpos[MAX_COMPONENTS][DCTSIZE2]; /* -1 until that coefficient has been seen; then last Al for it */ #endif if (cinfo->num_scans <= 0) ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, 0); /* For sequential JPEG, all scans must have Ss=0, Se=DCTSIZE2-1; * for progressive JPEG, no scan can have this. */ scanptr = cinfo->scan_info; if (scanptr->Ss != 0 || scanptr->Se != DCTSIZE2-1) { #ifdef C_PROGRESSIVE_SUPPORTED cinfo->progressive_mode = TRUE; last_bitpos_ptr = & last_bitpos[0][0]; for (ci = 0; ci < cinfo->num_components; ci++) for (coefi = 0; coefi < DCTSIZE2; coefi++) *last_bitpos_ptr++ = -1; #else ERREXIT(cinfo, JERR_NOT_COMPILED); #endif } else { cinfo->progressive_mode = FALSE; for (ci = 0; ci < cinfo->num_components; ci++) component_sent[ci] = FALSE; } for (scanno = 1; scanno <= cinfo->num_scans; scanptr++, scanno++) { /* Validate component indexes */ ncomps = scanptr->comps_in_scan; if (ncomps <= 0 || ncomps > MAX_COMPS_IN_SCAN) ERREXIT2(cinfo, JERR_COMPONENT_COUNT, ncomps, MAX_COMPS_IN_SCAN); for (ci = 0; ci < ncomps; ci++) { thisi = scanptr->component_index[ci]; if (thisi < 0 || thisi >= cinfo->num_components) ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, scanno); /* Components must appear in SOF order within each scan */ if (ci > 0 && thisi <= scanptr->component_index[ci-1]) ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, scanno); } /* Validate progression parameters */ Ss = scanptr->Ss; Se = scanptr->Se; Ah = scanptr->Ah; Al = scanptr->Al; if (cinfo->progressive_mode) { #ifdef C_PROGRESSIVE_SUPPORTED /* The JPEG spec simply gives the ranges 0..13 for Ah and Al, but that * seems wrong: the upper bound ought to depend on data precision. * Perhaps they really meant 0..N+1 for N-bit precision. * Here we allow 0..10 for 8-bit data; Al larger than 10 results in * out-of-range reconstructed DC values during the first DC scan, * which might cause problems for some decoders. */ #if BITS_IN_JSAMPLE == 8 #define MAX_AH_AL 10 #else #define MAX_AH_AL 13 #endif if (Ss < 0 || Ss >= DCTSIZE2 || Se < Ss || Se >= DCTSIZE2 || Ah < 0 || Ah > MAX_AH_AL || Al < 0 || Al > MAX_AH_AL) ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno); if (Ss == 0) { if (Se != 0) /* DC and AC together not OK */ ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno); } else { if (ncomps != 1) /* AC scans must be for only one component */ ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno); } for (ci = 0; ci < ncomps; ci++) { last_bitpos_ptr = & last_bitpos[scanptr->component_index[ci]][0]; if (Ss != 0 && last_bitpos_ptr[0] < 0) /* AC without prior DC scan */ ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno); for (coefi = Ss; coefi <= Se; coefi++) { if (last_bitpos_ptr[coefi] < 0) { /* first scan of this coefficient */ if (Ah != 0) ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno); } else { /* not first scan */ if (Ah != last_bitpos_ptr[coefi] || Al != Ah-1) ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno); } last_bitpos_ptr[coefi] = Al; } } #endif } else { /* For sequential JPEG, all progression parameters must be these: */ if (Ss != 0 || Se != DCTSIZE2-1 || Ah != 0 || Al != 0) ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno); /* Make sure components are not sent twice */ for (ci = 0; ci < ncomps; ci++) { thisi = scanptr->component_index[ci]; if (component_sent[thisi]) ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, scanno); component_sent[thisi] = TRUE; } } } /* Now verify that everything got sent. */ if (cinfo->progressive_mode) { #ifdef C_PROGRESSIVE_SUPPORTED /* For progressive mode, we only check that at least some DC data * got sent for each component; the spec does not require that all bits * of all coefficients be transmitted. Would it be wiser to enforce * transmission of all coefficient bits?? */ for (ci = 0; ci < cinfo->num_components; ci++) { if (last_bitpos[ci][0] < 0) ERREXIT(cinfo, JERR_MISSING_DATA); } #endif } else { for (ci = 0; ci < cinfo->num_components; ci++) { if (! component_sent[ci]) ERREXIT(cinfo, JERR_MISSING_DATA); } } } #endif /* C_MULTISCAN_FILES_SUPPORTED */ LOCAL(void) select_scan_parameters (j_compress_ptr cinfo) /* Set up the scan parameters for the current scan */ { int ci; #ifdef C_MULTISCAN_FILES_SUPPORTED if (cinfo->scan_info != NULL) { /* Prepare for current scan --- the script is already validated */ my_master_ptr master = (my_master_ptr) cinfo->master; const jpeg_scan_info * scanptr = cinfo->scan_info + master->scan_number; cinfo->comps_in_scan = scanptr->comps_in_scan; for (ci = 0; ci < scanptr->comps_in_scan; ci++) { cinfo->cur_comp_info[ci] = &cinfo->comp_info[scanptr->component_index[ci]]; } cinfo->Ss = scanptr->Ss; cinfo->Se = scanptr->Se; cinfo->Ah = scanptr->Ah; cinfo->Al = scanptr->Al; } else #endif { /* Prepare for single sequential-JPEG scan containing all components */ if (cinfo->num_components > MAX_COMPS_IN_SCAN) ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components, MAX_COMPS_IN_SCAN); cinfo->comps_in_scan = cinfo->num_components; for (ci = 0; ci < cinfo->num_components; ci++) { cinfo->cur_comp_info[ci] = &cinfo->comp_info[ci]; } cinfo->Ss = 0; cinfo->Se = DCTSIZE2-1; cinfo->Ah = 0; cinfo->Al = 0; } } LOCAL(void) per_scan_setup (j_compress_ptr cinfo) /* Do computations that are needed before processing a JPEG scan */ /* cinfo->comps_in_scan and cinfo->cur_comp_info[] are already set */ { int ci, mcublks, tmp; jpeg_component_info *compptr; if (cinfo->comps_in_scan == 1) { /* Noninterleaved (single-component) scan */ compptr = cinfo->cur_comp_info[0]; /* Overall image size in MCUs */ cinfo->MCUs_per_row = compptr->width_in_blocks; cinfo->MCU_rows_in_scan = compptr->height_in_blocks; /* For noninterleaved scan, always one block per MCU */ compptr->MCU_width = 1; compptr->MCU_height = 1; compptr->MCU_blocks = 1; compptr->MCU_sample_width = DCTSIZE; compptr->last_col_width = 1; /* For noninterleaved scans, it is convenient to define last_row_height * as the number of block rows present in the last iMCU row. */ tmp = (int) (compptr->height_in_blocks % compptr->v_samp_factor); if (tmp == 0) tmp = compptr->v_samp_factor; compptr->last_row_height = tmp; /* Prepare array describing MCU composition */ cinfo->blocks_in_MCU = 1; cinfo->MCU_membership[0] = 0; } else { /* Interleaved (multi-component) scan */ if (cinfo->comps_in_scan <= 0 || cinfo->comps_in_scan > MAX_COMPS_IN_SCAN) ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->comps_in_scan, MAX_COMPS_IN_SCAN); /* Overall image size in MCUs */ cinfo->MCUs_per_row = (JDIMENSION) jdiv_round_up((long) cinfo->_jpeg_width, (long) (cinfo->max_h_samp_factor*DCTSIZE)); cinfo->MCU_rows_in_scan = (JDIMENSION) jdiv_round_up((long) cinfo->_jpeg_height, (long) (cinfo->max_v_samp_factor*DCTSIZE)); cinfo->blocks_in_MCU = 0; for (ci = 0; ci < cinfo->comps_in_scan; ci++) { compptr = cinfo->cur_comp_info[ci]; /* Sampling factors give # of blocks of component in each MCU */ compptr->MCU_width = compptr->h_samp_factor; compptr->MCU_height = compptr->v_samp_factor; compptr->MCU_blocks = compptr->MCU_width * compptr->MCU_height; compptr->MCU_sample_width = compptr->MCU_width * DCTSIZE; /* Figure number of non-dummy blocks in last MCU column & row */ tmp = (int) (compptr->width_in_blocks % compptr->MCU_width); if (tmp == 0) tmp = compptr->MCU_width; compptr->last_col_width = tmp; tmp = (int) (compptr->height_in_blocks % compptr->MCU_height); if (tmp == 0) tmp = compptr->MCU_height; compptr->last_row_height = tmp; /* Prepare array describing MCU composition */ mcublks = compptr->MCU_blocks; if (cinfo->blocks_in_MCU + mcublks > C_MAX_BLOCKS_IN_MCU) ERREXIT(cinfo, JERR_BAD_MCU_SIZE); while (mcublks-- > 0) { cinfo->MCU_membership[cinfo->blocks_in_MCU++] = ci; } } } /* Convert restart specified in rows to actual MCU count. */ /* Note that count must fit in 16 bits, so we provide limiting. */ if (cinfo->restart_in_rows > 0) { long nominal = (long) cinfo->restart_in_rows * (long) cinfo->MCUs_per_row; cinfo->restart_interval = (unsigned int) MIN(nominal, 65535L); } } /* * Per-pass setup. * This is called at the beginning of each pass. We determine which modules * will be active during this pass and give them appropriate start_pass calls. * We also set is_last_pass to indicate whether any more passes will be * required. */ METHODDEF(void) prepare_for_pass (j_compress_ptr cinfo) { my_master_ptr master = (my_master_ptr) cinfo->master; switch (master->pass_type) { case main_pass: /* Initial pass: will collect input data, and do either Huffman * optimization or data output for the first scan. */ select_scan_parameters(cinfo); per_scan_setup(cinfo); if (! cinfo->raw_data_in) { (*cinfo->cconvert->start_pass) (cinfo); (*cinfo->downsample->start_pass) (cinfo); (*cinfo->prep->start_pass) (cinfo, JBUF_PASS_THRU); } (*cinfo->fdct->start_pass) (cinfo); (*cinfo->entropy->start_pass) (cinfo, cinfo->optimize_coding); (*cinfo->coef->start_pass) (cinfo, (master->total_passes > 1 ? JBUF_SAVE_AND_PASS : JBUF_PASS_THRU)); (*cinfo->main->start_pass) (cinfo, JBUF_PASS_THRU); if (cinfo->optimize_coding) { /* No immediate data output; postpone writing frame/scan headers */ master->pub.call_pass_startup = FALSE; } else { /* Will write frame/scan headers at first jpeg_write_scanlines call */ master->pub.call_pass_startup = TRUE; } break; #ifdef ENTROPY_OPT_SUPPORTED case huff_opt_pass: /* Do Huffman optimization for a scan after the first one. */ select_scan_parameters(cinfo); per_scan_setup(cinfo); if (cinfo->Ss != 0 || cinfo->Ah == 0 || cinfo->arith_code) { (*cinfo->entropy->start_pass) (cinfo, TRUE); (*cinfo->coef->start_pass) (cinfo, JBUF_CRANK_DEST); master->pub.call_pass_startup = FALSE; break; } /* Special case: Huffman DC refinement scans need no Huffman table * and therefore we can skip the optimization pass for them. */ master->pass_type = output_pass; master->pass_number++; /*FALLTHROUGH*/ #endif case output_pass: /* Do a data-output pass. */ /* We need not repeat per-scan setup if prior optimization pass did it. */ if (! cinfo->optimize_coding) { select_scan_parameters(cinfo); per_scan_setup(cinfo); } (*cinfo->entropy->start_pass) (cinfo, FALSE); (*cinfo->coef->start_pass) (cinfo, JBUF_CRANK_DEST); /* We emit frame/scan headers now */ if (master->scan_number == 0) (*cinfo->marker->write_frame_header) (cinfo); (*cinfo->marker->write_scan_header) (cinfo); master->pub.call_pass_startup = FALSE; break; default: ERREXIT(cinfo, JERR_NOT_COMPILED); } master->pub.is_last_pass = (master->pass_number == master->total_passes-1); /* Set up progress monitor's pass info if present */ if (cinfo->progress != NULL) { cinfo->progress->completed_passes = master->pass_number; cinfo->progress->total_passes = master->total_passes; } } /* * Special start-of-pass hook. * This is called by jpeg_write_scanlines if call_pass_startup is TRUE. * In single-pass processing, we need this hook because we don't want to * write frame/scan headers during jpeg_start_compress; we want to let the * application write COM markers etc. between jpeg_start_compress and the * jpeg_write_scanlines loop. * In multi-pass processing, this routine is not used. */ METHODDEF(void) pass_startup (j_compress_ptr cinfo) { cinfo->master->call_pass_startup = FALSE; /* reset flag so call only once */ (*cinfo->marker->write_frame_header) (cinfo); (*cinfo->marker->write_scan_header) (cinfo); } /* * Finish up at end of pass. */ METHODDEF(void) finish_pass_master (j_compress_ptr cinfo) { my_master_ptr master = (my_master_ptr) cinfo->master; /* The entropy coder always needs an end-of-pass call, * either to analyze statistics or to flush its output buffer. */ (*cinfo->entropy->finish_pass) (cinfo); /* Update state for next pass */ switch (master->pass_type) { case main_pass: /* next pass is either output of scan 0 (after optimization) * or output of scan 1 (if no optimization). */ master->pass_type = output_pass; if (! cinfo->optimize_coding) master->scan_number++; break; case huff_opt_pass: /* next pass is always output of current scan */ master->pass_type = output_pass; break; case output_pass: /* next pass is either optimization or output of next scan */ if (cinfo->optimize_coding) master->pass_type = huff_opt_pass; master->scan_number++; break; } master->pass_number++; } /* * Initialize master compression control. */ GLOBAL(void) jinit_c_master_control (j_compress_ptr cinfo, boolean transcode_only) { my_master_ptr master; master = (my_master_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, sizeof(my_comp_master)); cinfo->master = (struct jpeg_comp_master *) master; master->pub.prepare_for_pass = prepare_for_pass; master->pub.pass_startup = pass_startup; master->pub.finish_pass = finish_pass_master; master->pub.is_last_pass = FALSE; /* Validate parameters, determine derived values */ initial_setup(cinfo, transcode_only); if (cinfo->scan_info != NULL) { #ifdef C_MULTISCAN_FILES_SUPPORTED validate_script(cinfo); #else ERREXIT(cinfo, JERR_NOT_COMPILED); #endif } else { cinfo->progressive_mode = FALSE; cinfo->num_scans = 1; } if (cinfo->progressive_mode && !cinfo->arith_code) /* TEMPORARY HACK ??? */ cinfo->optimize_coding = TRUE; /* assume default tables no good for progressive mode */ /* Initialize my private state */ if (transcode_only) { /* no main pass in transcoding */ if (cinfo->optimize_coding) master->pass_type = huff_opt_pass; else master->pass_type = output_pass; } else { /* for normal compression, first pass is always this type: */ master->pass_type = main_pass; } master->scan_number = 0; master->pass_number = 0; if (cinfo->optimize_coding) master->total_passes = cinfo->num_scans * 2; else master->total_passes = cinfo->num_scans; } libjpeg-turbo-1.4.2/ChangeLog.txt0000644000076500007650000010575212600050400013603 000000000000001.4.2 ===== [1] Fixed an issue whereby cjpeg would segfault if a Windows bitmap with a negative width or height was used as an input image (Windows bitmaps can have a negative height if they are stored in top-down order, but such files are rare and not supported by libjpeg-turbo.) [2] Fixed an issue whereby, under certain circumstances, libjpeg-turbo would incorrectly encode certain JPEG images when quality=100 and the fast integer forward DCT were used. This was known to cause 'make test' to fail when the library was built with '-march=haswell' on x86 systems. [3] Fixed an issue whereby libjpeg-turbo would crash when built with the latest & greatest development version of the Clang/LLVM compiler. This was caused by an x86-64 ABI conformance issue in some of libjpeg-turbo's 64-bit SSE2 SIMD routines. Those routines were incorrectly using a 64-bit mov instruction to transfer a 32-bit JDIMENSION argument, whereas the x86-64 ABI allows the upper (unused) 32 bits of a 32-bit argument's register to be undefined. The new Clang/LLVM optimizer uses load combining to transfer multiple adjacent 32-bit structure members into a single 64-bit register, and this exposed the ABI conformance issue. [4] Fixed a bug in the MIPS DSPr2 4:2:0 "plain" (non-fancy and non-merged) upsampling routine that caused a buffer overflow (and subsequent segfault) when decompressing a 4:2:0 JPEG image whose scaled output width was less than 16 pixels. The "plain" upsampling routines are normally only used when decompressing a non-YCbCr JPEG image, but they are also used when decompressing a JPEG image whose scaled output height is 1. [5] Fixed various negative left shifts and other issues reported by the GCC and Clang undefined behavior sanitizers. None of these was known to pose a security threat, but removing the warnings makes it easier to detect actual security issues, should they arise in the future. 1.4.1 ===== [1] tjbench now properly handles CMYK/YCCK JPEG files. Passing an argument of -cmyk (instead of, for instance, -rgb) will cause tjbench to internally convert the source bitmap to CMYK prior to compression, to generate YCCK JPEG files, and to internally convert the decompressed CMYK pixels back to RGB after decompression (the latter is done automatically if a CMYK or YCCK JPEG is passed to tjbench as a source image.) The CMYK<->RGB conversion operation is not benchmarked. NOTE: The quick & dirty CMYK<->RGB conversions that tjbench uses are suitable for testing only. Proper conversion between CMYK and RGB requires a color management system. [2] 'make test' now performs additional bitwise regression tests using tjbench, mainly for the purpose of testing compression from/decompression to a subregion of a larger image buffer. [3] 'make test' no longer tests the regression of the floating point DCT/IDCT by default, since the results of those tests can vary if the algorithms in question are not implemented using SIMD instructions on a particular platform. See the comments in Makefile.am for information on how to re-enable the tests and to specify an expected result for them based on the particulars of your platform. [4] The NULL color conversion routines have been significantly optimized, which speeds up the compression of RGB and CMYK JPEGs by 5-20% when using 64-bit code and 0-3% when using 32-bit code, and the decompression of those images by 10-30% when using 64-bit code and 3-12% when using 32-bit code. [5] Fixed an "illegal instruction" error that occurred when djpeg from a SIMD-enabled libjpeg-turbo MIPS build was executed with the -nosmooth option on a MIPS machine that lacked DSPr2 support. The MIPS SIMD routines for h2v1 and h2v2 merged upsampling were not properly checking for the existence of DSPr2. [6] Performance has been improved significantly on 64-bit non-Linux and non-Windows platforms (generally 10-20% faster compression and 5-10% faster decompression.) Due to an oversight, the 64-bit version of the accelerated Huffman codec was not being compiled in when libjpeg-turbo was built on platforms other than Windows or Linux. Oops. [7] Fixed an extremely rare bug in the Huffman encoder that caused 64-bit builds of libjpeg-turbo to incorrectly encode a few specific test images when quality=98, an optimized Huffman table, and the slow integer forward DCT were used. [8] The Windows (CMake) build system now supports building only static or only shared libraries. This is accomplished by adding either -DENABLE_STATIC=0 or -DENABLE_SHARED=0 to the CMake command line. [9] TurboJPEG API functions will now return an error code if a warning is triggered in the underlying libjpeg API. For instance, if a JPEG file is corrupt, the TurboJPEG decompression functions will attempt to decompress as much of the image as possible, but those functions will now return -1 to indicate that the decompression was not entirely successful. [10] Fixed a bug in the MIPS DSPr2 4:2:2 fancy upsampling routine that caused a buffer overflow (and subsequent segfault) when decompressing a 4:2:2 JPEG image in which the right-most MCU was 5 or 6 pixels wide. 1.4.0 ===== [1] Fixed a build issue on OS X PowerPC platforms (md5cmp failed to build because OS X does not provide the le32toh() and htole32() functions.) [2] The non-SIMD RGB565 color conversion code did not work correctly on big endian machines. This has been fixed. [3] Fixed an issue in tjPlaneSizeYUV() whereby it would erroneously return 1 instead of -1 if componentID was > 0 and subsamp was TJSAMP_GRAY. [3] Fixed an issue in tjBufSizeYUV2() whereby it would erroneously return 0 instead of -1 if width was < 1. [5] The Huffman encoder now uses clz and bsr instructions for bit counting on ARM64 platforms (see 1.4 beta1 [5].) [6] The close() method in the TJCompressor and TJDecompressor Java classes is now idempotent. Previously, that method would call the native tjDestroy() function even if the TurboJPEG instance had already been destroyed. This caused an exception to be thrown during finalization, if the close() method had already been called. The exception was caught, but it was still an expensive operation. [7] The TurboJPEG API previously generated an error ("Could not determine subsampling type for JPEG image") when attempting to decompress grayscale JPEG images that were compressed with a sampling factor other than 1 (for instance, with 'cjpeg -grayscale -sample 2x2'). Subsampling technically has no meaning with grayscale JPEGs, and thus the horizontal and vertical sampling factors for such images are ignored by the decompressor. However, the TurboJPEG API was being too rigid and was expecting the sampling factors to be equal to 1 before it treated the image as a grayscale JPEG. [8] cjpeg, djpeg, and jpegtran now accept an argument of -version, which will print the library version and exit. [9] Referring to 1.4 beta1 [15], another extremely rare circumstance was discovered under which the Huffman encoder's local buffer can be overrun when a buffered destination manager is being used and an extremely-high-frequency block (basically junk image data) is being encoded. Even though the Huffman local buffer was increased from 128 bytes to 136 bytes to address the previous issue, the new issue caused even the larger buffer to be overrun. Further analysis reveals that, in the absolute worst case (such as setting alternating AC coefficients to 32767 and -32768 in the JPEG scanning order), the Huffman encoder can produce encoded blocks that approach double the size of the unencoded blocks. Thus, the Huffman local buffer was increased to 256 bytes, which should prevent any such issue from re-occurring in the future. [10] The new tjPlaneSizeYUV(), tjPlaneWidth(), and tjPlaneHeight() functions were not actually usable on any platform except OS X and Windows, because those functions were not included in the libturbojpeg mapfile. This has been fixed. [11] Restored the JPP(), JMETHOD(), and FAR macros in the libjpeg-turbo header files. The JPP() and JMETHOD() macros were originally implemented in libjpeg as a way of supporting non-ANSI compilers that lacked support for prototype parameters. libjpeg-turbo has never supported such compilers, but some software packages still use the macros to define their own prototypes. Similarly, libjpeg-turbo has never supported MS-DOS and other platforms that have far symbols, but some software packages still use the FAR macro. A pretty good argument can be made that this is a bad practice on the part of the software in question, but since this affects more than one package, it's just easier to fix it here. [12] Fixed issues that were preventing the ARM 64-bit SIMD code from compiling for iOS, and included an ARMv8 architecture in all of the binaries installed by the "official" libjpeg-turbo SDK for OS X. 1.3.90 (1.4 beta1) ================== [1] New features in the TurboJPEG API: -- YUV planar images can now be generated with an arbitrary line padding (previously only 4-byte padding, which was compatible with X Video, was supported.) -- The decompress-to-YUV function has been extended to support image scaling. -- JPEG images can now be compressed from YUV planar source images. -- YUV planar images can now be decoded into RGB or grayscale images. -- 4:1:1 subsampling is now supported. This is mainly included for compatibility, since 4:1:1 is not fully accelerated in libjpeg-turbo and has no significant advantages relative to 4:2:0. -- CMYK images are now supported. This feature allows CMYK source images to be compressed to YCCK JPEGs and YCCK or CMYK JPEGs to be decompressed to CMYK destination images. Conversion between CMYK/YCCK and RGB or YUV images is not supported. Such conversion requires a color management system and is thus out of scope for a codec library. -- The handling of YUV images in the Java API has been significantly refactored and should now be much more intuitive. -- The Java API now supports encoding a YUV image from an arbitrary position in a large image buffer. -- All of the YUV functions now have a corresponding function that operates on separate image planes instead of a unified image buffer. This allows for compressing/decoding from or decompressing/encoding to a subregion of a larger YUV image. It also allows for handling YUV formats that swap the order of the U and V planes. [2] Added SIMD acceleration for DSPr2-capable MIPS platforms. This speeds up the compression of full-color JPEGs by 70-80% on such platforms and decompression by 25-35%. [3] If an application attempts to decompress a Huffman-coded JPEG image whose header does not contain Huffman tables, libjpeg-turbo will now insert the default Huffman tables. In order to save space, many motion JPEG video frames are encoded without the default Huffman tables, so these frames can now be successfully decompressed by libjpeg-turbo without additional work on the part of the application. An application can still override the Huffman tables, for instance to re-use tables from a previous frame of the same video. [4] The Mac packaging system now uses pkgbuild and productbuild rather than PackageMaker (which is obsolete and no longer supported.) This means that OS X 10.6 "Snow Leopard" or later must be used when packaging libjpeg-turbo, although the packages produced can be installed on OS X 10.5 "Leopard" or later. OS X 10.4 "Tiger" is no longer supported. [5] The Huffman encoder now uses clz and bsr instructions for bit counting on ARM platforms rather than a lookup table. This reduces the memory footprint by 64k, which may be important for some mobile applications. Out of four Android devices that were tested, two demonstrated a small overall performance loss (~3-4% on average) with ARMv6 code and a small gain (also ~3-4%) with ARMv7 code when enabling this new feature, but the other two devices demonstrated a significant overall performance gain with both ARMv6 and ARMv7 code (~10-20%) when enabling the feature. Actual mileage may vary. [6] Worked around an issue with Visual C++ 2010 and later that caused incorrect pixels to be generated when decompressing a JPEG image to a 256-color bitmap, if compiler optimization was enabled when libjpeg-turbo was built. This caused the regression tests to fail when doing a release build under Visual C++ 2010 and later. [7] Improved the accuracy and performance of the non-SIMD implementation of the floating point inverse DCT (using code borrowed from libjpeg v8a and later.) The accuracy of this implementation now matches the accuracy of the SSE/SSE2 implementation. Note, however, that the floating point DCT/IDCT algorithms are mainly a legacy feature. They generally do not produce significantly better accuracy than the slow integer DCT/IDCT algorithms, and they are quite a bit slower. [8] Added a new output colorspace (JCS_RGB565) to the libjpeg API that allows for decompressing JPEG images into RGB565 (16-bit) pixels. If dithering is not used, then this code path is SIMD-accelerated on ARM platforms. [9] Numerous obsolete features, such as support for non-ANSI compilers and support for the MS-DOS memory model, were removed from the libjpeg code, greatly improving its readability and making it easier to maintain and extend. [10] Fixed a segfault that occurred when calling output_message() with msg_code set to JMSG_COPYRIGHT. [11] Fixed an issue whereby wrjpgcom was allowing comments longer than 65k characters to be passed on the command line, which was causing it to generate incorrect JPEG files. [12] Fixed a bug in the build system that was causing the Windows version of wrjpgcom to be built using the rdjpgcom source code. [13] Restored 12-bit-per-component JPEG support. A 12-bit version of libjpeg-turbo can now be built by passing an argument of --with-12bit to configure (Unix) or -DWITH_12BIT=1 to cmake (Windows.) 12-bit JPEG support is included only for convenience. Enabling this feature disables all of the performance features in libjpeg-turbo, as well as arithmetic coding and the TurboJPEG API. The resulting library still contains the other libjpeg-turbo features (such as the colorspace extensions), but in general, it performs no faster than libjpeg v6b. [14] Added ARM 64-bit SIMD acceleration for the YCC-to-RGB color conversion and IDCT algorithms (both are used during JPEG decompression.) For unknown reasons (probably related to clang), this code cannot currently be compiled for iOS. [15] Fixed an extremely rare bug that could cause the Huffman encoder's local buffer to overrun when a very high-frequency MCU is compressed using quality 100 and no subsampling, and when the JPEG output buffer is being dynamically resized by the destination manager. This issue was so rare that, even with a test program specifically designed to make the bug occur (by injecting random high-frequency YUV data into the compressor), it was reproducible only once in about every 25 million iterations. [16] Fixed an oversight in the TurboJPEG C wrapper: if any of the JPEG compression functions was called repeatedly with the same automatically-allocated destination buffer, then TurboJPEG would erroneously assume that the jpegSize parameter was equal to the size of the buffer, when in fact that parameter was probably equal to the size of the most recently compressed JPEG image. If the size of the previous JPEG image was not as large as the current JPEG image, then TurboJPEG would unnecessarily reallocate the destination buffer. 1.3.1 ===== [1] On Un*x systems, 'make install' now installs the libjpeg-turbo libraries into /opt/libjpeg-turbo/lib32 by default on any 32-bit system, not just x86, and into /opt/libjpeg-turbo/lib64 by default on any 64-bit system, not just x86-64. You can override this by overriding either the 'prefix' or 'libdir' configure variables. [2] The Windows installer now places a copy of the TurboJPEG DLLs in the same directory as the rest of the libjpeg-turbo binaries. This was mainly done to support TurboVNC 1.3, which bundles the DLLs in its Windows installation. When using a 32-bit version of CMake on 64-bit Windows, it is impossible to access the c:\WINDOWS\system32 directory, which made it impossible for the TurboVNC build scripts to bundle the 64-bit TurboJPEG DLL. [3] Fixed a bug whereby attempting to encode a progressive JPEG with arithmetic entropy coding (by passing arguments of -progressive -arithmetic to cjpeg or jpegtran, for instance) would result in an error, "Requested feature was omitted at compile time". [4] Fixed a couple of issues whereby malformed JPEG images would cause libjpeg-turbo to use uninitialized memory during decompression. [5] Fixed an error ("Buffer passed to JPEG library is too small") that occurred when calling the TurboJPEG YUV encoding function with a very small (< 5x5) source image, and added a unit test to check for this error. [6] The Java classes should now build properly under Visual Studio 2010 and later. [7] Fixed an issue that prevented SRPMs generated using the in-tree packaging tools from being rebuilt on certain newer Linux distributions. [8] Numerous minor fixes to eliminate compilation and build/packaging system warnings, fix cosmetic issues, improve documentation clarity, and other general source cleanup. 1.3.0 ===== [1] 'make test' now works properly on FreeBSD, and it no longer requires the md5sum executable to be present on other Un*x platforms. [2] Overhauled the packaging system: -- To avoid conflict with vendor-supplied libjpeg-turbo packages, the official RPMs and DEBs for libjpeg-turbo have been renamed to "libjpeg-turbo-official". -- The TurboJPEG libraries are now located under /opt/libjpeg-turbo in the official Linux and Mac packages, to avoid conflict with vendor-supplied packages and also to streamline the packaging system. -- Release packages are now created with the directory structure defined by the configure variables "prefix", "bindir", "libdir", etc. (Un*x) or by the CMAKE_INSTALL_PREFIX variable (Windows.) The exception is that the docs are always located under the system default documentation directory on Un*x and Mac systems, and on Windows, the TurboJPEG DLL is always located in the Windows system directory. -- To avoid confusion, official libjpeg-turbo packages on Linux/Unix platforms (except for Mac) will always install the 32-bit libraries in /opt/libjpeg-turbo/lib32 and the 64-bit libraries in /opt/libjpeg-turbo/lib64. -- Fixed an issue whereby, in some cases, the libjpeg-turbo executables on Un*x systems were not properly linking with the shared libraries installed by the same package. -- Fixed an issue whereby building the "installer" target on Windows when WITH_JAVA=1 would fail if the TurboJPEG JAR had not been previously built. -- Building the "install" target on Windows now installs files into the same places that the installer does. [3] Fixed a Huffman encoder bug that prevented I/O suspension from working properly. 1.2.90 (1.3 beta1) ================== [1] Added support for additional scaling factors (3/8, 5/8, 3/4, 7/8, 9/8, 5/4, 11/8, 3/2, 13/8, 7/4, 15/8, and 2) when decompressing. Note that the IDCT will not be SIMD-accelerated when using any of these new scaling factors. [2] The TurboJPEG dynamic library is now versioned. It was not strictly necessary to do so, because TurboJPEG uses versioned symbols, and if a function changes in an ABI-incompatible way, that function is renamed and a legacy function is provided to maintain backward compatibility. However, certain Linux distro maintainers have a policy against accepting any library that isn't versioned. [3] Extended the TurboJPEG Java API so that it can be used to compress a JPEG image from and decompress a JPEG image to an arbitrary position in a large image buffer. [4] The tjDecompressToYUV() function now supports the TJFLAG_FASTDCT flag. [5] The 32-bit supplementary package for amd64 Debian systems now provides symlinks in /usr/lib/i386-linux-gnu for the TurboJPEG libraries in /usr/lib32. This allows those libraries to be used on MultiArch-compatible systems (such as Ubuntu 11 and later) without setting the linker path. [6] The TurboJPEG Java wrapper should now find the JNI library on Mac systems without having to pass -Djava.library.path=/usr/lib to java. [7] TJBench has been ported to Java to provide a convenient way of validating the performance of the TurboJPEG Java API. It can be run with 'java -cp turbojpeg.jar TJBench'. [8] cjpeg can now be used to generate JPEG files with the RGB colorspace (feature ported from jpeg-8d.) [9] The width and height in the -crop argument passed to jpegtran can now be suffixed with "f" to indicate that, when the upper left corner of the cropping region is automatically moved to the nearest iMCU boundary, the bottom right corner should be moved by the same amount. In other words, this feature causes jpegtran to strictly honor the specified width/height rather than the specified bottom right corner (feature ported from jpeg-8d.) [10] JPEG files using the RGB colorspace can now be decompressed into grayscale images (feature ported from jpeg-8d.) [11] Fixed a regression caused by 1.2.1[7] whereby the build would fail with multiple "Mismatch in operand sizes" errors when attempting to build the x86 SIMD code with NASM 0.98. [12] The in-memory source/destination managers (jpeg_mem_src() and jpeg_mem_dest()) are now included by default when building libjpeg-turbo with libjpeg v6b or v7 emulation, so that programs can take advantage of these functions without requiring the use of the backward-incompatible libjpeg v8 ABI. The "age number" of the libjpeg-turbo library on Un*x systems has been incremented by 1 to reflect this. You can disable this feature with a configure/CMake switch in order to retain strict API/ABI compatibility with the libjpeg v6b or v7 API/ABI (or with previous versions of libjpeg-turbo.) See README-turbo.txt for more details. [13] Added ARMv7s architecture to libjpeg.a and libturbojpeg.a in the official libjpeg-turbo binary package for OS X, so that those libraries can be used to build applications that leverage the faster CPUs in the iPhone 5 and iPad 4. 1.2.1 ===== [1] Creating or decoding a JPEG file that uses the RGB colorspace should now properly work when the input or output colorspace is one of the libjpeg-turbo colorspace extensions. [2] When libjpeg-turbo was built without SIMD support and merged (non-fancy) upsampling was used along with an alpha-enabled colorspace during decompression, the unused byte of the decompressed pixels was not being set to 0xFF. This has been fixed. TJUnitTest has also been extended to test for the correct behavior of the colorspace extensions when merged upsampling is used. [3] Fixed a bug whereby the libjpeg-turbo SSE2 SIMD code would not preserve the upper 64 bits of xmm6 and xmm7 on Win64 platforms, which violated the Win64 calling conventions. [4] Fixed a regression caused by 1.2.0[6] whereby decompressing corrupt JPEG images (specifically, images in which the component count was erroneously set to a large value) would cause libjpeg-turbo to segfault. [5] Worked around a severe performance issue with "Bobcat" (AMD Embedded APU) processors. The MASKMOVDQU instruction, which was used by the libjpeg-turbo SSE2 SIMD code, is apparently implemented in microcode on AMD processors, and it is painfully slow on Bobcat processors in particular. Eliminating the use of this instruction improved performance by an order of magnitude on Bobcat processors and by a small amount (typically 5%) on AMD desktop processors. [6] Added SIMD acceleration for performing 4:2:2 upsampling on NEON-capable ARM platforms. This speeds up the decompression of 4:2:2 JPEGs by 20-25% on such platforms. [7] Fixed a regression caused by 1.2.0[2] whereby, on Linux/x86 platforms running the 32-bit SSE2 SIMD code in libjpeg-turbo, decompressing a 4:2:0 or 4:2:2 JPEG image into a 32-bit (RGBX, BGRX, etc.) buffer without using fancy upsampling would produce several incorrect columns of pixels at the right-hand side of the output image if each row in the output image was not evenly divisible by 16 bytes. [8] Fixed an issue whereby attempting to build the SIMD extensions with Xcode 4.3 on OS X platforms would cause NASM to return numerous errors of the form "'%define' expects a macro identifier". [9] Added flags to the TurboJPEG API that allow the caller to force the use of either the fast or the accurate DCT/IDCT algorithms in the underlying codec. 1.2.0 ===== [1] Fixed build issue with YASM on Unix systems (the libjpeg-turbo build system was not adding the current directory to the assembler include path, so YASM was not able to find jsimdcfg.inc.) [2] Fixed out-of-bounds read in SSE2 SIMD code that occurred when decompressing a JPEG image to a bitmap buffer whose size was not a multiple of 16 bytes. This was more of an annoyance than an actual bug, since it did not cause any actual run-time problems, but the issue showed up when running libjpeg-turbo in valgrind. See http://crbug.com/72399 for more information. [3] Added a compile-time macro (LIBJPEG_TURBO_VERSION) that can be used to check the version of libjpeg-turbo against which an application was compiled. [4] Added new RGBA/BGRA/ABGR/ARGB colorspace extension constants (libjpeg API) and pixel formats (TurboJPEG API), which allow applications to specify that, when decompressing to a 4-component RGB buffer, the unused byte should be set to 0xFF so that it can be interpreted as an opaque alpha channel. [5] Fixed regression issue whereby DevIL failed to build against libjpeg-turbo because libjpeg-turbo's distributed version of jconfig.h contained an INLINE macro, which conflicted with a similar macro in DevIL. This macro is used only internally when building libjpeg-turbo, so it was moved into config.h. [6] libjpeg-turbo will now correctly decompress erroneous CMYK/YCCK JPEGs whose K component is assigned a component ID of 1 instead of 4. Although these files are in violation of the spec, other JPEG implementations handle them correctly. [7] Added ARMv6 and ARMv7 architectures to libjpeg.a and libturbojpeg.a in the official libjpeg-turbo binary package for OS X, so that those libraries can be used to build both OS X and iOS applications. 1.1.90 (1.2 beta1) ================== [1] Added a Java wrapper for the TurboJPEG API. See java/README for more details. [2] The TurboJPEG API can now be used to scale down images during decompression. [3] Added SIMD routines for RGB-to-grayscale color conversion, which significantly improves the performance of grayscale JPEG compression from an RGB source image. [4] Improved the performance of the C color conversion routines, which are used on platforms for which SIMD acceleration is not available. [5] Added a function to the TurboJPEG API that performs lossless transforms. This function is implemented using the same back end as jpegtran, but it performs transcoding entirely in memory and allows multiple transforms and/or crop operations to be batched together, so the source coefficients only need to be read once. This is useful when generating image tiles from a single source JPEG. [6] Added tests for the new TurboJPEG scaled decompression and lossless transform features to tjbench (the TurboJPEG benchmark, formerly called "jpgtest".) [7] Added support for 4:4:0 (transposed 4:2:2) subsampling in TurboJPEG, which was necessary in order for it to read 4:2:2 JPEG files that had been losslessly transposed or rotated 90 degrees. [8] All legacy VirtualGL code has been re-factored, and this has allowed libjpeg-turbo, in its entirety, to be re-licensed under a BSD-style license. [9] libjpeg-turbo can now be built with YASM. [10] Added SIMD acceleration for ARM Linux and iOS platforms that support NEON instructions. [11] Refactored the TurboJPEG C API and documented it using Doxygen. The TurboJPEG 1.2 API uses pixel formats to define the size and component order of the uncompressed source/destination images, and it includes a more efficient version of TJBUFSIZE() that computes a worst-case JPEG size based on the level of chrominance subsampling. The refactored implementation of the TurboJPEG API now uses the libjpeg memory source and destination managers, which allows the TurboJPEG compressor to grow the JPEG buffer as necessary. [12] Eliminated errors in the output of jpegtran on Windows that occurred when the application was invoked using I/O redirection (jpegtran output.jpg). [13] The inclusion of libjpeg v7 and v8 emulation as well as arithmetic coding support in libjpeg-turbo v1.1.0 introduced several new error constants in jerror.h, and these were mistakenly enabled for all emulation modes, causing the error enum in libjpeg-turbo to sometimes have different values than the same enum in libjpeg. This represents an ABI incompatibility, and it caused problems with rare applications that took specific action based on a particular error value. The fix was to include the new error constants conditionally based on whether libjpeg v7 or v8 emulation was enabled. [14] Fixed an issue whereby Windows applications that used libjpeg-turbo would fail to compile if the Windows system headers were included before jpeglib.h. This issue was caused by a conflict in the definition of the INT32 type. [15] Fixed 32-bit supplementary package for amd64 Debian systems, which was broken by enhancements to the packaging system in 1.1. [16] When decompressing a JPEG image using an output colorspace of JCS_EXT_RGBX, JCS_EXT_BGRX, JCS_EXT_XBGR, or JCS_EXT_XRGB, libjpeg-turbo will now set the unused byte to 0xFF, which allows applications to interpret that byte as an alpha channel (0xFF = opaque). 1.1.1 ===== [1] Fixed a 1-pixel error in row 0, column 21 of the luminance plane generated by tjEncodeYUV(). [2] libjpeg-turbo's accelerated Huffman decoder previously ignored unexpected markers found in the middle of the JPEG data stream during decompression. It will now hand off decoding of a particular block to the unaccelerated Huffman decoder if an unexpected marker is found, so that the unaccelerated Huffman decoder can generate an appropriate warning. [3] Older versions of MinGW64 prefixed symbol names with underscores by default, which differed from the behavior of 64-bit Visual C++. MinGW64 1.0 has adopted the behavior of 64-bit Visual C++ as the default, so to accommodate this, the libjpeg-turbo SIMD function names are no longer prefixed with an underscore when building with MinGW64. This means that, when building libjpeg-turbo with older versions of MinGW64, you will now have to add -fno-leading-underscore to the CFLAGS. [4] Fixed a regression bug in the NSIS script that caused the Windows installer build to fail when using the Visual Studio IDE. [5] Fixed a bug in jpeg_read_coefficients() whereby it would not initialize cinfo->image_width and cinfo->image_height if libjpeg v7 or v8 emulation was enabled. This specifically caused the jpegoptim program to fail if it was linked against a version of libjpeg-turbo that was built with libjpeg v7 or v8 emulation. [6] Eliminated excessive I/O overhead that occurred when reading BMP files in cjpeg. [7] Eliminated errors in the output of cjpeg on Windows that occurred when the application was invoked using I/O redirection (cjpeg output.jpg). 1.1.0 ===== [1] The algorithm used by the SIMD quantization function cannot produce correct results when the JPEG quality is >= 98 and the fast integer forward DCT is used. Thus, the non-SIMD quantization function is now used for those cases, and libjpeg-turbo should now produce identical output to libjpeg v6b in all cases. [2] Despite the above, the fast integer forward DCT still degrades somewhat for JPEG qualities greater than 95, so the TurboJPEG wrapper will now automatically use the slow integer forward DCT when generating JPEG images of quality 96 or greater. This reduces compression performance by as much as 15% for these high-quality images but is necessary to ensure that the images are perceptually lossless. It also ensures that the library can avoid the performance pitfall created by [1]. [3] Ported jpgtest.cxx to pure C to avoid the need for a C++ compiler. [4] Fixed visual artifacts in grayscale JPEG compression caused by a typo in the RGB-to-luminance lookup tables. [5] The Windows distribution packages now include the libjpeg run-time programs (cjpeg, etc.) [6] All packages now include jpgtest. [7] The TurboJPEG dynamic library now uses versioned symbols. [8] Added two new TurboJPEG API functions, tjEncodeYUV() and tjDecompressToYUV(), to replace the somewhat hackish TJ_YUV flag. 1.0.90 (1.1 beta1) ================== [1] Added emulation of the libjpeg v7 and v8 APIs and ABIs. See README-turbo.txt for more details. This feature was sponsored by CamTrace SAS. [2] Created a new CMake-based build system for the Visual C++ and MinGW builds. [3] Grayscale bitmaps can now be compressed from/decompressed to using the TurboJPEG API. [4] jpgtest can now be used to test decompression performance with existing JPEG images. [5] If the default install prefix (/opt/libjpeg-turbo) is used, then 'make install' now creates /opt/libjpeg-turbo/lib32 and /opt/libjpeg-turbo/lib64 sym links to duplicate the behavior of the binary packages. [6] All symbols in the libjpeg-turbo dynamic library are now versioned, even when the library is built with libjpeg v6b emulation. [7] Added arithmetic encoding and decoding support (can be disabled with configure or CMake options) [8] Added a TJ_YUV flag to the TurboJPEG API, which causes both the compressor and decompressor to output planar YUV images. [9] Added an extended version of tjDecompressHeader() to the TurboJPEG API, which allows the caller to determine the type of subsampling used in a JPEG image. [10] Added further protections against invalid Huffman codes. 1.0.1 ===== [1] The Huffman decoder will now handle erroneous Huffman codes (for instance, from a corrupt JPEG image.) Previously, these would cause libjpeg-turbo to crash under certain circumstances. [2] Fixed typo in SIMD dispatch routines that was causing 4:2:2 upsampling to be used instead of 4:2:0 when decompressing JPEG images using SSE2 code. [3] configure script will now automatically determine whether the INCOMPLETE_TYPES_BROKEN macro should be defined. 1.0.0 ===== [1] 2983700: Further FreeBSD build tweaks (no longer necessary to specify --host when configuring on a 64-bit system) [2] Created symlinks in the Unix/Linux packages so that the TurboJPEG include file can always be found in /opt/libjpeg-turbo/include, the 32-bit static libraries can always be found in /opt/libjpeg-turbo/lib32, and the 64-bit static libraries can always be found in /opt/libjpeg-turbo/lib64. [3] The Unix/Linux distribution packages now include the libjpeg run-time programs (cjpeg, etc.) and man pages. [4] Created a 32-bit supplementary package for amd64 Debian systems, which contains just the 32-bit libjpeg-turbo libraries. [5] Moved the libraries from */lib32 to */lib in the i386 Debian package. [6] Include distribution package for Cygwin [7] No longer necessary to specify --without-simd on non-x86 architectures, and unit tests now work on those architectures. 0.0.93 ====== [1] 2982659, Fixed x86-64 build on FreeBSD systems [2] 2988188: Added support for Windows 64-bit systems 0.0.91 ====== [1] Added documentation to .deb packages [2] 2968313: Fixed data corruption issues when decompressing large JPEG images and/or using buffered I/O with the libjpeg-turbo decompressor 0.0.90 ====== Initial release libjpeg-turbo-1.4.2/example.c0000644000076500007650000004147512600050400013013 00000000000000/* * example.c * * This file illustrates how to use the IJG code as a subroutine library * to read or write JPEG image files. You should look at this code in * conjunction with the documentation file libjpeg.txt. * * This code will not do anything useful as-is, but it may be helpful as a * skeleton for constructing routines that call the JPEG library. * * We present these routines in the same coding style used in the JPEG code * (ANSI function definitions, etc); but you are of course free to code your * routines in a different style if you prefer. */ #include /* * Include file for users of JPEG library. * You will need to have included system headers that define at least * the typedefs FILE and size_t before you can include jpeglib.h. * (stdio.h is sufficient on ANSI-conforming systems.) * You may also wish to include "jerror.h". */ #include "jpeglib.h" /* * is used for the optional error recovery mechanism shown in * the second part of the example. */ #include /******************** JPEG COMPRESSION SAMPLE INTERFACE *******************/ /* This half of the example shows how to feed data into the JPEG compressor. * We present a minimal version that does not worry about refinements such * as error recovery (the JPEG code will just exit() if it gets an error). */ /* * IMAGE DATA FORMATS: * * The standard input image format is a rectangular array of pixels, with * each pixel having the same number of "component" values (color channels). * Each pixel row is an array of JSAMPLEs (which typically are unsigned chars). * If you are working with color data, then the color values for each pixel * must be adjacent in the row; for example, R,G,B,R,G,B,R,G,B,... for 24-bit * RGB color. * * For this example, we'll assume that this data structure matches the way * our application has stored the image in memory, so we can just pass a * pointer to our image buffer. In particular, let's say that the image is * RGB color and is described by: */ extern JSAMPLE * image_buffer; /* Points to large array of R,G,B-order data */ extern int image_height; /* Number of rows in image */ extern int image_width; /* Number of columns in image */ /* * Sample routine for JPEG compression. We assume that the target file name * and a compression quality factor are passed in. */ GLOBAL(void) write_JPEG_file (char * filename, int quality) { /* This struct contains the JPEG compression parameters and pointers to * working space (which is allocated as needed by the JPEG library). * It is possible to have several such structures, representing multiple * compression/decompression processes, in existence at once. We refer * to any one struct (and its associated working data) as a "JPEG object". */ struct jpeg_compress_struct cinfo; /* This struct represents a JPEG error handler. It is declared separately * because applications often want to supply a specialized error handler * (see the second half of this file for an example). But here we just * take the easy way out and use the standard error handler, which will * print a message on stderr and call exit() if compression fails. * Note that this struct must live as long as the main JPEG parameter * struct, to avoid dangling-pointer problems. */ struct jpeg_error_mgr jerr; /* More stuff */ FILE * outfile; /* target file */ JSAMPROW row_pointer[1]; /* pointer to JSAMPLE row[s] */ int row_stride; /* physical row width in image buffer */ /* Step 1: allocate and initialize JPEG compression object */ /* We have to set up the error handler first, in case the initialization * step fails. (Unlikely, but it could happen if you are out of memory.) * This routine fills in the contents of struct jerr, and returns jerr's * address which we place into the link field in cinfo. */ cinfo.err = jpeg_std_error(&jerr); /* Now we can initialize the JPEG compression object. */ jpeg_create_compress(&cinfo); /* Step 2: specify data destination (eg, a file) */ /* Note: steps 2 and 3 can be done in either order. */ /* Here we use the library-supplied code to send compressed data to a * stdio stream. You can also write your own code to do something else. * VERY IMPORTANT: use "b" option to fopen() if you are on a machine that * requires it in order to write binary files. */ if ((outfile = fopen(filename, "wb")) == NULL) { fprintf(stderr, "can't open %s\n", filename); exit(1); } jpeg_stdio_dest(&cinfo, outfile); /* Step 3: set parameters for compression */ /* First we supply a description of the input image. * Four fields of the cinfo struct must be filled in: */ cinfo.image_width = image_width; /* image width and height, in pixels */ cinfo.image_height = image_height; cinfo.input_components = 3; /* # of color components per pixel */ cinfo.in_color_space = JCS_RGB; /* colorspace of input image */ /* Now use the library's routine to set default compression parameters. * (You must set at least cinfo.in_color_space before calling this, * since the defaults depend on the source color space.) */ jpeg_set_defaults(&cinfo); /* Now you can set any non-default parameters you wish to. * Here we just illustrate the use of quality (quantization table) scaling: */ jpeg_set_quality(&cinfo, quality, TRUE /* limit to baseline-JPEG values */); /* Step 4: Start compressor */ /* TRUE ensures that we will write a complete interchange-JPEG file. * Pass TRUE unless you are very sure of what you're doing. */ jpeg_start_compress(&cinfo, TRUE); /* Step 5: while (scan lines remain to be written) */ /* jpeg_write_scanlines(...); */ /* Here we use the library's state variable cinfo.next_scanline as the * loop counter, so that we don't have to keep track ourselves. * To keep things simple, we pass one scanline per call; you can pass * more if you wish, though. */ row_stride = image_width * 3; /* JSAMPLEs per row in image_buffer */ while (cinfo.next_scanline < cinfo.image_height) { /* jpeg_write_scanlines expects an array of pointers to scanlines. * Here the array is only one element long, but you could pass * more than one scanline at a time if that's more convenient. */ row_pointer[0] = & image_buffer[cinfo.next_scanline * row_stride]; (void) jpeg_write_scanlines(&cinfo, row_pointer, 1); } /* Step 6: Finish compression */ jpeg_finish_compress(&cinfo); /* After finish_compress, we can close the output file. */ fclose(outfile); /* Step 7: release JPEG compression object */ /* This is an important step since it will release a good deal of memory. */ jpeg_destroy_compress(&cinfo); /* And we're done! */ } /* * SOME FINE POINTS: * * In the above loop, we ignored the return value of jpeg_write_scanlines, * which is the number of scanlines actually written. We could get away * with this because we were only relying on the value of cinfo.next_scanline, * which will be incremented correctly. If you maintain additional loop * variables then you should be careful to increment them properly. * Actually, for output to a stdio stream you needn't worry, because * then jpeg_write_scanlines will write all the lines passed (or else exit * with a fatal error). Partial writes can only occur if you use a data * destination module that can demand suspension of the compressor. * (If you don't know what that's for, you don't need it.) * * If the compressor requires full-image buffers (for entropy-coding * optimization or a multi-scan JPEG file), it will create temporary * files for anything that doesn't fit within the maximum-memory setting. * (Note that temp files are NOT needed if you use the default parameters.) * On some systems you may need to set up a signal handler to ensure that * temporary files are deleted if the program is interrupted. See libjpeg.txt. * * Scanlines MUST be supplied in top-to-bottom order if you want your JPEG * files to be compatible with everyone else's. If you cannot readily read * your data in that order, you'll need an intermediate array to hold the * image. See rdtarga.c or rdbmp.c for examples of handling bottom-to-top * source data using the JPEG code's internal virtual-array mechanisms. */ /******************** JPEG DECOMPRESSION SAMPLE INTERFACE *******************/ /* This half of the example shows how to read data from the JPEG decompressor. * It's a bit more refined than the above, in that we show: * (a) how to modify the JPEG library's standard error-reporting behavior; * (b) how to allocate workspace using the library's memory manager. * * Just to make this example a little different from the first one, we'll * assume that we do not intend to put the whole image into an in-memory * buffer, but to send it line-by-line someplace else. We need a one- * scanline-high JSAMPLE array as a work buffer, and we will let the JPEG * memory manager allocate it for us. This approach is actually quite useful * because we don't need to remember to deallocate the buffer separately: it * will go away automatically when the JPEG object is cleaned up. */ /* * ERROR HANDLING: * * The JPEG library's standard error handler (jerror.c) is divided into * several "methods" which you can override individually. This lets you * adjust the behavior without duplicating a lot of code, which you might * have to update with each future release. * * Our example here shows how to override the "error_exit" method so that * control is returned to the library's caller when a fatal error occurs, * rather than calling exit() as the standard error_exit method does. * * We use C's setjmp/longjmp facility to return control. This means that the * routine which calls the JPEG library must first execute a setjmp() call to * establish the return point. We want the replacement error_exit to do a * longjmp(). But we need to make the setjmp buffer accessible to the * error_exit routine. To do this, we make a private extension of the * standard JPEG error handler object. (If we were using C++, we'd say we * were making a subclass of the regular error handler.) * * Here's the extended error handler struct: */ struct my_error_mgr { struct jpeg_error_mgr pub; /* "public" fields */ jmp_buf setjmp_buffer; /* for return to caller */ }; typedef struct my_error_mgr * my_error_ptr; /* * Here's the routine that will replace the standard error_exit method: */ METHODDEF(void) my_error_exit (j_common_ptr cinfo) { /* cinfo->err really points to a my_error_mgr struct, so coerce pointer */ my_error_ptr myerr = (my_error_ptr) cinfo->err; /* Always display the message. */ /* We could postpone this until after returning, if we chose. */ (*cinfo->err->output_message) (cinfo); /* Return control to the setjmp point */ longjmp(myerr->setjmp_buffer, 1); } /* * Sample routine for JPEG decompression. We assume that the source file name * is passed in. We want to return 1 on success, 0 on error. */ GLOBAL(int) read_JPEG_file (char * filename) { /* This struct contains the JPEG decompression parameters and pointers to * working space (which is allocated as needed by the JPEG library). */ struct jpeg_decompress_struct cinfo; /* We use our private extension JPEG error handler. * Note that this struct must live as long as the main JPEG parameter * struct, to avoid dangling-pointer problems. */ struct my_error_mgr jerr; /* More stuff */ FILE * infile; /* source file */ JSAMPARRAY buffer; /* Output row buffer */ int row_stride; /* physical row width in output buffer */ /* In this example we want to open the input file before doing anything else, * so that the setjmp() error recovery below can assume the file is open. * VERY IMPORTANT: use "b" option to fopen() if you are on a machine that * requires it in order to read binary files. */ if ((infile = fopen(filename, "rb")) == NULL) { fprintf(stderr, "can't open %s\n", filename); return 0; } /* Step 1: allocate and initialize JPEG decompression object */ /* We set up the normal JPEG error routines, then override error_exit. */ cinfo.err = jpeg_std_error(&jerr.pub); jerr.pub.error_exit = my_error_exit; /* Establish the setjmp return context for my_error_exit to use. */ if (setjmp(jerr.setjmp_buffer)) { /* If we get here, the JPEG code has signaled an error. * We need to clean up the JPEG object, close the input file, and return. */ jpeg_destroy_decompress(&cinfo); fclose(infile); return 0; } /* Now we can initialize the JPEG decompression object. */ jpeg_create_decompress(&cinfo); /* Step 2: specify data source (eg, a file) */ jpeg_stdio_src(&cinfo, infile); /* Step 3: read file parameters with jpeg_read_header() */ (void) jpeg_read_header(&cinfo, TRUE); /* We can ignore the return value from jpeg_read_header since * (a) suspension is not possible with the stdio data source, and * (b) we passed TRUE to reject a tables-only JPEG file as an error. * See libjpeg.txt for more info. */ /* Step 4: set parameters for decompression */ /* In this example, we don't need to change any of the defaults set by * jpeg_read_header(), so we do nothing here. */ /* Step 5: Start decompressor */ (void) jpeg_start_decompress(&cinfo); /* We can ignore the return value since suspension is not possible * with the stdio data source. */ /* We may need to do some setup of our own at this point before reading * the data. After jpeg_start_decompress() we have the correct scaled * output image dimensions available, as well as the output colormap * if we asked for color quantization. * In this example, we need to make an output work buffer of the right size. */ /* JSAMPLEs per row in output buffer */ row_stride = cinfo.output_width * cinfo.output_components; /* Make a one-row-high sample array that will go away when done with image */ buffer = (*cinfo.mem->alloc_sarray) ((j_common_ptr) &cinfo, JPOOL_IMAGE, row_stride, 1); /* Step 6: while (scan lines remain to be read) */ /* jpeg_read_scanlines(...); */ /* Here we use the library's state variable cinfo.output_scanline as the * loop counter, so that we don't have to keep track ourselves. */ while (cinfo.output_scanline < cinfo.output_height) { /* jpeg_read_scanlines expects an array of pointers to scanlines. * Here the array is only one element long, but you could ask for * more than one scanline at a time if that's more convenient. */ (void) jpeg_read_scanlines(&cinfo, buffer, 1); /* Assume put_scanline_someplace wants a pointer and sample count. */ put_scanline_someplace(buffer[0], row_stride); } /* Step 7: Finish decompression */ (void) jpeg_finish_decompress(&cinfo); /* We can ignore the return value since suspension is not possible * with the stdio data source. */ /* Step 8: Release JPEG decompression object */ /* This is an important step since it will release a good deal of memory. */ jpeg_destroy_decompress(&cinfo); /* After finish_decompress, we can close the input file. * Here we postpone it until after no more JPEG errors are possible, * so as to simplify the setjmp error logic above. (Actually, I don't * think that jpeg_destroy can do an error exit, but why assume anything...) */ fclose(infile); /* At this point you may want to check to see whether any corrupt-data * warnings occurred (test whether jerr.pub.num_warnings is nonzero). */ /* And we're done! */ return 1; } /* * SOME FINE POINTS: * * In the above code, we ignored the return value of jpeg_read_scanlines, * which is the number of scanlines actually read. We could get away with * this because we asked for only one line at a time and we weren't using * a suspending data source. See libjpeg.txt for more info. * * We cheated a bit by calling alloc_sarray() after jpeg_start_decompress(); * we should have done it beforehand to ensure that the space would be * counted against the JPEG max_memory setting. In some systems the above * code would risk an out-of-memory error. However, in general we don't * know the output image dimensions before jpeg_start_decompress(), unless we * call jpeg_calc_output_dimensions(). See libjpeg.txt for more about this. * * Scanlines are returned in the same order as they appear in the JPEG file, * which is standardly top-to-bottom. If you must emit data bottom-to-top, * you can use one of the virtual arrays provided by the JPEG memory manager * to invert the data. See wrbmp.c for an example. * * As with compression, some operating modes may require temporary files. * On some systems you may need to set up a signal handler to ensure that * temporary files are deleted if the program is interrupted. See libjpeg.txt. */ libjpeg-turbo-1.4.2/wrjpgcom.c0000644000076500007650000004300112600050400013173 00000000000000/* * wrjpgcom.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1994-1997, Thomas G. Lane. * libjpeg-turbo Modifications: * Copyright (C) 2014, D. R. Commander * For conditions of distribution and use, see the accompanying README file. * * This file contains a very simple stand-alone application that inserts * user-supplied text as a COM (comment) marker in a JFIF file. * This may be useful as an example of the minimum logic needed to parse * JPEG markers. */ #define JPEG_CJPEG_DJPEG /* to get the command-line config symbols */ #include "jinclude.h" /* get auto-config symbols, */ #ifndef HAVE_STDLIB_H /* should declare malloc() */ extern void * malloc (); #endif #include /* to declare isupper(), tolower() */ #ifdef USE_SETMODE #include /* to declare setmode()'s parameter macros */ /* If you have setmode() but not , just delete this line: */ #include /* to declare setmode() */ #endif #ifdef USE_CCOMMAND /* command-line reader for Macintosh */ #ifdef __MWERKS__ #include /* Metrowerks needs this */ #include /* ... and this */ #endif #ifdef THINK_C #include /* Think declares it here */ #endif #endif #ifdef DONT_USE_B_MODE /* define mode parameters for fopen() */ #define READ_BINARY "r" #define WRITE_BINARY "w" #else #define READ_BINARY "rb" #define WRITE_BINARY "wb" #endif #ifndef EXIT_FAILURE /* define exit() codes if not provided */ #define EXIT_FAILURE 1 #endif #ifndef EXIT_SUCCESS #define EXIT_SUCCESS 0 #endif /* Reduce this value if your malloc() can't allocate blocks up to 64K. * On DOS, compiling in large model is usually a better solution. */ #ifndef MAX_COM_LENGTH #define MAX_COM_LENGTH 65000L /* must be <= 65533 in any case */ #endif /* * These macros are used to read the input file and write the output file. * To reuse this code in another application, you might need to change these. */ static FILE * infile; /* input JPEG file */ /* Return next input byte, or EOF if no more */ #define NEXTBYTE() getc(infile) static FILE * outfile; /* output JPEG file */ /* Emit an output byte */ #define PUTBYTE(x) putc((x), outfile) /* Error exit handler */ #define ERREXIT(msg) (fprintf(stderr, "%s\n", msg), exit(EXIT_FAILURE)) /* Read one byte, testing for EOF */ static int read_1_byte (void) { int c; c = NEXTBYTE(); if (c == EOF) ERREXIT("Premature EOF in JPEG file"); return c; } /* Read 2 bytes, convert to unsigned int */ /* All 2-byte quantities in JPEG markers are MSB first */ static unsigned int read_2_bytes (void) { int c1, c2; c1 = NEXTBYTE(); if (c1 == EOF) ERREXIT("Premature EOF in JPEG file"); c2 = NEXTBYTE(); if (c2 == EOF) ERREXIT("Premature EOF in JPEG file"); return (((unsigned int) c1) << 8) + ((unsigned int) c2); } /* Routines to write data to output file */ static void write_1_byte (int c) { PUTBYTE(c); } static void write_2_bytes (unsigned int val) { PUTBYTE((val >> 8) & 0xFF); PUTBYTE(val & 0xFF); } static void write_marker (int marker) { PUTBYTE(0xFF); PUTBYTE(marker); } static void copy_rest_of_file (void) { int c; while ((c = NEXTBYTE()) != EOF) PUTBYTE(c); } /* * JPEG markers consist of one or more 0xFF bytes, followed by a marker * code byte (which is not an FF). Here are the marker codes of interest * in this program. (See jdmarker.c for a more complete list.) */ #define M_SOF0 0xC0 /* Start Of Frame N */ #define M_SOF1 0xC1 /* N indicates which compression process */ #define M_SOF2 0xC2 /* Only SOF0-SOF2 are now in common use */ #define M_SOF3 0xC3 #define M_SOF5 0xC5 /* NB: codes C4 and CC are NOT SOF markers */ #define M_SOF6 0xC6 #define M_SOF7 0xC7 #define M_SOF9 0xC9 #define M_SOF10 0xCA #define M_SOF11 0xCB #define M_SOF13 0xCD #define M_SOF14 0xCE #define M_SOF15 0xCF #define M_SOI 0xD8 /* Start Of Image (beginning of datastream) */ #define M_EOI 0xD9 /* End Of Image (end of datastream) */ #define M_SOS 0xDA /* Start Of Scan (begins compressed data) */ #define M_COM 0xFE /* COMment */ /* * Find the next JPEG marker and return its marker code. * We expect at least one FF byte, possibly more if the compressor used FFs * to pad the file. (Padding FFs will NOT be replicated in the output file.) * There could also be non-FF garbage between markers. The treatment of such * garbage is unspecified; we choose to skip over it but emit a warning msg. * NB: this routine must not be used after seeing SOS marker, since it will * not deal correctly with FF/00 sequences in the compressed image data... */ static int next_marker (void) { int c; int discarded_bytes = 0; /* Find 0xFF byte; count and skip any non-FFs. */ c = read_1_byte(); while (c != 0xFF) { discarded_bytes++; c = read_1_byte(); } /* Get marker code byte, swallowing any duplicate FF bytes. Extra FFs * are legal as pad bytes, so don't count them in discarded_bytes. */ do { c = read_1_byte(); } while (c == 0xFF); if (discarded_bytes != 0) { fprintf(stderr, "Warning: garbage data found in JPEG file\n"); } return c; } /* * Read the initial marker, which should be SOI. * For a JFIF file, the first two bytes of the file should be literally * 0xFF M_SOI. To be more general, we could use next_marker, but if the * input file weren't actually JPEG at all, next_marker might read the whole * file and then return a misleading error message... */ static int first_marker (void) { int c1, c2; c1 = NEXTBYTE(); c2 = NEXTBYTE(); if (c1 != 0xFF || c2 != M_SOI) ERREXIT("Not a JPEG file"); return c2; } /* * Most types of marker are followed by a variable-length parameter segment. * This routine skips over the parameters for any marker we don't otherwise * want to process. * Note that we MUST skip the parameter segment explicitly in order not to * be fooled by 0xFF bytes that might appear within the parameter segment; * such bytes do NOT introduce new markers. */ static void copy_variable (void) /* Copy an unknown or uninteresting variable-length marker */ { unsigned int length; /* Get the marker parameter length count */ length = read_2_bytes(); write_2_bytes(length); /* Length includes itself, so must be at least 2 */ if (length < 2) ERREXIT("Erroneous JPEG marker length"); length -= 2; /* Skip over the remaining bytes */ while (length > 0) { write_1_byte(read_1_byte()); length--; } } static void skip_variable (void) /* Skip over an unknown or uninteresting variable-length marker */ { unsigned int length; /* Get the marker parameter length count */ length = read_2_bytes(); /* Length includes itself, so must be at least 2 */ if (length < 2) ERREXIT("Erroneous JPEG marker length"); length -= 2; /* Skip over the remaining bytes */ while (length > 0) { (void) read_1_byte(); length--; } } /* * Parse the marker stream until SOFn or EOI is seen; * copy data to output, but discard COM markers unless keep_COM is true. */ static int scan_JPEG_header (int keep_COM) { int marker; /* Expect SOI at start of file */ if (first_marker() != M_SOI) ERREXIT("Expected SOI marker first"); write_marker(M_SOI); /* Scan miscellaneous markers until we reach SOFn. */ for (;;) { marker = next_marker(); switch (marker) { /* Note that marker codes 0xC4, 0xC8, 0xCC are not, and must not be, * treated as SOFn. C4 in particular is actually DHT. */ case M_SOF0: /* Baseline */ case M_SOF1: /* Extended sequential, Huffman */ case M_SOF2: /* Progressive, Huffman */ case M_SOF3: /* Lossless, Huffman */ case M_SOF5: /* Differential sequential, Huffman */ case M_SOF6: /* Differential progressive, Huffman */ case M_SOF7: /* Differential lossless, Huffman */ case M_SOF9: /* Extended sequential, arithmetic */ case M_SOF10: /* Progressive, arithmetic */ case M_SOF11: /* Lossless, arithmetic */ case M_SOF13: /* Differential sequential, arithmetic */ case M_SOF14: /* Differential progressive, arithmetic */ case M_SOF15: /* Differential lossless, arithmetic */ return marker; case M_SOS: /* should not see compressed data before SOF */ ERREXIT("SOS without prior SOFn"); break; case M_EOI: /* in case it's a tables-only JPEG stream */ return marker; case M_COM: /* Existing COM: conditionally discard */ if (keep_COM) { write_marker(marker); copy_variable(); } else { skip_variable(); } break; default: /* Anything else just gets copied */ write_marker(marker); copy_variable(); /* we assume it has a parameter count... */ break; } } /* end loop */ } /* Command line parsing code */ static const char * progname; /* program name for error messages */ static void usage (void) /* complain about bad command line */ { fprintf(stderr, "wrjpgcom inserts a textual comment in a JPEG file.\n"); fprintf(stderr, "You can add to or replace any existing comment(s).\n"); fprintf(stderr, "Usage: %s [switches] ", progname); #ifdef TWO_FILE_COMMANDLINE fprintf(stderr, "inputfile outputfile\n"); #else fprintf(stderr, "[inputfile]\n"); #endif fprintf(stderr, "Switches (names may be abbreviated):\n"); fprintf(stderr, " -replace Delete any existing comments\n"); fprintf(stderr, " -comment \"text\" Insert comment with given text\n"); fprintf(stderr, " -cfile name Read comment from named file\n"); fprintf(stderr, "Notice that you must put quotes around the comment text\n"); fprintf(stderr, "when you use -comment.\n"); fprintf(stderr, "If you do not give either -comment or -cfile on the command line,\n"); fprintf(stderr, "then the comment text is read from standard input.\n"); fprintf(stderr, "It can be multiple lines, up to %u characters total.\n", (unsigned int) MAX_COM_LENGTH); #ifndef TWO_FILE_COMMANDLINE fprintf(stderr, "You must specify an input JPEG file name when supplying\n"); fprintf(stderr, "comment text from standard input.\n"); #endif exit(EXIT_FAILURE); } static int keymatch (char * arg, const char * keyword, int minchars) /* Case-insensitive matching of (possibly abbreviated) keyword switches. */ /* keyword is the constant keyword (must be lower case already), */ /* minchars is length of minimum legal abbreviation. */ { register int ca, ck; register int nmatched = 0; while ((ca = *arg++) != '\0') { if ((ck = *keyword++) == '\0') return 0; /* arg longer than keyword, no good */ if (isupper(ca)) /* force arg to lcase (assume ck is already) */ ca = tolower(ca); if (ca != ck) return 0; /* no good */ nmatched++; /* count matched characters */ } /* reached end of argument; fail if it's too short for unique abbrev */ if (nmatched < minchars) return 0; return 1; /* A-OK */ } /* * The main program. */ int main (int argc, char **argv) { int argn; char * arg; int keep_COM = 1; char * comment_arg = NULL; FILE * comment_file = NULL; unsigned int comment_length = 0; int marker; /* On Mac, fetch a command line. */ #ifdef USE_CCOMMAND argc = ccommand(&argv); #endif progname = argv[0]; if (progname == NULL || progname[0] == 0) progname = "wrjpgcom"; /* in case C library doesn't provide it */ /* Parse switches, if any */ for (argn = 1; argn < argc; argn++) { arg = argv[argn]; if (arg[0] != '-') break; /* not switch, must be file name */ arg++; /* advance over '-' */ if (keymatch(arg, "replace", 1)) { keep_COM = 0; } else if (keymatch(arg, "cfile", 2)) { if (++argn >= argc) usage(); if ((comment_file = fopen(argv[argn], "r")) == NULL) { fprintf(stderr, "%s: can't open %s\n", progname, argv[argn]); exit(EXIT_FAILURE); } } else if (keymatch(arg, "comment", 1)) { if (++argn >= argc) usage(); comment_arg = argv[argn]; /* If the comment text starts with '"', then we are probably running * under MS-DOG and must parse out the quoted string ourselves. Sigh. */ if (comment_arg[0] == '"') { comment_arg = (char *) malloc((size_t) MAX_COM_LENGTH); if (comment_arg == NULL) ERREXIT("Insufficient memory"); if (strlen(argv[argn]) + 2 >= (size_t) MAX_COM_LENGTH) { fprintf(stderr, "Comment text may not exceed %u bytes\n", (unsigned int) MAX_COM_LENGTH); exit(EXIT_FAILURE); } strcpy(comment_arg, argv[argn]+1); for (;;) { comment_length = (unsigned int) strlen(comment_arg); if (comment_length > 0 && comment_arg[comment_length-1] == '"') { comment_arg[comment_length-1] = '\0'; /* zap terminating quote */ break; } if (++argn >= argc) ERREXIT("Missing ending quote mark"); if (strlen(comment_arg) + strlen(argv[argn]) + 2 >= (size_t) MAX_COM_LENGTH) { fprintf(stderr, "Comment text may not exceed %u bytes\n", (unsigned int) MAX_COM_LENGTH); exit(EXIT_FAILURE); } strcat(comment_arg, " "); strcat(comment_arg, argv[argn]); } } else if (strlen(argv[argn]) >= (size_t) MAX_COM_LENGTH) { fprintf(stderr, "Comment text may not exceed %u bytes\n", (unsigned int) MAX_COM_LENGTH); exit(EXIT_FAILURE); } comment_length = (unsigned int) strlen(comment_arg); } else usage(); } /* Cannot use both -comment and -cfile. */ if (comment_arg != NULL && comment_file != NULL) usage(); /* If there is neither -comment nor -cfile, we will read the comment text * from stdin; in this case there MUST be an input JPEG file name. */ if (comment_arg == NULL && comment_file == NULL && argn >= argc) usage(); /* Open the input file. */ if (argn < argc) { if ((infile = fopen(argv[argn], READ_BINARY)) == NULL) { fprintf(stderr, "%s: can't open %s\n", progname, argv[argn]); exit(EXIT_FAILURE); } } else { /* default input file is stdin */ #ifdef USE_SETMODE /* need to hack file mode? */ setmode(fileno(stdin), O_BINARY); #endif #ifdef USE_FDOPEN /* need to re-open in binary mode? */ if ((infile = fdopen(fileno(stdin), READ_BINARY)) == NULL) { fprintf(stderr, "%s: can't open stdin\n", progname); exit(EXIT_FAILURE); } #else infile = stdin; #endif } /* Open the output file. */ #ifdef TWO_FILE_COMMANDLINE /* Must have explicit output file name */ if (argn != argc-2) { fprintf(stderr, "%s: must name one input and one output file\n", progname); usage(); } if ((outfile = fopen(argv[argn+1], WRITE_BINARY)) == NULL) { fprintf(stderr, "%s: can't open %s\n", progname, argv[argn+1]); exit(EXIT_FAILURE); } #else /* Unix style: expect zero or one file name */ if (argn < argc-1) { fprintf(stderr, "%s: only one input file\n", progname); usage(); } /* default output file is stdout */ #ifdef USE_SETMODE /* need to hack file mode? */ setmode(fileno(stdout), O_BINARY); #endif #ifdef USE_FDOPEN /* need to re-open in binary mode? */ if ((outfile = fdopen(fileno(stdout), WRITE_BINARY)) == NULL) { fprintf(stderr, "%s: can't open stdout\n", progname); exit(EXIT_FAILURE); } #else outfile = stdout; #endif #endif /* TWO_FILE_COMMANDLINE */ /* Collect comment text from comment_file or stdin, if necessary */ if (comment_arg == NULL) { FILE * src_file; int c; comment_arg = (char *) malloc((size_t) MAX_COM_LENGTH); if (comment_arg == NULL) ERREXIT("Insufficient memory"); comment_length = 0; src_file = (comment_file != NULL ? comment_file : stdin); while ((c = getc(src_file)) != EOF) { if (comment_length >= (unsigned int) MAX_COM_LENGTH) { fprintf(stderr, "Comment text may not exceed %u bytes\n", (unsigned int) MAX_COM_LENGTH); exit(EXIT_FAILURE); } comment_arg[comment_length++] = (char) c; } if (comment_file != NULL) fclose(comment_file); } /* Copy JPEG headers until SOFn marker; * we will insert the new comment marker just before SOFn. * This (a) causes the new comment to appear after, rather than before, * existing comments; and (b) ensures that comments come after any JFIF * or JFXX markers, as required by the JFIF specification. */ marker = scan_JPEG_header(keep_COM); /* Insert the new COM marker, but only if nonempty text has been supplied */ if (comment_length > 0) { write_marker(M_COM); write_2_bytes(comment_length + 2); while (comment_length > 0) { write_1_byte(*comment_arg++); comment_length--; } } /* Duplicate the remainder of the source file. * Note that any COM markers occuring after SOF will not be touched. */ write_marker(marker); copy_rest_of_file(); /* All done. */ exit(EXIT_SUCCESS); return 0; /* suppress no-return-value warnings */ } libjpeg-turbo-1.4.2/README-turbo.txt0000755000076500007650000004060612600050400014041 00000000000000******************************************************************************* ** Background ******************************************************************************* libjpeg-turbo is a JPEG image codec that uses SIMD instructions (MMX, SSE2, NEON) to accelerate baseline JPEG compression and decompression on x86, x86-64, and ARM systems. On such systems, libjpeg-turbo is generally 2-4x as fast as libjpeg, all else being equal. On other types of systems, libjpeg-turbo can still outperform libjpeg by a significant amount, by virtue of its highly-optimized Huffman coding routines. In many cases, the performance of libjpeg-turbo rivals that of proprietary high-speed JPEG codecs. libjpeg-turbo implements both the traditional libjpeg API as well as the less powerful but more straightforward TurboJPEG API. libjpeg-turbo also features colorspace extensions that allow it to compress from/decompress to 32-bit and big-endian pixel buffers (RGBX, XBGR, etc.), as well as a full-featured Java interface. libjpeg-turbo was originally based on libjpeg/SIMD, an MMX-accelerated derivative of libjpeg v6b developed by Miyasaka Masaru. The TigerVNC and VirtualGL projects made numerous enhancements to the codec in 2009, and in early 2010, libjpeg-turbo spun off into an independent project, with the goal of making high-speed JPEG compression/decompression technology available to a broader range of users and developers. ******************************************************************************* ** License ******************************************************************************* libjpeg-turbo is covered by three compatible BSD-style open source licenses. Refer to LICENSE.txt for a roll-up of license terms. ******************************************************************************* ** Using libjpeg-turbo ******************************************************************************* libjpeg-turbo includes two APIs that can be used to compress and decompress JPEG images: TurboJPEG API: This API provides an easy-to-use interface for compressing and decompressing JPEG images in memory. It also provides some functionality that would not be straightforward to achieve using the underlying libjpeg API, such as generating planar YUV images and performing multiple simultaneous lossless transforms on an image. The Java interface for libjpeg-turbo is written on top of the TurboJPEG API. libjpeg API: This is the de facto industry-standard API for compressing and decompressing JPEG images. It is more difficult to use than the TurboJPEG API but also more powerful. The libjpeg API implementation in libjpeg-turbo is both API/ABI-compatible and mathematically compatible with libjpeg v6b. It can also optionally be configured to be API/ABI-compatible with libjpeg v7 and v8 (see below.) There is no significant performance advantage to either API when both are used to perform similar operations. ===================== Colorspace Extensions ===================== libjpeg-turbo includes extensions that allow JPEG images to be compressed directly from (and decompressed directly to) buffers that use BGR, BGRX, RGBX, XBGR, and XRGB pixel ordering. This is implemented with ten new colorspace constants: JCS_EXT_RGB /* red/green/blue */ JCS_EXT_RGBX /* red/green/blue/x */ JCS_EXT_BGR /* blue/green/red */ JCS_EXT_BGRX /* blue/green/red/x */ JCS_EXT_XBGR /* x/blue/green/red */ JCS_EXT_XRGB /* x/red/green/blue */ JCS_EXT_RGBA /* red/green/blue/alpha */ JCS_EXT_BGRA /* blue/green/red/alpha */ JCS_EXT_ABGR /* alpha/blue/green/red */ JCS_EXT_ARGB /* alpha/red/green/blue */ Setting cinfo.in_color_space (compression) or cinfo.out_color_space (decompression) to one of these values will cause libjpeg-turbo to read the red, green, and blue values from (or write them to) the appropriate position in the pixel when compressing from/decompressing to an RGB buffer. Your application can check for the existence of these extensions at compile time with: #ifdef JCS_EXTENSIONS At run time, attempting to use these extensions with a libjpeg implementation that does not support them will result in a "Bogus input colorspace" error. Applications can trap this error in order to test whether run-time support is available for the colorspace extensions. When using the RGBX, BGRX, XBGR, and XRGB colorspaces during decompression, the X byte is undefined, and in order to ensure the best performance, libjpeg-turbo can set that byte to whatever value it wishes. If an application expects the X byte to be used as an alpha channel, then it should specify JCS_EXT_RGBA, JCS_EXT_BGRA, JCS_EXT_ABGR, or JCS_EXT_ARGB. When these colorspace constants are used, the X byte is guaranteed to be 0xFF, which is interpreted as opaque. Your application can check for the existence of the alpha channel colorspace extensions at compile time with: #ifdef JCS_ALPHA_EXTENSIONS jcstest.c, located in the libjpeg-turbo source tree, demonstrates how to check for the existence of the colorspace extensions at compile time and run time. =================================== libjpeg v7 and v8 API/ABI Emulation =================================== With libjpeg v7 and v8, new features were added that necessitated extending the compression and decompression structures. Unfortunately, due to the exposed nature of those structures, extending them also necessitated breaking backward ABI compatibility with previous libjpeg releases. Thus, programs that were built to use libjpeg v7 or v8 did not work with libjpeg-turbo, since it is based on the libjpeg v6b code base. Although libjpeg v7 and v8 are not as widely used as v6b, enough programs (including a few Linux distros) made the switch that there was a demand to emulate the libjpeg v7 and v8 ABIs in libjpeg-turbo. It should be noted, however, that this feature was added primarily so that applications that had already been compiled to use libjpeg v7+ could take advantage of accelerated baseline JPEG encoding/decoding without recompiling. libjpeg-turbo does not claim to support all of the libjpeg v7+ features, nor to produce identical output to libjpeg v7+ in all cases (see below.) By passing an argument of --with-jpeg7 or --with-jpeg8 to configure, or an argument of -DWITH_JPEG7=1 or -DWITH_JPEG8=1 to cmake, you can build a version of libjpeg-turbo that emulates the libjpeg v7 or v8 ABI, so that programs that are built against libjpeg v7 or v8 can be run with libjpeg-turbo. The following section describes which libjpeg v7+ features are supported and which aren't. Support for libjpeg v7 and v8 Features: --------------------------------------- Fully supported: -- libjpeg: IDCT scaling extensions in decompressor libjpeg-turbo supports IDCT scaling with scaling factors of 1/8, 1/4, 3/8, 1/2, 5/8, 3/4, 7/8, 9/8, 5/4, 11/8, 3/2, 13/8, 7/4, 15/8, and 2/1 (only 1/4 and 1/2 are SIMD-accelerated.) -- libjpeg: arithmetic coding -- libjpeg: In-memory source and destination managers See notes below. -- cjpeg: Separate quality settings for luminance and chrominance Note that the libpjeg v7+ API was extended to accommodate this feature only for convenience purposes. It has always been possible to implement this feature with libjpeg v6b (see rdswitch.c for an example.) -- cjpeg: 32-bit BMP support -- cjpeg: -rgb option -- jpegtran: lossless cropping -- jpegtran: -perfect option -- jpegtran: forcing width/height when performing lossless crop -- rdjpgcom: -raw option -- rdjpgcom: locale awareness Not supported: NOTE: As of this writing, extensive research has been conducted into the usefulness of DCT scaling as a means of data reduction and SmartScale as a means of quality improvement. The reader is invited to peruse the research at http://www.libjpeg-turbo.org/About/SmartScale and draw his/her own conclusions, but it is the general belief of our project that these features have not demonstrated sufficient usefulness to justify inclusion in libjpeg-turbo. -- libjpeg: DCT scaling in compressor cinfo.scale_num and cinfo.scale_denom are silently ignored. There is no technical reason why DCT scaling could not be supported when emulating the libjpeg v7+ API/ABI, but without the SmartScale extension (see below), only scaling factors of 1/2, 8/15, 4/7, 8/13, 2/3, 8/11, 4/5, and 8/9 would be available, which is of limited usefulness. -- libjpeg: SmartScale cinfo.block_size is silently ignored. SmartScale is an extension to the JPEG format that allows for DCT block sizes other than 8x8. Providing support for this new format would be feasible (particularly without full acceleration.) However, until/unless the format becomes either an official industry standard or, at minimum, an accepted solution in the community, we are hesitant to implement it, as there is no sense of whether or how it might change in the future. It is our belief that SmartScale has not demonstrated sufficient usefulness as a lossless format nor as a means of quality enhancement, and thus, our primary interest in providing this feature would be as a means of supporting additional DCT scaling factors. -- libjpeg: Fancy downsampling in compressor cinfo.do_fancy_downsampling is silently ignored. This requires the DCT scaling feature, which is not supported. -- jpegtran: Scaling This requires both the DCT scaling and SmartScale features, which are not supported. -- Lossless RGB JPEG files This requires the SmartScale feature, which is not supported. What About libjpeg v9? ---------------------- libjpeg v9 introduced yet another field to the JPEG compression structure (color_transform), thus making the ABI backward incompatible with that of libjpeg v8. This new field was introduced solely for the purpose of supporting lossless SmartScale encoding. Further, there was actually no reason to extend the API in this manner, as the color transform could have just as easily been activated by way of a new JPEG colorspace constant, thus preserving backward ABI compatibility. Our research (see link above) has shown that lossless SmartScale does not generally accomplish anything that can't already be accomplished better with existing, standard lossless formats. Thus, at this time, it is our belief that there is not sufficient technical justification for software to upgrade from libjpeg v8 to libjpeg v9, and therefore, not sufficient technical justification for us to emulate the libjpeg v9 ABI. ===================================== In-Memory Source/Destination Managers ===================================== By default, libjpeg-turbo 1.3 and later includes the jpeg_mem_src() and jpeg_mem_dest() functions, even when not emulating the libjpeg v8 API/ABI. Previously, it was necessary to build libjpeg-turbo from source with libjpeg v8 API/ABI emulation in order to use the in-memory source/destination managers, but several projects requested that those functions be included when emulating the libjpeg v6b API/ABI as well. This allows the use of those functions by programs that need them without breaking ABI compatibility for programs that don't, and it allows those functions to be provided in the "official" libjpeg-turbo binaries. Those who are concerned about maintaining strict conformance with the libjpeg v6b or v7 API can pass an argument of --without-mem-srcdst to configure or an argument of -DWITH_MEM_SRCDST=0 to CMake prior to building libjpeg-turbo. This will restore the pre-1.3 behavior, in which jpeg_mem_src() and jpeg_mem_dest() are only included when emulating the libjpeg v8 API/ABI. On Un*x systems, including the in-memory source/destination managers changes the dynamic library version from 62.0.0 to 62.1.0 if using libjpeg v6b API/ABI emulation and from 7.0.0 to 7.1.0 if using libjpeg v7 API/ABI emulation. Note that, on most Un*x systems, the dynamic linker will not look for a function in a library until that function is actually used. Thus, if a program is built against libjpeg-turbo 1.3+ and uses jpeg_mem_src() or jpeg_mem_dest(), that program will not fail if run against an older version of libjpeg-turbo or against libjpeg v7- until the program actually tries to call jpeg_mem_src() or jpeg_mem_dest(). Such is not the case on Windows. If a program is built against the libjpeg-turbo 1.3+ DLL and uses jpeg_mem_src() or jpeg_mem_dest(), then it must use the libjpeg-turbo 1.3+ DLL at run time. Both cjpeg and djpeg have been extended to allow testing the in-memory source/destination manager functions. See their respective man pages for more details. ******************************************************************************* ** Mathematical Compatibility ******************************************************************************* For the most part, libjpeg-turbo should produce identical output to libjpeg v6b. The one exception to this is when using the floating point DCT/IDCT, in which case the outputs of libjpeg v6b and libjpeg-turbo can differ for the following reasons: -- The SSE/SSE2 floating point DCT implementation in libjpeg-turbo is ever so slightly more accurate than the implementation in libjpeg v6b, but not by any amount perceptible to human vision (generally in the range of 0.01 to 0.08 dB gain in PNSR.) -- When not using the SIMD extensions, libjpeg-turbo uses the more accurate (and slightly faster) floating point IDCT algorithm introduced in libjpeg v8a as opposed to the algorithm used in libjpeg v6b. It should be noted, however, that this algorithm basically brings the accuracy of the floating point IDCT in line with the accuracy of the slow integer IDCT. The floating point DCT/IDCT algorithms are mainly a legacy feature, and they do not produce significantly more accuracy than the slow integer algorithms (to put numbers on this, the typical difference in PNSR between the two algorithms is less than 0.10 dB, whereas changing the quality level by 1 in the upper range of the quality scale is typically more like a 1.0 dB difference.) -- If the floating point algorithms in libjpeg-turbo are not implemented using SIMD instructions on a particular platform, then the accuracy of the floating point DCT/IDCT can depend on the compiler settings. While libjpeg-turbo does emulate the libjpeg v8 API/ABI, under the hood, it is still using the same algorithms as libjpeg v6b, so there are several specific cases in which libjpeg-turbo cannot be expected to produce the same output as libjpeg v8: -- When decompressing using scaling factors of 1/2 and 1/4, because libjpeg v8 implements those scaling algorithms differently than libjpeg v6b does, and libjpeg-turbo's SIMD extensions are based on the libjpeg v6b behavior. -- When using chrominance subsampling, because libjpeg v8 implements this with its DCT/IDCT scaling algorithms rather than with a separate downsampling/upsampling algorithm. In our testing, the subsampled/upsampled output of libjpeg v8 is less accurate than that of libjpeg v6b for this reason. -- When decompressing using a scaling factor > 1 and merged (AKA "non-fancy" or "non-smooth") chrominance upsampling, because libjpeg v8 does not support merged upsampling with scaling factors > 1. ******************************************************************************* ** Performance Pitfalls ******************************************************************************* =============== Restart Markers =============== The optimized Huffman decoder in libjpeg-turbo does not handle restart markers in a way that makes the rest of the libjpeg infrastructure happy, so it is necessary to use the slow Huffman decoder when decompressing a JPEG image that has restart markers. This can cause the decompression performance to drop by as much as 20%, but the performance will still be much greater than that of libjpeg. Many consumer packages, such as PhotoShop, use restart markers when generating JPEG images, so images generated by those programs will experience this issue. =============================================== Fast Integer Forward DCT at High Quality Levels =============================================== The algorithm used by the SIMD-accelerated quantization function cannot produce correct results whenever the fast integer forward DCT is used along with a JPEG quality of 98-100. Thus, libjpeg-turbo must use the non-SIMD quantization function in those cases. This causes performance to drop by as much as 40%. It is therefore strongly advised that you use the slow integer forward DCT whenever encoding images with a JPEG quality of 98 or higher. libjpeg-turbo-1.4.2/libjpeg.map.in0000644000076500007650000000024412600050400013721 00000000000000LIBJPEGTURBO_@JPEG_LIB_VERSION_DECIMAL@ { @MEM_SRCDST_FUNCTIONS@ local: jsimd_*; jconst_*; }; LIBJPEG_@JPEG_LIB_VERSION_DECIMAL@ { global: *; }; libjpeg-turbo-1.4.2/jcmainct.c0000644000076500007650000001203512600050400013136 00000000000000/* * jcmainct.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1994-1996, Thomas G. Lane. * It was modified by The libjpeg-turbo Project to include only code relevant * to libjpeg-turbo. * For conditions of distribution and use, see the accompanying README file. * * This file contains the main buffer controller for compression. * The main buffer lies between the pre-processor and the JPEG * compressor proper; it holds downsampled data in the JPEG colorspace. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" /* Private buffer controller object */ typedef struct { struct jpeg_c_main_controller pub; /* public fields */ JDIMENSION cur_iMCU_row; /* number of current iMCU row */ JDIMENSION rowgroup_ctr; /* counts row groups received in iMCU row */ boolean suspended; /* remember if we suspended output */ J_BUF_MODE pass_mode; /* current operating mode */ /* If using just a strip buffer, this points to the entire set of buffers * (we allocate one for each component). In the full-image case, this * points to the currently accessible strips of the virtual arrays. */ JSAMPARRAY buffer[MAX_COMPONENTS]; } my_main_controller; typedef my_main_controller * my_main_ptr; /* Forward declarations */ METHODDEF(void) process_data_simple_main (j_compress_ptr cinfo, JSAMPARRAY input_buf, JDIMENSION *in_row_ctr, JDIMENSION in_rows_avail); /* * Initialize for a processing pass. */ METHODDEF(void) start_pass_main (j_compress_ptr cinfo, J_BUF_MODE pass_mode) { my_main_ptr main_ptr = (my_main_ptr) cinfo->main; /* Do nothing in raw-data mode. */ if (cinfo->raw_data_in) return; if (pass_mode != JBUF_PASS_THRU) ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); main_ptr->cur_iMCU_row = 0; /* initialize counters */ main_ptr->rowgroup_ctr = 0; main_ptr->suspended = FALSE; main_ptr->pass_mode = pass_mode; /* save mode for use by process_data */ main_ptr->pub.process_data = process_data_simple_main; } /* * Process some data. * This routine handles the simple pass-through mode, * where we have only a strip buffer. */ METHODDEF(void) process_data_simple_main (j_compress_ptr cinfo, JSAMPARRAY input_buf, JDIMENSION *in_row_ctr, JDIMENSION in_rows_avail) { my_main_ptr main_ptr = (my_main_ptr) cinfo->main; while (main_ptr->cur_iMCU_row < cinfo->total_iMCU_rows) { /* Read input data if we haven't filled the main buffer yet */ if (main_ptr->rowgroup_ctr < DCTSIZE) (*cinfo->prep->pre_process_data) (cinfo, input_buf, in_row_ctr, in_rows_avail, main_ptr->buffer, &main_ptr->rowgroup_ctr, (JDIMENSION) DCTSIZE); /* If we don't have a full iMCU row buffered, return to application for * more data. Note that preprocessor will always pad to fill the iMCU row * at the bottom of the image. */ if (main_ptr->rowgroup_ctr != DCTSIZE) return; /* Send the completed row to the compressor */ if (! (*cinfo->coef->compress_data) (cinfo, main_ptr->buffer)) { /* If compressor did not consume the whole row, then we must need to * suspend processing and return to the application. In this situation * we pretend we didn't yet consume the last input row; otherwise, if * it happened to be the last row of the image, the application would * think we were done. */ if (! main_ptr->suspended) { (*in_row_ctr)--; main_ptr->suspended = TRUE; } return; } /* We did finish the row. Undo our little suspension hack if a previous * call suspended; then mark the main buffer empty. */ if (main_ptr->suspended) { (*in_row_ctr)++; main_ptr->suspended = FALSE; } main_ptr->rowgroup_ctr = 0; main_ptr->cur_iMCU_row++; } } /* * Initialize main buffer controller. */ GLOBAL(void) jinit_c_main_controller (j_compress_ptr cinfo, boolean need_full_buffer) { my_main_ptr main_ptr; int ci; jpeg_component_info *compptr; main_ptr = (my_main_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, sizeof(my_main_controller)); cinfo->main = (struct jpeg_c_main_controller *) main_ptr; main_ptr->pub.start_pass = start_pass_main; /* We don't need to create a buffer in raw-data mode. */ if (cinfo->raw_data_in) return; /* Create the buffer. It holds downsampled data, so each component * may be of a different size. */ if (need_full_buffer) { ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); } else { /* Allocate a strip buffer for each component */ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { main_ptr->buffer[ci] = (*cinfo->mem->alloc_sarray) ((j_common_ptr) cinfo, JPOOL_IMAGE, compptr->width_in_blocks * DCTSIZE, (JDIMENSION) (compptr->v_samp_factor * DCTSIZE)); } } } libjpeg-turbo-1.4.2/configure0000755000076500007650000177276112600050411013137 00000000000000#! /bin/sh # Guess values for system-dependent variables and create Makefiles. # Generated by GNU Autoconf 2.69 for libjpeg-turbo 1.4.2. # # # Copyright (C) 1992-1996, 1998-2012 Free Software Foundation, Inc. # # # This configure script is free software; the Free Software Foundation # gives unlimited permission to copy, distribute and modify it. ## -------------------- ## ## M4sh Initialization. ## ## -------------------- ## # Be more Bourne compatible DUALCASE=1; export DUALCASE # for MKS sh if test -n "${ZSH_VERSION+set}" && (emulate sh) >/dev/null 2>&1; then : emulate sh NULLCMD=: # Pre-4.2 versions of Zsh do word splitting on ${1+"$@"}, which # is contrary to our usage. Disable this feature. alias -g '${1+"$@"}'='"$@"' setopt NO_GLOB_SUBST else case `(set -o) 2>/dev/null` in #( *posix*) : set -o posix ;; #( *) : ;; esac fi as_nl=' ' export as_nl # Printing a long string crashes Solaris 7 /usr/bin/printf. as_echo='\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\' as_echo=$as_echo$as_echo$as_echo$as_echo$as_echo as_echo=$as_echo$as_echo$as_echo$as_echo$as_echo$as_echo # Prefer a ksh shell builtin over an external printf program on Solaris, # but without wasting forks for bash or zsh. if test -z "$BASH_VERSION$ZSH_VERSION" \ && (test "X`print -r -- $as_echo`" = "X$as_echo") 2>/dev/null; then as_echo='print -r --' as_echo_n='print -rn --' elif (test "X`printf %s $as_echo`" = "X$as_echo") 2>/dev/null; then as_echo='printf %s\n' as_echo_n='printf %s' else if test "X`(/usr/ucb/echo -n -n $as_echo) 2>/dev/null`" = "X-n $as_echo"; then as_echo_body='eval /usr/ucb/echo -n "$1$as_nl"' as_echo_n='/usr/ucb/echo -n' else as_echo_body='eval expr "X$1" : "X\\(.*\\)"' as_echo_n_body='eval arg=$1; case $arg in #( *"$as_nl"*) expr "X$arg" : "X\\(.*\\)$as_nl"; arg=`expr "X$arg" : ".*$as_nl\\(.*\\)"`;; esac; expr "X$arg" : "X\\(.*\\)" | tr -d "$as_nl" ' export as_echo_n_body as_echo_n='sh -c $as_echo_n_body as_echo' fi export as_echo_body as_echo='sh -c $as_echo_body as_echo' fi # The user is always right. if test "${PATH_SEPARATOR+set}" != set; then PATH_SEPARATOR=: (PATH='/bin;/bin'; FPATH=$PATH; sh -c :) >/dev/null 2>&1 && { (PATH='/bin:/bin'; FPATH=$PATH; sh -c :) >/dev/null 2>&1 || PATH_SEPARATOR=';' } fi # IFS # We need space, tab and new line, in precisely that order. Quoting is # there to prevent editors from complaining about space-tab. # (If _AS_PATH_WALK were called with IFS unset, it would disable word # splitting by setting IFS to empty value.) IFS=" "" $as_nl" # Find who we are. Look in the path if we contain no directory separator. as_myself= case $0 in #(( *[\\/]* ) as_myself=$0 ;; *) as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. test -r "$as_dir/$0" && as_myself=$as_dir/$0 && break done IFS=$as_save_IFS ;; esac # We did not find ourselves, most probably we were run as `sh COMMAND' # in which case we are not to be found in the path. if test "x$as_myself" = x; then as_myself=$0 fi if test ! -f "$as_myself"; then $as_echo "$as_myself: error: cannot find myself; rerun with an absolute file name" >&2 exit 1 fi # Unset variables that we do not need and which cause bugs (e.g. in # pre-3.0 UWIN ksh). But do not cause bugs in bash 2.01; the "|| exit 1" # suppresses any "Segmentation fault" message there. '((' could # trigger a bug in pdksh 5.2.14. for as_var in BASH_ENV ENV MAIL MAILPATH do eval test x\${$as_var+set} = xset \ && ( (unset $as_var) || exit 1) >/dev/null 2>&1 && unset $as_var || : done PS1='$ ' PS2='> ' PS4='+ ' # NLS nuisances. LC_ALL=C export LC_ALL LANGUAGE=C export LANGUAGE # CDPATH. (unset CDPATH) >/dev/null 2>&1 && unset CDPATH # Use a proper internal environment variable to ensure we don't fall # into an infinite loop, continuously re-executing ourselves. if test x"${_as_can_reexec}" != xno && test "x$CONFIG_SHELL" != x; then _as_can_reexec=no; export _as_can_reexec; # We cannot yet assume a decent shell, so we have to provide a # neutralization value for shells without unset; and this also # works around shells that cannot unset nonexistent variables. # Preserve -v and -x to the replacement shell. BASH_ENV=/dev/null ENV=/dev/null (unset BASH_ENV) >/dev/null 2>&1 && unset BASH_ENV ENV case $- in # (((( *v*x* | *x*v* ) as_opts=-vx ;; *v* ) as_opts=-v ;; *x* ) as_opts=-x ;; * ) as_opts= ;; esac exec $CONFIG_SHELL $as_opts "$as_myself" ${1+"$@"} # Admittedly, this is quite paranoid, since all the known shells bail # out after a failed `exec'. $as_echo "$0: could not re-execute with $CONFIG_SHELL" >&2 as_fn_exit 255 fi # We don't want this to propagate to other subprocesses. { _as_can_reexec=; unset _as_can_reexec;} if test "x$CONFIG_SHELL" = x; then as_bourne_compatible="if test -n \"\${ZSH_VERSION+set}\" && (emulate sh) >/dev/null 2>&1; then : emulate sh NULLCMD=: # Pre-4.2 versions of Zsh do word splitting on \${1+\"\$@\"}, which # is contrary to our usage. Disable this feature. alias -g '\${1+\"\$@\"}'='\"\$@\"' setopt NO_GLOB_SUBST else case \`(set -o) 2>/dev/null\` in #( *posix*) : set -o posix ;; #( *) : ;; esac fi " as_required="as_fn_return () { (exit \$1); } as_fn_success () { as_fn_return 0; } as_fn_failure () { as_fn_return 1; } as_fn_ret_success () { return 0; } as_fn_ret_failure () { return 1; } exitcode=0 as_fn_success || { exitcode=1; echo as_fn_success failed.; } as_fn_failure && { exitcode=1; echo as_fn_failure succeeded.; } as_fn_ret_success || { exitcode=1; echo as_fn_ret_success failed.; } as_fn_ret_failure && { exitcode=1; echo as_fn_ret_failure succeeded.; } if ( set x; as_fn_ret_success y && test x = \"\$1\" ); then : else exitcode=1; echo positional parameters were not saved. fi test x\$exitcode = x0 || exit 1 test -x / || exit 1" as_suggested=" as_lineno_1=";as_suggested=$as_suggested$LINENO;as_suggested=$as_suggested" as_lineno_1a=\$LINENO as_lineno_2=";as_suggested=$as_suggested$LINENO;as_suggested=$as_suggested" as_lineno_2a=\$LINENO eval 'test \"x\$as_lineno_1'\$as_run'\" != \"x\$as_lineno_2'\$as_run'\" && test \"x\`expr \$as_lineno_1'\$as_run' + 1\`\" = \"x\$as_lineno_2'\$as_run'\"' || exit 1 test -n \"\${ZSH_VERSION+set}\${BASH_VERSION+set}\" || ( ECHO='\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\' ECHO=\$ECHO\$ECHO\$ECHO\$ECHO\$ECHO ECHO=\$ECHO\$ECHO\$ECHO\$ECHO\$ECHO\$ECHO PATH=/empty FPATH=/empty; export PATH FPATH test \"X\`printf %s \$ECHO\`\" = \"X\$ECHO\" \\ || test \"X\`print -r -- \$ECHO\`\" = \"X\$ECHO\" ) || exit 1 test \$(( 1 + 1 )) = 2 || exit 1" if (eval "$as_required") 2>/dev/null; then : as_have_required=yes else as_have_required=no fi if test x$as_have_required = xyes && (eval "$as_suggested") 2>/dev/null; then : else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR as_found=false for as_dir in /bin$PATH_SEPARATOR/usr/bin$PATH_SEPARATOR$PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. as_found=: case $as_dir in #( /*) for as_base in sh bash ksh sh5; do # Try only shells that exist, to save several forks. as_shell=$as_dir/$as_base if { test -f "$as_shell" || test -f "$as_shell.exe"; } && { $as_echo "$as_bourne_compatible""$as_required" | as_run=a "$as_shell"; } 2>/dev/null; then : CONFIG_SHELL=$as_shell as_have_required=yes if { $as_echo "$as_bourne_compatible""$as_suggested" | as_run=a "$as_shell"; } 2>/dev/null; then : break 2 fi fi done;; esac as_found=false done $as_found || { if { test -f "$SHELL" || test -f "$SHELL.exe"; } && { $as_echo "$as_bourne_compatible""$as_required" | as_run=a "$SHELL"; } 2>/dev/null; then : CONFIG_SHELL=$SHELL as_have_required=yes fi; } IFS=$as_save_IFS if test "x$CONFIG_SHELL" != x; then : export CONFIG_SHELL # We cannot yet assume a decent shell, so we have to provide a # neutralization value for shells without unset; and this also # works around shells that cannot unset nonexistent variables. # Preserve -v and -x to the replacement shell. BASH_ENV=/dev/null ENV=/dev/null (unset BASH_ENV) >/dev/null 2>&1 && unset BASH_ENV ENV case $- in # (((( *v*x* | *x*v* ) as_opts=-vx ;; *v* ) as_opts=-v ;; *x* ) as_opts=-x ;; * ) as_opts= ;; esac exec $CONFIG_SHELL $as_opts "$as_myself" ${1+"$@"} # Admittedly, this is quite paranoid, since all the known shells bail # out after a failed `exec'. $as_echo "$0: could not re-execute with $CONFIG_SHELL" >&2 exit 255 fi if test x$as_have_required = xno; then : $as_echo "$0: This script requires a shell more modern than all" $as_echo "$0: the shells that I found on your system." if test x${ZSH_VERSION+set} = xset ; then $as_echo "$0: In particular, zsh $ZSH_VERSION has bugs and should" $as_echo "$0: be upgraded to zsh 4.3.4 or later." else $as_echo "$0: Please tell bug-autoconf@gnu.org about your system, $0: including any error possibly output before this $0: message. Then install a modern shell, or manually run $0: the script under such a shell if you do have one." fi exit 1 fi fi fi SHELL=${CONFIG_SHELL-/bin/sh} export SHELL # Unset more variables known to interfere with behavior of common tools. CLICOLOR_FORCE= GREP_OPTIONS= unset CLICOLOR_FORCE GREP_OPTIONS ## --------------------- ## ## M4sh Shell Functions. ## ## --------------------- ## # as_fn_unset VAR # --------------- # Portably unset VAR. as_fn_unset () { { eval $1=; unset $1;} } as_unset=as_fn_unset # as_fn_set_status STATUS # ----------------------- # Set $? to STATUS, without forking. as_fn_set_status () { return $1 } # as_fn_set_status # as_fn_exit STATUS # ----------------- # Exit the shell with STATUS, even in a "trap 0" or "set -e" context. as_fn_exit () { set +e as_fn_set_status $1 exit $1 } # as_fn_exit # as_fn_mkdir_p # ------------- # Create "$as_dir" as a directory, including parents if necessary. as_fn_mkdir_p () { case $as_dir in #( -*) as_dir=./$as_dir;; esac test -d "$as_dir" || eval $as_mkdir_p || { as_dirs= while :; do case $as_dir in #( *\'*) as_qdir=`$as_echo "$as_dir" | sed "s/'/'\\\\\\\\''/g"`;; #'( *) as_qdir=$as_dir;; esac as_dirs="'$as_qdir' $as_dirs" as_dir=`$as_dirname -- "$as_dir" || $as_expr X"$as_dir" : 'X\(.*[^/]\)//*[^/][^/]*/*$' \| \ X"$as_dir" : 'X\(//\)[^/]' \| \ X"$as_dir" : 'X\(//\)$' \| \ X"$as_dir" : 'X\(/\)' \| . 2>/dev/null || $as_echo X"$as_dir" | sed '/^X\(.*[^/]\)\/\/*[^/][^/]*\/*$/{ s//\1/ q } /^X\(\/\/\)[^/].*/{ s//\1/ q } /^X\(\/\/\)$/{ s//\1/ q } /^X\(\/\).*/{ s//\1/ q } s/.*/./; q'` test -d "$as_dir" && break done test -z "$as_dirs" || eval "mkdir $as_dirs" } || test -d "$as_dir" || as_fn_error $? "cannot create directory $as_dir" } # as_fn_mkdir_p # as_fn_executable_p FILE # ----------------------- # Test if FILE is an executable regular file. as_fn_executable_p () { test -f "$1" && test -x "$1" } # as_fn_executable_p # as_fn_append VAR VALUE # ---------------------- # Append the text in VALUE to the end of the definition contained in VAR. Take # advantage of any shell optimizations that allow amortized linear growth over # repeated appends, instead of the typical quadratic growth present in naive # implementations. if (eval "as_var=1; as_var+=2; test x\$as_var = x12") 2>/dev/null; then : eval 'as_fn_append () { eval $1+=\$2 }' else as_fn_append () { eval $1=\$$1\$2 } fi # as_fn_append # as_fn_arith ARG... # ------------------ # Perform arithmetic evaluation on the ARGs, and store the result in the # global $as_val. Take advantage of shells that can avoid forks. The arguments # must be portable across $(()) and expr. if (eval "test \$(( 1 + 1 )) = 2") 2>/dev/null; then : eval 'as_fn_arith () { as_val=$(( $* )) }' else as_fn_arith () { as_val=`expr "$@" || test $? -eq 1` } fi # as_fn_arith # as_fn_error STATUS ERROR [LINENO LOG_FD] # ---------------------------------------- # Output "`basename $0`: error: ERROR" to stderr. If LINENO and LOG_FD are # provided, also output the error to LOG_FD, referencing LINENO. Then exit the # script with STATUS, using 1 if that was 0. as_fn_error () { as_status=$1; test $as_status -eq 0 && as_status=1 if test "$4"; then as_lineno=${as_lineno-"$3"} as_lineno_stack=as_lineno_stack=$as_lineno_stack $as_echo "$as_me:${as_lineno-$LINENO}: error: $2" >&$4 fi $as_echo "$as_me: error: $2" >&2 as_fn_exit $as_status } # as_fn_error if expr a : '\(a\)' >/dev/null 2>&1 && test "X`expr 00001 : '.*\(...\)'`" = X001; then as_expr=expr else as_expr=false fi if (basename -- /) >/dev/null 2>&1 && test "X`basename -- / 2>&1`" = "X/"; then as_basename=basename else as_basename=false fi if (as_dir=`dirname -- /` && test "X$as_dir" = X/) >/dev/null 2>&1; then as_dirname=dirname else as_dirname=false fi as_me=`$as_basename -- "$0" || $as_expr X/"$0" : '.*/\([^/][^/]*\)/*$' \| \ X"$0" : 'X\(//\)$' \| \ X"$0" : 'X\(/\)' \| . 2>/dev/null || $as_echo X/"$0" | sed '/^.*\/\([^/][^/]*\)\/*$/{ s//\1/ q } /^X\/\(\/\/\)$/{ s//\1/ q } /^X\/\(\/\).*/{ s//\1/ q } s/.*/./; q'` # Avoid depending upon Character Ranges. as_cr_letters='abcdefghijklmnopqrstuvwxyz' as_cr_LETTERS='ABCDEFGHIJKLMNOPQRSTUVWXYZ' as_cr_Letters=$as_cr_letters$as_cr_LETTERS as_cr_digits='0123456789' as_cr_alnum=$as_cr_Letters$as_cr_digits as_lineno_1=$LINENO as_lineno_1a=$LINENO as_lineno_2=$LINENO as_lineno_2a=$LINENO eval 'test "x$as_lineno_1'$as_run'" != "x$as_lineno_2'$as_run'" && test "x`expr $as_lineno_1'$as_run' + 1`" = "x$as_lineno_2'$as_run'"' || { # Blame Lee E. McMahon (1931-1989) for sed's syntax. :-) sed -n ' p /[$]LINENO/= ' <$as_myself | sed ' s/[$]LINENO.*/&-/ t lineno b :lineno N :loop s/[$]LINENO\([^'$as_cr_alnum'_].*\n\)\(.*\)/\2\1\2/ t loop s/-\n.*// ' >$as_me.lineno && chmod +x "$as_me.lineno" || { $as_echo "$as_me: error: cannot create $as_me.lineno; rerun with a POSIX shell" >&2; as_fn_exit 1; } # If we had to re-execute with $CONFIG_SHELL, we're ensured to have # already done that, so ensure we don't try to do so again and fall # in an infinite loop. This has already happened in practice. _as_can_reexec=no; export _as_can_reexec # Don't try to exec as it changes $[0], causing all sort of problems # (the dirname of $[0] is not the place where we might find the # original and so on. Autoconf is especially sensitive to this). . "./$as_me.lineno" # Exit status is that of the last command. exit } ECHO_C= ECHO_N= ECHO_T= case `echo -n x` in #((((( -n*) case `echo 'xy\c'` in *c*) ECHO_T=' ';; # ECHO_T is single tab character. xy) ECHO_C='\c';; *) echo `echo ksh88 bug on AIX 6.1` > /dev/null ECHO_T=' ';; esac;; *) ECHO_N='-n';; esac rm -f conf$$ conf$$.exe conf$$.file if test -d conf$$.dir; then rm -f conf$$.dir/conf$$.file else rm -f conf$$.dir mkdir conf$$.dir 2>/dev/null fi if (echo >conf$$.file) 2>/dev/null; then if ln -s conf$$.file conf$$ 2>/dev/null; then as_ln_s='ln -s' # ... but there are two gotchas: # 1) On MSYS, both `ln -s file dir' and `ln file dir' fail. # 2) DJGPP < 2.04 has no symlinks; `ln -s' creates a wrapper executable. # In both cases, we have to default to `cp -pR'. ln -s conf$$.file conf$$.dir 2>/dev/null && test ! -f conf$$.exe || as_ln_s='cp -pR' elif ln conf$$.file conf$$ 2>/dev/null; then as_ln_s=ln else as_ln_s='cp -pR' fi else as_ln_s='cp -pR' fi rm -f conf$$ conf$$.exe conf$$.dir/conf$$.file conf$$.file rmdir conf$$.dir 2>/dev/null if mkdir -p . 2>/dev/null; then as_mkdir_p='mkdir -p "$as_dir"' else test -d ./-p && rmdir ./-p as_mkdir_p=false fi as_test_x='test -x' as_executable_p=as_fn_executable_p # Sed expression to map a string onto a valid CPP name. as_tr_cpp="eval sed 'y%*$as_cr_letters%P$as_cr_LETTERS%;s%[^_$as_cr_alnum]%_%g'" # Sed expression to map a string onto a valid variable name. as_tr_sh="eval sed 'y%*+%pp%;s%[^_$as_cr_alnum]%_%g'" SHELL=${CONFIG_SHELL-/bin/sh} test -n "$DJDIR" || exec 7<&0 &1 # Name of the host. # hostname on some systems (SVR3.2, old GNU/Linux) returns a bogus exit status, # so uname gets run too. ac_hostname=`(hostname || uname -n) 2>/dev/null | sed 1q` # # Initializations. # ac_default_prefix=/usr/local ac_clean_files= ac_config_libobj_dir=. LIBOBJS= cross_compiling=no subdirs= MFLAGS= MAKEFLAGS= # Identity of this package. PACKAGE_NAME='libjpeg-turbo' PACKAGE_TARNAME='libjpeg-turbo' PACKAGE_VERSION='1.4.2' PACKAGE_STRING='libjpeg-turbo 1.4.2' PACKAGE_BUGREPORT='' PACKAGE_URL='' ac_default_prefix=/opt/libjpeg-turbo # Factoring default headers for most tests. ac_includes_default="\ #include #ifdef HAVE_SYS_TYPES_H # include #endif #ifdef HAVE_SYS_STAT_H # include #endif #ifdef STDC_HEADERS # include # include #else # ifdef HAVE_STDLIB_H # include # endif #endif #ifdef HAVE_STRING_H # if !defined STDC_HEADERS && defined HAVE_MEMORY_H # include # endif # include #endif #ifdef HAVE_STRINGS_H # include #endif #ifdef HAVE_INTTYPES_H # include #endif #ifdef HAVE_STDINT_H # include #endif #ifdef HAVE_UNISTD_H # include #endif" ac_subst_vars='am__EXEEXT_FALSE am__EXEEXT_TRUE LTLIBOBJS LIBOBJS BUILD DEBARCH RPM_CONFIG_ARGS RPMARCH PKGNAME WITH_TURBOJPEG_FALSE WITH_TURBOJPEG_TRUE X86_64_FALSE X86_64_TRUE SIMD_MIPS_FALSE SIMD_MIPS_TRUE SIMD_ARM_64_FALSE SIMD_ARM_64_TRUE SIMD_ARM_FALSE SIMD_ARM_TRUE SIMD_X86_64_FALSE SIMD_X86_64_TRUE SIMD_I386_FALSE SIMD_I386_TRUE WITH_SSE_FLOAT_DCT_FALSE WITH_SSE_FLOAT_DCT_TRUE WITH_SIMD_FALSE WITH_SIMD_TRUE NAFLAGS NASM JAVA_RPM_CONTENTS_2 JAVA_RPM_CONTENTS_1 WITH_JAVA WITH_JAVA_FALSE WITH_JAVA_TRUE JNI_CFLAGS JAVA JAR JAVACFLAGS JAVAC WITH_12BIT_FALSE WITH_12BIT_TRUE WITH_ARITH_FALSE WITH_ARITH_TRUE WITH_ARITH_DEC_FALSE WITH_ARITH_DEC_TRUE WITH_ARITH_ENC_FALSE WITH_ARITH_ENC_TRUE VERSION_SCRIPT_FLAG VERSION_SCRIPT_FALSE VERSION_SCRIPT_TRUE MEM_SRCDST_FUNCTIONS SO_AGE LIBTOOL_CURRENT SO_MINOR_VERSION SO_MAJOR_VERSION JPEG_LIB_VERSION_DECIMAL JPEG_LIB_VERSION LT_SYS_LIBRARY_PATH OTOOL64 OTOOL LIPO NMEDIT DSYMUTIL MANIFEST_TOOL RANLIB DLLTOOL OBJDUMP LN_S NM ac_ct_DUMPBIN DUMPBIN LD FGREP EGREP GREP SED host_os host_vendor host_cpu host build_os build_vendor build_cpu build LIBTOOL am__fastdepCCAS_FALSE am__fastdepCCAS_TRUE CCASDEPMODE CCASFLAGS CCAS ac_ct_AR AR CPP am__fastdepCC_FALSE am__fastdepCC_TRUE CCDEPMODE am__nodep AMDEPBACKSLASH AMDEP_FALSE AMDEP_TRUE am__quote am__include DEPDIR OBJEXT EXEEXT ac_ct_CC CPPFLAGS LDFLAGS CFLAGS CC AM_BACKSLASH AM_DEFAULT_VERBOSITY AM_DEFAULT_V AM_V am__untar am__tar AMTAR am__leading_dot SET_MAKE AWK mkdir_p MKDIR_P INSTALL_STRIP_PROGRAM STRIP install_sh MAKEINFO AUTOHEADER AUTOMAKE AUTOCONF ACLOCAL VERSION PACKAGE CYGPATH_W am__isrc INSTALL_DATA INSTALL_SCRIPT INSTALL_PROGRAM target_alias host_alias build_alias LIBS ECHO_T ECHO_N ECHO_C DEFS mandir localedir libdir psdir pdfdir dvidir htmldir infodir docdir oldincludedir includedir localstatedir sharedstatedir sysconfdir datadir datarootdir libexecdir sbindir bindir program_transform_name prefix exec_prefix PACKAGE_URL PACKAGE_BUGREPORT PACKAGE_STRING PACKAGE_VERSION PACKAGE_TARNAME PACKAGE_NAME PATH_SEPARATOR SHELL' ac_subst_files='' ac_user_opts=' enable_option_checking enable_silent_rules enable_dependency_tracking enable_shared enable_static with_pic enable_fast_install with_aix_soname with_gnu_ld with_sysroot enable_libtool_lock with_build_date with_jpeg7 with_jpeg8 with_mem_srcdst enable_ld_version_script with_arith_enc with_arith_dec with_12bit with_turbojpeg with_java with_gas_preprocessor with_simd ' ac_precious_vars='build_alias host_alias target_alias CC CFLAGS LDFLAGS LIBS CPPFLAGS CPP CCAS CCASFLAGS LT_SYS_LIBRARY_PATH JPEG_LIB_VERSION SO_MAJOR_VERSION SO_MINOR_VERSION JAVAC JAVACFLAGS JAR JAVA JNI_CFLAGS PKGNAME' # Initialize some variables set by options. ac_init_help= ac_init_version=false ac_unrecognized_opts= ac_unrecognized_sep= # The variables have the same names as the options, with # dashes changed to underlines. cache_file=/dev/null exec_prefix=NONE no_create= no_recursion= prefix=NONE program_prefix=NONE program_suffix=NONE program_transform_name=s,x,x, silent= site= srcdir= verbose= x_includes=NONE x_libraries=NONE # Installation directory options. # These are left unexpanded so users can "make install exec_prefix=/foo" # and all the variables that are supposed to be based on exec_prefix # by default will actually change. # Use braces instead of parens because sh, perl, etc. also accept them. # (The list follows the same order as the GNU Coding Standards.) bindir='${exec_prefix}/bin' sbindir='${exec_prefix}/sbin' libexecdir='${exec_prefix}/libexec' datarootdir='${prefix}/share' datadir='${datarootdir}' sysconfdir='${prefix}/etc' sharedstatedir='${prefix}/com' localstatedir='${prefix}/var' includedir='${prefix}/include' oldincludedir='/usr/include' docdir='${datarootdir}/doc/${PACKAGE_TARNAME}' infodir='${datarootdir}/info' htmldir='${docdir}' dvidir='${docdir}' pdfdir='${docdir}' psdir='${docdir}' libdir='${exec_prefix}/lib' localedir='${datarootdir}/locale' mandir='${datarootdir}/man' ac_prev= ac_dashdash= for ac_option do # If the previous option needs an argument, assign it. if test -n "$ac_prev"; then eval $ac_prev=\$ac_option ac_prev= continue fi case $ac_option in *=?*) ac_optarg=`expr "X$ac_option" : '[^=]*=\(.*\)'` ;; *=) ac_optarg= ;; *) ac_optarg=yes ;; esac # Accept the important Cygnus configure options, so we can diagnose typos. case $ac_dashdash$ac_option in --) ac_dashdash=yes ;; -bindir | --bindir | --bindi | --bind | --bin | --bi) ac_prev=bindir ;; -bindir=* | --bindir=* | --bindi=* | --bind=* | --bin=* | --bi=*) bindir=$ac_optarg ;; -build | --build | --buil | --bui | --bu) ac_prev=build_alias ;; -build=* | --build=* | --buil=* | --bui=* | --bu=*) build_alias=$ac_optarg ;; -cache-file | --cache-file | --cache-fil | --cache-fi \ | --cache-f | --cache- | --cache | --cach | --cac | --ca | --c) ac_prev=cache_file ;; -cache-file=* | --cache-file=* | --cache-fil=* | --cache-fi=* \ | --cache-f=* | --cache-=* | --cache=* | --cach=* | --cac=* | --ca=* | --c=*) cache_file=$ac_optarg ;; --config-cache | -C) cache_file=config.cache ;; -datadir | --datadir | --datadi | --datad) ac_prev=datadir ;; -datadir=* | --datadir=* | --datadi=* | --datad=*) datadir=$ac_optarg ;; -datarootdir | --datarootdir | --datarootdi | --datarootd | --dataroot \ | --dataroo | --dataro | --datar) ac_prev=datarootdir ;; -datarootdir=* | --datarootdir=* | --datarootdi=* | --datarootd=* \ | --dataroot=* | --dataroo=* | --dataro=* | --datar=*) datarootdir=$ac_optarg ;; -disable-* | --disable-*) ac_useropt=`expr "x$ac_option" : 'x-*disable-\(.*\)'` # Reject names that are not valid shell variable names. expr "x$ac_useropt" : ".*[^-+._$as_cr_alnum]" >/dev/null && as_fn_error $? "invalid feature name: $ac_useropt" ac_useropt_orig=$ac_useropt ac_useropt=`$as_echo "$ac_useropt" | sed 's/[-+.]/_/g'` case $ac_user_opts in *" "enable_$ac_useropt" "*) ;; *) ac_unrecognized_opts="$ac_unrecognized_opts$ac_unrecognized_sep--disable-$ac_useropt_orig" ac_unrecognized_sep=', ';; esac eval enable_$ac_useropt=no ;; -docdir | --docdir | --docdi | --doc | --do) ac_prev=docdir ;; -docdir=* | --docdir=* | --docdi=* | --doc=* | --do=*) docdir=$ac_optarg ;; -dvidir | --dvidir | --dvidi | --dvid | --dvi | --dv) ac_prev=dvidir ;; -dvidir=* | --dvidir=* | --dvidi=* | --dvid=* | --dvi=* | --dv=*) dvidir=$ac_optarg ;; -enable-* | --enable-*) ac_useropt=`expr "x$ac_option" : 'x-*enable-\([^=]*\)'` # Reject names that are not valid shell variable names. expr "x$ac_useropt" : ".*[^-+._$as_cr_alnum]" >/dev/null && as_fn_error $? "invalid feature name: $ac_useropt" ac_useropt_orig=$ac_useropt ac_useropt=`$as_echo "$ac_useropt" | sed 's/[-+.]/_/g'` case $ac_user_opts in *" "enable_$ac_useropt" "*) ;; *) ac_unrecognized_opts="$ac_unrecognized_opts$ac_unrecognized_sep--enable-$ac_useropt_orig" ac_unrecognized_sep=', ';; esac eval enable_$ac_useropt=\$ac_optarg ;; -exec-prefix | --exec_prefix | --exec-prefix | --exec-prefi \ | --exec-pref | --exec-pre | --exec-pr | --exec-p | --exec- \ | --exec | --exe | --ex) ac_prev=exec_prefix ;; -exec-prefix=* | --exec_prefix=* | --exec-prefix=* | --exec-prefi=* \ | --exec-pref=* | --exec-pre=* | --exec-pr=* | --exec-p=* | --exec-=* \ | --exec=* | --exe=* | --ex=*) exec_prefix=$ac_optarg ;; -gas | --gas | --ga | --g) # Obsolete; use --with-gas. with_gas=yes ;; -help | --help | --hel | --he | -h) ac_init_help=long ;; -help=r* | --help=r* | --hel=r* | --he=r* | -hr*) ac_init_help=recursive ;; -help=s* | --help=s* | --hel=s* | --he=s* | -hs*) ac_init_help=short ;; -host | --host | --hos | --ho) ac_prev=host_alias ;; -host=* | --host=* | --hos=* | --ho=*) host_alias=$ac_optarg ;; -htmldir | --htmldir | --htmldi | --htmld | --html | --htm | --ht) ac_prev=htmldir ;; -htmldir=* | --htmldir=* | --htmldi=* | --htmld=* | --html=* | --htm=* \ | --ht=*) htmldir=$ac_optarg ;; -includedir | --includedir | --includedi | --included | --include \ | --includ | --inclu | --incl | --inc) ac_prev=includedir ;; -includedir=* | --includedir=* | --includedi=* | --included=* | --include=* \ | --includ=* | --inclu=* | --incl=* | --inc=*) includedir=$ac_optarg ;; -infodir | --infodir | --infodi | --infod | --info | --inf) ac_prev=infodir ;; -infodir=* | --infodir=* | --infodi=* | --infod=* | --info=* | --inf=*) infodir=$ac_optarg ;; -libdir | --libdir | --libdi | --libd) ac_prev=libdir ;; -libdir=* | --libdir=* | --libdi=* | --libd=*) libdir=$ac_optarg ;; -libexecdir | --libexecdir | --libexecdi | --libexecd | --libexec \ | --libexe | --libex | --libe) ac_prev=libexecdir ;; -libexecdir=* | --libexecdir=* | --libexecdi=* | --libexecd=* | --libexec=* \ | --libexe=* | --libex=* | --libe=*) libexecdir=$ac_optarg ;; -localedir | --localedir | --localedi | --localed | --locale) ac_prev=localedir ;; -localedir=* | --localedir=* | --localedi=* | --localed=* | --locale=*) localedir=$ac_optarg ;; -localstatedir | --localstatedir | --localstatedi | --localstated \ | --localstate | --localstat | --localsta | --localst | --locals) ac_prev=localstatedir ;; -localstatedir=* | --localstatedir=* | --localstatedi=* | --localstated=* \ | --localstate=* | --localstat=* | --localsta=* | --localst=* | --locals=*) localstatedir=$ac_optarg ;; -mandir | --mandir | --mandi | --mand | --man | --ma | --m) ac_prev=mandir ;; -mandir=* | --mandir=* | --mandi=* | --mand=* | --man=* | --ma=* | --m=*) mandir=$ac_optarg ;; -nfp | --nfp | --nf) # Obsolete; use --without-fp. with_fp=no ;; -no-create | --no-create | --no-creat | --no-crea | --no-cre \ | --no-cr | --no-c | -n) no_create=yes ;; -no-recursion | --no-recursion | --no-recursio | --no-recursi \ | --no-recurs | --no-recur | --no-recu | --no-rec | --no-re | --no-r) no_recursion=yes ;; -oldincludedir | --oldincludedir | --oldincludedi | --oldincluded \ | --oldinclude | --oldinclud | --oldinclu | --oldincl | --oldinc \ | --oldin | --oldi | --old | --ol | --o) ac_prev=oldincludedir ;; -oldincludedir=* | --oldincludedir=* | --oldincludedi=* | --oldincluded=* \ | --oldinclude=* | --oldinclud=* | --oldinclu=* | --oldincl=* | --oldinc=* \ | --oldin=* | --oldi=* | --old=* | --ol=* | --o=*) oldincludedir=$ac_optarg ;; -prefix | --prefix | --prefi | --pref | --pre | --pr | --p) ac_prev=prefix ;; -prefix=* | --prefix=* | --prefi=* | --pref=* | --pre=* | --pr=* | --p=*) prefix=$ac_optarg ;; -program-prefix | --program-prefix | --program-prefi | --program-pref \ | --program-pre | --program-pr | --program-p) ac_prev=program_prefix ;; -program-prefix=* | --program-prefix=* | --program-prefi=* \ | --program-pref=* | --program-pre=* | --program-pr=* | --program-p=*) program_prefix=$ac_optarg ;; -program-suffix | --program-suffix | --program-suffi | --program-suff \ | --program-suf | --program-su | --program-s) ac_prev=program_suffix ;; -program-suffix=* | --program-suffix=* | --program-suffi=* \ | --program-suff=* | --program-suf=* | --program-su=* | --program-s=*) program_suffix=$ac_optarg ;; -program-transform-name | --program-transform-name \ | --program-transform-nam | --program-transform-na \ | --program-transform-n | --program-transform- \ | --program-transform | --program-transfor \ | --program-transfo | --program-transf \ | --program-trans | --program-tran \ | --progr-tra | --program-tr | --program-t) ac_prev=program_transform_name ;; -program-transform-name=* | --program-transform-name=* \ | --program-transform-nam=* | --program-transform-na=* \ | --program-transform-n=* | --program-transform-=* \ | --program-transform=* | --program-transfor=* \ | --program-transfo=* | --program-transf=* \ | --program-trans=* | --program-tran=* \ | --progr-tra=* | --program-tr=* | --program-t=*) program_transform_name=$ac_optarg ;; -pdfdir | --pdfdir | --pdfdi | --pdfd | --pdf | --pd) ac_prev=pdfdir ;; -pdfdir=* | --pdfdir=* | --pdfdi=* | --pdfd=* | --pdf=* | --pd=*) pdfdir=$ac_optarg ;; -psdir | --psdir | --psdi | --psd | --ps) ac_prev=psdir ;; -psdir=* | --psdir=* | --psdi=* | --psd=* | --ps=*) psdir=$ac_optarg ;; -q | -quiet | --quiet | --quie | --qui | --qu | --q \ | -silent | --silent | --silen | --sile | --sil) silent=yes ;; -sbindir | --sbindir | --sbindi | --sbind | --sbin | --sbi | --sb) ac_prev=sbindir ;; -sbindir=* | --sbindir=* | --sbindi=* | --sbind=* | --sbin=* \ | --sbi=* | --sb=*) sbindir=$ac_optarg ;; -sharedstatedir | --sharedstatedir | --sharedstatedi \ | --sharedstated | --sharedstate | --sharedstat | --sharedsta \ | --sharedst | --shareds | --shared | --share | --shar \ | --sha | --sh) ac_prev=sharedstatedir ;; -sharedstatedir=* | --sharedstatedir=* | --sharedstatedi=* \ | --sharedstated=* | --sharedstate=* | --sharedstat=* | --sharedsta=* \ | --sharedst=* | --shareds=* | --shared=* | --share=* | --shar=* \ | --sha=* | --sh=*) sharedstatedir=$ac_optarg ;; -site | --site | --sit) ac_prev=site ;; -site=* | --site=* | --sit=*) site=$ac_optarg ;; -srcdir | --srcdir | --srcdi | --srcd | --src | --sr) ac_prev=srcdir ;; -srcdir=* | --srcdir=* | --srcdi=* | --srcd=* | --src=* | --sr=*) srcdir=$ac_optarg ;; -sysconfdir | --sysconfdir | --sysconfdi | --sysconfd | --sysconf \ | --syscon | --sysco | --sysc | --sys | --sy) ac_prev=sysconfdir ;; -sysconfdir=* | --sysconfdir=* | --sysconfdi=* | --sysconfd=* | --sysconf=* \ | --syscon=* | --sysco=* | --sysc=* | --sys=* | --sy=*) sysconfdir=$ac_optarg ;; -target | --target | --targe | --targ | --tar | --ta | --t) ac_prev=target_alias ;; -target=* | --target=* | --targe=* | --targ=* | --tar=* | --ta=* | --t=*) target_alias=$ac_optarg ;; -v | -verbose | --verbose | --verbos | --verbo | --verb) verbose=yes ;; -version | --version | --versio | --versi | --vers | -V) ac_init_version=: ;; -with-* | --with-*) ac_useropt=`expr "x$ac_option" : 'x-*with-\([^=]*\)'` # Reject names that are not valid shell variable names. expr "x$ac_useropt" : ".*[^-+._$as_cr_alnum]" >/dev/null && as_fn_error $? "invalid package name: $ac_useropt" ac_useropt_orig=$ac_useropt ac_useropt=`$as_echo "$ac_useropt" | sed 's/[-+.]/_/g'` case $ac_user_opts in *" "with_$ac_useropt" "*) ;; *) ac_unrecognized_opts="$ac_unrecognized_opts$ac_unrecognized_sep--with-$ac_useropt_orig" ac_unrecognized_sep=', ';; esac eval with_$ac_useropt=\$ac_optarg ;; -without-* | --without-*) ac_useropt=`expr "x$ac_option" : 'x-*without-\(.*\)'` # Reject names that are not valid shell variable names. expr "x$ac_useropt" : ".*[^-+._$as_cr_alnum]" >/dev/null && as_fn_error $? "invalid package name: $ac_useropt" ac_useropt_orig=$ac_useropt ac_useropt=`$as_echo "$ac_useropt" | sed 's/[-+.]/_/g'` case $ac_user_opts in *" "with_$ac_useropt" "*) ;; *) ac_unrecognized_opts="$ac_unrecognized_opts$ac_unrecognized_sep--without-$ac_useropt_orig" ac_unrecognized_sep=', ';; esac eval with_$ac_useropt=no ;; --x) # Obsolete; use --with-x. with_x=yes ;; -x-includes | --x-includes | --x-include | --x-includ | --x-inclu \ | --x-incl | --x-inc | --x-in | --x-i) ac_prev=x_includes ;; -x-includes=* | --x-includes=* | --x-include=* | --x-includ=* | --x-inclu=* \ | --x-incl=* | --x-inc=* | --x-in=* | --x-i=*) x_includes=$ac_optarg ;; -x-libraries | --x-libraries | --x-librarie | --x-librari \ | --x-librar | --x-libra | --x-libr | --x-lib | --x-li | --x-l) ac_prev=x_libraries ;; -x-libraries=* | --x-libraries=* | --x-librarie=* | --x-librari=* \ | --x-librar=* | --x-libra=* | --x-libr=* | --x-lib=* | --x-li=* | --x-l=*) x_libraries=$ac_optarg ;; -*) as_fn_error $? "unrecognized option: \`$ac_option' Try \`$0 --help' for more information" ;; *=*) ac_envvar=`expr "x$ac_option" : 'x\([^=]*\)='` # Reject names that are not valid shell variable names. case $ac_envvar in #( '' | [0-9]* | *[!_$as_cr_alnum]* ) as_fn_error $? "invalid variable name: \`$ac_envvar'" ;; esac eval $ac_envvar=\$ac_optarg export $ac_envvar ;; *) # FIXME: should be removed in autoconf 3.0. $as_echo "$as_me: WARNING: you should use --build, --host, --target" >&2 expr "x$ac_option" : ".*[^-._$as_cr_alnum]" >/dev/null && $as_echo "$as_me: WARNING: invalid host type: $ac_option" >&2 : "${build_alias=$ac_option} ${host_alias=$ac_option} ${target_alias=$ac_option}" ;; esac done if test -n "$ac_prev"; then ac_option=--`echo $ac_prev | sed 's/_/-/g'` as_fn_error $? "missing argument to $ac_option" fi if test -n "$ac_unrecognized_opts"; then case $enable_option_checking in no) ;; fatal) as_fn_error $? "unrecognized options: $ac_unrecognized_opts" ;; *) $as_echo "$as_me: WARNING: unrecognized options: $ac_unrecognized_opts" >&2 ;; esac fi # Check all directory arguments for consistency. for ac_var in exec_prefix prefix bindir sbindir libexecdir datarootdir \ datadir sysconfdir sharedstatedir localstatedir includedir \ oldincludedir docdir infodir htmldir dvidir pdfdir psdir \ libdir localedir mandir do eval ac_val=\$$ac_var # Remove trailing slashes. case $ac_val in */ ) ac_val=`expr "X$ac_val" : 'X\(.*[^/]\)' \| "X$ac_val" : 'X\(.*\)'` eval $ac_var=\$ac_val;; esac # Be sure to have absolute directory names. case $ac_val in [\\/$]* | ?:[\\/]* ) continue;; NONE | '' ) case $ac_var in *prefix ) continue;; esac;; esac as_fn_error $? "expected an absolute directory name for --$ac_var: $ac_val" done # There might be people who depend on the old broken behavior: `$host' # used to hold the argument of --host etc. # FIXME: To remove some day. build=$build_alias host=$host_alias target=$target_alias # FIXME: To remove some day. if test "x$host_alias" != x; then if test "x$build_alias" = x; then cross_compiling=maybe elif test "x$build_alias" != "x$host_alias"; then cross_compiling=yes fi fi ac_tool_prefix= test -n "$host_alias" && ac_tool_prefix=$host_alias- test "$silent" = yes && exec 6>/dev/null ac_pwd=`pwd` && test -n "$ac_pwd" && ac_ls_di=`ls -di .` && ac_pwd_ls_di=`cd "$ac_pwd" && ls -di .` || as_fn_error $? "working directory cannot be determined" test "X$ac_ls_di" = "X$ac_pwd_ls_di" || as_fn_error $? "pwd does not report name of working directory" # Find the source files, if location was not specified. if test -z "$srcdir"; then ac_srcdir_defaulted=yes # Try the directory containing this script, then the parent directory. ac_confdir=`$as_dirname -- "$as_myself" || $as_expr X"$as_myself" : 'X\(.*[^/]\)//*[^/][^/]*/*$' \| \ X"$as_myself" : 'X\(//\)[^/]' \| \ X"$as_myself" : 'X\(//\)$' \| \ X"$as_myself" : 'X\(/\)' \| . 2>/dev/null || $as_echo X"$as_myself" | sed '/^X\(.*[^/]\)\/\/*[^/][^/]*\/*$/{ s//\1/ q } /^X\(\/\/\)[^/].*/{ s//\1/ q } /^X\(\/\/\)$/{ s//\1/ q } /^X\(\/\).*/{ s//\1/ q } s/.*/./; q'` srcdir=$ac_confdir if test ! -r "$srcdir/$ac_unique_file"; then srcdir=.. fi else ac_srcdir_defaulted=no fi if test ! -r "$srcdir/$ac_unique_file"; then test "$ac_srcdir_defaulted" = yes && srcdir="$ac_confdir or .." as_fn_error $? "cannot find sources ($ac_unique_file) in $srcdir" fi ac_msg="sources are in $srcdir, but \`cd $srcdir' does not work" ac_abs_confdir=`( cd "$srcdir" && test -r "./$ac_unique_file" || as_fn_error $? "$ac_msg" pwd)` # When building in place, set srcdir=. if test "$ac_abs_confdir" = "$ac_pwd"; then srcdir=. fi # Remove unnecessary trailing slashes from srcdir. # Double slashes in file names in object file debugging info # mess up M-x gdb in Emacs. case $srcdir in */) srcdir=`expr "X$srcdir" : 'X\(.*[^/]\)' \| "X$srcdir" : 'X\(.*\)'`;; esac for ac_var in $ac_precious_vars; do eval ac_env_${ac_var}_set=\${${ac_var}+set} eval ac_env_${ac_var}_value=\$${ac_var} eval ac_cv_env_${ac_var}_set=\${${ac_var}+set} eval ac_cv_env_${ac_var}_value=\$${ac_var} done # # Report the --help message. # if test "$ac_init_help" = "long"; then # Omit some internal or obsolete options to make the list less imposing. # This message is too long to be a string in the A/UX 3.1 sh. cat <<_ACEOF \`configure' configures libjpeg-turbo 1.4.2 to adapt to many kinds of systems. Usage: $0 [OPTION]... [VAR=VALUE]... To assign environment variables (e.g., CC, CFLAGS...), specify them as VAR=VALUE. See below for descriptions of some of the useful variables. Defaults for the options are specified in brackets. Configuration: -h, --help display this help and exit --help=short display options specific to this package --help=recursive display the short help of all the included packages -V, --version display version information and exit -q, --quiet, --silent do not print \`checking ...' messages --cache-file=FILE cache test results in FILE [disabled] -C, --config-cache alias for \`--cache-file=config.cache' -n, --no-create do not create output files --srcdir=DIR find the sources in DIR [configure dir or \`..'] Installation directories: --prefix=PREFIX install architecture-independent files in PREFIX [$ac_default_prefix] --exec-prefix=EPREFIX install architecture-dependent files in EPREFIX [PREFIX] By default, \`make install' will install all the files in \`$ac_default_prefix/bin', \`$ac_default_prefix/lib' etc. You can specify an installation prefix other than \`$ac_default_prefix' using \`--prefix', for instance \`--prefix=\$HOME'. For better control, use the options below. Fine tuning of the installation directories: --bindir=DIR user executables [EPREFIX/bin] --sbindir=DIR system admin executables [EPREFIX/sbin] --libexecdir=DIR program executables [EPREFIX/libexec] --sysconfdir=DIR read-only single-machine data [PREFIX/etc] --sharedstatedir=DIR modifiable architecture-independent data [PREFIX/com] --localstatedir=DIR modifiable single-machine data [PREFIX/var] --libdir=DIR object code libraries [EPREFIX/lib] --includedir=DIR C header files [PREFIX/include] --oldincludedir=DIR C header files for non-gcc [/usr/include] --datarootdir=DIR read-only arch.-independent data root [PREFIX/share] --datadir=DIR read-only architecture-independent data [DATAROOTDIR] --infodir=DIR info documentation [DATAROOTDIR/info] --localedir=DIR locale-dependent data [DATAROOTDIR/locale] --mandir=DIR man documentation [DATAROOTDIR/man] --docdir=DIR documentation root [DATAROOTDIR/doc/libjpeg-turbo] --htmldir=DIR html documentation [DOCDIR] --dvidir=DIR dvi documentation [DOCDIR] --pdfdir=DIR pdf documentation [DOCDIR] --psdir=DIR ps documentation [DOCDIR] _ACEOF cat <<\_ACEOF Program names: --program-prefix=PREFIX prepend PREFIX to installed program names --program-suffix=SUFFIX append SUFFIX to installed program names --program-transform-name=PROGRAM run sed PROGRAM on installed program names System types: --build=BUILD configure for building on BUILD [guessed] --host=HOST cross-compile to build programs to run on HOST [BUILD] _ACEOF fi if test -n "$ac_init_help"; then case $ac_init_help in short | recursive ) echo "Configuration of libjpeg-turbo 1.4.2:";; esac cat <<\_ACEOF Optional Features: --disable-option-checking ignore unrecognized --enable/--with options --disable-FEATURE do not include FEATURE (same as --enable-FEATURE=no) --enable-FEATURE[=ARG] include FEATURE [ARG=yes] --enable-silent-rules less verbose build output (undo: "make V=1") --disable-silent-rules verbose build output (undo: "make V=0") --enable-dependency-tracking do not reject slow dependency extractors --disable-dependency-tracking speeds up one-time build --enable-shared[=PKGS] build shared libraries [default=yes] --enable-static[=PKGS] build static libraries [default=yes] --enable-fast-install[=PKGS] optimize for fast installation [default=yes] --disable-libtool-lock avoid locking (might break parallel builds) --disable-ld-version-script Disable linker version script for libjpeg-turbo (default is to use linker version script if the linker supports it) Optional Packages: --with-PACKAGE[=ARG] use PACKAGE [ARG=yes] --without-PACKAGE do not use PACKAGE (same as --with-PACKAGE=no) --with-pic[=PKGS] try to use only PIC/non-PIC objects [default=use both] --with-aix-soname=aix|svr4|both shared library versioning (aka "SONAME") variant to provide on AIX, [default=aix]. --with-gnu-ld assume the C compiler uses GNU ld [default=no] --with-sysroot[=DIR] Search for dependent libraries within DIR (or the compiler's sysroot if not specified). Use custom build string to enable reproducible builds (default: YYMMDD) --with-jpeg7 Emulate libjpeg v7 API/ABI (this makes libjpeg-turbo backward incompatible with libjpeg v6b.) --with-jpeg8 Emulate libjpeg v8 API/ABI (this makes libjpeg-turbo backward incompatible with libjpeg v6b.) --without-mem-srcdst Do not include in-memory source/destination manager functions when emulating the libjpeg v6b or v7 API/ABI --without-arith-enc Do not include arithmetic encoding support --without-arith-dec Do not include arithmetic decoding support --with-12bit Encode/decode JPEG images with 12-bit samples (implies --without-simd --without-turbojpeg --without-arith-dec --without-arith-enc) --without-turbojpeg Do not include the TurboJPEG wrapper library and associated test programs --with-java Build Java wrapper for the TurboJPEG library --with-gas-preprocessor Force using gas-preprocessor.pl on ARM. --without-simd Do not include SIMD extensions Some influential environment variables: CC C compiler command CFLAGS C compiler flags LDFLAGS linker flags, e.g. -L if you have libraries in a nonstandard directory LIBS libraries to pass to the linker, e.g. -l CPPFLAGS (Objective) C/C++ preprocessor flags, e.g. -I if you have headers in a nonstandard directory CPP C preprocessor CCAS assembler compiler command (defaults to CC) CCASFLAGS assembler compiler flags (defaults to CFLAGS) LT_SYS_LIBRARY_PATH User-defined run-time library search path. JPEG_LIB_VERSION libjpeg API version (62, 70, or 80) SO_MAJOR_VERSION Major version of the libjpeg-turbo shared library (default is determined by the API version) SO_MINOR_VERSION Minor version of the libjpeg-turbo shared library (default is determined by the API version) JAVAC Java compiler command (default: javac) JAVACFLAGS Java compiler flags JAR Java archive command (default: jar) JAVA Java runtime command (default: java) JNI_CFLAGS C compiler flags needed to include jni.h (default: -I/System/Library/Frameworks/JavaVM.framework/Headers on OS X, '-I/usr/java/include -I/usr/java/include/solaris' on Solaris, and '-I/usr/java/default/include -I/usr/java/default/include/linux' on Linux) PKGNAME distribution package name (default: libjpeg-turbo) Use these variables to override the choices made by `configure' or to help it to find libraries and programs with nonstandard names/locations. Report bugs to the package provider. _ACEOF ac_status=$? fi if test "$ac_init_help" = "recursive"; then # If there are subdirs, report their specific --help. for ac_dir in : $ac_subdirs_all; do test "x$ac_dir" = x: && continue test -d "$ac_dir" || { cd "$srcdir" && ac_pwd=`pwd` && srcdir=. && test -d "$ac_dir"; } || continue ac_builddir=. case "$ac_dir" in .) ac_dir_suffix= ac_top_builddir_sub=. ac_top_build_prefix= ;; *) ac_dir_suffix=/`$as_echo "$ac_dir" | sed 's|^\.[\\/]||'` # A ".." for each directory in $ac_dir_suffix. ac_top_builddir_sub=`$as_echo "$ac_dir_suffix" | sed 's|/[^\\/]*|/..|g;s|/||'` case $ac_top_builddir_sub in "") ac_top_builddir_sub=. ac_top_build_prefix= ;; *) ac_top_build_prefix=$ac_top_builddir_sub/ ;; esac ;; esac ac_abs_top_builddir=$ac_pwd ac_abs_builddir=$ac_pwd$ac_dir_suffix # for backward compatibility: ac_top_builddir=$ac_top_build_prefix case $srcdir in .) # We are building in place. ac_srcdir=. ac_top_srcdir=$ac_top_builddir_sub ac_abs_top_srcdir=$ac_pwd ;; [\\/]* | ?:[\\/]* ) # Absolute name. ac_srcdir=$srcdir$ac_dir_suffix; ac_top_srcdir=$srcdir ac_abs_top_srcdir=$srcdir ;; *) # Relative name. ac_srcdir=$ac_top_build_prefix$srcdir$ac_dir_suffix ac_top_srcdir=$ac_top_build_prefix$srcdir ac_abs_top_srcdir=$ac_pwd/$srcdir ;; esac ac_abs_srcdir=$ac_abs_top_srcdir$ac_dir_suffix cd "$ac_dir" || { ac_status=$?; continue; } # Check for guested configure. if test -f "$ac_srcdir/configure.gnu"; then echo && $SHELL "$ac_srcdir/configure.gnu" --help=recursive elif test -f "$ac_srcdir/configure"; then echo && $SHELL "$ac_srcdir/configure" --help=recursive else $as_echo "$as_me: WARNING: no configuration information is in $ac_dir" >&2 fi || ac_status=$? cd "$ac_pwd" || { ac_status=$?; break; } done fi test -n "$ac_init_help" && exit $ac_status if $ac_init_version; then cat <<\_ACEOF libjpeg-turbo configure 1.4.2 generated by GNU Autoconf 2.69 Copyright (C) 2012 Free Software Foundation, Inc. This configure script is free software; the Free Software Foundation gives unlimited permission to copy, distribute and modify it. _ACEOF exit fi ## ------------------------ ## ## Autoconf initialization. ## ## ------------------------ ## # ac_fn_c_try_compile LINENO # -------------------------- # Try to compile conftest.$ac_ext, and return whether this succeeded. ac_fn_c_try_compile () { as_lineno=${as_lineno-"$1"} as_lineno_stack=as_lineno_stack=$as_lineno_stack rm -f conftest.$ac_objext if { { ac_try="$ac_compile" case "(($ac_try" in *\"* | *\`* | *\\*) ac_try_echo=\$ac_try;; *) ac_try_echo=$ac_try;; esac eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\"" $as_echo "$ac_try_echo"; } >&5 (eval "$ac_compile") 2>conftest.err ac_status=$? if test -s conftest.err; then grep -v '^ *+' conftest.err >conftest.er1 cat conftest.er1 >&5 mv -f conftest.er1 conftest.err fi $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; } && { test -z "$ac_c_werror_flag" || test ! -s conftest.err } && test -s conftest.$ac_objext; then : ac_retval=0 else $as_echo "$as_me: failed program was:" >&5 sed 's/^/| /' conftest.$ac_ext >&5 ac_retval=1 fi eval $as_lineno_stack; ${as_lineno_stack:+:} unset as_lineno as_fn_set_status $ac_retval } # ac_fn_c_try_compile # ac_fn_c_try_cpp LINENO # ---------------------- # Try to preprocess conftest.$ac_ext, and return whether this succeeded. ac_fn_c_try_cpp () { as_lineno=${as_lineno-"$1"} as_lineno_stack=as_lineno_stack=$as_lineno_stack if { { ac_try="$ac_cpp conftest.$ac_ext" case "(($ac_try" in *\"* | *\`* | *\\*) ac_try_echo=\$ac_try;; *) ac_try_echo=$ac_try;; esac eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\"" $as_echo "$ac_try_echo"; } >&5 (eval "$ac_cpp conftest.$ac_ext") 2>conftest.err ac_status=$? if test -s conftest.err; then grep -v '^ *+' conftest.err >conftest.er1 cat conftest.er1 >&5 mv -f conftest.er1 conftest.err fi $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; } > conftest.i && { test -z "$ac_c_preproc_warn_flag$ac_c_werror_flag" || test ! -s conftest.err }; then : ac_retval=0 else $as_echo "$as_me: failed program was:" >&5 sed 's/^/| /' conftest.$ac_ext >&5 ac_retval=1 fi eval $as_lineno_stack; ${as_lineno_stack:+:} unset as_lineno as_fn_set_status $ac_retval } # ac_fn_c_try_cpp # ac_fn_c_try_link LINENO # ----------------------- # Try to link conftest.$ac_ext, and return whether this succeeded. ac_fn_c_try_link () { as_lineno=${as_lineno-"$1"} as_lineno_stack=as_lineno_stack=$as_lineno_stack rm -f conftest.$ac_objext conftest$ac_exeext if { { ac_try="$ac_link" case "(($ac_try" in *\"* | *\`* | *\\*) ac_try_echo=\$ac_try;; *) ac_try_echo=$ac_try;; esac eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\"" $as_echo "$ac_try_echo"; } >&5 (eval "$ac_link") 2>conftest.err ac_status=$? if test -s conftest.err; then grep -v '^ *+' conftest.err >conftest.er1 cat conftest.er1 >&5 mv -f conftest.er1 conftest.err fi $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; } && { test -z "$ac_c_werror_flag" || test ! -s conftest.err } && test -s conftest$ac_exeext && { test "$cross_compiling" = yes || test -x conftest$ac_exeext }; then : ac_retval=0 else $as_echo "$as_me: failed program was:" >&5 sed 's/^/| /' conftest.$ac_ext >&5 ac_retval=1 fi # Delete the IPA/IPO (Inter Procedural Analysis/Optimization) information # created by the PGI compiler (conftest_ipa8_conftest.oo), as it would # interfere with the next link command; also delete a directory that is # left behind by Apple's compiler. We do this before executing the actions. rm -rf conftest.dSYM conftest_ipa8_conftest.oo eval $as_lineno_stack; ${as_lineno_stack:+:} unset as_lineno as_fn_set_status $ac_retval } # ac_fn_c_try_link # ac_fn_c_check_header_compile LINENO HEADER VAR INCLUDES # ------------------------------------------------------- # Tests whether HEADER exists and can be compiled using the include files in # INCLUDES, setting the cache variable VAR accordingly. ac_fn_c_check_header_compile () { as_lineno=${as_lineno-"$1"} as_lineno_stack=as_lineno_stack=$as_lineno_stack { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $2" >&5 $as_echo_n "checking for $2... " >&6; } if eval \${$3+:} false; then : $as_echo_n "(cached) " >&6 else cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ $4 #include <$2> _ACEOF if ac_fn_c_try_compile "$LINENO"; then : eval "$3=yes" else eval "$3=no" fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext fi eval ac_res=\$$3 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_res" >&5 $as_echo "$ac_res" >&6; } eval $as_lineno_stack; ${as_lineno_stack:+:} unset as_lineno } # ac_fn_c_check_header_compile # ac_fn_c_try_run LINENO # ---------------------- # Try to link conftest.$ac_ext, and return whether this succeeded. Assumes # that executables *can* be run. ac_fn_c_try_run () { as_lineno=${as_lineno-"$1"} as_lineno_stack=as_lineno_stack=$as_lineno_stack if { { ac_try="$ac_link" case "(($ac_try" in *\"* | *\`* | *\\*) ac_try_echo=\$ac_try;; *) ac_try_echo=$ac_try;; esac eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\"" $as_echo "$ac_try_echo"; } >&5 (eval "$ac_link") 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; } && { ac_try='./conftest$ac_exeext' { { case "(($ac_try" in *\"* | *\`* | *\\*) ac_try_echo=\$ac_try;; *) ac_try_echo=$ac_try;; esac eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\"" $as_echo "$ac_try_echo"; } >&5 (eval "$ac_try") 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; }; }; then : ac_retval=0 else $as_echo "$as_me: program exited with status $ac_status" >&5 $as_echo "$as_me: failed program was:" >&5 sed 's/^/| /' conftest.$ac_ext >&5 ac_retval=$ac_status fi rm -rf conftest.dSYM conftest_ipa8_conftest.oo eval $as_lineno_stack; ${as_lineno_stack:+:} unset as_lineno as_fn_set_status $ac_retval } # ac_fn_c_try_run # ac_fn_c_check_func LINENO FUNC VAR # ---------------------------------- # Tests whether FUNC exists, setting the cache variable VAR accordingly ac_fn_c_check_func () { as_lineno=${as_lineno-"$1"} as_lineno_stack=as_lineno_stack=$as_lineno_stack { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $2" >&5 $as_echo_n "checking for $2... " >&6; } if eval \${$3+:} false; then : $as_echo_n "(cached) " >&6 else cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ /* Define $2 to an innocuous variant, in case declares $2. For example, HP-UX 11i declares gettimeofday. */ #define $2 innocuous_$2 /* System header to define __stub macros and hopefully few prototypes, which can conflict with char $2 (); below. Prefer to if __STDC__ is defined, since exists even on freestanding compilers. */ #ifdef __STDC__ # include #else # include #endif #undef $2 /* Override any GCC internal prototype to avoid an error. Use char because int might match the return type of a GCC builtin and then its argument prototype would still apply. */ #ifdef __cplusplus extern "C" #endif char $2 (); /* The GNU C library defines this for functions which it implements to always fail with ENOSYS. Some functions are actually named something starting with __ and the normal name is an alias. */ #if defined __stub_$2 || defined __stub___$2 choke me #endif int main () { return $2 (); ; return 0; } _ACEOF if ac_fn_c_try_link "$LINENO"; then : eval "$3=yes" else eval "$3=no" fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext conftest.$ac_ext fi eval ac_res=\$$3 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_res" >&5 $as_echo "$ac_res" >&6; } eval $as_lineno_stack; ${as_lineno_stack:+:} unset as_lineno } # ac_fn_c_check_func # ac_fn_c_compute_int LINENO EXPR VAR INCLUDES # -------------------------------------------- # Tries to find the compile-time value of EXPR in a program that includes # INCLUDES, setting VAR accordingly. Returns whether the value could be # computed ac_fn_c_compute_int () { as_lineno=${as_lineno-"$1"} as_lineno_stack=as_lineno_stack=$as_lineno_stack if test "$cross_compiling" = yes; then # Depending upon the size, compute the lo and hi bounds. cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ $4 int main () { static int test_array [1 - 2 * !(($2) >= 0)]; test_array [0] = 0; return test_array [0]; ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : ac_lo=0 ac_mid=0 while :; do cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ $4 int main () { static int test_array [1 - 2 * !(($2) <= $ac_mid)]; test_array [0] = 0; return test_array [0]; ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : ac_hi=$ac_mid; break else as_fn_arith $ac_mid + 1 && ac_lo=$as_val if test $ac_lo -le $ac_mid; then ac_lo= ac_hi= break fi as_fn_arith 2 '*' $ac_mid + 1 && ac_mid=$as_val fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext done else cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ $4 int main () { static int test_array [1 - 2 * !(($2) < 0)]; test_array [0] = 0; return test_array [0]; ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : ac_hi=-1 ac_mid=-1 while :; do cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ $4 int main () { static int test_array [1 - 2 * !(($2) >= $ac_mid)]; test_array [0] = 0; return test_array [0]; ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : ac_lo=$ac_mid; break else as_fn_arith '(' $ac_mid ')' - 1 && ac_hi=$as_val if test $ac_mid -le $ac_hi; then ac_lo= ac_hi= break fi as_fn_arith 2 '*' $ac_mid && ac_mid=$as_val fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext done else ac_lo= ac_hi= fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext # Binary search between lo and hi bounds. while test "x$ac_lo" != "x$ac_hi"; do as_fn_arith '(' $ac_hi - $ac_lo ')' / 2 + $ac_lo && ac_mid=$as_val cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ $4 int main () { static int test_array [1 - 2 * !(($2) <= $ac_mid)]; test_array [0] = 0; return test_array [0]; ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : ac_hi=$ac_mid else as_fn_arith '(' $ac_mid ')' + 1 && ac_lo=$as_val fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext done case $ac_lo in #(( ?*) eval "$3=\$ac_lo"; ac_retval=0 ;; '') ac_retval=1 ;; esac else cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ $4 static long int longval () { return $2; } static unsigned long int ulongval () { return $2; } #include #include int main () { FILE *f = fopen ("conftest.val", "w"); if (! f) return 1; if (($2) < 0) { long int i = longval (); if (i != ($2)) return 1; fprintf (f, "%ld", i); } else { unsigned long int i = ulongval (); if (i != ($2)) return 1; fprintf (f, "%lu", i); } /* Do not output a trailing newline, as this causes \r\n confusion on some platforms. */ return ferror (f) || fclose (f) != 0; ; return 0; } _ACEOF if ac_fn_c_try_run "$LINENO"; then : echo >>conftest.val; read $3 &5 $as_echo_n "checking whether $as_decl_name is declared... " >&6; } if eval \${$3+:} false; then : $as_echo_n "(cached) " >&6 else cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ $4 int main () { #ifndef $as_decl_name #ifdef __cplusplus (void) $as_decl_use; #else (void) $as_decl_name; #endif #endif ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : eval "$3=yes" else eval "$3=no" fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext fi eval ac_res=\$$3 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_res" >&5 $as_echo "$ac_res" >&6; } eval $as_lineno_stack; ${as_lineno_stack:+:} unset as_lineno } # ac_fn_c_check_decl # ac_fn_c_check_header_mongrel LINENO HEADER VAR INCLUDES # ------------------------------------------------------- # Tests whether HEADER exists, giving a warning if it cannot be compiled using # the include files in INCLUDES and setting the cache variable VAR # accordingly. ac_fn_c_check_header_mongrel () { as_lineno=${as_lineno-"$1"} as_lineno_stack=as_lineno_stack=$as_lineno_stack if eval \${$3+:} false; then : { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $2" >&5 $as_echo_n "checking for $2... " >&6; } if eval \${$3+:} false; then : $as_echo_n "(cached) " >&6 fi eval ac_res=\$$3 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_res" >&5 $as_echo "$ac_res" >&6; } else # Is the header compilable? { $as_echo "$as_me:${as_lineno-$LINENO}: checking $2 usability" >&5 $as_echo_n "checking $2 usability... " >&6; } cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ $4 #include <$2> _ACEOF if ac_fn_c_try_compile "$LINENO"; then : ac_header_compiler=yes else ac_header_compiler=no fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_header_compiler" >&5 $as_echo "$ac_header_compiler" >&6; } # Is the header present? { $as_echo "$as_me:${as_lineno-$LINENO}: checking $2 presence" >&5 $as_echo_n "checking $2 presence... " >&6; } cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include <$2> _ACEOF if ac_fn_c_try_cpp "$LINENO"; then : ac_header_preproc=yes else ac_header_preproc=no fi rm -f conftest.err conftest.i conftest.$ac_ext { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_header_preproc" >&5 $as_echo "$ac_header_preproc" >&6; } # So? What about this header? case $ac_header_compiler:$ac_header_preproc:$ac_c_preproc_warn_flag in #(( yes:no: ) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: $2: accepted by the compiler, rejected by the preprocessor!" >&5 $as_echo "$as_me: WARNING: $2: accepted by the compiler, rejected by the preprocessor!" >&2;} { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: $2: proceeding with the compiler's result" >&5 $as_echo "$as_me: WARNING: $2: proceeding with the compiler's result" >&2;} ;; no:yes:* ) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: $2: present but cannot be compiled" >&5 $as_echo "$as_me: WARNING: $2: present but cannot be compiled" >&2;} { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: $2: check for missing prerequisite headers?" >&5 $as_echo "$as_me: WARNING: $2: check for missing prerequisite headers?" >&2;} { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: $2: see the Autoconf documentation" >&5 $as_echo "$as_me: WARNING: $2: see the Autoconf documentation" >&2;} { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: $2: section \"Present But Cannot Be Compiled\"" >&5 $as_echo "$as_me: WARNING: $2: section \"Present But Cannot Be Compiled\"" >&2;} { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: $2: proceeding with the compiler's result" >&5 $as_echo "$as_me: WARNING: $2: proceeding with the compiler's result" >&2;} ;; esac { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $2" >&5 $as_echo_n "checking for $2... " >&6; } if eval \${$3+:} false; then : $as_echo_n "(cached) " >&6 else eval "$3=\$ac_header_compiler" fi eval ac_res=\$$3 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_res" >&5 $as_echo "$ac_res" >&6; } fi eval $as_lineno_stack; ${as_lineno_stack:+:} unset as_lineno } # ac_fn_c_check_header_mongrel # ac_fn_c_check_type LINENO TYPE VAR INCLUDES # ------------------------------------------- # Tests whether TYPE exists after having included INCLUDES, setting cache # variable VAR accordingly. ac_fn_c_check_type () { as_lineno=${as_lineno-"$1"} as_lineno_stack=as_lineno_stack=$as_lineno_stack { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $2" >&5 $as_echo_n "checking for $2... " >&6; } if eval \${$3+:} false; then : $as_echo_n "(cached) " >&6 else eval "$3=no" cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ $4 int main () { if (sizeof ($2)) return 0; ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ $4 int main () { if (sizeof (($2))) return 0; ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : else eval "$3=yes" fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext fi eval ac_res=\$$3 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_res" >&5 $as_echo "$ac_res" >&6; } eval $as_lineno_stack; ${as_lineno_stack:+:} unset as_lineno } # ac_fn_c_check_type cat >config.log <<_ACEOF This file contains any messages produced by compilers while running configure, to aid debugging if configure makes a mistake. It was created by libjpeg-turbo $as_me 1.4.2, which was generated by GNU Autoconf 2.69. Invocation command line was $ $0 $@ _ACEOF exec 5>>config.log { cat <<_ASUNAME ## --------- ## ## Platform. ## ## --------- ## hostname = `(hostname || uname -n) 2>/dev/null | sed 1q` uname -m = `(uname -m) 2>/dev/null || echo unknown` uname -r = `(uname -r) 2>/dev/null || echo unknown` uname -s = `(uname -s) 2>/dev/null || echo unknown` uname -v = `(uname -v) 2>/dev/null || echo unknown` /usr/bin/uname -p = `(/usr/bin/uname -p) 2>/dev/null || echo unknown` /bin/uname -X = `(/bin/uname -X) 2>/dev/null || echo unknown` /bin/arch = `(/bin/arch) 2>/dev/null || echo unknown` /usr/bin/arch -k = `(/usr/bin/arch -k) 2>/dev/null || echo unknown` /usr/convex/getsysinfo = `(/usr/convex/getsysinfo) 2>/dev/null || echo unknown` /usr/bin/hostinfo = `(/usr/bin/hostinfo) 2>/dev/null || echo unknown` /bin/machine = `(/bin/machine) 2>/dev/null || echo unknown` /usr/bin/oslevel = `(/usr/bin/oslevel) 2>/dev/null || echo unknown` /bin/universe = `(/bin/universe) 2>/dev/null || echo unknown` _ASUNAME as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. $as_echo "PATH: $as_dir" done IFS=$as_save_IFS } >&5 cat >&5 <<_ACEOF ## ----------- ## ## Core tests. ## ## ----------- ## _ACEOF # Keep a trace of the command line. # Strip out --no-create and --no-recursion so they do not pile up. # Strip out --silent because we don't want to record it for future runs. # Also quote any args containing shell meta-characters. # Make two passes to allow for proper duplicate-argument suppression. ac_configure_args= ac_configure_args0= ac_configure_args1= ac_must_keep_next=false for ac_pass in 1 2 do for ac_arg do case $ac_arg in -no-create | --no-c* | -n | -no-recursion | --no-r*) continue ;; -q | -quiet | --quiet | --quie | --qui | --qu | --q \ | -silent | --silent | --silen | --sile | --sil) continue ;; *\'*) ac_arg=`$as_echo "$ac_arg" | sed "s/'/'\\\\\\\\''/g"` ;; esac case $ac_pass in 1) as_fn_append ac_configure_args0 " '$ac_arg'" ;; 2) as_fn_append ac_configure_args1 " '$ac_arg'" if test $ac_must_keep_next = true; then ac_must_keep_next=false # Got value, back to normal. else case $ac_arg in *=* | --config-cache | -C | -disable-* | --disable-* \ | -enable-* | --enable-* | -gas | --g* | -nfp | --nf* \ | -q | -quiet | --q* | -silent | --sil* | -v | -verb* \ | -with-* | --with-* | -without-* | --without-* | --x) case "$ac_configure_args0 " in "$ac_configure_args1"*" '$ac_arg' "* ) continue ;; esac ;; -* ) ac_must_keep_next=true ;; esac fi as_fn_append ac_configure_args " '$ac_arg'" ;; esac done done { ac_configure_args0=; unset ac_configure_args0;} { ac_configure_args1=; unset ac_configure_args1;} # When interrupted or exit'd, cleanup temporary files, and complete # config.log. We remove comments because anyway the quotes in there # would cause problems or look ugly. # WARNING: Use '\'' to represent an apostrophe within the trap. # WARNING: Do not start the trap code with a newline, due to a FreeBSD 4.0 bug. trap 'exit_status=$? # Save into config.log some information that might help in debugging. { echo $as_echo "## ---------------- ## ## Cache variables. ## ## ---------------- ##" echo # The following way of writing the cache mishandles newlines in values, ( for ac_var in `(set) 2>&1 | sed -n '\''s/^\([a-zA-Z_][a-zA-Z0-9_]*\)=.*/\1/p'\''`; do eval ac_val=\$$ac_var case $ac_val in #( *${as_nl}*) case $ac_var in #( *_cv_*) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: cache variable $ac_var contains a newline" >&5 $as_echo "$as_me: WARNING: cache variable $ac_var contains a newline" >&2;} ;; esac case $ac_var in #( _ | IFS | as_nl) ;; #( BASH_ARGV | BASH_SOURCE) eval $ac_var= ;; #( *) { eval $ac_var=; unset $ac_var;} ;; esac ;; esac done (set) 2>&1 | case $as_nl`(ac_space='\'' '\''; set) 2>&1` in #( *${as_nl}ac_space=\ *) sed -n \ "s/'\''/'\''\\\\'\'''\''/g; s/^\\([_$as_cr_alnum]*_cv_[_$as_cr_alnum]*\\)=\\(.*\\)/\\1='\''\\2'\''/p" ;; #( *) sed -n "/^[_$as_cr_alnum]*_cv_[_$as_cr_alnum]*=/p" ;; esac | sort ) echo $as_echo "## ----------------- ## ## Output variables. ## ## ----------------- ##" echo for ac_var in $ac_subst_vars do eval ac_val=\$$ac_var case $ac_val in *\'\''*) ac_val=`$as_echo "$ac_val" | sed "s/'\''/'\''\\\\\\\\'\'''\''/g"`;; esac $as_echo "$ac_var='\''$ac_val'\''" done | sort echo if test -n "$ac_subst_files"; then $as_echo "## ------------------- ## ## File substitutions. ## ## ------------------- ##" echo for ac_var in $ac_subst_files do eval ac_val=\$$ac_var case $ac_val in *\'\''*) ac_val=`$as_echo "$ac_val" | sed "s/'\''/'\''\\\\\\\\'\'''\''/g"`;; esac $as_echo "$ac_var='\''$ac_val'\''" done | sort echo fi if test -s confdefs.h; then $as_echo "## ----------- ## ## confdefs.h. ## ## ----------- ##" echo cat confdefs.h echo fi test "$ac_signal" != 0 && $as_echo "$as_me: caught signal $ac_signal" $as_echo "$as_me: exit $exit_status" } >&5 rm -f core *.core core.conftest.* && rm -f -r conftest* confdefs* conf$$* $ac_clean_files && exit $exit_status ' 0 for ac_signal in 1 2 13 15; do trap 'ac_signal='$ac_signal'; as_fn_exit 1' $ac_signal done ac_signal=0 # confdefs.h avoids OS command line length limits that DEFS can exceed. rm -f -r conftest* confdefs.h $as_echo "/* confdefs.h */" > confdefs.h # Predefined preprocessor variables. cat >>confdefs.h <<_ACEOF #define PACKAGE_NAME "$PACKAGE_NAME" _ACEOF cat >>confdefs.h <<_ACEOF #define PACKAGE_TARNAME "$PACKAGE_TARNAME" _ACEOF cat >>confdefs.h <<_ACEOF #define PACKAGE_VERSION "$PACKAGE_VERSION" _ACEOF cat >>confdefs.h <<_ACEOF #define PACKAGE_STRING "$PACKAGE_STRING" _ACEOF cat >>confdefs.h <<_ACEOF #define PACKAGE_BUGREPORT "$PACKAGE_BUGREPORT" _ACEOF cat >>confdefs.h <<_ACEOF #define PACKAGE_URL "$PACKAGE_URL" _ACEOF # Let the site file select an alternate cache file if it wants to. # Prefer an explicitly selected file to automatically selected ones. ac_site_file1=NONE ac_site_file2=NONE if test -n "$CONFIG_SITE"; then # We do not want a PATH search for config.site. case $CONFIG_SITE in #(( -*) ac_site_file1=./$CONFIG_SITE;; */*) ac_site_file1=$CONFIG_SITE;; *) ac_site_file1=./$CONFIG_SITE;; esac elif test "x$prefix" != xNONE; then ac_site_file1=$prefix/share/config.site ac_site_file2=$prefix/etc/config.site else ac_site_file1=$ac_default_prefix/share/config.site ac_site_file2=$ac_default_prefix/etc/config.site fi for ac_site_file in "$ac_site_file1" "$ac_site_file2" do test "x$ac_site_file" = xNONE && continue if test /dev/null != "$ac_site_file" && test -r "$ac_site_file"; then { $as_echo "$as_me:${as_lineno-$LINENO}: loading site script $ac_site_file" >&5 $as_echo "$as_me: loading site script $ac_site_file" >&6;} sed 's/^/| /' "$ac_site_file" >&5 . "$ac_site_file" \ || { { $as_echo "$as_me:${as_lineno-$LINENO}: error: in \`$ac_pwd':" >&5 $as_echo "$as_me: error: in \`$ac_pwd':" >&2;} as_fn_error $? "failed to load site script $ac_site_file See \`config.log' for more details" "$LINENO" 5; } fi done if test -r "$cache_file"; then # Some versions of bash will fail to source /dev/null (special files # actually), so we avoid doing that. DJGPP emulates it as a regular file. if test /dev/null != "$cache_file" && test -f "$cache_file"; then { $as_echo "$as_me:${as_lineno-$LINENO}: loading cache $cache_file" >&5 $as_echo "$as_me: loading cache $cache_file" >&6;} case $cache_file in [\\/]* | ?:[\\/]* ) . "$cache_file";; *) . "./$cache_file";; esac fi else { $as_echo "$as_me:${as_lineno-$LINENO}: creating cache $cache_file" >&5 $as_echo "$as_me: creating cache $cache_file" >&6;} >$cache_file fi # Check that the precious variables saved in the cache have kept the same # value. ac_cache_corrupted=false for ac_var in $ac_precious_vars; do eval ac_old_set=\$ac_cv_env_${ac_var}_set eval ac_new_set=\$ac_env_${ac_var}_set eval ac_old_val=\$ac_cv_env_${ac_var}_value eval ac_new_val=\$ac_env_${ac_var}_value case $ac_old_set,$ac_new_set in set,) { $as_echo "$as_me:${as_lineno-$LINENO}: error: \`$ac_var' was set to \`$ac_old_val' in the previous run" >&5 $as_echo "$as_me: error: \`$ac_var' was set to \`$ac_old_val' in the previous run" >&2;} ac_cache_corrupted=: ;; ,set) { $as_echo "$as_me:${as_lineno-$LINENO}: error: \`$ac_var' was not set in the previous run" >&5 $as_echo "$as_me: error: \`$ac_var' was not set in the previous run" >&2;} ac_cache_corrupted=: ;; ,);; *) if test "x$ac_old_val" != "x$ac_new_val"; then # differences in whitespace do not lead to failure. ac_old_val_w=`echo x $ac_old_val` ac_new_val_w=`echo x $ac_new_val` if test "$ac_old_val_w" != "$ac_new_val_w"; then { $as_echo "$as_me:${as_lineno-$LINENO}: error: \`$ac_var' has changed since the previous run:" >&5 $as_echo "$as_me: error: \`$ac_var' has changed since the previous run:" >&2;} ac_cache_corrupted=: else { $as_echo "$as_me:${as_lineno-$LINENO}: warning: ignoring whitespace changes in \`$ac_var' since the previous run:" >&5 $as_echo "$as_me: warning: ignoring whitespace changes in \`$ac_var' since the previous run:" >&2;} eval $ac_var=\$ac_old_val fi { $as_echo "$as_me:${as_lineno-$LINENO}: former value: \`$ac_old_val'" >&5 $as_echo "$as_me: former value: \`$ac_old_val'" >&2;} { $as_echo "$as_me:${as_lineno-$LINENO}: current value: \`$ac_new_val'" >&5 $as_echo "$as_me: current value: \`$ac_new_val'" >&2;} fi;; esac # Pass precious variables to config.status. if test "$ac_new_set" = set; then case $ac_new_val in *\'*) ac_arg=$ac_var=`$as_echo "$ac_new_val" | sed "s/'/'\\\\\\\\''/g"` ;; *) ac_arg=$ac_var=$ac_new_val ;; esac case " $ac_configure_args " in *" '$ac_arg' "*) ;; # Avoid dups. Use of quotes ensures accuracy. *) as_fn_append ac_configure_args " '$ac_arg'" ;; esac fi done if $ac_cache_corrupted; then { $as_echo "$as_me:${as_lineno-$LINENO}: error: in \`$ac_pwd':" >&5 $as_echo "$as_me: error: in \`$ac_pwd':" >&2;} { $as_echo "$as_me:${as_lineno-$LINENO}: error: changes in the environment can compromise the build" >&5 $as_echo "$as_me: error: changes in the environment can compromise the build" >&2;} as_fn_error $? "run \`make distclean' and/or \`rm $cache_file' and start over" "$LINENO" 5 fi ## -------------------- ## ## Main body of script. ## ## -------------------- ## ac_ext=c ac_cpp='$CPP $CPPFLAGS' ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5' ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_c_compiler_gnu am__api_version='1.15' ac_aux_dir= for ac_dir in "$srcdir" "$srcdir/.." "$srcdir/../.."; do if test -f "$ac_dir/install-sh"; then ac_aux_dir=$ac_dir ac_install_sh="$ac_aux_dir/install-sh -c" break elif test -f "$ac_dir/install.sh"; then ac_aux_dir=$ac_dir ac_install_sh="$ac_aux_dir/install.sh -c" break elif test -f "$ac_dir/shtool"; then ac_aux_dir=$ac_dir ac_install_sh="$ac_aux_dir/shtool install -c" break fi done if test -z "$ac_aux_dir"; then as_fn_error $? "cannot find install-sh, install.sh, or shtool in \"$srcdir\" \"$srcdir/..\" \"$srcdir/../..\"" "$LINENO" 5 fi # These three variables are undocumented and unsupported, # and are intended to be withdrawn in a future Autoconf release. # They can cause serious problems if a builder's source tree is in a directory # whose full name contains unusual characters. ac_config_guess="$SHELL $ac_aux_dir/config.guess" # Please don't use this var. ac_config_sub="$SHELL $ac_aux_dir/config.sub" # Please don't use this var. ac_configure="$SHELL $ac_aux_dir/configure" # Please don't use this var. # Find a good install program. We prefer a C program (faster), # so one script is as good as another. But avoid the broken or # incompatible versions: # SysV /etc/install, /usr/sbin/install # SunOS /usr/etc/install # IRIX /sbin/install # AIX /bin/install # AmigaOS /C/install, which installs bootblocks on floppy discs # AIX 4 /usr/bin/installbsd, which doesn't work without a -g flag # AFS /usr/afsws/bin/install, which mishandles nonexistent args # SVR4 /usr/ucb/install, which tries to use the nonexistent group "staff" # OS/2's system install, which has a completely different semantic # ./install, which can be erroneously created by make from ./install.sh. # Reject install programs that cannot install multiple files. { $as_echo "$as_me:${as_lineno-$LINENO}: checking for a BSD-compatible install" >&5 $as_echo_n "checking for a BSD-compatible install... " >&6; } if test -z "$INSTALL"; then if ${ac_cv_path_install+:} false; then : $as_echo_n "(cached) " >&6 else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. # Account for people who put trailing slashes in PATH elements. case $as_dir/ in #(( ./ | .// | /[cC]/* | \ /etc/* | /usr/sbin/* | /usr/etc/* | /sbin/* | /usr/afsws/bin/* | \ ?:[\\/]os2[\\/]install[\\/]* | ?:[\\/]OS2[\\/]INSTALL[\\/]* | \ /usr/ucb/* ) ;; *) # OSF1 and SCO ODT 3.0 have their own names for install. # Don't use installbsd from OSF since it installs stuff as root # by default. for ac_prog in ginstall scoinst install; do for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_prog$ac_exec_ext"; then if test $ac_prog = install && grep dspmsg "$as_dir/$ac_prog$ac_exec_ext" >/dev/null 2>&1; then # AIX install. It has an incompatible calling convention. : elif test $ac_prog = install && grep pwplus "$as_dir/$ac_prog$ac_exec_ext" >/dev/null 2>&1; then # program-specific install script used by HP pwplus--don't use. : else rm -rf conftest.one conftest.two conftest.dir echo one > conftest.one echo two > conftest.two mkdir conftest.dir if "$as_dir/$ac_prog$ac_exec_ext" -c conftest.one conftest.two "`pwd`/conftest.dir" && test -s conftest.one && test -s conftest.two && test -s conftest.dir/conftest.one && test -s conftest.dir/conftest.two then ac_cv_path_install="$as_dir/$ac_prog$ac_exec_ext -c" break 3 fi fi fi done done ;; esac done IFS=$as_save_IFS rm -rf conftest.one conftest.two conftest.dir fi if test "${ac_cv_path_install+set}" = set; then INSTALL=$ac_cv_path_install else # As a last resort, use the slow shell script. Don't cache a # value for INSTALL within a source directory, because that will # break other packages using the cache if that directory is # removed, or if the value is a relative name. INSTALL=$ac_install_sh fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $INSTALL" >&5 $as_echo "$INSTALL" >&6; } # Use test -z because SunOS4 sh mishandles braces in ${var-val}. # It thinks the first close brace ends the variable substitution. test -z "$INSTALL_PROGRAM" && INSTALL_PROGRAM='${INSTALL}' test -z "$INSTALL_SCRIPT" && INSTALL_SCRIPT='${INSTALL}' test -z "$INSTALL_DATA" && INSTALL_DATA='${INSTALL} -m 644' { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether build environment is sane" >&5 $as_echo_n "checking whether build environment is sane... " >&6; } # Reject unsafe characters in $srcdir or the absolute working directory # name. Accept space and tab only in the latter. am_lf=' ' case `pwd` in *[\\\"\#\$\&\'\`$am_lf]*) as_fn_error $? "unsafe absolute working directory name" "$LINENO" 5;; esac case $srcdir in *[\\\"\#\$\&\'\`$am_lf\ \ ]*) as_fn_error $? "unsafe srcdir value: '$srcdir'" "$LINENO" 5;; esac # Do 'set' in a subshell so we don't clobber the current shell's # arguments. Must try -L first in case configure is actually a # symlink; some systems play weird games with the mod time of symlinks # (eg FreeBSD returns the mod time of the symlink's containing # directory). if ( am_has_slept=no for am_try in 1 2; do echo "timestamp, slept: $am_has_slept" > conftest.file set X `ls -Lt "$srcdir/configure" conftest.file 2> /dev/null` if test "$*" = "X"; then # -L didn't work. set X `ls -t "$srcdir/configure" conftest.file` fi if test "$*" != "X $srcdir/configure conftest.file" \ && test "$*" != "X conftest.file $srcdir/configure"; then # If neither matched, then we have a broken ls. This can happen # if, for instance, CONFIG_SHELL is bash and it inherits a # broken ls alias from the environment. This has actually # happened. Such a system could not be considered "sane". as_fn_error $? "ls -t appears to fail. Make sure there is not a broken alias in your environment" "$LINENO" 5 fi if test "$2" = conftest.file || test $am_try -eq 2; then break fi # Just in case. sleep 1 am_has_slept=yes done test "$2" = conftest.file ) then # Ok. : else as_fn_error $? "newly created file is older than distributed files! Check your system clock" "$LINENO" 5 fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: yes" >&5 $as_echo "yes" >&6; } # If we didn't sleep, we still need to ensure time stamps of config.status and # generated files are strictly newer. am_sleep_pid= if grep 'slept: no' conftest.file >/dev/null 2>&1; then ( sleep 1 ) & am_sleep_pid=$! fi rm -f conftest.file test "$program_prefix" != NONE && program_transform_name="s&^&$program_prefix&;$program_transform_name" # Use a double $ so make ignores it. test "$program_suffix" != NONE && program_transform_name="s&\$&$program_suffix&;$program_transform_name" # Double any \ or $. # By default was `s,x,x', remove it if useless. ac_script='s/[\\$]/&&/g;s/;s,x,x,$//' program_transform_name=`$as_echo "$program_transform_name" | sed "$ac_script"` # Expand $ac_aux_dir to an absolute path. am_aux_dir=`cd "$ac_aux_dir" && pwd` if test x"${MISSING+set}" != xset; then case $am_aux_dir in *\ * | *\ *) MISSING="\${SHELL} \"$am_aux_dir/missing\"" ;; *) MISSING="\${SHELL} $am_aux_dir/missing" ;; esac fi # Use eval to expand $SHELL if eval "$MISSING --is-lightweight"; then am_missing_run="$MISSING " else am_missing_run= { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: 'missing' script is too old or missing" >&5 $as_echo "$as_me: WARNING: 'missing' script is too old or missing" >&2;} fi if test x"${install_sh+set}" != xset; then case $am_aux_dir in *\ * | *\ *) install_sh="\${SHELL} '$am_aux_dir/install-sh'" ;; *) install_sh="\${SHELL} $am_aux_dir/install-sh" esac fi # Installed binaries are usually stripped using 'strip' when the user # run "make install-strip". However 'strip' might not be the right # tool to use in cross-compilation environments, therefore Automake # will honor the 'STRIP' environment variable to overrule this program. if test "$cross_compiling" != no; then if test -n "$ac_tool_prefix"; then # Extract the first word of "${ac_tool_prefix}strip", so it can be a program name with args. set dummy ${ac_tool_prefix}strip; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_STRIP+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$STRIP"; then ac_cv_prog_STRIP="$STRIP" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_STRIP="${ac_tool_prefix}strip" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi STRIP=$ac_cv_prog_STRIP if test -n "$STRIP"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $STRIP" >&5 $as_echo "$STRIP" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi fi if test -z "$ac_cv_prog_STRIP"; then ac_ct_STRIP=$STRIP # Extract the first word of "strip", so it can be a program name with args. set dummy strip; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_ac_ct_STRIP+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$ac_ct_STRIP"; then ac_cv_prog_ac_ct_STRIP="$ac_ct_STRIP" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_ac_ct_STRIP="strip" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi ac_ct_STRIP=$ac_cv_prog_ac_ct_STRIP if test -n "$ac_ct_STRIP"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_ct_STRIP" >&5 $as_echo "$ac_ct_STRIP" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi if test "x$ac_ct_STRIP" = x; then STRIP=":" else case $cross_compiling:$ac_tool_warned in yes:) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: using cross tools not prefixed with host triplet" >&5 $as_echo "$as_me: WARNING: using cross tools not prefixed with host triplet" >&2;} ac_tool_warned=yes ;; esac STRIP=$ac_ct_STRIP fi else STRIP="$ac_cv_prog_STRIP" fi fi INSTALL_STRIP_PROGRAM="\$(install_sh) -c -s" { $as_echo "$as_me:${as_lineno-$LINENO}: checking for a thread-safe mkdir -p" >&5 $as_echo_n "checking for a thread-safe mkdir -p... " >&6; } if test -z "$MKDIR_P"; then if ${ac_cv_path_mkdir+:} false; then : $as_echo_n "(cached) " >&6 else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH$PATH_SEPARATOR/opt/sfw/bin do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_prog in mkdir gmkdir; do for ac_exec_ext in '' $ac_executable_extensions; do as_fn_executable_p "$as_dir/$ac_prog$ac_exec_ext" || continue case `"$as_dir/$ac_prog$ac_exec_ext" --version 2>&1` in #( 'mkdir (GNU coreutils) '* | \ 'mkdir (coreutils) '* | \ 'mkdir (fileutils) '4.1*) ac_cv_path_mkdir=$as_dir/$ac_prog$ac_exec_ext break 3;; esac done done done IFS=$as_save_IFS fi test -d ./--version && rmdir ./--version if test "${ac_cv_path_mkdir+set}" = set; then MKDIR_P="$ac_cv_path_mkdir -p" else # As a last resort, use the slow shell script. Don't cache a # value for MKDIR_P within a source directory, because that will # break other packages using the cache if that directory is # removed, or if the value is a relative name. MKDIR_P="$ac_install_sh -d" fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $MKDIR_P" >&5 $as_echo "$MKDIR_P" >&6; } for ac_prog in gawk mawk nawk awk do # Extract the first word of "$ac_prog", so it can be a program name with args. set dummy $ac_prog; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_AWK+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$AWK"; then ac_cv_prog_AWK="$AWK" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_AWK="$ac_prog" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi AWK=$ac_cv_prog_AWK if test -n "$AWK"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $AWK" >&5 $as_echo "$AWK" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi test -n "$AWK" && break done { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether ${MAKE-make} sets \$(MAKE)" >&5 $as_echo_n "checking whether ${MAKE-make} sets \$(MAKE)... " >&6; } set x ${MAKE-make} ac_make=`$as_echo "$2" | sed 's/+/p/g; s/[^a-zA-Z0-9_]/_/g'` if eval \${ac_cv_prog_make_${ac_make}_set+:} false; then : $as_echo_n "(cached) " >&6 else cat >conftest.make <<\_ACEOF SHELL = /bin/sh all: @echo '@@@%%%=$(MAKE)=@@@%%%' _ACEOF # GNU make sometimes prints "make[1]: Entering ...", which would confuse us. case `${MAKE-make} -f conftest.make 2>/dev/null` in *@@@%%%=?*=@@@%%%*) eval ac_cv_prog_make_${ac_make}_set=yes;; *) eval ac_cv_prog_make_${ac_make}_set=no;; esac rm -f conftest.make fi if eval test \$ac_cv_prog_make_${ac_make}_set = yes; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: yes" >&5 $as_echo "yes" >&6; } SET_MAKE= else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } SET_MAKE="MAKE=${MAKE-make}" fi rm -rf .tst 2>/dev/null mkdir .tst 2>/dev/null if test -d .tst; then am__leading_dot=. else am__leading_dot=_ fi rmdir .tst 2>/dev/null # Check whether --enable-silent-rules was given. if test "${enable_silent_rules+set}" = set; then : enableval=$enable_silent_rules; fi case $enable_silent_rules in # ((( yes) AM_DEFAULT_VERBOSITY=0;; no) AM_DEFAULT_VERBOSITY=1;; *) AM_DEFAULT_VERBOSITY=1;; esac am_make=${MAKE-make} { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether $am_make supports nested variables" >&5 $as_echo_n "checking whether $am_make supports nested variables... " >&6; } if ${am_cv_make_support_nested_variables+:} false; then : $as_echo_n "(cached) " >&6 else if $as_echo 'TRUE=$(BAR$(V)) BAR0=false BAR1=true V=1 am__doit: @$(TRUE) .PHONY: am__doit' | $am_make -f - >/dev/null 2>&1; then am_cv_make_support_nested_variables=yes else am_cv_make_support_nested_variables=no fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $am_cv_make_support_nested_variables" >&5 $as_echo "$am_cv_make_support_nested_variables" >&6; } if test $am_cv_make_support_nested_variables = yes; then AM_V='$(V)' AM_DEFAULT_V='$(AM_DEFAULT_VERBOSITY)' else AM_V=$AM_DEFAULT_VERBOSITY AM_DEFAULT_V=$AM_DEFAULT_VERBOSITY fi AM_BACKSLASH='\' if test "`cd $srcdir && pwd`" != "`pwd`"; then # Use -I$(srcdir) only when $(srcdir) != ., so that make's output # is not polluted with repeated "-I." am__isrc=' -I$(srcdir)' # test to see if srcdir already configured if test -f $srcdir/config.status; then as_fn_error $? "source directory already configured; run \"make distclean\" there first" "$LINENO" 5 fi fi # test whether we have cygpath if test -z "$CYGPATH_W"; then if (cygpath --version) >/dev/null 2>/dev/null; then CYGPATH_W='cygpath -w' else CYGPATH_W=echo fi fi # Define the identity of the package. PACKAGE='libjpeg-turbo' VERSION='1.4.2' cat >>confdefs.h <<_ACEOF #define PACKAGE "$PACKAGE" _ACEOF cat >>confdefs.h <<_ACEOF #define VERSION "$VERSION" _ACEOF # Some tools Automake needs. ACLOCAL=${ACLOCAL-"${am_missing_run}aclocal-${am__api_version}"} AUTOCONF=${AUTOCONF-"${am_missing_run}autoconf"} AUTOMAKE=${AUTOMAKE-"${am_missing_run}automake-${am__api_version}"} AUTOHEADER=${AUTOHEADER-"${am_missing_run}autoheader"} MAKEINFO=${MAKEINFO-"${am_missing_run}makeinfo"} # For better backward compatibility. To be removed once Automake 1.9.x # dies out for good. For more background, see: # # mkdir_p='$(MKDIR_P)' # We need awk for the "check" target (and possibly the TAP driver). The # system "awk" is bad on some platforms. # Always define AMTAR for backward compatibility. Yes, it's still used # in the wild :-( We should find a proper way to deprecate it ... AMTAR='$${TAR-tar}' # We'll loop over all known methods to create a tar archive until one works. _am_tools='gnutar pax cpio none' am__tar='$${TAR-tar} chof - "$$tardir"' am__untar='$${TAR-tar} xf -' # POSIX will say in a future version that running "rm -f" with no argument # is OK; and we want to be able to make that assumption in our Makefile # recipes. So use an aggressive probe to check that the usage we want is # actually supported "in the wild" to an acceptable degree. # See automake bug#10828. # To make any issue more visible, cause the running configure to be aborted # by default if the 'rm' program in use doesn't match our expectations; the # user can still override this though. if rm -f && rm -fr && rm -rf; then : OK; else cat >&2 <<'END' Oops! Your 'rm' program seems unable to run without file operands specified on the command line, even when the '-f' option is present. This is contrary to the behaviour of most rm programs out there, and not conforming with the upcoming POSIX standard: Please tell bug-automake@gnu.org about your system, including the value of your $PATH and any error possibly output before this message. This can help us improve future automake versions. END if test x"$ACCEPT_INFERIOR_RM_PROGRAM" = x"yes"; then echo 'Configuration will proceed anyway, since you have set the' >&2 echo 'ACCEPT_INFERIOR_RM_PROGRAM variable to "yes"' >&2 echo >&2 else cat >&2 <<'END' Aborting the configuration process, to ensure you take notice of the issue. You can download and install GNU coreutils to get an 'rm' implementation that behaves properly: . If you want to complete the configuration process using your problematic 'rm' anyway, export the environment variable ACCEPT_INFERIOR_RM_PROGRAM to "yes", and re-run configure. END as_fn_error $? "Your 'rm' program is bad, sorry." "$LINENO" 5 fi fi # Check whether --enable-silent-rules was given. if test "${enable_silent_rules+set}" = set; then : enableval=$enable_silent_rules; fi case $enable_silent_rules in # ((( yes) AM_DEFAULT_VERBOSITY=0;; no) AM_DEFAULT_VERBOSITY=1;; *) AM_DEFAULT_VERBOSITY=0;; esac am_make=${MAKE-make} { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether $am_make supports nested variables" >&5 $as_echo_n "checking whether $am_make supports nested variables... " >&6; } if ${am_cv_make_support_nested_variables+:} false; then : $as_echo_n "(cached) " >&6 else if $as_echo 'TRUE=$(BAR$(V)) BAR0=false BAR1=true V=1 am__doit: @$(TRUE) .PHONY: am__doit' | $am_make -f - >/dev/null 2>&1; then am_cv_make_support_nested_variables=yes else am_cv_make_support_nested_variables=no fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $am_cv_make_support_nested_variables" >&5 $as_echo "$am_cv_make_support_nested_variables" >&6; } if test $am_cv_make_support_nested_variables = yes; then AM_V='$(V)' AM_DEFAULT_V='$(AM_DEFAULT_VERBOSITY)' else AM_V=$AM_DEFAULT_VERBOSITY AM_DEFAULT_V=$AM_DEFAULT_VERBOSITY fi AM_BACKSLASH='\' # Checks for programs. SAVED_CFLAGS=${CFLAGS} SAVED_CPPFLAGS=${CPPFLAGS} DEPDIR="${am__leading_dot}deps" ac_config_commands="$ac_config_commands depfiles" am_make=${MAKE-make} cat > confinc << 'END' am__doit: @echo this is the am__doit target .PHONY: am__doit END # If we don't find an include directive, just comment out the code. { $as_echo "$as_me:${as_lineno-$LINENO}: checking for style of include used by $am_make" >&5 $as_echo_n "checking for style of include used by $am_make... " >&6; } am__include="#" am__quote= _am_result=none # First try GNU make style include. echo "include confinc" > confmf # Ignore all kinds of additional output from 'make'. case `$am_make -s -f confmf 2> /dev/null` in #( *the\ am__doit\ target*) am__include=include am__quote= _am_result=GNU ;; esac # Now try BSD make style include. if test "$am__include" = "#"; then echo '.include "confinc"' > confmf case `$am_make -s -f confmf 2> /dev/null` in #( *the\ am__doit\ target*) am__include=.include am__quote="\"" _am_result=BSD ;; esac fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $_am_result" >&5 $as_echo "$_am_result" >&6; } rm -f confinc confmf # Check whether --enable-dependency-tracking was given. if test "${enable_dependency_tracking+set}" = set; then : enableval=$enable_dependency_tracking; fi if test "x$enable_dependency_tracking" != xno; then am_depcomp="$ac_aux_dir/depcomp" AMDEPBACKSLASH='\' am__nodep='_no' fi if test "x$enable_dependency_tracking" != xno; then AMDEP_TRUE= AMDEP_FALSE='#' else AMDEP_TRUE='#' AMDEP_FALSE= fi ac_ext=c ac_cpp='$CPP $CPPFLAGS' ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5' ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_c_compiler_gnu if test -n "$ac_tool_prefix"; then # Extract the first word of "${ac_tool_prefix}gcc", so it can be a program name with args. set dummy ${ac_tool_prefix}gcc; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_CC+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$CC"; then ac_cv_prog_CC="$CC" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_CC="${ac_tool_prefix}gcc" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi CC=$ac_cv_prog_CC if test -n "$CC"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $CC" >&5 $as_echo "$CC" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi fi if test -z "$ac_cv_prog_CC"; then ac_ct_CC=$CC # Extract the first word of "gcc", so it can be a program name with args. set dummy gcc; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_ac_ct_CC+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$ac_ct_CC"; then ac_cv_prog_ac_ct_CC="$ac_ct_CC" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_ac_ct_CC="gcc" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi ac_ct_CC=$ac_cv_prog_ac_ct_CC if test -n "$ac_ct_CC"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_ct_CC" >&5 $as_echo "$ac_ct_CC" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi if test "x$ac_ct_CC" = x; then CC="" else case $cross_compiling:$ac_tool_warned in yes:) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: using cross tools not prefixed with host triplet" >&5 $as_echo "$as_me: WARNING: using cross tools not prefixed with host triplet" >&2;} ac_tool_warned=yes ;; esac CC=$ac_ct_CC fi else CC="$ac_cv_prog_CC" fi if test -z "$CC"; then if test -n "$ac_tool_prefix"; then # Extract the first word of "${ac_tool_prefix}cc", so it can be a program name with args. set dummy ${ac_tool_prefix}cc; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_CC+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$CC"; then ac_cv_prog_CC="$CC" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_CC="${ac_tool_prefix}cc" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi CC=$ac_cv_prog_CC if test -n "$CC"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $CC" >&5 $as_echo "$CC" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi fi fi if test -z "$CC"; then # Extract the first word of "cc", so it can be a program name with args. set dummy cc; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_CC+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$CC"; then ac_cv_prog_CC="$CC" # Let the user override the test. else ac_prog_rejected=no as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then if test "$as_dir/$ac_word$ac_exec_ext" = "/usr/ucb/cc"; then ac_prog_rejected=yes continue fi ac_cv_prog_CC="cc" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS if test $ac_prog_rejected = yes; then # We found a bogon in the path, so make sure we never use it. set dummy $ac_cv_prog_CC shift if test $# != 0; then # We chose a different compiler from the bogus one. # However, it has the same basename, so the bogon will be chosen # first if we set CC to just the basename; use the full file name. shift ac_cv_prog_CC="$as_dir/$ac_word${1+' '}$@" fi fi fi fi CC=$ac_cv_prog_CC if test -n "$CC"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $CC" >&5 $as_echo "$CC" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi fi if test -z "$CC"; then if test -n "$ac_tool_prefix"; then for ac_prog in cl.exe do # Extract the first word of "$ac_tool_prefix$ac_prog", so it can be a program name with args. set dummy $ac_tool_prefix$ac_prog; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_CC+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$CC"; then ac_cv_prog_CC="$CC" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_CC="$ac_tool_prefix$ac_prog" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi CC=$ac_cv_prog_CC if test -n "$CC"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $CC" >&5 $as_echo "$CC" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi test -n "$CC" && break done fi if test -z "$CC"; then ac_ct_CC=$CC for ac_prog in cl.exe do # Extract the first word of "$ac_prog", so it can be a program name with args. set dummy $ac_prog; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_ac_ct_CC+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$ac_ct_CC"; then ac_cv_prog_ac_ct_CC="$ac_ct_CC" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_ac_ct_CC="$ac_prog" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi ac_ct_CC=$ac_cv_prog_ac_ct_CC if test -n "$ac_ct_CC"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_ct_CC" >&5 $as_echo "$ac_ct_CC" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi test -n "$ac_ct_CC" && break done if test "x$ac_ct_CC" = x; then CC="" else case $cross_compiling:$ac_tool_warned in yes:) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: using cross tools not prefixed with host triplet" >&5 $as_echo "$as_me: WARNING: using cross tools not prefixed with host triplet" >&2;} ac_tool_warned=yes ;; esac CC=$ac_ct_CC fi fi fi test -z "$CC" && { { $as_echo "$as_me:${as_lineno-$LINENO}: error: in \`$ac_pwd':" >&5 $as_echo "$as_me: error: in \`$ac_pwd':" >&2;} as_fn_error $? "no acceptable C compiler found in \$PATH See \`config.log' for more details" "$LINENO" 5; } # Provide some information about the compiler. $as_echo "$as_me:${as_lineno-$LINENO}: checking for C compiler version" >&5 set X $ac_compile ac_compiler=$2 for ac_option in --version -v -V -qversion; do { { ac_try="$ac_compiler $ac_option >&5" case "(($ac_try" in *\"* | *\`* | *\\*) ac_try_echo=\$ac_try;; *) ac_try_echo=$ac_try;; esac eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\"" $as_echo "$ac_try_echo"; } >&5 (eval "$ac_compiler $ac_option >&5") 2>conftest.err ac_status=$? if test -s conftest.err; then sed '10a\ ... rest of stderr output deleted ... 10q' conftest.err >conftest.er1 cat conftest.er1 >&5 fi rm -f conftest.er1 conftest.err $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; } done cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ int main () { ; return 0; } _ACEOF ac_clean_files_save=$ac_clean_files ac_clean_files="$ac_clean_files a.out a.out.dSYM a.exe b.out" # Try to create an executable without -o first, disregard a.out. # It will help us diagnose broken compilers, and finding out an intuition # of exeext. { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether the C compiler works" >&5 $as_echo_n "checking whether the C compiler works... " >&6; } ac_link_default=`$as_echo "$ac_link" | sed 's/ -o *conftest[^ ]*//'` # The possible output files: ac_files="a.out conftest.exe conftest a.exe a_out.exe b.out conftest.*" ac_rmfiles= for ac_file in $ac_files do case $ac_file in *.$ac_ext | *.xcoff | *.tds | *.d | *.pdb | *.xSYM | *.bb | *.bbg | *.map | *.inf | *.dSYM | *.o | *.obj ) ;; * ) ac_rmfiles="$ac_rmfiles $ac_file";; esac done rm -f $ac_rmfiles if { { ac_try="$ac_link_default" case "(($ac_try" in *\"* | *\`* | *\\*) ac_try_echo=\$ac_try;; *) ac_try_echo=$ac_try;; esac eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\"" $as_echo "$ac_try_echo"; } >&5 (eval "$ac_link_default") 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; }; then : # Autoconf-2.13 could set the ac_cv_exeext variable to `no'. # So ignore a value of `no', otherwise this would lead to `EXEEXT = no' # in a Makefile. We should not override ac_cv_exeext if it was cached, # so that the user can short-circuit this test for compilers unknown to # Autoconf. for ac_file in $ac_files '' do test -f "$ac_file" || continue case $ac_file in *.$ac_ext | *.xcoff | *.tds | *.d | *.pdb | *.xSYM | *.bb | *.bbg | *.map | *.inf | *.dSYM | *.o | *.obj ) ;; [ab].out ) # We found the default executable, but exeext='' is most # certainly right. break;; *.* ) if test "${ac_cv_exeext+set}" = set && test "$ac_cv_exeext" != no; then :; else ac_cv_exeext=`expr "$ac_file" : '[^.]*\(\..*\)'` fi # We set ac_cv_exeext here because the later test for it is not # safe: cross compilers may not add the suffix if given an `-o' # argument, so we may need to know it at that point already. # Even if this section looks crufty: it has the advantage of # actually working. break;; * ) break;; esac done test "$ac_cv_exeext" = no && ac_cv_exeext= else ac_file='' fi if test -z "$ac_file"; then : { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } $as_echo "$as_me: failed program was:" >&5 sed 's/^/| /' conftest.$ac_ext >&5 { { $as_echo "$as_me:${as_lineno-$LINENO}: error: in \`$ac_pwd':" >&5 $as_echo "$as_me: error: in \`$ac_pwd':" >&2;} as_fn_error 77 "C compiler cannot create executables See \`config.log' for more details" "$LINENO" 5; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: yes" >&5 $as_echo "yes" >&6; } fi { $as_echo "$as_me:${as_lineno-$LINENO}: checking for C compiler default output file name" >&5 $as_echo_n "checking for C compiler default output file name... " >&6; } { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_file" >&5 $as_echo "$ac_file" >&6; } ac_exeext=$ac_cv_exeext rm -f -r a.out a.out.dSYM a.exe conftest$ac_cv_exeext b.out ac_clean_files=$ac_clean_files_save { $as_echo "$as_me:${as_lineno-$LINENO}: checking for suffix of executables" >&5 $as_echo_n "checking for suffix of executables... " >&6; } if { { ac_try="$ac_link" case "(($ac_try" in *\"* | *\`* | *\\*) ac_try_echo=\$ac_try;; *) ac_try_echo=$ac_try;; esac eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\"" $as_echo "$ac_try_echo"; } >&5 (eval "$ac_link") 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; }; then : # If both `conftest.exe' and `conftest' are `present' (well, observable) # catch `conftest.exe'. For instance with Cygwin, `ls conftest' will # work properly (i.e., refer to `conftest.exe'), while it won't with # `rm'. for ac_file in conftest.exe conftest conftest.*; do test -f "$ac_file" || continue case $ac_file in *.$ac_ext | *.xcoff | *.tds | *.d | *.pdb | *.xSYM | *.bb | *.bbg | *.map | *.inf | *.dSYM | *.o | *.obj ) ;; *.* ) ac_cv_exeext=`expr "$ac_file" : '[^.]*\(\..*\)'` break;; * ) break;; esac done else { { $as_echo "$as_me:${as_lineno-$LINENO}: error: in \`$ac_pwd':" >&5 $as_echo "$as_me: error: in \`$ac_pwd':" >&2;} as_fn_error $? "cannot compute suffix of executables: cannot compile and link See \`config.log' for more details" "$LINENO" 5; } fi rm -f conftest conftest$ac_cv_exeext { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_exeext" >&5 $as_echo "$ac_cv_exeext" >&6; } rm -f conftest.$ac_ext EXEEXT=$ac_cv_exeext ac_exeext=$EXEEXT cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include int main () { FILE *f = fopen ("conftest.out", "w"); return ferror (f) || fclose (f) != 0; ; return 0; } _ACEOF ac_clean_files="$ac_clean_files conftest.out" # Check that the compiler produces executables we can run. If not, either # the compiler is broken, or we cross compile. { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether we are cross compiling" >&5 $as_echo_n "checking whether we are cross compiling... " >&6; } if test "$cross_compiling" != yes; then { { ac_try="$ac_link" case "(($ac_try" in *\"* | *\`* | *\\*) ac_try_echo=\$ac_try;; *) ac_try_echo=$ac_try;; esac eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\"" $as_echo "$ac_try_echo"; } >&5 (eval "$ac_link") 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; } if { ac_try='./conftest$ac_cv_exeext' { { case "(($ac_try" in *\"* | *\`* | *\\*) ac_try_echo=\$ac_try;; *) ac_try_echo=$ac_try;; esac eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\"" $as_echo "$ac_try_echo"; } >&5 (eval "$ac_try") 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; }; }; then cross_compiling=no else if test "$cross_compiling" = maybe; then cross_compiling=yes else { { $as_echo "$as_me:${as_lineno-$LINENO}: error: in \`$ac_pwd':" >&5 $as_echo "$as_me: error: in \`$ac_pwd':" >&2;} as_fn_error $? "cannot run C compiled programs. If you meant to cross compile, use \`--host'. See \`config.log' for more details" "$LINENO" 5; } fi fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $cross_compiling" >&5 $as_echo "$cross_compiling" >&6; } rm -f conftest.$ac_ext conftest$ac_cv_exeext conftest.out ac_clean_files=$ac_clean_files_save { $as_echo "$as_me:${as_lineno-$LINENO}: checking for suffix of object files" >&5 $as_echo_n "checking for suffix of object files... " >&6; } if ${ac_cv_objext+:} false; then : $as_echo_n "(cached) " >&6 else cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ int main () { ; return 0; } _ACEOF rm -f conftest.o conftest.obj if { { ac_try="$ac_compile" case "(($ac_try" in *\"* | *\`* | *\\*) ac_try_echo=\$ac_try;; *) ac_try_echo=$ac_try;; esac eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\"" $as_echo "$ac_try_echo"; } >&5 (eval "$ac_compile") 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; }; then : for ac_file in conftest.o conftest.obj conftest.*; do test -f "$ac_file" || continue; case $ac_file in *.$ac_ext | *.xcoff | *.tds | *.d | *.pdb | *.xSYM | *.bb | *.bbg | *.map | *.inf | *.dSYM ) ;; *) ac_cv_objext=`expr "$ac_file" : '.*\.\(.*\)'` break;; esac done else $as_echo "$as_me: failed program was:" >&5 sed 's/^/| /' conftest.$ac_ext >&5 { { $as_echo "$as_me:${as_lineno-$LINENO}: error: in \`$ac_pwd':" >&5 $as_echo "$as_me: error: in \`$ac_pwd':" >&2;} as_fn_error $? "cannot compute suffix of object files: cannot compile See \`config.log' for more details" "$LINENO" 5; } fi rm -f conftest.$ac_cv_objext conftest.$ac_ext fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_objext" >&5 $as_echo "$ac_cv_objext" >&6; } OBJEXT=$ac_cv_objext ac_objext=$OBJEXT { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether we are using the GNU C compiler" >&5 $as_echo_n "checking whether we are using the GNU C compiler... " >&6; } if ${ac_cv_c_compiler_gnu+:} false; then : $as_echo_n "(cached) " >&6 else cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ int main () { #ifndef __GNUC__ choke me #endif ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : ac_compiler_gnu=yes else ac_compiler_gnu=no fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext ac_cv_c_compiler_gnu=$ac_compiler_gnu fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_c_compiler_gnu" >&5 $as_echo "$ac_cv_c_compiler_gnu" >&6; } if test $ac_compiler_gnu = yes; then GCC=yes else GCC= fi ac_test_CFLAGS=${CFLAGS+set} ac_save_CFLAGS=$CFLAGS { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether $CC accepts -g" >&5 $as_echo_n "checking whether $CC accepts -g... " >&6; } if ${ac_cv_prog_cc_g+:} false; then : $as_echo_n "(cached) " >&6 else ac_save_c_werror_flag=$ac_c_werror_flag ac_c_werror_flag=yes ac_cv_prog_cc_g=no CFLAGS="-g" cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ int main () { ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : ac_cv_prog_cc_g=yes else CFLAGS="" cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ int main () { ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : else ac_c_werror_flag=$ac_save_c_werror_flag CFLAGS="-g" cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ int main () { ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : ac_cv_prog_cc_g=yes fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext ac_c_werror_flag=$ac_save_c_werror_flag fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_prog_cc_g" >&5 $as_echo "$ac_cv_prog_cc_g" >&6; } if test "$ac_test_CFLAGS" = set; then CFLAGS=$ac_save_CFLAGS elif test $ac_cv_prog_cc_g = yes; then if test "$GCC" = yes; then CFLAGS="-g -O2" else CFLAGS="-g" fi else if test "$GCC" = yes; then CFLAGS="-O2" else CFLAGS= fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $CC option to accept ISO C89" >&5 $as_echo_n "checking for $CC option to accept ISO C89... " >&6; } if ${ac_cv_prog_cc_c89+:} false; then : $as_echo_n "(cached) " >&6 else ac_cv_prog_cc_c89=no ac_save_CC=$CC cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include #include struct stat; /* Most of the following tests are stolen from RCS 5.7's src/conf.sh. */ struct buf { int x; }; FILE * (*rcsopen) (struct buf *, struct stat *, int); static char *e (p, i) char **p; int i; { return p[i]; } static char *f (char * (*g) (char **, int), char **p, ...) { char *s; va_list v; va_start (v,p); s = g (p, va_arg (v,int)); va_end (v); return s; } /* OSF 4.0 Compaq cc is some sort of almost-ANSI by default. It has function prototypes and stuff, but not '\xHH' hex character constants. These don't provoke an error unfortunately, instead are silently treated as 'x'. The following induces an error, until -std is added to get proper ANSI mode. Curiously '\x00'!='x' always comes out true, for an array size at least. It's necessary to write '\x00'==0 to get something that's true only with -std. */ int osf4_cc_array ['\x00' == 0 ? 1 : -1]; /* IBM C 6 for AIX is almost-ANSI by default, but it replaces macro parameters inside strings and character constants. */ #define FOO(x) 'x' int xlc6_cc_array[FOO(a) == 'x' ? 1 : -1]; int test (int i, double x); struct s1 {int (*f) (int a);}; struct s2 {int (*f) (double a);}; int pairnames (int, char **, FILE *(*)(struct buf *, struct stat *, int), int, int); int argc; char **argv; int main () { return f (e, argv, 0) != argv[0] || f (e, argv, 1) != argv[1]; ; return 0; } _ACEOF for ac_arg in '' -qlanglvl=extc89 -qlanglvl=ansi -std \ -Ae "-Aa -D_HPUX_SOURCE" "-Xc -D__EXTENSIONS__" do CC="$ac_save_CC $ac_arg" if ac_fn_c_try_compile "$LINENO"; then : ac_cv_prog_cc_c89=$ac_arg fi rm -f core conftest.err conftest.$ac_objext test "x$ac_cv_prog_cc_c89" != "xno" && break done rm -f conftest.$ac_ext CC=$ac_save_CC fi # AC_CACHE_VAL case "x$ac_cv_prog_cc_c89" in x) { $as_echo "$as_me:${as_lineno-$LINENO}: result: none needed" >&5 $as_echo "none needed" >&6; } ;; xno) { $as_echo "$as_me:${as_lineno-$LINENO}: result: unsupported" >&5 $as_echo "unsupported" >&6; } ;; *) CC="$CC $ac_cv_prog_cc_c89" { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_prog_cc_c89" >&5 $as_echo "$ac_cv_prog_cc_c89" >&6; } ;; esac if test "x$ac_cv_prog_cc_c89" != xno; then : fi ac_ext=c ac_cpp='$CPP $CPPFLAGS' ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5' ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_c_compiler_gnu ac_ext=c ac_cpp='$CPP $CPPFLAGS' ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5' ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_c_compiler_gnu { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether $CC understands -c and -o together" >&5 $as_echo_n "checking whether $CC understands -c and -o together... " >&6; } if ${am_cv_prog_cc_c_o+:} false; then : $as_echo_n "(cached) " >&6 else cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ int main () { ; return 0; } _ACEOF # Make sure it works both with $CC and with simple cc. # Following AC_PROG_CC_C_O, we do the test twice because some # compilers refuse to overwrite an existing .o file with -o, # though they will create one. am_cv_prog_cc_c_o=yes for am_i in 1 2; do if { echo "$as_me:$LINENO: $CC -c conftest.$ac_ext -o conftest2.$ac_objext" >&5 ($CC -c conftest.$ac_ext -o conftest2.$ac_objext) >&5 2>&5 ac_status=$? echo "$as_me:$LINENO: \$? = $ac_status" >&5 (exit $ac_status); } \ && test -f conftest2.$ac_objext; then : OK else am_cv_prog_cc_c_o=no break fi done rm -f core conftest* unset am_i fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $am_cv_prog_cc_c_o" >&5 $as_echo "$am_cv_prog_cc_c_o" >&6; } if test "$am_cv_prog_cc_c_o" != yes; then # Losing compiler, so override with the script. # FIXME: It is wrong to rewrite CC. # But if we don't then we get into trouble of one sort or another. # A longer-term fix would be to have automake use am__CC in this case, # and then we could set am__CC="\$(top_srcdir)/compile \$(CC)" CC="$am_aux_dir/compile $CC" fi ac_ext=c ac_cpp='$CPP $CPPFLAGS' ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5' ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_c_compiler_gnu depcc="$CC" am_compiler_list= { $as_echo "$as_me:${as_lineno-$LINENO}: checking dependency style of $depcc" >&5 $as_echo_n "checking dependency style of $depcc... " >&6; } if ${am_cv_CC_dependencies_compiler_type+:} false; then : $as_echo_n "(cached) " >&6 else if test -z "$AMDEP_TRUE" && test -f "$am_depcomp"; then # We make a subdir and do the tests there. Otherwise we can end up # making bogus files that we don't know about and never remove. For # instance it was reported that on HP-UX the gcc test will end up # making a dummy file named 'D' -- because '-MD' means "put the output # in D". rm -rf conftest.dir mkdir conftest.dir # Copy depcomp to subdir because otherwise we won't find it if we're # using a relative directory. cp "$am_depcomp" conftest.dir cd conftest.dir # We will build objects and dependencies in a subdirectory because # it helps to detect inapplicable dependency modes. For instance # both Tru64's cc and ICC support -MD to output dependencies as a # side effect of compilation, but ICC will put the dependencies in # the current directory while Tru64 will put them in the object # directory. mkdir sub am_cv_CC_dependencies_compiler_type=none if test "$am_compiler_list" = ""; then am_compiler_list=`sed -n 's/^#*\([a-zA-Z0-9]*\))$/\1/p' < ./depcomp` fi am__universal=false case " $depcc " in #( *\ -arch\ *\ -arch\ *) am__universal=true ;; esac for depmode in $am_compiler_list; do # Setup a source with many dependencies, because some compilers # like to wrap large dependency lists on column 80 (with \), and # we should not choose a depcomp mode which is confused by this. # # We need to recreate these files for each test, as the compiler may # overwrite some of them when testing with obscure command lines. # This happens at least with the AIX C compiler. : > sub/conftest.c for i in 1 2 3 4 5 6; do echo '#include "conftst'$i'.h"' >> sub/conftest.c # Using ": > sub/conftst$i.h" creates only sub/conftst1.h with # Solaris 10 /bin/sh. echo '/* dummy */' > sub/conftst$i.h done echo "${am__include} ${am__quote}sub/conftest.Po${am__quote}" > confmf # We check with '-c' and '-o' for the sake of the "dashmstdout" # mode. It turns out that the SunPro C++ compiler does not properly # handle '-M -o', and we need to detect this. Also, some Intel # versions had trouble with output in subdirs. am__obj=sub/conftest.${OBJEXT-o} am__minus_obj="-o $am__obj" case $depmode in gcc) # This depmode causes a compiler race in universal mode. test "$am__universal" = false || continue ;; nosideeffect) # After this tag, mechanisms are not by side-effect, so they'll # only be used when explicitly requested. if test "x$enable_dependency_tracking" = xyes; then continue else break fi ;; msvc7 | msvc7msys | msvisualcpp | msvcmsys) # This compiler won't grok '-c -o', but also, the minuso test has # not run yet. These depmodes are late enough in the game, and # so weak that their functioning should not be impacted. am__obj=conftest.${OBJEXT-o} am__minus_obj= ;; none) break ;; esac if depmode=$depmode \ source=sub/conftest.c object=$am__obj \ depfile=sub/conftest.Po tmpdepfile=sub/conftest.TPo \ $SHELL ./depcomp $depcc -c $am__minus_obj sub/conftest.c \ >/dev/null 2>conftest.err && grep sub/conftst1.h sub/conftest.Po > /dev/null 2>&1 && grep sub/conftst6.h sub/conftest.Po > /dev/null 2>&1 && grep $am__obj sub/conftest.Po > /dev/null 2>&1 && ${MAKE-make} -s -f confmf > /dev/null 2>&1; then # icc doesn't choke on unknown options, it will just issue warnings # or remarks (even with -Werror). So we grep stderr for any message # that says an option was ignored or not supported. # When given -MP, icc 7.0 and 7.1 complain thusly: # icc: Command line warning: ignoring option '-M'; no argument required # The diagnosis changed in icc 8.0: # icc: Command line remark: option '-MP' not supported if (grep 'ignoring option' conftest.err || grep 'not supported' conftest.err) >/dev/null 2>&1; then :; else am_cv_CC_dependencies_compiler_type=$depmode break fi fi done cd .. rm -rf conftest.dir else am_cv_CC_dependencies_compiler_type=none fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $am_cv_CC_dependencies_compiler_type" >&5 $as_echo "$am_cv_CC_dependencies_compiler_type" >&6; } CCDEPMODE=depmode=$am_cv_CC_dependencies_compiler_type if test "x$enable_dependency_tracking" != xno \ && test "$am_cv_CC_dependencies_compiler_type" = gcc3; then am__fastdepCC_TRUE= am__fastdepCC_FALSE='#' else am__fastdepCC_TRUE='#' am__fastdepCC_FALSE= fi ac_ext=c ac_cpp='$CPP $CPPFLAGS' ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5' ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_c_compiler_gnu { $as_echo "$as_me:${as_lineno-$LINENO}: checking how to run the C preprocessor" >&5 $as_echo_n "checking how to run the C preprocessor... " >&6; } # On Suns, sometimes $CPP names a directory. if test -n "$CPP" && test -d "$CPP"; then CPP= fi if test -z "$CPP"; then if ${ac_cv_prog_CPP+:} false; then : $as_echo_n "(cached) " >&6 else # Double quotes because CPP needs to be expanded for CPP in "$CC -E" "$CC -E -traditional-cpp" "/lib/cpp" do ac_preproc_ok=false for ac_c_preproc_warn_flag in '' yes do # Use a header file that comes with gcc, so configuring glibc # with a fresh cross-compiler works. # Prefer to if __STDC__ is defined, since # exists even on freestanding compilers. # On the NeXT, cc -E runs the code through the compiler's parser, # not just through cpp. "Syntax error" is here to catch this case. cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #ifdef __STDC__ # include #else # include #endif Syntax error _ACEOF if ac_fn_c_try_cpp "$LINENO"; then : else # Broken: fails on valid input. continue fi rm -f conftest.err conftest.i conftest.$ac_ext # OK, works on sane cases. Now check whether nonexistent headers # can be detected and how. cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include _ACEOF if ac_fn_c_try_cpp "$LINENO"; then : # Broken: success on invalid input. continue else # Passes both tests. ac_preproc_ok=: break fi rm -f conftest.err conftest.i conftest.$ac_ext done # Because of `break', _AC_PREPROC_IFELSE's cleaning code was skipped. rm -f conftest.i conftest.err conftest.$ac_ext if $ac_preproc_ok; then : break fi done ac_cv_prog_CPP=$CPP fi CPP=$ac_cv_prog_CPP else ac_cv_prog_CPP=$CPP fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $CPP" >&5 $as_echo "$CPP" >&6; } ac_preproc_ok=false for ac_c_preproc_warn_flag in '' yes do # Use a header file that comes with gcc, so configuring glibc # with a fresh cross-compiler works. # Prefer to if __STDC__ is defined, since # exists even on freestanding compilers. # On the NeXT, cc -E runs the code through the compiler's parser, # not just through cpp. "Syntax error" is here to catch this case. cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #ifdef __STDC__ # include #else # include #endif Syntax error _ACEOF if ac_fn_c_try_cpp "$LINENO"; then : else # Broken: fails on valid input. continue fi rm -f conftest.err conftest.i conftest.$ac_ext # OK, works on sane cases. Now check whether nonexistent headers # can be detected and how. cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include _ACEOF if ac_fn_c_try_cpp "$LINENO"; then : # Broken: success on invalid input. continue else # Passes both tests. ac_preproc_ok=: break fi rm -f conftest.err conftest.i conftest.$ac_ext done # Because of `break', _AC_PREPROC_IFELSE's cleaning code was skipped. rm -f conftest.i conftest.err conftest.$ac_ext if $ac_preproc_ok; then : else { { $as_echo "$as_me:${as_lineno-$LINENO}: error: in \`$ac_pwd':" >&5 $as_echo "$as_me: error: in \`$ac_pwd':" >&2;} as_fn_error $? "C preprocessor \"$CPP\" fails sanity check See \`config.log' for more details" "$LINENO" 5; } fi ac_ext=c ac_cpp='$CPP $CPPFLAGS' ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5' ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_c_compiler_gnu ac_ext=c ac_cpp='$CPP $CPPFLAGS' ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5' ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_c_compiler_gnu if test -n "$ac_tool_prefix"; then # Extract the first word of "${ac_tool_prefix}gcc", so it can be a program name with args. set dummy ${ac_tool_prefix}gcc; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_CC+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$CC"; then ac_cv_prog_CC="$CC" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_CC="${ac_tool_prefix}gcc" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi CC=$ac_cv_prog_CC if test -n "$CC"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $CC" >&5 $as_echo "$CC" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi fi if test -z "$ac_cv_prog_CC"; then ac_ct_CC=$CC # Extract the first word of "gcc", so it can be a program name with args. set dummy gcc; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_ac_ct_CC+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$ac_ct_CC"; then ac_cv_prog_ac_ct_CC="$ac_ct_CC" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_ac_ct_CC="gcc" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi ac_ct_CC=$ac_cv_prog_ac_ct_CC if test -n "$ac_ct_CC"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_ct_CC" >&5 $as_echo "$ac_ct_CC" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi if test "x$ac_ct_CC" = x; then CC="" else case $cross_compiling:$ac_tool_warned in yes:) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: using cross tools not prefixed with host triplet" >&5 $as_echo "$as_me: WARNING: using cross tools not prefixed with host triplet" >&2;} ac_tool_warned=yes ;; esac CC=$ac_ct_CC fi else CC="$ac_cv_prog_CC" fi if test -z "$CC"; then if test -n "$ac_tool_prefix"; then # Extract the first word of "${ac_tool_prefix}cc", so it can be a program name with args. set dummy ${ac_tool_prefix}cc; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_CC+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$CC"; then ac_cv_prog_CC="$CC" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_CC="${ac_tool_prefix}cc" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi CC=$ac_cv_prog_CC if test -n "$CC"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $CC" >&5 $as_echo "$CC" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi fi fi if test -z "$CC"; then # Extract the first word of "cc", so it can be a program name with args. set dummy cc; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_CC+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$CC"; then ac_cv_prog_CC="$CC" # Let the user override the test. else ac_prog_rejected=no as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then if test "$as_dir/$ac_word$ac_exec_ext" = "/usr/ucb/cc"; then ac_prog_rejected=yes continue fi ac_cv_prog_CC="cc" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS if test $ac_prog_rejected = yes; then # We found a bogon in the path, so make sure we never use it. set dummy $ac_cv_prog_CC shift if test $# != 0; then # We chose a different compiler from the bogus one. # However, it has the same basename, so the bogon will be chosen # first if we set CC to just the basename; use the full file name. shift ac_cv_prog_CC="$as_dir/$ac_word${1+' '}$@" fi fi fi fi CC=$ac_cv_prog_CC if test -n "$CC"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $CC" >&5 $as_echo "$CC" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi fi if test -z "$CC"; then if test -n "$ac_tool_prefix"; then for ac_prog in cl.exe do # Extract the first word of "$ac_tool_prefix$ac_prog", so it can be a program name with args. set dummy $ac_tool_prefix$ac_prog; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_CC+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$CC"; then ac_cv_prog_CC="$CC" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_CC="$ac_tool_prefix$ac_prog" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi CC=$ac_cv_prog_CC if test -n "$CC"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $CC" >&5 $as_echo "$CC" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi test -n "$CC" && break done fi if test -z "$CC"; then ac_ct_CC=$CC for ac_prog in cl.exe do # Extract the first word of "$ac_prog", so it can be a program name with args. set dummy $ac_prog; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_ac_ct_CC+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$ac_ct_CC"; then ac_cv_prog_ac_ct_CC="$ac_ct_CC" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_ac_ct_CC="$ac_prog" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi ac_ct_CC=$ac_cv_prog_ac_ct_CC if test -n "$ac_ct_CC"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_ct_CC" >&5 $as_echo "$ac_ct_CC" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi test -n "$ac_ct_CC" && break done if test "x$ac_ct_CC" = x; then CC="" else case $cross_compiling:$ac_tool_warned in yes:) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: using cross tools not prefixed with host triplet" >&5 $as_echo "$as_me: WARNING: using cross tools not prefixed with host triplet" >&2;} ac_tool_warned=yes ;; esac CC=$ac_ct_CC fi fi fi test -z "$CC" && { { $as_echo "$as_me:${as_lineno-$LINENO}: error: in \`$ac_pwd':" >&5 $as_echo "$as_me: error: in \`$ac_pwd':" >&2;} as_fn_error $? "no acceptable C compiler found in \$PATH See \`config.log' for more details" "$LINENO" 5; } # Provide some information about the compiler. $as_echo "$as_me:${as_lineno-$LINENO}: checking for C compiler version" >&5 set X $ac_compile ac_compiler=$2 for ac_option in --version -v -V -qversion; do { { ac_try="$ac_compiler $ac_option >&5" case "(($ac_try" in *\"* | *\`* | *\\*) ac_try_echo=\$ac_try;; *) ac_try_echo=$ac_try;; esac eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\"" $as_echo "$ac_try_echo"; } >&5 (eval "$ac_compiler $ac_option >&5") 2>conftest.err ac_status=$? if test -s conftest.err; then sed '10a\ ... rest of stderr output deleted ... 10q' conftest.err >conftest.er1 cat conftest.er1 >&5 fi rm -f conftest.er1 conftest.err $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; } done { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether we are using the GNU C compiler" >&5 $as_echo_n "checking whether we are using the GNU C compiler... " >&6; } if ${ac_cv_c_compiler_gnu+:} false; then : $as_echo_n "(cached) " >&6 else cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ int main () { #ifndef __GNUC__ choke me #endif ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : ac_compiler_gnu=yes else ac_compiler_gnu=no fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext ac_cv_c_compiler_gnu=$ac_compiler_gnu fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_c_compiler_gnu" >&5 $as_echo "$ac_cv_c_compiler_gnu" >&6; } if test $ac_compiler_gnu = yes; then GCC=yes else GCC= fi ac_test_CFLAGS=${CFLAGS+set} ac_save_CFLAGS=$CFLAGS { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether $CC accepts -g" >&5 $as_echo_n "checking whether $CC accepts -g... " >&6; } if ${ac_cv_prog_cc_g+:} false; then : $as_echo_n "(cached) " >&6 else ac_save_c_werror_flag=$ac_c_werror_flag ac_c_werror_flag=yes ac_cv_prog_cc_g=no CFLAGS="-g" cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ int main () { ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : ac_cv_prog_cc_g=yes else CFLAGS="" cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ int main () { ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : else ac_c_werror_flag=$ac_save_c_werror_flag CFLAGS="-g" cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ int main () { ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : ac_cv_prog_cc_g=yes fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext ac_c_werror_flag=$ac_save_c_werror_flag fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_prog_cc_g" >&5 $as_echo "$ac_cv_prog_cc_g" >&6; } if test "$ac_test_CFLAGS" = set; then CFLAGS=$ac_save_CFLAGS elif test $ac_cv_prog_cc_g = yes; then if test "$GCC" = yes; then CFLAGS="-g -O2" else CFLAGS="-g" fi else if test "$GCC" = yes; then CFLAGS="-O2" else CFLAGS= fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $CC option to accept ISO C89" >&5 $as_echo_n "checking for $CC option to accept ISO C89... " >&6; } if ${ac_cv_prog_cc_c89+:} false; then : $as_echo_n "(cached) " >&6 else ac_cv_prog_cc_c89=no ac_save_CC=$CC cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include #include struct stat; /* Most of the following tests are stolen from RCS 5.7's src/conf.sh. */ struct buf { int x; }; FILE * (*rcsopen) (struct buf *, struct stat *, int); static char *e (p, i) char **p; int i; { return p[i]; } static char *f (char * (*g) (char **, int), char **p, ...) { char *s; va_list v; va_start (v,p); s = g (p, va_arg (v,int)); va_end (v); return s; } /* OSF 4.0 Compaq cc is some sort of almost-ANSI by default. It has function prototypes and stuff, but not '\xHH' hex character constants. These don't provoke an error unfortunately, instead are silently treated as 'x'. The following induces an error, until -std is added to get proper ANSI mode. Curiously '\x00'!='x' always comes out true, for an array size at least. It's necessary to write '\x00'==0 to get something that's true only with -std. */ int osf4_cc_array ['\x00' == 0 ? 1 : -1]; /* IBM C 6 for AIX is almost-ANSI by default, but it replaces macro parameters inside strings and character constants. */ #define FOO(x) 'x' int xlc6_cc_array[FOO(a) == 'x' ? 1 : -1]; int test (int i, double x); struct s1 {int (*f) (int a);}; struct s2 {int (*f) (double a);}; int pairnames (int, char **, FILE *(*)(struct buf *, struct stat *, int), int, int); int argc; char **argv; int main () { return f (e, argv, 0) != argv[0] || f (e, argv, 1) != argv[1]; ; return 0; } _ACEOF for ac_arg in '' -qlanglvl=extc89 -qlanglvl=ansi -std \ -Ae "-Aa -D_HPUX_SOURCE" "-Xc -D__EXTENSIONS__" do CC="$ac_save_CC $ac_arg" if ac_fn_c_try_compile "$LINENO"; then : ac_cv_prog_cc_c89=$ac_arg fi rm -f core conftest.err conftest.$ac_objext test "x$ac_cv_prog_cc_c89" != "xno" && break done rm -f conftest.$ac_ext CC=$ac_save_CC fi # AC_CACHE_VAL case "x$ac_cv_prog_cc_c89" in x) { $as_echo "$as_me:${as_lineno-$LINENO}: result: none needed" >&5 $as_echo "none needed" >&6; } ;; xno) { $as_echo "$as_me:${as_lineno-$LINENO}: result: unsupported" >&5 $as_echo "unsupported" >&6; } ;; *) CC="$CC $ac_cv_prog_cc_c89" { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_prog_cc_c89" >&5 $as_echo "$ac_cv_prog_cc_c89" >&6; } ;; esac if test "x$ac_cv_prog_cc_c89" != xno; then : fi ac_ext=c ac_cpp='$CPP $CPPFLAGS' ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5' ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_c_compiler_gnu ac_ext=c ac_cpp='$CPP $CPPFLAGS' ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5' ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_c_compiler_gnu { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether $CC understands -c and -o together" >&5 $as_echo_n "checking whether $CC understands -c and -o together... " >&6; } if ${am_cv_prog_cc_c_o+:} false; then : $as_echo_n "(cached) " >&6 else cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ int main () { ; return 0; } _ACEOF # Make sure it works both with $CC and with simple cc. # Following AC_PROG_CC_C_O, we do the test twice because some # compilers refuse to overwrite an existing .o file with -o, # though they will create one. am_cv_prog_cc_c_o=yes for am_i in 1 2; do if { echo "$as_me:$LINENO: $CC -c conftest.$ac_ext -o conftest2.$ac_objext" >&5 ($CC -c conftest.$ac_ext -o conftest2.$ac_objext) >&5 2>&5 ac_status=$? echo "$as_me:$LINENO: \$? = $ac_status" >&5 (exit $ac_status); } \ && test -f conftest2.$ac_objext; then : OK else am_cv_prog_cc_c_o=no break fi done rm -f core conftest* unset am_i fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $am_cv_prog_cc_c_o" >&5 $as_echo "$am_cv_prog_cc_c_o" >&6; } if test "$am_cv_prog_cc_c_o" != yes; then # Losing compiler, so override with the script. # FIXME: It is wrong to rewrite CC. # But if we don't then we get into trouble of one sort or another. # A longer-term fix would be to have automake use am__CC in this case, # and then we could set am__CC="\$(top_srcdir)/compile \$(CC)" CC="$am_aux_dir/compile $CC" fi ac_ext=c ac_cpp='$CPP $CPPFLAGS' ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5' ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_c_compiler_gnu depcc="$CC" am_compiler_list= { $as_echo "$as_me:${as_lineno-$LINENO}: checking dependency style of $depcc" >&5 $as_echo_n "checking dependency style of $depcc... " >&6; } if ${am_cv_CC_dependencies_compiler_type+:} false; then : $as_echo_n "(cached) " >&6 else if test -z "$AMDEP_TRUE" && test -f "$am_depcomp"; then # We make a subdir and do the tests there. Otherwise we can end up # making bogus files that we don't know about and never remove. For # instance it was reported that on HP-UX the gcc test will end up # making a dummy file named 'D' -- because '-MD' means "put the output # in D". rm -rf conftest.dir mkdir conftest.dir # Copy depcomp to subdir because otherwise we won't find it if we're # using a relative directory. cp "$am_depcomp" conftest.dir cd conftest.dir # We will build objects and dependencies in a subdirectory because # it helps to detect inapplicable dependency modes. For instance # both Tru64's cc and ICC support -MD to output dependencies as a # side effect of compilation, but ICC will put the dependencies in # the current directory while Tru64 will put them in the object # directory. mkdir sub am_cv_CC_dependencies_compiler_type=none if test "$am_compiler_list" = ""; then am_compiler_list=`sed -n 's/^#*\([a-zA-Z0-9]*\))$/\1/p' < ./depcomp` fi am__universal=false case " $depcc " in #( *\ -arch\ *\ -arch\ *) am__universal=true ;; esac for depmode in $am_compiler_list; do # Setup a source with many dependencies, because some compilers # like to wrap large dependency lists on column 80 (with \), and # we should not choose a depcomp mode which is confused by this. # # We need to recreate these files for each test, as the compiler may # overwrite some of them when testing with obscure command lines. # This happens at least with the AIX C compiler. : > sub/conftest.c for i in 1 2 3 4 5 6; do echo '#include "conftst'$i'.h"' >> sub/conftest.c # Using ": > sub/conftst$i.h" creates only sub/conftst1.h with # Solaris 10 /bin/sh. echo '/* dummy */' > sub/conftst$i.h done echo "${am__include} ${am__quote}sub/conftest.Po${am__quote}" > confmf # We check with '-c' and '-o' for the sake of the "dashmstdout" # mode. It turns out that the SunPro C++ compiler does not properly # handle '-M -o', and we need to detect this. Also, some Intel # versions had trouble with output in subdirs. am__obj=sub/conftest.${OBJEXT-o} am__minus_obj="-o $am__obj" case $depmode in gcc) # This depmode causes a compiler race in universal mode. test "$am__universal" = false || continue ;; nosideeffect) # After this tag, mechanisms are not by side-effect, so they'll # only be used when explicitly requested. if test "x$enable_dependency_tracking" = xyes; then continue else break fi ;; msvc7 | msvc7msys | msvisualcpp | msvcmsys) # This compiler won't grok '-c -o', but also, the minuso test has # not run yet. These depmodes are late enough in the game, and # so weak that their functioning should not be impacted. am__obj=conftest.${OBJEXT-o} am__minus_obj= ;; none) break ;; esac if depmode=$depmode \ source=sub/conftest.c object=$am__obj \ depfile=sub/conftest.Po tmpdepfile=sub/conftest.TPo \ $SHELL ./depcomp $depcc -c $am__minus_obj sub/conftest.c \ >/dev/null 2>conftest.err && grep sub/conftst1.h sub/conftest.Po > /dev/null 2>&1 && grep sub/conftst6.h sub/conftest.Po > /dev/null 2>&1 && grep $am__obj sub/conftest.Po > /dev/null 2>&1 && ${MAKE-make} -s -f confmf > /dev/null 2>&1; then # icc doesn't choke on unknown options, it will just issue warnings # or remarks (even with -Werror). So we grep stderr for any message # that says an option was ignored or not supported. # When given -MP, icc 7.0 and 7.1 complain thusly: # icc: Command line warning: ignoring option '-M'; no argument required # The diagnosis changed in icc 8.0: # icc: Command line remark: option '-MP' not supported if (grep 'ignoring option' conftest.err || grep 'not supported' conftest.err) >/dev/null 2>&1; then :; else am_cv_CC_dependencies_compiler_type=$depmode break fi fi done cd .. rm -rf conftest.dir else am_cv_CC_dependencies_compiler_type=none fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $am_cv_CC_dependencies_compiler_type" >&5 $as_echo "$am_cv_CC_dependencies_compiler_type" >&6; } CCDEPMODE=depmode=$am_cv_CC_dependencies_compiler_type if test "x$enable_dependency_tracking" != xno \ && test "$am_cv_CC_dependencies_compiler_type" = gcc3; then am__fastdepCC_TRUE= am__fastdepCC_FALSE='#' else am__fastdepCC_TRUE='#' am__fastdepCC_FALSE= fi if test -n "$ac_tool_prefix"; then for ac_prog in ar lib "link -lib" do # Extract the first word of "$ac_tool_prefix$ac_prog", so it can be a program name with args. set dummy $ac_tool_prefix$ac_prog; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_AR+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$AR"; then ac_cv_prog_AR="$AR" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_AR="$ac_tool_prefix$ac_prog" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi AR=$ac_cv_prog_AR if test -n "$AR"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $AR" >&5 $as_echo "$AR" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi test -n "$AR" && break done fi if test -z "$AR"; then ac_ct_AR=$AR for ac_prog in ar lib "link -lib" do # Extract the first word of "$ac_prog", so it can be a program name with args. set dummy $ac_prog; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_ac_ct_AR+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$ac_ct_AR"; then ac_cv_prog_ac_ct_AR="$ac_ct_AR" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_ac_ct_AR="$ac_prog" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi ac_ct_AR=$ac_cv_prog_ac_ct_AR if test -n "$ac_ct_AR"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_ct_AR" >&5 $as_echo "$ac_ct_AR" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi test -n "$ac_ct_AR" && break done if test "x$ac_ct_AR" = x; then AR="false" else case $cross_compiling:$ac_tool_warned in yes:) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: using cross tools not prefixed with host triplet" >&5 $as_echo "$as_me: WARNING: using cross tools not prefixed with host triplet" >&2;} ac_tool_warned=yes ;; esac AR=$ac_ct_AR fi fi : ${AR=ar} { $as_echo "$as_me:${as_lineno-$LINENO}: checking the archiver ($AR) interface" >&5 $as_echo_n "checking the archiver ($AR) interface... " >&6; } if ${am_cv_ar_interface+:} false; then : $as_echo_n "(cached) " >&6 else ac_ext=c ac_cpp='$CPP $CPPFLAGS' ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5' ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_c_compiler_gnu am_cv_ar_interface=ar cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ int some_variable = 0; _ACEOF if ac_fn_c_try_compile "$LINENO"; then : am_ar_try='$AR cru libconftest.a conftest.$ac_objext >&5' { { eval echo "\"\$as_me\":${as_lineno-$LINENO}: \"$am_ar_try\""; } >&5 (eval $am_ar_try) 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; } if test "$ac_status" -eq 0; then am_cv_ar_interface=ar else am_ar_try='$AR -NOLOGO -OUT:conftest.lib conftest.$ac_objext >&5' { { eval echo "\"\$as_me\":${as_lineno-$LINENO}: \"$am_ar_try\""; } >&5 (eval $am_ar_try) 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; } if test "$ac_status" -eq 0; then am_cv_ar_interface=lib else am_cv_ar_interface=unknown fi fi rm -f conftest.lib libconftest.a fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext ac_ext=c ac_cpp='$CPP $CPPFLAGS' ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5' ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_c_compiler_gnu fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $am_cv_ar_interface" >&5 $as_echo "$am_cv_ar_interface" >&6; } case $am_cv_ar_interface in ar) ;; lib) # Microsoft lib, so override with the ar-lib wrapper script. # FIXME: It is wrong to rewrite AR. # But if we don't then we get into trouble of one sort or another. # A longer-term fix would be to have automake use am__AR in this case, # and then we could set am__AR="$am_aux_dir/ar-lib \$(AR)" or something # similar. AR="$am_aux_dir/ar-lib $AR" ;; unknown) as_fn_error $? "could not determine $AR interface" "$LINENO" 5 ;; esac # By default we simply use the C compiler to build assembly code. test "${CCAS+set}" = set || CCAS=$CC test "${CCASFLAGS+set}" = set || CCASFLAGS=$CFLAGS depcc="$CCAS" am_compiler_list= { $as_echo "$as_me:${as_lineno-$LINENO}: checking dependency style of $depcc" >&5 $as_echo_n "checking dependency style of $depcc... " >&6; } if ${am_cv_CCAS_dependencies_compiler_type+:} false; then : $as_echo_n "(cached) " >&6 else if test -z "$AMDEP_TRUE" && test -f "$am_depcomp"; then # We make a subdir and do the tests there. Otherwise we can end up # making bogus files that we don't know about and never remove. For # instance it was reported that on HP-UX the gcc test will end up # making a dummy file named 'D' -- because '-MD' means "put the output # in D". rm -rf conftest.dir mkdir conftest.dir # Copy depcomp to subdir because otherwise we won't find it if we're # using a relative directory. cp "$am_depcomp" conftest.dir cd conftest.dir # We will build objects and dependencies in a subdirectory because # it helps to detect inapplicable dependency modes. For instance # both Tru64's cc and ICC support -MD to output dependencies as a # side effect of compilation, but ICC will put the dependencies in # the current directory while Tru64 will put them in the object # directory. mkdir sub am_cv_CCAS_dependencies_compiler_type=none if test "$am_compiler_list" = ""; then am_compiler_list=`sed -n 's/^#*\([a-zA-Z0-9]*\))$/\1/p' < ./depcomp` fi am__universal=false for depmode in $am_compiler_list; do # Setup a source with many dependencies, because some compilers # like to wrap large dependency lists on column 80 (with \), and # we should not choose a depcomp mode which is confused by this. # # We need to recreate these files for each test, as the compiler may # overwrite some of them when testing with obscure command lines. # This happens at least with the AIX C compiler. : > sub/conftest.c for i in 1 2 3 4 5 6; do echo '#include "conftst'$i'.h"' >> sub/conftest.c # Using ": > sub/conftst$i.h" creates only sub/conftst1.h with # Solaris 10 /bin/sh. echo '/* dummy */' > sub/conftst$i.h done echo "${am__include} ${am__quote}sub/conftest.Po${am__quote}" > confmf # We check with '-c' and '-o' for the sake of the "dashmstdout" # mode. It turns out that the SunPro C++ compiler does not properly # handle '-M -o', and we need to detect this. Also, some Intel # versions had trouble with output in subdirs. am__obj=sub/conftest.${OBJEXT-o} am__minus_obj="-o $am__obj" case $depmode in gcc) # This depmode causes a compiler race in universal mode. test "$am__universal" = false || continue ;; nosideeffect) # After this tag, mechanisms are not by side-effect, so they'll # only be used when explicitly requested. if test "x$enable_dependency_tracking" = xyes; then continue else break fi ;; msvc7 | msvc7msys | msvisualcpp | msvcmsys) # This compiler won't grok '-c -o', but also, the minuso test has # not run yet. These depmodes are late enough in the game, and # so weak that their functioning should not be impacted. am__obj=conftest.${OBJEXT-o} am__minus_obj= ;; none) break ;; esac if depmode=$depmode \ source=sub/conftest.c object=$am__obj \ depfile=sub/conftest.Po tmpdepfile=sub/conftest.TPo \ $SHELL ./depcomp $depcc -c $am__minus_obj sub/conftest.c \ >/dev/null 2>conftest.err && grep sub/conftst1.h sub/conftest.Po > /dev/null 2>&1 && grep sub/conftst6.h sub/conftest.Po > /dev/null 2>&1 && grep $am__obj sub/conftest.Po > /dev/null 2>&1 && ${MAKE-make} -s -f confmf > /dev/null 2>&1; then # icc doesn't choke on unknown options, it will just issue warnings # or remarks (even with -Werror). So we grep stderr for any message # that says an option was ignored or not supported. # When given -MP, icc 7.0 and 7.1 complain thusly: # icc: Command line warning: ignoring option '-M'; no argument required # The diagnosis changed in icc 8.0: # icc: Command line remark: option '-MP' not supported if (grep 'ignoring option' conftest.err || grep 'not supported' conftest.err) >/dev/null 2>&1; then :; else am_cv_CCAS_dependencies_compiler_type=$depmode break fi fi done cd .. rm -rf conftest.dir else am_cv_CCAS_dependencies_compiler_type=none fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $am_cv_CCAS_dependencies_compiler_type" >&5 $as_echo "$am_cv_CCAS_dependencies_compiler_type" >&6; } CCASDEPMODE=depmode=$am_cv_CCAS_dependencies_compiler_type if test "x$enable_dependency_tracking" != xno \ && test "$am_cv_CCAS_dependencies_compiler_type" = gcc3; then am__fastdepCCAS_TRUE= am__fastdepCCAS_FALSE='#' else am__fastdepCCAS_TRUE='#' am__fastdepCCAS_FALSE= fi case `pwd` in *\ * | *\ *) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: Libtool does not cope well with whitespace in \`pwd\`" >&5 $as_echo "$as_me: WARNING: Libtool does not cope well with whitespace in \`pwd\`" >&2;} ;; esac macro_version='2.4.6' macro_revision='2.4.6' ltmain=$ac_aux_dir/ltmain.sh # Make sure we can run config.sub. $SHELL "$ac_aux_dir/config.sub" sun4 >/dev/null 2>&1 || as_fn_error $? "cannot run $SHELL $ac_aux_dir/config.sub" "$LINENO" 5 { $as_echo "$as_me:${as_lineno-$LINENO}: checking build system type" >&5 $as_echo_n "checking build system type... " >&6; } if ${ac_cv_build+:} false; then : $as_echo_n "(cached) " >&6 else ac_build_alias=$build_alias test "x$ac_build_alias" = x && ac_build_alias=`$SHELL "$ac_aux_dir/config.guess"` test "x$ac_build_alias" = x && as_fn_error $? "cannot guess build type; you must specify one" "$LINENO" 5 ac_cv_build=`$SHELL "$ac_aux_dir/config.sub" $ac_build_alias` || as_fn_error $? "$SHELL $ac_aux_dir/config.sub $ac_build_alias failed" "$LINENO" 5 fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_build" >&5 $as_echo "$ac_cv_build" >&6; } case $ac_cv_build in *-*-*) ;; *) as_fn_error $? "invalid value of canonical build" "$LINENO" 5;; esac build=$ac_cv_build ac_save_IFS=$IFS; IFS='-' set x $ac_cv_build shift build_cpu=$1 build_vendor=$2 shift; shift # Remember, the first character of IFS is used to create $*, # except with old shells: build_os=$* IFS=$ac_save_IFS case $build_os in *\ *) build_os=`echo "$build_os" | sed 's/ /-/g'`;; esac { $as_echo "$as_me:${as_lineno-$LINENO}: checking host system type" >&5 $as_echo_n "checking host system type... " >&6; } if ${ac_cv_host+:} false; then : $as_echo_n "(cached) " >&6 else if test "x$host_alias" = x; then ac_cv_host=$ac_cv_build else ac_cv_host=`$SHELL "$ac_aux_dir/config.sub" $host_alias` || as_fn_error $? "$SHELL $ac_aux_dir/config.sub $host_alias failed" "$LINENO" 5 fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_host" >&5 $as_echo "$ac_cv_host" >&6; } case $ac_cv_host in *-*-*) ;; *) as_fn_error $? "invalid value of canonical host" "$LINENO" 5;; esac host=$ac_cv_host ac_save_IFS=$IFS; IFS='-' set x $ac_cv_host shift host_cpu=$1 host_vendor=$2 shift; shift # Remember, the first character of IFS is used to create $*, # except with old shells: host_os=$* IFS=$ac_save_IFS case $host_os in *\ *) host_os=`echo "$host_os" | sed 's/ /-/g'`;; esac # Backslashify metacharacters that are still active within # double-quoted strings. sed_quote_subst='s/\(["`$\\]\)/\\\1/g' # Same as above, but do not quote variable references. double_quote_subst='s/\(["`\\]\)/\\\1/g' # Sed substitution to delay expansion of an escaped shell variable in a # double_quote_subst'ed string. delay_variable_subst='s/\\\\\\\\\\\$/\\\\\\$/g' # Sed substitution to delay expansion of an escaped single quote. delay_single_quote_subst='s/'\''/'\'\\\\\\\'\''/g' # Sed substitution to avoid accidental globbing in evaled expressions no_glob_subst='s/\*/\\\*/g' ECHO='\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\' ECHO=$ECHO$ECHO$ECHO$ECHO$ECHO ECHO=$ECHO$ECHO$ECHO$ECHO$ECHO$ECHO { $as_echo "$as_me:${as_lineno-$LINENO}: checking how to print strings" >&5 $as_echo_n "checking how to print strings... " >&6; } # Test print first, because it will be a builtin if present. if test "X`( print -r -- -n ) 2>/dev/null`" = X-n && \ test "X`print -r -- $ECHO 2>/dev/null`" = "X$ECHO"; then ECHO='print -r --' elif test "X`printf %s $ECHO 2>/dev/null`" = "X$ECHO"; then ECHO='printf %s\n' else # Use this function as a fallback that always works. func_fallback_echo () { eval 'cat <<_LTECHO_EOF $1 _LTECHO_EOF' } ECHO='func_fallback_echo' fi # func_echo_all arg... # Invoke $ECHO with all args, space-separated. func_echo_all () { $ECHO "" } case $ECHO in printf*) { $as_echo "$as_me:${as_lineno-$LINENO}: result: printf" >&5 $as_echo "printf" >&6; } ;; print*) { $as_echo "$as_me:${as_lineno-$LINENO}: result: print -r" >&5 $as_echo "print -r" >&6; } ;; *) { $as_echo "$as_me:${as_lineno-$LINENO}: result: cat" >&5 $as_echo "cat" >&6; } ;; esac { $as_echo "$as_me:${as_lineno-$LINENO}: checking for a sed that does not truncate output" >&5 $as_echo_n "checking for a sed that does not truncate output... " >&6; } if ${ac_cv_path_SED+:} false; then : $as_echo_n "(cached) " >&6 else ac_script=s/aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa/bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb/ for ac_i in 1 2 3 4 5 6 7; do ac_script="$ac_script$as_nl$ac_script" done echo "$ac_script" 2>/dev/null | sed 99q >conftest.sed { ac_script=; unset ac_script;} if test -z "$SED"; then ac_path_SED_found=false # Loop through the user's path and test for each of PROGNAME-LIST as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_prog in sed gsed; do for ac_exec_ext in '' $ac_executable_extensions; do ac_path_SED="$as_dir/$ac_prog$ac_exec_ext" as_fn_executable_p "$ac_path_SED" || continue # Check for GNU ac_path_SED and select it if it is found. # Check for GNU $ac_path_SED case `"$ac_path_SED" --version 2>&1` in *GNU*) ac_cv_path_SED="$ac_path_SED" ac_path_SED_found=:;; *) ac_count=0 $as_echo_n 0123456789 >"conftest.in" while : do cat "conftest.in" "conftest.in" >"conftest.tmp" mv "conftest.tmp" "conftest.in" cp "conftest.in" "conftest.nl" $as_echo '' >> "conftest.nl" "$ac_path_SED" -f conftest.sed < "conftest.nl" >"conftest.out" 2>/dev/null || break diff "conftest.out" "conftest.nl" >/dev/null 2>&1 || break as_fn_arith $ac_count + 1 && ac_count=$as_val if test $ac_count -gt ${ac_path_SED_max-0}; then # Best one so far, save it but keep looking for a better one ac_cv_path_SED="$ac_path_SED" ac_path_SED_max=$ac_count fi # 10*(2^10) chars as input seems more than enough test $ac_count -gt 10 && break done rm -f conftest.in conftest.tmp conftest.nl conftest.out;; esac $ac_path_SED_found && break 3 done done done IFS=$as_save_IFS if test -z "$ac_cv_path_SED"; then as_fn_error $? "no acceptable sed could be found in \$PATH" "$LINENO" 5 fi else ac_cv_path_SED=$SED fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_path_SED" >&5 $as_echo "$ac_cv_path_SED" >&6; } SED="$ac_cv_path_SED" rm -f conftest.sed test -z "$SED" && SED=sed Xsed="$SED -e 1s/^X//" { $as_echo "$as_me:${as_lineno-$LINENO}: checking for grep that handles long lines and -e" >&5 $as_echo_n "checking for grep that handles long lines and -e... " >&6; } if ${ac_cv_path_GREP+:} false; then : $as_echo_n "(cached) " >&6 else if test -z "$GREP"; then ac_path_GREP_found=false # Loop through the user's path and test for each of PROGNAME-LIST as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH$PATH_SEPARATOR/usr/xpg4/bin do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_prog in grep ggrep; do for ac_exec_ext in '' $ac_executable_extensions; do ac_path_GREP="$as_dir/$ac_prog$ac_exec_ext" as_fn_executable_p "$ac_path_GREP" || continue # Check for GNU ac_path_GREP and select it if it is found. # Check for GNU $ac_path_GREP case `"$ac_path_GREP" --version 2>&1` in *GNU*) ac_cv_path_GREP="$ac_path_GREP" ac_path_GREP_found=:;; *) ac_count=0 $as_echo_n 0123456789 >"conftest.in" while : do cat "conftest.in" "conftest.in" >"conftest.tmp" mv "conftest.tmp" "conftest.in" cp "conftest.in" "conftest.nl" $as_echo 'GREP' >> "conftest.nl" "$ac_path_GREP" -e 'GREP$' -e '-(cannot match)-' < "conftest.nl" >"conftest.out" 2>/dev/null || break diff "conftest.out" "conftest.nl" >/dev/null 2>&1 || break as_fn_arith $ac_count + 1 && ac_count=$as_val if test $ac_count -gt ${ac_path_GREP_max-0}; then # Best one so far, save it but keep looking for a better one ac_cv_path_GREP="$ac_path_GREP" ac_path_GREP_max=$ac_count fi # 10*(2^10) chars as input seems more than enough test $ac_count -gt 10 && break done rm -f conftest.in conftest.tmp conftest.nl conftest.out;; esac $ac_path_GREP_found && break 3 done done done IFS=$as_save_IFS if test -z "$ac_cv_path_GREP"; then as_fn_error $? "no acceptable grep could be found in $PATH$PATH_SEPARATOR/usr/xpg4/bin" "$LINENO" 5 fi else ac_cv_path_GREP=$GREP fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_path_GREP" >&5 $as_echo "$ac_cv_path_GREP" >&6; } GREP="$ac_cv_path_GREP" { $as_echo "$as_me:${as_lineno-$LINENO}: checking for egrep" >&5 $as_echo_n "checking for egrep... " >&6; } if ${ac_cv_path_EGREP+:} false; then : $as_echo_n "(cached) " >&6 else if echo a | $GREP -E '(a|b)' >/dev/null 2>&1 then ac_cv_path_EGREP="$GREP -E" else if test -z "$EGREP"; then ac_path_EGREP_found=false # Loop through the user's path and test for each of PROGNAME-LIST as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH$PATH_SEPARATOR/usr/xpg4/bin do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_prog in egrep; do for ac_exec_ext in '' $ac_executable_extensions; do ac_path_EGREP="$as_dir/$ac_prog$ac_exec_ext" as_fn_executable_p "$ac_path_EGREP" || continue # Check for GNU ac_path_EGREP and select it if it is found. # Check for GNU $ac_path_EGREP case `"$ac_path_EGREP" --version 2>&1` in *GNU*) ac_cv_path_EGREP="$ac_path_EGREP" ac_path_EGREP_found=:;; *) ac_count=0 $as_echo_n 0123456789 >"conftest.in" while : do cat "conftest.in" "conftest.in" >"conftest.tmp" mv "conftest.tmp" "conftest.in" cp "conftest.in" "conftest.nl" $as_echo 'EGREP' >> "conftest.nl" "$ac_path_EGREP" 'EGREP$' < "conftest.nl" >"conftest.out" 2>/dev/null || break diff "conftest.out" "conftest.nl" >/dev/null 2>&1 || break as_fn_arith $ac_count + 1 && ac_count=$as_val if test $ac_count -gt ${ac_path_EGREP_max-0}; then # Best one so far, save it but keep looking for a better one ac_cv_path_EGREP="$ac_path_EGREP" ac_path_EGREP_max=$ac_count fi # 10*(2^10) chars as input seems more than enough test $ac_count -gt 10 && break done rm -f conftest.in conftest.tmp conftest.nl conftest.out;; esac $ac_path_EGREP_found && break 3 done done done IFS=$as_save_IFS if test -z "$ac_cv_path_EGREP"; then as_fn_error $? "no acceptable egrep could be found in $PATH$PATH_SEPARATOR/usr/xpg4/bin" "$LINENO" 5 fi else ac_cv_path_EGREP=$EGREP fi fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_path_EGREP" >&5 $as_echo "$ac_cv_path_EGREP" >&6; } EGREP="$ac_cv_path_EGREP" { $as_echo "$as_me:${as_lineno-$LINENO}: checking for fgrep" >&5 $as_echo_n "checking for fgrep... " >&6; } if ${ac_cv_path_FGREP+:} false; then : $as_echo_n "(cached) " >&6 else if echo 'ab*c' | $GREP -F 'ab*c' >/dev/null 2>&1 then ac_cv_path_FGREP="$GREP -F" else if test -z "$FGREP"; then ac_path_FGREP_found=false # Loop through the user's path and test for each of PROGNAME-LIST as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH$PATH_SEPARATOR/usr/xpg4/bin do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_prog in fgrep; do for ac_exec_ext in '' $ac_executable_extensions; do ac_path_FGREP="$as_dir/$ac_prog$ac_exec_ext" as_fn_executable_p "$ac_path_FGREP" || continue # Check for GNU ac_path_FGREP and select it if it is found. # Check for GNU $ac_path_FGREP case `"$ac_path_FGREP" --version 2>&1` in *GNU*) ac_cv_path_FGREP="$ac_path_FGREP" ac_path_FGREP_found=:;; *) ac_count=0 $as_echo_n 0123456789 >"conftest.in" while : do cat "conftest.in" "conftest.in" >"conftest.tmp" mv "conftest.tmp" "conftest.in" cp "conftest.in" "conftest.nl" $as_echo 'FGREP' >> "conftest.nl" "$ac_path_FGREP" FGREP < "conftest.nl" >"conftest.out" 2>/dev/null || break diff "conftest.out" "conftest.nl" >/dev/null 2>&1 || break as_fn_arith $ac_count + 1 && ac_count=$as_val if test $ac_count -gt ${ac_path_FGREP_max-0}; then # Best one so far, save it but keep looking for a better one ac_cv_path_FGREP="$ac_path_FGREP" ac_path_FGREP_max=$ac_count fi # 10*(2^10) chars as input seems more than enough test $ac_count -gt 10 && break done rm -f conftest.in conftest.tmp conftest.nl conftest.out;; esac $ac_path_FGREP_found && break 3 done done done IFS=$as_save_IFS if test -z "$ac_cv_path_FGREP"; then as_fn_error $? "no acceptable fgrep could be found in $PATH$PATH_SEPARATOR/usr/xpg4/bin" "$LINENO" 5 fi else ac_cv_path_FGREP=$FGREP fi fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_path_FGREP" >&5 $as_echo "$ac_cv_path_FGREP" >&6; } FGREP="$ac_cv_path_FGREP" test -z "$GREP" && GREP=grep # Check whether --with-gnu-ld was given. if test "${with_gnu_ld+set}" = set; then : withval=$with_gnu_ld; test no = "$withval" || with_gnu_ld=yes else with_gnu_ld=no fi ac_prog=ld if test yes = "$GCC"; then # Check if gcc -print-prog-name=ld gives a path. { $as_echo "$as_me:${as_lineno-$LINENO}: checking for ld used by $CC" >&5 $as_echo_n "checking for ld used by $CC... " >&6; } case $host in *-*-mingw*) # gcc leaves a trailing carriage return, which upsets mingw ac_prog=`($CC -print-prog-name=ld) 2>&5 | tr -d '\015'` ;; *) ac_prog=`($CC -print-prog-name=ld) 2>&5` ;; esac case $ac_prog in # Accept absolute paths. [\\/]* | ?:[\\/]*) re_direlt='/[^/][^/]*/\.\./' # Canonicalize the pathname of ld ac_prog=`$ECHO "$ac_prog"| $SED 's%\\\\%/%g'` while $ECHO "$ac_prog" | $GREP "$re_direlt" > /dev/null 2>&1; do ac_prog=`$ECHO $ac_prog| $SED "s%$re_direlt%/%"` done test -z "$LD" && LD=$ac_prog ;; "") # If it fails, then pretend we aren't using GCC. ac_prog=ld ;; *) # If it is relative, then search for the first ld in PATH. with_gnu_ld=unknown ;; esac elif test yes = "$with_gnu_ld"; then { $as_echo "$as_me:${as_lineno-$LINENO}: checking for GNU ld" >&5 $as_echo_n "checking for GNU ld... " >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: checking for non-GNU ld" >&5 $as_echo_n "checking for non-GNU ld... " >&6; } fi if ${lt_cv_path_LD+:} false; then : $as_echo_n "(cached) " >&6 else if test -z "$LD"; then lt_save_ifs=$IFS; IFS=$PATH_SEPARATOR for ac_dir in $PATH; do IFS=$lt_save_ifs test -z "$ac_dir" && ac_dir=. if test -f "$ac_dir/$ac_prog" || test -f "$ac_dir/$ac_prog$ac_exeext"; then lt_cv_path_LD=$ac_dir/$ac_prog # Check to see if the program is GNU ld. I'd rather use --version, # but apparently some variants of GNU ld only accept -v. # Break only if it was the GNU/non-GNU ld that we prefer. case `"$lt_cv_path_LD" -v 2>&1 &5 $as_echo "$LD" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi test -z "$LD" && as_fn_error $? "no acceptable ld found in \$PATH" "$LINENO" 5 { $as_echo "$as_me:${as_lineno-$LINENO}: checking if the linker ($LD) is GNU ld" >&5 $as_echo_n "checking if the linker ($LD) is GNU ld... " >&6; } if ${lt_cv_prog_gnu_ld+:} false; then : $as_echo_n "(cached) " >&6 else # I'd rather use --version here, but apparently some GNU lds only accept -v. case `$LD -v 2>&1 &5 $as_echo "$lt_cv_prog_gnu_ld" >&6; } with_gnu_ld=$lt_cv_prog_gnu_ld { $as_echo "$as_me:${as_lineno-$LINENO}: checking for BSD- or MS-compatible name lister (nm)" >&5 $as_echo_n "checking for BSD- or MS-compatible name lister (nm)... " >&6; } if ${lt_cv_path_NM+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$NM"; then # Let the user override the test. lt_cv_path_NM=$NM else lt_nm_to_check=${ac_tool_prefix}nm if test -n "$ac_tool_prefix" && test "$build" = "$host"; then lt_nm_to_check="$lt_nm_to_check nm" fi for lt_tmp_nm in $lt_nm_to_check; do lt_save_ifs=$IFS; IFS=$PATH_SEPARATOR for ac_dir in $PATH /usr/ccs/bin/elf /usr/ccs/bin /usr/ucb /bin; do IFS=$lt_save_ifs test -z "$ac_dir" && ac_dir=. tmp_nm=$ac_dir/$lt_tmp_nm if test -f "$tmp_nm" || test -f "$tmp_nm$ac_exeext"; then # Check to see if the nm accepts a BSD-compat flag. # Adding the 'sed 1q' prevents false positives on HP-UX, which says: # nm: unknown option "B" ignored # Tru64's nm complains that /dev/null is an invalid object file # MSYS converts /dev/null to NUL, MinGW nm treats NUL as empty case $build_os in mingw*) lt_bad_file=conftest.nm/nofile ;; *) lt_bad_file=/dev/null ;; esac case `"$tmp_nm" -B $lt_bad_file 2>&1 | sed '1q'` in *$lt_bad_file* | *'Invalid file or object type'*) lt_cv_path_NM="$tmp_nm -B" break 2 ;; *) case `"$tmp_nm" -p /dev/null 2>&1 | sed '1q'` in */dev/null*) lt_cv_path_NM="$tmp_nm -p" break 2 ;; *) lt_cv_path_NM=${lt_cv_path_NM="$tmp_nm"} # keep the first match, but continue # so that we can try to find one that supports BSD flags ;; esac ;; esac fi done IFS=$lt_save_ifs done : ${lt_cv_path_NM=no} fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_path_NM" >&5 $as_echo "$lt_cv_path_NM" >&6; } if test no != "$lt_cv_path_NM"; then NM=$lt_cv_path_NM else # Didn't find any BSD compatible name lister, look for dumpbin. if test -n "$DUMPBIN"; then : # Let the user override the test. else if test -n "$ac_tool_prefix"; then for ac_prog in dumpbin "link -dump" do # Extract the first word of "$ac_tool_prefix$ac_prog", so it can be a program name with args. set dummy $ac_tool_prefix$ac_prog; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_DUMPBIN+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$DUMPBIN"; then ac_cv_prog_DUMPBIN="$DUMPBIN" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_DUMPBIN="$ac_tool_prefix$ac_prog" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi DUMPBIN=$ac_cv_prog_DUMPBIN if test -n "$DUMPBIN"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $DUMPBIN" >&5 $as_echo "$DUMPBIN" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi test -n "$DUMPBIN" && break done fi if test -z "$DUMPBIN"; then ac_ct_DUMPBIN=$DUMPBIN for ac_prog in dumpbin "link -dump" do # Extract the first word of "$ac_prog", so it can be a program name with args. set dummy $ac_prog; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_ac_ct_DUMPBIN+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$ac_ct_DUMPBIN"; then ac_cv_prog_ac_ct_DUMPBIN="$ac_ct_DUMPBIN" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_ac_ct_DUMPBIN="$ac_prog" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi ac_ct_DUMPBIN=$ac_cv_prog_ac_ct_DUMPBIN if test -n "$ac_ct_DUMPBIN"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_ct_DUMPBIN" >&5 $as_echo "$ac_ct_DUMPBIN" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi test -n "$ac_ct_DUMPBIN" && break done if test "x$ac_ct_DUMPBIN" = x; then DUMPBIN=":" else case $cross_compiling:$ac_tool_warned in yes:) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: using cross tools not prefixed with host triplet" >&5 $as_echo "$as_me: WARNING: using cross tools not prefixed with host triplet" >&2;} ac_tool_warned=yes ;; esac DUMPBIN=$ac_ct_DUMPBIN fi fi case `$DUMPBIN -symbols -headers /dev/null 2>&1 | sed '1q'` in *COFF*) DUMPBIN="$DUMPBIN -symbols -headers" ;; *) DUMPBIN=: ;; esac fi if test : != "$DUMPBIN"; then NM=$DUMPBIN fi fi test -z "$NM" && NM=nm { $as_echo "$as_me:${as_lineno-$LINENO}: checking the name lister ($NM) interface" >&5 $as_echo_n "checking the name lister ($NM) interface... " >&6; } if ${lt_cv_nm_interface+:} false; then : $as_echo_n "(cached) " >&6 else lt_cv_nm_interface="BSD nm" echo "int some_variable = 0;" > conftest.$ac_ext (eval echo "\"\$as_me:$LINENO: $ac_compile\"" >&5) (eval "$ac_compile" 2>conftest.err) cat conftest.err >&5 (eval echo "\"\$as_me:$LINENO: $NM \\\"conftest.$ac_objext\\\"\"" >&5) (eval "$NM \"conftest.$ac_objext\"" 2>conftest.err > conftest.out) cat conftest.err >&5 (eval echo "\"\$as_me:$LINENO: output\"" >&5) cat conftest.out >&5 if $GREP 'External.*some_variable' conftest.out > /dev/null; then lt_cv_nm_interface="MS dumpbin" fi rm -f conftest* fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_nm_interface" >&5 $as_echo "$lt_cv_nm_interface" >&6; } { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether ln -s works" >&5 $as_echo_n "checking whether ln -s works... " >&6; } LN_S=$as_ln_s if test "$LN_S" = "ln -s"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: yes" >&5 $as_echo "yes" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no, using $LN_S" >&5 $as_echo "no, using $LN_S" >&6; } fi # find the maximum length of command line arguments { $as_echo "$as_me:${as_lineno-$LINENO}: checking the maximum length of command line arguments" >&5 $as_echo_n "checking the maximum length of command line arguments... " >&6; } if ${lt_cv_sys_max_cmd_len+:} false; then : $as_echo_n "(cached) " >&6 else i=0 teststring=ABCD case $build_os in msdosdjgpp*) # On DJGPP, this test can blow up pretty badly due to problems in libc # (any single argument exceeding 2000 bytes causes a buffer overrun # during glob expansion). Even if it were fixed, the result of this # check would be larger than it should be. lt_cv_sys_max_cmd_len=12288; # 12K is about right ;; gnu*) # Under GNU Hurd, this test is not required because there is # no limit to the length of command line arguments. # Libtool will interpret -1 as no limit whatsoever lt_cv_sys_max_cmd_len=-1; ;; cygwin* | mingw* | cegcc*) # On Win9x/ME, this test blows up -- it succeeds, but takes # about 5 minutes as the teststring grows exponentially. # Worse, since 9x/ME are not pre-emptively multitasking, # you end up with a "frozen" computer, even though with patience # the test eventually succeeds (with a max line length of 256k). # Instead, let's just punt: use the minimum linelength reported by # all of the supported platforms: 8192 (on NT/2K/XP). lt_cv_sys_max_cmd_len=8192; ;; mint*) # On MiNT this can take a long time and run out of memory. lt_cv_sys_max_cmd_len=8192; ;; amigaos*) # On AmigaOS with pdksh, this test takes hours, literally. # So we just punt and use a minimum line length of 8192. lt_cv_sys_max_cmd_len=8192; ;; bitrig* | darwin* | dragonfly* | freebsd* | netbsd* | openbsd*) # This has been around since 386BSD, at least. Likely further. if test -x /sbin/sysctl; then lt_cv_sys_max_cmd_len=`/sbin/sysctl -n kern.argmax` elif test -x /usr/sbin/sysctl; then lt_cv_sys_max_cmd_len=`/usr/sbin/sysctl -n kern.argmax` else lt_cv_sys_max_cmd_len=65536 # usable default for all BSDs fi # And add a safety zone lt_cv_sys_max_cmd_len=`expr $lt_cv_sys_max_cmd_len \/ 4` lt_cv_sys_max_cmd_len=`expr $lt_cv_sys_max_cmd_len \* 3` ;; interix*) # We know the value 262144 and hardcode it with a safety zone (like BSD) lt_cv_sys_max_cmd_len=196608 ;; os2*) # The test takes a long time on OS/2. lt_cv_sys_max_cmd_len=8192 ;; osf*) # Dr. Hans Ekkehard Plesser reports seeing a kernel panic running configure # due to this test when exec_disable_arg_limit is 1 on Tru64. It is not # nice to cause kernel panics so lets avoid the loop below. # First set a reasonable default. lt_cv_sys_max_cmd_len=16384 # if test -x /sbin/sysconfig; then case `/sbin/sysconfig -q proc exec_disable_arg_limit` in *1*) lt_cv_sys_max_cmd_len=-1 ;; esac fi ;; sco3.2v5*) lt_cv_sys_max_cmd_len=102400 ;; sysv5* | sco5v6* | sysv4.2uw2*) kargmax=`grep ARG_MAX /etc/conf/cf.d/stune 2>/dev/null` if test -n "$kargmax"; then lt_cv_sys_max_cmd_len=`echo $kargmax | sed 's/.*[ ]//'` else lt_cv_sys_max_cmd_len=32768 fi ;; *) lt_cv_sys_max_cmd_len=`(getconf ARG_MAX) 2> /dev/null` if test -n "$lt_cv_sys_max_cmd_len" && \ test undefined != "$lt_cv_sys_max_cmd_len"; then lt_cv_sys_max_cmd_len=`expr $lt_cv_sys_max_cmd_len \/ 4` lt_cv_sys_max_cmd_len=`expr $lt_cv_sys_max_cmd_len \* 3` else # Make teststring a little bigger before we do anything with it. # a 1K string should be a reasonable start. for i in 1 2 3 4 5 6 7 8; do teststring=$teststring$teststring done SHELL=${SHELL-${CONFIG_SHELL-/bin/sh}} # If test is not a shell built-in, we'll probably end up computing a # maximum length that is only half of the actual maximum length, but # we can't tell. while { test X`env echo "$teststring$teststring" 2>/dev/null` \ = "X$teststring$teststring"; } >/dev/null 2>&1 && test 17 != "$i" # 1/2 MB should be enough do i=`expr $i + 1` teststring=$teststring$teststring done # Only check the string length outside the loop. lt_cv_sys_max_cmd_len=`expr "X$teststring" : ".*" 2>&1` teststring= # Add a significant safety factor because C++ compilers can tack on # massive amounts of additional arguments before passing them to the # linker. It appears as though 1/2 is a usable value. lt_cv_sys_max_cmd_len=`expr $lt_cv_sys_max_cmd_len \/ 2` fi ;; esac fi if test -n "$lt_cv_sys_max_cmd_len"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_sys_max_cmd_len" >&5 $as_echo "$lt_cv_sys_max_cmd_len" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: none" >&5 $as_echo "none" >&6; } fi max_cmd_len=$lt_cv_sys_max_cmd_len : ${CP="cp -f"} : ${MV="mv -f"} : ${RM="rm -f"} if ( (MAIL=60; unset MAIL) || exit) >/dev/null 2>&1; then lt_unset=unset else lt_unset=false fi # test EBCDIC or ASCII case `echo X|tr X '\101'` in A) # ASCII based system # \n is not interpreted correctly by Solaris 8 /usr/ucb/tr lt_SP2NL='tr \040 \012' lt_NL2SP='tr \015\012 \040\040' ;; *) # EBCDIC based system lt_SP2NL='tr \100 \n' lt_NL2SP='tr \r\n \100\100' ;; esac { $as_echo "$as_me:${as_lineno-$LINENO}: checking how to convert $build file names to $host format" >&5 $as_echo_n "checking how to convert $build file names to $host format... " >&6; } if ${lt_cv_to_host_file_cmd+:} false; then : $as_echo_n "(cached) " >&6 else case $host in *-*-mingw* ) case $build in *-*-mingw* ) # actually msys lt_cv_to_host_file_cmd=func_convert_file_msys_to_w32 ;; *-*-cygwin* ) lt_cv_to_host_file_cmd=func_convert_file_cygwin_to_w32 ;; * ) # otherwise, assume *nix lt_cv_to_host_file_cmd=func_convert_file_nix_to_w32 ;; esac ;; *-*-cygwin* ) case $build in *-*-mingw* ) # actually msys lt_cv_to_host_file_cmd=func_convert_file_msys_to_cygwin ;; *-*-cygwin* ) lt_cv_to_host_file_cmd=func_convert_file_noop ;; * ) # otherwise, assume *nix lt_cv_to_host_file_cmd=func_convert_file_nix_to_cygwin ;; esac ;; * ) # unhandled hosts (and "normal" native builds) lt_cv_to_host_file_cmd=func_convert_file_noop ;; esac fi to_host_file_cmd=$lt_cv_to_host_file_cmd { $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_to_host_file_cmd" >&5 $as_echo "$lt_cv_to_host_file_cmd" >&6; } { $as_echo "$as_me:${as_lineno-$LINENO}: checking how to convert $build file names to toolchain format" >&5 $as_echo_n "checking how to convert $build file names to toolchain format... " >&6; } if ${lt_cv_to_tool_file_cmd+:} false; then : $as_echo_n "(cached) " >&6 else #assume ordinary cross tools, or native build. lt_cv_to_tool_file_cmd=func_convert_file_noop case $host in *-*-mingw* ) case $build in *-*-mingw* ) # actually msys lt_cv_to_tool_file_cmd=func_convert_file_msys_to_w32 ;; esac ;; esac fi to_tool_file_cmd=$lt_cv_to_tool_file_cmd { $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_to_tool_file_cmd" >&5 $as_echo "$lt_cv_to_tool_file_cmd" >&6; } { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $LD option to reload object files" >&5 $as_echo_n "checking for $LD option to reload object files... " >&6; } if ${lt_cv_ld_reload_flag+:} false; then : $as_echo_n "(cached) " >&6 else lt_cv_ld_reload_flag='-r' fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_ld_reload_flag" >&5 $as_echo "$lt_cv_ld_reload_flag" >&6; } reload_flag=$lt_cv_ld_reload_flag case $reload_flag in "" | " "*) ;; *) reload_flag=" $reload_flag" ;; esac reload_cmds='$LD$reload_flag -o $output$reload_objs' case $host_os in cygwin* | mingw* | pw32* | cegcc*) if test yes != "$GCC"; then reload_cmds=false fi ;; darwin*) if test yes = "$GCC"; then reload_cmds='$LTCC $LTCFLAGS -nostdlib $wl-r -o $output$reload_objs' else reload_cmds='$LD$reload_flag -o $output$reload_objs' fi ;; esac if test -n "$ac_tool_prefix"; then # Extract the first word of "${ac_tool_prefix}objdump", so it can be a program name with args. set dummy ${ac_tool_prefix}objdump; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_OBJDUMP+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$OBJDUMP"; then ac_cv_prog_OBJDUMP="$OBJDUMP" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_OBJDUMP="${ac_tool_prefix}objdump" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi OBJDUMP=$ac_cv_prog_OBJDUMP if test -n "$OBJDUMP"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $OBJDUMP" >&5 $as_echo "$OBJDUMP" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi fi if test -z "$ac_cv_prog_OBJDUMP"; then ac_ct_OBJDUMP=$OBJDUMP # Extract the first word of "objdump", so it can be a program name with args. set dummy objdump; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_ac_ct_OBJDUMP+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$ac_ct_OBJDUMP"; then ac_cv_prog_ac_ct_OBJDUMP="$ac_ct_OBJDUMP" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_ac_ct_OBJDUMP="objdump" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi ac_ct_OBJDUMP=$ac_cv_prog_ac_ct_OBJDUMP if test -n "$ac_ct_OBJDUMP"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_ct_OBJDUMP" >&5 $as_echo "$ac_ct_OBJDUMP" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi if test "x$ac_ct_OBJDUMP" = x; then OBJDUMP="false" else case $cross_compiling:$ac_tool_warned in yes:) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: using cross tools not prefixed with host triplet" >&5 $as_echo "$as_me: WARNING: using cross tools not prefixed with host triplet" >&2;} ac_tool_warned=yes ;; esac OBJDUMP=$ac_ct_OBJDUMP fi else OBJDUMP="$ac_cv_prog_OBJDUMP" fi test -z "$OBJDUMP" && OBJDUMP=objdump { $as_echo "$as_me:${as_lineno-$LINENO}: checking how to recognize dependent libraries" >&5 $as_echo_n "checking how to recognize dependent libraries... " >&6; } if ${lt_cv_deplibs_check_method+:} false; then : $as_echo_n "(cached) " >&6 else lt_cv_file_magic_cmd='$MAGIC_CMD' lt_cv_file_magic_test_file= lt_cv_deplibs_check_method='unknown' # Need to set the preceding variable on all platforms that support # interlibrary dependencies. # 'none' -- dependencies not supported. # 'unknown' -- same as none, but documents that we really don't know. # 'pass_all' -- all dependencies passed with no checks. # 'test_compile' -- check by making test program. # 'file_magic [[regex]]' -- check by looking for files in library path # that responds to the $file_magic_cmd with a given extended regex. # If you have 'file' or equivalent on your system and you're not sure # whether 'pass_all' will *always* work, you probably want this one. case $host_os in aix[4-9]*) lt_cv_deplibs_check_method=pass_all ;; beos*) lt_cv_deplibs_check_method=pass_all ;; bsdi[45]*) lt_cv_deplibs_check_method='file_magic ELF [0-9][0-9]*-bit [ML]SB (shared object|dynamic lib)' lt_cv_file_magic_cmd='/usr/bin/file -L' lt_cv_file_magic_test_file=/shlib/libc.so ;; cygwin*) # func_win32_libid is a shell function defined in ltmain.sh lt_cv_deplibs_check_method='file_magic ^x86 archive import|^x86 DLL' lt_cv_file_magic_cmd='func_win32_libid' ;; mingw* | pw32*) # Base MSYS/MinGW do not provide the 'file' command needed by # func_win32_libid shell function, so use a weaker test based on 'objdump', # unless we find 'file', for example because we are cross-compiling. if ( file / ) >/dev/null 2>&1; then lt_cv_deplibs_check_method='file_magic ^x86 archive import|^x86 DLL' lt_cv_file_magic_cmd='func_win32_libid' else # Keep this pattern in sync with the one in func_win32_libid. lt_cv_deplibs_check_method='file_magic file format (pei*-i386(.*architecture: i386)?|pe-arm-wince|pe-x86-64)' lt_cv_file_magic_cmd='$OBJDUMP -f' fi ;; cegcc*) # use the weaker test based on 'objdump'. See mingw*. lt_cv_deplibs_check_method='file_magic file format pe-arm-.*little(.*architecture: arm)?' lt_cv_file_magic_cmd='$OBJDUMP -f' ;; darwin* | rhapsody*) lt_cv_deplibs_check_method=pass_all ;; freebsd* | dragonfly*) if echo __ELF__ | $CC -E - | $GREP __ELF__ > /dev/null; then case $host_cpu in i*86 ) # Not sure whether the presence of OpenBSD here was a mistake. # Let's accept both of them until this is cleared up. lt_cv_deplibs_check_method='file_magic (FreeBSD|OpenBSD|DragonFly)/i[3-9]86 (compact )?demand paged shared library' lt_cv_file_magic_cmd=/usr/bin/file lt_cv_file_magic_test_file=`echo /usr/lib/libc.so.*` ;; esac else lt_cv_deplibs_check_method=pass_all fi ;; haiku*) lt_cv_deplibs_check_method=pass_all ;; hpux10.20* | hpux11*) lt_cv_file_magic_cmd=/usr/bin/file case $host_cpu in ia64*) lt_cv_deplibs_check_method='file_magic (s[0-9][0-9][0-9]|ELF-[0-9][0-9]) shared object file - IA64' lt_cv_file_magic_test_file=/usr/lib/hpux32/libc.so ;; hppa*64*) lt_cv_deplibs_check_method='file_magic (s[0-9][0-9][0-9]|ELF[ -][0-9][0-9])(-bit)?( [LM]SB)? shared object( file)?[, -]* PA-RISC [0-9]\.[0-9]' lt_cv_file_magic_test_file=/usr/lib/pa20_64/libc.sl ;; *) lt_cv_deplibs_check_method='file_magic (s[0-9][0-9][0-9]|PA-RISC[0-9]\.[0-9]) shared library' lt_cv_file_magic_test_file=/usr/lib/libc.sl ;; esac ;; interix[3-9]*) # PIC code is broken on Interix 3.x, that's why |\.a not |_pic\.a here lt_cv_deplibs_check_method='match_pattern /lib[^/]+(\.so|\.a)$' ;; irix5* | irix6* | nonstopux*) case $LD in *-32|*"-32 ") libmagic=32-bit;; *-n32|*"-n32 ") libmagic=N32;; *-64|*"-64 ") libmagic=64-bit;; *) libmagic=never-match;; esac lt_cv_deplibs_check_method=pass_all ;; # This must be glibc/ELF. linux* | k*bsd*-gnu | kopensolaris*-gnu | gnu*) lt_cv_deplibs_check_method=pass_all ;; netbsd*) if echo __ELF__ | $CC -E - | $GREP __ELF__ > /dev/null; then lt_cv_deplibs_check_method='match_pattern /lib[^/]+(\.so\.[0-9]+\.[0-9]+|_pic\.a)$' else lt_cv_deplibs_check_method='match_pattern /lib[^/]+(\.so|_pic\.a)$' fi ;; newos6*) lt_cv_deplibs_check_method='file_magic ELF [0-9][0-9]*-bit [ML]SB (executable|dynamic lib)' lt_cv_file_magic_cmd=/usr/bin/file lt_cv_file_magic_test_file=/usr/lib/libnls.so ;; *nto* | *qnx*) lt_cv_deplibs_check_method=pass_all ;; openbsd* | bitrig*) if test -z "`echo __ELF__ | $CC -E - | $GREP __ELF__`"; then lt_cv_deplibs_check_method='match_pattern /lib[^/]+(\.so\.[0-9]+\.[0-9]+|\.so|_pic\.a)$' else lt_cv_deplibs_check_method='match_pattern /lib[^/]+(\.so\.[0-9]+\.[0-9]+|_pic\.a)$' fi ;; osf3* | osf4* | osf5*) lt_cv_deplibs_check_method=pass_all ;; rdos*) lt_cv_deplibs_check_method=pass_all ;; solaris*) lt_cv_deplibs_check_method=pass_all ;; sysv5* | sco3.2v5* | sco5v6* | unixware* | OpenUNIX* | sysv4*uw2*) lt_cv_deplibs_check_method=pass_all ;; sysv4 | sysv4.3*) case $host_vendor in motorola) lt_cv_deplibs_check_method='file_magic ELF [0-9][0-9]*-bit [ML]SB (shared object|dynamic lib) M[0-9][0-9]* Version [0-9]' lt_cv_file_magic_test_file=`echo /usr/lib/libc.so*` ;; ncr) lt_cv_deplibs_check_method=pass_all ;; sequent) lt_cv_file_magic_cmd='/bin/file' lt_cv_deplibs_check_method='file_magic ELF [0-9][0-9]*-bit [LM]SB (shared object|dynamic lib )' ;; sni) lt_cv_file_magic_cmd='/bin/file' lt_cv_deplibs_check_method="file_magic ELF [0-9][0-9]*-bit [LM]SB dynamic lib" lt_cv_file_magic_test_file=/lib/libc.so ;; siemens) lt_cv_deplibs_check_method=pass_all ;; pc) lt_cv_deplibs_check_method=pass_all ;; esac ;; tpf*) lt_cv_deplibs_check_method=pass_all ;; os2*) lt_cv_deplibs_check_method=pass_all ;; esac fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_deplibs_check_method" >&5 $as_echo "$lt_cv_deplibs_check_method" >&6; } file_magic_glob= want_nocaseglob=no if test "$build" = "$host"; then case $host_os in mingw* | pw32*) if ( shopt | grep nocaseglob ) >/dev/null 2>&1; then want_nocaseglob=yes else file_magic_glob=`echo aAbBcCdDeEfFgGhHiIjJkKlLmMnNoOpPqQrRsStTuUvVwWxXyYzZ | $SED -e "s/\(..\)/s\/[\1]\/[\1]\/g;/g"` fi ;; esac fi file_magic_cmd=$lt_cv_file_magic_cmd deplibs_check_method=$lt_cv_deplibs_check_method test -z "$deplibs_check_method" && deplibs_check_method=unknown if test -n "$ac_tool_prefix"; then # Extract the first word of "${ac_tool_prefix}dlltool", so it can be a program name with args. set dummy ${ac_tool_prefix}dlltool; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_DLLTOOL+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$DLLTOOL"; then ac_cv_prog_DLLTOOL="$DLLTOOL" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_DLLTOOL="${ac_tool_prefix}dlltool" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi DLLTOOL=$ac_cv_prog_DLLTOOL if test -n "$DLLTOOL"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $DLLTOOL" >&5 $as_echo "$DLLTOOL" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi fi if test -z "$ac_cv_prog_DLLTOOL"; then ac_ct_DLLTOOL=$DLLTOOL # Extract the first word of "dlltool", so it can be a program name with args. set dummy dlltool; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_ac_ct_DLLTOOL+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$ac_ct_DLLTOOL"; then ac_cv_prog_ac_ct_DLLTOOL="$ac_ct_DLLTOOL" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_ac_ct_DLLTOOL="dlltool" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi ac_ct_DLLTOOL=$ac_cv_prog_ac_ct_DLLTOOL if test -n "$ac_ct_DLLTOOL"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_ct_DLLTOOL" >&5 $as_echo "$ac_ct_DLLTOOL" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi if test "x$ac_ct_DLLTOOL" = x; then DLLTOOL="false" else case $cross_compiling:$ac_tool_warned in yes:) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: using cross tools not prefixed with host triplet" >&5 $as_echo "$as_me: WARNING: using cross tools not prefixed with host triplet" >&2;} ac_tool_warned=yes ;; esac DLLTOOL=$ac_ct_DLLTOOL fi else DLLTOOL="$ac_cv_prog_DLLTOOL" fi test -z "$DLLTOOL" && DLLTOOL=dlltool { $as_echo "$as_me:${as_lineno-$LINENO}: checking how to associate runtime and link libraries" >&5 $as_echo_n "checking how to associate runtime and link libraries... " >&6; } if ${lt_cv_sharedlib_from_linklib_cmd+:} false; then : $as_echo_n "(cached) " >&6 else lt_cv_sharedlib_from_linklib_cmd='unknown' case $host_os in cygwin* | mingw* | pw32* | cegcc*) # two different shell functions defined in ltmain.sh; # decide which one to use based on capabilities of $DLLTOOL case `$DLLTOOL --help 2>&1` in *--identify-strict*) lt_cv_sharedlib_from_linklib_cmd=func_cygming_dll_for_implib ;; *) lt_cv_sharedlib_from_linklib_cmd=func_cygming_dll_for_implib_fallback ;; esac ;; *) # fallback: assume linklib IS sharedlib lt_cv_sharedlib_from_linklib_cmd=$ECHO ;; esac fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_sharedlib_from_linklib_cmd" >&5 $as_echo "$lt_cv_sharedlib_from_linklib_cmd" >&6; } sharedlib_from_linklib_cmd=$lt_cv_sharedlib_from_linklib_cmd test -z "$sharedlib_from_linklib_cmd" && sharedlib_from_linklib_cmd=$ECHO if test -n "$ac_tool_prefix"; then for ac_prog in ar do # Extract the first word of "$ac_tool_prefix$ac_prog", so it can be a program name with args. set dummy $ac_tool_prefix$ac_prog; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_AR+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$AR"; then ac_cv_prog_AR="$AR" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_AR="$ac_tool_prefix$ac_prog" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi AR=$ac_cv_prog_AR if test -n "$AR"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $AR" >&5 $as_echo "$AR" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi test -n "$AR" && break done fi if test -z "$AR"; then ac_ct_AR=$AR for ac_prog in ar do # Extract the first word of "$ac_prog", so it can be a program name with args. set dummy $ac_prog; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_ac_ct_AR+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$ac_ct_AR"; then ac_cv_prog_ac_ct_AR="$ac_ct_AR" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_ac_ct_AR="$ac_prog" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi ac_ct_AR=$ac_cv_prog_ac_ct_AR if test -n "$ac_ct_AR"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_ct_AR" >&5 $as_echo "$ac_ct_AR" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi test -n "$ac_ct_AR" && break done if test "x$ac_ct_AR" = x; then AR="false" else case $cross_compiling:$ac_tool_warned in yes:) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: using cross tools not prefixed with host triplet" >&5 $as_echo "$as_me: WARNING: using cross tools not prefixed with host triplet" >&2;} ac_tool_warned=yes ;; esac AR=$ac_ct_AR fi fi : ${AR=ar} : ${AR_FLAGS=cru} { $as_echo "$as_me:${as_lineno-$LINENO}: checking for archiver @FILE support" >&5 $as_echo_n "checking for archiver @FILE support... " >&6; } if ${lt_cv_ar_at_file+:} false; then : $as_echo_n "(cached) " >&6 else lt_cv_ar_at_file=no cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ int main () { ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : echo conftest.$ac_objext > conftest.lst lt_ar_try='$AR $AR_FLAGS libconftest.a @conftest.lst >&5' { { eval echo "\"\$as_me\":${as_lineno-$LINENO}: \"$lt_ar_try\""; } >&5 (eval $lt_ar_try) 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; } if test 0 -eq "$ac_status"; then # Ensure the archiver fails upon bogus file names. rm -f conftest.$ac_objext libconftest.a { { eval echo "\"\$as_me\":${as_lineno-$LINENO}: \"$lt_ar_try\""; } >&5 (eval $lt_ar_try) 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; } if test 0 -ne "$ac_status"; then lt_cv_ar_at_file=@ fi fi rm -f conftest.* libconftest.a fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_ar_at_file" >&5 $as_echo "$lt_cv_ar_at_file" >&6; } if test no = "$lt_cv_ar_at_file"; then archiver_list_spec= else archiver_list_spec=$lt_cv_ar_at_file fi if test -n "$ac_tool_prefix"; then # Extract the first word of "${ac_tool_prefix}strip", so it can be a program name with args. set dummy ${ac_tool_prefix}strip; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_STRIP+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$STRIP"; then ac_cv_prog_STRIP="$STRIP" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_STRIP="${ac_tool_prefix}strip" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi STRIP=$ac_cv_prog_STRIP if test -n "$STRIP"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $STRIP" >&5 $as_echo "$STRIP" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi fi if test -z "$ac_cv_prog_STRIP"; then ac_ct_STRIP=$STRIP # Extract the first word of "strip", so it can be a program name with args. set dummy strip; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_ac_ct_STRIP+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$ac_ct_STRIP"; then ac_cv_prog_ac_ct_STRIP="$ac_ct_STRIP" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_ac_ct_STRIP="strip" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi ac_ct_STRIP=$ac_cv_prog_ac_ct_STRIP if test -n "$ac_ct_STRIP"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_ct_STRIP" >&5 $as_echo "$ac_ct_STRIP" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi if test "x$ac_ct_STRIP" = x; then STRIP=":" else case $cross_compiling:$ac_tool_warned in yes:) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: using cross tools not prefixed with host triplet" >&5 $as_echo "$as_me: WARNING: using cross tools not prefixed with host triplet" >&2;} ac_tool_warned=yes ;; esac STRIP=$ac_ct_STRIP fi else STRIP="$ac_cv_prog_STRIP" fi test -z "$STRIP" && STRIP=: if test -n "$ac_tool_prefix"; then # Extract the first word of "${ac_tool_prefix}ranlib", so it can be a program name with args. set dummy ${ac_tool_prefix}ranlib; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_RANLIB+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$RANLIB"; then ac_cv_prog_RANLIB="$RANLIB" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_RANLIB="${ac_tool_prefix}ranlib" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi RANLIB=$ac_cv_prog_RANLIB if test -n "$RANLIB"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $RANLIB" >&5 $as_echo "$RANLIB" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi fi if test -z "$ac_cv_prog_RANLIB"; then ac_ct_RANLIB=$RANLIB # Extract the first word of "ranlib", so it can be a program name with args. set dummy ranlib; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_ac_ct_RANLIB+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$ac_ct_RANLIB"; then ac_cv_prog_ac_ct_RANLIB="$ac_ct_RANLIB" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_ac_ct_RANLIB="ranlib" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi ac_ct_RANLIB=$ac_cv_prog_ac_ct_RANLIB if test -n "$ac_ct_RANLIB"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_ct_RANLIB" >&5 $as_echo "$ac_ct_RANLIB" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi if test "x$ac_ct_RANLIB" = x; then RANLIB=":" else case $cross_compiling:$ac_tool_warned in yes:) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: using cross tools not prefixed with host triplet" >&5 $as_echo "$as_me: WARNING: using cross tools not prefixed with host triplet" >&2;} ac_tool_warned=yes ;; esac RANLIB=$ac_ct_RANLIB fi else RANLIB="$ac_cv_prog_RANLIB" fi test -z "$RANLIB" && RANLIB=: # Determine commands to create old-style static archives. old_archive_cmds='$AR $AR_FLAGS $oldlib$oldobjs' old_postinstall_cmds='chmod 644 $oldlib' old_postuninstall_cmds= if test -n "$RANLIB"; then case $host_os in bitrig* | openbsd*) old_postinstall_cmds="$old_postinstall_cmds~\$RANLIB -t \$tool_oldlib" ;; *) old_postinstall_cmds="$old_postinstall_cmds~\$RANLIB \$tool_oldlib" ;; esac old_archive_cmds="$old_archive_cmds~\$RANLIB \$tool_oldlib" fi case $host_os in darwin*) lock_old_archive_extraction=yes ;; *) lock_old_archive_extraction=no ;; esac # If no C compiler was specified, use CC. LTCC=${LTCC-"$CC"} # If no C compiler flags were specified, use CFLAGS. LTCFLAGS=${LTCFLAGS-"$CFLAGS"} # Allow CC to be a program name with arguments. compiler=$CC # Check for command to grab the raw symbol name followed by C symbol from nm. { $as_echo "$as_me:${as_lineno-$LINENO}: checking command to parse $NM output from $compiler object" >&5 $as_echo_n "checking command to parse $NM output from $compiler object... " >&6; } if ${lt_cv_sys_global_symbol_pipe+:} false; then : $as_echo_n "(cached) " >&6 else # These are sane defaults that work on at least a few old systems. # [They come from Ultrix. What could be older than Ultrix?!! ;)] # Character class describing NM global symbol codes. symcode='[BCDEGRST]' # Regexp to match symbols that can be accessed directly from C. sympat='\([_A-Za-z][_A-Za-z0-9]*\)' # Define system-specific variables. case $host_os in aix*) symcode='[BCDT]' ;; cygwin* | mingw* | pw32* | cegcc*) symcode='[ABCDGISTW]' ;; hpux*) if test ia64 = "$host_cpu"; then symcode='[ABCDEGRST]' fi ;; irix* | nonstopux*) symcode='[BCDEGRST]' ;; osf*) symcode='[BCDEGQRST]' ;; solaris*) symcode='[BDRT]' ;; sco3.2v5*) symcode='[DT]' ;; sysv4.2uw2*) symcode='[DT]' ;; sysv5* | sco5v6* | unixware* | OpenUNIX*) symcode='[ABDT]' ;; sysv4) symcode='[DFNSTU]' ;; esac # If we're using GNU nm, then use its standard symbol codes. case `$NM -V 2>&1` in *GNU* | *'with BFD'*) symcode='[ABCDGIRSTW]' ;; esac if test "$lt_cv_nm_interface" = "MS dumpbin"; then # Gets list of data symbols to import. lt_cv_sys_global_symbol_to_import="sed -n -e 's/^I .* \(.*\)$/\1/p'" # Adjust the below global symbol transforms to fixup imported variables. lt_cdecl_hook=" -e 's/^I .* \(.*\)$/extern __declspec(dllimport) char \1;/p'" lt_c_name_hook=" -e 's/^I .* \(.*\)$/ {\"\1\", (void *) 0},/p'" lt_c_name_lib_hook="\ -e 's/^I .* \(lib.*\)$/ {\"\1\", (void *) 0},/p'\ -e 's/^I .* \(.*\)$/ {\"lib\1\", (void *) 0},/p'" else # Disable hooks by default. lt_cv_sys_global_symbol_to_import= lt_cdecl_hook= lt_c_name_hook= lt_c_name_lib_hook= fi # Transform an extracted symbol line into a proper C declaration. # Some systems (esp. on ia64) link data and code symbols differently, # so use this general approach. lt_cv_sys_global_symbol_to_cdecl="sed -n"\ $lt_cdecl_hook\ " -e 's/^T .* \(.*\)$/extern int \1();/p'"\ " -e 's/^$symcode$symcode* .* \(.*\)$/extern char \1;/p'" # Transform an extracted symbol line into symbol name and symbol address lt_cv_sys_global_symbol_to_c_name_address="sed -n"\ $lt_c_name_hook\ " -e 's/^: \(.*\) .*$/ {\"\1\", (void *) 0},/p'"\ " -e 's/^$symcode$symcode* .* \(.*\)$/ {\"\1\", (void *) \&\1},/p'" # Transform an extracted symbol line into symbol name with lib prefix and # symbol address. lt_cv_sys_global_symbol_to_c_name_address_lib_prefix="sed -n"\ $lt_c_name_lib_hook\ " -e 's/^: \(.*\) .*$/ {\"\1\", (void *) 0},/p'"\ " -e 's/^$symcode$symcode* .* \(lib.*\)$/ {\"\1\", (void *) \&\1},/p'"\ " -e 's/^$symcode$symcode* .* \(.*\)$/ {\"lib\1\", (void *) \&\1},/p'" # Handle CRLF in mingw tool chain opt_cr= case $build_os in mingw*) opt_cr=`$ECHO 'x\{0,1\}' | tr x '\015'` # option cr in regexp ;; esac # Try without a prefix underscore, then with it. for ac_symprfx in "" "_"; do # Transform symcode, sympat, and symprfx into a raw symbol and a C symbol. symxfrm="\\1 $ac_symprfx\\2 \\2" # Write the raw and C identifiers. if test "$lt_cv_nm_interface" = "MS dumpbin"; then # Fake it for dumpbin and say T for any non-static function, # D for any global variable and I for any imported variable. # Also find C++ and __fastcall symbols from MSVC++, # which start with @ or ?. lt_cv_sys_global_symbol_pipe="$AWK '"\ " {last_section=section; section=\$ 3};"\ " /^COFF SYMBOL TABLE/{for(i in hide) delete hide[i]};"\ " /Section length .*#relocs.*(pick any)/{hide[last_section]=1};"\ " /^ *Symbol name *: /{split(\$ 0,sn,\":\"); si=substr(sn[2],2)};"\ " /^ *Type *: code/{print \"T\",si,substr(si,length(prfx))};"\ " /^ *Type *: data/{print \"I\",si,substr(si,length(prfx))};"\ " \$ 0!~/External *\|/{next};"\ " / 0+ UNDEF /{next}; / UNDEF \([^|]\)*()/{next};"\ " {if(hide[section]) next};"\ " {f=\"D\"}; \$ 0~/\(\).*\|/{f=\"T\"};"\ " {split(\$ 0,a,/\||\r/); split(a[2],s)};"\ " s[1]~/^[@?]/{print f,s[1],s[1]; next};"\ " s[1]~prfx {split(s[1],t,\"@\"); print f,t[1],substr(t[1],length(prfx))}"\ " ' prfx=^$ac_symprfx" else lt_cv_sys_global_symbol_pipe="sed -n -e 's/^.*[ ]\($symcode$symcode*\)[ ][ ]*$ac_symprfx$sympat$opt_cr$/$symxfrm/p'" fi lt_cv_sys_global_symbol_pipe="$lt_cv_sys_global_symbol_pipe | sed '/ __gnu_lto/d'" # Check to see that the pipe works correctly. pipe_works=no rm -f conftest* cat > conftest.$ac_ext <<_LT_EOF #ifdef __cplusplus extern "C" { #endif char nm_test_var; void nm_test_func(void); void nm_test_func(void){} #ifdef __cplusplus } #endif int main(){nm_test_var='a';nm_test_func();return(0);} _LT_EOF if { { eval echo "\"\$as_me\":${as_lineno-$LINENO}: \"$ac_compile\""; } >&5 (eval $ac_compile) 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; }; then # Now try to grab the symbols. nlist=conftest.nm if { { eval echo "\"\$as_me\":${as_lineno-$LINENO}: \"$NM conftest.$ac_objext \| "$lt_cv_sys_global_symbol_pipe" \> $nlist\""; } >&5 (eval $NM conftest.$ac_objext \| "$lt_cv_sys_global_symbol_pipe" \> $nlist) 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; } && test -s "$nlist"; then # Try sorting and uniquifying the output. if sort "$nlist" | uniq > "$nlist"T; then mv -f "$nlist"T "$nlist" else rm -f "$nlist"T fi # Make sure that we snagged all the symbols we need. if $GREP ' nm_test_var$' "$nlist" >/dev/null; then if $GREP ' nm_test_func$' "$nlist" >/dev/null; then cat <<_LT_EOF > conftest.$ac_ext /* Keep this code in sync between libtool.m4, ltmain, lt_system.h, and tests. */ #if defined _WIN32 || defined __CYGWIN__ || defined _WIN32_WCE /* DATA imports from DLLs on WIN32 can't be const, because runtime relocations are performed -- see ld's documentation on pseudo-relocs. */ # define LT_DLSYM_CONST #elif defined __osf__ /* This system does not cope well with relocations in const data. */ # define LT_DLSYM_CONST #else # define LT_DLSYM_CONST const #endif #ifdef __cplusplus extern "C" { #endif _LT_EOF # Now generate the symbol file. eval "$lt_cv_sys_global_symbol_to_cdecl"' < "$nlist" | $GREP -v main >> conftest.$ac_ext' cat <<_LT_EOF >> conftest.$ac_ext /* The mapping between symbol names and symbols. */ LT_DLSYM_CONST struct { const char *name; void *address; } lt__PROGRAM__LTX_preloaded_symbols[] = { { "@PROGRAM@", (void *) 0 }, _LT_EOF $SED "s/^$symcode$symcode* .* \(.*\)$/ {\"\1\", (void *) \&\1},/" < "$nlist" | $GREP -v main >> conftest.$ac_ext cat <<\_LT_EOF >> conftest.$ac_ext {0, (void *) 0} }; /* This works around a problem in FreeBSD linker */ #ifdef FREEBSD_WORKAROUND static const void *lt_preloaded_setup() { return lt__PROGRAM__LTX_preloaded_symbols; } #endif #ifdef __cplusplus } #endif _LT_EOF # Now try linking the two files. mv conftest.$ac_objext conftstm.$ac_objext lt_globsym_save_LIBS=$LIBS lt_globsym_save_CFLAGS=$CFLAGS LIBS=conftstm.$ac_objext CFLAGS="$CFLAGS$lt_prog_compiler_no_builtin_flag" if { { eval echo "\"\$as_me\":${as_lineno-$LINENO}: \"$ac_link\""; } >&5 (eval $ac_link) 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; } && test -s conftest$ac_exeext; then pipe_works=yes fi LIBS=$lt_globsym_save_LIBS CFLAGS=$lt_globsym_save_CFLAGS else echo "cannot find nm_test_func in $nlist" >&5 fi else echo "cannot find nm_test_var in $nlist" >&5 fi else echo "cannot run $lt_cv_sys_global_symbol_pipe" >&5 fi else echo "$progname: failed program was:" >&5 cat conftest.$ac_ext >&5 fi rm -rf conftest* conftst* # Do not use the global_symbol_pipe unless it works. if test yes = "$pipe_works"; then break else lt_cv_sys_global_symbol_pipe= fi done fi if test -z "$lt_cv_sys_global_symbol_pipe"; then lt_cv_sys_global_symbol_to_cdecl= fi if test -z "$lt_cv_sys_global_symbol_pipe$lt_cv_sys_global_symbol_to_cdecl"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: failed" >&5 $as_echo "failed" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: ok" >&5 $as_echo "ok" >&6; } fi # Response file support. if test "$lt_cv_nm_interface" = "MS dumpbin"; then nm_file_list_spec='@' elif $NM --help 2>/dev/null | grep '[@]FILE' >/dev/null; then nm_file_list_spec='@' fi { $as_echo "$as_me:${as_lineno-$LINENO}: checking for sysroot" >&5 $as_echo_n "checking for sysroot... " >&6; } # Check whether --with-sysroot was given. if test "${with_sysroot+set}" = set; then : withval=$with_sysroot; else with_sysroot=no fi lt_sysroot= case $with_sysroot in #( yes) if test yes = "$GCC"; then lt_sysroot=`$CC --print-sysroot 2>/dev/null` fi ;; #( /*) lt_sysroot=`echo "$with_sysroot" | sed -e "$sed_quote_subst"` ;; #( no|'') ;; #( *) { $as_echo "$as_me:${as_lineno-$LINENO}: result: $with_sysroot" >&5 $as_echo "$with_sysroot" >&6; } as_fn_error $? "The sysroot must be an absolute path." "$LINENO" 5 ;; esac { $as_echo "$as_me:${as_lineno-$LINENO}: result: ${lt_sysroot:-no}" >&5 $as_echo "${lt_sysroot:-no}" >&6; } { $as_echo "$as_me:${as_lineno-$LINENO}: checking for a working dd" >&5 $as_echo_n "checking for a working dd... " >&6; } if ${ac_cv_path_lt_DD+:} false; then : $as_echo_n "(cached) " >&6 else printf 0123456789abcdef0123456789abcdef >conftest.i cat conftest.i conftest.i >conftest2.i : ${lt_DD:=$DD} if test -z "$lt_DD"; then ac_path_lt_DD_found=false # Loop through the user's path and test for each of PROGNAME-LIST as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_prog in dd; do for ac_exec_ext in '' $ac_executable_extensions; do ac_path_lt_DD="$as_dir/$ac_prog$ac_exec_ext" as_fn_executable_p "$ac_path_lt_DD" || continue if "$ac_path_lt_DD" bs=32 count=1 conftest.out 2>/dev/null; then cmp -s conftest.i conftest.out \ && ac_cv_path_lt_DD="$ac_path_lt_DD" ac_path_lt_DD_found=: fi $ac_path_lt_DD_found && break 3 done done done IFS=$as_save_IFS if test -z "$ac_cv_path_lt_DD"; then : fi else ac_cv_path_lt_DD=$lt_DD fi rm -f conftest.i conftest2.i conftest.out fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_path_lt_DD" >&5 $as_echo "$ac_cv_path_lt_DD" >&6; } { $as_echo "$as_me:${as_lineno-$LINENO}: checking how to truncate binary pipes" >&5 $as_echo_n "checking how to truncate binary pipes... " >&6; } if ${lt_cv_truncate_bin+:} false; then : $as_echo_n "(cached) " >&6 else printf 0123456789abcdef0123456789abcdef >conftest.i cat conftest.i conftest.i >conftest2.i lt_cv_truncate_bin= if "$ac_cv_path_lt_DD" bs=32 count=1 conftest.out 2>/dev/null; then cmp -s conftest.i conftest.out \ && lt_cv_truncate_bin="$ac_cv_path_lt_DD bs=4096 count=1" fi rm -f conftest.i conftest2.i conftest.out test -z "$lt_cv_truncate_bin" && lt_cv_truncate_bin="$SED -e 4q" fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_truncate_bin" >&5 $as_echo "$lt_cv_truncate_bin" >&6; } # Calculate cc_basename. Skip known compiler wrappers and cross-prefix. func_cc_basename () { for cc_temp in $*""; do case $cc_temp in compile | *[\\/]compile | ccache | *[\\/]ccache ) ;; distcc | *[\\/]distcc | purify | *[\\/]purify ) ;; \-*) ;; *) break;; esac done func_cc_basename_result=`$ECHO "$cc_temp" | $SED "s%.*/%%; s%^$host_alias-%%"` } # Check whether --enable-libtool-lock was given. if test "${enable_libtool_lock+set}" = set; then : enableval=$enable_libtool_lock; fi test no = "$enable_libtool_lock" || enable_libtool_lock=yes # Some flags need to be propagated to the compiler or linker for good # libtool support. case $host in ia64-*-hpux*) # Find out what ABI is being produced by ac_compile, and set mode # options accordingly. echo 'int i;' > conftest.$ac_ext if { { eval echo "\"\$as_me\":${as_lineno-$LINENO}: \"$ac_compile\""; } >&5 (eval $ac_compile) 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; }; then case `/usr/bin/file conftest.$ac_objext` in *ELF-32*) HPUX_IA64_MODE=32 ;; *ELF-64*) HPUX_IA64_MODE=64 ;; esac fi rm -rf conftest* ;; *-*-irix6*) # Find out what ABI is being produced by ac_compile, and set linker # options accordingly. echo '#line '$LINENO' "configure"' > conftest.$ac_ext if { { eval echo "\"\$as_me\":${as_lineno-$LINENO}: \"$ac_compile\""; } >&5 (eval $ac_compile) 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; }; then if test yes = "$lt_cv_prog_gnu_ld"; then case `/usr/bin/file conftest.$ac_objext` in *32-bit*) LD="${LD-ld} -melf32bsmip" ;; *N32*) LD="${LD-ld} -melf32bmipn32" ;; *64-bit*) LD="${LD-ld} -melf64bmip" ;; esac else case `/usr/bin/file conftest.$ac_objext` in *32-bit*) LD="${LD-ld} -32" ;; *N32*) LD="${LD-ld} -n32" ;; *64-bit*) LD="${LD-ld} -64" ;; esac fi fi rm -rf conftest* ;; mips64*-*linux*) # Find out what ABI is being produced by ac_compile, and set linker # options accordingly. echo '#line '$LINENO' "configure"' > conftest.$ac_ext if { { eval echo "\"\$as_me\":${as_lineno-$LINENO}: \"$ac_compile\""; } >&5 (eval $ac_compile) 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; }; then emul=elf case `/usr/bin/file conftest.$ac_objext` in *32-bit*) emul="${emul}32" ;; *64-bit*) emul="${emul}64" ;; esac case `/usr/bin/file conftest.$ac_objext` in *MSB*) emul="${emul}btsmip" ;; *LSB*) emul="${emul}ltsmip" ;; esac case `/usr/bin/file conftest.$ac_objext` in *N32*) emul="${emul}n32" ;; esac LD="${LD-ld} -m $emul" fi rm -rf conftest* ;; x86_64-*kfreebsd*-gnu|x86_64-*linux*|powerpc*-*linux*| \ s390*-*linux*|s390*-*tpf*|sparc*-*linux*) # Find out what ABI is being produced by ac_compile, and set linker # options accordingly. Note that the listed cases only cover the # situations where additional linker options are needed (such as when # doing 32-bit compilation for a host where ld defaults to 64-bit, or # vice versa); the common cases where no linker options are needed do # not appear in the list. echo 'int i;' > conftest.$ac_ext if { { eval echo "\"\$as_me\":${as_lineno-$LINENO}: \"$ac_compile\""; } >&5 (eval $ac_compile) 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; }; then case `/usr/bin/file conftest.o` in *32-bit*) case $host in x86_64-*kfreebsd*-gnu) LD="${LD-ld} -m elf_i386_fbsd" ;; x86_64-*linux*) case `/usr/bin/file conftest.o` in *x86-64*) LD="${LD-ld} -m elf32_x86_64" ;; *) LD="${LD-ld} -m elf_i386" ;; esac ;; powerpc64le-*linux*) LD="${LD-ld} -m elf32lppclinux" ;; powerpc64-*linux*) LD="${LD-ld} -m elf32ppclinux" ;; s390x-*linux*) LD="${LD-ld} -m elf_s390" ;; sparc64-*linux*) LD="${LD-ld} -m elf32_sparc" ;; esac ;; *64-bit*) case $host in x86_64-*kfreebsd*-gnu) LD="${LD-ld} -m elf_x86_64_fbsd" ;; x86_64-*linux*) LD="${LD-ld} -m elf_x86_64" ;; powerpcle-*linux*) LD="${LD-ld} -m elf64lppc" ;; powerpc-*linux*) LD="${LD-ld} -m elf64ppc" ;; s390*-*linux*|s390*-*tpf*) LD="${LD-ld} -m elf64_s390" ;; sparc*-*linux*) LD="${LD-ld} -m elf64_sparc" ;; esac ;; esac fi rm -rf conftest* ;; *-*-sco3.2v5*) # On SCO OpenServer 5, we need -belf to get full-featured binaries. SAVE_CFLAGS=$CFLAGS CFLAGS="$CFLAGS -belf" { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether the C compiler needs -belf" >&5 $as_echo_n "checking whether the C compiler needs -belf... " >&6; } if ${lt_cv_cc_needs_belf+:} false; then : $as_echo_n "(cached) " >&6 else ac_ext=c ac_cpp='$CPP $CPPFLAGS' ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5' ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_c_compiler_gnu cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ int main () { ; return 0; } _ACEOF if ac_fn_c_try_link "$LINENO"; then : lt_cv_cc_needs_belf=yes else lt_cv_cc_needs_belf=no fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext conftest.$ac_ext ac_ext=c ac_cpp='$CPP $CPPFLAGS' ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5' ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_c_compiler_gnu fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_cc_needs_belf" >&5 $as_echo "$lt_cv_cc_needs_belf" >&6; } if test yes != "$lt_cv_cc_needs_belf"; then # this is probably gcc 2.8.0, egcs 1.0 or newer; no need for -belf CFLAGS=$SAVE_CFLAGS fi ;; *-*solaris*) # Find out what ABI is being produced by ac_compile, and set linker # options accordingly. echo 'int i;' > conftest.$ac_ext if { { eval echo "\"\$as_me\":${as_lineno-$LINENO}: \"$ac_compile\""; } >&5 (eval $ac_compile) 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; }; then case `/usr/bin/file conftest.o` in *64-bit*) case $lt_cv_prog_gnu_ld in yes*) case $host in i?86-*-solaris*|x86_64-*-solaris*) LD="${LD-ld} -m elf_x86_64" ;; sparc*-*-solaris*) LD="${LD-ld} -m elf64_sparc" ;; esac # GNU ld 2.21 introduced _sol2 emulations. Use them if available. if ${LD-ld} -V | grep _sol2 >/dev/null 2>&1; then LD=${LD-ld}_sol2 fi ;; *) if ${LD-ld} -64 -r -o conftest2.o conftest.o >/dev/null 2>&1; then LD="${LD-ld} -64" fi ;; esac ;; esac fi rm -rf conftest* ;; esac need_locks=$enable_libtool_lock if test -n "$ac_tool_prefix"; then # Extract the first word of "${ac_tool_prefix}mt", so it can be a program name with args. set dummy ${ac_tool_prefix}mt; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_MANIFEST_TOOL+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$MANIFEST_TOOL"; then ac_cv_prog_MANIFEST_TOOL="$MANIFEST_TOOL" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_MANIFEST_TOOL="${ac_tool_prefix}mt" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi MANIFEST_TOOL=$ac_cv_prog_MANIFEST_TOOL if test -n "$MANIFEST_TOOL"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $MANIFEST_TOOL" >&5 $as_echo "$MANIFEST_TOOL" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi fi if test -z "$ac_cv_prog_MANIFEST_TOOL"; then ac_ct_MANIFEST_TOOL=$MANIFEST_TOOL # Extract the first word of "mt", so it can be a program name with args. set dummy mt; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_ac_ct_MANIFEST_TOOL+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$ac_ct_MANIFEST_TOOL"; then ac_cv_prog_ac_ct_MANIFEST_TOOL="$ac_ct_MANIFEST_TOOL" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_ac_ct_MANIFEST_TOOL="mt" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi ac_ct_MANIFEST_TOOL=$ac_cv_prog_ac_ct_MANIFEST_TOOL if test -n "$ac_ct_MANIFEST_TOOL"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_ct_MANIFEST_TOOL" >&5 $as_echo "$ac_ct_MANIFEST_TOOL" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi if test "x$ac_ct_MANIFEST_TOOL" = x; then MANIFEST_TOOL=":" else case $cross_compiling:$ac_tool_warned in yes:) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: using cross tools not prefixed with host triplet" >&5 $as_echo "$as_me: WARNING: using cross tools not prefixed with host triplet" >&2;} ac_tool_warned=yes ;; esac MANIFEST_TOOL=$ac_ct_MANIFEST_TOOL fi else MANIFEST_TOOL="$ac_cv_prog_MANIFEST_TOOL" fi test -z "$MANIFEST_TOOL" && MANIFEST_TOOL=mt { $as_echo "$as_me:${as_lineno-$LINENO}: checking if $MANIFEST_TOOL is a manifest tool" >&5 $as_echo_n "checking if $MANIFEST_TOOL is a manifest tool... " >&6; } if ${lt_cv_path_mainfest_tool+:} false; then : $as_echo_n "(cached) " >&6 else lt_cv_path_mainfest_tool=no echo "$as_me:$LINENO: $MANIFEST_TOOL '-?'" >&5 $MANIFEST_TOOL '-?' 2>conftest.err > conftest.out cat conftest.err >&5 if $GREP 'Manifest Tool' conftest.out > /dev/null; then lt_cv_path_mainfest_tool=yes fi rm -f conftest* fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_path_mainfest_tool" >&5 $as_echo "$lt_cv_path_mainfest_tool" >&6; } if test yes != "$lt_cv_path_mainfest_tool"; then MANIFEST_TOOL=: fi case $host_os in rhapsody* | darwin*) if test -n "$ac_tool_prefix"; then # Extract the first word of "${ac_tool_prefix}dsymutil", so it can be a program name with args. set dummy ${ac_tool_prefix}dsymutil; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_DSYMUTIL+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$DSYMUTIL"; then ac_cv_prog_DSYMUTIL="$DSYMUTIL" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_DSYMUTIL="${ac_tool_prefix}dsymutil" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi DSYMUTIL=$ac_cv_prog_DSYMUTIL if test -n "$DSYMUTIL"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $DSYMUTIL" >&5 $as_echo "$DSYMUTIL" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi fi if test -z "$ac_cv_prog_DSYMUTIL"; then ac_ct_DSYMUTIL=$DSYMUTIL # Extract the first word of "dsymutil", so it can be a program name with args. set dummy dsymutil; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_ac_ct_DSYMUTIL+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$ac_ct_DSYMUTIL"; then ac_cv_prog_ac_ct_DSYMUTIL="$ac_ct_DSYMUTIL" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_ac_ct_DSYMUTIL="dsymutil" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi ac_ct_DSYMUTIL=$ac_cv_prog_ac_ct_DSYMUTIL if test -n "$ac_ct_DSYMUTIL"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_ct_DSYMUTIL" >&5 $as_echo "$ac_ct_DSYMUTIL" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi if test "x$ac_ct_DSYMUTIL" = x; then DSYMUTIL=":" else case $cross_compiling:$ac_tool_warned in yes:) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: using cross tools not prefixed with host triplet" >&5 $as_echo "$as_me: WARNING: using cross tools not prefixed with host triplet" >&2;} ac_tool_warned=yes ;; esac DSYMUTIL=$ac_ct_DSYMUTIL fi else DSYMUTIL="$ac_cv_prog_DSYMUTIL" fi if test -n "$ac_tool_prefix"; then # Extract the first word of "${ac_tool_prefix}nmedit", so it can be a program name with args. set dummy ${ac_tool_prefix}nmedit; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_NMEDIT+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$NMEDIT"; then ac_cv_prog_NMEDIT="$NMEDIT" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_NMEDIT="${ac_tool_prefix}nmedit" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi NMEDIT=$ac_cv_prog_NMEDIT if test -n "$NMEDIT"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $NMEDIT" >&5 $as_echo "$NMEDIT" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi fi if test -z "$ac_cv_prog_NMEDIT"; then ac_ct_NMEDIT=$NMEDIT # Extract the first word of "nmedit", so it can be a program name with args. set dummy nmedit; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_ac_ct_NMEDIT+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$ac_ct_NMEDIT"; then ac_cv_prog_ac_ct_NMEDIT="$ac_ct_NMEDIT" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_ac_ct_NMEDIT="nmedit" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi ac_ct_NMEDIT=$ac_cv_prog_ac_ct_NMEDIT if test -n "$ac_ct_NMEDIT"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_ct_NMEDIT" >&5 $as_echo "$ac_ct_NMEDIT" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi if test "x$ac_ct_NMEDIT" = x; then NMEDIT=":" else case $cross_compiling:$ac_tool_warned in yes:) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: using cross tools not prefixed with host triplet" >&5 $as_echo "$as_me: WARNING: using cross tools not prefixed with host triplet" >&2;} ac_tool_warned=yes ;; esac NMEDIT=$ac_ct_NMEDIT fi else NMEDIT="$ac_cv_prog_NMEDIT" fi if test -n "$ac_tool_prefix"; then # Extract the first word of "${ac_tool_prefix}lipo", so it can be a program name with args. set dummy ${ac_tool_prefix}lipo; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_LIPO+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$LIPO"; then ac_cv_prog_LIPO="$LIPO" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_LIPO="${ac_tool_prefix}lipo" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi LIPO=$ac_cv_prog_LIPO if test -n "$LIPO"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $LIPO" >&5 $as_echo "$LIPO" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi fi if test -z "$ac_cv_prog_LIPO"; then ac_ct_LIPO=$LIPO # Extract the first word of "lipo", so it can be a program name with args. set dummy lipo; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_ac_ct_LIPO+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$ac_ct_LIPO"; then ac_cv_prog_ac_ct_LIPO="$ac_ct_LIPO" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_ac_ct_LIPO="lipo" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi ac_ct_LIPO=$ac_cv_prog_ac_ct_LIPO if test -n "$ac_ct_LIPO"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_ct_LIPO" >&5 $as_echo "$ac_ct_LIPO" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi if test "x$ac_ct_LIPO" = x; then LIPO=":" else case $cross_compiling:$ac_tool_warned in yes:) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: using cross tools not prefixed with host triplet" >&5 $as_echo "$as_me: WARNING: using cross tools not prefixed with host triplet" >&2;} ac_tool_warned=yes ;; esac LIPO=$ac_ct_LIPO fi else LIPO="$ac_cv_prog_LIPO" fi if test -n "$ac_tool_prefix"; then # Extract the first word of "${ac_tool_prefix}otool", so it can be a program name with args. set dummy ${ac_tool_prefix}otool; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_OTOOL+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$OTOOL"; then ac_cv_prog_OTOOL="$OTOOL" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_OTOOL="${ac_tool_prefix}otool" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi OTOOL=$ac_cv_prog_OTOOL if test -n "$OTOOL"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $OTOOL" >&5 $as_echo "$OTOOL" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi fi if test -z "$ac_cv_prog_OTOOL"; then ac_ct_OTOOL=$OTOOL # Extract the first word of "otool", so it can be a program name with args. set dummy otool; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_ac_ct_OTOOL+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$ac_ct_OTOOL"; then ac_cv_prog_ac_ct_OTOOL="$ac_ct_OTOOL" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_ac_ct_OTOOL="otool" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi ac_ct_OTOOL=$ac_cv_prog_ac_ct_OTOOL if test -n "$ac_ct_OTOOL"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_ct_OTOOL" >&5 $as_echo "$ac_ct_OTOOL" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi if test "x$ac_ct_OTOOL" = x; then OTOOL=":" else case $cross_compiling:$ac_tool_warned in yes:) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: using cross tools not prefixed with host triplet" >&5 $as_echo "$as_me: WARNING: using cross tools not prefixed with host triplet" >&2;} ac_tool_warned=yes ;; esac OTOOL=$ac_ct_OTOOL fi else OTOOL="$ac_cv_prog_OTOOL" fi if test -n "$ac_tool_prefix"; then # Extract the first word of "${ac_tool_prefix}otool64", so it can be a program name with args. set dummy ${ac_tool_prefix}otool64; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_OTOOL64+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$OTOOL64"; then ac_cv_prog_OTOOL64="$OTOOL64" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_OTOOL64="${ac_tool_prefix}otool64" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi OTOOL64=$ac_cv_prog_OTOOL64 if test -n "$OTOOL64"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $OTOOL64" >&5 $as_echo "$OTOOL64" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi fi if test -z "$ac_cv_prog_OTOOL64"; then ac_ct_OTOOL64=$OTOOL64 # Extract the first word of "otool64", so it can be a program name with args. set dummy otool64; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_ac_ct_OTOOL64+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$ac_ct_OTOOL64"; then ac_cv_prog_ac_ct_OTOOL64="$ac_ct_OTOOL64" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_ac_ct_OTOOL64="otool64" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi ac_ct_OTOOL64=$ac_cv_prog_ac_ct_OTOOL64 if test -n "$ac_ct_OTOOL64"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_ct_OTOOL64" >&5 $as_echo "$ac_ct_OTOOL64" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi if test "x$ac_ct_OTOOL64" = x; then OTOOL64=":" else case $cross_compiling:$ac_tool_warned in yes:) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: using cross tools not prefixed with host triplet" >&5 $as_echo "$as_me: WARNING: using cross tools not prefixed with host triplet" >&2;} ac_tool_warned=yes ;; esac OTOOL64=$ac_ct_OTOOL64 fi else OTOOL64="$ac_cv_prog_OTOOL64" fi { $as_echo "$as_me:${as_lineno-$LINENO}: checking for -single_module linker flag" >&5 $as_echo_n "checking for -single_module linker flag... " >&6; } if ${lt_cv_apple_cc_single_mod+:} false; then : $as_echo_n "(cached) " >&6 else lt_cv_apple_cc_single_mod=no if test -z "$LT_MULTI_MODULE"; then # By default we will add the -single_module flag. You can override # by either setting the environment variable LT_MULTI_MODULE # non-empty at configure time, or by adding -multi_module to the # link flags. rm -rf libconftest.dylib* echo "int foo(void){return 1;}" > conftest.c echo "$LTCC $LTCFLAGS $LDFLAGS -o libconftest.dylib \ -dynamiclib -Wl,-single_module conftest.c" >&5 $LTCC $LTCFLAGS $LDFLAGS -o libconftest.dylib \ -dynamiclib -Wl,-single_module conftest.c 2>conftest.err _lt_result=$? # If there is a non-empty error log, and "single_module" # appears in it, assume the flag caused a linker warning if test -s conftest.err && $GREP single_module conftest.err; then cat conftest.err >&5 # Otherwise, if the output was created with a 0 exit code from # the compiler, it worked. elif test -f libconftest.dylib && test 0 = "$_lt_result"; then lt_cv_apple_cc_single_mod=yes else cat conftest.err >&5 fi rm -rf libconftest.dylib* rm -f conftest.* fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_apple_cc_single_mod" >&5 $as_echo "$lt_cv_apple_cc_single_mod" >&6; } { $as_echo "$as_me:${as_lineno-$LINENO}: checking for -exported_symbols_list linker flag" >&5 $as_echo_n "checking for -exported_symbols_list linker flag... " >&6; } if ${lt_cv_ld_exported_symbols_list+:} false; then : $as_echo_n "(cached) " >&6 else lt_cv_ld_exported_symbols_list=no save_LDFLAGS=$LDFLAGS echo "_main" > conftest.sym LDFLAGS="$LDFLAGS -Wl,-exported_symbols_list,conftest.sym" cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ int main () { ; return 0; } _ACEOF if ac_fn_c_try_link "$LINENO"; then : lt_cv_ld_exported_symbols_list=yes else lt_cv_ld_exported_symbols_list=no fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext conftest.$ac_ext LDFLAGS=$save_LDFLAGS fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_ld_exported_symbols_list" >&5 $as_echo "$lt_cv_ld_exported_symbols_list" >&6; } { $as_echo "$as_me:${as_lineno-$LINENO}: checking for -force_load linker flag" >&5 $as_echo_n "checking for -force_load linker flag... " >&6; } if ${lt_cv_ld_force_load+:} false; then : $as_echo_n "(cached) " >&6 else lt_cv_ld_force_load=no cat > conftest.c << _LT_EOF int forced_loaded() { return 2;} _LT_EOF echo "$LTCC $LTCFLAGS -c -o conftest.o conftest.c" >&5 $LTCC $LTCFLAGS -c -o conftest.o conftest.c 2>&5 echo "$AR cru libconftest.a conftest.o" >&5 $AR cru libconftest.a conftest.o 2>&5 echo "$RANLIB libconftest.a" >&5 $RANLIB libconftest.a 2>&5 cat > conftest.c << _LT_EOF int main() { return 0;} _LT_EOF echo "$LTCC $LTCFLAGS $LDFLAGS -o conftest conftest.c -Wl,-force_load,./libconftest.a" >&5 $LTCC $LTCFLAGS $LDFLAGS -o conftest conftest.c -Wl,-force_load,./libconftest.a 2>conftest.err _lt_result=$? if test -s conftest.err && $GREP force_load conftest.err; then cat conftest.err >&5 elif test -f conftest && test 0 = "$_lt_result" && $GREP forced_load conftest >/dev/null 2>&1; then lt_cv_ld_force_load=yes else cat conftest.err >&5 fi rm -f conftest.err libconftest.a conftest conftest.c rm -rf conftest.dSYM fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_ld_force_load" >&5 $as_echo "$lt_cv_ld_force_load" >&6; } case $host_os in rhapsody* | darwin1.[012]) _lt_dar_allow_undefined='$wl-undefined ${wl}suppress' ;; darwin1.*) _lt_dar_allow_undefined='$wl-flat_namespace $wl-undefined ${wl}suppress' ;; darwin*) # darwin 5.x on # if running on 10.5 or later, the deployment target defaults # to the OS version, if on x86, and 10.4, the deployment # target defaults to 10.4. Don't you love it? case ${MACOSX_DEPLOYMENT_TARGET-10.0},$host in 10.0,*86*-darwin8*|10.0,*-darwin[91]*) _lt_dar_allow_undefined='$wl-undefined ${wl}dynamic_lookup' ;; 10.[012][,.]*) _lt_dar_allow_undefined='$wl-flat_namespace $wl-undefined ${wl}suppress' ;; 10.*) _lt_dar_allow_undefined='$wl-undefined ${wl}dynamic_lookup' ;; esac ;; esac if test yes = "$lt_cv_apple_cc_single_mod"; then _lt_dar_single_mod='$single_module' fi if test yes = "$lt_cv_ld_exported_symbols_list"; then _lt_dar_export_syms=' $wl-exported_symbols_list,$output_objdir/$libname-symbols.expsym' else _lt_dar_export_syms='~$NMEDIT -s $output_objdir/$libname-symbols.expsym $lib' fi if test : != "$DSYMUTIL" && test no = "$lt_cv_ld_force_load"; then _lt_dsymutil='~$DSYMUTIL $lib || :' else _lt_dsymutil= fi ;; esac # func_munge_path_list VARIABLE PATH # ----------------------------------- # VARIABLE is name of variable containing _space_ separated list of # directories to be munged by the contents of PATH, which is string # having a format: # "DIR[:DIR]:" # string "DIR[ DIR]" will be prepended to VARIABLE # ":DIR[:DIR]" # string "DIR[ DIR]" will be appended to VARIABLE # "DIRP[:DIRP]::[DIRA:]DIRA" # string "DIRP[ DIRP]" will be prepended to VARIABLE and string # "DIRA[ DIRA]" will be appended to VARIABLE # "DIR[:DIR]" # VARIABLE will be replaced by "DIR[ DIR]" func_munge_path_list () { case x$2 in x) ;; *:) eval $1=\"`$ECHO $2 | $SED 's/:/ /g'` \$$1\" ;; x:*) eval $1=\"\$$1 `$ECHO $2 | $SED 's/:/ /g'`\" ;; *::*) eval $1=\"\$$1\ `$ECHO $2 | $SED -e 's/.*:://' -e 's/:/ /g'`\" eval $1=\"`$ECHO $2 | $SED -e 's/::.*//' -e 's/:/ /g'`\ \$$1\" ;; *) eval $1=\"`$ECHO $2 | $SED 's/:/ /g'`\" ;; esac } { $as_echo "$as_me:${as_lineno-$LINENO}: checking for ANSI C header files" >&5 $as_echo_n "checking for ANSI C header files... " >&6; } if ${ac_cv_header_stdc+:} false; then : $as_echo_n "(cached) " >&6 else cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include #include #include #include int main () { ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : ac_cv_header_stdc=yes else ac_cv_header_stdc=no fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext if test $ac_cv_header_stdc = yes; then # SunOS 4.x string.h does not declare mem*, contrary to ANSI. cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include _ACEOF if (eval "$ac_cpp conftest.$ac_ext") 2>&5 | $EGREP "memchr" >/dev/null 2>&1; then : else ac_cv_header_stdc=no fi rm -f conftest* fi if test $ac_cv_header_stdc = yes; then # ISC 2.0.2 stdlib.h does not declare free, contrary to ANSI. cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include _ACEOF if (eval "$ac_cpp conftest.$ac_ext") 2>&5 | $EGREP "free" >/dev/null 2>&1; then : else ac_cv_header_stdc=no fi rm -f conftest* fi if test $ac_cv_header_stdc = yes; then # /bin/cc in Irix-4.0.5 gets non-ANSI ctype macros unless using -ansi. if test "$cross_compiling" = yes; then : : else cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include #include #if ((' ' & 0x0FF) == 0x020) # define ISLOWER(c) ('a' <= (c) && (c) <= 'z') # define TOUPPER(c) (ISLOWER(c) ? 'A' + ((c) - 'a') : (c)) #else # define ISLOWER(c) \ (('a' <= (c) && (c) <= 'i') \ || ('j' <= (c) && (c) <= 'r') \ || ('s' <= (c) && (c) <= 'z')) # define TOUPPER(c) (ISLOWER(c) ? ((c) | 0x40) : (c)) #endif #define XOR(e, f) (((e) && !(f)) || (!(e) && (f))) int main () { int i; for (i = 0; i < 256; i++) if (XOR (islower (i), ISLOWER (i)) || toupper (i) != TOUPPER (i)) return 2; return 0; } _ACEOF if ac_fn_c_try_run "$LINENO"; then : else ac_cv_header_stdc=no fi rm -f core *.core core.conftest.* gmon.out bb.out conftest$ac_exeext \ conftest.$ac_objext conftest.beam conftest.$ac_ext fi fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_header_stdc" >&5 $as_echo "$ac_cv_header_stdc" >&6; } if test $ac_cv_header_stdc = yes; then $as_echo "#define STDC_HEADERS 1" >>confdefs.h fi # On IRIX 5.3, sys/types and inttypes.h are conflicting. for ac_header in sys/types.h sys/stat.h stdlib.h string.h memory.h strings.h \ inttypes.h stdint.h unistd.h do : as_ac_Header=`$as_echo "ac_cv_header_$ac_header" | $as_tr_sh` ac_fn_c_check_header_compile "$LINENO" "$ac_header" "$as_ac_Header" "$ac_includes_default " if eval test \"x\$"$as_ac_Header"\" = x"yes"; then : cat >>confdefs.h <<_ACEOF #define `$as_echo "HAVE_$ac_header" | $as_tr_cpp` 1 _ACEOF fi done for ac_header in dlfcn.h do : ac_fn_c_check_header_compile "$LINENO" "dlfcn.h" "ac_cv_header_dlfcn_h" "$ac_includes_default " if test "x$ac_cv_header_dlfcn_h" = xyes; then : cat >>confdefs.h <<_ACEOF #define HAVE_DLFCN_H 1 _ACEOF fi done # Set options enable_dlopen=no enable_win32_dll=no # Check whether --enable-shared was given. if test "${enable_shared+set}" = set; then : enableval=$enable_shared; p=${PACKAGE-default} case $enableval in yes) enable_shared=yes ;; no) enable_shared=no ;; *) enable_shared=no # Look at the argument we got. We use all the common list separators. lt_save_ifs=$IFS; IFS=$IFS$PATH_SEPARATOR, for pkg in $enableval; do IFS=$lt_save_ifs if test "X$pkg" = "X$p"; then enable_shared=yes fi done IFS=$lt_save_ifs ;; esac else enable_shared=yes fi # Check whether --enable-static was given. if test "${enable_static+set}" = set; then : enableval=$enable_static; p=${PACKAGE-default} case $enableval in yes) enable_static=yes ;; no) enable_static=no ;; *) enable_static=no # Look at the argument we got. We use all the common list separators. lt_save_ifs=$IFS; IFS=$IFS$PATH_SEPARATOR, for pkg in $enableval; do IFS=$lt_save_ifs if test "X$pkg" = "X$p"; then enable_static=yes fi done IFS=$lt_save_ifs ;; esac else enable_static=yes fi # Check whether --with-pic was given. if test "${with_pic+set}" = set; then : withval=$with_pic; lt_p=${PACKAGE-default} case $withval in yes|no) pic_mode=$withval ;; *) pic_mode=default # Look at the argument we got. We use all the common list separators. lt_save_ifs=$IFS; IFS=$IFS$PATH_SEPARATOR, for lt_pkg in $withval; do IFS=$lt_save_ifs if test "X$lt_pkg" = "X$lt_p"; then pic_mode=yes fi done IFS=$lt_save_ifs ;; esac else pic_mode=default fi # Check whether --enable-fast-install was given. if test "${enable_fast_install+set}" = set; then : enableval=$enable_fast_install; p=${PACKAGE-default} case $enableval in yes) enable_fast_install=yes ;; no) enable_fast_install=no ;; *) enable_fast_install=no # Look at the argument we got. We use all the common list separators. lt_save_ifs=$IFS; IFS=$IFS$PATH_SEPARATOR, for pkg in $enableval; do IFS=$lt_save_ifs if test "X$pkg" = "X$p"; then enable_fast_install=yes fi done IFS=$lt_save_ifs ;; esac else enable_fast_install=yes fi shared_archive_member_spec= case $host,$enable_shared in power*-*-aix[5-9]*,yes) { $as_echo "$as_me:${as_lineno-$LINENO}: checking which variant of shared library versioning to provide" >&5 $as_echo_n "checking which variant of shared library versioning to provide... " >&6; } # Check whether --with-aix-soname was given. if test "${with_aix_soname+set}" = set; then : withval=$with_aix_soname; case $withval in aix|svr4|both) ;; *) as_fn_error $? "Unknown argument to --with-aix-soname" "$LINENO" 5 ;; esac lt_cv_with_aix_soname=$with_aix_soname else if ${lt_cv_with_aix_soname+:} false; then : $as_echo_n "(cached) " >&6 else lt_cv_with_aix_soname=aix fi with_aix_soname=$lt_cv_with_aix_soname fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $with_aix_soname" >&5 $as_echo "$with_aix_soname" >&6; } if test aix != "$with_aix_soname"; then # For the AIX way of multilib, we name the shared archive member # based on the bitwidth used, traditionally 'shr.o' or 'shr_64.o', # and 'shr.imp' or 'shr_64.imp', respectively, for the Import File. # Even when GNU compilers ignore OBJECT_MODE but need '-maix64' flag, # the AIX toolchain works better with OBJECT_MODE set (default 32). if test 64 = "${OBJECT_MODE-32}"; then shared_archive_member_spec=shr_64 else shared_archive_member_spec=shr fi fi ;; *) with_aix_soname=aix ;; esac # This can be used to rebuild libtool when needed LIBTOOL_DEPS=$ltmain # Always use our own libtool. LIBTOOL='$(SHELL) $(top_builddir)/libtool' test -z "$LN_S" && LN_S="ln -s" if test -n "${ZSH_VERSION+set}"; then setopt NO_GLOB_SUBST fi { $as_echo "$as_me:${as_lineno-$LINENO}: checking for objdir" >&5 $as_echo_n "checking for objdir... " >&6; } if ${lt_cv_objdir+:} false; then : $as_echo_n "(cached) " >&6 else rm -f .libs 2>/dev/null mkdir .libs 2>/dev/null if test -d .libs; then lt_cv_objdir=.libs else # MS-DOS does not allow filenames that begin with a dot. lt_cv_objdir=_libs fi rmdir .libs 2>/dev/null fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_objdir" >&5 $as_echo "$lt_cv_objdir" >&6; } objdir=$lt_cv_objdir cat >>confdefs.h <<_ACEOF #define LT_OBJDIR "$lt_cv_objdir/" _ACEOF case $host_os in aix3*) # AIX sometimes has problems with the GCC collect2 program. For some # reason, if we set the COLLECT_NAMES environment variable, the problems # vanish in a puff of smoke. if test set != "${COLLECT_NAMES+set}"; then COLLECT_NAMES= export COLLECT_NAMES fi ;; esac # Global variables: ofile=libtool can_build_shared=yes # All known linkers require a '.a' archive for static linking (except MSVC, # which needs '.lib'). libext=a with_gnu_ld=$lt_cv_prog_gnu_ld old_CC=$CC old_CFLAGS=$CFLAGS # Set sane defaults for various variables test -z "$CC" && CC=cc test -z "$LTCC" && LTCC=$CC test -z "$LTCFLAGS" && LTCFLAGS=$CFLAGS test -z "$LD" && LD=ld test -z "$ac_objext" && ac_objext=o func_cc_basename $compiler cc_basename=$func_cc_basename_result # Only perform the check for file, if the check method requires it test -z "$MAGIC_CMD" && MAGIC_CMD=file case $deplibs_check_method in file_magic*) if test "$file_magic_cmd" = '$MAGIC_CMD'; then { $as_echo "$as_me:${as_lineno-$LINENO}: checking for ${ac_tool_prefix}file" >&5 $as_echo_n "checking for ${ac_tool_prefix}file... " >&6; } if ${lt_cv_path_MAGIC_CMD+:} false; then : $as_echo_n "(cached) " >&6 else case $MAGIC_CMD in [\\/*] | ?:[\\/]*) lt_cv_path_MAGIC_CMD=$MAGIC_CMD # Let the user override the test with a path. ;; *) lt_save_MAGIC_CMD=$MAGIC_CMD lt_save_ifs=$IFS; IFS=$PATH_SEPARATOR ac_dummy="/usr/bin$PATH_SEPARATOR$PATH" for ac_dir in $ac_dummy; do IFS=$lt_save_ifs test -z "$ac_dir" && ac_dir=. if test -f "$ac_dir/${ac_tool_prefix}file"; then lt_cv_path_MAGIC_CMD=$ac_dir/"${ac_tool_prefix}file" if test -n "$file_magic_test_file"; then case $deplibs_check_method in "file_magic "*) file_magic_regex=`expr "$deplibs_check_method" : "file_magic \(.*\)"` MAGIC_CMD=$lt_cv_path_MAGIC_CMD if eval $file_magic_cmd \$file_magic_test_file 2> /dev/null | $EGREP "$file_magic_regex" > /dev/null; then : else cat <<_LT_EOF 1>&2 *** Warning: the command libtool uses to detect shared libraries, *** $file_magic_cmd, produces output that libtool cannot recognize. *** The result is that libtool may fail to recognize shared libraries *** as such. This will affect the creation of libtool libraries that *** depend on shared libraries, but programs linked with such libtool *** libraries will work regardless of this problem. Nevertheless, you *** may want to report the problem to your system manager and/or to *** bug-libtool@gnu.org _LT_EOF fi ;; esac fi break fi done IFS=$lt_save_ifs MAGIC_CMD=$lt_save_MAGIC_CMD ;; esac fi MAGIC_CMD=$lt_cv_path_MAGIC_CMD if test -n "$MAGIC_CMD"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $MAGIC_CMD" >&5 $as_echo "$MAGIC_CMD" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi if test -z "$lt_cv_path_MAGIC_CMD"; then if test -n "$ac_tool_prefix"; then { $as_echo "$as_me:${as_lineno-$LINENO}: checking for file" >&5 $as_echo_n "checking for file... " >&6; } if ${lt_cv_path_MAGIC_CMD+:} false; then : $as_echo_n "(cached) " >&6 else case $MAGIC_CMD in [\\/*] | ?:[\\/]*) lt_cv_path_MAGIC_CMD=$MAGIC_CMD # Let the user override the test with a path. ;; *) lt_save_MAGIC_CMD=$MAGIC_CMD lt_save_ifs=$IFS; IFS=$PATH_SEPARATOR ac_dummy="/usr/bin$PATH_SEPARATOR$PATH" for ac_dir in $ac_dummy; do IFS=$lt_save_ifs test -z "$ac_dir" && ac_dir=. if test -f "$ac_dir/file"; then lt_cv_path_MAGIC_CMD=$ac_dir/"file" if test -n "$file_magic_test_file"; then case $deplibs_check_method in "file_magic "*) file_magic_regex=`expr "$deplibs_check_method" : "file_magic \(.*\)"` MAGIC_CMD=$lt_cv_path_MAGIC_CMD if eval $file_magic_cmd \$file_magic_test_file 2> /dev/null | $EGREP "$file_magic_regex" > /dev/null; then : else cat <<_LT_EOF 1>&2 *** Warning: the command libtool uses to detect shared libraries, *** $file_magic_cmd, produces output that libtool cannot recognize. *** The result is that libtool may fail to recognize shared libraries *** as such. This will affect the creation of libtool libraries that *** depend on shared libraries, but programs linked with such libtool *** libraries will work regardless of this problem. Nevertheless, you *** may want to report the problem to your system manager and/or to *** bug-libtool@gnu.org _LT_EOF fi ;; esac fi break fi done IFS=$lt_save_ifs MAGIC_CMD=$lt_save_MAGIC_CMD ;; esac fi MAGIC_CMD=$lt_cv_path_MAGIC_CMD if test -n "$MAGIC_CMD"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $MAGIC_CMD" >&5 $as_echo "$MAGIC_CMD" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi else MAGIC_CMD=: fi fi fi ;; esac # Use C for the default configuration in the libtool script lt_save_CC=$CC ac_ext=c ac_cpp='$CPP $CPPFLAGS' ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5' ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_c_compiler_gnu # Source file extension for C test sources. ac_ext=c # Object file extension for compiled C test sources. objext=o objext=$objext # Code to be used in simple compile tests lt_simple_compile_test_code="int some_variable = 0;" # Code to be used in simple link tests lt_simple_link_test_code='int main(){return(0);}' # If no C compiler was specified, use CC. LTCC=${LTCC-"$CC"} # If no C compiler flags were specified, use CFLAGS. LTCFLAGS=${LTCFLAGS-"$CFLAGS"} # Allow CC to be a program name with arguments. compiler=$CC # Save the default compiler, since it gets overwritten when the other # tags are being tested, and _LT_TAGVAR(compiler, []) is a NOP. compiler_DEFAULT=$CC # save warnings/boilerplate of simple test code ac_outfile=conftest.$ac_objext echo "$lt_simple_compile_test_code" >conftest.$ac_ext eval "$ac_compile" 2>&1 >/dev/null | $SED '/^$/d; /^ *+/d' >conftest.err _lt_compiler_boilerplate=`cat conftest.err` $RM conftest* ac_outfile=conftest.$ac_objext echo "$lt_simple_link_test_code" >conftest.$ac_ext eval "$ac_link" 2>&1 >/dev/null | $SED '/^$/d; /^ *+/d' >conftest.err _lt_linker_boilerplate=`cat conftest.err` $RM -r conftest* if test -n "$compiler"; then lt_prog_compiler_no_builtin_flag= if test yes = "$GCC"; then case $cc_basename in nvcc*) lt_prog_compiler_no_builtin_flag=' -Xcompiler -fno-builtin' ;; *) lt_prog_compiler_no_builtin_flag=' -fno-builtin' ;; esac { $as_echo "$as_me:${as_lineno-$LINENO}: checking if $compiler supports -fno-rtti -fno-exceptions" >&5 $as_echo_n "checking if $compiler supports -fno-rtti -fno-exceptions... " >&6; } if ${lt_cv_prog_compiler_rtti_exceptions+:} false; then : $as_echo_n "(cached) " >&6 else lt_cv_prog_compiler_rtti_exceptions=no ac_outfile=conftest.$ac_objext echo "$lt_simple_compile_test_code" > conftest.$ac_ext lt_compiler_flag="-fno-rtti -fno-exceptions" ## exclude from sc_useless_quotes_in_assignment # Insert the option either (1) after the last *FLAGS variable, or # (2) before a word containing "conftest.", or (3) at the end. # Note that $ac_compile itself does not contain backslashes and begins # with a dollar sign (not a hyphen), so the echo should work correctly. # The option is referenced via a variable to avoid confusing sed. lt_compile=`echo "$ac_compile" | $SED \ -e 's:.*FLAGS}\{0,1\} :&$lt_compiler_flag :; t' \ -e 's: [^ ]*conftest\.: $lt_compiler_flag&:; t' \ -e 's:$: $lt_compiler_flag:'` (eval echo "\"\$as_me:$LINENO: $lt_compile\"" >&5) (eval "$lt_compile" 2>conftest.err) ac_status=$? cat conftest.err >&5 echo "$as_me:$LINENO: \$? = $ac_status" >&5 if (exit $ac_status) && test -s "$ac_outfile"; then # The compiler can only warn and ignore the option if not recognized # So say no if there are warnings other than the usual output. $ECHO "$_lt_compiler_boilerplate" | $SED '/^$/d' >conftest.exp $SED '/^$/d; /^ *+/d' conftest.err >conftest.er2 if test ! -s conftest.er2 || diff conftest.exp conftest.er2 >/dev/null; then lt_cv_prog_compiler_rtti_exceptions=yes fi fi $RM conftest* fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_prog_compiler_rtti_exceptions" >&5 $as_echo "$lt_cv_prog_compiler_rtti_exceptions" >&6; } if test yes = "$lt_cv_prog_compiler_rtti_exceptions"; then lt_prog_compiler_no_builtin_flag="$lt_prog_compiler_no_builtin_flag -fno-rtti -fno-exceptions" else : fi fi lt_prog_compiler_wl= lt_prog_compiler_pic= lt_prog_compiler_static= if test yes = "$GCC"; then lt_prog_compiler_wl='-Wl,' lt_prog_compiler_static='-static' case $host_os in aix*) # All AIX code is PIC. if test ia64 = "$host_cpu"; then # AIX 5 now supports IA64 processor lt_prog_compiler_static='-Bstatic' fi lt_prog_compiler_pic='-fPIC' ;; amigaos*) case $host_cpu in powerpc) # see comment about AmigaOS4 .so support lt_prog_compiler_pic='-fPIC' ;; m68k) # FIXME: we need at least 68020 code to build shared libraries, but # adding the '-m68020' flag to GCC prevents building anything better, # like '-m68040'. lt_prog_compiler_pic='-m68020 -resident32 -malways-restore-a4' ;; esac ;; beos* | irix5* | irix6* | nonstopux* | osf3* | osf4* | osf5*) # PIC is the default for these OSes. ;; mingw* | cygwin* | pw32* | os2* | cegcc*) # This hack is so that the source file can tell whether it is being # built for inclusion in a dll (and should export symbols for example). # Although the cygwin gcc ignores -fPIC, still need this for old-style # (--disable-auto-import) libraries lt_prog_compiler_pic='-DDLL_EXPORT' case $host_os in os2*) lt_prog_compiler_static='$wl-static' ;; esac ;; darwin* | rhapsody*) # PIC is the default on this platform # Common symbols not allowed in MH_DYLIB files lt_prog_compiler_pic='-fno-common' ;; haiku*) # PIC is the default for Haiku. # The "-static" flag exists, but is broken. lt_prog_compiler_static= ;; hpux*) # PIC is the default for 64-bit PA HP-UX, but not for 32-bit # PA HP-UX. On IA64 HP-UX, PIC is the default but the pic flag # sets the default TLS model and affects inlining. case $host_cpu in hppa*64*) # +Z the default ;; *) lt_prog_compiler_pic='-fPIC' ;; esac ;; interix[3-9]*) # Interix 3.x gcc -fpic/-fPIC options generate broken code. # Instead, we relocate shared libraries at runtime. ;; msdosdjgpp*) # Just because we use GCC doesn't mean we suddenly get shared libraries # on systems that don't support them. lt_prog_compiler_can_build_shared=no enable_shared=no ;; *nto* | *qnx*) # QNX uses GNU C++, but need to define -shared option too, otherwise # it will coredump. lt_prog_compiler_pic='-fPIC -shared' ;; sysv4*MP*) if test -d /usr/nec; then lt_prog_compiler_pic=-Kconform_pic fi ;; *) lt_prog_compiler_pic='-fPIC' ;; esac case $cc_basename in nvcc*) # Cuda Compiler Driver 2.2 lt_prog_compiler_wl='-Xlinker ' if test -n "$lt_prog_compiler_pic"; then lt_prog_compiler_pic="-Xcompiler $lt_prog_compiler_pic" fi ;; esac else # PORTME Check for flag to pass linker flags through the system compiler. case $host_os in aix*) lt_prog_compiler_wl='-Wl,' if test ia64 = "$host_cpu"; then # AIX 5 now supports IA64 processor lt_prog_compiler_static='-Bstatic' else lt_prog_compiler_static='-bnso -bI:/lib/syscalls.exp' fi ;; darwin* | rhapsody*) # PIC is the default on this platform # Common symbols not allowed in MH_DYLIB files lt_prog_compiler_pic='-fno-common' case $cc_basename in nagfor*) # NAG Fortran compiler lt_prog_compiler_wl='-Wl,-Wl,,' lt_prog_compiler_pic='-PIC' lt_prog_compiler_static='-Bstatic' ;; esac ;; mingw* | cygwin* | pw32* | os2* | cegcc*) # This hack is so that the source file can tell whether it is being # built for inclusion in a dll (and should export symbols for example). lt_prog_compiler_pic='-DDLL_EXPORT' case $host_os in os2*) lt_prog_compiler_static='$wl-static' ;; esac ;; hpux9* | hpux10* | hpux11*) lt_prog_compiler_wl='-Wl,' # PIC is the default for IA64 HP-UX and 64-bit HP-UX, but # not for PA HP-UX. case $host_cpu in hppa*64*|ia64*) # +Z the default ;; *) lt_prog_compiler_pic='+Z' ;; esac # Is there a better lt_prog_compiler_static that works with the bundled CC? lt_prog_compiler_static='$wl-a ${wl}archive' ;; irix5* | irix6* | nonstopux*) lt_prog_compiler_wl='-Wl,' # PIC (with -KPIC) is the default. lt_prog_compiler_static='-non_shared' ;; linux* | k*bsd*-gnu | kopensolaris*-gnu | gnu*) case $cc_basename in # old Intel for x86_64, which still supported -KPIC. ecc*) lt_prog_compiler_wl='-Wl,' lt_prog_compiler_pic='-KPIC' lt_prog_compiler_static='-static' ;; # icc used to be incompatible with GCC. # ICC 10 doesn't accept -KPIC any more. icc* | ifort*) lt_prog_compiler_wl='-Wl,' lt_prog_compiler_pic='-fPIC' lt_prog_compiler_static='-static' ;; # Lahey Fortran 8.1. lf95*) lt_prog_compiler_wl='-Wl,' lt_prog_compiler_pic='--shared' lt_prog_compiler_static='--static' ;; nagfor*) # NAG Fortran compiler lt_prog_compiler_wl='-Wl,-Wl,,' lt_prog_compiler_pic='-PIC' lt_prog_compiler_static='-Bstatic' ;; tcc*) # Fabrice Bellard et al's Tiny C Compiler lt_prog_compiler_wl='-Wl,' lt_prog_compiler_pic='-fPIC' lt_prog_compiler_static='-static' ;; pgcc* | pgf77* | pgf90* | pgf95* | pgfortran*) # Portland Group compilers (*not* the Pentium gcc compiler, # which looks to be a dead project) lt_prog_compiler_wl='-Wl,' lt_prog_compiler_pic='-fpic' lt_prog_compiler_static='-Bstatic' ;; ccc*) lt_prog_compiler_wl='-Wl,' # All Alpha code is PIC. lt_prog_compiler_static='-non_shared' ;; xl* | bgxl* | bgf* | mpixl*) # IBM XL C 8.0/Fortran 10.1, 11.1 on PPC and BlueGene lt_prog_compiler_wl='-Wl,' lt_prog_compiler_pic='-qpic' lt_prog_compiler_static='-qstaticlink' ;; *) case `$CC -V 2>&1 | sed 5q` in *Sun\ Ceres\ Fortran* | *Sun*Fortran*\ [1-7].* | *Sun*Fortran*\ 8.[0-3]*) # Sun Fortran 8.3 passes all unrecognized flags to the linker lt_prog_compiler_pic='-KPIC' lt_prog_compiler_static='-Bstatic' lt_prog_compiler_wl='' ;; *Sun\ F* | *Sun*Fortran*) lt_prog_compiler_pic='-KPIC' lt_prog_compiler_static='-Bstatic' lt_prog_compiler_wl='-Qoption ld ' ;; *Sun\ C*) # Sun C 5.9 lt_prog_compiler_pic='-KPIC' lt_prog_compiler_static='-Bstatic' lt_prog_compiler_wl='-Wl,' ;; *Intel*\ [CF]*Compiler*) lt_prog_compiler_wl='-Wl,' lt_prog_compiler_pic='-fPIC' lt_prog_compiler_static='-static' ;; *Portland\ Group*) lt_prog_compiler_wl='-Wl,' lt_prog_compiler_pic='-fpic' lt_prog_compiler_static='-Bstatic' ;; esac ;; esac ;; newsos6) lt_prog_compiler_pic='-KPIC' lt_prog_compiler_static='-Bstatic' ;; *nto* | *qnx*) # QNX uses GNU C++, but need to define -shared option too, otherwise # it will coredump. lt_prog_compiler_pic='-fPIC -shared' ;; osf3* | osf4* | osf5*) lt_prog_compiler_wl='-Wl,' # All OSF/1 code is PIC. lt_prog_compiler_static='-non_shared' ;; rdos*) lt_prog_compiler_static='-non_shared' ;; solaris*) lt_prog_compiler_pic='-KPIC' lt_prog_compiler_static='-Bstatic' case $cc_basename in f77* | f90* | f95* | sunf77* | sunf90* | sunf95*) lt_prog_compiler_wl='-Qoption ld ';; *) lt_prog_compiler_wl='-Wl,';; esac ;; sunos4*) lt_prog_compiler_wl='-Qoption ld ' lt_prog_compiler_pic='-PIC' lt_prog_compiler_static='-Bstatic' ;; sysv4 | sysv4.2uw2* | sysv4.3*) lt_prog_compiler_wl='-Wl,' lt_prog_compiler_pic='-KPIC' lt_prog_compiler_static='-Bstatic' ;; sysv4*MP*) if test -d /usr/nec; then lt_prog_compiler_pic='-Kconform_pic' lt_prog_compiler_static='-Bstatic' fi ;; sysv5* | unixware* | sco3.2v5* | sco5v6* | OpenUNIX*) lt_prog_compiler_wl='-Wl,' lt_prog_compiler_pic='-KPIC' lt_prog_compiler_static='-Bstatic' ;; unicos*) lt_prog_compiler_wl='-Wl,' lt_prog_compiler_can_build_shared=no ;; uts4*) lt_prog_compiler_pic='-pic' lt_prog_compiler_static='-Bstatic' ;; *) lt_prog_compiler_can_build_shared=no ;; esac fi case $host_os in # For platforms that do not support PIC, -DPIC is meaningless: *djgpp*) lt_prog_compiler_pic= ;; *) lt_prog_compiler_pic="$lt_prog_compiler_pic -DPIC" ;; esac { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $compiler option to produce PIC" >&5 $as_echo_n "checking for $compiler option to produce PIC... " >&6; } if ${lt_cv_prog_compiler_pic+:} false; then : $as_echo_n "(cached) " >&6 else lt_cv_prog_compiler_pic=$lt_prog_compiler_pic fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_prog_compiler_pic" >&5 $as_echo "$lt_cv_prog_compiler_pic" >&6; } lt_prog_compiler_pic=$lt_cv_prog_compiler_pic # # Check to make sure the PIC flag actually works. # if test -n "$lt_prog_compiler_pic"; then { $as_echo "$as_me:${as_lineno-$LINENO}: checking if $compiler PIC flag $lt_prog_compiler_pic works" >&5 $as_echo_n "checking if $compiler PIC flag $lt_prog_compiler_pic works... " >&6; } if ${lt_cv_prog_compiler_pic_works+:} false; then : $as_echo_n "(cached) " >&6 else lt_cv_prog_compiler_pic_works=no ac_outfile=conftest.$ac_objext echo "$lt_simple_compile_test_code" > conftest.$ac_ext lt_compiler_flag="$lt_prog_compiler_pic -DPIC" ## exclude from sc_useless_quotes_in_assignment # Insert the option either (1) after the last *FLAGS variable, or # (2) before a word containing "conftest.", or (3) at the end. # Note that $ac_compile itself does not contain backslashes and begins # with a dollar sign (not a hyphen), so the echo should work correctly. # The option is referenced via a variable to avoid confusing sed. lt_compile=`echo "$ac_compile" | $SED \ -e 's:.*FLAGS}\{0,1\} :&$lt_compiler_flag :; t' \ -e 's: [^ ]*conftest\.: $lt_compiler_flag&:; t' \ -e 's:$: $lt_compiler_flag:'` (eval echo "\"\$as_me:$LINENO: $lt_compile\"" >&5) (eval "$lt_compile" 2>conftest.err) ac_status=$? cat conftest.err >&5 echo "$as_me:$LINENO: \$? = $ac_status" >&5 if (exit $ac_status) && test -s "$ac_outfile"; then # The compiler can only warn and ignore the option if not recognized # So say no if there are warnings other than the usual output. $ECHO "$_lt_compiler_boilerplate" | $SED '/^$/d' >conftest.exp $SED '/^$/d; /^ *+/d' conftest.err >conftest.er2 if test ! -s conftest.er2 || diff conftest.exp conftest.er2 >/dev/null; then lt_cv_prog_compiler_pic_works=yes fi fi $RM conftest* fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_prog_compiler_pic_works" >&5 $as_echo "$lt_cv_prog_compiler_pic_works" >&6; } if test yes = "$lt_cv_prog_compiler_pic_works"; then case $lt_prog_compiler_pic in "" | " "*) ;; *) lt_prog_compiler_pic=" $lt_prog_compiler_pic" ;; esac else lt_prog_compiler_pic= lt_prog_compiler_can_build_shared=no fi fi # # Check to make sure the static flag actually works. # wl=$lt_prog_compiler_wl eval lt_tmp_static_flag=\"$lt_prog_compiler_static\" { $as_echo "$as_me:${as_lineno-$LINENO}: checking if $compiler static flag $lt_tmp_static_flag works" >&5 $as_echo_n "checking if $compiler static flag $lt_tmp_static_flag works... " >&6; } if ${lt_cv_prog_compiler_static_works+:} false; then : $as_echo_n "(cached) " >&6 else lt_cv_prog_compiler_static_works=no save_LDFLAGS=$LDFLAGS LDFLAGS="$LDFLAGS $lt_tmp_static_flag" echo "$lt_simple_link_test_code" > conftest.$ac_ext if (eval $ac_link 2>conftest.err) && test -s conftest$ac_exeext; then # The linker can only warn and ignore the option if not recognized # So say no if there are warnings if test -s conftest.err; then # Append any errors to the config.log. cat conftest.err 1>&5 $ECHO "$_lt_linker_boilerplate" | $SED '/^$/d' > conftest.exp $SED '/^$/d; /^ *+/d' conftest.err >conftest.er2 if diff conftest.exp conftest.er2 >/dev/null; then lt_cv_prog_compiler_static_works=yes fi else lt_cv_prog_compiler_static_works=yes fi fi $RM -r conftest* LDFLAGS=$save_LDFLAGS fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_prog_compiler_static_works" >&5 $as_echo "$lt_cv_prog_compiler_static_works" >&6; } if test yes = "$lt_cv_prog_compiler_static_works"; then : else lt_prog_compiler_static= fi { $as_echo "$as_me:${as_lineno-$LINENO}: checking if $compiler supports -c -o file.$ac_objext" >&5 $as_echo_n "checking if $compiler supports -c -o file.$ac_objext... " >&6; } if ${lt_cv_prog_compiler_c_o+:} false; then : $as_echo_n "(cached) " >&6 else lt_cv_prog_compiler_c_o=no $RM -r conftest 2>/dev/null mkdir conftest cd conftest mkdir out echo "$lt_simple_compile_test_code" > conftest.$ac_ext lt_compiler_flag="-o out/conftest2.$ac_objext" # Insert the option either (1) after the last *FLAGS variable, or # (2) before a word containing "conftest.", or (3) at the end. # Note that $ac_compile itself does not contain backslashes and begins # with a dollar sign (not a hyphen), so the echo should work correctly. lt_compile=`echo "$ac_compile" | $SED \ -e 's:.*FLAGS}\{0,1\} :&$lt_compiler_flag :; t' \ -e 's: [^ ]*conftest\.: $lt_compiler_flag&:; t' \ -e 's:$: $lt_compiler_flag:'` (eval echo "\"\$as_me:$LINENO: $lt_compile\"" >&5) (eval "$lt_compile" 2>out/conftest.err) ac_status=$? cat out/conftest.err >&5 echo "$as_me:$LINENO: \$? = $ac_status" >&5 if (exit $ac_status) && test -s out/conftest2.$ac_objext then # The compiler can only warn and ignore the option if not recognized # So say no if there are warnings $ECHO "$_lt_compiler_boilerplate" | $SED '/^$/d' > out/conftest.exp $SED '/^$/d; /^ *+/d' out/conftest.err >out/conftest.er2 if test ! -s out/conftest.er2 || diff out/conftest.exp out/conftest.er2 >/dev/null; then lt_cv_prog_compiler_c_o=yes fi fi chmod u+w . 2>&5 $RM conftest* # SGI C++ compiler will create directory out/ii_files/ for # template instantiation test -d out/ii_files && $RM out/ii_files/* && rmdir out/ii_files $RM out/* && rmdir out cd .. $RM -r conftest $RM conftest* fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_prog_compiler_c_o" >&5 $as_echo "$lt_cv_prog_compiler_c_o" >&6; } { $as_echo "$as_me:${as_lineno-$LINENO}: checking if $compiler supports -c -o file.$ac_objext" >&5 $as_echo_n "checking if $compiler supports -c -o file.$ac_objext... " >&6; } if ${lt_cv_prog_compiler_c_o+:} false; then : $as_echo_n "(cached) " >&6 else lt_cv_prog_compiler_c_o=no $RM -r conftest 2>/dev/null mkdir conftest cd conftest mkdir out echo "$lt_simple_compile_test_code" > conftest.$ac_ext lt_compiler_flag="-o out/conftest2.$ac_objext" # Insert the option either (1) after the last *FLAGS variable, or # (2) before a word containing "conftest.", or (3) at the end. # Note that $ac_compile itself does not contain backslashes and begins # with a dollar sign (not a hyphen), so the echo should work correctly. lt_compile=`echo "$ac_compile" | $SED \ -e 's:.*FLAGS}\{0,1\} :&$lt_compiler_flag :; t' \ -e 's: [^ ]*conftest\.: $lt_compiler_flag&:; t' \ -e 's:$: $lt_compiler_flag:'` (eval echo "\"\$as_me:$LINENO: $lt_compile\"" >&5) (eval "$lt_compile" 2>out/conftest.err) ac_status=$? cat out/conftest.err >&5 echo "$as_me:$LINENO: \$? = $ac_status" >&5 if (exit $ac_status) && test -s out/conftest2.$ac_objext then # The compiler can only warn and ignore the option if not recognized # So say no if there are warnings $ECHO "$_lt_compiler_boilerplate" | $SED '/^$/d' > out/conftest.exp $SED '/^$/d; /^ *+/d' out/conftest.err >out/conftest.er2 if test ! -s out/conftest.er2 || diff out/conftest.exp out/conftest.er2 >/dev/null; then lt_cv_prog_compiler_c_o=yes fi fi chmod u+w . 2>&5 $RM conftest* # SGI C++ compiler will create directory out/ii_files/ for # template instantiation test -d out/ii_files && $RM out/ii_files/* && rmdir out/ii_files $RM out/* && rmdir out cd .. $RM -r conftest $RM conftest* fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_prog_compiler_c_o" >&5 $as_echo "$lt_cv_prog_compiler_c_o" >&6; } hard_links=nottested if test no = "$lt_cv_prog_compiler_c_o" && test no != "$need_locks"; then # do not overwrite the value of need_locks provided by the user { $as_echo "$as_me:${as_lineno-$LINENO}: checking if we can lock with hard links" >&5 $as_echo_n "checking if we can lock with hard links... " >&6; } hard_links=yes $RM conftest* ln conftest.a conftest.b 2>/dev/null && hard_links=no touch conftest.a ln conftest.a conftest.b 2>&5 || hard_links=no ln conftest.a conftest.b 2>/dev/null && hard_links=no { $as_echo "$as_me:${as_lineno-$LINENO}: result: $hard_links" >&5 $as_echo "$hard_links" >&6; } if test no = "$hard_links"; then { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: '$CC' does not support '-c -o', so 'make -j' may be unsafe" >&5 $as_echo "$as_me: WARNING: '$CC' does not support '-c -o', so 'make -j' may be unsafe" >&2;} need_locks=warn fi else need_locks=no fi { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether the $compiler linker ($LD) supports shared libraries" >&5 $as_echo_n "checking whether the $compiler linker ($LD) supports shared libraries... " >&6; } runpath_var= allow_undefined_flag= always_export_symbols=no archive_cmds= archive_expsym_cmds= compiler_needs_object=no enable_shared_with_static_runtimes=no export_dynamic_flag_spec= export_symbols_cmds='$NM $libobjs $convenience | $global_symbol_pipe | $SED '\''s/.* //'\'' | sort | uniq > $export_symbols' hardcode_automatic=no hardcode_direct=no hardcode_direct_absolute=no hardcode_libdir_flag_spec= hardcode_libdir_separator= hardcode_minus_L=no hardcode_shlibpath_var=unsupported inherit_rpath=no link_all_deplibs=unknown module_cmds= module_expsym_cmds= old_archive_from_new_cmds= old_archive_from_expsyms_cmds= thread_safe_flag_spec= whole_archive_flag_spec= # include_expsyms should be a list of space-separated symbols to be *always* # included in the symbol list include_expsyms= # exclude_expsyms can be an extended regexp of symbols to exclude # it will be wrapped by ' (' and ')$', so one must not match beginning or # end of line. Example: 'a|bc|.*d.*' will exclude the symbols 'a' and 'bc', # as well as any symbol that contains 'd'. exclude_expsyms='_GLOBAL_OFFSET_TABLE_|_GLOBAL__F[ID]_.*' # Although _GLOBAL_OFFSET_TABLE_ is a valid symbol C name, most a.out # platforms (ab)use it in PIC code, but their linkers get confused if # the symbol is explicitly referenced. Since portable code cannot # rely on this symbol name, it's probably fine to never include it in # preloaded symbol tables. # Exclude shared library initialization/finalization symbols. extract_expsyms_cmds= case $host_os in cygwin* | mingw* | pw32* | cegcc*) # FIXME: the MSVC++ port hasn't been tested in a loooong time # When not using gcc, we currently assume that we are using # Microsoft Visual C++. if test yes != "$GCC"; then with_gnu_ld=no fi ;; interix*) # we just hope/assume this is gcc and not c89 (= MSVC++) with_gnu_ld=yes ;; openbsd* | bitrig*) with_gnu_ld=no ;; esac ld_shlibs=yes # On some targets, GNU ld is compatible enough with the native linker # that we're better off using the native interface for both. lt_use_gnu_ld_interface=no if test yes = "$with_gnu_ld"; then case $host_os in aix*) # The AIX port of GNU ld has always aspired to compatibility # with the native linker. However, as the warning in the GNU ld # block says, versions before 2.19.5* couldn't really create working # shared libraries, regardless of the interface used. case `$LD -v 2>&1` in *\ \(GNU\ Binutils\)\ 2.19.5*) ;; *\ \(GNU\ Binutils\)\ 2.[2-9]*) ;; *\ \(GNU\ Binutils\)\ [3-9]*) ;; *) lt_use_gnu_ld_interface=yes ;; esac ;; *) lt_use_gnu_ld_interface=yes ;; esac fi if test yes = "$lt_use_gnu_ld_interface"; then # If archive_cmds runs LD, not CC, wlarc should be empty wlarc='$wl' # Set some defaults for GNU ld with shared library support. These # are reset later if shared libraries are not supported. Putting them # here allows them to be overridden if necessary. runpath_var=LD_RUN_PATH hardcode_libdir_flag_spec='$wl-rpath $wl$libdir' export_dynamic_flag_spec='$wl--export-dynamic' # ancient GNU ld didn't support --whole-archive et. al. if $LD --help 2>&1 | $GREP 'no-whole-archive' > /dev/null; then whole_archive_flag_spec=$wlarc'--whole-archive$convenience '$wlarc'--no-whole-archive' else whole_archive_flag_spec= fi supports_anon_versioning=no case `$LD -v | $SED -e 's/(^)\+)\s\+//' 2>&1` in *GNU\ gold*) supports_anon_versioning=yes ;; *\ [01].* | *\ 2.[0-9].* | *\ 2.10.*) ;; # catch versions < 2.11 *\ 2.11.93.0.2\ *) supports_anon_versioning=yes ;; # RH7.3 ... *\ 2.11.92.0.12\ *) supports_anon_versioning=yes ;; # Mandrake 8.2 ... *\ 2.11.*) ;; # other 2.11 versions *) supports_anon_versioning=yes ;; esac # See if GNU ld supports shared libraries. case $host_os in aix[3-9]*) # On AIX/PPC, the GNU linker is very broken if test ia64 != "$host_cpu"; then ld_shlibs=no cat <<_LT_EOF 1>&2 *** Warning: the GNU linker, at least up to release 2.19, is reported *** to be unable to reliably create shared libraries on AIX. *** Therefore, libtool is disabling shared libraries support. If you *** really care for shared libraries, you may want to install binutils *** 2.20 or above, or modify your PATH so that a non-GNU linker is found. *** You will then need to restart the configuration process. _LT_EOF fi ;; amigaos*) case $host_cpu in powerpc) # see comment about AmigaOS4 .so support archive_cmds='$CC -shared $libobjs $deplibs $compiler_flags $wl-soname $wl$soname -o $lib' archive_expsym_cmds='' ;; m68k) archive_cmds='$RM $output_objdir/a2ixlibrary.data~$ECHO "#define NAME $libname" > $output_objdir/a2ixlibrary.data~$ECHO "#define LIBRARY_ID 1" >> $output_objdir/a2ixlibrary.data~$ECHO "#define VERSION $major" >> $output_objdir/a2ixlibrary.data~$ECHO "#define REVISION $revision" >> $output_objdir/a2ixlibrary.data~$AR $AR_FLAGS $lib $libobjs~$RANLIB $lib~(cd $output_objdir && a2ixlibrary -32)' hardcode_libdir_flag_spec='-L$libdir' hardcode_minus_L=yes ;; esac ;; beos*) if $LD --help 2>&1 | $GREP ': supported targets:.* elf' > /dev/null; then allow_undefined_flag=unsupported # Joseph Beckenbach says some releases of gcc # support --undefined. This deserves some investigation. FIXME archive_cmds='$CC -nostart $libobjs $deplibs $compiler_flags $wl-soname $wl$soname -o $lib' else ld_shlibs=no fi ;; cygwin* | mingw* | pw32* | cegcc*) # _LT_TAGVAR(hardcode_libdir_flag_spec, ) is actually meaningless, # as there is no search path for DLLs. hardcode_libdir_flag_spec='-L$libdir' export_dynamic_flag_spec='$wl--export-all-symbols' allow_undefined_flag=unsupported always_export_symbols=no enable_shared_with_static_runtimes=yes export_symbols_cmds='$NM $libobjs $convenience | $global_symbol_pipe | $SED -e '\''/^[BCDGRS][ ]/s/.*[ ]\([^ ]*\)/\1 DATA/;s/^.*[ ]__nm__\([^ ]*\)[ ][^ ]*/\1 DATA/;/^I[ ]/d;/^[AITW][ ]/s/.* //'\'' | sort | uniq > $export_symbols' exclude_expsyms='[_]+GLOBAL_OFFSET_TABLE_|[_]+GLOBAL__[FID]_.*|[_]+head_[A-Za-z0-9_]+_dll|[A-Za-z0-9_]+_dll_iname' if $LD --help 2>&1 | $GREP 'auto-import' > /dev/null; then archive_cmds='$CC -shared $libobjs $deplibs $compiler_flags -o $output_objdir/$soname $wl--enable-auto-image-base -Xlinker --out-implib -Xlinker $lib' # If the export-symbols file already is a .def file, use it as # is; otherwise, prepend EXPORTS... archive_expsym_cmds='if test DEF = "`$SED -n -e '\''s/^[ ]*//'\'' -e '\''/^\(;.*\)*$/d'\'' -e '\''s/^\(EXPORTS\|LIBRARY\)\([ ].*\)*$/DEF/p'\'' -e q $export_symbols`" ; then cp $export_symbols $output_objdir/$soname.def; else echo EXPORTS > $output_objdir/$soname.def; cat $export_symbols >> $output_objdir/$soname.def; fi~ $CC -shared $output_objdir/$soname.def $libobjs $deplibs $compiler_flags -o $output_objdir/$soname $wl--enable-auto-image-base -Xlinker --out-implib -Xlinker $lib' else ld_shlibs=no fi ;; haiku*) archive_cmds='$CC -shared $libobjs $deplibs $compiler_flags $wl-soname $wl$soname -o $lib' link_all_deplibs=yes ;; os2*) hardcode_libdir_flag_spec='-L$libdir' hardcode_minus_L=yes allow_undefined_flag=unsupported shrext_cmds=.dll archive_cmds='$ECHO "LIBRARY ${soname%$shared_ext} INITINSTANCE TERMINSTANCE" > $output_objdir/$libname.def~ $ECHO "DESCRIPTION \"$libname\"" >> $output_objdir/$libname.def~ $ECHO "DATA MULTIPLE NONSHARED" >> $output_objdir/$libname.def~ $ECHO EXPORTS >> $output_objdir/$libname.def~ emxexp $libobjs | $SED /"_DLL_InitTerm"/d >> $output_objdir/$libname.def~ $CC -Zdll -Zcrtdll -o $output_objdir/$soname $libobjs $deplibs $compiler_flags $output_objdir/$libname.def~ emximp -o $lib $output_objdir/$libname.def' archive_expsym_cmds='$ECHO "LIBRARY ${soname%$shared_ext} INITINSTANCE TERMINSTANCE" > $output_objdir/$libname.def~ $ECHO "DESCRIPTION \"$libname\"" >> $output_objdir/$libname.def~ $ECHO "DATA MULTIPLE NONSHARED" >> $output_objdir/$libname.def~ $ECHO EXPORTS >> $output_objdir/$libname.def~ prefix_cmds="$SED"~ if test EXPORTS = "`$SED 1q $export_symbols`"; then prefix_cmds="$prefix_cmds -e 1d"; fi~ prefix_cmds="$prefix_cmds -e \"s/^\(.*\)$/_\1/g\""~ cat $export_symbols | $prefix_cmds >> $output_objdir/$libname.def~ $CC -Zdll -Zcrtdll -o $output_objdir/$soname $libobjs $deplibs $compiler_flags $output_objdir/$libname.def~ emximp -o $lib $output_objdir/$libname.def' old_archive_From_new_cmds='emximp -o $output_objdir/${libname}_dll.a $output_objdir/$libname.def' enable_shared_with_static_runtimes=yes ;; interix[3-9]*) hardcode_direct=no hardcode_shlibpath_var=no hardcode_libdir_flag_spec='$wl-rpath,$libdir' export_dynamic_flag_spec='$wl-E' # Hack: On Interix 3.x, we cannot compile PIC because of a broken gcc. # Instead, shared libraries are loaded at an image base (0x10000000 by # default) and relocated if they conflict, which is a slow very memory # consuming and fragmenting process. To avoid this, we pick a random, # 256 KiB-aligned image base between 0x50000000 and 0x6FFC0000 at link # time. Moving up from 0x10000000 also allows more sbrk(2) space. archive_cmds='$CC -shared $pic_flag $libobjs $deplibs $compiler_flags $wl-h,$soname $wl--image-base,`expr ${RANDOM-$$} % 4096 / 2 \* 262144 + 1342177280` -o $lib' archive_expsym_cmds='sed "s|^|_|" $export_symbols >$output_objdir/$soname.expsym~$CC -shared $pic_flag $libobjs $deplibs $compiler_flags $wl-h,$soname $wl--retain-symbols-file,$output_objdir/$soname.expsym $wl--image-base,`expr ${RANDOM-$$} % 4096 / 2 \* 262144 + 1342177280` -o $lib' ;; gnu* | linux* | tpf* | k*bsd*-gnu | kopensolaris*-gnu) tmp_diet=no if test linux-dietlibc = "$host_os"; then case $cc_basename in diet\ *) tmp_diet=yes;; # linux-dietlibc with static linking (!diet-dyn) esac fi if $LD --help 2>&1 | $EGREP ': supported targets:.* elf' > /dev/null \ && test no = "$tmp_diet" then tmp_addflag=' $pic_flag' tmp_sharedflag='-shared' case $cc_basename,$host_cpu in pgcc*) # Portland Group C compiler whole_archive_flag_spec='$wl--whole-archive`for conv in $convenience\"\"; do test -n \"$conv\" && new_convenience=\"$new_convenience,$conv\"; done; func_echo_all \"$new_convenience\"` $wl--no-whole-archive' tmp_addflag=' $pic_flag' ;; pgf77* | pgf90* | pgf95* | pgfortran*) # Portland Group f77 and f90 compilers whole_archive_flag_spec='$wl--whole-archive`for conv in $convenience\"\"; do test -n \"$conv\" && new_convenience=\"$new_convenience,$conv\"; done; func_echo_all \"$new_convenience\"` $wl--no-whole-archive' tmp_addflag=' $pic_flag -Mnomain' ;; ecc*,ia64* | icc*,ia64*) # Intel C compiler on ia64 tmp_addflag=' -i_dynamic' ;; efc*,ia64* | ifort*,ia64*) # Intel Fortran compiler on ia64 tmp_addflag=' -i_dynamic -nofor_main' ;; ifc* | ifort*) # Intel Fortran compiler tmp_addflag=' -nofor_main' ;; lf95*) # Lahey Fortran 8.1 whole_archive_flag_spec= tmp_sharedflag='--shared' ;; nagfor*) # NAGFOR 5.3 tmp_sharedflag='-Wl,-shared' ;; xl[cC]* | bgxl[cC]* | mpixl[cC]*) # IBM XL C 8.0 on PPC (deal with xlf below) tmp_sharedflag='-qmkshrobj' tmp_addflag= ;; nvcc*) # Cuda Compiler Driver 2.2 whole_archive_flag_spec='$wl--whole-archive`for conv in $convenience\"\"; do test -n \"$conv\" && new_convenience=\"$new_convenience,$conv\"; done; func_echo_all \"$new_convenience\"` $wl--no-whole-archive' compiler_needs_object=yes ;; esac case `$CC -V 2>&1 | sed 5q` in *Sun\ C*) # Sun C 5.9 whole_archive_flag_spec='$wl--whole-archive`new_convenience=; for conv in $convenience\"\"; do test -z \"$conv\" || new_convenience=\"$new_convenience,$conv\"; done; func_echo_all \"$new_convenience\"` $wl--no-whole-archive' compiler_needs_object=yes tmp_sharedflag='-G' ;; *Sun\ F*) # Sun Fortran 8.3 tmp_sharedflag='-G' ;; esac archive_cmds='$CC '"$tmp_sharedflag""$tmp_addflag"' $libobjs $deplibs $compiler_flags $wl-soname $wl$soname -o $lib' if test yes = "$supports_anon_versioning"; then archive_expsym_cmds='echo "{ global:" > $output_objdir/$libname.ver~ cat $export_symbols | sed -e "s/\(.*\)/\1;/" >> $output_objdir/$libname.ver~ echo "local: *; };" >> $output_objdir/$libname.ver~ $CC '"$tmp_sharedflag""$tmp_addflag"' $libobjs $deplibs $compiler_flags $wl-soname $wl$soname $wl-version-script $wl$output_objdir/$libname.ver -o $lib' fi case $cc_basename in tcc*) export_dynamic_flag_spec='-rdynamic' ;; xlf* | bgf* | bgxlf* | mpixlf*) # IBM XL Fortran 10.1 on PPC cannot create shared libs itself whole_archive_flag_spec='--whole-archive$convenience --no-whole-archive' hardcode_libdir_flag_spec='$wl-rpath $wl$libdir' archive_cmds='$LD -shared $libobjs $deplibs $linker_flags -soname $soname -o $lib' if test yes = "$supports_anon_versioning"; then archive_expsym_cmds='echo "{ global:" > $output_objdir/$libname.ver~ cat $export_symbols | sed -e "s/\(.*\)/\1;/" >> $output_objdir/$libname.ver~ echo "local: *; };" >> $output_objdir/$libname.ver~ $LD -shared $libobjs $deplibs $linker_flags -soname $soname -version-script $output_objdir/$libname.ver -o $lib' fi ;; esac else ld_shlibs=no fi ;; netbsd*) if echo __ELF__ | $CC -E - | $GREP __ELF__ >/dev/null; then archive_cmds='$LD -Bshareable $libobjs $deplibs $linker_flags -o $lib' wlarc= else archive_cmds='$CC -shared $pic_flag $libobjs $deplibs $compiler_flags $wl-soname $wl$soname -o $lib' archive_expsym_cmds='$CC -shared $pic_flag $libobjs $deplibs $compiler_flags $wl-soname $wl$soname $wl-retain-symbols-file $wl$export_symbols -o $lib' fi ;; solaris*) if $LD -v 2>&1 | $GREP 'BFD 2\.8' > /dev/null; then ld_shlibs=no cat <<_LT_EOF 1>&2 *** Warning: The releases 2.8.* of the GNU linker cannot reliably *** create shared libraries on Solaris systems. Therefore, libtool *** is disabling shared libraries support. We urge you to upgrade GNU *** binutils to release 2.9.1 or newer. Another option is to modify *** your PATH or compiler configuration so that the native linker is *** used, and then restart. _LT_EOF elif $LD --help 2>&1 | $GREP ': supported targets:.* elf' > /dev/null; then archive_cmds='$CC -shared $pic_flag $libobjs $deplibs $compiler_flags $wl-soname $wl$soname -o $lib' archive_expsym_cmds='$CC -shared $pic_flag $libobjs $deplibs $compiler_flags $wl-soname $wl$soname $wl-retain-symbols-file $wl$export_symbols -o $lib' else ld_shlibs=no fi ;; sysv5* | sco3.2v5* | sco5v6* | unixware* | OpenUNIX*) case `$LD -v 2>&1` in *\ [01].* | *\ 2.[0-9].* | *\ 2.1[0-5].*) ld_shlibs=no cat <<_LT_EOF 1>&2 *** Warning: Releases of the GNU linker prior to 2.16.91.0.3 cannot *** reliably create shared libraries on SCO systems. Therefore, libtool *** is disabling shared libraries support. We urge you to upgrade GNU *** binutils to release 2.16.91.0.3 or newer. Another option is to modify *** your PATH or compiler configuration so that the native linker is *** used, and then restart. _LT_EOF ;; *) # For security reasons, it is highly recommended that you always # use absolute paths for naming shared libraries, and exclude the # DT_RUNPATH tag from executables and libraries. But doing so # requires that you compile everything twice, which is a pain. if $LD --help 2>&1 | $GREP ': supported targets:.* elf' > /dev/null; then hardcode_libdir_flag_spec='$wl-rpath $wl$libdir' archive_cmds='$CC -shared $libobjs $deplibs $compiler_flags $wl-soname $wl$soname -o $lib' archive_expsym_cmds='$CC -shared $libobjs $deplibs $compiler_flags $wl-soname $wl$soname $wl-retain-symbols-file $wl$export_symbols -o $lib' else ld_shlibs=no fi ;; esac ;; sunos4*) archive_cmds='$LD -assert pure-text -Bshareable -o $lib $libobjs $deplibs $linker_flags' wlarc= hardcode_direct=yes hardcode_shlibpath_var=no ;; *) if $LD --help 2>&1 | $GREP ': supported targets:.* elf' > /dev/null; then archive_cmds='$CC -shared $pic_flag $libobjs $deplibs $compiler_flags $wl-soname $wl$soname -o $lib' archive_expsym_cmds='$CC -shared $pic_flag $libobjs $deplibs $compiler_flags $wl-soname $wl$soname $wl-retain-symbols-file $wl$export_symbols -o $lib' else ld_shlibs=no fi ;; esac if test no = "$ld_shlibs"; then runpath_var= hardcode_libdir_flag_spec= export_dynamic_flag_spec= whole_archive_flag_spec= fi else # PORTME fill in a description of your system's linker (not GNU ld) case $host_os in aix3*) allow_undefined_flag=unsupported always_export_symbols=yes archive_expsym_cmds='$LD -o $output_objdir/$soname $libobjs $deplibs $linker_flags -bE:$export_symbols -T512 -H512 -bM:SRE~$AR $AR_FLAGS $lib $output_objdir/$soname' # Note: this linker hardcodes the directories in LIBPATH if there # are no directories specified by -L. hardcode_minus_L=yes if test yes = "$GCC" && test -z "$lt_prog_compiler_static"; then # Neither direct hardcoding nor static linking is supported with a # broken collect2. hardcode_direct=unsupported fi ;; aix[4-9]*) if test ia64 = "$host_cpu"; then # On IA64, the linker does run time linking by default, so we don't # have to do anything special. aix_use_runtimelinking=no exp_sym_flag='-Bexport' no_entry_flag= else # If we're using GNU nm, then we don't want the "-C" option. # -C means demangle to GNU nm, but means don't demangle to AIX nm. # Without the "-l" option, or with the "-B" option, AIX nm treats # weak defined symbols like other global defined symbols, whereas # GNU nm marks them as "W". # While the 'weak' keyword is ignored in the Export File, we need # it in the Import File for the 'aix-soname' feature, so we have # to replace the "-B" option with "-P" for AIX nm. if $NM -V 2>&1 | $GREP 'GNU' > /dev/null; then export_symbols_cmds='$NM -Bpg $libobjs $convenience | awk '\''{ if (((\$ 2 == "T") || (\$ 2 == "D") || (\$ 2 == "B") || (\$ 2 == "W")) && (substr(\$ 3,1,1) != ".")) { if (\$ 2 == "W") { print \$ 3 " weak" } else { print \$ 3 } } }'\'' | sort -u > $export_symbols' else export_symbols_cmds='`func_echo_all $NM | $SED -e '\''s/B\([^B]*\)$/P\1/'\''` -PCpgl $libobjs $convenience | awk '\''{ if (((\$ 2 == "T") || (\$ 2 == "D") || (\$ 2 == "B") || (\$ 2 == "W") || (\$ 2 == "V") || (\$ 2 == "Z")) && (substr(\$ 1,1,1) != ".")) { if ((\$ 2 == "W") || (\$ 2 == "V") || (\$ 2 == "Z")) { print \$ 1 " weak" } else { print \$ 1 } } }'\'' | sort -u > $export_symbols' fi aix_use_runtimelinking=no # Test if we are trying to use run time linking or normal # AIX style linking. If -brtl is somewhere in LDFLAGS, we # have runtime linking enabled, and use it for executables. # For shared libraries, we enable/disable runtime linking # depending on the kind of the shared library created - # when "with_aix_soname,aix_use_runtimelinking" is: # "aix,no" lib.a(lib.so.V) shared, rtl:no, for executables # "aix,yes" lib.so shared, rtl:yes, for executables # lib.a static archive # "both,no" lib.so.V(shr.o) shared, rtl:yes # lib.a(lib.so.V) shared, rtl:no, for executables # "both,yes" lib.so.V(shr.o) shared, rtl:yes, for executables # lib.a(lib.so.V) shared, rtl:no # "svr4,*" lib.so.V(shr.o) shared, rtl:yes, for executables # lib.a static archive case $host_os in aix4.[23]|aix4.[23].*|aix[5-9]*) for ld_flag in $LDFLAGS; do if (test x-brtl = "x$ld_flag" || test x-Wl,-brtl = "x$ld_flag"); then aix_use_runtimelinking=yes break fi done if test svr4,no = "$with_aix_soname,$aix_use_runtimelinking"; then # With aix-soname=svr4, we create the lib.so.V shared archives only, # so we don't have lib.a shared libs to link our executables. # We have to force runtime linking in this case. aix_use_runtimelinking=yes LDFLAGS="$LDFLAGS -Wl,-brtl" fi ;; esac exp_sym_flag='-bexport' no_entry_flag='-bnoentry' fi # When large executables or shared objects are built, AIX ld can # have problems creating the table of contents. If linking a library # or program results in "error TOC overflow" add -mminimal-toc to # CXXFLAGS/CFLAGS for g++/gcc. In the cases where that is not # enough to fix the problem, add -Wl,-bbigtoc to LDFLAGS. archive_cmds='' hardcode_direct=yes hardcode_direct_absolute=yes hardcode_libdir_separator=':' link_all_deplibs=yes file_list_spec='$wl-f,' case $with_aix_soname,$aix_use_runtimelinking in aix,*) ;; # traditional, no import file svr4,* | *,yes) # use import file # The Import File defines what to hardcode. hardcode_direct=no hardcode_direct_absolute=no ;; esac if test yes = "$GCC"; then case $host_os in aix4.[012]|aix4.[012].*) # We only want to do this on AIX 4.2 and lower, the check # below for broken collect2 doesn't work under 4.3+ collect2name=`$CC -print-prog-name=collect2` if test -f "$collect2name" && strings "$collect2name" | $GREP resolve_lib_name >/dev/null then # We have reworked collect2 : else # We have old collect2 hardcode_direct=unsupported # It fails to find uninstalled libraries when the uninstalled # path is not listed in the libpath. Setting hardcode_minus_L # to unsupported forces relinking hardcode_minus_L=yes hardcode_libdir_flag_spec='-L$libdir' hardcode_libdir_separator= fi ;; esac shared_flag='-shared' if test yes = "$aix_use_runtimelinking"; then shared_flag="$shared_flag "'$wl-G' fi # Need to ensure runtime linking is disabled for the traditional # shared library, or the linker may eventually find shared libraries # /with/ Import File - we do not want to mix them. shared_flag_aix='-shared' shared_flag_svr4='-shared $wl-G' else # not using gcc if test ia64 = "$host_cpu"; then # VisualAge C++, Version 5.5 for AIX 5L for IA-64, Beta 3 Release # chokes on -Wl,-G. The following line is correct: shared_flag='-G' else if test yes = "$aix_use_runtimelinking"; then shared_flag='$wl-G' else shared_flag='$wl-bM:SRE' fi shared_flag_aix='$wl-bM:SRE' shared_flag_svr4='$wl-G' fi fi export_dynamic_flag_spec='$wl-bexpall' # It seems that -bexpall does not export symbols beginning with # underscore (_), so it is better to generate a list of symbols to export. always_export_symbols=yes if test aix,yes = "$with_aix_soname,$aix_use_runtimelinking"; then # Warning - without using the other runtime loading flags (-brtl), # -berok will link without error, but may produce a broken library. allow_undefined_flag='-berok' # Determine the default libpath from the value encoded in an # empty executable. if test set = "${lt_cv_aix_libpath+set}"; then aix_libpath=$lt_cv_aix_libpath else if ${lt_cv_aix_libpath_+:} false; then : $as_echo_n "(cached) " >&6 else cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ int main () { ; return 0; } _ACEOF if ac_fn_c_try_link "$LINENO"; then : lt_aix_libpath_sed=' /Import File Strings/,/^$/ { /^0/ { s/^0 *\([^ ]*\) *$/\1/ p } }' lt_cv_aix_libpath_=`dump -H conftest$ac_exeext 2>/dev/null | $SED -n -e "$lt_aix_libpath_sed"` # Check for a 64-bit object if we didn't find anything. if test -z "$lt_cv_aix_libpath_"; then lt_cv_aix_libpath_=`dump -HX64 conftest$ac_exeext 2>/dev/null | $SED -n -e "$lt_aix_libpath_sed"` fi fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext conftest.$ac_ext if test -z "$lt_cv_aix_libpath_"; then lt_cv_aix_libpath_=/usr/lib:/lib fi fi aix_libpath=$lt_cv_aix_libpath_ fi hardcode_libdir_flag_spec='$wl-blibpath:$libdir:'"$aix_libpath" archive_expsym_cmds='$CC -o $output_objdir/$soname $libobjs $deplibs $wl'$no_entry_flag' $compiler_flags `if test -n "$allow_undefined_flag"; then func_echo_all "$wl$allow_undefined_flag"; else :; fi` $wl'$exp_sym_flag:\$export_symbols' '$shared_flag else if test ia64 = "$host_cpu"; then hardcode_libdir_flag_spec='$wl-R $libdir:/usr/lib:/lib' allow_undefined_flag="-z nodefs" archive_expsym_cmds="\$CC $shared_flag"' -o $output_objdir/$soname $libobjs $deplibs '"\$wl$no_entry_flag"' $compiler_flags $wl$allow_undefined_flag '"\$wl$exp_sym_flag:\$export_symbols" else # Determine the default libpath from the value encoded in an # empty executable. if test set = "${lt_cv_aix_libpath+set}"; then aix_libpath=$lt_cv_aix_libpath else if ${lt_cv_aix_libpath_+:} false; then : $as_echo_n "(cached) " >&6 else cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ int main () { ; return 0; } _ACEOF if ac_fn_c_try_link "$LINENO"; then : lt_aix_libpath_sed=' /Import File Strings/,/^$/ { /^0/ { s/^0 *\([^ ]*\) *$/\1/ p } }' lt_cv_aix_libpath_=`dump -H conftest$ac_exeext 2>/dev/null | $SED -n -e "$lt_aix_libpath_sed"` # Check for a 64-bit object if we didn't find anything. if test -z "$lt_cv_aix_libpath_"; then lt_cv_aix_libpath_=`dump -HX64 conftest$ac_exeext 2>/dev/null | $SED -n -e "$lt_aix_libpath_sed"` fi fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext conftest.$ac_ext if test -z "$lt_cv_aix_libpath_"; then lt_cv_aix_libpath_=/usr/lib:/lib fi fi aix_libpath=$lt_cv_aix_libpath_ fi hardcode_libdir_flag_spec='$wl-blibpath:$libdir:'"$aix_libpath" # Warning - without using the other run time loading flags, # -berok will link without error, but may produce a broken library. no_undefined_flag=' $wl-bernotok' allow_undefined_flag=' $wl-berok' if test yes = "$with_gnu_ld"; then # We only use this code for GNU lds that support --whole-archive. whole_archive_flag_spec='$wl--whole-archive$convenience $wl--no-whole-archive' else # Exported symbols can be pulled into shared objects from archives whole_archive_flag_spec='$convenience' fi archive_cmds_need_lc=yes archive_expsym_cmds='$RM -r $output_objdir/$realname.d~$MKDIR $output_objdir/$realname.d' # -brtl affects multiple linker settings, -berok does not and is overridden later compiler_flags_filtered='`func_echo_all "$compiler_flags " | $SED -e "s%-brtl\\([, ]\\)%-berok\\1%g"`' if test svr4 != "$with_aix_soname"; then # This is similar to how AIX traditionally builds its shared libraries. archive_expsym_cmds="$archive_expsym_cmds"'~$CC '$shared_flag_aix' -o $output_objdir/$realname.d/$soname $libobjs $deplibs $wl-bnoentry '$compiler_flags_filtered'$wl-bE:$export_symbols$allow_undefined_flag~$AR $AR_FLAGS $output_objdir/$libname$release.a $output_objdir/$realname.d/$soname' fi if test aix != "$with_aix_soname"; then archive_expsym_cmds="$archive_expsym_cmds"'~$CC '$shared_flag_svr4' -o $output_objdir/$realname.d/$shared_archive_member_spec.o $libobjs $deplibs $wl-bnoentry '$compiler_flags_filtered'$wl-bE:$export_symbols$allow_undefined_flag~$STRIP -e $output_objdir/$realname.d/$shared_archive_member_spec.o~( func_echo_all "#! $soname($shared_archive_member_spec.o)"; if test shr_64 = "$shared_archive_member_spec"; then func_echo_all "# 64"; else func_echo_all "# 32"; fi; cat $export_symbols ) > $output_objdir/$realname.d/$shared_archive_member_spec.imp~$AR $AR_FLAGS $output_objdir/$soname $output_objdir/$realname.d/$shared_archive_member_spec.o $output_objdir/$realname.d/$shared_archive_member_spec.imp' else # used by -dlpreopen to get the symbols archive_expsym_cmds="$archive_expsym_cmds"'~$MV $output_objdir/$realname.d/$soname $output_objdir' fi archive_expsym_cmds="$archive_expsym_cmds"'~$RM -r $output_objdir/$realname.d' fi fi ;; amigaos*) case $host_cpu in powerpc) # see comment about AmigaOS4 .so support archive_cmds='$CC -shared $libobjs $deplibs $compiler_flags $wl-soname $wl$soname -o $lib' archive_expsym_cmds='' ;; m68k) archive_cmds='$RM $output_objdir/a2ixlibrary.data~$ECHO "#define NAME $libname" > $output_objdir/a2ixlibrary.data~$ECHO "#define LIBRARY_ID 1" >> $output_objdir/a2ixlibrary.data~$ECHO "#define VERSION $major" >> $output_objdir/a2ixlibrary.data~$ECHO "#define REVISION $revision" >> $output_objdir/a2ixlibrary.data~$AR $AR_FLAGS $lib $libobjs~$RANLIB $lib~(cd $output_objdir && a2ixlibrary -32)' hardcode_libdir_flag_spec='-L$libdir' hardcode_minus_L=yes ;; esac ;; bsdi[45]*) export_dynamic_flag_spec=-rdynamic ;; cygwin* | mingw* | pw32* | cegcc*) # When not using gcc, we currently assume that we are using # Microsoft Visual C++. # hardcode_libdir_flag_spec is actually meaningless, as there is # no search path for DLLs. case $cc_basename in cl*) # Native MSVC hardcode_libdir_flag_spec=' ' allow_undefined_flag=unsupported always_export_symbols=yes file_list_spec='@' # Tell ltmain to make .lib files, not .a files. libext=lib # Tell ltmain to make .dll files, not .so files. shrext_cmds=.dll # FIXME: Setting linknames here is a bad hack. archive_cmds='$CC -o $output_objdir/$soname $libobjs $compiler_flags $deplibs -Wl,-DLL,-IMPLIB:"$tool_output_objdir$libname.dll.lib"~linknames=' archive_expsym_cmds='if test DEF = "`$SED -n -e '\''s/^[ ]*//'\'' -e '\''/^\(;.*\)*$/d'\'' -e '\''s/^\(EXPORTS\|LIBRARY\)\([ ].*\)*$/DEF/p'\'' -e q $export_symbols`" ; then cp "$export_symbols" "$output_objdir/$soname.def"; echo "$tool_output_objdir$soname.def" > "$output_objdir/$soname.exp"; else $SED -e '\''s/^/-link -EXPORT:/'\'' < $export_symbols > $output_objdir/$soname.exp; fi~ $CC -o $tool_output_objdir$soname $libobjs $compiler_flags $deplibs "@$tool_output_objdir$soname.exp" -Wl,-DLL,-IMPLIB:"$tool_output_objdir$libname.dll.lib"~ linknames=' # The linker will not automatically build a static lib if we build a DLL. # _LT_TAGVAR(old_archive_from_new_cmds, )='true' enable_shared_with_static_runtimes=yes exclude_expsyms='_NULL_IMPORT_DESCRIPTOR|_IMPORT_DESCRIPTOR_.*' export_symbols_cmds='$NM $libobjs $convenience | $global_symbol_pipe | $SED -e '\''/^[BCDGRS][ ]/s/.*[ ]\([^ ]*\)/\1,DATA/'\'' | $SED -e '\''/^[AITW][ ]/s/.*[ ]//'\'' | sort | uniq > $export_symbols' # Don't use ranlib old_postinstall_cmds='chmod 644 $oldlib' postlink_cmds='lt_outputfile="@OUTPUT@"~ lt_tool_outputfile="@TOOL_OUTPUT@"~ case $lt_outputfile in *.exe|*.EXE) ;; *) lt_outputfile=$lt_outputfile.exe lt_tool_outputfile=$lt_tool_outputfile.exe ;; esac~ if test : != "$MANIFEST_TOOL" && test -f "$lt_outputfile.manifest"; then $MANIFEST_TOOL -manifest "$lt_tool_outputfile.manifest" -outputresource:"$lt_tool_outputfile" || exit 1; $RM "$lt_outputfile.manifest"; fi' ;; *) # Assume MSVC wrapper hardcode_libdir_flag_spec=' ' allow_undefined_flag=unsupported # Tell ltmain to make .lib files, not .a files. libext=lib # Tell ltmain to make .dll files, not .so files. shrext_cmds=.dll # FIXME: Setting linknames here is a bad hack. archive_cmds='$CC -o $lib $libobjs $compiler_flags `func_echo_all "$deplibs" | $SED '\''s/ -lc$//'\''` -link -dll~linknames=' # The linker will automatically build a .lib file if we build a DLL. old_archive_from_new_cmds='true' # FIXME: Should let the user specify the lib program. old_archive_cmds='lib -OUT:$oldlib$oldobjs$old_deplibs' enable_shared_with_static_runtimes=yes ;; esac ;; darwin* | rhapsody*) archive_cmds_need_lc=no hardcode_direct=no hardcode_automatic=yes hardcode_shlibpath_var=unsupported if test yes = "$lt_cv_ld_force_load"; then whole_archive_flag_spec='`for conv in $convenience\"\"; do test -n \"$conv\" && new_convenience=\"$new_convenience $wl-force_load,$conv\"; done; func_echo_all \"$new_convenience\"`' else whole_archive_flag_spec='' fi link_all_deplibs=yes allow_undefined_flag=$_lt_dar_allow_undefined case $cc_basename in ifort*|nagfor*) _lt_dar_can_shared=yes ;; *) _lt_dar_can_shared=$GCC ;; esac if test yes = "$_lt_dar_can_shared"; then output_verbose_link_cmd=func_echo_all archive_cmds="\$CC -dynamiclib \$allow_undefined_flag -o \$lib \$libobjs \$deplibs \$compiler_flags -install_name \$rpath/\$soname \$verstring $_lt_dar_single_mod$_lt_dsymutil" module_cmds="\$CC \$allow_undefined_flag -o \$lib -bundle \$libobjs \$deplibs \$compiler_flags$_lt_dsymutil" archive_expsym_cmds="sed 's|^|_|' < \$export_symbols > \$output_objdir/\$libname-symbols.expsym~\$CC -dynamiclib \$allow_undefined_flag -o \$lib \$libobjs \$deplibs \$compiler_flags -install_name \$rpath/\$soname \$verstring $_lt_dar_single_mod$_lt_dar_export_syms$_lt_dsymutil" module_expsym_cmds="sed -e 's|^|_|' < \$export_symbols > \$output_objdir/\$libname-symbols.expsym~\$CC \$allow_undefined_flag -o \$lib -bundle \$libobjs \$deplibs \$compiler_flags$_lt_dar_export_syms$_lt_dsymutil" else ld_shlibs=no fi ;; dgux*) archive_cmds='$LD -G -h $soname -o $lib $libobjs $deplibs $linker_flags' hardcode_libdir_flag_spec='-L$libdir' hardcode_shlibpath_var=no ;; # FreeBSD 2.2.[012] allows us to include c++rt0.o to get C++ constructor # support. Future versions do this automatically, but an explicit c++rt0.o # does not break anything, and helps significantly (at the cost of a little # extra space). freebsd2.2*) archive_cmds='$LD -Bshareable -o $lib $libobjs $deplibs $linker_flags /usr/lib/c++rt0.o' hardcode_libdir_flag_spec='-R$libdir' hardcode_direct=yes hardcode_shlibpath_var=no ;; # Unfortunately, older versions of FreeBSD 2 do not have this feature. freebsd2.*) archive_cmds='$LD -Bshareable -o $lib $libobjs $deplibs $linker_flags' hardcode_direct=yes hardcode_minus_L=yes hardcode_shlibpath_var=no ;; # FreeBSD 3 and greater uses gcc -shared to do shared libraries. freebsd* | dragonfly*) archive_cmds='$CC -shared $pic_flag -o $lib $libobjs $deplibs $compiler_flags' hardcode_libdir_flag_spec='-R$libdir' hardcode_direct=yes hardcode_shlibpath_var=no ;; hpux9*) if test yes = "$GCC"; then archive_cmds='$RM $output_objdir/$soname~$CC -shared $pic_flag $wl+b $wl$install_libdir -o $output_objdir/$soname $libobjs $deplibs $compiler_flags~test "x$output_objdir/$soname" = "x$lib" || mv $output_objdir/$soname $lib' else archive_cmds='$RM $output_objdir/$soname~$LD -b +b $install_libdir -o $output_objdir/$soname $libobjs $deplibs $linker_flags~test "x$output_objdir/$soname" = "x$lib" || mv $output_objdir/$soname $lib' fi hardcode_libdir_flag_spec='$wl+b $wl$libdir' hardcode_libdir_separator=: hardcode_direct=yes # hardcode_minus_L: Not really in the search PATH, # but as the default location of the library. hardcode_minus_L=yes export_dynamic_flag_spec='$wl-E' ;; hpux10*) if test yes,no = "$GCC,$with_gnu_ld"; then archive_cmds='$CC -shared $pic_flag $wl+h $wl$soname $wl+b $wl$install_libdir -o $lib $libobjs $deplibs $compiler_flags' else archive_cmds='$LD -b +h $soname +b $install_libdir -o $lib $libobjs $deplibs $linker_flags' fi if test no = "$with_gnu_ld"; then hardcode_libdir_flag_spec='$wl+b $wl$libdir' hardcode_libdir_separator=: hardcode_direct=yes hardcode_direct_absolute=yes export_dynamic_flag_spec='$wl-E' # hardcode_minus_L: Not really in the search PATH, # but as the default location of the library. hardcode_minus_L=yes fi ;; hpux11*) if test yes,no = "$GCC,$with_gnu_ld"; then case $host_cpu in hppa*64*) archive_cmds='$CC -shared $wl+h $wl$soname -o $lib $libobjs $deplibs $compiler_flags' ;; ia64*) archive_cmds='$CC -shared $pic_flag $wl+h $wl$soname $wl+nodefaultrpath -o $lib $libobjs $deplibs $compiler_flags' ;; *) archive_cmds='$CC -shared $pic_flag $wl+h $wl$soname $wl+b $wl$install_libdir -o $lib $libobjs $deplibs $compiler_flags' ;; esac else case $host_cpu in hppa*64*) archive_cmds='$CC -b $wl+h $wl$soname -o $lib $libobjs $deplibs $compiler_flags' ;; ia64*) archive_cmds='$CC -b $wl+h $wl$soname $wl+nodefaultrpath -o $lib $libobjs $deplibs $compiler_flags' ;; *) # Older versions of the 11.00 compiler do not understand -b yet # (HP92453-01 A.11.01.20 doesn't, HP92453-01 B.11.X.35175-35176.GP does) { $as_echo "$as_me:${as_lineno-$LINENO}: checking if $CC understands -b" >&5 $as_echo_n "checking if $CC understands -b... " >&6; } if ${lt_cv_prog_compiler__b+:} false; then : $as_echo_n "(cached) " >&6 else lt_cv_prog_compiler__b=no save_LDFLAGS=$LDFLAGS LDFLAGS="$LDFLAGS -b" echo "$lt_simple_link_test_code" > conftest.$ac_ext if (eval $ac_link 2>conftest.err) && test -s conftest$ac_exeext; then # The linker can only warn and ignore the option if not recognized # So say no if there are warnings if test -s conftest.err; then # Append any errors to the config.log. cat conftest.err 1>&5 $ECHO "$_lt_linker_boilerplate" | $SED '/^$/d' > conftest.exp $SED '/^$/d; /^ *+/d' conftest.err >conftest.er2 if diff conftest.exp conftest.er2 >/dev/null; then lt_cv_prog_compiler__b=yes fi else lt_cv_prog_compiler__b=yes fi fi $RM -r conftest* LDFLAGS=$save_LDFLAGS fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_prog_compiler__b" >&5 $as_echo "$lt_cv_prog_compiler__b" >&6; } if test yes = "$lt_cv_prog_compiler__b"; then archive_cmds='$CC -b $wl+h $wl$soname $wl+b $wl$install_libdir -o $lib $libobjs $deplibs $compiler_flags' else archive_cmds='$LD -b +h $soname +b $install_libdir -o $lib $libobjs $deplibs $linker_flags' fi ;; esac fi if test no = "$with_gnu_ld"; then hardcode_libdir_flag_spec='$wl+b $wl$libdir' hardcode_libdir_separator=: case $host_cpu in hppa*64*|ia64*) hardcode_direct=no hardcode_shlibpath_var=no ;; *) hardcode_direct=yes hardcode_direct_absolute=yes export_dynamic_flag_spec='$wl-E' # hardcode_minus_L: Not really in the search PATH, # but as the default location of the library. hardcode_minus_L=yes ;; esac fi ;; irix5* | irix6* | nonstopux*) if test yes = "$GCC"; then archive_cmds='$CC -shared $pic_flag $libobjs $deplibs $compiler_flags $wl-soname $wl$soname `test -n "$verstring" && func_echo_all "$wl-set_version $wl$verstring"` $wl-update_registry $wl$output_objdir/so_locations -o $lib' # Try to use the -exported_symbol ld option, if it does not # work, assume that -exports_file does not work either and # implicitly export all symbols. # This should be the same for all languages, so no per-tag cache variable. { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether the $host_os linker accepts -exported_symbol" >&5 $as_echo_n "checking whether the $host_os linker accepts -exported_symbol... " >&6; } if ${lt_cv_irix_exported_symbol+:} false; then : $as_echo_n "(cached) " >&6 else save_LDFLAGS=$LDFLAGS LDFLAGS="$LDFLAGS -shared $wl-exported_symbol ${wl}foo $wl-update_registry $wl/dev/null" cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ int foo (void) { return 0; } _ACEOF if ac_fn_c_try_link "$LINENO"; then : lt_cv_irix_exported_symbol=yes else lt_cv_irix_exported_symbol=no fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext conftest.$ac_ext LDFLAGS=$save_LDFLAGS fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_irix_exported_symbol" >&5 $as_echo "$lt_cv_irix_exported_symbol" >&6; } if test yes = "$lt_cv_irix_exported_symbol"; then archive_expsym_cmds='$CC -shared $pic_flag $libobjs $deplibs $compiler_flags $wl-soname $wl$soname `test -n "$verstring" && func_echo_all "$wl-set_version $wl$verstring"` $wl-update_registry $wl$output_objdir/so_locations $wl-exports_file $wl$export_symbols -o $lib' fi else archive_cmds='$CC -shared $libobjs $deplibs $compiler_flags -soname $soname `test -n "$verstring" && func_echo_all "-set_version $verstring"` -update_registry $output_objdir/so_locations -o $lib' archive_expsym_cmds='$CC -shared $libobjs $deplibs $compiler_flags -soname $soname `test -n "$verstring" && func_echo_all "-set_version $verstring"` -update_registry $output_objdir/so_locations -exports_file $export_symbols -o $lib' fi archive_cmds_need_lc='no' hardcode_libdir_flag_spec='$wl-rpath $wl$libdir' hardcode_libdir_separator=: inherit_rpath=yes link_all_deplibs=yes ;; linux*) case $cc_basename in tcc*) # Fabrice Bellard et al's Tiny C Compiler ld_shlibs=yes archive_cmds='$CC -shared $pic_flag -o $lib $libobjs $deplibs $compiler_flags' ;; esac ;; netbsd*) if echo __ELF__ | $CC -E - | $GREP __ELF__ >/dev/null; then archive_cmds='$LD -Bshareable -o $lib $libobjs $deplibs $linker_flags' # a.out else archive_cmds='$LD -shared -o $lib $libobjs $deplibs $linker_flags' # ELF fi hardcode_libdir_flag_spec='-R$libdir' hardcode_direct=yes hardcode_shlibpath_var=no ;; newsos6) archive_cmds='$LD -G -h $soname -o $lib $libobjs $deplibs $linker_flags' hardcode_direct=yes hardcode_libdir_flag_spec='$wl-rpath $wl$libdir' hardcode_libdir_separator=: hardcode_shlibpath_var=no ;; *nto* | *qnx*) ;; openbsd* | bitrig*) if test -f /usr/libexec/ld.so; then hardcode_direct=yes hardcode_shlibpath_var=no hardcode_direct_absolute=yes if test -z "`echo __ELF__ | $CC -E - | $GREP __ELF__`"; then archive_cmds='$CC -shared $pic_flag -o $lib $libobjs $deplibs $compiler_flags' archive_expsym_cmds='$CC -shared $pic_flag -o $lib $libobjs $deplibs $compiler_flags $wl-retain-symbols-file,$export_symbols' hardcode_libdir_flag_spec='$wl-rpath,$libdir' export_dynamic_flag_spec='$wl-E' else archive_cmds='$CC -shared $pic_flag -o $lib $libobjs $deplibs $compiler_flags' hardcode_libdir_flag_spec='$wl-rpath,$libdir' fi else ld_shlibs=no fi ;; os2*) hardcode_libdir_flag_spec='-L$libdir' hardcode_minus_L=yes allow_undefined_flag=unsupported shrext_cmds=.dll archive_cmds='$ECHO "LIBRARY ${soname%$shared_ext} INITINSTANCE TERMINSTANCE" > $output_objdir/$libname.def~ $ECHO "DESCRIPTION \"$libname\"" >> $output_objdir/$libname.def~ $ECHO "DATA MULTIPLE NONSHARED" >> $output_objdir/$libname.def~ $ECHO EXPORTS >> $output_objdir/$libname.def~ emxexp $libobjs | $SED /"_DLL_InitTerm"/d >> $output_objdir/$libname.def~ $CC -Zdll -Zcrtdll -o $output_objdir/$soname $libobjs $deplibs $compiler_flags $output_objdir/$libname.def~ emximp -o $lib $output_objdir/$libname.def' archive_expsym_cmds='$ECHO "LIBRARY ${soname%$shared_ext} INITINSTANCE TERMINSTANCE" > $output_objdir/$libname.def~ $ECHO "DESCRIPTION \"$libname\"" >> $output_objdir/$libname.def~ $ECHO "DATA MULTIPLE NONSHARED" >> $output_objdir/$libname.def~ $ECHO EXPORTS >> $output_objdir/$libname.def~ prefix_cmds="$SED"~ if test EXPORTS = "`$SED 1q $export_symbols`"; then prefix_cmds="$prefix_cmds -e 1d"; fi~ prefix_cmds="$prefix_cmds -e \"s/^\(.*\)$/_\1/g\""~ cat $export_symbols | $prefix_cmds >> $output_objdir/$libname.def~ $CC -Zdll -Zcrtdll -o $output_objdir/$soname $libobjs $deplibs $compiler_flags $output_objdir/$libname.def~ emximp -o $lib $output_objdir/$libname.def' old_archive_From_new_cmds='emximp -o $output_objdir/${libname}_dll.a $output_objdir/$libname.def' enable_shared_with_static_runtimes=yes ;; osf3*) if test yes = "$GCC"; then allow_undefined_flag=' $wl-expect_unresolved $wl\*' archive_cmds='$CC -shared$allow_undefined_flag $libobjs $deplibs $compiler_flags $wl-soname $wl$soname `test -n "$verstring" && func_echo_all "$wl-set_version $wl$verstring"` $wl-update_registry $wl$output_objdir/so_locations -o $lib' else allow_undefined_flag=' -expect_unresolved \*' archive_cmds='$CC -shared$allow_undefined_flag $libobjs $deplibs $compiler_flags -soname $soname `test -n "$verstring" && func_echo_all "-set_version $verstring"` -update_registry $output_objdir/so_locations -o $lib' fi archive_cmds_need_lc='no' hardcode_libdir_flag_spec='$wl-rpath $wl$libdir' hardcode_libdir_separator=: ;; osf4* | osf5*) # as osf3* with the addition of -msym flag if test yes = "$GCC"; then allow_undefined_flag=' $wl-expect_unresolved $wl\*' archive_cmds='$CC -shared$allow_undefined_flag $pic_flag $libobjs $deplibs $compiler_flags $wl-msym $wl-soname $wl$soname `test -n "$verstring" && func_echo_all "$wl-set_version $wl$verstring"` $wl-update_registry $wl$output_objdir/so_locations -o $lib' hardcode_libdir_flag_spec='$wl-rpath $wl$libdir' else allow_undefined_flag=' -expect_unresolved \*' archive_cmds='$CC -shared$allow_undefined_flag $libobjs $deplibs $compiler_flags -msym -soname $soname `test -n "$verstring" && func_echo_all "-set_version $verstring"` -update_registry $output_objdir/so_locations -o $lib' archive_expsym_cmds='for i in `cat $export_symbols`; do printf "%s %s\\n" -exported_symbol "\$i" >> $lib.exp; done; printf "%s\\n" "-hidden">> $lib.exp~ $CC -shared$allow_undefined_flag $wl-input $wl$lib.exp $compiler_flags $libobjs $deplibs -soname $soname `test -n "$verstring" && $ECHO "-set_version $verstring"` -update_registry $output_objdir/so_locations -o $lib~$RM $lib.exp' # Both c and cxx compiler support -rpath directly hardcode_libdir_flag_spec='-rpath $libdir' fi archive_cmds_need_lc='no' hardcode_libdir_separator=: ;; solaris*) no_undefined_flag=' -z defs' if test yes = "$GCC"; then wlarc='$wl' archive_cmds='$CC -shared $pic_flag $wl-z ${wl}text $wl-h $wl$soname -o $lib $libobjs $deplibs $compiler_flags' archive_expsym_cmds='echo "{ global:" > $lib.exp~cat $export_symbols | $SED -e "s/\(.*\)/\1;/" >> $lib.exp~echo "local: *; };" >> $lib.exp~ $CC -shared $pic_flag $wl-z ${wl}text $wl-M $wl$lib.exp $wl-h $wl$soname -o $lib $libobjs $deplibs $compiler_flags~$RM $lib.exp' else case `$CC -V 2>&1` in *"Compilers 5.0"*) wlarc='' archive_cmds='$LD -G$allow_undefined_flag -h $soname -o $lib $libobjs $deplibs $linker_flags' archive_expsym_cmds='echo "{ global:" > $lib.exp~cat $export_symbols | $SED -e "s/\(.*\)/\1;/" >> $lib.exp~echo "local: *; };" >> $lib.exp~ $LD -G$allow_undefined_flag -M $lib.exp -h $soname -o $lib $libobjs $deplibs $linker_flags~$RM $lib.exp' ;; *) wlarc='$wl' archive_cmds='$CC -G$allow_undefined_flag -h $soname -o $lib $libobjs $deplibs $compiler_flags' archive_expsym_cmds='echo "{ global:" > $lib.exp~cat $export_symbols | $SED -e "s/\(.*\)/\1;/" >> $lib.exp~echo "local: *; };" >> $lib.exp~ $CC -G$allow_undefined_flag -M $lib.exp -h $soname -o $lib $libobjs $deplibs $compiler_flags~$RM $lib.exp' ;; esac fi hardcode_libdir_flag_spec='-R$libdir' hardcode_shlibpath_var=no case $host_os in solaris2.[0-5] | solaris2.[0-5].*) ;; *) # The compiler driver will combine and reorder linker options, # but understands '-z linker_flag'. GCC discards it without '$wl', # but is careful enough not to reorder. # Supported since Solaris 2.6 (maybe 2.5.1?) if test yes = "$GCC"; then whole_archive_flag_spec='$wl-z ${wl}allextract$convenience $wl-z ${wl}defaultextract' else whole_archive_flag_spec='-z allextract$convenience -z defaultextract' fi ;; esac link_all_deplibs=yes ;; sunos4*) if test sequent = "$host_vendor"; then # Use $CC to link under sequent, because it throws in some extra .o # files that make .init and .fini sections work. archive_cmds='$CC -G $wl-h $soname -o $lib $libobjs $deplibs $compiler_flags' else archive_cmds='$LD -assert pure-text -Bstatic -o $lib $libobjs $deplibs $linker_flags' fi hardcode_libdir_flag_spec='-L$libdir' hardcode_direct=yes hardcode_minus_L=yes hardcode_shlibpath_var=no ;; sysv4) case $host_vendor in sni) archive_cmds='$LD -G -h $soname -o $lib $libobjs $deplibs $linker_flags' hardcode_direct=yes # is this really true??? ;; siemens) ## LD is ld it makes a PLAMLIB ## CC just makes a GrossModule. archive_cmds='$LD -G -o $lib $libobjs $deplibs $linker_flags' reload_cmds='$CC -r -o $output$reload_objs' hardcode_direct=no ;; motorola) archive_cmds='$LD -G -h $soname -o $lib $libobjs $deplibs $linker_flags' hardcode_direct=no #Motorola manual says yes, but my tests say they lie ;; esac runpath_var='LD_RUN_PATH' hardcode_shlibpath_var=no ;; sysv4.3*) archive_cmds='$LD -G -h $soname -o $lib $libobjs $deplibs $linker_flags' hardcode_shlibpath_var=no export_dynamic_flag_spec='-Bexport' ;; sysv4*MP*) if test -d /usr/nec; then archive_cmds='$LD -G -h $soname -o $lib $libobjs $deplibs $linker_flags' hardcode_shlibpath_var=no runpath_var=LD_RUN_PATH hardcode_runpath_var=yes ld_shlibs=yes fi ;; sysv4*uw2* | sysv5OpenUNIX* | sysv5UnixWare7.[01].[10]* | unixware7* | sco3.2v5.0.[024]*) no_undefined_flag='$wl-z,text' archive_cmds_need_lc=no hardcode_shlibpath_var=no runpath_var='LD_RUN_PATH' if test yes = "$GCC"; then archive_cmds='$CC -shared $wl-h,$soname -o $lib $libobjs $deplibs $compiler_flags' archive_expsym_cmds='$CC -shared $wl-Bexport:$export_symbols $wl-h,$soname -o $lib $libobjs $deplibs $compiler_flags' else archive_cmds='$CC -G $wl-h,$soname -o $lib $libobjs $deplibs $compiler_flags' archive_expsym_cmds='$CC -G $wl-Bexport:$export_symbols $wl-h,$soname -o $lib $libobjs $deplibs $compiler_flags' fi ;; sysv5* | sco3.2v5* | sco5v6*) # Note: We CANNOT use -z defs as we might desire, because we do not # link with -lc, and that would cause any symbols used from libc to # always be unresolved, which means just about no library would # ever link correctly. If we're not using GNU ld we use -z text # though, which does catch some bad symbols but isn't as heavy-handed # as -z defs. no_undefined_flag='$wl-z,text' allow_undefined_flag='$wl-z,nodefs' archive_cmds_need_lc=no hardcode_shlibpath_var=no hardcode_libdir_flag_spec='$wl-R,$libdir' hardcode_libdir_separator=':' link_all_deplibs=yes export_dynamic_flag_spec='$wl-Bexport' runpath_var='LD_RUN_PATH' if test yes = "$GCC"; then archive_cmds='$CC -shared $wl-h,$soname -o $lib $libobjs $deplibs $compiler_flags' archive_expsym_cmds='$CC -shared $wl-Bexport:$export_symbols $wl-h,$soname -o $lib $libobjs $deplibs $compiler_flags' else archive_cmds='$CC -G $wl-h,$soname -o $lib $libobjs $deplibs $compiler_flags' archive_expsym_cmds='$CC -G $wl-Bexport:$export_symbols $wl-h,$soname -o $lib $libobjs $deplibs $compiler_flags' fi ;; uts4*) archive_cmds='$LD -G -h $soname -o $lib $libobjs $deplibs $linker_flags' hardcode_libdir_flag_spec='-L$libdir' hardcode_shlibpath_var=no ;; *) ld_shlibs=no ;; esac if test sni = "$host_vendor"; then case $host in sysv4 | sysv4.2uw2* | sysv4.3* | sysv5*) export_dynamic_flag_spec='$wl-Blargedynsym' ;; esac fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ld_shlibs" >&5 $as_echo "$ld_shlibs" >&6; } test no = "$ld_shlibs" && can_build_shared=no with_gnu_ld=$with_gnu_ld # # Do we need to explicitly link libc? # case "x$archive_cmds_need_lc" in x|xyes) # Assume -lc should be added archive_cmds_need_lc=yes if test yes,yes = "$GCC,$enable_shared"; then case $archive_cmds in *'~'*) # FIXME: we may have to deal with multi-command sequences. ;; '$CC '*) # Test whether the compiler implicitly links with -lc since on some # systems, -lgcc has to come before -lc. If gcc already passes -lc # to ld, don't add -lc before -lgcc. { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether -lc should be explicitly linked in" >&5 $as_echo_n "checking whether -lc should be explicitly linked in... " >&6; } if ${lt_cv_archive_cmds_need_lc+:} false; then : $as_echo_n "(cached) " >&6 else $RM conftest* echo "$lt_simple_compile_test_code" > conftest.$ac_ext if { { eval echo "\"\$as_me\":${as_lineno-$LINENO}: \"$ac_compile\""; } >&5 (eval $ac_compile) 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; } 2>conftest.err; then soname=conftest lib=conftest libobjs=conftest.$ac_objext deplibs= wl=$lt_prog_compiler_wl pic_flag=$lt_prog_compiler_pic compiler_flags=-v linker_flags=-v verstring= output_objdir=. libname=conftest lt_save_allow_undefined_flag=$allow_undefined_flag allow_undefined_flag= if { { eval echo "\"\$as_me\":${as_lineno-$LINENO}: \"$archive_cmds 2\>\&1 \| $GREP \" -lc \" \>/dev/null 2\>\&1\""; } >&5 (eval $archive_cmds 2\>\&1 \| $GREP \" -lc \" \>/dev/null 2\>\&1) 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; } then lt_cv_archive_cmds_need_lc=no else lt_cv_archive_cmds_need_lc=yes fi allow_undefined_flag=$lt_save_allow_undefined_flag else cat conftest.err 1>&5 fi $RM conftest* fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_archive_cmds_need_lc" >&5 $as_echo "$lt_cv_archive_cmds_need_lc" >&6; } archive_cmds_need_lc=$lt_cv_archive_cmds_need_lc ;; esac fi ;; esac { $as_echo "$as_me:${as_lineno-$LINENO}: checking dynamic linker characteristics" >&5 $as_echo_n "checking dynamic linker characteristics... " >&6; } if test yes = "$GCC"; then case $host_os in darwin*) lt_awk_arg='/^libraries:/,/LR/' ;; *) lt_awk_arg='/^libraries:/' ;; esac case $host_os in mingw* | cegcc*) lt_sed_strip_eq='s|=\([A-Za-z]:\)|\1|g' ;; *) lt_sed_strip_eq='s|=/|/|g' ;; esac lt_search_path_spec=`$CC -print-search-dirs | awk $lt_awk_arg | $SED -e "s/^libraries://" -e $lt_sed_strip_eq` case $lt_search_path_spec in *\;*) # if the path contains ";" then we assume it to be the separator # otherwise default to the standard path separator (i.e. ":") - it is # assumed that no part of a normal pathname contains ";" but that should # okay in the real world where ";" in dirpaths is itself problematic. lt_search_path_spec=`$ECHO "$lt_search_path_spec" | $SED 's/;/ /g'` ;; *) lt_search_path_spec=`$ECHO "$lt_search_path_spec" | $SED "s/$PATH_SEPARATOR/ /g"` ;; esac # Ok, now we have the path, separated by spaces, we can step through it # and add multilib dir if necessary... lt_tmp_lt_search_path_spec= lt_multi_os_dir=/`$CC $CPPFLAGS $CFLAGS $LDFLAGS -print-multi-os-directory 2>/dev/null` # ...but if some path component already ends with the multilib dir we assume # that all is fine and trust -print-search-dirs as is (GCC 4.2? or newer). case "$lt_multi_os_dir; $lt_search_path_spec " in "/; "* | "/.; "* | "/./; "* | *"$lt_multi_os_dir "* | *"$lt_multi_os_dir/ "*) lt_multi_os_dir= ;; esac for lt_sys_path in $lt_search_path_spec; do if test -d "$lt_sys_path$lt_multi_os_dir"; then lt_tmp_lt_search_path_spec="$lt_tmp_lt_search_path_spec $lt_sys_path$lt_multi_os_dir" elif test -n "$lt_multi_os_dir"; then test -d "$lt_sys_path" && \ lt_tmp_lt_search_path_spec="$lt_tmp_lt_search_path_spec $lt_sys_path" fi done lt_search_path_spec=`$ECHO "$lt_tmp_lt_search_path_spec" | awk ' BEGIN {RS = " "; FS = "/|\n";} { lt_foo = ""; lt_count = 0; for (lt_i = NF; lt_i > 0; lt_i--) { if ($lt_i != "" && $lt_i != ".") { if ($lt_i == "..") { lt_count++; } else { if (lt_count == 0) { lt_foo = "/" $lt_i lt_foo; } else { lt_count--; } } } } if (lt_foo != "") { lt_freq[lt_foo]++; } if (lt_freq[lt_foo] == 1) { print lt_foo; } }'` # AWK program above erroneously prepends '/' to C:/dos/paths # for these hosts. case $host_os in mingw* | cegcc*) lt_search_path_spec=`$ECHO "$lt_search_path_spec" |\ $SED 's|/\([A-Za-z]:\)|\1|g'` ;; esac sys_lib_search_path_spec=`$ECHO "$lt_search_path_spec" | $lt_NL2SP` else sys_lib_search_path_spec="/lib /usr/lib /usr/local/lib" fi library_names_spec= libname_spec='lib$name' soname_spec= shrext_cmds=.so postinstall_cmds= postuninstall_cmds= finish_cmds= finish_eval= shlibpath_var= shlibpath_overrides_runpath=unknown version_type=none dynamic_linker="$host_os ld.so" sys_lib_dlsearch_path_spec="/lib /usr/lib" need_lib_prefix=unknown hardcode_into_libs=no # when you set need_version to no, make sure it does not cause -set_version # flags to be left without arguments need_version=unknown case $host_os in aix3*) version_type=linux # correct to gnu/linux during the next big refactor library_names_spec='$libname$release$shared_ext$versuffix $libname.a' shlibpath_var=LIBPATH # AIX 3 has no versioning support, so we append a major version to the name. soname_spec='$libname$release$shared_ext$major' ;; aix[4-9]*) version_type=linux # correct to gnu/linux during the next big refactor need_lib_prefix=no need_version=no hardcode_into_libs=yes if test ia64 = "$host_cpu"; then # AIX 5 supports IA64 library_names_spec='$libname$release$shared_ext$major $libname$release$shared_ext$versuffix $libname$shared_ext' shlibpath_var=LD_LIBRARY_PATH else # With GCC up to 2.95.x, collect2 would create an import file # for dependence libraries. The import file would start with # the line '#! .'. This would cause the generated library to # depend on '.', always an invalid library. This was fixed in # development snapshots of GCC prior to 3.0. case $host_os in aix4 | aix4.[01] | aix4.[01].*) if { echo '#if __GNUC__ > 2 || (__GNUC__ == 2 && __GNUC_MINOR__ >= 97)' echo ' yes ' echo '#endif'; } | $CC -E - | $GREP yes > /dev/null; then : else can_build_shared=no fi ;; esac # Using Import Files as archive members, it is possible to support # filename-based versioning of shared library archives on AIX. While # this would work for both with and without runtime linking, it will # prevent static linking of such archives. So we do filename-based # shared library versioning with .so extension only, which is used # when both runtime linking and shared linking is enabled. # Unfortunately, runtime linking may impact performance, so we do # not want this to be the default eventually. Also, we use the # versioned .so libs for executables only if there is the -brtl # linker flag in LDFLAGS as well, or --with-aix-soname=svr4 only. # To allow for filename-based versioning support, we need to create # libNAME.so.V as an archive file, containing: # *) an Import File, referring to the versioned filename of the # archive as well as the shared archive member, telling the # bitwidth (32 or 64) of that shared object, and providing the # list of exported symbols of that shared object, eventually # decorated with the 'weak' keyword # *) the shared object with the F_LOADONLY flag set, to really avoid # it being seen by the linker. # At run time we better use the real file rather than another symlink, # but for link time we create the symlink libNAME.so -> libNAME.so.V case $with_aix_soname,$aix_use_runtimelinking in # AIX (on Power*) has no versioning support, so currently we cannot hardcode correct # soname into executable. Probably we can add versioning support to # collect2, so additional links can be useful in future. aix,yes) # traditional libtool dynamic_linker='AIX unversionable lib.so' # If using run time linking (on AIX 4.2 or later) use lib.so # instead of lib.a to let people know that these are not # typical AIX shared libraries. library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' ;; aix,no) # traditional AIX only dynamic_linker='AIX lib.a(lib.so.V)' # We preserve .a as extension for shared libraries through AIX4.2 # and later when we are not doing run time linking. library_names_spec='$libname$release.a $libname.a' soname_spec='$libname$release$shared_ext$major' ;; svr4,*) # full svr4 only dynamic_linker="AIX lib.so.V($shared_archive_member_spec.o)" library_names_spec='$libname$release$shared_ext$major $libname$shared_ext' # We do not specify a path in Import Files, so LIBPATH fires. shlibpath_overrides_runpath=yes ;; *,yes) # both, prefer svr4 dynamic_linker="AIX lib.so.V($shared_archive_member_spec.o), lib.a(lib.so.V)" library_names_spec='$libname$release$shared_ext$major $libname$shared_ext' # unpreferred sharedlib libNAME.a needs extra handling postinstall_cmds='test -n "$linkname" || linkname="$realname"~func_stripname "" ".so" "$linkname"~$install_shared_prog "$dir/$func_stripname_result.$libext" "$destdir/$func_stripname_result.$libext"~test -z "$tstripme" || test -z "$striplib" || $striplib "$destdir/$func_stripname_result.$libext"' postuninstall_cmds='for n in $library_names $old_library; do :; done~func_stripname "" ".so" "$n"~test "$func_stripname_result" = "$n" || func_append rmfiles " $odir/$func_stripname_result.$libext"' # We do not specify a path in Import Files, so LIBPATH fires. shlibpath_overrides_runpath=yes ;; *,no) # both, prefer aix dynamic_linker="AIX lib.a(lib.so.V), lib.so.V($shared_archive_member_spec.o)" library_names_spec='$libname$release.a $libname.a' soname_spec='$libname$release$shared_ext$major' # unpreferred sharedlib libNAME.so.V and symlink libNAME.so need extra handling postinstall_cmds='test -z "$dlname" || $install_shared_prog $dir/$dlname $destdir/$dlname~test -z "$tstripme" || test -z "$striplib" || $striplib $destdir/$dlname~test -n "$linkname" || linkname=$realname~func_stripname "" ".a" "$linkname"~(cd "$destdir" && $LN_S -f $dlname $func_stripname_result.so)' postuninstall_cmds='test -z "$dlname" || func_append rmfiles " $odir/$dlname"~for n in $old_library $library_names; do :; done~func_stripname "" ".a" "$n"~func_append rmfiles " $odir/$func_stripname_result.so"' ;; esac shlibpath_var=LIBPATH fi ;; amigaos*) case $host_cpu in powerpc) # Since July 2007 AmigaOS4 officially supports .so libraries. # When compiling the executable, add -use-dynld -Lsobjs: to the compileline. library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' ;; m68k) library_names_spec='$libname.ixlibrary $libname.a' # Create ${libname}_ixlibrary.a entries in /sys/libs. finish_eval='for lib in `ls $libdir/*.ixlibrary 2>/dev/null`; do libname=`func_echo_all "$lib" | $SED '\''s%^.*/\([^/]*\)\.ixlibrary$%\1%'\''`; $RM /sys/libs/${libname}_ixlibrary.a; $show "cd /sys/libs && $LN_S $lib ${libname}_ixlibrary.a"; cd /sys/libs && $LN_S $lib ${libname}_ixlibrary.a || exit 1; done' ;; esac ;; beos*) library_names_spec='$libname$shared_ext' dynamic_linker="$host_os ld.so" shlibpath_var=LIBRARY_PATH ;; bsdi[45]*) version_type=linux # correct to gnu/linux during the next big refactor need_version=no library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' soname_spec='$libname$release$shared_ext$major' finish_cmds='PATH="\$PATH:/sbin" ldconfig $libdir' shlibpath_var=LD_LIBRARY_PATH sys_lib_search_path_spec="/shlib /usr/lib /usr/X11/lib /usr/contrib/lib /lib /usr/local/lib" sys_lib_dlsearch_path_spec="/shlib /usr/lib /usr/local/lib" # the default ld.so.conf also contains /usr/contrib/lib and # /usr/X11R6/lib (/usr/X11 is a link to /usr/X11R6), but let us allow # libtool to hard-code these into programs ;; cygwin* | mingw* | pw32* | cegcc*) version_type=windows shrext_cmds=.dll need_version=no need_lib_prefix=no case $GCC,$cc_basename in yes,*) # gcc library_names_spec='$libname.dll.a' # DLL is installed to $(libdir)/../bin by postinstall_cmds postinstall_cmds='base_file=`basename \$file`~ dlpath=`$SHELL 2>&1 -c '\''. $dir/'\''\$base_file'\''i; echo \$dlname'\''`~ dldir=$destdir/`dirname \$dlpath`~ test -d \$dldir || mkdir -p \$dldir~ $install_prog $dir/$dlname \$dldir/$dlname~ chmod a+x \$dldir/$dlname~ if test -n '\''$stripme'\'' && test -n '\''$striplib'\''; then eval '\''$striplib \$dldir/$dlname'\'' || exit \$?; fi' postuninstall_cmds='dldll=`$SHELL 2>&1 -c '\''. $file; echo \$dlname'\''`~ dlpath=$dir/\$dldll~ $RM \$dlpath' shlibpath_overrides_runpath=yes case $host_os in cygwin*) # Cygwin DLLs use 'cyg' prefix rather than 'lib' soname_spec='`echo $libname | sed -e 's/^lib/cyg/'``echo $release | $SED -e 's/[.]/-/g'`$versuffix$shared_ext' sys_lib_search_path_spec="$sys_lib_search_path_spec /usr/lib/w32api" ;; mingw* | cegcc*) # MinGW DLLs use traditional 'lib' prefix soname_spec='$libname`echo $release | $SED -e 's/[.]/-/g'`$versuffix$shared_ext' ;; pw32*) # pw32 DLLs use 'pw' prefix rather than 'lib' library_names_spec='`echo $libname | sed -e 's/^lib/pw/'``echo $release | $SED -e 's/[.]/-/g'`$versuffix$shared_ext' ;; esac dynamic_linker='Win32 ld.exe' ;; *,cl*) # Native MSVC libname_spec='$name' soname_spec='$libname`echo $release | $SED -e 's/[.]/-/g'`$versuffix$shared_ext' library_names_spec='$libname.dll.lib' case $build_os in mingw*) sys_lib_search_path_spec= lt_save_ifs=$IFS IFS=';' for lt_path in $LIB do IFS=$lt_save_ifs # Let DOS variable expansion print the short 8.3 style file name. lt_path=`cd "$lt_path" 2>/dev/null && cmd //C "for %i in (".") do @echo %~si"` sys_lib_search_path_spec="$sys_lib_search_path_spec $lt_path" done IFS=$lt_save_ifs # Convert to MSYS style. sys_lib_search_path_spec=`$ECHO "$sys_lib_search_path_spec" | sed -e 's|\\\\|/|g' -e 's| \\([a-zA-Z]\\):| /\\1|g' -e 's|^ ||'` ;; cygwin*) # Convert to unix form, then to dos form, then back to unix form # but this time dos style (no spaces!) so that the unix form looks # like /cygdrive/c/PROGRA~1:/cygdr... sys_lib_search_path_spec=`cygpath --path --unix "$LIB"` sys_lib_search_path_spec=`cygpath --path --dos "$sys_lib_search_path_spec" 2>/dev/null` sys_lib_search_path_spec=`cygpath --path --unix "$sys_lib_search_path_spec" | $SED -e "s/$PATH_SEPARATOR/ /g"` ;; *) sys_lib_search_path_spec=$LIB if $ECHO "$sys_lib_search_path_spec" | $GREP ';[c-zC-Z]:/' >/dev/null; then # It is most probably a Windows format PATH. sys_lib_search_path_spec=`$ECHO "$sys_lib_search_path_spec" | $SED -e 's/;/ /g'` else sys_lib_search_path_spec=`$ECHO "$sys_lib_search_path_spec" | $SED -e "s/$PATH_SEPARATOR/ /g"` fi # FIXME: find the short name or the path components, as spaces are # common. (e.g. "Program Files" -> "PROGRA~1") ;; esac # DLL is installed to $(libdir)/../bin by postinstall_cmds postinstall_cmds='base_file=`basename \$file`~ dlpath=`$SHELL 2>&1 -c '\''. $dir/'\''\$base_file'\''i; echo \$dlname'\''`~ dldir=$destdir/`dirname \$dlpath`~ test -d \$dldir || mkdir -p \$dldir~ $install_prog $dir/$dlname \$dldir/$dlname' postuninstall_cmds='dldll=`$SHELL 2>&1 -c '\''. $file; echo \$dlname'\''`~ dlpath=$dir/\$dldll~ $RM \$dlpath' shlibpath_overrides_runpath=yes dynamic_linker='Win32 link.exe' ;; *) # Assume MSVC wrapper library_names_spec='$libname`echo $release | $SED -e 's/[.]/-/g'`$versuffix$shared_ext $libname.lib' dynamic_linker='Win32 ld.exe' ;; esac # FIXME: first we should search . and the directory the executable is in shlibpath_var=PATH ;; darwin* | rhapsody*) dynamic_linker="$host_os dyld" version_type=darwin need_lib_prefix=no need_version=no library_names_spec='$libname$release$major$shared_ext $libname$shared_ext' soname_spec='$libname$release$major$shared_ext' shlibpath_overrides_runpath=yes shlibpath_var=DYLD_LIBRARY_PATH shrext_cmds='`test .$module = .yes && echo .so || echo .dylib`' sys_lib_search_path_spec="$sys_lib_search_path_spec /usr/local/lib" sys_lib_dlsearch_path_spec='/usr/local/lib /lib /usr/lib' ;; dgux*) version_type=linux # correct to gnu/linux during the next big refactor need_lib_prefix=no need_version=no library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' soname_spec='$libname$release$shared_ext$major' shlibpath_var=LD_LIBRARY_PATH ;; freebsd* | dragonfly*) # DragonFly does not have aout. When/if they implement a new # versioning mechanism, adjust this. if test -x /usr/bin/objformat; then objformat=`/usr/bin/objformat` else case $host_os in freebsd[23].*) objformat=aout ;; *) objformat=elf ;; esac fi version_type=freebsd-$objformat case $version_type in freebsd-elf*) library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' soname_spec='$libname$release$shared_ext$major' need_version=no need_lib_prefix=no ;; freebsd-*) library_names_spec='$libname$release$shared_ext$versuffix $libname$shared_ext$versuffix' need_version=yes ;; esac shlibpath_var=LD_LIBRARY_PATH case $host_os in freebsd2.*) shlibpath_overrides_runpath=yes ;; freebsd3.[01]* | freebsdelf3.[01]*) shlibpath_overrides_runpath=yes hardcode_into_libs=yes ;; freebsd3.[2-9]* | freebsdelf3.[2-9]* | \ freebsd4.[0-5] | freebsdelf4.[0-5] | freebsd4.1.1 | freebsdelf4.1.1) shlibpath_overrides_runpath=no hardcode_into_libs=yes ;; *) # from 4.6 on, and DragonFly shlibpath_overrides_runpath=yes hardcode_into_libs=yes ;; esac ;; haiku*) version_type=linux # correct to gnu/linux during the next big refactor need_lib_prefix=no need_version=no dynamic_linker="$host_os runtime_loader" library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' soname_spec='$libname$release$shared_ext$major' shlibpath_var=LIBRARY_PATH shlibpath_overrides_runpath=no sys_lib_dlsearch_path_spec='/boot/home/config/lib /boot/common/lib /boot/system/lib' hardcode_into_libs=yes ;; hpux9* | hpux10* | hpux11*) # Give a soname corresponding to the major version so that dld.sl refuses to # link against other versions. version_type=sunos need_lib_prefix=no need_version=no case $host_cpu in ia64*) shrext_cmds='.so' hardcode_into_libs=yes dynamic_linker="$host_os dld.so" shlibpath_var=LD_LIBRARY_PATH shlibpath_overrides_runpath=yes # Unless +noenvvar is specified. library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' soname_spec='$libname$release$shared_ext$major' if test 32 = "$HPUX_IA64_MODE"; then sys_lib_search_path_spec="/usr/lib/hpux32 /usr/local/lib/hpux32 /usr/local/lib" sys_lib_dlsearch_path_spec=/usr/lib/hpux32 else sys_lib_search_path_spec="/usr/lib/hpux64 /usr/local/lib/hpux64" sys_lib_dlsearch_path_spec=/usr/lib/hpux64 fi ;; hppa*64*) shrext_cmds='.sl' hardcode_into_libs=yes dynamic_linker="$host_os dld.sl" shlibpath_var=LD_LIBRARY_PATH # How should we handle SHLIB_PATH shlibpath_overrides_runpath=yes # Unless +noenvvar is specified. library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' soname_spec='$libname$release$shared_ext$major' sys_lib_search_path_spec="/usr/lib/pa20_64 /usr/ccs/lib/pa20_64" sys_lib_dlsearch_path_spec=$sys_lib_search_path_spec ;; *) shrext_cmds='.sl' dynamic_linker="$host_os dld.sl" shlibpath_var=SHLIB_PATH shlibpath_overrides_runpath=no # +s is required to enable SHLIB_PATH library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' soname_spec='$libname$release$shared_ext$major' ;; esac # HP-UX runs *really* slowly unless shared libraries are mode 555, ... postinstall_cmds='chmod 555 $lib' # or fails outright, so override atomically: install_override_mode=555 ;; interix[3-9]*) version_type=linux # correct to gnu/linux during the next big refactor need_lib_prefix=no need_version=no library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' soname_spec='$libname$release$shared_ext$major' dynamic_linker='Interix 3.x ld.so.1 (PE, like ELF)' shlibpath_var=LD_LIBRARY_PATH shlibpath_overrides_runpath=no hardcode_into_libs=yes ;; irix5* | irix6* | nonstopux*) case $host_os in nonstopux*) version_type=nonstopux ;; *) if test yes = "$lt_cv_prog_gnu_ld"; then version_type=linux # correct to gnu/linux during the next big refactor else version_type=irix fi ;; esac need_lib_prefix=no need_version=no soname_spec='$libname$release$shared_ext$major' library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$release$shared_ext $libname$shared_ext' case $host_os in irix5* | nonstopux*) libsuff= shlibsuff= ;; *) case $LD in # libtool.m4 will add one of these switches to LD *-32|*"-32 "|*-melf32bsmip|*"-melf32bsmip ") libsuff= shlibsuff= libmagic=32-bit;; *-n32|*"-n32 "|*-melf32bmipn32|*"-melf32bmipn32 ") libsuff=32 shlibsuff=N32 libmagic=N32;; *-64|*"-64 "|*-melf64bmip|*"-melf64bmip ") libsuff=64 shlibsuff=64 libmagic=64-bit;; *) libsuff= shlibsuff= libmagic=never-match;; esac ;; esac shlibpath_var=LD_LIBRARY${shlibsuff}_PATH shlibpath_overrides_runpath=no sys_lib_search_path_spec="/usr/lib$libsuff /lib$libsuff /usr/local/lib$libsuff" sys_lib_dlsearch_path_spec="/usr/lib$libsuff /lib$libsuff" hardcode_into_libs=yes ;; # No shared lib support for Linux oldld, aout, or coff. linux*oldld* | linux*aout* | linux*coff*) dynamic_linker=no ;; linux*android*) version_type=none # Android doesn't support versioned libraries. need_lib_prefix=no need_version=no library_names_spec='$libname$release$shared_ext' soname_spec='$libname$release$shared_ext' finish_cmds= shlibpath_var=LD_LIBRARY_PATH shlibpath_overrides_runpath=yes # This implies no fast_install, which is unacceptable. # Some rework will be needed to allow for fast_install # before this can be enabled. hardcode_into_libs=yes dynamic_linker='Android linker' # Don't embed -rpath directories since the linker doesn't support them. hardcode_libdir_flag_spec='-L$libdir' ;; # This must be glibc/ELF. linux* | k*bsd*-gnu | kopensolaris*-gnu | gnu*) version_type=linux # correct to gnu/linux during the next big refactor need_lib_prefix=no need_version=no library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' soname_spec='$libname$release$shared_ext$major' finish_cmds='PATH="\$PATH:/sbin" ldconfig -n $libdir' shlibpath_var=LD_LIBRARY_PATH shlibpath_overrides_runpath=no # Some binutils ld are patched to set DT_RUNPATH if ${lt_cv_shlibpath_overrides_runpath+:} false; then : $as_echo_n "(cached) " >&6 else lt_cv_shlibpath_overrides_runpath=no save_LDFLAGS=$LDFLAGS save_libdir=$libdir eval "libdir=/foo; wl=\"$lt_prog_compiler_wl\"; \ LDFLAGS=\"\$LDFLAGS $hardcode_libdir_flag_spec\"" cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ int main () { ; return 0; } _ACEOF if ac_fn_c_try_link "$LINENO"; then : if ($OBJDUMP -p conftest$ac_exeext) 2>/dev/null | grep "RUNPATH.*$libdir" >/dev/null; then : lt_cv_shlibpath_overrides_runpath=yes fi fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext conftest.$ac_ext LDFLAGS=$save_LDFLAGS libdir=$save_libdir fi shlibpath_overrides_runpath=$lt_cv_shlibpath_overrides_runpath # This implies no fast_install, which is unacceptable. # Some rework will be needed to allow for fast_install # before this can be enabled. hardcode_into_libs=yes # Ideally, we could use ldconfig to report *all* directores which are # searched for libraries, however this is still not possible. Aside from not # being certain /sbin/ldconfig is available, command # 'ldconfig -N -X -v | grep ^/' on 64bit Fedora does not report /usr/lib64, # even though it is searched at run-time. Try to do the best guess by # appending ld.so.conf contents (and includes) to the search path. if test -f /etc/ld.so.conf; then lt_ld_extra=`awk '/^include / { system(sprintf("cd /etc; cat %s 2>/dev/null", \$2)); skip = 1; } { if (!skip) print \$0; skip = 0; }' < /etc/ld.so.conf | $SED -e 's/#.*//;/^[ ]*hwcap[ ]/d;s/[:, ]/ /g;s/=[^=]*$//;s/=[^= ]* / /g;s/"//g;/^$/d' | tr '\n' ' '` sys_lib_dlsearch_path_spec="/lib /usr/lib $lt_ld_extra" fi # We used to test for /lib/ld.so.1 and disable shared libraries on # powerpc, because MkLinux only supported shared libraries with the # GNU dynamic linker. Since this was broken with cross compilers, # most powerpc-linux boxes support dynamic linking these days and # people can always --disable-shared, the test was removed, and we # assume the GNU/Linux dynamic linker is in use. dynamic_linker='GNU/Linux ld.so' ;; netbsd*) version_type=sunos need_lib_prefix=no need_version=no if echo __ELF__ | $CC -E - | $GREP __ELF__ >/dev/null; then library_names_spec='$libname$release$shared_ext$versuffix $libname$shared_ext$versuffix' finish_cmds='PATH="\$PATH:/sbin" ldconfig -m $libdir' dynamic_linker='NetBSD (a.out) ld.so' else library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' soname_spec='$libname$release$shared_ext$major' dynamic_linker='NetBSD ld.elf_so' fi shlibpath_var=LD_LIBRARY_PATH shlibpath_overrides_runpath=yes hardcode_into_libs=yes ;; newsos6) version_type=linux # correct to gnu/linux during the next big refactor library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' shlibpath_var=LD_LIBRARY_PATH shlibpath_overrides_runpath=yes ;; *nto* | *qnx*) version_type=qnx need_lib_prefix=no need_version=no library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' soname_spec='$libname$release$shared_ext$major' shlibpath_var=LD_LIBRARY_PATH shlibpath_overrides_runpath=no hardcode_into_libs=yes dynamic_linker='ldqnx.so' ;; openbsd* | bitrig*) version_type=sunos sys_lib_dlsearch_path_spec=/usr/lib need_lib_prefix=no if test -z "`echo __ELF__ | $CC -E - | $GREP __ELF__`"; then need_version=no else need_version=yes fi library_names_spec='$libname$release$shared_ext$versuffix $libname$shared_ext$versuffix' finish_cmds='PATH="\$PATH:/sbin" ldconfig -m $libdir' shlibpath_var=LD_LIBRARY_PATH shlibpath_overrides_runpath=yes ;; os2*) libname_spec='$name' version_type=windows shrext_cmds=.dll need_version=no need_lib_prefix=no # OS/2 can only load a DLL with a base name of 8 characters or less. soname_spec='`test -n "$os2dllname" && libname="$os2dllname"; v=$($ECHO $release$versuffix | tr -d .-); n=$($ECHO $libname | cut -b -$((8 - ${#v})) | tr . _); $ECHO $n$v`$shared_ext' library_names_spec='${libname}_dll.$libext' dynamic_linker='OS/2 ld.exe' shlibpath_var=BEGINLIBPATH sys_lib_search_path_spec="/lib /usr/lib /usr/local/lib" sys_lib_dlsearch_path_spec=$sys_lib_search_path_spec postinstall_cmds='base_file=`basename \$file`~ dlpath=`$SHELL 2>&1 -c '\''. $dir/'\''\$base_file'\''i; $ECHO \$dlname'\''`~ dldir=$destdir/`dirname \$dlpath`~ test -d \$dldir || mkdir -p \$dldir~ $install_prog $dir/$dlname \$dldir/$dlname~ chmod a+x \$dldir/$dlname~ if test -n '\''$stripme'\'' && test -n '\''$striplib'\''; then eval '\''$striplib \$dldir/$dlname'\'' || exit \$?; fi' postuninstall_cmds='dldll=`$SHELL 2>&1 -c '\''. $file; $ECHO \$dlname'\''`~ dlpath=$dir/\$dldll~ $RM \$dlpath' ;; osf3* | osf4* | osf5*) version_type=osf need_lib_prefix=no need_version=no soname_spec='$libname$release$shared_ext$major' library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' shlibpath_var=LD_LIBRARY_PATH sys_lib_search_path_spec="/usr/shlib /usr/ccs/lib /usr/lib/cmplrs/cc /usr/lib /usr/local/lib /var/shlib" sys_lib_dlsearch_path_spec=$sys_lib_search_path_spec ;; rdos*) dynamic_linker=no ;; solaris*) version_type=linux # correct to gnu/linux during the next big refactor need_lib_prefix=no need_version=no library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' soname_spec='$libname$release$shared_ext$major' shlibpath_var=LD_LIBRARY_PATH shlibpath_overrides_runpath=yes hardcode_into_libs=yes # ldd complains unless libraries are executable postinstall_cmds='chmod +x $lib' ;; sunos4*) version_type=sunos library_names_spec='$libname$release$shared_ext$versuffix $libname$shared_ext$versuffix' finish_cmds='PATH="\$PATH:/usr/etc" ldconfig $libdir' shlibpath_var=LD_LIBRARY_PATH shlibpath_overrides_runpath=yes if test yes = "$with_gnu_ld"; then need_lib_prefix=no fi need_version=yes ;; sysv4 | sysv4.3*) version_type=linux # correct to gnu/linux during the next big refactor library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' soname_spec='$libname$release$shared_ext$major' shlibpath_var=LD_LIBRARY_PATH case $host_vendor in sni) shlibpath_overrides_runpath=no need_lib_prefix=no runpath_var=LD_RUN_PATH ;; siemens) need_lib_prefix=no ;; motorola) need_lib_prefix=no need_version=no shlibpath_overrides_runpath=no sys_lib_search_path_spec='/lib /usr/lib /usr/ccs/lib' ;; esac ;; sysv4*MP*) if test -d /usr/nec; then version_type=linux # correct to gnu/linux during the next big refactor library_names_spec='$libname$shared_ext.$versuffix $libname$shared_ext.$major $libname$shared_ext' soname_spec='$libname$shared_ext.$major' shlibpath_var=LD_LIBRARY_PATH fi ;; sysv5* | sco3.2v5* | sco5v6* | unixware* | OpenUNIX* | sysv4*uw2*) version_type=sco need_lib_prefix=no need_version=no library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext $libname$shared_ext' soname_spec='$libname$release$shared_ext$major' shlibpath_var=LD_LIBRARY_PATH shlibpath_overrides_runpath=yes hardcode_into_libs=yes if test yes = "$with_gnu_ld"; then sys_lib_search_path_spec='/usr/local/lib /usr/gnu/lib /usr/ccs/lib /usr/lib /lib' else sys_lib_search_path_spec='/usr/ccs/lib /usr/lib' case $host_os in sco3.2v5*) sys_lib_search_path_spec="$sys_lib_search_path_spec /lib" ;; esac fi sys_lib_dlsearch_path_spec='/usr/lib' ;; tpf*) # TPF is a cross-target only. Preferred cross-host = GNU/Linux. version_type=linux # correct to gnu/linux during the next big refactor need_lib_prefix=no need_version=no library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' shlibpath_var=LD_LIBRARY_PATH shlibpath_overrides_runpath=no hardcode_into_libs=yes ;; uts4*) version_type=linux # correct to gnu/linux during the next big refactor library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' soname_spec='$libname$release$shared_ext$major' shlibpath_var=LD_LIBRARY_PATH ;; *) dynamic_linker=no ;; esac { $as_echo "$as_me:${as_lineno-$LINENO}: result: $dynamic_linker" >&5 $as_echo "$dynamic_linker" >&6; } test no = "$dynamic_linker" && can_build_shared=no variables_saved_for_relink="PATH $shlibpath_var $runpath_var" if test yes = "$GCC"; then variables_saved_for_relink="$variables_saved_for_relink GCC_EXEC_PREFIX COMPILER_PATH LIBRARY_PATH" fi if test set = "${lt_cv_sys_lib_search_path_spec+set}"; then sys_lib_search_path_spec=$lt_cv_sys_lib_search_path_spec fi if test set = "${lt_cv_sys_lib_dlsearch_path_spec+set}"; then sys_lib_dlsearch_path_spec=$lt_cv_sys_lib_dlsearch_path_spec fi # remember unaugmented sys_lib_dlsearch_path content for libtool script decls... configure_time_dlsearch_path=$sys_lib_dlsearch_path_spec # ... but it needs LT_SYS_LIBRARY_PATH munging for other configure-time code func_munge_path_list sys_lib_dlsearch_path_spec "$LT_SYS_LIBRARY_PATH" # to be used as default LT_SYS_LIBRARY_PATH value in generated libtool configure_time_lt_sys_library_path=$LT_SYS_LIBRARY_PATH { $as_echo "$as_me:${as_lineno-$LINENO}: checking how to hardcode library paths into programs" >&5 $as_echo_n "checking how to hardcode library paths into programs... " >&6; } hardcode_action= if test -n "$hardcode_libdir_flag_spec" || test -n "$runpath_var" || test yes = "$hardcode_automatic"; then # We can hardcode non-existent directories. if test no != "$hardcode_direct" && # If the only mechanism to avoid hardcoding is shlibpath_var, we # have to relink, otherwise we might link with an installed library # when we should be linking with a yet-to-be-installed one ## test no != "$_LT_TAGVAR(hardcode_shlibpath_var, )" && test no != "$hardcode_minus_L"; then # Linking always hardcodes the temporary library directory. hardcode_action=relink else # We can link without hardcoding, and we can hardcode nonexisting dirs. hardcode_action=immediate fi else # We cannot hardcode anything, or else we can only hardcode existing # directories. hardcode_action=unsupported fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $hardcode_action" >&5 $as_echo "$hardcode_action" >&6; } if test relink = "$hardcode_action" || test yes = "$inherit_rpath"; then # Fast installation is not supported enable_fast_install=no elif test yes = "$shlibpath_overrides_runpath" || test no = "$enable_shared"; then # Fast installation is not necessary enable_fast_install=needless fi if test yes != "$enable_dlopen"; then enable_dlopen=unknown enable_dlopen_self=unknown enable_dlopen_self_static=unknown else lt_cv_dlopen=no lt_cv_dlopen_libs= case $host_os in beos*) lt_cv_dlopen=load_add_on lt_cv_dlopen_libs= lt_cv_dlopen_self=yes ;; mingw* | pw32* | cegcc*) lt_cv_dlopen=LoadLibrary lt_cv_dlopen_libs= ;; cygwin*) lt_cv_dlopen=dlopen lt_cv_dlopen_libs= ;; darwin*) # if libdl is installed we need to link against it { $as_echo "$as_me:${as_lineno-$LINENO}: checking for dlopen in -ldl" >&5 $as_echo_n "checking for dlopen in -ldl... " >&6; } if ${ac_cv_lib_dl_dlopen+:} false; then : $as_echo_n "(cached) " >&6 else ac_check_lib_save_LIBS=$LIBS LIBS="-ldl $LIBS" cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ /* Override any GCC internal prototype to avoid an error. Use char because int might match the return type of a GCC builtin and then its argument prototype would still apply. */ #ifdef __cplusplus extern "C" #endif char dlopen (); int main () { return dlopen (); ; return 0; } _ACEOF if ac_fn_c_try_link "$LINENO"; then : ac_cv_lib_dl_dlopen=yes else ac_cv_lib_dl_dlopen=no fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext conftest.$ac_ext LIBS=$ac_check_lib_save_LIBS fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_lib_dl_dlopen" >&5 $as_echo "$ac_cv_lib_dl_dlopen" >&6; } if test "x$ac_cv_lib_dl_dlopen" = xyes; then : lt_cv_dlopen=dlopen lt_cv_dlopen_libs=-ldl else lt_cv_dlopen=dyld lt_cv_dlopen_libs= lt_cv_dlopen_self=yes fi ;; tpf*) # Don't try to run any link tests for TPF. We know it's impossible # because TPF is a cross-compiler, and we know how we open DSOs. lt_cv_dlopen=dlopen lt_cv_dlopen_libs= lt_cv_dlopen_self=no ;; *) ac_fn_c_check_func "$LINENO" "shl_load" "ac_cv_func_shl_load" if test "x$ac_cv_func_shl_load" = xyes; then : lt_cv_dlopen=shl_load else { $as_echo "$as_me:${as_lineno-$LINENO}: checking for shl_load in -ldld" >&5 $as_echo_n "checking for shl_load in -ldld... " >&6; } if ${ac_cv_lib_dld_shl_load+:} false; then : $as_echo_n "(cached) " >&6 else ac_check_lib_save_LIBS=$LIBS LIBS="-ldld $LIBS" cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ /* Override any GCC internal prototype to avoid an error. Use char because int might match the return type of a GCC builtin and then its argument prototype would still apply. */ #ifdef __cplusplus extern "C" #endif char shl_load (); int main () { return shl_load (); ; return 0; } _ACEOF if ac_fn_c_try_link "$LINENO"; then : ac_cv_lib_dld_shl_load=yes else ac_cv_lib_dld_shl_load=no fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext conftest.$ac_ext LIBS=$ac_check_lib_save_LIBS fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_lib_dld_shl_load" >&5 $as_echo "$ac_cv_lib_dld_shl_load" >&6; } if test "x$ac_cv_lib_dld_shl_load" = xyes; then : lt_cv_dlopen=shl_load lt_cv_dlopen_libs=-ldld else ac_fn_c_check_func "$LINENO" "dlopen" "ac_cv_func_dlopen" if test "x$ac_cv_func_dlopen" = xyes; then : lt_cv_dlopen=dlopen else { $as_echo "$as_me:${as_lineno-$LINENO}: checking for dlopen in -ldl" >&5 $as_echo_n "checking for dlopen in -ldl... " >&6; } if ${ac_cv_lib_dl_dlopen+:} false; then : $as_echo_n "(cached) " >&6 else ac_check_lib_save_LIBS=$LIBS LIBS="-ldl $LIBS" cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ /* Override any GCC internal prototype to avoid an error. Use char because int might match the return type of a GCC builtin and then its argument prototype would still apply. */ #ifdef __cplusplus extern "C" #endif char dlopen (); int main () { return dlopen (); ; return 0; } _ACEOF if ac_fn_c_try_link "$LINENO"; then : ac_cv_lib_dl_dlopen=yes else ac_cv_lib_dl_dlopen=no fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext conftest.$ac_ext LIBS=$ac_check_lib_save_LIBS fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_lib_dl_dlopen" >&5 $as_echo "$ac_cv_lib_dl_dlopen" >&6; } if test "x$ac_cv_lib_dl_dlopen" = xyes; then : lt_cv_dlopen=dlopen lt_cv_dlopen_libs=-ldl else { $as_echo "$as_me:${as_lineno-$LINENO}: checking for dlopen in -lsvld" >&5 $as_echo_n "checking for dlopen in -lsvld... " >&6; } if ${ac_cv_lib_svld_dlopen+:} false; then : $as_echo_n "(cached) " >&6 else ac_check_lib_save_LIBS=$LIBS LIBS="-lsvld $LIBS" cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ /* Override any GCC internal prototype to avoid an error. Use char because int might match the return type of a GCC builtin and then its argument prototype would still apply. */ #ifdef __cplusplus extern "C" #endif char dlopen (); int main () { return dlopen (); ; return 0; } _ACEOF if ac_fn_c_try_link "$LINENO"; then : ac_cv_lib_svld_dlopen=yes else ac_cv_lib_svld_dlopen=no fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext conftest.$ac_ext LIBS=$ac_check_lib_save_LIBS fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_lib_svld_dlopen" >&5 $as_echo "$ac_cv_lib_svld_dlopen" >&6; } if test "x$ac_cv_lib_svld_dlopen" = xyes; then : lt_cv_dlopen=dlopen lt_cv_dlopen_libs=-lsvld else { $as_echo "$as_me:${as_lineno-$LINENO}: checking for dld_link in -ldld" >&5 $as_echo_n "checking for dld_link in -ldld... " >&6; } if ${ac_cv_lib_dld_dld_link+:} false; then : $as_echo_n "(cached) " >&6 else ac_check_lib_save_LIBS=$LIBS LIBS="-ldld $LIBS" cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ /* Override any GCC internal prototype to avoid an error. Use char because int might match the return type of a GCC builtin and then its argument prototype would still apply. */ #ifdef __cplusplus extern "C" #endif char dld_link (); int main () { return dld_link (); ; return 0; } _ACEOF if ac_fn_c_try_link "$LINENO"; then : ac_cv_lib_dld_dld_link=yes else ac_cv_lib_dld_dld_link=no fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext conftest.$ac_ext LIBS=$ac_check_lib_save_LIBS fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_lib_dld_dld_link" >&5 $as_echo "$ac_cv_lib_dld_dld_link" >&6; } if test "x$ac_cv_lib_dld_dld_link" = xyes; then : lt_cv_dlopen=dld_link lt_cv_dlopen_libs=-ldld fi fi fi fi fi fi ;; esac if test no = "$lt_cv_dlopen"; then enable_dlopen=no else enable_dlopen=yes fi case $lt_cv_dlopen in dlopen) save_CPPFLAGS=$CPPFLAGS test yes = "$ac_cv_header_dlfcn_h" && CPPFLAGS="$CPPFLAGS -DHAVE_DLFCN_H" save_LDFLAGS=$LDFLAGS wl=$lt_prog_compiler_wl eval LDFLAGS=\"\$LDFLAGS $export_dynamic_flag_spec\" save_LIBS=$LIBS LIBS="$lt_cv_dlopen_libs $LIBS" { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether a program can dlopen itself" >&5 $as_echo_n "checking whether a program can dlopen itself... " >&6; } if ${lt_cv_dlopen_self+:} false; then : $as_echo_n "(cached) " >&6 else if test yes = "$cross_compiling"; then : lt_cv_dlopen_self=cross else lt_dlunknown=0; lt_dlno_uscore=1; lt_dlneed_uscore=2 lt_status=$lt_dlunknown cat > conftest.$ac_ext <<_LT_EOF #line $LINENO "configure" #include "confdefs.h" #if HAVE_DLFCN_H #include #endif #include #ifdef RTLD_GLOBAL # define LT_DLGLOBAL RTLD_GLOBAL #else # ifdef DL_GLOBAL # define LT_DLGLOBAL DL_GLOBAL # else # define LT_DLGLOBAL 0 # endif #endif /* We may have to define LT_DLLAZY_OR_NOW in the command line if we find out it does not work in some platform. */ #ifndef LT_DLLAZY_OR_NOW # ifdef RTLD_LAZY # define LT_DLLAZY_OR_NOW RTLD_LAZY # else # ifdef DL_LAZY # define LT_DLLAZY_OR_NOW DL_LAZY # else # ifdef RTLD_NOW # define LT_DLLAZY_OR_NOW RTLD_NOW # else # ifdef DL_NOW # define LT_DLLAZY_OR_NOW DL_NOW # else # define LT_DLLAZY_OR_NOW 0 # endif # endif # endif # endif #endif /* When -fvisibility=hidden is used, assume the code has been annotated correspondingly for the symbols needed. */ #if defined __GNUC__ && (((__GNUC__ == 3) && (__GNUC_MINOR__ >= 3)) || (__GNUC__ > 3)) int fnord () __attribute__((visibility("default"))); #endif int fnord () { return 42; } int main () { void *self = dlopen (0, LT_DLGLOBAL|LT_DLLAZY_OR_NOW); int status = $lt_dlunknown; if (self) { if (dlsym (self,"fnord")) status = $lt_dlno_uscore; else { if (dlsym( self,"_fnord")) status = $lt_dlneed_uscore; else puts (dlerror ()); } /* dlclose (self); */ } else puts (dlerror ()); return status; } _LT_EOF if { { eval echo "\"\$as_me\":${as_lineno-$LINENO}: \"$ac_link\""; } >&5 (eval $ac_link) 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; } && test -s "conftest$ac_exeext" 2>/dev/null; then (./conftest; exit; ) >&5 2>/dev/null lt_status=$? case x$lt_status in x$lt_dlno_uscore) lt_cv_dlopen_self=yes ;; x$lt_dlneed_uscore) lt_cv_dlopen_self=yes ;; x$lt_dlunknown|x*) lt_cv_dlopen_self=no ;; esac else : # compilation failed lt_cv_dlopen_self=no fi fi rm -fr conftest* fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_dlopen_self" >&5 $as_echo "$lt_cv_dlopen_self" >&6; } if test yes = "$lt_cv_dlopen_self"; then wl=$lt_prog_compiler_wl eval LDFLAGS=\"\$LDFLAGS $lt_prog_compiler_static\" { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether a statically linked program can dlopen itself" >&5 $as_echo_n "checking whether a statically linked program can dlopen itself... " >&6; } if ${lt_cv_dlopen_self_static+:} false; then : $as_echo_n "(cached) " >&6 else if test yes = "$cross_compiling"; then : lt_cv_dlopen_self_static=cross else lt_dlunknown=0; lt_dlno_uscore=1; lt_dlneed_uscore=2 lt_status=$lt_dlunknown cat > conftest.$ac_ext <<_LT_EOF #line $LINENO "configure" #include "confdefs.h" #if HAVE_DLFCN_H #include #endif #include #ifdef RTLD_GLOBAL # define LT_DLGLOBAL RTLD_GLOBAL #else # ifdef DL_GLOBAL # define LT_DLGLOBAL DL_GLOBAL # else # define LT_DLGLOBAL 0 # endif #endif /* We may have to define LT_DLLAZY_OR_NOW in the command line if we find out it does not work in some platform. */ #ifndef LT_DLLAZY_OR_NOW # ifdef RTLD_LAZY # define LT_DLLAZY_OR_NOW RTLD_LAZY # else # ifdef DL_LAZY # define LT_DLLAZY_OR_NOW DL_LAZY # else # ifdef RTLD_NOW # define LT_DLLAZY_OR_NOW RTLD_NOW # else # ifdef DL_NOW # define LT_DLLAZY_OR_NOW DL_NOW # else # define LT_DLLAZY_OR_NOW 0 # endif # endif # endif # endif #endif /* When -fvisibility=hidden is used, assume the code has been annotated correspondingly for the symbols needed. */ #if defined __GNUC__ && (((__GNUC__ == 3) && (__GNUC_MINOR__ >= 3)) || (__GNUC__ > 3)) int fnord () __attribute__((visibility("default"))); #endif int fnord () { return 42; } int main () { void *self = dlopen (0, LT_DLGLOBAL|LT_DLLAZY_OR_NOW); int status = $lt_dlunknown; if (self) { if (dlsym (self,"fnord")) status = $lt_dlno_uscore; else { if (dlsym( self,"_fnord")) status = $lt_dlneed_uscore; else puts (dlerror ()); } /* dlclose (self); */ } else puts (dlerror ()); return status; } _LT_EOF if { { eval echo "\"\$as_me\":${as_lineno-$LINENO}: \"$ac_link\""; } >&5 (eval $ac_link) 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; } && test -s "conftest$ac_exeext" 2>/dev/null; then (./conftest; exit; ) >&5 2>/dev/null lt_status=$? case x$lt_status in x$lt_dlno_uscore) lt_cv_dlopen_self_static=yes ;; x$lt_dlneed_uscore) lt_cv_dlopen_self_static=yes ;; x$lt_dlunknown|x*) lt_cv_dlopen_self_static=no ;; esac else : # compilation failed lt_cv_dlopen_self_static=no fi fi rm -fr conftest* fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_dlopen_self_static" >&5 $as_echo "$lt_cv_dlopen_self_static" >&6; } fi CPPFLAGS=$save_CPPFLAGS LDFLAGS=$save_LDFLAGS LIBS=$save_LIBS ;; esac case $lt_cv_dlopen_self in yes|no) enable_dlopen_self=$lt_cv_dlopen_self ;; *) enable_dlopen_self=unknown ;; esac case $lt_cv_dlopen_self_static in yes|no) enable_dlopen_self_static=$lt_cv_dlopen_self_static ;; *) enable_dlopen_self_static=unknown ;; esac fi striplib= old_striplib= { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether stripping libraries is possible" >&5 $as_echo_n "checking whether stripping libraries is possible... " >&6; } if test -n "$STRIP" && $STRIP -V 2>&1 | $GREP "GNU strip" >/dev/null; then test -z "$old_striplib" && old_striplib="$STRIP --strip-debug" test -z "$striplib" && striplib="$STRIP --strip-unneeded" { $as_echo "$as_me:${as_lineno-$LINENO}: result: yes" >&5 $as_echo "yes" >&6; } else # FIXME - insert some real tests, host_os isn't really good enough case $host_os in darwin*) if test -n "$STRIP"; then striplib="$STRIP -x" old_striplib="$STRIP -S" { $as_echo "$as_me:${as_lineno-$LINENO}: result: yes" >&5 $as_echo "yes" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi ;; *) { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } ;; esac fi # Report what library types will actually be built { $as_echo "$as_me:${as_lineno-$LINENO}: checking if libtool supports shared libraries" >&5 $as_echo_n "checking if libtool supports shared libraries... " >&6; } { $as_echo "$as_me:${as_lineno-$LINENO}: result: $can_build_shared" >&5 $as_echo "$can_build_shared" >&6; } { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether to build shared libraries" >&5 $as_echo_n "checking whether to build shared libraries... " >&6; } test no = "$can_build_shared" && enable_shared=no # On AIX, shared libraries and static libraries use the same namespace, and # are all built from PIC. case $host_os in aix3*) test yes = "$enable_shared" && enable_static=no if test -n "$RANLIB"; then archive_cmds="$archive_cmds~\$RANLIB \$lib" postinstall_cmds='$RANLIB $lib' fi ;; aix[4-9]*) if test ia64 != "$host_cpu"; then case $enable_shared,$with_aix_soname,$aix_use_runtimelinking in yes,aix,yes) ;; # shared object as lib.so file only yes,svr4,*) ;; # shared object as lib.so archive member only yes,*) enable_static=no ;; # shared object in lib.a archive as well esac fi ;; esac { $as_echo "$as_me:${as_lineno-$LINENO}: result: $enable_shared" >&5 $as_echo "$enable_shared" >&6; } { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether to build static libraries" >&5 $as_echo_n "checking whether to build static libraries... " >&6; } # Make sure either enable_shared or enable_static is yes. test yes = "$enable_shared" || enable_static=yes { $as_echo "$as_me:${as_lineno-$LINENO}: result: $enable_static" >&5 $as_echo "$enable_static" >&6; } fi ac_ext=c ac_cpp='$CPP $CPPFLAGS' ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5' ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_c_compiler_gnu CC=$lt_save_CC ac_config_commands="$ac_config_commands libtool" # Only expand once: { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether ln -s works" >&5 $as_echo_n "checking whether ln -s works... " >&6; } LN_S=$as_ln_s if test "$LN_S" = "ln -s"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: yes" >&5 $as_echo "yes" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no, using $LN_S" >&5 $as_echo "no, using $LN_S" >&6; } fi # Check whether --with-build-date was given. if test "${with_build_date+set}" = set; then : withval=$with_build_date; BUILD="$with_build_date" else BUILD=`date +%Y%m%d` fi # When the prefix is /opt/libjpeg-turbo, we assume that an "official" binary is # being created, and thus we install things into specific locations. old_prefix=${prefix} if test "x$prefix" = "xNONE" -a "x$ac_default_prefix" != "x"; then prefix=$ac_default_prefix fi DATADIR=`eval echo ${datadir}` DATADIR=`eval echo $DATADIR` if test "$DATADIR" = "/opt/libjpeg-turbo/share"; then datadir='${prefix}' fi DATADIR=`eval echo ${datarootdir}` DATADIR=`eval echo $DATADIR` if test "$DATADIR" = "/opt/libjpeg-turbo/share"; then datarootdir='${prefix}' fi DOCDIR=`eval echo ${docdir}` DOCDIR=`eval echo $DOCDIR` if test "$DOCDIR" = "/opt/libjpeg-turbo/doc/libjpeg-turbo"; then docdir='${datadir}/doc' fi old_exec_prefix=${exec_prefix} if test "x$exec_prefix" = "xNONE"; then exec_prefix=${prefix} fi # The cast to long int works around a bug in the HP C Compiler # version HP92453-01 B.11.11.23709.GP, which incorrectly rejects # declarations like `int a3[[(sizeof (unsigned char)) >= 0]];'. # This bug is HP SR number 8606223364. { $as_echo "$as_me:${as_lineno-$LINENO}: checking size of size_t" >&5 $as_echo_n "checking size of size_t... " >&6; } if ${ac_cv_sizeof_size_t+:} false; then : $as_echo_n "(cached) " >&6 else if ac_fn_c_compute_int "$LINENO" "(long int) (sizeof (size_t))" "ac_cv_sizeof_size_t" "$ac_includes_default"; then : else if test "$ac_cv_type_size_t" = yes; then { { $as_echo "$as_me:${as_lineno-$LINENO}: error: in \`$ac_pwd':" >&5 $as_echo "$as_me: error: in \`$ac_pwd':" >&2;} as_fn_error 77 "cannot compute sizeof (size_t) See \`config.log' for more details" "$LINENO" 5; } else ac_cv_sizeof_size_t=0 fi fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_sizeof_size_t" >&5 $as_echo "$ac_cv_sizeof_size_t" >&6; } cat >>confdefs.h <<_ACEOF #define SIZEOF_SIZE_T $ac_cv_sizeof_size_t _ACEOF if test "x${libdir}" = 'x${exec_prefix}/lib' -o "x${libdir}" = 'x${prefix}/lib'; then LIBDIR=`eval echo ${libdir}` LIBDIR=`eval echo $LIBDIR` if test "$LIBDIR" = "/opt/libjpeg-turbo/lib"; then case $host_os in darwin*) ;; *) if test "${ac_cv_sizeof_size_t}" = "8"; then libdir='${exec_prefix}/lib64' elif test "${ac_cv_sizeof_size_t}" = "4"; then libdir='${exec_prefix}/lib32' fi ;; esac fi fi exec_prefix=${old_exec_prefix} prefix=${old_prefix} # Check whether compiler supports pointers to undefined structures { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether compiler supports pointers to undefined structures" >&5 $as_echo_n "checking whether compiler supports pointers to undefined structures... " >&6; } cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ typedef struct undefined_structure * undef_struct_ptr; int main () { ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : { $as_echo "$as_me:${as_lineno-$LINENO}: result: yes" >&5 $as_echo "yes" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } $as_echo "#define INCOMPLETE_TYPES_BROKEN 1" >>confdefs.h fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext if test "x${GCC}" = "xyes"; then if test "x${SAVED_CFLAGS}" = "x"; then CFLAGS=-O3 fi if test "x${SAVED_CPPFLAGS}" = "x"; then CPPFLAGS=-Wall fi fi ac_fn_c_check_decl "$LINENO" "__SUNPRO_C" "ac_cv_have_decl___SUNPRO_C" "$ac_includes_default" if test "x$ac_cv_have_decl___SUNPRO_C" = xyes; then : SUNCC="yes" else SUNCC="no" fi if test "x${SUNCC}" = "xyes"; then if test "x${SAVED_CFLAGS}" = "x"; then CFLAGS=-xO5 fi fi # Checks for libraries. # Checks for header files. { $as_echo "$as_me:${as_lineno-$LINENO}: checking for ANSI C header files" >&5 $as_echo_n "checking for ANSI C header files... " >&6; } if ${ac_cv_header_stdc+:} false; then : $as_echo_n "(cached) " >&6 else cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include #include #include #include int main () { ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : ac_cv_header_stdc=yes else ac_cv_header_stdc=no fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext if test $ac_cv_header_stdc = yes; then # SunOS 4.x string.h does not declare mem*, contrary to ANSI. cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include _ACEOF if (eval "$ac_cpp conftest.$ac_ext") 2>&5 | $EGREP "memchr" >/dev/null 2>&1; then : else ac_cv_header_stdc=no fi rm -f conftest* fi if test $ac_cv_header_stdc = yes; then # ISC 2.0.2 stdlib.h does not declare free, contrary to ANSI. cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include _ACEOF if (eval "$ac_cpp conftest.$ac_ext") 2>&5 | $EGREP "free" >/dev/null 2>&1; then : else ac_cv_header_stdc=no fi rm -f conftest* fi if test $ac_cv_header_stdc = yes; then # /bin/cc in Irix-4.0.5 gets non-ANSI ctype macros unless using -ansi. if test "$cross_compiling" = yes; then : : else cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include #include #if ((' ' & 0x0FF) == 0x020) # define ISLOWER(c) ('a' <= (c) && (c) <= 'z') # define TOUPPER(c) (ISLOWER(c) ? 'A' + ((c) - 'a') : (c)) #else # define ISLOWER(c) \ (('a' <= (c) && (c) <= 'i') \ || ('j' <= (c) && (c) <= 'r') \ || ('s' <= (c) && (c) <= 'z')) # define TOUPPER(c) (ISLOWER(c) ? ((c) | 0x40) : (c)) #endif #define XOR(e, f) (((e) && !(f)) || (!(e) && (f))) int main () { int i; for (i = 0; i < 256; i++) if (XOR (islower (i), ISLOWER (i)) || toupper (i) != TOUPPER (i)) return 2; return 0; } _ACEOF if ac_fn_c_try_run "$LINENO"; then : else ac_cv_header_stdc=no fi rm -f core *.core core.conftest.* gmon.out bb.out conftest$ac_exeext \ conftest.$ac_objext conftest.beam conftest.$ac_ext fi fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_header_stdc" >&5 $as_echo "$ac_cv_header_stdc" >&6; } if test $ac_cv_header_stdc = yes; then $as_echo "#define STDC_HEADERS 1" >>confdefs.h fi for ac_header in stddef.h stdlib.h locale.h string.h do : as_ac_Header=`$as_echo "ac_cv_header_$ac_header" | $as_tr_sh` ac_fn_c_check_header_mongrel "$LINENO" "$ac_header" "$as_ac_Header" "$ac_includes_default" if eval test \"x\$"$as_ac_Header"\" = x"yes"; then : cat >>confdefs.h <<_ACEOF #define `$as_echo "HAVE_$ac_header" | $as_tr_cpp` 1 _ACEOF fi done ac_fn_c_check_header_mongrel "$LINENO" "sys/types.h" "ac_cv_header_sys_types_h" "$ac_includes_default" if test "x$ac_cv_header_sys_types_h" = xyes; then : $as_echo "#define NEED_SYS_TYPES_H 1" >>confdefs.h fi # Checks for typedefs, structures, and compiler characteristics. { $as_echo "$as_me:${as_lineno-$LINENO}: checking for an ANSI C-conforming const" >&5 $as_echo_n "checking for an ANSI C-conforming const... " >&6; } if ${ac_cv_c_const+:} false; then : $as_echo_n "(cached) " >&6 else cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ int main () { #ifndef __cplusplus /* Ultrix mips cc rejects this sort of thing. */ typedef int charset[2]; const charset cs = { 0, 0 }; /* SunOS 4.1.1 cc rejects this. */ char const *const *pcpcc; char **ppc; /* NEC SVR4.0.2 mips cc rejects this. */ struct point {int x, y;}; static struct point const zero = {0,0}; /* AIX XL C 1.02.0.0 rejects this. It does not let you subtract one const X* pointer from another in an arm of an if-expression whose if-part is not a constant expression */ const char *g = "string"; pcpcc = &g + (g ? g-g : 0); /* HPUX 7.0 cc rejects these. */ ++pcpcc; ppc = (char**) pcpcc; pcpcc = (char const *const *) ppc; { /* SCO 3.2v4 cc rejects this sort of thing. */ char tx; char *t = &tx; char const *s = 0 ? (char *) 0 : (char const *) 0; *t++ = 0; if (s) return 0; } { /* Someone thinks the Sun supposedly-ANSI compiler will reject this. */ int x[] = {25, 17}; const int *foo = &x[0]; ++foo; } { /* Sun SC1.0 ANSI compiler rejects this -- but not the above. */ typedef const int *iptr; iptr p = 0; ++p; } { /* AIX XL C 1.02.0.0 rejects this sort of thing, saying "k.c", line 2.27: 1506-025 (S) Operand must be a modifiable lvalue. */ struct s { int j; const int *ap[3]; } bx; struct s *b = &bx; b->j = 5; } { /* ULTRIX-32 V3.1 (Rev 9) vcc rejects this */ const int foo = 10; if (!foo) return 0; } return !cs[0] && !zero.x; #endif ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : ac_cv_c_const=yes else ac_cv_c_const=no fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_c_const" >&5 $as_echo "$ac_cv_c_const" >&6; } if test $ac_cv_c_const = no; then $as_echo "#define const /**/" >>confdefs.h fi { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether char is unsigned" >&5 $as_echo_n "checking whether char is unsigned... " >&6; } if ${ac_cv_c_char_unsigned+:} false; then : $as_echo_n "(cached) " >&6 else cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ $ac_includes_default int main () { static int test_array [1 - 2 * !(((char) -1) < 0)]; test_array [0] = 0; return test_array [0]; ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : ac_cv_c_char_unsigned=no else ac_cv_c_char_unsigned=yes fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_c_char_unsigned" >&5 $as_echo "$ac_cv_c_char_unsigned" >&6; } if test $ac_cv_c_char_unsigned = yes && test "$GCC" != yes; then $as_echo "#define __CHAR_UNSIGNED__ 1" >>confdefs.h fi { $as_echo "$as_me:${as_lineno-$LINENO}: checking for inline" >&5 $as_echo_n "checking for inline... " >&6; } if ${ac_cv_c_inline+:} false; then : $as_echo_n "(cached) " >&6 else ac_cv_c_inline=no for ac_kw in inline __inline__ __inline; do cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #ifndef __cplusplus typedef int foo_t; static $ac_kw foo_t static_foo () {return 0; } $ac_kw foo_t foo () {return 0; } #endif _ACEOF if ac_fn_c_try_compile "$LINENO"; then : ac_cv_c_inline=$ac_kw fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext test "$ac_cv_c_inline" != no && break done fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_c_inline" >&5 $as_echo "$ac_cv_c_inline" >&6; } case $ac_cv_c_inline in inline | yes) ;; *) case $ac_cv_c_inline in no) ac_val=;; *) ac_val=$ac_cv_c_inline;; esac cat >>confdefs.h <<_ACEOF #ifndef __cplusplus #define inline $ac_val #endif _ACEOF ;; esac ac_fn_c_check_type "$LINENO" "size_t" "ac_cv_type_size_t" "$ac_includes_default" if test "x$ac_cv_type_size_t" = xyes; then : else cat >>confdefs.h <<_ACEOF #define size_t unsigned int _ACEOF fi ac_fn_c_check_type "$LINENO" "unsigned char" "ac_cv_type_unsigned_char" "$ac_includes_default" if test "x$ac_cv_type_unsigned_char" = xyes; then : cat >>confdefs.h <<_ACEOF #define HAVE_UNSIGNED_CHAR 1 _ACEOF fi ac_fn_c_check_type "$LINENO" "unsigned short" "ac_cv_type_unsigned_short" "$ac_includes_default" if test "x$ac_cv_type_unsigned_short" = xyes; then : cat >>confdefs.h <<_ACEOF #define HAVE_UNSIGNED_SHORT 1 _ACEOF fi { $as_echo "$as_me:${as_lineno-$LINENO}: checking if right shift is signed" >&5 $as_echo_n "checking if right shift is signed... " >&6; } if test "$cross_compiling" = yes; then : { $as_echo "$as_me:${as_lineno-$LINENO}: result: Assuming that right shift is signed on target machine." >&5 $as_echo "Assuming that right shift is signed on target machine." >&6; } else cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include int is_shifting_signed (long arg) { long res = arg >> 4; if (res == -0x7F7E80CL) return 1; /* right shift is signed */ /* see if unsigned-shift hack will fix it. */ /* we can't just test exact value since it depends on width of long... */ res |= (~0L) << (32-4); if (res == -0x7F7E80CL) return 0; /* right shift is unsigned */ printf("Right shift isn't acting as I expect it to.\n"); printf("I fear the JPEG software will not work at all.\n\n"); return 0; /* try it with unsigned anyway */ } int main (void) { exit(is_shifting_signed(-0x7F7E80B1L)); } _ACEOF if ac_fn_c_try_run "$LINENO"; then : { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } $as_echo "#define RIGHT_SHIFT_IS_UNSIGNED 1" >>confdefs.h else { $as_echo "$as_me:${as_lineno-$LINENO}: result: yes" >&5 $as_echo "yes" >&6; } fi rm -f core *.core core.conftest.* gmon.out bb.out conftest$ac_exeext \ conftest.$ac_objext conftest.beam conftest.$ac_ext fi # Checks for library functions. for ac_func in memset memcpy do : as_ac_var=`$as_echo "ac_cv_func_$ac_func" | $as_tr_sh` ac_fn_c_check_func "$LINENO" "$ac_func" "$as_ac_var" if eval test \"x\$"$as_ac_var"\" = x"yes"; then : cat >>confdefs.h <<_ACEOF #define `$as_echo "HAVE_$ac_func" | $as_tr_cpp` 1 _ACEOF else $as_echo "#define NEED_BSD_STRINGS 1" >>confdefs.h fi done { $as_echo "$as_me:${as_lineno-$LINENO}: checking libjpeg API version" >&5 $as_echo_n "checking libjpeg API version... " >&6; } if test "x$JPEG_LIB_VERSION" = "x"; then # Check whether --with-jpeg7 was given. if test "${with_jpeg7+set}" = set; then : withval=$with_jpeg7; fi # Check whether --with-jpeg8 was given. if test "${with_jpeg8+set}" = set; then : withval=$with_jpeg8; fi if test "x${with_jpeg8}" = "xyes"; then JPEG_LIB_VERSION=80 else if test "x${with_jpeg7}" = "xyes"; then JPEG_LIB_VERSION=70 else JPEG_LIB_VERSION=62 fi fi fi JPEG_LIB_VERSION_DECIMAL=`expr $JPEG_LIB_VERSION / 10`.`expr $JPEG_LIB_VERSION % 10` { $as_echo "$as_me:${as_lineno-$LINENO}: result: $JPEG_LIB_VERSION_DECIMAL" >&5 $as_echo "$JPEG_LIB_VERSION_DECIMAL" >&6; } cat >>confdefs.h <<_ACEOF #define JPEG_LIB_VERSION $JPEG_LIB_VERSION _ACEOF if test "x$SO_MAJOR_VERSION" = "x"; then case "$JPEG_LIB_VERSION" in 62) SO_MAJOR_VERSION=$JPEG_LIB_VERSION ;; *) SO_MAJOR_VERSION=`expr $JPEG_LIB_VERSION / 10` ;; esac fi if test "x$SO_MINOR_VERSION" = "x"; then case "$JPEG_LIB_VERSION" in 80) SO_MINOR_VERSION=2 ;; *) SO_MINOR_VERSION=0 ;; esac fi RPM_CONFIG_ARGS= # Memory source/destination managers SO_AGE=0 MEM_SRCDST_FUNCTIONS= if test "x${with_jpeg8}" != "xyes"; then { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether to include in-memory source/destination managers" >&5 $as_echo_n "checking whether to include in-memory source/destination managers... " >&6; } # Check whether --with-mem-srcdst was given. if test "${with_mem_srcdst+set}" = set; then : withval=$with_mem_srcdst; fi if test "x$with_mem_srcdst" != "xno"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: yes" >&5 $as_echo "yes" >&6; } $as_echo "#define MEM_SRCDST_SUPPORTED 1" >>confdefs.h SO_AGE=1 MEM_SRCDST_FUNCTIONS="global: jpeg_mem_dest; jpeg_mem_src;"; else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } RPM_CONFIG_ARGS="$RPM_CONFIG_ARGS --without-mem-srcdst" fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: checking libjpeg shared library version" >&5 $as_echo_n "checking libjpeg shared library version... " >&6; } { $as_echo "$as_me:${as_lineno-$LINENO}: result: $SO_MAJOR_VERSION.$SO_AGE.$SO_MINOR_VERSION" >&5 $as_echo "$SO_MAJOR_VERSION.$SO_AGE.$SO_MINOR_VERSION" >&6; } LIBTOOL_CURRENT=`expr $SO_MAJOR_VERSION + $SO_AGE` cat >>confdefs.h <<_ACEOF #define LIBJPEG_TURBO_VERSION $VERSION _ACEOF VERSION_SCRIPT=yes # Check whether --enable-ld-version-script was given. if test "${enable_ld_version_script+set}" = set; then : enableval=$enable_ld_version_script; VERSION_SCRIPT=$enableval fi { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether the linker supports version scripts" >&5 $as_echo_n "checking whether the linker supports version scripts... " >&6; } SAVED_LDFLAGS="$LDFLAGS" LDFLAGS="$LDFLAGS -Wl,--version-script,conftest.map" cat > conftest.map <conftest.$ac_ext /* end confdefs.h. */ int main () { ; return 0; } _ACEOF if ac_fn_c_try_link "$LINENO"; then : VERSION_SCRIPT_FLAG=-Wl,--version-script,; { $as_echo "$as_me:${as_lineno-$LINENO}: result: yes (GNU style)" >&5 $as_echo "yes (GNU style)" >&6; } fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext conftest.$ac_ext if test "x$VERSION_SCRIPT_FLAG" = "x"; then LDFLAGS="$SAVED_LDFLAGS -Wl,-M,conftest.map" cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ int main () { ; return 0; } _ACEOF if ac_fn_c_try_link "$LINENO"; then : VERSION_SCRIPT_FLAG=-Wl,-M,; { $as_echo "$as_me:${as_lineno-$LINENO}: result: yes (Sun style)" >&5 $as_echo "yes (Sun style)" >&6; } fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext conftest.$ac_ext fi if test "x$VERSION_SCRIPT_FLAG" = "x"; then VERSION_SCRIPT=no { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi LDFLAGS="$SAVED_LDFLAGS" { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether to use version script when building libjpeg-turbo" >&5 $as_echo_n "checking whether to use version script when building libjpeg-turbo... " >&6; } { $as_echo "$as_me:${as_lineno-$LINENO}: result: $VERSION_SCRIPT" >&5 $as_echo "$VERSION_SCRIPT" >&6; } if test "x$VERSION_SCRIPT" = "xyes"; then VERSION_SCRIPT_TRUE= VERSION_SCRIPT_FALSE='#' else VERSION_SCRIPT_TRUE='#' VERSION_SCRIPT_FALSE= fi # Check for non-broken inline under various spellings { $as_echo "$as_me:${as_lineno-$LINENO}: checking for inline" >&5 $as_echo_n "checking for inline... " >&6; } ljt_cv_inline="" cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ int main () { } inline __attribute__((always_inline)) int foo() { return 0; } int bar() { return foo(); ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : ljt_cv_inline="inline __attribute__((always_inline))" else cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ int main () { } __inline__ int foo() { return 0; } int bar() { return foo(); ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : ljt_cv_inline="__inline__" else cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ int main () { } __inline int foo() { return 0; } int bar() { return foo(); ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : ljt_cv_inline="__inline" else cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ int main () { } inline int foo() { return 0; } int bar() { return foo(); ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : ljt_cv_inline="inline" fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ljt_cv_inline" >&5 $as_echo "$ljt_cv_inline" >&6; } cat >>confdefs.h <<_ACEOF #define INLINE $ljt_cv_inline _ACEOF # Arithmetic coding support { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether to include arithmetic encoding support" >&5 $as_echo_n "checking whether to include arithmetic encoding support... " >&6; } # Check whether --with-arith-enc was given. if test "${with_arith_enc+set}" = set; then : withval=$with_arith_enc; fi if test "x$with_12bit" = "xyes"; then with_arith_enc=no fi if test "x$with_arith_enc" = "xno"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } RPM_CONFIG_ARGS="$RPM_CONFIG_ARGS --without-arith-enc" else $as_echo "#define C_ARITH_CODING_SUPPORTED 1" >>confdefs.h { $as_echo "$as_me:${as_lineno-$LINENO}: result: yes" >&5 $as_echo "yes" >&6; } fi if test "x$with_arith_enc" != "xno"; then WITH_ARITH_ENC_TRUE= WITH_ARITH_ENC_FALSE='#' else WITH_ARITH_ENC_TRUE='#' WITH_ARITH_ENC_FALSE= fi { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether to include arithmetic decoding support" >&5 $as_echo_n "checking whether to include arithmetic decoding support... " >&6; } # Check whether --with-arith-dec was given. if test "${with_arith_dec+set}" = set; then : withval=$with_arith_dec; fi if test "x$with_12bit" = "xyes"; then with_arith_dec=no fi if test "x$with_arith_dec" = "xno"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } RPM_CONFIG_ARGS="$RPM_CONFIG_ARGS --without-arith-dec" else $as_echo "#define D_ARITH_CODING_SUPPORTED 1" >>confdefs.h { $as_echo "$as_me:${as_lineno-$LINENO}: result: yes" >&5 $as_echo "yes" >&6; } fi if test "x$with_arith_dec" != "xno"; then WITH_ARITH_DEC_TRUE= WITH_ARITH_DEC_FALSE='#' else WITH_ARITH_DEC_TRUE='#' WITH_ARITH_DEC_FALSE= fi if test "x$with_arith_dec" != "xno" -o "x$with_arith_enc" != "xno"; then WITH_ARITH_TRUE= WITH_ARITH_FALSE='#' else WITH_ARITH_TRUE='#' WITH_ARITH_FALSE= fi # 12-bit component support { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether to use 12-bit samples" >&5 $as_echo_n "checking whether to use 12-bit samples... " >&6; } # Check whether --with-12bit was given. if test "${with_12bit+set}" = set; then : withval=$with_12bit; fi if test "x$with_12bit" = "xyes"; then $as_echo "#define BITS_IN_JSAMPLE 12" >>confdefs.h { $as_echo "$as_me:${as_lineno-$LINENO}: result: yes" >&5 $as_echo "yes" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi if test "x$with_12bit" = "xyes"; then WITH_12BIT_TRUE= WITH_12BIT_FALSE='#' else WITH_12BIT_TRUE='#' WITH_12BIT_FALSE= fi # TurboJPEG support { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether to build TurboJPEG C wrapper" >&5 $as_echo_n "checking whether to build TurboJPEG C wrapper... " >&6; } # Check whether --with-turbojpeg was given. if test "${with_turbojpeg+set}" = set; then : withval=$with_turbojpeg; fi if test "x$with_12bit" = "xyes"; then with_turbojpeg=no fi if test "x$with_turbojpeg" = "xno"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } RPM_CONFIG_ARGS="$RPM_CONFIG_ARGS --without-turbojpeg" else { $as_echo "$as_me:${as_lineno-$LINENO}: result: yes" >&5 $as_echo "yes" >&6; } fi # Java support if test "x$JAVAC" = "x"; then JAVAC=javac fi if test "x$JAR" = "x"; then JAR=jar fi if test "x$JAVA" = "x"; then JAVA=java fi { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether to build TurboJPEG Java wrapper" >&5 $as_echo_n "checking whether to build TurboJPEG Java wrapper... " >&6; } # Check whether --with-java was given. if test "${with_java+set}" = set; then : withval=$with_java; fi if test "x$with_12bit" = "xyes" -o "x$with_turbojpeg" = "xno"; then with_java=no fi WITH_JAVA=0 if test "x$with_java" = "xyes"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: yes" >&5 $as_echo "yes" >&6; } case $host_os in darwin*) DEFAULT_JNI_CFLAGS=-I/System/Library/Frameworks/JavaVM.framework/Headers ;; solaris*) DEFAULT_JNI_CFLAGS='-I/usr/java/include -I/usr/java/include/solaris' ;; linux*) DEFAULT_JNI_CFLAGS='-I/usr/java/default/include -I/usr/java/default/include/linux' ;; esac if test "x$JNI_CFLAGS" = "x"; then JNI_CFLAGS=$DEFAULT_JNI_CFLAGS fi SAVE_CPPFLAGS=${CPPFLAGS} CPPFLAGS="${CPPFLAGS} ${JNI_CFLAGS}" for ac_header in jni.h do : ac_fn_c_check_header_mongrel "$LINENO" "jni.h" "ac_cv_header_jni_h" "$ac_includes_default" if test "x$ac_cv_header_jni_h" = xyes; then : cat >>confdefs.h <<_ACEOF #define HAVE_JNI_H 1 _ACEOF DUMMY=1 else as_fn_error $? "Could not find JNI header file" "$LINENO" 5 fi done CPPFLAGS=${SAVE_CPPFLAGS} RPM_CONFIG_ARGS="$RPM_CONFIG_ARGS --with-java" JAVA_RPM_CONTENTS_1='%dir %{_datadir}/classes' JAVA_RPM_CONTENTS_2=%{_datadir}/classes/turbojpeg.jar WITH_JAVA=1 else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi if test "x$with_java" = "xyes"; then WITH_JAVA_TRUE= WITH_JAVA_FALSE='#' else WITH_JAVA_TRUE='#' WITH_JAVA_FALSE= fi # optionally force using gas-preprocessor.pl for compatibility testing # Check whether --with-gas-preprocessor was given. if test "${with_gas_preprocessor+set}" = set; then : withval=$with_gas_preprocessor; fi if test "x${with_gas_preprocessor}" = "xyes"; then case $host_os in darwin*) CCAS="gas-preprocessor.pl -fix-unreq $CC" ;; *) CCAS="gas-preprocessor.pl -no-fix-unreq $CC" ;; esac fi # SIMD is optional # Check whether --with-simd was given. if test "${with_simd+set}" = set; then : withval=$with_simd; fi if test "x$with_12bit" = "xyes"; then with_simd=no fi if test "x${with_simd}" != "xno"; then require_simd=no if test "x${with_simd}" = "xyes"; then require_simd=yes fi # Check if we're on a supported CPU { $as_echo "$as_me:${as_lineno-$LINENO}: checking if we have SIMD optimisations for cpu type" >&5 $as_echo_n "checking if we have SIMD optimisations for cpu type... " >&6; } case "$host_cpu" in x86_64 | amd64) { $as_echo "$as_me:${as_lineno-$LINENO}: result: yes (x86_64)" >&5 $as_echo "yes (x86_64)" >&6; } for ac_prog in nasm nasmw yasm do # Extract the first word of "$ac_prog", so it can be a program name with args. set dummy $ac_prog; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_NASM+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$NASM"; then ac_cv_prog_NASM="$NASM" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_NASM="$ac_prog" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi NASM=$ac_cv_prog_NASM if test -n "$NASM"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $NASM" >&5 $as_echo "$NASM" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi test -n "$NASM" && break done test -z "$NASM" && as_fn_error $? "no nasm (Netwide Assembler) found" "$LINENO" 5 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for object file format of host system" >&5 $as_echo_n "checking for object file format of host system... " >&6; } case "$host_os" in cygwin* | mingw* | pw32* | interix*) case "$host_cpu" in x86_64) objfmt='Win64-COFF' ;; *) objfmt='Win32-COFF' ;; esac ;; msdosdjgpp* | go32*) objfmt='COFF' ;; os2-emx*) # not tested objfmt='MSOMF' # obj ;; linux*coff* | linux*oldld*) objfmt='COFF' # ??? ;; linux*aout*) objfmt='a.out' ;; linux*) case "$host_cpu" in x86_64) objfmt='ELF64' ;; *) objfmt='ELF' ;; esac ;; kfreebsd* | freebsd* | netbsd* | openbsd*) if echo __ELF__ | $CC -E - | grep __ELF__ > /dev/null; then objfmt='BSD-a.out' else case "$host_cpu" in x86_64 | amd64) objfmt='ELF64' ;; *) objfmt='ELF' ;; esac fi ;; solaris* | sunos* | sysv* | sco*) case "$host_cpu" in x86_64) objfmt='ELF64' ;; *) objfmt='ELF' ;; esac ;; darwin* | rhapsody* | nextstep* | openstep* | macos*) case "$host_cpu" in x86_64) objfmt='Mach-O64' ;; *) objfmt='Mach-O' ;; esac ;; *) objfmt='ELF ?' ;; esac { $as_echo "$as_me:${as_lineno-$LINENO}: result: $objfmt" >&5 $as_echo "$objfmt" >&6; } if test "$objfmt" = 'ELF ?'; then objfmt='ELF' { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: unexpected host system. assumed that the format is $objfmt." >&5 $as_echo "$as_me: WARNING: unexpected host system. assumed that the format is $objfmt." >&2;} fi { $as_echo "$as_me:${as_lineno-$LINENO}: checking for object file format specifier (NAFLAGS) " >&5 $as_echo_n "checking for object file format specifier (NAFLAGS) ... " >&6; } case "$objfmt" in MSOMF) NAFLAGS='-fobj -DOBJ32';; Win32-COFF) NAFLAGS='-fwin32 -DWIN32';; Win64-COFF) NAFLAGS='-fwin64 -DWIN64 -D__x86_64__';; COFF) NAFLAGS='-fcoff -DCOFF';; a.out) NAFLAGS='-faout -DAOUT';; BSD-a.out) NAFLAGS='-faoutb -DAOUT';; ELF) NAFLAGS='-felf -DELF';; ELF64) NAFLAGS='-felf64 -DELF -D__x86_64__';; RDF) NAFLAGS='-frdf -DRDF';; Mach-O) NAFLAGS='-fmacho -DMACHO';; Mach-O64) NAFLAGS='-fmacho64 -DMACHO -D__x86_64__';; esac { $as_echo "$as_me:${as_lineno-$LINENO}: result: $NAFLAGS" >&5 $as_echo "$NAFLAGS" >&6; } { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether the assembler ($NASM $NAFLAGS) works" >&5 $as_echo_n "checking whether the assembler ($NASM $NAFLAGS) works... " >&6; } cat > conftest.asm <&5 (eval $try_nasm) 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; } && test -s conftest.o; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: yes" >&5 $as_echo "yes" >&6; } else echo "configure: failed program was:" >&5 cat conftest.asm >&5 rm -rf conftest* { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } as_fn_error $? "installation or configuration problem: assembler cannot create object files." "$LINENO" 5 fi { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether the linker accepts assembler output" >&5 $as_echo_n "checking whether the linker accepts assembler output... " >&6; } try_nasm='${CC-cc} -o conftest${ac_exeext} $LDFLAGS conftest.o $LIBS 1>&5' if { { eval echo "\"\$as_me\":${as_lineno-$LINENO}: \"$try_nasm\""; } >&5 (eval $try_nasm) 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; } && test -s conftest${ac_exeext}; then rm -rf conftest* { $as_echo "$as_me:${as_lineno-$LINENO}: result: yes" >&5 $as_echo "yes" >&6; } else rm -rf conftest* { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } as_fn_error $? "configuration problem: maybe object file format mismatch." "$LINENO" 5 fi simd_arch=x86_64 ;; i*86 | x86 | ia32) { $as_echo "$as_me:${as_lineno-$LINENO}: result: yes (i386)" >&5 $as_echo "yes (i386)" >&6; } for ac_prog in nasm nasmw yasm do # Extract the first word of "$ac_prog", so it can be a program name with args. set dummy $ac_prog; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_NASM+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$NASM"; then ac_cv_prog_NASM="$NASM" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_NASM="$ac_prog" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi NASM=$ac_cv_prog_NASM if test -n "$NASM"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $NASM" >&5 $as_echo "$NASM" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi test -n "$NASM" && break done test -z "$NASM" && as_fn_error $? "no nasm (Netwide Assembler) found" "$LINENO" 5 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for object file format of host system" >&5 $as_echo_n "checking for object file format of host system... " >&6; } case "$host_os" in cygwin* | mingw* | pw32* | interix*) case "$host_cpu" in x86_64) objfmt='Win64-COFF' ;; *) objfmt='Win32-COFF' ;; esac ;; msdosdjgpp* | go32*) objfmt='COFF' ;; os2-emx*) # not tested objfmt='MSOMF' # obj ;; linux*coff* | linux*oldld*) objfmt='COFF' # ??? ;; linux*aout*) objfmt='a.out' ;; linux*) case "$host_cpu" in x86_64) objfmt='ELF64' ;; *) objfmt='ELF' ;; esac ;; kfreebsd* | freebsd* | netbsd* | openbsd*) if echo __ELF__ | $CC -E - | grep __ELF__ > /dev/null; then objfmt='BSD-a.out' else case "$host_cpu" in x86_64 | amd64) objfmt='ELF64' ;; *) objfmt='ELF' ;; esac fi ;; solaris* | sunos* | sysv* | sco*) case "$host_cpu" in x86_64) objfmt='ELF64' ;; *) objfmt='ELF' ;; esac ;; darwin* | rhapsody* | nextstep* | openstep* | macos*) case "$host_cpu" in x86_64) objfmt='Mach-O64' ;; *) objfmt='Mach-O' ;; esac ;; *) objfmt='ELF ?' ;; esac { $as_echo "$as_me:${as_lineno-$LINENO}: result: $objfmt" >&5 $as_echo "$objfmt" >&6; } if test "$objfmt" = 'ELF ?'; then objfmt='ELF' { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: unexpected host system. assumed that the format is $objfmt." >&5 $as_echo "$as_me: WARNING: unexpected host system. assumed that the format is $objfmt." >&2;} fi { $as_echo "$as_me:${as_lineno-$LINENO}: checking for object file format specifier (NAFLAGS) " >&5 $as_echo_n "checking for object file format specifier (NAFLAGS) ... " >&6; } case "$objfmt" in MSOMF) NAFLAGS='-fobj -DOBJ32';; Win32-COFF) NAFLAGS='-fwin32 -DWIN32';; Win64-COFF) NAFLAGS='-fwin64 -DWIN64 -D__x86_64__';; COFF) NAFLAGS='-fcoff -DCOFF';; a.out) NAFLAGS='-faout -DAOUT';; BSD-a.out) NAFLAGS='-faoutb -DAOUT';; ELF) NAFLAGS='-felf -DELF';; ELF64) NAFLAGS='-felf64 -DELF -D__x86_64__';; RDF) NAFLAGS='-frdf -DRDF';; Mach-O) NAFLAGS='-fmacho -DMACHO';; Mach-O64) NAFLAGS='-fmacho64 -DMACHO -D__x86_64__';; esac { $as_echo "$as_me:${as_lineno-$LINENO}: result: $NAFLAGS" >&5 $as_echo "$NAFLAGS" >&6; } { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether the assembler ($NASM $NAFLAGS) works" >&5 $as_echo_n "checking whether the assembler ($NASM $NAFLAGS) works... " >&6; } cat > conftest.asm <&5 (eval $try_nasm) 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; } && test -s conftest.o; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: yes" >&5 $as_echo "yes" >&6; } else echo "configure: failed program was:" >&5 cat conftest.asm >&5 rm -rf conftest* { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } as_fn_error $? "installation or configuration problem: assembler cannot create object files." "$LINENO" 5 fi { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether the linker accepts assembler output" >&5 $as_echo_n "checking whether the linker accepts assembler output... " >&6; } try_nasm='${CC-cc} -o conftest${ac_exeext} $LDFLAGS conftest.o $LIBS 1>&5' if { { eval echo "\"\$as_me\":${as_lineno-$LINENO}: \"$try_nasm\""; } >&5 (eval $try_nasm) 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; } && test -s conftest${ac_exeext}; then rm -rf conftest* { $as_echo "$as_me:${as_lineno-$LINENO}: result: yes" >&5 $as_echo "yes" >&6; } else rm -rf conftest* { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } as_fn_error $? "configuration problem: maybe object file format mismatch." "$LINENO" 5 fi simd_arch=i386 ;; arm*) { $as_echo "$as_me:${as_lineno-$LINENO}: result: yes (arm)" >&5 $as_echo "yes (arm)" >&6; } { $as_echo "$as_me:${as_lineno-$LINENO}: checking if the assembler is GNU-compatible and can be used" >&5 $as_echo_n "checking if the assembler is GNU-compatible and can be used... " >&6; } ac_good_gnu_arm_assembler=no ac_save_CC="$CC" ac_save_CFLAGS="$CFLAGS" CFLAGS="$CCASFLAGS -x assembler-with-cpp" CC="$CCAS" cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ .text .fpu neon .arch armv7a .object_arch armv4 .arm pld [r0] vmovn.u16 d0, q0 _ACEOF if ac_fn_c_try_compile "$LINENO"; then : ac_good_gnu_arm_assembler=yes fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext ac_use_gas_preprocessor=no if test "x$ac_good_gnu_arm_assembler" = "xno" ; then CC="gas-preprocessor.pl $CCAS" cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ .text .fpu neon .arch armv7a .object_arch armv4 .arm pld [r0] vmovn.u16 d0, q0 _ACEOF if ac_fn_c_try_compile "$LINENO"; then : ac_use_gas_preprocessor=yes fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext fi CFLAGS="$ac_save_CFLAGS" CC="$ac_save_CC" if test "x$ac_use_gas_preprocessor" = "xyes" ; then CCAS="gas-preprocessor.pl $CCAS" ac_good_gnu_arm_assembler=yes fi if test "x$ac_good_gnu_arm_assembler" = "xyes" ; then if test "x$ac_use_gas_preprocessor" = "xyes"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: yes (with gas-preprocessor)" >&5 $as_echo "yes (with gas-preprocessor)" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: yes" >&5 $as_echo "yes" >&6; } fi simd_arch=arm else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } with_simd=no fi if test "x${with_simd}" = "xno"; then if test "x${require_simd}" = "xyes"; then as_fn_error $? "SIMD support can't be enabled." "$LINENO" 5 else { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: SIMD support can't be enabled. Performance will suffer." >&5 $as_echo "$as_me: WARNING: SIMD support can't be enabled. Performance will suffer." >&2;} fi fi ;; aarch64*) { $as_echo "$as_me:${as_lineno-$LINENO}: result: yes (arm64)" >&5 $as_echo "yes (arm64)" >&6; } { $as_echo "$as_me:${as_lineno-$LINENO}: checking if the assembler is GNU-compatible and can be used" >&5 $as_echo_n "checking if the assembler is GNU-compatible and can be used... " >&6; } ac_good_gnu_arm_assembler=no ac_save_CC="$CC" ac_save_CFLAGS="$CFLAGS" CFLAGS="$CCASFLAGS -x assembler-with-cpp" CC="$CCAS" cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ .text .arch armv8-a+fp+simd movi v0.16b, #100 _ACEOF if ac_fn_c_try_compile "$LINENO"; then : ac_good_gnu_arm_assembler=yes fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext ac_use_gas_preprocessor=no if test "x$ac_good_gnu_arm_assembler" = "xno" ; then CC="gas-preprocessor.pl $CCAS" cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ .text .arch armv8-a+fp+simd movi v0.16b, #100 _ACEOF if ac_fn_c_try_compile "$LINENO"; then : ac_use_gas_preprocessor=yes fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext fi CFLAGS="$ac_save_CFLAGS" CC="$ac_save_CC" if test "x$ac_use_gas_preprocessor" = "xyes" ; then CCAS="gas-preprocessor.pl $CCAS" ac_good_gnu_arm_assembler=yes fi if test "x$ac_good_gnu_arm_assembler" = "xyes" ; then if test "x$ac_use_gas_preprocessor" = "xyes"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: yes (with gas-preprocessor)" >&5 $as_echo "yes (with gas-preprocessor)" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: yes" >&5 $as_echo "yes" >&6; } fi simd_arch=aarch64 else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } with_simd=no fi if test "x${with_simd}" = "xno"; then if test "x${require_simd}" = "xyes"; then as_fn_error $? "SIMD support can't be enabled." "$LINENO" 5 else { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: SIMD support can't be enabled. Performance will suffer." >&5 $as_echo "$as_me: WARNING: SIMD support can't be enabled. Performance will suffer." >&2;} fi fi ;; mips*) { $as_echo "$as_me:${as_lineno-$LINENO}: result: yes (mips)" >&5 $as_echo "yes (mips)" >&6; } { $as_echo "$as_me:${as_lineno-$LINENO}: checking if the assembler is GNU-compatible and can be used" >&5 $as_echo_n "checking if the assembler is GNU-compatible and can be used... " >&6; } have_mips_dspr2=no ac_save_CFLAGS="$CFLAGS" CFLAGS="$CCASFLAGS -mdspr2" cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ int main () { int c = 0, a = 0, b = 0; __asm__ __volatile__ ( "precr.qb.ph %[c], %[a], %[b] \n\t" : [c] "=r" (c) : [a] "r" (a), [b] "r" (b) ); return c; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : have_mips_dspr2=yes fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext CFLAGS=$ac_save_CFLAGS if test "x$have_mips_dspr2" = "xyes" ; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: yes" >&5 $as_echo "yes" >&6; } simd_arch=mips else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } with_simd=no fi if test "x${with_simd}" = "xno"; then if test "x${require_simd}" = "xyes"; then as_fn_error $? "SIMD support can't be enabled." "$LINENO" 5 else { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: SIMD support can't be enabled. Performance will suffer." >&5 $as_echo "$as_me: WARNING: SIMD support can't be enabled. Performance will suffer." >&2;} fi fi ;; *) { $as_echo "$as_me:${as_lineno-$LINENO}: result: no (\"$host_cpu\")" >&5 $as_echo "no (\"$host_cpu\")" >&6; } with_simd=no; if test "x${require_simd}" = "xyes"; then as_fn_error $? "SIMD support not available for this CPU." "$LINENO" 5 else { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: SIMD support not available for this CPU. Performance will suffer." >&5 $as_echo "$as_me: WARNING: SIMD support not available for this CPU. Performance will suffer." >&2;} fi ;; esac if test "x${with_simd}" != "xno"; then $as_echo "#define WITH_SIMD 1" >>confdefs.h fi else RPM_CONFIG_ARGS="$RPM_CONFIG_ARGS --without-simd" fi if test "x$with_simd" != "xno"; then WITH_SIMD_TRUE= WITH_SIMD_FALSE='#' else WITH_SIMD_TRUE='#' WITH_SIMD_FALSE= fi if test "x$simd_arch" = "xx86_64" -o "x$simd_arch" = "xi386"; then WITH_SSE_FLOAT_DCT_TRUE= WITH_SSE_FLOAT_DCT_FALSE='#' else WITH_SSE_FLOAT_DCT_TRUE='#' WITH_SSE_FLOAT_DCT_FALSE= fi if test "x$simd_arch" = "xi386"; then SIMD_I386_TRUE= SIMD_I386_FALSE='#' else SIMD_I386_TRUE='#' SIMD_I386_FALSE= fi if test "x$simd_arch" = "xx86_64"; then SIMD_X86_64_TRUE= SIMD_X86_64_FALSE='#' else SIMD_X86_64_TRUE='#' SIMD_X86_64_FALSE= fi if test "x$simd_arch" = "xarm"; then SIMD_ARM_TRUE= SIMD_ARM_FALSE='#' else SIMD_ARM_TRUE='#' SIMD_ARM_FALSE= fi if test "x$simd_arch" = "xaarch64"; then SIMD_ARM_64_TRUE= SIMD_ARM_64_FALSE='#' else SIMD_ARM_64_TRUE='#' SIMD_ARM_64_FALSE= fi if test "x$simd_arch" = "xmips"; then SIMD_MIPS_TRUE= SIMD_MIPS_FALSE='#' else SIMD_MIPS_TRUE='#' SIMD_MIPS_FALSE= fi if test "x$host_cpu" = "xx86_64" -o "x$host_cpu" = "xamd64"; then X86_64_TRUE= X86_64_FALSE='#' else X86_64_TRUE='#' X86_64_FALSE= fi if test "x$with_turbojpeg" != "xno"; then WITH_TURBOJPEG_TRUE= WITH_TURBOJPEG_FALSE='#' else WITH_TURBOJPEG_TRUE='#' WITH_TURBOJPEG_FALSE= fi if test "x$PKGNAME" = "x"; then PKGNAME=$PACKAGE_NAME fi case "$host_cpu" in x86_64) RPMARCH=x86_64 DEBARCH=amd64 ;; i*86 | x86 | ia32) RPMARCH=i386 DEBARCH=i386 ;; *) RPMARCH=`uname -m` DEBARCH=$RPMARCH ;; esac if test "${docdir}" = ""; then docdir=${datadir}/doc fi cat >>confdefs.h <<_ACEOF #define BUILD "$BUILD" _ACEOF # NOTE: autoheader automatically modifies the input file of the first # invocation of AC_CONFIG_HEADERS, so we put config.h first to prevent # jconfig.h.in from being clobbered. config.h is used only internally, whereas # jconfig.h contains macros that are relevant to external programs (macros that # specify which features were built into the library.) ac_config_headers="$ac_config_headers config.h" ac_config_headers="$ac_config_headers jconfig.h" ac_config_headers="$ac_config_headers jconfigint.h" ac_config_files="$ac_config_files pkgscripts/libjpeg-turbo.spec.tmpl:release/libjpeg-turbo.spec.in" ac_config_files="$ac_config_files pkgscripts/makecygwinpkg.tmpl:release/makecygwinpkg.in" ac_config_files="$ac_config_files pkgscripts/makedpkg.tmpl:release/makedpkg.in" ac_config_files="$ac_config_files pkgscripts/makemacpkg.tmpl:release/makemacpkg.in" ac_config_files="$ac_config_files pkgscripts/uninstall.tmpl:release/uninstall.in" if test "x$with_turbojpeg" != "xno"; then ac_config_files="$ac_config_files tjbenchtest" fi if test "x$with_java" = "xyes"; then ac_config_files="$ac_config_files tjbenchtest.java" ac_config_files="$ac_config_files tjexampletest" fi ac_config_files="$ac_config_files libjpeg.map" ac_config_files="$ac_config_files Makefile simd/Makefile" ac_config_files="$ac_config_files java/Makefile" ac_config_files="$ac_config_files md5/Makefile" cat >confcache <<\_ACEOF # This file is a shell script that caches the results of configure # tests run on this system so they can be shared between configure # scripts and configure runs, see configure's option --config-cache. # It is not useful on other systems. If it contains results you don't # want to keep, you may remove or edit it. # # config.status only pays attention to the cache file if you give it # the --recheck option to rerun configure. # # `ac_cv_env_foo' variables (set or unset) will be overridden when # loading this file, other *unset* `ac_cv_foo' will be assigned the # following values. _ACEOF # The following way of writing the cache mishandles newlines in values, # but we know of no workaround that is simple, portable, and efficient. # So, we kill variables containing newlines. # Ultrix sh set writes to stderr and can't be redirected directly, # and sets the high bit in the cache file unless we assign to the vars. ( for ac_var in `(set) 2>&1 | sed -n 's/^\([a-zA-Z_][a-zA-Z0-9_]*\)=.*/\1/p'`; do eval ac_val=\$$ac_var case $ac_val in #( *${as_nl}*) case $ac_var in #( *_cv_*) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: cache variable $ac_var contains a newline" >&5 $as_echo "$as_me: WARNING: cache variable $ac_var contains a newline" >&2;} ;; esac case $ac_var in #( _ | IFS | as_nl) ;; #( BASH_ARGV | BASH_SOURCE) eval $ac_var= ;; #( *) { eval $ac_var=; unset $ac_var;} ;; esac ;; esac done (set) 2>&1 | case $as_nl`(ac_space=' '; set) 2>&1` in #( *${as_nl}ac_space=\ *) # `set' does not quote correctly, so add quotes: double-quote # substitution turns \\\\ into \\, and sed turns \\ into \. sed -n \ "s/'/'\\\\''/g; s/^\\([_$as_cr_alnum]*_cv_[_$as_cr_alnum]*\\)=\\(.*\\)/\\1='\\2'/p" ;; #( *) # `set' quotes correctly as required by POSIX, so do not add quotes. sed -n "/^[_$as_cr_alnum]*_cv_[_$as_cr_alnum]*=/p" ;; esac | sort ) | sed ' /^ac_cv_env_/b end t clear :clear s/^\([^=]*\)=\(.*[{}].*\)$/test "${\1+set}" = set || &/ t end s/^\([^=]*\)=\(.*\)$/\1=${\1=\2}/ :end' >>confcache if diff "$cache_file" confcache >/dev/null 2>&1; then :; else if test -w "$cache_file"; then if test "x$cache_file" != "x/dev/null"; then { $as_echo "$as_me:${as_lineno-$LINENO}: updating cache $cache_file" >&5 $as_echo "$as_me: updating cache $cache_file" >&6;} if test ! -f "$cache_file" || test -h "$cache_file"; then cat confcache >"$cache_file" else case $cache_file in #( */* | ?:*) mv -f confcache "$cache_file"$$ && mv -f "$cache_file"$$ "$cache_file" ;; #( *) mv -f confcache "$cache_file" ;; esac fi fi else { $as_echo "$as_me:${as_lineno-$LINENO}: not updating unwritable cache $cache_file" >&5 $as_echo "$as_me: not updating unwritable cache $cache_file" >&6;} fi fi rm -f confcache test "x$prefix" = xNONE && prefix=$ac_default_prefix # Let make expand exec_prefix. test "x$exec_prefix" = xNONE && exec_prefix='${prefix}' DEFS=-DHAVE_CONFIG_H ac_libobjs= ac_ltlibobjs= U= for ac_i in : $LIBOBJS; do test "x$ac_i" = x: && continue # 1. Remove the extension, and $U if already installed. ac_script='s/\$U\././;s/\.o$//;s/\.obj$//' ac_i=`$as_echo "$ac_i" | sed "$ac_script"` # 2. Prepend LIBOBJDIR. When used with automake>=1.10 LIBOBJDIR # will be set to the directory where LIBOBJS objects are built. as_fn_append ac_libobjs " \${LIBOBJDIR}$ac_i\$U.$ac_objext" as_fn_append ac_ltlibobjs " \${LIBOBJDIR}$ac_i"'$U.lo' done LIBOBJS=$ac_libobjs LTLIBOBJS=$ac_ltlibobjs { $as_echo "$as_me:${as_lineno-$LINENO}: checking that generated files are newer than configure" >&5 $as_echo_n "checking that generated files are newer than configure... " >&6; } if test -n "$am_sleep_pid"; then # Hide warnings about reused PIDs. wait $am_sleep_pid 2>/dev/null fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: done" >&5 $as_echo "done" >&6; } if test -n "$EXEEXT"; then am__EXEEXT_TRUE= am__EXEEXT_FALSE='#' else am__EXEEXT_TRUE='#' am__EXEEXT_FALSE= fi if test -z "${AMDEP_TRUE}" && test -z "${AMDEP_FALSE}"; then as_fn_error $? "conditional \"AMDEP\" was never defined. Usually this means the macro was only invoked conditionally." "$LINENO" 5 fi if test -z "${am__fastdepCC_TRUE}" && test -z "${am__fastdepCC_FALSE}"; then as_fn_error $? "conditional \"am__fastdepCC\" was never defined. Usually this means the macro was only invoked conditionally." "$LINENO" 5 fi if test -z "${am__fastdepCC_TRUE}" && test -z "${am__fastdepCC_FALSE}"; then as_fn_error $? "conditional \"am__fastdepCC\" was never defined. Usually this means the macro was only invoked conditionally." "$LINENO" 5 fi if test -z "${am__fastdepCCAS_TRUE}" && test -z "${am__fastdepCCAS_FALSE}"; then as_fn_error $? "conditional \"am__fastdepCCAS\" was never defined. Usually this means the macro was only invoked conditionally." "$LINENO" 5 fi if test -z "${VERSION_SCRIPT_TRUE}" && test -z "${VERSION_SCRIPT_FALSE}"; then as_fn_error $? "conditional \"VERSION_SCRIPT\" was never defined. Usually this means the macro was only invoked conditionally." "$LINENO" 5 fi if test -z "${WITH_ARITH_ENC_TRUE}" && test -z "${WITH_ARITH_ENC_FALSE}"; then as_fn_error $? "conditional \"WITH_ARITH_ENC\" was never defined. Usually this means the macro was only invoked conditionally." "$LINENO" 5 fi if test -z "${WITH_ARITH_DEC_TRUE}" && test -z "${WITH_ARITH_DEC_FALSE}"; then as_fn_error $? "conditional \"WITH_ARITH_DEC\" was never defined. Usually this means the macro was only invoked conditionally." "$LINENO" 5 fi if test -z "${WITH_ARITH_TRUE}" && test -z "${WITH_ARITH_FALSE}"; then as_fn_error $? "conditional \"WITH_ARITH\" was never defined. Usually this means the macro was only invoked conditionally." "$LINENO" 5 fi if test -z "${WITH_12BIT_TRUE}" && test -z "${WITH_12BIT_FALSE}"; then as_fn_error $? "conditional \"WITH_12BIT\" was never defined. Usually this means the macro was only invoked conditionally." "$LINENO" 5 fi if test -z "${WITH_JAVA_TRUE}" && test -z "${WITH_JAVA_FALSE}"; then as_fn_error $? "conditional \"WITH_JAVA\" was never defined. Usually this means the macro was only invoked conditionally." "$LINENO" 5 fi if test -z "${WITH_SIMD_TRUE}" && test -z "${WITH_SIMD_FALSE}"; then as_fn_error $? "conditional \"WITH_SIMD\" was never defined. Usually this means the macro was only invoked conditionally." "$LINENO" 5 fi if test -z "${WITH_SSE_FLOAT_DCT_TRUE}" && test -z "${WITH_SSE_FLOAT_DCT_FALSE}"; then as_fn_error $? "conditional \"WITH_SSE_FLOAT_DCT\" was never defined. Usually this means the macro was only invoked conditionally." "$LINENO" 5 fi if test -z "${SIMD_I386_TRUE}" && test -z "${SIMD_I386_FALSE}"; then as_fn_error $? "conditional \"SIMD_I386\" was never defined. Usually this means the macro was only invoked conditionally." "$LINENO" 5 fi if test -z "${SIMD_X86_64_TRUE}" && test -z "${SIMD_X86_64_FALSE}"; then as_fn_error $? "conditional \"SIMD_X86_64\" was never defined. Usually this means the macro was only invoked conditionally." "$LINENO" 5 fi if test -z "${SIMD_ARM_TRUE}" && test -z "${SIMD_ARM_FALSE}"; then as_fn_error $? "conditional \"SIMD_ARM\" was never defined. Usually this means the macro was only invoked conditionally." "$LINENO" 5 fi if test -z "${SIMD_ARM_64_TRUE}" && test -z "${SIMD_ARM_64_FALSE}"; then as_fn_error $? "conditional \"SIMD_ARM_64\" was never defined. Usually this means the macro was only invoked conditionally." "$LINENO" 5 fi if test -z "${SIMD_MIPS_TRUE}" && test -z "${SIMD_MIPS_FALSE}"; then as_fn_error $? "conditional \"SIMD_MIPS\" was never defined. Usually this means the macro was only invoked conditionally." "$LINENO" 5 fi if test -z "${X86_64_TRUE}" && test -z "${X86_64_FALSE}"; then as_fn_error $? "conditional \"X86_64\" was never defined. Usually this means the macro was only invoked conditionally." "$LINENO" 5 fi if test -z "${WITH_TURBOJPEG_TRUE}" && test -z "${WITH_TURBOJPEG_FALSE}"; then as_fn_error $? "conditional \"WITH_TURBOJPEG\" was never defined. Usually this means the macro was only invoked conditionally." "$LINENO" 5 fi : "${CONFIG_STATUS=./config.status}" ac_write_fail=0 ac_clean_files_save=$ac_clean_files ac_clean_files="$ac_clean_files $CONFIG_STATUS" { $as_echo "$as_me:${as_lineno-$LINENO}: creating $CONFIG_STATUS" >&5 $as_echo "$as_me: creating $CONFIG_STATUS" >&6;} as_write_fail=0 cat >$CONFIG_STATUS <<_ASEOF || as_write_fail=1 #! $SHELL # Generated by $as_me. # Run this file to recreate the current configuration. # Compiler output produced by configure, useful for debugging # configure, is in config.log if it exists. debug=false ac_cs_recheck=false ac_cs_silent=false SHELL=\${CONFIG_SHELL-$SHELL} export SHELL _ASEOF cat >>$CONFIG_STATUS <<\_ASEOF || as_write_fail=1 ## -------------------- ## ## M4sh Initialization. ## ## -------------------- ## # Be more Bourne compatible DUALCASE=1; export DUALCASE # for MKS sh if test -n "${ZSH_VERSION+set}" && (emulate sh) >/dev/null 2>&1; then : emulate sh NULLCMD=: # Pre-4.2 versions of Zsh do word splitting on ${1+"$@"}, which # is contrary to our usage. Disable this feature. alias -g '${1+"$@"}'='"$@"' setopt NO_GLOB_SUBST else case `(set -o) 2>/dev/null` in #( *posix*) : set -o posix ;; #( *) : ;; esac fi as_nl=' ' export as_nl # Printing a long string crashes Solaris 7 /usr/bin/printf. as_echo='\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\' as_echo=$as_echo$as_echo$as_echo$as_echo$as_echo as_echo=$as_echo$as_echo$as_echo$as_echo$as_echo$as_echo # Prefer a ksh shell builtin over an external printf program on Solaris, # but without wasting forks for bash or zsh. if test -z "$BASH_VERSION$ZSH_VERSION" \ && (test "X`print -r -- $as_echo`" = "X$as_echo") 2>/dev/null; then as_echo='print -r --' as_echo_n='print -rn --' elif (test "X`printf %s $as_echo`" = "X$as_echo") 2>/dev/null; then as_echo='printf %s\n' as_echo_n='printf %s' else if test "X`(/usr/ucb/echo -n -n $as_echo) 2>/dev/null`" = "X-n $as_echo"; then as_echo_body='eval /usr/ucb/echo -n "$1$as_nl"' as_echo_n='/usr/ucb/echo -n' else as_echo_body='eval expr "X$1" : "X\\(.*\\)"' as_echo_n_body='eval arg=$1; case $arg in #( *"$as_nl"*) expr "X$arg" : "X\\(.*\\)$as_nl"; arg=`expr "X$arg" : ".*$as_nl\\(.*\\)"`;; esac; expr "X$arg" : "X\\(.*\\)" | tr -d "$as_nl" ' export as_echo_n_body as_echo_n='sh -c $as_echo_n_body as_echo' fi export as_echo_body as_echo='sh -c $as_echo_body as_echo' fi # The user is always right. if test "${PATH_SEPARATOR+set}" != set; then PATH_SEPARATOR=: (PATH='/bin;/bin'; FPATH=$PATH; sh -c :) >/dev/null 2>&1 && { (PATH='/bin:/bin'; FPATH=$PATH; sh -c :) >/dev/null 2>&1 || PATH_SEPARATOR=';' } fi # IFS # We need space, tab and new line, in precisely that order. Quoting is # there to prevent editors from complaining about space-tab. # (If _AS_PATH_WALK were called with IFS unset, it would disable word # splitting by setting IFS to empty value.) IFS=" "" $as_nl" # Find who we are. Look in the path if we contain no directory separator. as_myself= case $0 in #(( *[\\/]* ) as_myself=$0 ;; *) as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. test -r "$as_dir/$0" && as_myself=$as_dir/$0 && break done IFS=$as_save_IFS ;; esac # We did not find ourselves, most probably we were run as `sh COMMAND' # in which case we are not to be found in the path. if test "x$as_myself" = x; then as_myself=$0 fi if test ! -f "$as_myself"; then $as_echo "$as_myself: error: cannot find myself; rerun with an absolute file name" >&2 exit 1 fi # Unset variables that we do not need and which cause bugs (e.g. in # pre-3.0 UWIN ksh). But do not cause bugs in bash 2.01; the "|| exit 1" # suppresses any "Segmentation fault" message there. '((' could # trigger a bug in pdksh 5.2.14. for as_var in BASH_ENV ENV MAIL MAILPATH do eval test x\${$as_var+set} = xset \ && ( (unset $as_var) || exit 1) >/dev/null 2>&1 && unset $as_var || : done PS1='$ ' PS2='> ' PS4='+ ' # NLS nuisances. LC_ALL=C export LC_ALL LANGUAGE=C export LANGUAGE # CDPATH. (unset CDPATH) >/dev/null 2>&1 && unset CDPATH # as_fn_error STATUS ERROR [LINENO LOG_FD] # ---------------------------------------- # Output "`basename $0`: error: ERROR" to stderr. If LINENO and LOG_FD are # provided, also output the error to LOG_FD, referencing LINENO. Then exit the # script with STATUS, using 1 if that was 0. as_fn_error () { as_status=$1; test $as_status -eq 0 && as_status=1 if test "$4"; then as_lineno=${as_lineno-"$3"} as_lineno_stack=as_lineno_stack=$as_lineno_stack $as_echo "$as_me:${as_lineno-$LINENO}: error: $2" >&$4 fi $as_echo "$as_me: error: $2" >&2 as_fn_exit $as_status } # as_fn_error # as_fn_set_status STATUS # ----------------------- # Set $? to STATUS, without forking. as_fn_set_status () { return $1 } # as_fn_set_status # as_fn_exit STATUS # ----------------- # Exit the shell with STATUS, even in a "trap 0" or "set -e" context. as_fn_exit () { set +e as_fn_set_status $1 exit $1 } # as_fn_exit # as_fn_unset VAR # --------------- # Portably unset VAR. as_fn_unset () { { eval $1=; unset $1;} } as_unset=as_fn_unset # as_fn_append VAR VALUE # ---------------------- # Append the text in VALUE to the end of the definition contained in VAR. Take # advantage of any shell optimizations that allow amortized linear growth over # repeated appends, instead of the typical quadratic growth present in naive # implementations. if (eval "as_var=1; as_var+=2; test x\$as_var = x12") 2>/dev/null; then : eval 'as_fn_append () { eval $1+=\$2 }' else as_fn_append () { eval $1=\$$1\$2 } fi # as_fn_append # as_fn_arith ARG... # ------------------ # Perform arithmetic evaluation on the ARGs, and store the result in the # global $as_val. Take advantage of shells that can avoid forks. The arguments # must be portable across $(()) and expr. if (eval "test \$(( 1 + 1 )) = 2") 2>/dev/null; then : eval 'as_fn_arith () { as_val=$(( $* )) }' else as_fn_arith () { as_val=`expr "$@" || test $? -eq 1` } fi # as_fn_arith if expr a : '\(a\)' >/dev/null 2>&1 && test "X`expr 00001 : '.*\(...\)'`" = X001; then as_expr=expr else as_expr=false fi if (basename -- /) >/dev/null 2>&1 && test "X`basename -- / 2>&1`" = "X/"; then as_basename=basename else as_basename=false fi if (as_dir=`dirname -- /` && test "X$as_dir" = X/) >/dev/null 2>&1; then as_dirname=dirname else as_dirname=false fi as_me=`$as_basename -- "$0" || $as_expr X/"$0" : '.*/\([^/][^/]*\)/*$' \| \ X"$0" : 'X\(//\)$' \| \ X"$0" : 'X\(/\)' \| . 2>/dev/null || $as_echo X/"$0" | sed '/^.*\/\([^/][^/]*\)\/*$/{ s//\1/ q } /^X\/\(\/\/\)$/{ s//\1/ q } /^X\/\(\/\).*/{ s//\1/ q } s/.*/./; q'` # Avoid depending upon Character Ranges. as_cr_letters='abcdefghijklmnopqrstuvwxyz' as_cr_LETTERS='ABCDEFGHIJKLMNOPQRSTUVWXYZ' as_cr_Letters=$as_cr_letters$as_cr_LETTERS as_cr_digits='0123456789' as_cr_alnum=$as_cr_Letters$as_cr_digits ECHO_C= ECHO_N= ECHO_T= case `echo -n x` in #((((( -n*) case `echo 'xy\c'` in *c*) ECHO_T=' ';; # ECHO_T is single tab character. xy) ECHO_C='\c';; *) echo `echo ksh88 bug on AIX 6.1` > /dev/null ECHO_T=' ';; esac;; *) ECHO_N='-n';; esac rm -f conf$$ conf$$.exe conf$$.file if test -d conf$$.dir; then rm -f conf$$.dir/conf$$.file else rm -f conf$$.dir mkdir conf$$.dir 2>/dev/null fi if (echo >conf$$.file) 2>/dev/null; then if ln -s conf$$.file conf$$ 2>/dev/null; then as_ln_s='ln -s' # ... but there are two gotchas: # 1) On MSYS, both `ln -s file dir' and `ln file dir' fail. # 2) DJGPP < 2.04 has no symlinks; `ln -s' creates a wrapper executable. # In both cases, we have to default to `cp -pR'. ln -s conf$$.file conf$$.dir 2>/dev/null && test ! -f conf$$.exe || as_ln_s='cp -pR' elif ln conf$$.file conf$$ 2>/dev/null; then as_ln_s=ln else as_ln_s='cp -pR' fi else as_ln_s='cp -pR' fi rm -f conf$$ conf$$.exe conf$$.dir/conf$$.file conf$$.file rmdir conf$$.dir 2>/dev/null # as_fn_mkdir_p # ------------- # Create "$as_dir" as a directory, including parents if necessary. as_fn_mkdir_p () { case $as_dir in #( -*) as_dir=./$as_dir;; esac test -d "$as_dir" || eval $as_mkdir_p || { as_dirs= while :; do case $as_dir in #( *\'*) as_qdir=`$as_echo "$as_dir" | sed "s/'/'\\\\\\\\''/g"`;; #'( *) as_qdir=$as_dir;; esac as_dirs="'$as_qdir' $as_dirs" as_dir=`$as_dirname -- "$as_dir" || $as_expr X"$as_dir" : 'X\(.*[^/]\)//*[^/][^/]*/*$' \| \ X"$as_dir" : 'X\(//\)[^/]' \| \ X"$as_dir" : 'X\(//\)$' \| \ X"$as_dir" : 'X\(/\)' \| . 2>/dev/null || $as_echo X"$as_dir" | sed '/^X\(.*[^/]\)\/\/*[^/][^/]*\/*$/{ s//\1/ q } /^X\(\/\/\)[^/].*/{ s//\1/ q } /^X\(\/\/\)$/{ s//\1/ q } /^X\(\/\).*/{ s//\1/ q } s/.*/./; q'` test -d "$as_dir" && break done test -z "$as_dirs" || eval "mkdir $as_dirs" } || test -d "$as_dir" || as_fn_error $? "cannot create directory $as_dir" } # as_fn_mkdir_p if mkdir -p . 2>/dev/null; then as_mkdir_p='mkdir -p "$as_dir"' else test -d ./-p && rmdir ./-p as_mkdir_p=false fi # as_fn_executable_p FILE # ----------------------- # Test if FILE is an executable regular file. as_fn_executable_p () { test -f "$1" && test -x "$1" } # as_fn_executable_p as_test_x='test -x' as_executable_p=as_fn_executable_p # Sed expression to map a string onto a valid CPP name. as_tr_cpp="eval sed 'y%*$as_cr_letters%P$as_cr_LETTERS%;s%[^_$as_cr_alnum]%_%g'" # Sed expression to map a string onto a valid variable name. as_tr_sh="eval sed 'y%*+%pp%;s%[^_$as_cr_alnum]%_%g'" exec 6>&1 ## ----------------------------------- ## ## Main body of $CONFIG_STATUS script. ## ## ----------------------------------- ## _ASEOF test $as_write_fail = 0 && chmod +x $CONFIG_STATUS || ac_write_fail=1 cat >>$CONFIG_STATUS <<\_ACEOF || ac_write_fail=1 # Save the log message, to keep $0 and so on meaningful, and to # report actual input values of CONFIG_FILES etc. instead of their # values after options handling. ac_log=" This file was extended by libjpeg-turbo $as_me 1.4.2, which was generated by GNU Autoconf 2.69. Invocation command line was CONFIG_FILES = $CONFIG_FILES CONFIG_HEADERS = $CONFIG_HEADERS CONFIG_LINKS = $CONFIG_LINKS CONFIG_COMMANDS = $CONFIG_COMMANDS $ $0 $@ on `(hostname || uname -n) 2>/dev/null | sed 1q` " _ACEOF case $ac_config_files in *" "*) set x $ac_config_files; shift; ac_config_files=$*;; esac case $ac_config_headers in *" "*) set x $ac_config_headers; shift; ac_config_headers=$*;; esac cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1 # Files that config.status was made for. config_files="$ac_config_files" config_headers="$ac_config_headers" config_commands="$ac_config_commands" _ACEOF cat >>$CONFIG_STATUS <<\_ACEOF || ac_write_fail=1 ac_cs_usage="\ \`$as_me' instantiates files and other configuration actions from templates according to the current configuration. Unless the files and actions are specified as TAGs, all are instantiated by default. Usage: $0 [OPTION]... [TAG]... -h, --help print this help, then exit -V, --version print version number and configuration settings, then exit --config print configuration, then exit -q, --quiet, --silent do not print progress messages -d, --debug don't remove temporary files --recheck update $as_me by reconfiguring in the same conditions --file=FILE[:TEMPLATE] instantiate the configuration file FILE --header=FILE[:TEMPLATE] instantiate the configuration header FILE Configuration files: $config_files Configuration headers: $config_headers Configuration commands: $config_commands Report bugs to the package provider." _ACEOF cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1 ac_cs_config="`$as_echo "$ac_configure_args" | sed 's/^ //; s/[\\""\`\$]/\\\\&/g'`" ac_cs_version="\\ libjpeg-turbo config.status 1.4.2 configured by $0, generated by GNU Autoconf 2.69, with options \\"\$ac_cs_config\\" Copyright (C) 2012 Free Software Foundation, Inc. This config.status script is free software; the Free Software Foundation gives unlimited permission to copy, distribute and modify it." ac_pwd='$ac_pwd' srcdir='$srcdir' INSTALL='$INSTALL' MKDIR_P='$MKDIR_P' AWK='$AWK' test -n "\$AWK" || AWK=awk _ACEOF cat >>$CONFIG_STATUS <<\_ACEOF || ac_write_fail=1 # The default lists apply if the user does not specify any file. ac_need_defaults=: while test $# != 0 do case $1 in --*=?*) ac_option=`expr "X$1" : 'X\([^=]*\)='` ac_optarg=`expr "X$1" : 'X[^=]*=\(.*\)'` ac_shift=: ;; --*=) ac_option=`expr "X$1" : 'X\([^=]*\)='` ac_optarg= ac_shift=: ;; *) ac_option=$1 ac_optarg=$2 ac_shift=shift ;; esac case $ac_option in # Handling of the options. -recheck | --recheck | --rechec | --reche | --rech | --rec | --re | --r) ac_cs_recheck=: ;; --version | --versio | --versi | --vers | --ver | --ve | --v | -V ) $as_echo "$ac_cs_version"; exit ;; --config | --confi | --conf | --con | --co | --c ) $as_echo "$ac_cs_config"; exit ;; --debug | --debu | --deb | --de | --d | -d ) debug=: ;; --file | --fil | --fi | --f ) $ac_shift case $ac_optarg in *\'*) ac_optarg=`$as_echo "$ac_optarg" | sed "s/'/'\\\\\\\\''/g"` ;; '') as_fn_error $? "missing file argument" ;; esac as_fn_append CONFIG_FILES " '$ac_optarg'" ac_need_defaults=false;; --header | --heade | --head | --hea ) $ac_shift case $ac_optarg in *\'*) ac_optarg=`$as_echo "$ac_optarg" | sed "s/'/'\\\\\\\\''/g"` ;; esac as_fn_append CONFIG_HEADERS " '$ac_optarg'" ac_need_defaults=false;; --he | --h) # Conflict between --help and --header as_fn_error $? "ambiguous option: \`$1' Try \`$0 --help' for more information.";; --help | --hel | -h ) $as_echo "$ac_cs_usage"; exit ;; -q | -quiet | --quiet | --quie | --qui | --qu | --q \ | -silent | --silent | --silen | --sile | --sil | --si | --s) ac_cs_silent=: ;; # This is an error. -*) as_fn_error $? "unrecognized option: \`$1' Try \`$0 --help' for more information." ;; *) as_fn_append ac_config_targets " $1" ac_need_defaults=false ;; esac shift done ac_configure_extra_args= if $ac_cs_silent; then exec 6>/dev/null ac_configure_extra_args="$ac_configure_extra_args --silent" fi _ACEOF cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1 if \$ac_cs_recheck; then set X $SHELL '$0' $ac_configure_args \$ac_configure_extra_args --no-create --no-recursion shift \$as_echo "running CONFIG_SHELL=$SHELL \$*" >&6 CONFIG_SHELL='$SHELL' export CONFIG_SHELL exec "\$@" fi _ACEOF cat >>$CONFIG_STATUS <<\_ACEOF || ac_write_fail=1 exec 5>>config.log { echo sed 'h;s/./-/g;s/^.../## /;s/...$/ ##/;p;x;p;x' <<_ASBOX ## Running $as_me. ## _ASBOX $as_echo "$ac_log" } >&5 _ACEOF cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1 # # INIT-COMMANDS # AMDEP_TRUE="$AMDEP_TRUE" ac_aux_dir="$ac_aux_dir" # The HP-UX ksh and POSIX shell print the target directory to stdout # if CDPATH is set. (unset CDPATH) >/dev/null 2>&1 && unset CDPATH sed_quote_subst='$sed_quote_subst' double_quote_subst='$double_quote_subst' delay_variable_subst='$delay_variable_subst' macro_version='`$ECHO "$macro_version" | $SED "$delay_single_quote_subst"`' macro_revision='`$ECHO "$macro_revision" | $SED "$delay_single_quote_subst"`' enable_shared='`$ECHO "$enable_shared" | $SED "$delay_single_quote_subst"`' enable_static='`$ECHO "$enable_static" | $SED "$delay_single_quote_subst"`' pic_mode='`$ECHO "$pic_mode" | $SED "$delay_single_quote_subst"`' enable_fast_install='`$ECHO "$enable_fast_install" | $SED "$delay_single_quote_subst"`' shared_archive_member_spec='`$ECHO "$shared_archive_member_spec" | $SED "$delay_single_quote_subst"`' SHELL='`$ECHO "$SHELL" | $SED "$delay_single_quote_subst"`' ECHO='`$ECHO "$ECHO" | $SED "$delay_single_quote_subst"`' PATH_SEPARATOR='`$ECHO "$PATH_SEPARATOR" | $SED "$delay_single_quote_subst"`' host_alias='`$ECHO "$host_alias" | $SED "$delay_single_quote_subst"`' host='`$ECHO "$host" | $SED "$delay_single_quote_subst"`' host_os='`$ECHO "$host_os" | $SED "$delay_single_quote_subst"`' build_alias='`$ECHO "$build_alias" | $SED "$delay_single_quote_subst"`' build='`$ECHO "$build" | $SED "$delay_single_quote_subst"`' build_os='`$ECHO "$build_os" | $SED "$delay_single_quote_subst"`' SED='`$ECHO "$SED" | $SED "$delay_single_quote_subst"`' Xsed='`$ECHO "$Xsed" | $SED "$delay_single_quote_subst"`' GREP='`$ECHO "$GREP" | $SED "$delay_single_quote_subst"`' EGREP='`$ECHO "$EGREP" | $SED "$delay_single_quote_subst"`' FGREP='`$ECHO "$FGREP" | $SED "$delay_single_quote_subst"`' LD='`$ECHO "$LD" | $SED "$delay_single_quote_subst"`' NM='`$ECHO "$NM" | $SED "$delay_single_quote_subst"`' LN_S='`$ECHO "$LN_S" | $SED "$delay_single_quote_subst"`' max_cmd_len='`$ECHO "$max_cmd_len" | $SED "$delay_single_quote_subst"`' ac_objext='`$ECHO "$ac_objext" | $SED "$delay_single_quote_subst"`' exeext='`$ECHO "$exeext" | $SED "$delay_single_quote_subst"`' lt_unset='`$ECHO "$lt_unset" | $SED "$delay_single_quote_subst"`' lt_SP2NL='`$ECHO "$lt_SP2NL" | $SED "$delay_single_quote_subst"`' lt_NL2SP='`$ECHO "$lt_NL2SP" | $SED "$delay_single_quote_subst"`' lt_cv_to_host_file_cmd='`$ECHO "$lt_cv_to_host_file_cmd" | $SED "$delay_single_quote_subst"`' lt_cv_to_tool_file_cmd='`$ECHO "$lt_cv_to_tool_file_cmd" | $SED "$delay_single_quote_subst"`' reload_flag='`$ECHO "$reload_flag" | $SED "$delay_single_quote_subst"`' reload_cmds='`$ECHO "$reload_cmds" | $SED "$delay_single_quote_subst"`' OBJDUMP='`$ECHO "$OBJDUMP" | $SED "$delay_single_quote_subst"`' deplibs_check_method='`$ECHO "$deplibs_check_method" | $SED "$delay_single_quote_subst"`' file_magic_cmd='`$ECHO "$file_magic_cmd" | $SED "$delay_single_quote_subst"`' file_magic_glob='`$ECHO "$file_magic_glob" | $SED "$delay_single_quote_subst"`' want_nocaseglob='`$ECHO "$want_nocaseglob" | $SED "$delay_single_quote_subst"`' DLLTOOL='`$ECHO "$DLLTOOL" | $SED "$delay_single_quote_subst"`' sharedlib_from_linklib_cmd='`$ECHO "$sharedlib_from_linklib_cmd" | $SED "$delay_single_quote_subst"`' AR='`$ECHO "$AR" | $SED "$delay_single_quote_subst"`' AR_FLAGS='`$ECHO "$AR_FLAGS" | $SED "$delay_single_quote_subst"`' archiver_list_spec='`$ECHO "$archiver_list_spec" | $SED "$delay_single_quote_subst"`' STRIP='`$ECHO "$STRIP" | $SED "$delay_single_quote_subst"`' RANLIB='`$ECHO "$RANLIB" | $SED "$delay_single_quote_subst"`' old_postinstall_cmds='`$ECHO "$old_postinstall_cmds" | $SED "$delay_single_quote_subst"`' old_postuninstall_cmds='`$ECHO "$old_postuninstall_cmds" | $SED "$delay_single_quote_subst"`' old_archive_cmds='`$ECHO "$old_archive_cmds" | $SED "$delay_single_quote_subst"`' lock_old_archive_extraction='`$ECHO "$lock_old_archive_extraction" | $SED "$delay_single_quote_subst"`' CC='`$ECHO "$CC" | $SED "$delay_single_quote_subst"`' CFLAGS='`$ECHO "$CFLAGS" | $SED "$delay_single_quote_subst"`' compiler='`$ECHO "$compiler" | $SED "$delay_single_quote_subst"`' GCC='`$ECHO "$GCC" | $SED "$delay_single_quote_subst"`' lt_cv_sys_global_symbol_pipe='`$ECHO "$lt_cv_sys_global_symbol_pipe" | $SED "$delay_single_quote_subst"`' lt_cv_sys_global_symbol_to_cdecl='`$ECHO "$lt_cv_sys_global_symbol_to_cdecl" | $SED "$delay_single_quote_subst"`' lt_cv_sys_global_symbol_to_import='`$ECHO "$lt_cv_sys_global_symbol_to_import" | $SED "$delay_single_quote_subst"`' lt_cv_sys_global_symbol_to_c_name_address='`$ECHO "$lt_cv_sys_global_symbol_to_c_name_address" | $SED "$delay_single_quote_subst"`' lt_cv_sys_global_symbol_to_c_name_address_lib_prefix='`$ECHO "$lt_cv_sys_global_symbol_to_c_name_address_lib_prefix" | $SED "$delay_single_quote_subst"`' lt_cv_nm_interface='`$ECHO "$lt_cv_nm_interface" | $SED "$delay_single_quote_subst"`' nm_file_list_spec='`$ECHO "$nm_file_list_spec" | $SED "$delay_single_quote_subst"`' lt_sysroot='`$ECHO "$lt_sysroot" | $SED "$delay_single_quote_subst"`' lt_cv_truncate_bin='`$ECHO "$lt_cv_truncate_bin" | $SED "$delay_single_quote_subst"`' objdir='`$ECHO "$objdir" | $SED "$delay_single_quote_subst"`' MAGIC_CMD='`$ECHO "$MAGIC_CMD" | $SED "$delay_single_quote_subst"`' lt_prog_compiler_no_builtin_flag='`$ECHO "$lt_prog_compiler_no_builtin_flag" | $SED "$delay_single_quote_subst"`' lt_prog_compiler_pic='`$ECHO "$lt_prog_compiler_pic" | $SED "$delay_single_quote_subst"`' lt_prog_compiler_wl='`$ECHO "$lt_prog_compiler_wl" | $SED "$delay_single_quote_subst"`' lt_prog_compiler_static='`$ECHO "$lt_prog_compiler_static" | $SED "$delay_single_quote_subst"`' lt_cv_prog_compiler_c_o='`$ECHO "$lt_cv_prog_compiler_c_o" | $SED "$delay_single_quote_subst"`' need_locks='`$ECHO "$need_locks" | $SED "$delay_single_quote_subst"`' MANIFEST_TOOL='`$ECHO "$MANIFEST_TOOL" | $SED "$delay_single_quote_subst"`' DSYMUTIL='`$ECHO "$DSYMUTIL" | $SED "$delay_single_quote_subst"`' NMEDIT='`$ECHO "$NMEDIT" | $SED "$delay_single_quote_subst"`' LIPO='`$ECHO "$LIPO" | $SED "$delay_single_quote_subst"`' OTOOL='`$ECHO "$OTOOL" | $SED "$delay_single_quote_subst"`' OTOOL64='`$ECHO "$OTOOL64" | $SED "$delay_single_quote_subst"`' libext='`$ECHO "$libext" | $SED "$delay_single_quote_subst"`' shrext_cmds='`$ECHO "$shrext_cmds" | $SED "$delay_single_quote_subst"`' extract_expsyms_cmds='`$ECHO "$extract_expsyms_cmds" | $SED "$delay_single_quote_subst"`' archive_cmds_need_lc='`$ECHO "$archive_cmds_need_lc" | $SED "$delay_single_quote_subst"`' enable_shared_with_static_runtimes='`$ECHO "$enable_shared_with_static_runtimes" | $SED "$delay_single_quote_subst"`' export_dynamic_flag_spec='`$ECHO "$export_dynamic_flag_spec" | $SED "$delay_single_quote_subst"`' whole_archive_flag_spec='`$ECHO "$whole_archive_flag_spec" | $SED "$delay_single_quote_subst"`' compiler_needs_object='`$ECHO "$compiler_needs_object" | $SED "$delay_single_quote_subst"`' old_archive_from_new_cmds='`$ECHO "$old_archive_from_new_cmds" | $SED "$delay_single_quote_subst"`' old_archive_from_expsyms_cmds='`$ECHO "$old_archive_from_expsyms_cmds" | $SED "$delay_single_quote_subst"`' archive_cmds='`$ECHO "$archive_cmds" | $SED "$delay_single_quote_subst"`' archive_expsym_cmds='`$ECHO "$archive_expsym_cmds" | $SED "$delay_single_quote_subst"`' module_cmds='`$ECHO "$module_cmds" | $SED "$delay_single_quote_subst"`' module_expsym_cmds='`$ECHO "$module_expsym_cmds" | $SED "$delay_single_quote_subst"`' with_gnu_ld='`$ECHO "$with_gnu_ld" | $SED "$delay_single_quote_subst"`' allow_undefined_flag='`$ECHO "$allow_undefined_flag" | $SED "$delay_single_quote_subst"`' no_undefined_flag='`$ECHO "$no_undefined_flag" | $SED "$delay_single_quote_subst"`' hardcode_libdir_flag_spec='`$ECHO "$hardcode_libdir_flag_spec" | $SED "$delay_single_quote_subst"`' hardcode_libdir_separator='`$ECHO "$hardcode_libdir_separator" | $SED "$delay_single_quote_subst"`' hardcode_direct='`$ECHO "$hardcode_direct" | $SED "$delay_single_quote_subst"`' hardcode_direct_absolute='`$ECHO "$hardcode_direct_absolute" | $SED "$delay_single_quote_subst"`' hardcode_minus_L='`$ECHO "$hardcode_minus_L" | $SED "$delay_single_quote_subst"`' hardcode_shlibpath_var='`$ECHO "$hardcode_shlibpath_var" | $SED "$delay_single_quote_subst"`' hardcode_automatic='`$ECHO "$hardcode_automatic" | $SED "$delay_single_quote_subst"`' inherit_rpath='`$ECHO "$inherit_rpath" | $SED "$delay_single_quote_subst"`' link_all_deplibs='`$ECHO "$link_all_deplibs" | $SED "$delay_single_quote_subst"`' always_export_symbols='`$ECHO "$always_export_symbols" | $SED "$delay_single_quote_subst"`' export_symbols_cmds='`$ECHO "$export_symbols_cmds" | $SED "$delay_single_quote_subst"`' exclude_expsyms='`$ECHO "$exclude_expsyms" | $SED "$delay_single_quote_subst"`' include_expsyms='`$ECHO "$include_expsyms" | $SED "$delay_single_quote_subst"`' prelink_cmds='`$ECHO "$prelink_cmds" | $SED "$delay_single_quote_subst"`' postlink_cmds='`$ECHO "$postlink_cmds" | $SED "$delay_single_quote_subst"`' file_list_spec='`$ECHO "$file_list_spec" | $SED "$delay_single_quote_subst"`' variables_saved_for_relink='`$ECHO "$variables_saved_for_relink" | $SED "$delay_single_quote_subst"`' need_lib_prefix='`$ECHO "$need_lib_prefix" | $SED "$delay_single_quote_subst"`' need_version='`$ECHO "$need_version" | $SED "$delay_single_quote_subst"`' version_type='`$ECHO "$version_type" | $SED "$delay_single_quote_subst"`' runpath_var='`$ECHO "$runpath_var" | $SED "$delay_single_quote_subst"`' shlibpath_var='`$ECHO "$shlibpath_var" | $SED "$delay_single_quote_subst"`' shlibpath_overrides_runpath='`$ECHO "$shlibpath_overrides_runpath" | $SED "$delay_single_quote_subst"`' libname_spec='`$ECHO "$libname_spec" | $SED "$delay_single_quote_subst"`' library_names_spec='`$ECHO "$library_names_spec" | $SED "$delay_single_quote_subst"`' soname_spec='`$ECHO "$soname_spec" | $SED "$delay_single_quote_subst"`' install_override_mode='`$ECHO "$install_override_mode" | $SED "$delay_single_quote_subst"`' postinstall_cmds='`$ECHO "$postinstall_cmds" | $SED "$delay_single_quote_subst"`' postuninstall_cmds='`$ECHO "$postuninstall_cmds" | $SED "$delay_single_quote_subst"`' finish_cmds='`$ECHO "$finish_cmds" | $SED "$delay_single_quote_subst"`' finish_eval='`$ECHO "$finish_eval" | $SED "$delay_single_quote_subst"`' hardcode_into_libs='`$ECHO "$hardcode_into_libs" | $SED "$delay_single_quote_subst"`' sys_lib_search_path_spec='`$ECHO "$sys_lib_search_path_spec" | $SED "$delay_single_quote_subst"`' configure_time_dlsearch_path='`$ECHO "$configure_time_dlsearch_path" | $SED "$delay_single_quote_subst"`' configure_time_lt_sys_library_path='`$ECHO "$configure_time_lt_sys_library_path" | $SED "$delay_single_quote_subst"`' hardcode_action='`$ECHO "$hardcode_action" | $SED "$delay_single_quote_subst"`' enable_dlopen='`$ECHO "$enable_dlopen" | $SED "$delay_single_quote_subst"`' enable_dlopen_self='`$ECHO "$enable_dlopen_self" | $SED "$delay_single_quote_subst"`' enable_dlopen_self_static='`$ECHO "$enable_dlopen_self_static" | $SED "$delay_single_quote_subst"`' old_striplib='`$ECHO "$old_striplib" | $SED "$delay_single_quote_subst"`' striplib='`$ECHO "$striplib" | $SED "$delay_single_quote_subst"`' LTCC='$LTCC' LTCFLAGS='$LTCFLAGS' compiler='$compiler_DEFAULT' # A function that is used when there is no print builtin or printf. func_fallback_echo () { eval 'cat <<_LTECHO_EOF \$1 _LTECHO_EOF' } # Quote evaled strings. for var in SHELL \ ECHO \ PATH_SEPARATOR \ SED \ GREP \ EGREP \ FGREP \ LD \ NM \ LN_S \ lt_SP2NL \ lt_NL2SP \ reload_flag \ OBJDUMP \ deplibs_check_method \ file_magic_cmd \ file_magic_glob \ want_nocaseglob \ DLLTOOL \ sharedlib_from_linklib_cmd \ AR \ AR_FLAGS \ archiver_list_spec \ STRIP \ RANLIB \ CC \ CFLAGS \ compiler \ lt_cv_sys_global_symbol_pipe \ lt_cv_sys_global_symbol_to_cdecl \ lt_cv_sys_global_symbol_to_import \ lt_cv_sys_global_symbol_to_c_name_address \ lt_cv_sys_global_symbol_to_c_name_address_lib_prefix \ lt_cv_nm_interface \ nm_file_list_spec \ lt_cv_truncate_bin \ lt_prog_compiler_no_builtin_flag \ lt_prog_compiler_pic \ lt_prog_compiler_wl \ lt_prog_compiler_static \ lt_cv_prog_compiler_c_o \ need_locks \ MANIFEST_TOOL \ DSYMUTIL \ NMEDIT \ LIPO \ OTOOL \ OTOOL64 \ shrext_cmds \ export_dynamic_flag_spec \ whole_archive_flag_spec \ compiler_needs_object \ with_gnu_ld \ allow_undefined_flag \ no_undefined_flag \ hardcode_libdir_flag_spec \ hardcode_libdir_separator \ exclude_expsyms \ include_expsyms \ file_list_spec \ variables_saved_for_relink \ libname_spec \ library_names_spec \ soname_spec \ install_override_mode \ finish_eval \ old_striplib \ striplib; do case \`eval \\\\\$ECHO \\\\""\\\\\$\$var"\\\\"\` in *[\\\\\\\`\\"\\\$]*) eval "lt_\$var=\\\\\\"\\\`\\\$ECHO \\"\\\$\$var\\" | \\\$SED \\"\\\$sed_quote_subst\\"\\\`\\\\\\"" ## exclude from sc_prohibit_nested_quotes ;; *) eval "lt_\$var=\\\\\\"\\\$\$var\\\\\\"" ;; esac done # Double-quote double-evaled strings. for var in reload_cmds \ old_postinstall_cmds \ old_postuninstall_cmds \ old_archive_cmds \ extract_expsyms_cmds \ old_archive_from_new_cmds \ old_archive_from_expsyms_cmds \ archive_cmds \ archive_expsym_cmds \ module_cmds \ module_expsym_cmds \ export_symbols_cmds \ prelink_cmds \ postlink_cmds \ postinstall_cmds \ postuninstall_cmds \ finish_cmds \ sys_lib_search_path_spec \ configure_time_dlsearch_path \ configure_time_lt_sys_library_path; do case \`eval \\\\\$ECHO \\\\""\\\\\$\$var"\\\\"\` in *[\\\\\\\`\\"\\\$]*) eval "lt_\$var=\\\\\\"\\\`\\\$ECHO \\"\\\$\$var\\" | \\\$SED -e \\"\\\$double_quote_subst\\" -e \\"\\\$sed_quote_subst\\" -e \\"\\\$delay_variable_subst\\"\\\`\\\\\\"" ## exclude from sc_prohibit_nested_quotes ;; *) eval "lt_\$var=\\\\\\"\\\$\$var\\\\\\"" ;; esac done ac_aux_dir='$ac_aux_dir' # See if we are running on zsh, and set the options that allow our # commands through without removal of \ escapes INIT. if test -n "\${ZSH_VERSION+set}"; then setopt NO_GLOB_SUBST fi PACKAGE='$PACKAGE' VERSION='$VERSION' RM='$RM' ofile='$ofile' _ACEOF cat >>$CONFIG_STATUS <<\_ACEOF || ac_write_fail=1 # Handling of arguments. for ac_config_target in $ac_config_targets do case $ac_config_target in "depfiles") CONFIG_COMMANDS="$CONFIG_COMMANDS depfiles" ;; "libtool") CONFIG_COMMANDS="$CONFIG_COMMANDS libtool" ;; "config.h") CONFIG_HEADERS="$CONFIG_HEADERS config.h" ;; "jconfig.h") CONFIG_HEADERS="$CONFIG_HEADERS jconfig.h" ;; "jconfigint.h") CONFIG_HEADERS="$CONFIG_HEADERS jconfigint.h" ;; "pkgscripts/libjpeg-turbo.spec.tmpl") CONFIG_FILES="$CONFIG_FILES pkgscripts/libjpeg-turbo.spec.tmpl:release/libjpeg-turbo.spec.in" ;; "pkgscripts/makecygwinpkg.tmpl") CONFIG_FILES="$CONFIG_FILES pkgscripts/makecygwinpkg.tmpl:release/makecygwinpkg.in" ;; "pkgscripts/makedpkg.tmpl") CONFIG_FILES="$CONFIG_FILES pkgscripts/makedpkg.tmpl:release/makedpkg.in" ;; "pkgscripts/makemacpkg.tmpl") CONFIG_FILES="$CONFIG_FILES pkgscripts/makemacpkg.tmpl:release/makemacpkg.in" ;; "pkgscripts/uninstall.tmpl") CONFIG_FILES="$CONFIG_FILES pkgscripts/uninstall.tmpl:release/uninstall.in" ;; "tjbenchtest") CONFIG_FILES="$CONFIG_FILES tjbenchtest" ;; "tjbenchtest.java") CONFIG_FILES="$CONFIG_FILES tjbenchtest.java" ;; "tjexampletest") CONFIG_FILES="$CONFIG_FILES tjexampletest" ;; "libjpeg.map") CONFIG_FILES="$CONFIG_FILES libjpeg.map" ;; "Makefile") CONFIG_FILES="$CONFIG_FILES Makefile" ;; "simd/Makefile") CONFIG_FILES="$CONFIG_FILES simd/Makefile" ;; "java/Makefile") CONFIG_FILES="$CONFIG_FILES java/Makefile" ;; "md5/Makefile") CONFIG_FILES="$CONFIG_FILES md5/Makefile" ;; *) as_fn_error $? "invalid argument: \`$ac_config_target'" "$LINENO" 5;; esac done # If the user did not use the arguments to specify the items to instantiate, # then the envvar interface is used. Set only those that are not. # We use the long form for the default assignment because of an extremely # bizarre bug on SunOS 4.1.3. if $ac_need_defaults; then test "${CONFIG_FILES+set}" = set || CONFIG_FILES=$config_files test "${CONFIG_HEADERS+set}" = set || CONFIG_HEADERS=$config_headers test "${CONFIG_COMMANDS+set}" = set || CONFIG_COMMANDS=$config_commands fi # Have a temporary directory for convenience. Make it in the build tree # simply because there is no reason against having it here, and in addition, # creating and moving files from /tmp can sometimes cause problems. # Hook for its removal unless debugging. # Note that there is a small window in which the directory will not be cleaned: # after its creation but before its name has been assigned to `$tmp'. $debug || { tmp= ac_tmp= trap 'exit_status=$? : "${ac_tmp:=$tmp}" { test ! -d "$ac_tmp" || rm -fr "$ac_tmp"; } && exit $exit_status ' 0 trap 'as_fn_exit 1' 1 2 13 15 } # Create a (secure) tmp directory for tmp files. { tmp=`(umask 077 && mktemp -d "./confXXXXXX") 2>/dev/null` && test -d "$tmp" } || { tmp=./conf$$-$RANDOM (umask 077 && mkdir "$tmp") } || as_fn_error $? "cannot create a temporary directory in ." "$LINENO" 5 ac_tmp=$tmp # Set up the scripts for CONFIG_FILES section. # No need to generate them if there are no CONFIG_FILES. # This happens for instance with `./config.status config.h'. if test -n "$CONFIG_FILES"; then ac_cr=`echo X | tr X '\015'` # On cygwin, bash can eat \r inside `` if the user requested igncr. # But we know of no other shell where ac_cr would be empty at this # point, so we can use a bashism as a fallback. if test "x$ac_cr" = x; then eval ac_cr=\$\'\\r\' fi ac_cs_awk_cr=`$AWK 'BEGIN { print "a\rb" }' /dev/null` if test "$ac_cs_awk_cr" = "a${ac_cr}b"; then ac_cs_awk_cr='\\r' else ac_cs_awk_cr=$ac_cr fi echo 'BEGIN {' >"$ac_tmp/subs1.awk" && _ACEOF { echo "cat >conf$$subs.awk <<_ACEOF" && echo "$ac_subst_vars" | sed 's/.*/&!$&$ac_delim/' && echo "_ACEOF" } >conf$$subs.sh || as_fn_error $? "could not make $CONFIG_STATUS" "$LINENO" 5 ac_delim_num=`echo "$ac_subst_vars" | grep -c '^'` ac_delim='%!_!# ' for ac_last_try in false false false false false :; do . ./conf$$subs.sh || as_fn_error $? "could not make $CONFIG_STATUS" "$LINENO" 5 ac_delim_n=`sed -n "s/.*$ac_delim\$/X/p" conf$$subs.awk | grep -c X` if test $ac_delim_n = $ac_delim_num; then break elif $ac_last_try; then as_fn_error $? "could not make $CONFIG_STATUS" "$LINENO" 5 else ac_delim="$ac_delim!$ac_delim _$ac_delim!! " fi done rm -f conf$$subs.sh cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1 cat >>"\$ac_tmp/subs1.awk" <<\\_ACAWK && _ACEOF sed -n ' h s/^/S["/; s/!.*/"]=/ p g s/^[^!]*!// :repl t repl s/'"$ac_delim"'$// t delim :nl h s/\(.\{148\}\)..*/\1/ t more1 s/["\\]/\\&/g; s/^/"/; s/$/\\n"\\/ p n b repl :more1 s/["\\]/\\&/g; s/^/"/; s/$/"\\/ p g s/.\{148\}// t nl :delim h s/\(.\{148\}\)..*/\1/ t more2 s/["\\]/\\&/g; s/^/"/; s/$/"/ p b :more2 s/["\\]/\\&/g; s/^/"/; s/$/"\\/ p g s/.\{148\}// t delim ' >$CONFIG_STATUS || ac_write_fail=1 rm -f conf$$subs.awk cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1 _ACAWK cat >>"\$ac_tmp/subs1.awk" <<_ACAWK && for (key in S) S_is_set[key] = 1 FS = "" } { line = $ 0 nfields = split(line, field, "@") substed = 0 len = length(field[1]) for (i = 2; i < nfields; i++) { key = field[i] keylen = length(key) if (S_is_set[key]) { value = S[key] line = substr(line, 1, len) "" value "" substr(line, len + keylen + 3) len += length(value) + length(field[++i]) substed = 1 } else len += 1 + keylen } print line } _ACAWK _ACEOF cat >>$CONFIG_STATUS <<\_ACEOF || ac_write_fail=1 if sed "s/$ac_cr//" < /dev/null > /dev/null 2>&1; then sed "s/$ac_cr\$//; s/$ac_cr/$ac_cs_awk_cr/g" else cat fi < "$ac_tmp/subs1.awk" > "$ac_tmp/subs.awk" \ || as_fn_error $? "could not setup config files machinery" "$LINENO" 5 _ACEOF # VPATH may cause trouble with some makes, so we remove sole $(srcdir), # ${srcdir} and @srcdir@ entries from VPATH if srcdir is ".", strip leading and # trailing colons and then remove the whole line if VPATH becomes empty # (actually we leave an empty line to preserve line numbers). if test "x$srcdir" = x.; then ac_vpsub='/^[ ]*VPATH[ ]*=[ ]*/{ h s/// s/^/:/ s/[ ]*$/:/ s/:\$(srcdir):/:/g s/:\${srcdir}:/:/g s/:@srcdir@:/:/g s/^:*// s/:*$// x s/\(=[ ]*\).*/\1/ G s/\n// s/^[^=]*=[ ]*$// }' fi cat >>$CONFIG_STATUS <<\_ACEOF || ac_write_fail=1 fi # test -n "$CONFIG_FILES" # Set up the scripts for CONFIG_HEADERS section. # No need to generate them if there are no CONFIG_HEADERS. # This happens for instance with `./config.status Makefile'. if test -n "$CONFIG_HEADERS"; then cat >"$ac_tmp/defines.awk" <<\_ACAWK || BEGIN { _ACEOF # Transform confdefs.h into an awk script `defines.awk', embedded as # here-document in config.status, that substitutes the proper values into # config.h.in to produce config.h. # Create a delimiter string that does not exist in confdefs.h, to ease # handling of long lines. ac_delim='%!_!# ' for ac_last_try in false false :; do ac_tt=`sed -n "/$ac_delim/p" confdefs.h` if test -z "$ac_tt"; then break elif $ac_last_try; then as_fn_error $? "could not make $CONFIG_HEADERS" "$LINENO" 5 else ac_delim="$ac_delim!$ac_delim _$ac_delim!! " fi done # For the awk script, D is an array of macro values keyed by name, # likewise P contains macro parameters if any. Preserve backslash # newline sequences. ac_word_re=[_$as_cr_Letters][_$as_cr_alnum]* sed -n ' s/.\{148\}/&'"$ac_delim"'/g t rset :rset s/^[ ]*#[ ]*define[ ][ ]*/ / t def d :def s/\\$// t bsnl s/["\\]/\\&/g s/^ \('"$ac_word_re"'\)\(([^()]*)\)[ ]*\(.*\)/P["\1"]="\2"\ D["\1"]=" \3"/p s/^ \('"$ac_word_re"'\)[ ]*\(.*\)/D["\1"]=" \2"/p d :bsnl s/["\\]/\\&/g s/^ \('"$ac_word_re"'\)\(([^()]*)\)[ ]*\(.*\)/P["\1"]="\2"\ D["\1"]=" \3\\\\\\n"\\/p t cont s/^ \('"$ac_word_re"'\)[ ]*\(.*\)/D["\1"]=" \2\\\\\\n"\\/p t cont d :cont n s/.\{148\}/&'"$ac_delim"'/g t clear :clear s/\\$// t bsnlc s/["\\]/\\&/g; s/^/"/; s/$/"/p d :bsnlc s/["\\]/\\&/g; s/^/"/; s/$/\\\\\\n"\\/p b cont ' >$CONFIG_STATUS || ac_write_fail=1 cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1 for (key in D) D_is_set[key] = 1 FS = "" } /^[\t ]*#[\t ]*(define|undef)[\t ]+$ac_word_re([\t (]|\$)/ { line = \$ 0 split(line, arg, " ") if (arg[1] == "#") { defundef = arg[2] mac1 = arg[3] } else { defundef = substr(arg[1], 2) mac1 = arg[2] } split(mac1, mac2, "(") #) macro = mac2[1] prefix = substr(line, 1, index(line, defundef) - 1) if (D_is_set[macro]) { # Preserve the white space surrounding the "#". print prefix "define", macro P[macro] D[macro] next } else { # Replace #undef with comments. This is necessary, for example, # in the case of _POSIX_SOURCE, which is predefined and required # on some systems where configure will not decide to define it. if (defundef == "undef") { print "/*", prefix defundef, macro, "*/" next } } } { print } _ACAWK _ACEOF cat >>$CONFIG_STATUS <<\_ACEOF || ac_write_fail=1 as_fn_error $? "could not setup config headers machinery" "$LINENO" 5 fi # test -n "$CONFIG_HEADERS" eval set X " :F $CONFIG_FILES :H $CONFIG_HEADERS :C $CONFIG_COMMANDS" shift for ac_tag do case $ac_tag in :[FHLC]) ac_mode=$ac_tag; continue;; esac case $ac_mode$ac_tag in :[FHL]*:*);; :L* | :C*:*) as_fn_error $? "invalid tag \`$ac_tag'" "$LINENO" 5;; :[FH]-) ac_tag=-:-;; :[FH]*) ac_tag=$ac_tag:$ac_tag.in;; esac ac_save_IFS=$IFS IFS=: set x $ac_tag IFS=$ac_save_IFS shift ac_file=$1 shift case $ac_mode in :L) ac_source=$1;; :[FH]) ac_file_inputs= for ac_f do case $ac_f in -) ac_f="$ac_tmp/stdin";; *) # Look for the file first in the build tree, then in the source tree # (if the path is not absolute). The absolute path cannot be DOS-style, # because $ac_f cannot contain `:'. test -f "$ac_f" || case $ac_f in [\\/$]*) false;; *) test -f "$srcdir/$ac_f" && ac_f="$srcdir/$ac_f";; esac || as_fn_error 1 "cannot find input file: \`$ac_f'" "$LINENO" 5;; esac case $ac_f in *\'*) ac_f=`$as_echo "$ac_f" | sed "s/'/'\\\\\\\\''/g"`;; esac as_fn_append ac_file_inputs " '$ac_f'" done # Let's still pretend it is `configure' which instantiates (i.e., don't # use $as_me), people would be surprised to read: # /* config.h. Generated by config.status. */ configure_input='Generated from '` $as_echo "$*" | sed 's|^[^:]*/||;s|:[^:]*/|, |g' `' by configure.' if test x"$ac_file" != x-; then configure_input="$ac_file. $configure_input" { $as_echo "$as_me:${as_lineno-$LINENO}: creating $ac_file" >&5 $as_echo "$as_me: creating $ac_file" >&6;} fi # Neutralize special characters interpreted by sed in replacement strings. case $configure_input in #( *\&* | *\|* | *\\* ) ac_sed_conf_input=`$as_echo "$configure_input" | sed 's/[\\\\&|]/\\\\&/g'`;; #( *) ac_sed_conf_input=$configure_input;; esac case $ac_tag in *:-:* | *:-) cat >"$ac_tmp/stdin" \ || as_fn_error $? "could not create $ac_file" "$LINENO" 5 ;; esac ;; esac ac_dir=`$as_dirname -- "$ac_file" || $as_expr X"$ac_file" : 'X\(.*[^/]\)//*[^/][^/]*/*$' \| \ X"$ac_file" : 'X\(//\)[^/]' \| \ X"$ac_file" : 'X\(//\)$' \| \ X"$ac_file" : 'X\(/\)' \| . 2>/dev/null || $as_echo X"$ac_file" | sed '/^X\(.*[^/]\)\/\/*[^/][^/]*\/*$/{ s//\1/ q } /^X\(\/\/\)[^/].*/{ s//\1/ q } /^X\(\/\/\)$/{ s//\1/ q } /^X\(\/\).*/{ s//\1/ q } s/.*/./; q'` as_dir="$ac_dir"; as_fn_mkdir_p ac_builddir=. case "$ac_dir" in .) ac_dir_suffix= ac_top_builddir_sub=. ac_top_build_prefix= ;; *) ac_dir_suffix=/`$as_echo "$ac_dir" | sed 's|^\.[\\/]||'` # A ".." for each directory in $ac_dir_suffix. ac_top_builddir_sub=`$as_echo "$ac_dir_suffix" | sed 's|/[^\\/]*|/..|g;s|/||'` case $ac_top_builddir_sub in "") ac_top_builddir_sub=. ac_top_build_prefix= ;; *) ac_top_build_prefix=$ac_top_builddir_sub/ ;; esac ;; esac ac_abs_top_builddir=$ac_pwd ac_abs_builddir=$ac_pwd$ac_dir_suffix # for backward compatibility: ac_top_builddir=$ac_top_build_prefix case $srcdir in .) # We are building in place. ac_srcdir=. ac_top_srcdir=$ac_top_builddir_sub ac_abs_top_srcdir=$ac_pwd ;; [\\/]* | ?:[\\/]* ) # Absolute name. ac_srcdir=$srcdir$ac_dir_suffix; ac_top_srcdir=$srcdir ac_abs_top_srcdir=$srcdir ;; *) # Relative name. ac_srcdir=$ac_top_build_prefix$srcdir$ac_dir_suffix ac_top_srcdir=$ac_top_build_prefix$srcdir ac_abs_top_srcdir=$ac_pwd/$srcdir ;; esac ac_abs_srcdir=$ac_abs_top_srcdir$ac_dir_suffix case $ac_mode in :F) # # CONFIG_FILE # case $INSTALL in [\\/$]* | ?:[\\/]* ) ac_INSTALL=$INSTALL ;; *) ac_INSTALL=$ac_top_build_prefix$INSTALL ;; esac ac_MKDIR_P=$MKDIR_P case $MKDIR_P in [\\/$]* | ?:[\\/]* ) ;; */*) ac_MKDIR_P=$ac_top_build_prefix$MKDIR_P ;; esac _ACEOF cat >>$CONFIG_STATUS <<\_ACEOF || ac_write_fail=1 # If the template does not know about datarootdir, expand it. # FIXME: This hack should be removed a few years after 2.60. ac_datarootdir_hack=; ac_datarootdir_seen= ac_sed_dataroot=' /datarootdir/ { p q } /@datadir@/p /@docdir@/p /@infodir@/p /@localedir@/p /@mandir@/p' case `eval "sed -n \"\$ac_sed_dataroot\" $ac_file_inputs"` in *datarootdir*) ac_datarootdir_seen=yes;; *@datadir@*|*@docdir@*|*@infodir@*|*@localedir@*|*@mandir@*) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: $ac_file_inputs seems to ignore the --datarootdir setting" >&5 $as_echo "$as_me: WARNING: $ac_file_inputs seems to ignore the --datarootdir setting" >&2;} _ACEOF cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1 ac_datarootdir_hack=' s&@datadir@&$datadir&g s&@docdir@&$docdir&g s&@infodir@&$infodir&g s&@localedir@&$localedir&g s&@mandir@&$mandir&g s&\\\${datarootdir}&$datarootdir&g' ;; esac _ACEOF # Neutralize VPATH when `$srcdir' = `.'. # Shell code in configure.ac might set extrasub. # FIXME: do we really want to maintain this feature? cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1 ac_sed_extra="$ac_vpsub $extrasub _ACEOF cat >>$CONFIG_STATUS <<\_ACEOF || ac_write_fail=1 :t /@[a-zA-Z_][a-zA-Z_0-9]*@/!b s|@configure_input@|$ac_sed_conf_input|;t t s&@top_builddir@&$ac_top_builddir_sub&;t t s&@top_build_prefix@&$ac_top_build_prefix&;t t s&@srcdir@&$ac_srcdir&;t t s&@abs_srcdir@&$ac_abs_srcdir&;t t s&@top_srcdir@&$ac_top_srcdir&;t t s&@abs_top_srcdir@&$ac_abs_top_srcdir&;t t s&@builddir@&$ac_builddir&;t t s&@abs_builddir@&$ac_abs_builddir&;t t s&@abs_top_builddir@&$ac_abs_top_builddir&;t t s&@INSTALL@&$ac_INSTALL&;t t s&@MKDIR_P@&$ac_MKDIR_P&;t t $ac_datarootdir_hack " eval sed \"\$ac_sed_extra\" "$ac_file_inputs" | $AWK -f "$ac_tmp/subs.awk" \ >$ac_tmp/out || as_fn_error $? "could not create $ac_file" "$LINENO" 5 test -z "$ac_datarootdir_hack$ac_datarootdir_seen" && { ac_out=`sed -n '/\${datarootdir}/p' "$ac_tmp/out"`; test -n "$ac_out"; } && { ac_out=`sed -n '/^[ ]*datarootdir[ ]*:*=/p' \ "$ac_tmp/out"`; test -z "$ac_out"; } && { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: $ac_file contains a reference to the variable \`datarootdir' which seems to be undefined. Please make sure it is defined" >&5 $as_echo "$as_me: WARNING: $ac_file contains a reference to the variable \`datarootdir' which seems to be undefined. Please make sure it is defined" >&2;} rm -f "$ac_tmp/stdin" case $ac_file in -) cat "$ac_tmp/out" && rm -f "$ac_tmp/out";; *) rm -f "$ac_file" && mv "$ac_tmp/out" "$ac_file";; esac \ || as_fn_error $? "could not create $ac_file" "$LINENO" 5 ;; :H) # # CONFIG_HEADER # if test x"$ac_file" != x-; then { $as_echo "/* $configure_input */" \ && eval '$AWK -f "$ac_tmp/defines.awk"' "$ac_file_inputs" } >"$ac_tmp/config.h" \ || as_fn_error $? "could not create $ac_file" "$LINENO" 5 if diff "$ac_file" "$ac_tmp/config.h" >/dev/null 2>&1; then { $as_echo "$as_me:${as_lineno-$LINENO}: $ac_file is unchanged" >&5 $as_echo "$as_me: $ac_file is unchanged" >&6;} else rm -f "$ac_file" mv "$ac_tmp/config.h" "$ac_file" \ || as_fn_error $? "could not create $ac_file" "$LINENO" 5 fi else $as_echo "/* $configure_input */" \ && eval '$AWK -f "$ac_tmp/defines.awk"' "$ac_file_inputs" \ || as_fn_error $? "could not create -" "$LINENO" 5 fi # Compute "$ac_file"'s index in $config_headers. _am_arg="$ac_file" _am_stamp_count=1 for _am_header in $config_headers :; do case $_am_header in $_am_arg | $_am_arg:* ) break ;; * ) _am_stamp_count=`expr $_am_stamp_count + 1` ;; esac done echo "timestamp for $_am_arg" >`$as_dirname -- "$_am_arg" || $as_expr X"$_am_arg" : 'X\(.*[^/]\)//*[^/][^/]*/*$' \| \ X"$_am_arg" : 'X\(//\)[^/]' \| \ X"$_am_arg" : 'X\(//\)$' \| \ X"$_am_arg" : 'X\(/\)' \| . 2>/dev/null || $as_echo X"$_am_arg" | sed '/^X\(.*[^/]\)\/\/*[^/][^/]*\/*$/{ s//\1/ q } /^X\(\/\/\)[^/].*/{ s//\1/ q } /^X\(\/\/\)$/{ s//\1/ q } /^X\(\/\).*/{ s//\1/ q } s/.*/./; q'`/stamp-h$_am_stamp_count ;; :C) { $as_echo "$as_me:${as_lineno-$LINENO}: executing $ac_file commands" >&5 $as_echo "$as_me: executing $ac_file commands" >&6;} ;; esac case $ac_file$ac_mode in "depfiles":C) test x"$AMDEP_TRUE" != x"" || { # Older Autoconf quotes --file arguments for eval, but not when files # are listed without --file. Let's play safe and only enable the eval # if we detect the quoting. case $CONFIG_FILES in *\'*) eval set x "$CONFIG_FILES" ;; *) set x $CONFIG_FILES ;; esac shift for mf do # Strip MF so we end up with the name of the file. mf=`echo "$mf" | sed -e 's/:.*$//'` # Check whether this is an Automake generated Makefile or not. # We used to match only the files named 'Makefile.in', but # some people rename them; so instead we look at the file content. # Grep'ing the first line is not enough: some people post-process # each Makefile.in and add a new line on top of each file to say so. # Grep'ing the whole file is not good either: AIX grep has a line # limit of 2048, but all sed's we know have understand at least 4000. if sed -n 's,^#.*generated by automake.*,X,p' "$mf" | grep X >/dev/null 2>&1; then dirpart=`$as_dirname -- "$mf" || $as_expr X"$mf" : 'X\(.*[^/]\)//*[^/][^/]*/*$' \| \ X"$mf" : 'X\(//\)[^/]' \| \ X"$mf" : 'X\(//\)$' \| \ X"$mf" : 'X\(/\)' \| . 2>/dev/null || $as_echo X"$mf" | sed '/^X\(.*[^/]\)\/\/*[^/][^/]*\/*$/{ s//\1/ q } /^X\(\/\/\)[^/].*/{ s//\1/ q } /^X\(\/\/\)$/{ s//\1/ q } /^X\(\/\).*/{ s//\1/ q } s/.*/./; q'` else continue fi # Extract the definition of DEPDIR, am__include, and am__quote # from the Makefile without running 'make'. DEPDIR=`sed -n 's/^DEPDIR = //p' < "$mf"` test -z "$DEPDIR" && continue am__include=`sed -n 's/^am__include = //p' < "$mf"` test -z "$am__include" && continue am__quote=`sed -n 's/^am__quote = //p' < "$mf"` # Find all dependency output files, they are included files with # $(DEPDIR) in their names. We invoke sed twice because it is the # simplest approach to changing $(DEPDIR) to its actual value in the # expansion. for file in `sed -n " s/^$am__include $am__quote\(.*(DEPDIR).*\)$am__quote"'$/\1/p' <"$mf" | \ sed -e 's/\$(DEPDIR)/'"$DEPDIR"'/g'`; do # Make sure the directory exists. test -f "$dirpart/$file" && continue fdir=`$as_dirname -- "$file" || $as_expr X"$file" : 'X\(.*[^/]\)//*[^/][^/]*/*$' \| \ X"$file" : 'X\(//\)[^/]' \| \ X"$file" : 'X\(//\)$' \| \ X"$file" : 'X\(/\)' \| . 2>/dev/null || $as_echo X"$file" | sed '/^X\(.*[^/]\)\/\/*[^/][^/]*\/*$/{ s//\1/ q } /^X\(\/\/\)[^/].*/{ s//\1/ q } /^X\(\/\/\)$/{ s//\1/ q } /^X\(\/\).*/{ s//\1/ q } s/.*/./; q'` as_dir=$dirpart/$fdir; as_fn_mkdir_p # echo "creating $dirpart/$file" echo '# dummy' > "$dirpart/$file" done done } ;; "libtool":C) # See if we are running on zsh, and set the options that allow our # commands through without removal of \ escapes. if test -n "${ZSH_VERSION+set}"; then setopt NO_GLOB_SUBST fi cfgfile=${ofile}T trap "$RM \"$cfgfile\"; exit 1" 1 2 15 $RM "$cfgfile" cat <<_LT_EOF >> "$cfgfile" #! $SHELL # Generated automatically by $as_me ($PACKAGE) $VERSION # Libtool was configured on host `(hostname || uname -n) 2>/dev/null | sed 1q`: # NOTE: Changes made to this file will be lost: look at ltmain.sh. # Provide generalized library-building support services. # Written by Gordon Matzigkeit, 1996 # Copyright (C) 2014 Free Software Foundation, Inc. # This is free software; see the source for copying conditions. There is NO # warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # GNU Libtool is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of of the License, or # (at your option) any later version. # # As a special exception to the GNU General Public License, if you # distribute this file as part of a program or library that is built # using GNU Libtool, you may include this file under the same # distribution terms that you use for the rest of that program. # # GNU Libtool is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see . # The names of the tagged configurations supported by this script. available_tags='' # Configured defaults for sys_lib_dlsearch_path munging. : \${LT_SYS_LIBRARY_PATH="$configure_time_lt_sys_library_path"} # ### BEGIN LIBTOOL CONFIG # Which release of libtool.m4 was used? macro_version=$macro_version macro_revision=$macro_revision # Whether or not to build shared libraries. build_libtool_libs=$enable_shared # Whether or not to build static libraries. build_old_libs=$enable_static # What type of objects to build. pic_mode=$pic_mode # Whether or not to optimize for fast installation. fast_install=$enable_fast_install # Shared archive member basename,for filename based shared library versioning on AIX. shared_archive_member_spec=$shared_archive_member_spec # Shell to use when invoking shell scripts. SHELL=$lt_SHELL # An echo program that protects backslashes. ECHO=$lt_ECHO # The PATH separator for the build system. PATH_SEPARATOR=$lt_PATH_SEPARATOR # The host system. host_alias=$host_alias host=$host host_os=$host_os # The build system. build_alias=$build_alias build=$build build_os=$build_os # A sed program that does not truncate output. SED=$lt_SED # Sed that helps us avoid accidentally triggering echo(1) options like -n. Xsed="\$SED -e 1s/^X//" # A grep program that handles long lines. GREP=$lt_GREP # An ERE matcher. EGREP=$lt_EGREP # A literal string matcher. FGREP=$lt_FGREP # A BSD- or MS-compatible name lister. NM=$lt_NM # Whether we need soft or hard links. LN_S=$lt_LN_S # What is the maximum length of a command? max_cmd_len=$max_cmd_len # Object file suffix (normally "o"). objext=$ac_objext # Executable file suffix (normally ""). exeext=$exeext # whether the shell understands "unset". lt_unset=$lt_unset # turn spaces into newlines. SP2NL=$lt_lt_SP2NL # turn newlines into spaces. NL2SP=$lt_lt_NL2SP # convert \$build file names to \$host format. to_host_file_cmd=$lt_cv_to_host_file_cmd # convert \$build files to toolchain format. to_tool_file_cmd=$lt_cv_to_tool_file_cmd # An object symbol dumper. OBJDUMP=$lt_OBJDUMP # Method to check whether dependent libraries are shared objects. deplibs_check_method=$lt_deplibs_check_method # Command to use when deplibs_check_method = "file_magic". file_magic_cmd=$lt_file_magic_cmd # How to find potential files when deplibs_check_method = "file_magic". file_magic_glob=$lt_file_magic_glob # Find potential files using nocaseglob when deplibs_check_method = "file_magic". want_nocaseglob=$lt_want_nocaseglob # DLL creation program. DLLTOOL=$lt_DLLTOOL # Command to associate shared and link libraries. sharedlib_from_linklib_cmd=$lt_sharedlib_from_linklib_cmd # The archiver. AR=$lt_AR # Flags to create an archive. AR_FLAGS=$lt_AR_FLAGS # How to feed a file listing to the archiver. archiver_list_spec=$lt_archiver_list_spec # A symbol stripping program. STRIP=$lt_STRIP # Commands used to install an old-style archive. RANLIB=$lt_RANLIB old_postinstall_cmds=$lt_old_postinstall_cmds old_postuninstall_cmds=$lt_old_postuninstall_cmds # Whether to use a lock for old archive extraction. lock_old_archive_extraction=$lock_old_archive_extraction # A C compiler. LTCC=$lt_CC # LTCC compiler flags. LTCFLAGS=$lt_CFLAGS # Take the output of nm and produce a listing of raw symbols and C names. global_symbol_pipe=$lt_lt_cv_sys_global_symbol_pipe # Transform the output of nm in a proper C declaration. global_symbol_to_cdecl=$lt_lt_cv_sys_global_symbol_to_cdecl # Transform the output of nm into a list of symbols to manually relocate. global_symbol_to_import=$lt_lt_cv_sys_global_symbol_to_import # Transform the output of nm in a C name address pair. global_symbol_to_c_name_address=$lt_lt_cv_sys_global_symbol_to_c_name_address # Transform the output of nm in a C name address pair when lib prefix is needed. global_symbol_to_c_name_address_lib_prefix=$lt_lt_cv_sys_global_symbol_to_c_name_address_lib_prefix # The name lister interface. nm_interface=$lt_lt_cv_nm_interface # Specify filename containing input files for \$NM. nm_file_list_spec=$lt_nm_file_list_spec # The root where to search for dependent libraries,and where our libraries should be installed. lt_sysroot=$lt_sysroot # Command to truncate a binary pipe. lt_truncate_bin=$lt_lt_cv_truncate_bin # The name of the directory that contains temporary libtool files. objdir=$objdir # Used to examine libraries when file_magic_cmd begins with "file". MAGIC_CMD=$MAGIC_CMD # Must we lock files when doing compilation? need_locks=$lt_need_locks # Manifest tool. MANIFEST_TOOL=$lt_MANIFEST_TOOL # Tool to manipulate archived DWARF debug symbol files on Mac OS X. DSYMUTIL=$lt_DSYMUTIL # Tool to change global to local symbols on Mac OS X. NMEDIT=$lt_NMEDIT # Tool to manipulate fat objects and archives on Mac OS X. LIPO=$lt_LIPO # ldd/readelf like tool for Mach-O binaries on Mac OS X. OTOOL=$lt_OTOOL # ldd/readelf like tool for 64 bit Mach-O binaries on Mac OS X 10.4. OTOOL64=$lt_OTOOL64 # Old archive suffix (normally "a"). libext=$libext # Shared library suffix (normally ".so"). shrext_cmds=$lt_shrext_cmds # The commands to extract the exported symbol list from a shared archive. extract_expsyms_cmds=$lt_extract_expsyms_cmds # Variables whose values should be saved in libtool wrapper scripts and # restored at link time. variables_saved_for_relink=$lt_variables_saved_for_relink # Do we need the "lib" prefix for modules? need_lib_prefix=$need_lib_prefix # Do we need a version for libraries? need_version=$need_version # Library versioning type. version_type=$version_type # Shared library runtime path variable. runpath_var=$runpath_var # Shared library path variable. shlibpath_var=$shlibpath_var # Is shlibpath searched before the hard-coded library search path? shlibpath_overrides_runpath=$shlibpath_overrides_runpath # Format of library name prefix. libname_spec=$lt_libname_spec # List of archive names. First name is the real one, the rest are links. # The last name is the one that the linker finds with -lNAME library_names_spec=$lt_library_names_spec # The coded name of the library, if different from the real name. soname_spec=$lt_soname_spec # Permission mode override for installation of shared libraries. install_override_mode=$lt_install_override_mode # Command to use after installation of a shared archive. postinstall_cmds=$lt_postinstall_cmds # Command to use after uninstallation of a shared archive. postuninstall_cmds=$lt_postuninstall_cmds # Commands used to finish a libtool library installation in a directory. finish_cmds=$lt_finish_cmds # As "finish_cmds", except a single script fragment to be evaled but # not shown. finish_eval=$lt_finish_eval # Whether we should hardcode library paths into libraries. hardcode_into_libs=$hardcode_into_libs # Compile-time system search path for libraries. sys_lib_search_path_spec=$lt_sys_lib_search_path_spec # Detected run-time system search path for libraries. sys_lib_dlsearch_path_spec=$lt_configure_time_dlsearch_path # Explicit LT_SYS_LIBRARY_PATH set during ./configure time. configure_time_lt_sys_library_path=$lt_configure_time_lt_sys_library_path # Whether dlopen is supported. dlopen_support=$enable_dlopen # Whether dlopen of programs is supported. dlopen_self=$enable_dlopen_self # Whether dlopen of statically linked programs is supported. dlopen_self_static=$enable_dlopen_self_static # Commands to strip libraries. old_striplib=$lt_old_striplib striplib=$lt_striplib # The linker used to build libraries. LD=$lt_LD # How to create reloadable object files. reload_flag=$lt_reload_flag reload_cmds=$lt_reload_cmds # Commands used to build an old-style archive. old_archive_cmds=$lt_old_archive_cmds # A language specific compiler. CC=$lt_compiler # Is the compiler the GNU compiler? with_gcc=$GCC # Compiler flag to turn off builtin functions. no_builtin_flag=$lt_lt_prog_compiler_no_builtin_flag # Additional compiler flags for building library objects. pic_flag=$lt_lt_prog_compiler_pic # How to pass a linker flag through the compiler. wl=$lt_lt_prog_compiler_wl # Compiler flag to prevent dynamic linking. link_static_flag=$lt_lt_prog_compiler_static # Does compiler simultaneously support -c and -o options? compiler_c_o=$lt_lt_cv_prog_compiler_c_o # Whether or not to add -lc for building shared libraries. build_libtool_need_lc=$archive_cmds_need_lc # Whether or not to disallow shared libs when runtime libs are static. allow_libtool_libs_with_static_runtimes=$enable_shared_with_static_runtimes # Compiler flag to allow reflexive dlopens. export_dynamic_flag_spec=$lt_export_dynamic_flag_spec # Compiler flag to generate shared objects directly from archives. whole_archive_flag_spec=$lt_whole_archive_flag_spec # Whether the compiler copes with passing no objects directly. compiler_needs_object=$lt_compiler_needs_object # Create an old-style archive from a shared archive. old_archive_from_new_cmds=$lt_old_archive_from_new_cmds # Create a temporary old-style archive to link instead of a shared archive. old_archive_from_expsyms_cmds=$lt_old_archive_from_expsyms_cmds # Commands used to build a shared archive. archive_cmds=$lt_archive_cmds archive_expsym_cmds=$lt_archive_expsym_cmds # Commands used to build a loadable module if different from building # a shared archive. module_cmds=$lt_module_cmds module_expsym_cmds=$lt_module_expsym_cmds # Whether we are building with GNU ld or not. with_gnu_ld=$lt_with_gnu_ld # Flag that allows shared libraries with undefined symbols to be built. allow_undefined_flag=$lt_allow_undefined_flag # Flag that enforces no undefined symbols. no_undefined_flag=$lt_no_undefined_flag # Flag to hardcode \$libdir into a binary during linking. # This must work even if \$libdir does not exist hardcode_libdir_flag_spec=$lt_hardcode_libdir_flag_spec # Whether we need a single "-rpath" flag with a separated argument. hardcode_libdir_separator=$lt_hardcode_libdir_separator # Set to "yes" if using DIR/libNAME\$shared_ext during linking hardcodes # DIR into the resulting binary. hardcode_direct=$hardcode_direct # Set to "yes" if using DIR/libNAME\$shared_ext during linking hardcodes # DIR into the resulting binary and the resulting library dependency is # "absolute",i.e impossible to change by setting \$shlibpath_var if the # library is relocated. hardcode_direct_absolute=$hardcode_direct_absolute # Set to "yes" if using the -LDIR flag during linking hardcodes DIR # into the resulting binary. hardcode_minus_L=$hardcode_minus_L # Set to "yes" if using SHLIBPATH_VAR=DIR during linking hardcodes DIR # into the resulting binary. hardcode_shlibpath_var=$hardcode_shlibpath_var # Set to "yes" if building a shared library automatically hardcodes DIR # into the library and all subsequent libraries and executables linked # against it. hardcode_automatic=$hardcode_automatic # Set to yes if linker adds runtime paths of dependent libraries # to runtime path list. inherit_rpath=$inherit_rpath # Whether libtool must link a program against all its dependency libraries. link_all_deplibs=$link_all_deplibs # Set to "yes" if exported symbols are required. always_export_symbols=$always_export_symbols # The commands to list exported symbols. export_symbols_cmds=$lt_export_symbols_cmds # Symbols that should not be listed in the preloaded symbols. exclude_expsyms=$lt_exclude_expsyms # Symbols that must always be exported. include_expsyms=$lt_include_expsyms # Commands necessary for linking programs (against libraries) with templates. prelink_cmds=$lt_prelink_cmds # Commands necessary for finishing linking programs. postlink_cmds=$lt_postlink_cmds # Specify filename containing input files. file_list_spec=$lt_file_list_spec # How to hardcode a shared library path into an executable. hardcode_action=$hardcode_action # ### END LIBTOOL CONFIG _LT_EOF cat <<'_LT_EOF' >> "$cfgfile" # ### BEGIN FUNCTIONS SHARED WITH CONFIGURE # func_munge_path_list VARIABLE PATH # ----------------------------------- # VARIABLE is name of variable containing _space_ separated list of # directories to be munged by the contents of PATH, which is string # having a format: # "DIR[:DIR]:" # string "DIR[ DIR]" will be prepended to VARIABLE # ":DIR[:DIR]" # string "DIR[ DIR]" will be appended to VARIABLE # "DIRP[:DIRP]::[DIRA:]DIRA" # string "DIRP[ DIRP]" will be prepended to VARIABLE and string # "DIRA[ DIRA]" will be appended to VARIABLE # "DIR[:DIR]" # VARIABLE will be replaced by "DIR[ DIR]" func_munge_path_list () { case x$2 in x) ;; *:) eval $1=\"`$ECHO $2 | $SED 's/:/ /g'` \$$1\" ;; x:*) eval $1=\"\$$1 `$ECHO $2 | $SED 's/:/ /g'`\" ;; *::*) eval $1=\"\$$1\ `$ECHO $2 | $SED -e 's/.*:://' -e 's/:/ /g'`\" eval $1=\"`$ECHO $2 | $SED -e 's/::.*//' -e 's/:/ /g'`\ \$$1\" ;; *) eval $1=\"`$ECHO $2 | $SED 's/:/ /g'`\" ;; esac } # Calculate cc_basename. Skip known compiler wrappers and cross-prefix. func_cc_basename () { for cc_temp in $*""; do case $cc_temp in compile | *[\\/]compile | ccache | *[\\/]ccache ) ;; distcc | *[\\/]distcc | purify | *[\\/]purify ) ;; \-*) ;; *) break;; esac done func_cc_basename_result=`$ECHO "$cc_temp" | $SED "s%.*/%%; s%^$host_alias-%%"` } # ### END FUNCTIONS SHARED WITH CONFIGURE _LT_EOF case $host_os in aix3*) cat <<\_LT_EOF >> "$cfgfile" # AIX sometimes has problems with the GCC collect2 program. For some # reason, if we set the COLLECT_NAMES environment variable, the problems # vanish in a puff of smoke. if test set != "${COLLECT_NAMES+set}"; then COLLECT_NAMES= export COLLECT_NAMES fi _LT_EOF ;; esac ltmain=$ac_aux_dir/ltmain.sh # We use sed instead of cat because bash on DJGPP gets confused if # if finds mixed CR/LF and LF-only lines. Since sed operates in # text mode, it properly converts lines to CR/LF. This bash problem # is reportedly fixed, but why not run on old versions too? sed '$q' "$ltmain" >> "$cfgfile" \ || (rm -f "$cfgfile"; exit 1) mv -f "$cfgfile" "$ofile" || (rm -f "$ofile" && cp "$cfgfile" "$ofile" && rm -f "$cfgfile") chmod +x "$ofile" ;; esac done # for ac_tag as_fn_exit 0 _ACEOF ac_clean_files=$ac_clean_files_save test $ac_write_fail = 0 || as_fn_error $? "write failure creating $CONFIG_STATUS" "$LINENO" 5 # configure is writing to config.log, and then calls config.status. # config.status does its own redirection, appending to config.log. # Unfortunately, on DOS this fails, as config.log is still kept open # by configure, so config.status won't be able to write to it; its # output is simply discarded. So we exec the FD to /dev/null, # effectively closing config.log, so it can be properly (re)opened and # appended to by config.status. When coming back to configure, we # need to make the FD available again. if test "$no_create" != yes; then ac_cs_success=: ac_config_status_args= test "$silent" = yes && ac_config_status_args="$ac_config_status_args --quiet" exec 5>/dev/null $SHELL $CONFIG_STATUS $ac_config_status_args || ac_cs_success=false exec 5>>config.log # Use ||, not &&, to avoid exiting from the if with $? = 1, which # would make configure fail if this is the last instruction. $ac_cs_success || as_fn_exit 1 fi if test -n "$ac_unrecognized_opts" && test "$enable_option_checking" != no; then { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: unrecognized options: $ac_unrecognized_opts" >&5 $as_echo "$as_me: WARNING: unrecognized options: $ac_unrecognized_opts" >&2;} fi libjpeg-turbo-1.4.2/jpeg_nbits_table.h0000644000076500007650000102007112600050400014646 00000000000000static const unsigned char jpeg_nbits_table[65536] = { 0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16 }; libjpeg-turbo-1.4.2/missing0000755000076500007650000001533012600050414012607 00000000000000#! /bin/sh # Common wrapper for a few potentially missing GNU programs. scriptversion=2013-10-28.13; # UTC # Copyright (C) 1996-2014 Free Software Foundation, Inc. # Originally written by Fran,cois Pinard , 1996. # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2, or (at your option) # any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # You should have received a copy of the GNU General Public License # along with this program. If not, see . # As a special exception to the GNU General Public License, if you # distribute this file as part of a program that contains a # configuration script generated by Autoconf, you may include it under # the same distribution terms that you use for the rest of that program. if test $# -eq 0; then echo 1>&2 "Try '$0 --help' for more information" exit 1 fi case $1 in --is-lightweight) # Used by our autoconf macros to check whether the available missing # script is modern enough. exit 0 ;; --run) # Back-compat with the calling convention used by older automake. shift ;; -h|--h|--he|--hel|--help) echo "\ $0 [OPTION]... PROGRAM [ARGUMENT]... Run 'PROGRAM [ARGUMENT]...', returning a proper advice when this fails due to PROGRAM being missing or too old. Options: -h, --help display this help and exit -v, --version output version information and exit Supported PROGRAM values: aclocal autoconf autoheader autom4te automake makeinfo bison yacc flex lex help2man Version suffixes to PROGRAM as well as the prefixes 'gnu-', 'gnu', and 'g' are ignored when checking the name. Send bug reports to ." exit $? ;; -v|--v|--ve|--ver|--vers|--versi|--versio|--version) echo "missing $scriptversion (GNU Automake)" exit $? ;; -*) echo 1>&2 "$0: unknown '$1' option" echo 1>&2 "Try '$0 --help' for more information" exit 1 ;; esac # Run the given program, remember its exit status. "$@"; st=$? # If it succeeded, we are done. test $st -eq 0 && exit 0 # Also exit now if we it failed (or wasn't found), and '--version' was # passed; such an option is passed most likely to detect whether the # program is present and works. case $2 in --version|--help) exit $st;; esac # Exit code 63 means version mismatch. This often happens when the user # tries to use an ancient version of a tool on a file that requires a # minimum version. if test $st -eq 63; then msg="probably too old" elif test $st -eq 127; then # Program was missing. msg="missing on your system" else # Program was found and executed, but failed. Give up. exit $st fi perl_URL=http://www.perl.org/ flex_URL=http://flex.sourceforge.net/ gnu_software_URL=http://www.gnu.org/software program_details () { case $1 in aclocal|automake) echo "The '$1' program is part of the GNU Automake package:" echo "<$gnu_software_URL/automake>" echo "It also requires GNU Autoconf, GNU m4 and Perl in order to run:" echo "<$gnu_software_URL/autoconf>" echo "<$gnu_software_URL/m4/>" echo "<$perl_URL>" ;; autoconf|autom4te|autoheader) echo "The '$1' program is part of the GNU Autoconf package:" echo "<$gnu_software_URL/autoconf/>" echo "It also requires GNU m4 and Perl in order to run:" echo "<$gnu_software_URL/m4/>" echo "<$perl_URL>" ;; esac } give_advice () { # Normalize program name to check for. normalized_program=`echo "$1" | sed ' s/^gnu-//; t s/^gnu//; t s/^g//; t'` printf '%s\n' "'$1' is $msg." configure_deps="'configure.ac' or m4 files included by 'configure.ac'" case $normalized_program in autoconf*) echo "You should only need it if you modified 'configure.ac'," echo "or m4 files included by it." program_details 'autoconf' ;; autoheader*) echo "You should only need it if you modified 'acconfig.h' or" echo "$configure_deps." program_details 'autoheader' ;; automake*) echo "You should only need it if you modified 'Makefile.am' or" echo "$configure_deps." program_details 'automake' ;; aclocal*) echo "You should only need it if you modified 'acinclude.m4' or" echo "$configure_deps." program_details 'aclocal' ;; autom4te*) echo "You might have modified some maintainer files that require" echo "the 'autom4te' program to be rebuilt." program_details 'autom4te' ;; bison*|yacc*) echo "You should only need it if you modified a '.y' file." echo "You may want to install the GNU Bison package:" echo "<$gnu_software_URL/bison/>" ;; lex*|flex*) echo "You should only need it if you modified a '.l' file." echo "You may want to install the Fast Lexical Analyzer package:" echo "<$flex_URL>" ;; help2man*) echo "You should only need it if you modified a dependency" \ "of a man page." echo "You may want to install the GNU Help2man package:" echo "<$gnu_software_URL/help2man/>" ;; makeinfo*) echo "You should only need it if you modified a '.texi' file, or" echo "any other file indirectly affecting the aspect of the manual." echo "You might want to install the Texinfo package:" echo "<$gnu_software_URL/texinfo/>" echo "The spurious makeinfo call might also be the consequence of" echo "using a buggy 'make' (AIX, DU, IRIX), in which case you might" echo "want to install GNU make:" echo "<$gnu_software_URL/make/>" ;; *) echo "You might have modified some files without having the proper" echo "tools for further handling them. Check the 'README' file, it" echo "often tells you about the needed prerequisites for installing" echo "this package. You may also peek at any GNU archive site, in" echo "case some other package contains this missing '$1' program." ;; esac } give_advice "$1" | sed -e '1s/^/WARNING: /' \ -e '2,$s/^/ /' >&2 # Propagate the correct exit status (expected to be 127 for a program # not found, 63 for a program that failed due to version mismatch). exit $st # Local variables: # eval: (add-hook 'write-file-hooks 'time-stamp) # time-stamp-start: "scriptversion=" # time-stamp-format: "%:y-%02m-%02d.%02H" # time-stamp-time-zone: "UTC" # time-stamp-end: "; # UTC" # End: libjpeg-turbo-1.4.2/usage.txt0000644000076500007650000010556112600050400013056 00000000000000NOTE: This file was modified by The libjpeg-turbo Project to include only information relevant to libjpeg-turbo and to wordsmith certain sections. USAGE instructions for the Independent JPEG Group's JPEG software ================================================================= This file describes usage of the JPEG conversion programs cjpeg and djpeg, as well as the utility programs jpegtran, rdjpgcom and wrjpgcom. (See the other documentation files if you wish to use the JPEG library within your own programs.) If you are on a Unix machine you may prefer to read the Unix-style manual pages in files cjpeg.1, djpeg.1, jpegtran.1, rdjpgcom.1, wrjpgcom.1. INTRODUCTION These programs implement JPEG image encoding, decoding, and transcoding. JPEG (pronounced "jay-peg") is a standardized compression method for full-color and grayscale images. GENERAL USAGE We provide two programs, cjpeg to compress an image file into JPEG format, and djpeg to decompress a JPEG file back into a conventional image format. On Unix-like systems, you say: cjpeg [switches] [imagefile] >jpegfile or djpeg [switches] [jpegfile] >imagefile The programs read the specified input file, or standard input if none is named. They always write to standard output (with trace/error messages to standard error). These conventions are handy for piping images between programs. On most non-Unix systems, you say: cjpeg [switches] imagefile jpegfile or djpeg [switches] jpegfile imagefile i.e., both the input and output files are named on the command line. This style is a little more foolproof, and it loses no functionality if you don't have pipes. (You can get this style on Unix too, if you prefer, by defining TWO_FILE_COMMANDLINE when you compile the programs; see install.txt.) You can also say: cjpeg [switches] -outfile jpegfile imagefile or djpeg [switches] -outfile imagefile jpegfile This syntax works on all systems, so it is useful for scripts. The currently supported image file formats are: PPM (PBMPLUS color format), PGM (PBMPLUS grayscale format), BMP, Targa, and RLE (Utah Raster Toolkit format). (RLE is supported only if the URT library is available.) cjpeg recognizes the input image format automatically, with the exception of some Targa-format files. You have to tell djpeg which format to generate. JPEG files are in the defacto standard JFIF file format. There are other, less widely used JPEG-based file formats, but we don't support them. All switch names may be abbreviated; for example, -grayscale may be written -gray or -gr. Most of the "basic" switches can be abbreviated to as little as one letter. Upper and lower case are equivalent (-BMP is the same as -bmp). British spellings are also accepted (e.g., -greyscale), though for brevity these are not mentioned below. CJPEG DETAILS The basic command line switches for cjpeg are: -quality N[,...] Scale quantization tables to adjust image quality. Quality is 0 (worst) to 100 (best); default is 75. (See below for more info.) -grayscale Create monochrome JPEG file from color input. Be sure to use this switch when compressing a grayscale BMP file, because cjpeg isn't bright enough to notice whether a BMP file uses only shades of gray. By saying -grayscale, you'll get a smaller JPEG file that takes less time to process. -rgb Create RGB JPEG file. Using this switch suppresses the conversion from RGB colorspace input to the default YCbCr JPEG colorspace. -optimize Perform optimization of entropy encoding parameters. Without this, default encoding parameters are used. -optimize usually makes the JPEG file a little smaller, but cjpeg runs somewhat slower and needs much more memory. Image quality and speed of decompression are unaffected by -optimize. -progressive Create progressive JPEG file (see below). -targa Input file is Targa format. Targa files that contain an "identification" field will not be automatically recognized by cjpeg; for such files you must specify -targa to make cjpeg treat the input as Targa format. For most Targa files, you won't need this switch. The -quality switch lets you trade off compressed file size against quality of the reconstructed image: the higher the quality setting, the larger the JPEG file, and the closer the output image will be to the original input. Normally you want to use the lowest quality setting (smallest file) that decompresses into something visually indistinguishable from the original image. For this purpose the quality setting should be between 50 and 95; the default of 75 is often about right. If you see defects at -quality 75, then go up 5 or 10 counts at a time until you are happy with the output image. (The optimal setting will vary from one image to another.) -quality 100 will generate a quantization table of all 1's, minimizing loss in the quantization step (but there is still information loss in subsampling, as well as roundoff error). This setting is mainly of interest for experimental purposes. Quality values above about 95 are NOT recommended for normal use; the compressed file size goes up dramatically for hardly any gain in output image quality. In the other direction, quality values below 50 will produce very small files of low image quality. Settings around 5 to 10 might be useful in preparing an index of a large image library, for example. Try -quality 2 (or so) for some amusing Cubist effects. (Note: quality values below about 25 generate 2-byte quantization tables, which are considered optional in the JPEG standard. cjpeg emits a warning message when you give such a quality value, because some other JPEG programs may be unable to decode the resulting file. Use -baseline if you need to ensure compatibility at low quality values.) The -quality option has been extended in this version of cjpeg to support separate quality settings for luminance and chrominance (or, in general, separate settings for every quantization table slot.) The principle is the same as chrominance subsampling: since the human eye is more sensitive to spatial changes in brightness than spatial changes in color, the chrominance components can be quantized more than the luminance components without incurring any visible image quality loss. However, unlike subsampling, this feature reduces data in the frequency domain instead of the spatial domain, which allows for more fine-grained control. This option is useful in quality-sensitive applications, for which the artifacts generated by subsampling may be unacceptable. The -quality option accepts a comma-separated list of parameters, which respectively refer to the quality levels that should be assigned to the quantization table slots. If there are more q-table slots than parameters, then the last parameter is replicated. Thus, if only one quality parameter is given, this is used for both luminance and chrominance (slots 0 and 1, respectively), preserving the legacy behavior of cjpeg v6b and prior. More (or customized) quantization tables can be set with the -qtables option and assigned to components with the -qslots option (see the "wizard" switches below.) JPEG files generated with separate luminance and chrominance quality are fully compliant with standard JPEG decoders. CAUTION: For this setting to be useful, be sure to pass an argument of -sample 1x1 to cjpeg to disable chrominance subsampling. Otherwise, the default subsampling level (2x2, AKA "4:2:0") will be used. The -progressive switch creates a "progressive JPEG" file. In this type of JPEG file, the data is stored in multiple scans of increasing quality. If the file is being transmitted over a slow communications link, the decoder can use the first scan to display a low-quality image very quickly, and can then improve the display with each subsequent scan. The final image is exactly equivalent to a standard JPEG file of the same quality setting, and the total file size is about the same --- often a little smaller. Switches for advanced users: -arithmetic Use arithmetic coding. CAUTION: arithmetic coded JPEG is not yet widely implemented, so many decoders will be unable to view an arithmetic coded JPEG file at all. -dct int Use integer DCT method (default). -dct fast Use fast integer DCT (less accurate). In libjpeg-turbo, the fast method is generally about 5-15% faster than the int method when using the x86/x86-64 SIMD extensions (results may vary with other SIMD implementations, or when using libjpeg-turbo without SIMD extensions.) For quality levels of 90 and below, there should be little or no perceptible difference between the two algorithms. For quality levels above 90, however, the difference between the fast and the int methods becomes more pronounced. With quality=97, for instance, the fast method incurs generally about a 1-3 dB loss (in PSNR) relative to the int method, but this can be larger for some images. Do not use the fast method with quality levels above 97. The algorithm often degenerates at quality=98 and above and can actually produce a more lossy image than if lower quality levels had been used. Also, in libjpeg-turbo, the fast method is not fully accerated for quality levels above 97, so it will be slower than the int method. -dct float Use floating-point DCT method. The float method is mainly a legacy feature. It does not produce significantly more accurate results than the int method, and it is much slower. The float method may also give different results on different machines due to varying roundoff behavior, whereas the integer methods should give the same results on all machines. -restart N Emit a JPEG restart marker every N MCU rows, or every N MCU blocks if "B" is attached to the number. -restart 0 (the default) means no restart markers. -smooth N Smooth the input image to eliminate dithering noise. N, ranging from 1 to 100, indicates the strength of smoothing. 0 (the default) means no smoothing. -maxmemory N Set limit for amount of memory to use in processing large images. Value is in thousands of bytes, or millions of bytes if "M" is attached to the number. For example, -max 4m selects 4000000 bytes. If more space is needed, temporary files will be used. -verbose Enable debug printout. More -v's give more printout. or -debug Also, version information is printed at startup. The -restart option inserts extra markers that allow a JPEG decoder to resynchronize after a transmission error. Without restart markers, any damage to a compressed file will usually ruin the image from the point of the error to the end of the image; with restart markers, the damage is usually confined to the portion of the image up to the next restart marker. Of course, the restart markers occupy extra space. We recommend -restart 1 for images that will be transmitted across unreliable networks such as Usenet. The -smooth option filters the input to eliminate fine-scale noise. This is often useful when converting dithered images to JPEG: a moderate smoothing factor of 10 to 50 gets rid of dithering patterns in the input file, resulting in a smaller JPEG file and a better-looking image. Too large a smoothing factor will visibly blur the image, however. Switches for wizards: -baseline Force baseline-compatible quantization tables to be generated. This clamps quantization values to 8 bits even at low quality settings. (This switch is poorly named, since it does not ensure that the output is actually baseline JPEG. For example, you can use -baseline and -progressive together.) -qtables file Use the quantization tables given in the specified text file. -qslots N[,...] Select which quantization table to use for each color component. -sample HxV[,...] Set JPEG sampling factors for each color component. -scans file Use the scan script given in the specified text file. The "wizard" switches are intended for experimentation with JPEG. If you don't know what you are doing, DON'T USE THEM. These switches are documented further in the file wizard.txt. DJPEG DETAILS The basic command line switches for djpeg are: -colors N Reduce image to at most N colors. This reduces the or -quantize N number of colors used in the output image, so that it can be displayed on a colormapped display or stored in a colormapped file format. For example, if you have an 8-bit display, you'd need to reduce to 256 or fewer colors. (-colors is the recommended name, -quantize is provided only for backwards compatibility.) -fast Select recommended processing options for fast, low quality output. (The default options are chosen for highest quality output.) Currently, this is equivalent to "-dct fast -nosmooth -onepass -dither ordered". -grayscale Force grayscale output even if JPEG file is color. Useful for viewing on monochrome displays; also, djpeg runs noticeably faster in this mode. -scale M/N Scale the output image by a factor M/N. Currently the scale factor must be M/8, where M is an integer between 1 and 16 inclusive, or any reduced fraction thereof (such as 1/2, 3/4, etc. Scaling is handy if the image is larger than your screen; also, djpeg runs much faster when scaling down the output. -bmp Select BMP output format (Windows flavor). 8-bit colormapped format is emitted if -colors or -grayscale is specified, or if the JPEG file is grayscale; otherwise, 24-bit full-color format is emitted. -gif Select GIF output format. Since GIF does not support more than 256 colors, -colors 256 is assumed (unless you specify a smaller number of colors). If you specify -fast, the default number of colors is 216. -os2 Select BMP output format (OS/2 1.x flavor). 8-bit colormapped format is emitted if -colors or -grayscale is specified, or if the JPEG file is grayscale; otherwise, 24-bit full-color format is emitted. -pnm Select PBMPLUS (PPM/PGM) output format (this is the default format). PGM is emitted if the JPEG file is grayscale or if -grayscale is specified; otherwise PPM is emitted. -rle Select RLE output format. (Requires URT library.) -targa Select Targa output format. Grayscale format is emitted if the JPEG file is grayscale or if -grayscale is specified; otherwise, colormapped format is emitted if -colors is specified; otherwise, 24-bit full-color format is emitted. Switches for advanced users: -dct int Use integer DCT method (default). -dct fast Use fast integer DCT (less accurate). In libjpeg-turbo, the fast method is generally about 5-15% faster than the int method when using the x86/x86-64 SIMD extensions (results may vary with other SIMD implementations, or when using libjpeg-turbo without SIMD extensions.) If the JPEG image was compressed using a quality level of 85 or below, then there should be little or no perceptible difference between the two algorithms. When decompressing images that were compressed using quality levels above 85, however, the difference between the fast and int methods becomes more pronounced. With images compressed using quality=97, for instance, the fast method incurs generally about a 4-6 dB loss (in PSNR) relative to the int method, but this can be larger for some images. If you can avoid it, do not use the fast method when decompressing images that were compressed using quality levels above 97. The algorithm often degenerates for such images and can actually produce a more lossy output image than if the JPEG image had been compressed using lower quality levels. -dct float Use floating-point DCT method. The float method is mainly a legacy feature. It does   not produce significantly more accurate results than the int method, and it is much slower. The float method may also give different results on different machines due to varying roundoff behavior, whereas the integer methods should give the same results on all machines. -dither fs Use Floyd-Steinberg dithering in color quantization. -dither ordered Use ordered dithering in color quantization. -dither none Do not use dithering in color quantization. By default, Floyd-Steinberg dithering is applied when quantizing colors; this is slow but usually produces the best results. Ordered dither is a compromise between speed and quality; no dithering is fast but usually looks awful. Note that these switches have no effect unless color quantization is being done. Ordered dither is only available in -onepass mode. -map FILE Quantize to the colors used in the specified image file. This is useful for producing multiple files with identical color maps, or for forcing a predefined set of colors to be used. The FILE must be a GIF or PPM file. This option overrides -colors and -onepass. -nosmooth Use a faster, lower-quality upsampling routine. -onepass Use one-pass instead of two-pass color quantization. The one-pass method is faster and needs less memory, but it produces a lower-quality image. -onepass is ignored unless you also say -colors N. Also, the one-pass method is always used for grayscale output (the two-pass method is no improvement then). -maxmemory N Set limit for amount of memory to use in processing large images. Value is in thousands of bytes, or millions of bytes if "M" is attached to the number. For example, -max 4m selects 4000000 bytes. If more space is needed, temporary files will be used. -verbose Enable debug printout. More -v's give more printout. or -debug Also, version information is printed at startup. HINTS FOR CJPEG Color GIF files are not the ideal input for JPEG; JPEG is really intended for compressing full-color (24-bit) images. In particular, don't try to convert cartoons, line drawings, and other images that have only a few distinct colors. GIF works great on these, JPEG does not. If you want to convert a GIF to JPEG, you should experiment with cjpeg's -quality and -smooth options to get a satisfactory conversion. -smooth 10 or so is often helpful. Avoid running an image through a series of JPEG compression/decompression cycles. Image quality loss will accumulate; after ten or so cycles the image may be noticeably worse than it was after one cycle. It's best to use a lossless format while manipulating an image, then convert to JPEG format when you are ready to file the image away. The -optimize option to cjpeg is worth using when you are making a "final" version for posting or archiving. It's also a win when you are using low quality settings to make very small JPEG files; the percentage improvement is often a lot more than it is on larger files. (At present, -optimize mode is always selected when generating progressive JPEG files.) Support for GIF input files was removed in cjpeg v6b due to concerns over the Unisys LZW patent. Although this patent expired in 2006, cjpeg still lacks GIF support, for these historical reasons. (Conversion of GIF files to JPEG is usually a bad idea anyway.) HINTS FOR DJPEG To get a quick preview of an image, use the -grayscale and/or -scale switches. "-grayscale -scale 1/8" is the fastest case. Several options are available that trade off image quality to gain speed. "-fast" turns on the recommended settings. "-dct fast" and/or "-nosmooth" gain speed at a small sacrifice in quality. When producing a color-quantized image, "-onepass -dither ordered" is fast but much lower quality than the default behavior. "-dither none" may give acceptable results in two-pass mode, but is seldom tolerable in one-pass mode. Two-pass color quantization requires a good deal of memory; on MS-DOS machines it may run out of memory even with -maxmemory 0. In that case you can still decompress, with some loss of image quality, by specifying -onepass for one-pass quantization. To avoid the Unisys LZW patent, djpeg produces uncompressed GIF files. These are larger than they should be, but are readable by standard GIF decoders. HINTS FOR BOTH PROGRAMS If more space is needed than will fit in the available main memory (as determined by -maxmemory), temporary files will be used. (MS-DOS versions will try to get extended or expanded memory first.) The temporary files are often rather large: in typical cases they occupy three bytes per pixel, for example 3*800*600 = 1.44Mb for an 800x600 image. If you don't have enough free disk space, leave out -progressive and -optimize (for cjpeg) or specify -onepass (for djpeg). On MS-DOS, the temporary files are created in the directory named by the TMP or TEMP environment variable, or in the current directory if neither of those exist. Amiga implementations put the temp files in the directory named by JPEGTMP:, so be sure to assign JPEGTMP: to a disk partition with adequate free space. The default memory usage limit (-maxmemory) is set when the software is compiled. If you get an "insufficient memory" error, try specifying a smaller -maxmemory value, even -maxmemory 0 to use the absolute minimum space. You may want to recompile with a smaller default value if this happens often. On machines that have "environment" variables, you can define the environment variable JPEGMEM to set the default memory limit. The value is specified as described for the -maxmemory switch. JPEGMEM overrides the default value specified when the program was compiled, and itself is overridden by an explicit -maxmemory switch. On MS-DOS machines, -maxmemory is the amount of main (conventional) memory to use. (Extended or expanded memory is also used if available.) Most DOS-specific versions of this software do their own memory space estimation and do not need you to specify -maxmemory. JPEGTRAN jpegtran performs various useful transformations of JPEG files. It can translate the coded representation from one variant of JPEG to another, for example from baseline JPEG to progressive JPEG or vice versa. It can also perform some rearrangements of the image data, for example turning an image from landscape to portrait format by rotation. jpegtran works by rearranging the compressed data (DCT coefficients), without ever fully decoding the image. Therefore, its transformations are lossless: there is no image degradation at all, which would not be true if you used djpeg followed by cjpeg to accomplish the same conversion. But by the same token, jpegtran cannot perform lossy operations such as changing the image quality. jpegtran uses a command line syntax similar to cjpeg or djpeg. On Unix-like systems, you say: jpegtran [switches] [inputfile] >outputfile On most non-Unix systems, you say: jpegtran [switches] inputfile outputfile where both the input and output files are JPEG files. To specify the coded JPEG representation used in the output file, jpegtran accepts a subset of the switches recognized by cjpeg: -optimize Perform optimization of entropy encoding parameters. -progressive Create progressive JPEG file. -arithmetic Use arithmetic coding. -restart N Emit a JPEG restart marker every N MCU rows, or every N MCU blocks if "B" is attached to the number. -scans file Use the scan script given in the specified text file. See the previous discussion of cjpeg for more details about these switches. If you specify none of these switches, you get a plain baseline-JPEG output file. The quality setting and so forth are determined by the input file. The image can be losslessly transformed by giving one of these switches: -flip horizontal Mirror image horizontally (left-right). -flip vertical Mirror image vertically (top-bottom). -rotate 90 Rotate image 90 degrees clockwise. -rotate 180 Rotate image 180 degrees. -rotate 270 Rotate image 270 degrees clockwise (or 90 ccw). -transpose Transpose image (across UL-to-LR axis). -transverse Transverse transpose (across UR-to-LL axis). The transpose transformation has no restrictions regarding image dimensions. The other transformations operate rather oddly if the image dimensions are not a multiple of the iMCU size (usually 8 or 16 pixels), because they can only transform complete blocks of DCT coefficient data in the desired way. jpegtran's default behavior when transforming an odd-size image is designed to preserve exact reversibility and mathematical consistency of the transformation set. As stated, transpose is able to flip the entire image area. Horizontal mirroring leaves any partial iMCU column at the right edge untouched, but is able to flip all rows of the image. Similarly, vertical mirroring leaves any partial iMCU row at the bottom edge untouched, but is able to flip all columns. The other transforms can be built up as sequences of transpose and flip operations; for consistency, their actions on edge pixels are defined to be the same as the end result of the corresponding transpose-and-flip sequence. For practical use, you may prefer to discard any untransformable edge pixels rather than having a strange-looking strip along the right and/or bottom edges of a transformed image. To do this, add the -trim switch: -trim Drop non-transformable edge blocks. Obviously, a transformation with -trim is not reversible, so strictly speaking jpegtran with this switch is not lossless. Also, the expected mathematical equivalences between the transformations no longer hold. For example, "-rot 270 -trim" trims only the bottom edge, but "-rot 90 -trim" followed by "-rot 180 -trim" trims both edges. If you are only interested in perfect transformations, add the -perfect switch: -perfect Fail with an error if the transformation is not perfect. For example, you may want to do jpegtran -rot 90 -perfect foo.jpg || djpeg foo.jpg | pnmflip -r90 | cjpeg to do a perfect rotation, if available, or an approximated one if not. This version of jpegtran also offers a lossless crop option, which discards data outside of a given image region but losslessly preserves what is inside. Like the rotate and flip transforms, lossless crop is restricted by the current JPEG format; the upper left corner of the selected region must fall on an iMCU boundary. If it doesn't, then it is silently moved up and/or left to the nearest iMCU boundary (the lower right corner is unchanged.) The image can be losslessly cropped by giving the switch: -crop WxH+X+Y Crop to a rectangular region of width W and height H, starting at point X,Y. Other not-strictly-lossless transformation switches are: -grayscale Force grayscale output. This option discards the chrominance channels if the input image is YCbCr (ie, a standard color JPEG), resulting in a grayscale JPEG file. The luminance channel is preserved exactly, so this is a better method of reducing to grayscale than decompression, conversion, and recompression. This switch is particularly handy for fixing a monochrome picture that was mistakenly encoded as a color JPEG. (In such a case, the space savings from getting rid of the near-empty chroma channels won't be large; but the decoding time for a grayscale JPEG is substantially less than that for a color JPEG.) jpegtran also recognizes these switches that control what to do with "extra" markers, such as comment blocks: -copy none Copy no extra markers from source file. This setting suppresses all comments and other excess baggage present in the source file. -copy comments Copy only comment markers. This setting copies comments from the source file but discards any other data that is inessential for image display. -copy all Copy all extra markers. This setting preserves miscellaneous markers found in the source file, such as JFIF thumbnails, Exif data, and Photoshop settings. In some files, these extra markers can be sizable. The default behavior is -copy comments. (Note: in IJG releases v6 and v6a, jpegtran always did the equivalent of -copy none.) Additional switches recognized by jpegtran are: -outfile filename -maxmemory N -verbose -debug These work the same as in cjpeg or djpeg. THE COMMENT UTILITIES The JPEG standard allows "comment" (COM) blocks to occur within a JPEG file. Although the standard doesn't actually define what COM blocks are for, they are widely used to hold user-supplied text strings. This lets you add annotations, titles, index terms, etc to your JPEG files, and later retrieve them as text. COM blocks do not interfere with the image stored in the JPEG file. The maximum size of a COM block is 64K, but you can have as many of them as you like in one JPEG file. We provide two utility programs to display COM block contents and add COM blocks to a JPEG file. rdjpgcom searches a JPEG file and prints the contents of any COM blocks on standard output. The command line syntax is rdjpgcom [-raw] [-verbose] [inputfilename] The switch "-raw" (or just "-r") causes rdjpgcom to output non-printable characters in JPEG comments. These characters are normally escaped for security reasons. The switch "-verbose" (or just "-v") causes rdjpgcom to also display the JPEG image dimensions. If you omit the input file name from the command line, the JPEG file is read from standard input. (This may not work on some operating systems, if binary data can't be read from stdin.) wrjpgcom adds a COM block, containing text you provide, to a JPEG file. Ordinarily, the COM block is added after any existing COM blocks, but you can delete the old COM blocks if you wish. wrjpgcom produces a new JPEG file; it does not modify the input file. DO NOT try to overwrite the input file by directing wrjpgcom's output back into it; on most systems this will just destroy your file. The command line syntax for wrjpgcom is similar to cjpeg's. On Unix-like systems, it is wrjpgcom [switches] [inputfilename] The output file is written to standard output. The input file comes from the named file, or from standard input if no input file is named. On most non-Unix systems, the syntax is wrjpgcom [switches] inputfilename outputfilename where both input and output file names must be given explicitly. wrjpgcom understands three switches: -replace Delete any existing COM blocks from the file. -comment "Comment text" Supply new COM text on command line. -cfile name Read text for new COM block from named file. (Switch names can be abbreviated.) If you have only one line of comment text to add, you can provide it on the command line with -comment. The comment text must be surrounded with quotes so that it is treated as a single argument. Longer comments can be read from a text file. If you give neither -comment nor -cfile, then wrjpgcom will read the comment text from standard input. (In this case an input image file name MUST be supplied, so that the source JPEG file comes from somewhere else.) You can enter multiple lines, up to 64KB worth. Type an end-of-file indicator (usually control-D or control-Z) to terminate the comment text entry. wrjpgcom will not add a COM block if the provided comment string is empty. Therefore -replace -comment "" can be used to delete all COM blocks from a file. These utility programs do not depend on the IJG JPEG library. In particular, the source code for rdjpgcom is intended as an illustration of the minimum amount of code required to parse a JPEG file header correctly. libjpeg-turbo-1.4.2/jdpostct.c0000644000076500007650000002413512600050400013204 00000000000000/* * jdpostct.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1994-1996, Thomas G. Lane. * It was modified by The libjpeg-turbo Project to include only code relevant * to libjpeg-turbo. * For conditions of distribution and use, see the accompanying README file. * * This file contains the decompression postprocessing controller. * This controller manages the upsampling, color conversion, and color * quantization/reduction steps; specifically, it controls the buffering * between upsample/color conversion and color quantization/reduction. * * If no color quantization/reduction is required, then this module has no * work to do, and it just hands off to the upsample/color conversion code. * An integrated upsample/convert/quantize process would replace this module * entirely. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" /* Private buffer controller object */ typedef struct { struct jpeg_d_post_controller pub; /* public fields */ /* Color quantization source buffer: this holds output data from * the upsample/color conversion step to be passed to the quantizer. * For two-pass color quantization, we need a full-image buffer; * for one-pass operation, a strip buffer is sufficient. */ jvirt_sarray_ptr whole_image; /* virtual array, or NULL if one-pass */ JSAMPARRAY buffer; /* strip buffer, or current strip of virtual */ JDIMENSION strip_height; /* buffer size in rows */ /* for two-pass mode only: */ JDIMENSION starting_row; /* row # of first row in current strip */ JDIMENSION next_row; /* index of next row to fill/empty in strip */ } my_post_controller; typedef my_post_controller * my_post_ptr; /* Forward declarations */ METHODDEF(void) post_process_1pass (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, JDIMENSION in_row_groups_avail, JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail); #ifdef QUANT_2PASS_SUPPORTED METHODDEF(void) post_process_prepass (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, JDIMENSION in_row_groups_avail, JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail); METHODDEF(void) post_process_2pass (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, JDIMENSION in_row_groups_avail, JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail); #endif /* * Initialize for a processing pass. */ METHODDEF(void) start_pass_dpost (j_decompress_ptr cinfo, J_BUF_MODE pass_mode) { my_post_ptr post = (my_post_ptr) cinfo->post; switch (pass_mode) { case JBUF_PASS_THRU: if (cinfo->quantize_colors) { /* Single-pass processing with color quantization. */ post->pub.post_process_data = post_process_1pass; /* We could be doing buffered-image output before starting a 2-pass * color quantization; in that case, jinit_d_post_controller did not * allocate a strip buffer. Use the virtual-array buffer as workspace. */ if (post->buffer == NULL) { post->buffer = (*cinfo->mem->access_virt_sarray) ((j_common_ptr) cinfo, post->whole_image, (JDIMENSION) 0, post->strip_height, TRUE); } } else { /* For single-pass processing without color quantization, * I have no work to do; just call the upsampler directly. */ post->pub.post_process_data = cinfo->upsample->upsample; } break; #ifdef QUANT_2PASS_SUPPORTED case JBUF_SAVE_AND_PASS: /* First pass of 2-pass quantization */ if (post->whole_image == NULL) ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); post->pub.post_process_data = post_process_prepass; break; case JBUF_CRANK_DEST: /* Second pass of 2-pass quantization */ if (post->whole_image == NULL) ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); post->pub.post_process_data = post_process_2pass; break; #endif /* QUANT_2PASS_SUPPORTED */ default: ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); break; } post->starting_row = post->next_row = 0; } /* * Process some data in the one-pass (strip buffer) case. * This is used for color precision reduction as well as one-pass quantization. */ METHODDEF(void) post_process_1pass (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, JDIMENSION in_row_groups_avail, JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail) { my_post_ptr post = (my_post_ptr) cinfo->post; JDIMENSION num_rows, max_rows; /* Fill the buffer, but not more than what we can dump out in one go. */ /* Note we rely on the upsampler to detect bottom of image. */ max_rows = out_rows_avail - *out_row_ctr; if (max_rows > post->strip_height) max_rows = post->strip_height; num_rows = 0; (*cinfo->upsample->upsample) (cinfo, input_buf, in_row_group_ctr, in_row_groups_avail, post->buffer, &num_rows, max_rows); /* Quantize and emit data. */ (*cinfo->cquantize->color_quantize) (cinfo, post->buffer, output_buf + *out_row_ctr, (int) num_rows); *out_row_ctr += num_rows; } #ifdef QUANT_2PASS_SUPPORTED /* * Process some data in the first pass of 2-pass quantization. */ METHODDEF(void) post_process_prepass (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, JDIMENSION in_row_groups_avail, JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail) { my_post_ptr post = (my_post_ptr) cinfo->post; JDIMENSION old_next_row, num_rows; /* Reposition virtual buffer if at start of strip. */ if (post->next_row == 0) { post->buffer = (*cinfo->mem->access_virt_sarray) ((j_common_ptr) cinfo, post->whole_image, post->starting_row, post->strip_height, TRUE); } /* Upsample some data (up to a strip height's worth). */ old_next_row = post->next_row; (*cinfo->upsample->upsample) (cinfo, input_buf, in_row_group_ctr, in_row_groups_avail, post->buffer, &post->next_row, post->strip_height); /* Allow quantizer to scan new data. No data is emitted, */ /* but we advance out_row_ctr so outer loop can tell when we're done. */ if (post->next_row > old_next_row) { num_rows = post->next_row - old_next_row; (*cinfo->cquantize->color_quantize) (cinfo, post->buffer + old_next_row, (JSAMPARRAY) NULL, (int) num_rows); *out_row_ctr += num_rows; } /* Advance if we filled the strip. */ if (post->next_row >= post->strip_height) { post->starting_row += post->strip_height; post->next_row = 0; } } /* * Process some data in the second pass of 2-pass quantization. */ METHODDEF(void) post_process_2pass (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, JDIMENSION in_row_groups_avail, JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail) { my_post_ptr post = (my_post_ptr) cinfo->post; JDIMENSION num_rows, max_rows; /* Reposition virtual buffer if at start of strip. */ if (post->next_row == 0) { post->buffer = (*cinfo->mem->access_virt_sarray) ((j_common_ptr) cinfo, post->whole_image, post->starting_row, post->strip_height, FALSE); } /* Determine number of rows to emit. */ num_rows = post->strip_height - post->next_row; /* available in strip */ max_rows = out_rows_avail - *out_row_ctr; /* available in output area */ if (num_rows > max_rows) num_rows = max_rows; /* We have to check bottom of image here, can't depend on upsampler. */ max_rows = cinfo->output_height - post->starting_row; if (num_rows > max_rows) num_rows = max_rows; /* Quantize and emit data. */ (*cinfo->cquantize->color_quantize) (cinfo, post->buffer + post->next_row, output_buf + *out_row_ctr, (int) num_rows); *out_row_ctr += num_rows; /* Advance if we filled the strip. */ post->next_row += num_rows; if (post->next_row >= post->strip_height) { post->starting_row += post->strip_height; post->next_row = 0; } } #endif /* QUANT_2PASS_SUPPORTED */ /* * Initialize postprocessing controller. */ GLOBAL(void) jinit_d_post_controller (j_decompress_ptr cinfo, boolean need_full_buffer) { my_post_ptr post; post = (my_post_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, sizeof(my_post_controller)); cinfo->post = (struct jpeg_d_post_controller *) post; post->pub.start_pass = start_pass_dpost; post->whole_image = NULL; /* flag for no virtual arrays */ post->buffer = NULL; /* flag for no strip buffer */ /* Create the quantization buffer, if needed */ if (cinfo->quantize_colors) { /* The buffer strip height is max_v_samp_factor, which is typically * an efficient number of rows for upsampling to return. * (In the presence of output rescaling, we might want to be smarter?) */ post->strip_height = (JDIMENSION) cinfo->max_v_samp_factor; if (need_full_buffer) { /* Two-pass color quantization: need full-image storage. */ /* We round up the number of rows to a multiple of the strip height. */ #ifdef QUANT_2PASS_SUPPORTED post->whole_image = (*cinfo->mem->request_virt_sarray) ((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE, cinfo->output_width * cinfo->out_color_components, (JDIMENSION) jround_up((long) cinfo->output_height, (long) post->strip_height), post->strip_height); #else ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); #endif /* QUANT_2PASS_SUPPORTED */ } else { /* One-pass color quantization: just make a strip buffer. */ post->buffer = (*cinfo->mem->alloc_sarray) ((j_common_ptr) cinfo, JPOOL_IMAGE, cinfo->output_width * cinfo->out_color_components, post->strip_height); } } } libjpeg-turbo-1.4.2/jdatasrc.c0000644000076500007650000002306112600050400013142 00000000000000/* * jdatasrc.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1994-1996, Thomas G. Lane. * Modified 2009-2011 by Guido Vollbeding. * libjpeg-turbo Modifications: * Copyright (C) 2013, D. R. Commander. * For conditions of distribution and use, see the accompanying README file. * * This file contains decompression data source routines for the case of * reading JPEG data from memory or from a file (or any stdio stream). * While these routines are sufficient for most applications, * some will want to use a different source manager. * IMPORTANT: we assume that fread() will correctly transcribe an array of * JOCTETs from 8-bit-wide elements on external storage. If char is wider * than 8 bits on your machine, you may need to do some tweaking. */ /* this is not a core library module, so it doesn't define JPEG_INTERNALS */ #include "jinclude.h" #include "jpeglib.h" #include "jerror.h" /* Expanded data source object for stdio input */ typedef struct { struct jpeg_source_mgr pub; /* public fields */ FILE * infile; /* source stream */ JOCTET * buffer; /* start of buffer */ boolean start_of_file; /* have we gotten any data yet? */ } my_source_mgr; typedef my_source_mgr * my_src_ptr; #define INPUT_BUF_SIZE 4096 /* choose an efficiently fread'able size */ /* * Initialize source --- called by jpeg_read_header * before any data is actually read. */ METHODDEF(void) init_source (j_decompress_ptr cinfo) { my_src_ptr src = (my_src_ptr) cinfo->src; /* We reset the empty-input-file flag for each image, * but we don't clear the input buffer. * This is correct behavior for reading a series of images from one source. */ src->start_of_file = TRUE; } #if JPEG_LIB_VERSION >= 80 || defined(MEM_SRCDST_SUPPORTED) METHODDEF(void) init_mem_source (j_decompress_ptr cinfo) { /* no work necessary here */ } #endif /* * Fill the input buffer --- called whenever buffer is emptied. * * In typical applications, this should read fresh data into the buffer * (ignoring the current state of next_input_byte & bytes_in_buffer), * reset the pointer & count to the start of the buffer, and return TRUE * indicating that the buffer has been reloaded. It is not necessary to * fill the buffer entirely, only to obtain at least one more byte. * * There is no such thing as an EOF return. If the end of the file has been * reached, the routine has a choice of ERREXIT() or inserting fake data into * the buffer. In most cases, generating a warning message and inserting a * fake EOI marker is the best course of action --- this will allow the * decompressor to output however much of the image is there. However, * the resulting error message is misleading if the real problem is an empty * input file, so we handle that case specially. * * In applications that need to be able to suspend compression due to input * not being available yet, a FALSE return indicates that no more data can be * obtained right now, but more may be forthcoming later. In this situation, * the decompressor will return to its caller (with an indication of the * number of scanlines it has read, if any). The application should resume * decompression after it has loaded more data into the input buffer. Note * that there are substantial restrictions on the use of suspension --- see * the documentation. * * When suspending, the decompressor will back up to a convenient restart point * (typically the start of the current MCU). next_input_byte & bytes_in_buffer * indicate where the restart point will be if the current call returns FALSE. * Data beyond this point must be rescanned after resumption, so move it to * the front of the buffer rather than discarding it. */ METHODDEF(boolean) fill_input_buffer (j_decompress_ptr cinfo) { my_src_ptr src = (my_src_ptr) cinfo->src; size_t nbytes; nbytes = JFREAD(src->infile, src->buffer, INPUT_BUF_SIZE); if (nbytes <= 0) { if (src->start_of_file) /* Treat empty input file as fatal error */ ERREXIT(cinfo, JERR_INPUT_EMPTY); WARNMS(cinfo, JWRN_JPEG_EOF); /* Insert a fake EOI marker */ src->buffer[0] = (JOCTET) 0xFF; src->buffer[1] = (JOCTET) JPEG_EOI; nbytes = 2; } src->pub.next_input_byte = src->buffer; src->pub.bytes_in_buffer = nbytes; src->start_of_file = FALSE; return TRUE; } #if JPEG_LIB_VERSION >= 80 || defined(MEM_SRCDST_SUPPORTED) METHODDEF(boolean) fill_mem_input_buffer (j_decompress_ptr cinfo) { static const JOCTET mybuffer[4] = { (JOCTET) 0xFF, (JOCTET) JPEG_EOI, 0, 0 }; /* The whole JPEG data is expected to reside in the supplied memory * buffer, so any request for more data beyond the given buffer size * is treated as an error. */ WARNMS(cinfo, JWRN_JPEG_EOF); /* Insert a fake EOI marker */ cinfo->src->next_input_byte = mybuffer; cinfo->src->bytes_in_buffer = 2; return TRUE; } #endif /* * Skip data --- used to skip over a potentially large amount of * uninteresting data (such as an APPn marker). * * Writers of suspendable-input applications must note that skip_input_data * is not granted the right to give a suspension return. If the skip extends * beyond the data currently in the buffer, the buffer can be marked empty so * that the next read will cause a fill_input_buffer call that can suspend. * Arranging for additional bytes to be discarded before reloading the input * buffer is the application writer's problem. */ METHODDEF(void) skip_input_data (j_decompress_ptr cinfo, long num_bytes) { struct jpeg_source_mgr * src = cinfo->src; /* Just a dumb implementation for now. Could use fseek() except * it doesn't work on pipes. Not clear that being smart is worth * any trouble anyway --- large skips are infrequent. */ if (num_bytes > 0) { while (num_bytes > (long) src->bytes_in_buffer) { num_bytes -= (long) src->bytes_in_buffer; (void) (*src->fill_input_buffer) (cinfo); /* note we assume that fill_input_buffer will never return FALSE, * so suspension need not be handled. */ } src->next_input_byte += (size_t) num_bytes; src->bytes_in_buffer -= (size_t) num_bytes; } } /* * An additional method that can be provided by data source modules is the * resync_to_restart method for error recovery in the presence of RST markers. * For the moment, this source module just uses the default resync method * provided by the JPEG library. That method assumes that no backtracking * is possible. */ /* * Terminate source --- called by jpeg_finish_decompress * after all data has been read. Often a no-op. * * NB: *not* called by jpeg_abort or jpeg_destroy; surrounding * application must deal with any cleanup that should happen even * for error exit. */ METHODDEF(void) term_source (j_decompress_ptr cinfo) { /* no work necessary here */ } /* * Prepare for input from a stdio stream. * The caller must have already opened the stream, and is responsible * for closing it after finishing decompression. */ GLOBAL(void) jpeg_stdio_src (j_decompress_ptr cinfo, FILE * infile) { my_src_ptr src; /* The source object and input buffer are made permanent so that a series * of JPEG images can be read from the same file by calling jpeg_stdio_src * only before the first one. (If we discarded the buffer at the end of * one image, we'd likely lose the start of the next one.) * This makes it unsafe to use this manager and a different source * manager serially with the same JPEG object. Caveat programmer. */ if (cinfo->src == NULL) { /* first time for this JPEG object? */ cinfo->src = (struct jpeg_source_mgr *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT, sizeof(my_source_mgr)); src = (my_src_ptr) cinfo->src; src->buffer = (JOCTET *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT, INPUT_BUF_SIZE * sizeof(JOCTET)); } src = (my_src_ptr) cinfo->src; src->pub.init_source = init_source; src->pub.fill_input_buffer = fill_input_buffer; src->pub.skip_input_data = skip_input_data; src->pub.resync_to_restart = jpeg_resync_to_restart; /* use default method */ src->pub.term_source = term_source; src->infile = infile; src->pub.bytes_in_buffer = 0; /* forces fill_input_buffer on first read */ src->pub.next_input_byte = NULL; /* until buffer loaded */ } #if JPEG_LIB_VERSION >= 80 || defined(MEM_SRCDST_SUPPORTED) /* * Prepare for input from a supplied memory buffer. * The buffer must contain the whole JPEG data. */ GLOBAL(void) jpeg_mem_src (j_decompress_ptr cinfo, unsigned char * inbuffer, unsigned long insize) { struct jpeg_source_mgr * src; if (inbuffer == NULL || insize == 0) /* Treat empty input as fatal error */ ERREXIT(cinfo, JERR_INPUT_EMPTY); /* The source object is made permanent so that a series of JPEG images * can be read from the same buffer by calling jpeg_mem_src only before * the first one. */ if (cinfo->src == NULL) { /* first time for this JPEG object? */ cinfo->src = (struct jpeg_source_mgr *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT, sizeof(struct jpeg_source_mgr)); } src = cinfo->src; src->init_source = init_mem_source; src->fill_input_buffer = fill_mem_input_buffer; src->skip_input_data = skip_input_data; src->resync_to_restart = jpeg_resync_to_restart; /* use default method */ src->term_source = term_source; src->bytes_in_buffer = (size_t) insize; src->next_input_byte = (JOCTET *) inbuffer; } #endif libjpeg-turbo-1.4.2/jchuff.h0000644000076500007650000000266512600050400012630 00000000000000/* * jchuff.h * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1991-1997, Thomas G. Lane. * It was modified by The libjpeg-turbo Project to include only code relevant * to libjpeg-turbo. * For conditions of distribution and use, see the accompanying README file. * * This file contains declarations for Huffman entropy encoding routines * that are shared between the sequential encoder (jchuff.c) and the * progressive encoder (jcphuff.c). No other modules need to see these. */ /* The legal range of a DCT coefficient is * -1024 .. +1023 for 8-bit data; * -16384 .. +16383 for 12-bit data. * Hence the magnitude should always fit in 10 or 14 bits respectively. */ #if BITS_IN_JSAMPLE == 8 #define MAX_COEF_BITS 10 #else #define MAX_COEF_BITS 14 #endif /* Derived data constructed for each Huffman table */ typedef struct { unsigned int ehufco[256]; /* code for each symbol */ char ehufsi[256]; /* length of code for each symbol */ /* If no code has been allocated for a symbol S, ehufsi[S] contains 0 */ } c_derived_tbl; /* Expand a Huffman table definition into the derived format */ EXTERN(void) jpeg_make_c_derived_tbl (j_compress_ptr cinfo, boolean isDC, int tblno, c_derived_tbl ** pdtbl); /* Generate an optimal table definition given the specified counts */ EXTERN(void) jpeg_gen_optimal_table (j_compress_ptr cinfo, JHUFF_TBL * htbl, long freq[]); libjpeg-turbo-1.4.2/jinclude.h0000644000076500007650000000557712600050400013165 00000000000000/* * jinclude.h * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1991-1994, Thomas G. Lane. * It was modified by The libjpeg-turbo Project to include only code relevant * to libjpeg-turbo. * For conditions of distribution and use, see the accompanying README file. * * This file exists to provide a single place to fix any problems with * including the wrong system include files. (Common problems are taken * care of by the standard jconfig symbols, but on really weird systems * you may have to edit this file.) * * NOTE: this file is NOT intended to be included by applications using the * JPEG library. Most applications need only include jpeglib.h. */ /* Include auto-config file to find out which system include files we need. */ #include "jconfig.h" /* auto configuration options */ #define JCONFIG_INCLUDED /* so that jpeglib.h doesn't do it again */ /* * We need the NULL macro and size_t typedef. * On an ANSI-conforming system it is sufficient to include . * Otherwise, we get them from or ; we may have to * pull in as well. * Note that the core JPEG library does not require ; * only the default error handler and data source/destination modules do. * But we must pull it in because of the references to FILE in jpeglib.h. * You can remove those references if you want to compile without . */ #ifdef HAVE_STDDEF_H #include #endif #ifdef HAVE_STDLIB_H #include #endif #ifdef NEED_SYS_TYPES_H #include #endif #include /* * We need memory copying and zeroing functions, plus strncpy(). * ANSI and System V implementations declare these in . * BSD doesn't have the mem() functions, but it does have bcopy()/bzero(). * Some systems may declare memset and memcpy in . * * NOTE: we assume the size parameters to these functions are of type size_t. * Change the casts in these macros if not! */ #ifdef NEED_BSD_STRINGS #include #define MEMZERO(target,size) bzero((void *)(target), (size_t)(size)) #define MEMCOPY(dest,src,size) bcopy((const void *)(src), (void *)(dest), (size_t)(size)) #else /* not BSD, assume ANSI/SysV string lib */ #include #define MEMZERO(target,size) memset((void *)(target), 0, (size_t)(size)) #define MEMCOPY(dest,src,size) memcpy((void *)(dest), (const void *)(src), (size_t)(size)) #endif /* * The modules that use fread() and fwrite() always invoke them through * these macros. On some systems you may need to twiddle the argument casts. * CAUTION: argument order is different from underlying functions! */ #define JFREAD(file,buf,sizeofbuf) \ ((size_t) fread((void *) (buf), (size_t) 1, (size_t) (sizeofbuf), (file))) #define JFWRITE(file,buf,sizeofbuf) \ ((size_t) fwrite((const void *) (buf), (size_t) 1, (size_t) (sizeofbuf), (file))) libjpeg-turbo-1.4.2/jcarith.c0000644000076500007650000007163012600050400013000 00000000000000/* * jcarith.c * * This file was part of the Independent JPEG Group's software: * Developed 1997-2009 by Guido Vollbeding. * It was modified by The libjpeg-turbo Project to include only code relevant * to libjpeg-turbo. * For conditions of distribution and use, see the accompanying README file. * * This file contains portable arithmetic entropy encoding routines for JPEG * (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81). * * Both sequential and progressive modes are supported in this single module. * * Suspension is not currently supported in this module. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" /* Expanded entropy encoder object for arithmetic encoding. */ typedef struct { struct jpeg_entropy_encoder pub; /* public fields */ INT32 c; /* C register, base of coding interval, layout as in sec. D.1.3 */ INT32 a; /* A register, normalized size of coding interval */ INT32 sc; /* counter for stacked 0xFF values which might overflow */ INT32 zc; /* counter for pending 0x00 output values which might * * be discarded at the end ("Pacman" termination) */ int ct; /* bit shift counter, determines when next byte will be written */ int buffer; /* buffer for most recent output byte != 0xFF */ int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */ unsigned int restarts_to_go; /* MCUs left in this restart interval */ int next_restart_num; /* next restart number to write (0-7) */ /* Pointers to statistics areas (these workspaces have image lifespan) */ unsigned char * dc_stats[NUM_ARITH_TBLS]; unsigned char * ac_stats[NUM_ARITH_TBLS]; /* Statistics bin for coding with fixed probability 0.5 */ unsigned char fixed_bin[4]; } arith_entropy_encoder; typedef arith_entropy_encoder * arith_entropy_ptr; /* The following two definitions specify the allocation chunk size * for the statistics area. * According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least * 49 statistics bins for DC, and 245 statistics bins for AC coding. * * We use a compact representation with 1 byte per statistics bin, * thus the numbers directly represent byte sizes. * This 1 byte per statistics bin contains the meaning of the MPS * (more probable symbol) in the highest bit (mask 0x80), and the * index into the probability estimation state machine table * in the lower bits (mask 0x7F). */ #define DC_STAT_BINS 64 #define AC_STAT_BINS 256 /* NOTE: Uncomment the following #define if you want to use the * given formula for calculating the AC conditioning parameter Kx * for spectral selection progressive coding in section G.1.3.2 * of the spec (Kx = Kmin + SRL (8 + Se - Kmin) 4). * Although the spec and P&M authors claim that this "has proven * to give good results for 8 bit precision samples", I'm not * convinced yet that this is really beneficial. * Early tests gave only very marginal compression enhancements * (a few - around 5 or so - bytes even for very large files), * which would turn out rather negative if we'd suppress the * DAC (Define Arithmetic Conditioning) marker segments for * the default parameters in the future. * Note that currently the marker writing module emits 12-byte * DAC segments for a full-component scan in a color image. * This is not worth worrying about IMHO. However, since the * spec defines the default values to be used if the tables * are omitted (unlike Huffman tables, which are required * anyway), one might optimize this behaviour in the future, * and then it would be disadvantageous to use custom tables if * they don't provide sufficient gain to exceed the DAC size. * * On the other hand, I'd consider it as a reasonable result * that the conditioning has no significant influence on the * compression performance. This means that the basic * statistical model is already rather stable. * * Thus, at the moment, we use the default conditioning values * anyway, and do not use the custom formula. * #define CALCULATE_SPECTRAL_CONDITIONING */ /* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32. * We assume that int right shift is unsigned if INT32 right shift is, * which should be safe. */ #ifdef RIGHT_SHIFT_IS_UNSIGNED #define ISHIFT_TEMPS int ishift_temp; #define IRIGHT_SHIFT(x,shft) \ ((ishift_temp = (x)) < 0 ? \ (ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \ (ishift_temp >> (shft))) #else #define ISHIFT_TEMPS #define IRIGHT_SHIFT(x,shft) ((x) >> (shft)) #endif LOCAL(void) emit_byte (int val, j_compress_ptr cinfo) /* Write next output byte; we do not support suspension in this module. */ { struct jpeg_destination_mgr * dest = cinfo->dest; *dest->next_output_byte++ = (JOCTET) val; if (--dest->free_in_buffer == 0) if (! (*dest->empty_output_buffer) (cinfo)) ERREXIT(cinfo, JERR_CANT_SUSPEND); } /* * Finish up at the end of an arithmetic-compressed scan. */ METHODDEF(void) finish_pass (j_compress_ptr cinfo) { arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy; INT32 temp; /* Section D.1.8: Termination of encoding */ /* Find the e->c in the coding interval with the largest * number of trailing zero bits */ if ((temp = (e->a - 1 + e->c) & 0xFFFF0000L) < e->c) e->c = temp + 0x8000L; else e->c = temp; /* Send remaining bytes to output */ e->c <<= e->ct; if (e->c & 0xF8000000L) { /* One final overflow has to be handled */ if (e->buffer >= 0) { if (e->zc) do emit_byte(0x00, cinfo); while (--e->zc); emit_byte(e->buffer + 1, cinfo); if (e->buffer + 1 == 0xFF) emit_byte(0x00, cinfo); } e->zc += e->sc; /* carry-over converts stacked 0xFF bytes to 0x00 */ e->sc = 0; } else { if (e->buffer == 0) ++e->zc; else if (e->buffer >= 0) { if (e->zc) do emit_byte(0x00, cinfo); while (--e->zc); emit_byte(e->buffer, cinfo); } if (e->sc) { if (e->zc) do emit_byte(0x00, cinfo); while (--e->zc); do { emit_byte(0xFF, cinfo); emit_byte(0x00, cinfo); } while (--e->sc); } } /* Output final bytes only if they are not 0x00 */ if (e->c & 0x7FFF800L) { if (e->zc) /* output final pending zero bytes */ do emit_byte(0x00, cinfo); while (--e->zc); emit_byte((e->c >> 19) & 0xFF, cinfo); if (((e->c >> 19) & 0xFF) == 0xFF) emit_byte(0x00, cinfo); if (e->c & 0x7F800L) { emit_byte((e->c >> 11) & 0xFF, cinfo); if (((e->c >> 11) & 0xFF) == 0xFF) emit_byte(0x00, cinfo); } } } /* * The core arithmetic encoding routine (common in JPEG and JBIG). * This needs to go as fast as possible. * Machine-dependent optimization facilities * are not utilized in this portable implementation. * However, this code should be fairly efficient and * may be a good base for further optimizations anyway. * * Parameter 'val' to be encoded may be 0 or 1 (binary decision). * * Note: I've added full "Pacman" termination support to the * byte output routines, which is equivalent to the optional * Discard_final_zeros procedure (Figure D.15) in the spec. * Thus, we always produce the shortest possible output * stream compliant to the spec (no trailing zero bytes, * except for FF stuffing). * * I've also introduced a new scheme for accessing * the probability estimation state machine table, * derived from Markus Kuhn's JBIG implementation. */ LOCAL(void) arith_encode (j_compress_ptr cinfo, unsigned char *st, int val) { register arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy; register unsigned char nl, nm; register INT32 qe, temp; register int sv; /* Fetch values from our compact representation of Table D.2: * Qe values and probability estimation state machine */ sv = *st; qe = jpeg_aritab[sv & 0x7F]; /* => Qe_Value */ nl = qe & 0xFF; qe >>= 8; /* Next_Index_LPS + Switch_MPS */ nm = qe & 0xFF; qe >>= 8; /* Next_Index_MPS */ /* Encode & estimation procedures per sections D.1.4 & D.1.5 */ e->a -= qe; if (val != (sv >> 7)) { /* Encode the less probable symbol */ if (e->a >= qe) { /* If the interval size (qe) for the less probable symbol (LPS) * is larger than the interval size for the MPS, then exchange * the two symbols for coding efficiency, otherwise code the LPS * as usual: */ e->c += e->a; e->a = qe; } *st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */ } else { /* Encode the more probable symbol */ if (e->a >= 0x8000L) return; /* A >= 0x8000 -> ready, no renormalization required */ if (e->a < qe) { /* If the interval size (qe) for the less probable symbol (LPS) * is larger than the interval size for the MPS, then exchange * the two symbols for coding efficiency: */ e->c += e->a; e->a = qe; } *st = (sv & 0x80) ^ nm; /* Estimate_after_MPS */ } /* Renormalization & data output per section D.1.6 */ do { e->a <<= 1; e->c <<= 1; if (--e->ct == 0) { /* Another byte is ready for output */ temp = e->c >> 19; if (temp > 0xFF) { /* Handle overflow over all stacked 0xFF bytes */ if (e->buffer >= 0) { if (e->zc) do emit_byte(0x00, cinfo); while (--e->zc); emit_byte(e->buffer + 1, cinfo); if (e->buffer + 1 == 0xFF) emit_byte(0x00, cinfo); } e->zc += e->sc; /* carry-over converts stacked 0xFF bytes to 0x00 */ e->sc = 0; /* Note: The 3 spacer bits in the C register guarantee * that the new buffer byte can't be 0xFF here * (see page 160 in the P&M JPEG book). */ e->buffer = temp & 0xFF; /* new output byte, might overflow later */ } else if (temp == 0xFF) { ++e->sc; /* stack 0xFF byte (which might overflow later) */ } else { /* Output all stacked 0xFF bytes, they will not overflow any more */ if (e->buffer == 0) ++e->zc; else if (e->buffer >= 0) { if (e->zc) do emit_byte(0x00, cinfo); while (--e->zc); emit_byte(e->buffer, cinfo); } if (e->sc) { if (e->zc) do emit_byte(0x00, cinfo); while (--e->zc); do { emit_byte(0xFF, cinfo); emit_byte(0x00, cinfo); } while (--e->sc); } e->buffer = temp & 0xFF; /* new output byte (can still overflow) */ } e->c &= 0x7FFFFL; e->ct += 8; } } while (e->a < 0x8000L); } /* * Emit a restart marker & resynchronize predictions. */ LOCAL(void) emit_restart (j_compress_ptr cinfo, int restart_num) { arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; int ci; jpeg_component_info * compptr; finish_pass(cinfo); emit_byte(0xFF, cinfo); emit_byte(JPEG_RST0 + restart_num, cinfo); /* Re-initialize statistics areas */ for (ci = 0; ci < cinfo->comps_in_scan; ci++) { compptr = cinfo->cur_comp_info[ci]; /* DC needs no table for refinement scan */ if (cinfo->progressive_mode == 0 || (cinfo->Ss == 0 && cinfo->Ah == 0)) { MEMZERO(entropy->dc_stats[compptr->dc_tbl_no], DC_STAT_BINS); /* Reset DC predictions to 0 */ entropy->last_dc_val[ci] = 0; entropy->dc_context[ci] = 0; } /* AC needs no table when not present */ if (cinfo->progressive_mode == 0 || cinfo->Se) { MEMZERO(entropy->ac_stats[compptr->ac_tbl_no], AC_STAT_BINS); } } /* Reset arithmetic encoding variables */ entropy->c = 0; entropy->a = 0x10000L; entropy->sc = 0; entropy->zc = 0; entropy->ct = 11; entropy->buffer = -1; /* empty */ } /* * MCU encoding for DC initial scan (either spectral selection, * or first pass of successive approximation). */ METHODDEF(boolean) encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data) { arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; JBLOCKROW block; unsigned char *st; int blkn, ci, tbl; int v, v2, m; ISHIFT_TEMPS /* Emit restart marker if needed */ if (cinfo->restart_interval) { if (entropy->restarts_to_go == 0) { emit_restart(cinfo, entropy->next_restart_num); entropy->restarts_to_go = cinfo->restart_interval; entropy->next_restart_num++; entropy->next_restart_num &= 7; } entropy->restarts_to_go--; } /* Encode the MCU data blocks */ for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { block = MCU_data[blkn]; ci = cinfo->MCU_membership[blkn]; tbl = cinfo->cur_comp_info[ci]->dc_tbl_no; /* Compute the DC value after the required point transform by Al. * This is simply an arithmetic right shift. */ m = IRIGHT_SHIFT((int) ((*block)[0]), cinfo->Al); /* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */ /* Table F.4: Point to statistics bin S0 for DC coefficient coding */ st = entropy->dc_stats[tbl] + entropy->dc_context[ci]; /* Figure F.4: Encode_DC_DIFF */ if ((v = m - entropy->last_dc_val[ci]) == 0) { arith_encode(cinfo, st, 0); entropy->dc_context[ci] = 0; /* zero diff category */ } else { entropy->last_dc_val[ci] = m; arith_encode(cinfo, st, 1); /* Figure F.6: Encoding nonzero value v */ /* Figure F.7: Encoding the sign of v */ if (v > 0) { arith_encode(cinfo, st + 1, 0); /* Table F.4: SS = S0 + 1 */ st += 2; /* Table F.4: SP = S0 + 2 */ entropy->dc_context[ci] = 4; /* small positive diff category */ } else { v = -v; arith_encode(cinfo, st + 1, 1); /* Table F.4: SS = S0 + 1 */ st += 3; /* Table F.4: SN = S0 + 3 */ entropy->dc_context[ci] = 8; /* small negative diff category */ } /* Figure F.8: Encoding the magnitude category of v */ m = 0; if (v -= 1) { arith_encode(cinfo, st, 1); m = 1; v2 = v; st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */ while (v2 >>= 1) { arith_encode(cinfo, st, 1); m <<= 1; st += 1; } } arith_encode(cinfo, st, 0); /* Section F.1.4.4.1.2: Establish dc_context conditioning category */ if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1)) entropy->dc_context[ci] = 0; /* zero diff category */ else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1)) entropy->dc_context[ci] += 8; /* large diff category */ /* Figure F.9: Encoding the magnitude bit pattern of v */ st += 14; while (m >>= 1) arith_encode(cinfo, st, (m & v) ? 1 : 0); } } return TRUE; } /* * MCU encoding for AC initial scan (either spectral selection, * or first pass of successive approximation). */ METHODDEF(boolean) encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data) { arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; JBLOCKROW block; unsigned char *st; int tbl, k, ke; int v, v2, m; /* Emit restart marker if needed */ if (cinfo->restart_interval) { if (entropy->restarts_to_go == 0) { emit_restart(cinfo, entropy->next_restart_num); entropy->restarts_to_go = cinfo->restart_interval; entropy->next_restart_num++; entropy->next_restart_num &= 7; } entropy->restarts_to_go--; } /* Encode the MCU data block */ block = MCU_data[0]; tbl = cinfo->cur_comp_info[0]->ac_tbl_no; /* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */ /* Establish EOB (end-of-block) index */ for (ke = cinfo->Se; ke > 0; ke--) /* We must apply the point transform by Al. For AC coefficients this * is an integer division with rounding towards 0. To do this portably * in C, we shift after obtaining the absolute value. */ if ((v = (*block)[jpeg_natural_order[ke]]) >= 0) { if (v >>= cinfo->Al) break; } else { v = -v; if (v >>= cinfo->Al) break; } /* Figure F.5: Encode_AC_Coefficients */ for (k = cinfo->Ss; k <= ke; k++) { st = entropy->ac_stats[tbl] + 3 * (k - 1); arith_encode(cinfo, st, 0); /* EOB decision */ for (;;) { if ((v = (*block)[jpeg_natural_order[k]]) >= 0) { if (v >>= cinfo->Al) { arith_encode(cinfo, st + 1, 1); arith_encode(cinfo, entropy->fixed_bin, 0); break; } } else { v = -v; if (v >>= cinfo->Al) { arith_encode(cinfo, st + 1, 1); arith_encode(cinfo, entropy->fixed_bin, 1); break; } } arith_encode(cinfo, st + 1, 0); st += 3; k++; } st += 2; /* Figure F.8: Encoding the magnitude category of v */ m = 0; if (v -= 1) { arith_encode(cinfo, st, 1); m = 1; v2 = v; if (v2 >>= 1) { arith_encode(cinfo, st, 1); m <<= 1; st = entropy->ac_stats[tbl] + (k <= cinfo->arith_ac_K[tbl] ? 189 : 217); while (v2 >>= 1) { arith_encode(cinfo, st, 1); m <<= 1; st += 1; } } } arith_encode(cinfo, st, 0); /* Figure F.9: Encoding the magnitude bit pattern of v */ st += 14; while (m >>= 1) arith_encode(cinfo, st, (m & v) ? 1 : 0); } /* Encode EOB decision only if k <= cinfo->Se */ if (k <= cinfo->Se) { st = entropy->ac_stats[tbl] + 3 * (k - 1); arith_encode(cinfo, st, 1); } return TRUE; } /* * MCU encoding for DC successive approximation refinement scan. */ METHODDEF(boolean) encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data) { arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; unsigned char *st; int Al, blkn; /* Emit restart marker if needed */ if (cinfo->restart_interval) { if (entropy->restarts_to_go == 0) { emit_restart(cinfo, entropy->next_restart_num); entropy->restarts_to_go = cinfo->restart_interval; entropy->next_restart_num++; entropy->next_restart_num &= 7; } entropy->restarts_to_go--; } st = entropy->fixed_bin; /* use fixed probability estimation */ Al = cinfo->Al; /* Encode the MCU data blocks */ for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { /* We simply emit the Al'th bit of the DC coefficient value. */ arith_encode(cinfo, st, (MCU_data[blkn][0][0] >> Al) & 1); } return TRUE; } /* * MCU encoding for AC successive approximation refinement scan. */ METHODDEF(boolean) encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data) { arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; JBLOCKROW block; unsigned char *st; int tbl, k, ke, kex; int v; /* Emit restart marker if needed */ if (cinfo->restart_interval) { if (entropy->restarts_to_go == 0) { emit_restart(cinfo, entropy->next_restart_num); entropy->restarts_to_go = cinfo->restart_interval; entropy->next_restart_num++; entropy->next_restart_num &= 7; } entropy->restarts_to_go--; } /* Encode the MCU data block */ block = MCU_data[0]; tbl = cinfo->cur_comp_info[0]->ac_tbl_no; /* Section G.1.3.3: Encoding of AC coefficients */ /* Establish EOB (end-of-block) index */ for (ke = cinfo->Se; ke > 0; ke--) /* We must apply the point transform by Al. For AC coefficients this * is an integer division with rounding towards 0. To do this portably * in C, we shift after obtaining the absolute value. */ if ((v = (*block)[jpeg_natural_order[ke]]) >= 0) { if (v >>= cinfo->Al) break; } else { v = -v; if (v >>= cinfo->Al) break; } /* Establish EOBx (previous stage end-of-block) index */ for (kex = ke; kex > 0; kex--) if ((v = (*block)[jpeg_natural_order[kex]]) >= 0) { if (v >>= cinfo->Ah) break; } else { v = -v; if (v >>= cinfo->Ah) break; } /* Figure G.10: Encode_AC_Coefficients_SA */ for (k = cinfo->Ss; k <= ke; k++) { st = entropy->ac_stats[tbl] + 3 * (k - 1); if (k > kex) arith_encode(cinfo, st, 0); /* EOB decision */ for (;;) { if ((v = (*block)[jpeg_natural_order[k]]) >= 0) { if (v >>= cinfo->Al) { if (v >> 1) /* previously nonzero coef */ arith_encode(cinfo, st + 2, (v & 1)); else { /* newly nonzero coef */ arith_encode(cinfo, st + 1, 1); arith_encode(cinfo, entropy->fixed_bin, 0); } break; } } else { v = -v; if (v >>= cinfo->Al) { if (v >> 1) /* previously nonzero coef */ arith_encode(cinfo, st + 2, (v & 1)); else { /* newly nonzero coef */ arith_encode(cinfo, st + 1, 1); arith_encode(cinfo, entropy->fixed_bin, 1); } break; } } arith_encode(cinfo, st + 1, 0); st += 3; k++; } } /* Encode EOB decision only if k <= cinfo->Se */ if (k <= cinfo->Se) { st = entropy->ac_stats[tbl] + 3 * (k - 1); arith_encode(cinfo, st, 1); } return TRUE; } /* * Encode and output one MCU's worth of arithmetic-compressed coefficients. */ METHODDEF(boolean) encode_mcu (j_compress_ptr cinfo, JBLOCKROW *MCU_data) { arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; jpeg_component_info * compptr; JBLOCKROW block; unsigned char *st; int blkn, ci, tbl, k, ke; int v, v2, m; /* Emit restart marker if needed */ if (cinfo->restart_interval) { if (entropy->restarts_to_go == 0) { emit_restart(cinfo, entropy->next_restart_num); entropy->restarts_to_go = cinfo->restart_interval; entropy->next_restart_num++; entropy->next_restart_num &= 7; } entropy->restarts_to_go--; } /* Encode the MCU data blocks */ for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { block = MCU_data[blkn]; ci = cinfo->MCU_membership[blkn]; compptr = cinfo->cur_comp_info[ci]; /* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */ tbl = compptr->dc_tbl_no; /* Table F.4: Point to statistics bin S0 for DC coefficient coding */ st = entropy->dc_stats[tbl] + entropy->dc_context[ci]; /* Figure F.4: Encode_DC_DIFF */ if ((v = (*block)[0] - entropy->last_dc_val[ci]) == 0) { arith_encode(cinfo, st, 0); entropy->dc_context[ci] = 0; /* zero diff category */ } else { entropy->last_dc_val[ci] = (*block)[0]; arith_encode(cinfo, st, 1); /* Figure F.6: Encoding nonzero value v */ /* Figure F.7: Encoding the sign of v */ if (v > 0) { arith_encode(cinfo, st + 1, 0); /* Table F.4: SS = S0 + 1 */ st += 2; /* Table F.4: SP = S0 + 2 */ entropy->dc_context[ci] = 4; /* small positive diff category */ } else { v = -v; arith_encode(cinfo, st + 1, 1); /* Table F.4: SS = S0 + 1 */ st += 3; /* Table F.4: SN = S0 + 3 */ entropy->dc_context[ci] = 8; /* small negative diff category */ } /* Figure F.8: Encoding the magnitude category of v */ m = 0; if (v -= 1) { arith_encode(cinfo, st, 1); m = 1; v2 = v; st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */ while (v2 >>= 1) { arith_encode(cinfo, st, 1); m <<= 1; st += 1; } } arith_encode(cinfo, st, 0); /* Section F.1.4.4.1.2: Establish dc_context conditioning category */ if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1)) entropy->dc_context[ci] = 0; /* zero diff category */ else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1)) entropy->dc_context[ci] += 8; /* large diff category */ /* Figure F.9: Encoding the magnitude bit pattern of v */ st += 14; while (m >>= 1) arith_encode(cinfo, st, (m & v) ? 1 : 0); } /* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */ tbl = compptr->ac_tbl_no; /* Establish EOB (end-of-block) index */ for (ke = DCTSIZE2 - 1; ke > 0; ke--) if ((*block)[jpeg_natural_order[ke]]) break; /* Figure F.5: Encode_AC_Coefficients */ for (k = 1; k <= ke; k++) { st = entropy->ac_stats[tbl] + 3 * (k - 1); arith_encode(cinfo, st, 0); /* EOB decision */ while ((v = (*block)[jpeg_natural_order[k]]) == 0) { arith_encode(cinfo, st + 1, 0); st += 3; k++; } arith_encode(cinfo, st + 1, 1); /* Figure F.6: Encoding nonzero value v */ /* Figure F.7: Encoding the sign of v */ if (v > 0) { arith_encode(cinfo, entropy->fixed_bin, 0); } else { v = -v; arith_encode(cinfo, entropy->fixed_bin, 1); } st += 2; /* Figure F.8: Encoding the magnitude category of v */ m = 0; if (v -= 1) { arith_encode(cinfo, st, 1); m = 1; v2 = v; if (v2 >>= 1) { arith_encode(cinfo, st, 1); m <<= 1; st = entropy->ac_stats[tbl] + (k <= cinfo->arith_ac_K[tbl] ? 189 : 217); while (v2 >>= 1) { arith_encode(cinfo, st, 1); m <<= 1; st += 1; } } } arith_encode(cinfo, st, 0); /* Figure F.9: Encoding the magnitude bit pattern of v */ st += 14; while (m >>= 1) arith_encode(cinfo, st, (m & v) ? 1 : 0); } /* Encode EOB decision only if k <= DCTSIZE2 - 1 */ if (k <= DCTSIZE2 - 1) { st = entropy->ac_stats[tbl] + 3 * (k - 1); arith_encode(cinfo, st, 1); } } return TRUE; } /* * Initialize for an arithmetic-compressed scan. */ METHODDEF(void) start_pass (j_compress_ptr cinfo, boolean gather_statistics) { arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; int ci, tbl; jpeg_component_info * compptr; if (gather_statistics) /* Make sure to avoid that in the master control logic! * We are fully adaptive here and need no extra * statistics gathering pass! */ ERREXIT(cinfo, JERR_NOT_COMPILED); /* We assume jcmaster.c already validated the progressive scan parameters. */ /* Select execution routines */ if (cinfo->progressive_mode) { if (cinfo->Ah == 0) { if (cinfo->Ss == 0) entropy->pub.encode_mcu = encode_mcu_DC_first; else entropy->pub.encode_mcu = encode_mcu_AC_first; } else { if (cinfo->Ss == 0) entropy->pub.encode_mcu = encode_mcu_DC_refine; else entropy->pub.encode_mcu = encode_mcu_AC_refine; } } else entropy->pub.encode_mcu = encode_mcu; /* Allocate & initialize requested statistics areas */ for (ci = 0; ci < cinfo->comps_in_scan; ci++) { compptr = cinfo->cur_comp_info[ci]; /* DC needs no table for refinement scan */ if (cinfo->progressive_mode == 0 || (cinfo->Ss == 0 && cinfo->Ah == 0)) { tbl = compptr->dc_tbl_no; if (tbl < 0 || tbl >= NUM_ARITH_TBLS) ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl); if (entropy->dc_stats[tbl] == NULL) entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS); MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS); /* Initialize DC predictions to 0 */ entropy->last_dc_val[ci] = 0; entropy->dc_context[ci] = 0; } /* AC needs no table when not present */ if (cinfo->progressive_mode == 0 || cinfo->Se) { tbl = compptr->ac_tbl_no; if (tbl < 0 || tbl >= NUM_ARITH_TBLS) ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl); if (entropy->ac_stats[tbl] == NULL) entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS); MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS); #ifdef CALCULATE_SPECTRAL_CONDITIONING if (cinfo->progressive_mode) /* Section G.1.3.2: Set appropriate arithmetic conditioning value Kx */ cinfo->arith_ac_K[tbl] = cinfo->Ss + ((8 + cinfo->Se - cinfo->Ss) >> 4); #endif } } /* Initialize arithmetic encoding variables */ entropy->c = 0; entropy->a = 0x10000L; entropy->sc = 0; entropy->zc = 0; entropy->ct = 11; entropy->buffer = -1; /* empty */ /* Initialize restart stuff */ entropy->restarts_to_go = cinfo->restart_interval; entropy->next_restart_num = 0; } /* * Module initialization routine for arithmetic entropy encoding. */ GLOBAL(void) jinit_arith_encoder (j_compress_ptr cinfo) { arith_entropy_ptr entropy; int i; entropy = (arith_entropy_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, sizeof(arith_entropy_encoder)); cinfo->entropy = (struct jpeg_entropy_encoder *) entropy; entropy->pub.start_pass = start_pass; entropy->pub.finish_pass = finish_pass; /* Mark tables unallocated */ for (i = 0; i < NUM_ARITH_TBLS; i++) { entropy->dc_stats[i] = NULL; entropy->ac_stats[i] = NULL; } /* Initialize index for fixed probability estimation */ entropy->fixed_bin[0] = 113; } libjpeg-turbo-1.4.2/cdjpeg.h0000644000076500007650000001203712600050400012611 00000000000000/* * cdjpeg.h * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1994-1997, Thomas G. Lane. * It was modified by The libjpeg-turbo Project to include only code relevant * to libjpeg-turbo. * For conditions of distribution and use, see the accompanying README file. * * This file contains common declarations for the sample applications * cjpeg and djpeg. It is NOT used by the core JPEG library. */ #define JPEG_CJPEG_DJPEG /* define proper options in jconfig.h */ #define JPEG_INTERNAL_OPTIONS /* cjpeg.c,djpeg.c need to see xxx_SUPPORTED */ #include "jinclude.h" #include "jpeglib.h" #include "jerror.h" /* get library error codes too */ #include "cderror.h" /* get application-specific error codes */ /* * Object interface for cjpeg's source file decoding modules */ typedef struct cjpeg_source_struct * cjpeg_source_ptr; struct cjpeg_source_struct { void (*start_input) (j_compress_ptr cinfo, cjpeg_source_ptr sinfo); JDIMENSION (*get_pixel_rows) (j_compress_ptr cinfo, cjpeg_source_ptr sinfo); void (*finish_input) (j_compress_ptr cinfo, cjpeg_source_ptr sinfo); FILE *input_file; JSAMPARRAY buffer; JDIMENSION buffer_height; }; /* * Object interface for djpeg's output file encoding modules */ typedef struct djpeg_dest_struct * djpeg_dest_ptr; struct djpeg_dest_struct { /* start_output is called after jpeg_start_decompress finishes. * The color map will be ready at this time, if one is needed. */ void (*start_output) (j_decompress_ptr cinfo, djpeg_dest_ptr dinfo); /* Emit the specified number of pixel rows from the buffer. */ void (*put_pixel_rows) (j_decompress_ptr cinfo, djpeg_dest_ptr dinfo, JDIMENSION rows_supplied); /* Finish up at the end of the image. */ void (*finish_output) (j_decompress_ptr cinfo, djpeg_dest_ptr dinfo); /* Target file spec; filled in by djpeg.c after object is created. */ FILE * output_file; /* Output pixel-row buffer. Created by module init or start_output. * Width is cinfo->output_width * cinfo->output_components; * height is buffer_height. */ JSAMPARRAY buffer; JDIMENSION buffer_height; }; /* * cjpeg/djpeg may need to perform extra passes to convert to or from * the source/destination file format. The JPEG library does not know * about these passes, but we'd like them to be counted by the progress * monitor. We use an expanded progress monitor object to hold the * additional pass count. */ struct cdjpeg_progress_mgr { struct jpeg_progress_mgr pub; /* fields known to JPEG library */ int completed_extra_passes; /* extra passes completed */ int total_extra_passes; /* total extra */ /* last printed percentage stored here to avoid multiple printouts */ int percent_done; }; typedef struct cdjpeg_progress_mgr * cd_progress_ptr; /* Module selection routines for I/O modules. */ EXTERN(cjpeg_source_ptr) jinit_read_bmp (j_compress_ptr cinfo); EXTERN(djpeg_dest_ptr) jinit_write_bmp (j_decompress_ptr cinfo, boolean is_os2); EXTERN(cjpeg_source_ptr) jinit_read_gif (j_compress_ptr cinfo); EXTERN(djpeg_dest_ptr) jinit_write_gif (j_decompress_ptr cinfo); EXTERN(cjpeg_source_ptr) jinit_read_ppm (j_compress_ptr cinfo); EXTERN(djpeg_dest_ptr) jinit_write_ppm (j_decompress_ptr cinfo); EXTERN(cjpeg_source_ptr) jinit_read_rle (j_compress_ptr cinfo); EXTERN(djpeg_dest_ptr) jinit_write_rle (j_decompress_ptr cinfo); EXTERN(cjpeg_source_ptr) jinit_read_targa (j_compress_ptr cinfo); EXTERN(djpeg_dest_ptr) jinit_write_targa (j_decompress_ptr cinfo); /* cjpeg support routines (in rdswitch.c) */ EXTERN(boolean) read_quant_tables (j_compress_ptr cinfo, char * filename, boolean force_baseline); EXTERN(boolean) read_scan_script (j_compress_ptr cinfo, char * filename); EXTERN(boolean) set_quality_ratings (j_compress_ptr cinfo, char *arg, boolean force_baseline); EXTERN(boolean) set_quant_slots (j_compress_ptr cinfo, char *arg); EXTERN(boolean) set_sample_factors (j_compress_ptr cinfo, char *arg); /* djpeg support routines (in rdcolmap.c) */ EXTERN(void) read_color_map (j_decompress_ptr cinfo, FILE * infile); /* common support routines (in cdjpeg.c) */ EXTERN(void) enable_signal_catcher (j_common_ptr cinfo); EXTERN(void) start_progress_monitor (j_common_ptr cinfo, cd_progress_ptr progress); EXTERN(void) end_progress_monitor (j_common_ptr cinfo); EXTERN(boolean) keymatch (char * arg, const char * keyword, int minchars); EXTERN(FILE *) read_stdin (void); EXTERN(FILE *) write_stdout (void); /* miscellaneous useful macros */ #ifdef DONT_USE_B_MODE /* define mode parameters for fopen() */ #define READ_BINARY "r" #define WRITE_BINARY "w" #else #define READ_BINARY "rb" #define WRITE_BINARY "wb" #endif #ifndef EXIT_FAILURE /* define exit() codes if not provided */ #define EXIT_FAILURE 1 #endif #ifndef EXIT_SUCCESS #define EXIT_SUCCESS 0 #endif #ifndef EXIT_WARNING #define EXIT_WARNING 2 #endif libjpeg-turbo-1.4.2/cmakescripts/0000755000076500007650000000000012600050400013751 500000000000000libjpeg-turbo-1.4.2/cmakescripts/md5cmp.cmake0000644000076500007650000000046012600050400016060 00000000000000if(NOT MD5) message(FATAL_ERROR "MD5 not specified") endif() if(NOT FILE) message(FATAL_ERROR "FILE not specified") endif() file(MD5 ${FILE} MD5FILE) if(NOT MD5 STREQUAL MD5FILE) message(FATAL_ERROR "MD5 of ${FILE} should be ${MD5}, not ${MD5FILE}.") else() message(STATUS "${MD5}: OK") endif() libjpeg-turbo-1.4.2/cmakescripts/testclean.cmake0000644000076500007650000000100612600050400016652 00000000000000file(GLOB FILES testout* *_GRAY_*.bmp *_GRAY_*.png *_GRAY_*.ppm *_GRAY_*.jpg *_GRAY.yuv *_420_*.bmp *_420_*.png *_420_*.ppm *_420_*.jpg *_420.yuv *_422_*.bmp *_422_*.png *_422_*.ppm *_422_*.jpg *_422.yuv *_444_*.bmp *_444_*.png *_444_*.ppm *_444_*.jpg *_444.yuv *_440_*.bmp *_440_*.png *_440_*.ppm *_440_*.jpg *_440.yuv) if(NOT FILES STREQUAL "") message(STATUS "Removing test files") file(REMOVE ${FILES}) else() message(STATUS "No files to remove") endif() libjpeg-turbo-1.4.2/java/0000755000076500007650000000000012600050446012214 500000000000000libjpeg-turbo-1.4.2/java/org_libjpegturbo_turbojpeg_TJTransformer.h0000644000076500007650000000150612600050400022535 00000000000000/* DO NOT EDIT THIS FILE - it is machine generated */ #include /* Header for class org_libjpegturbo_turbojpeg_TJTransformer */ #ifndef _Included_org_libjpegturbo_turbojpeg_TJTransformer #define _Included_org_libjpegturbo_turbojpeg_TJTransformer #ifdef __cplusplus extern "C" { #endif /* * Class: org_libjpegturbo_turbojpeg_TJTransformer * Method: init * Signature: ()V */ JNIEXPORT void JNICALL Java_org_libjpegturbo_turbojpeg_TJTransformer_init (JNIEnv *, jobject); /* * Class: org_libjpegturbo_turbojpeg_TJTransformer * Method: transform * Signature: ([BI[[B[Lorg/libjpegturbo/turbojpeg/TJTransform;I)[I */ JNIEXPORT jintArray JNICALL Java_org_libjpegturbo_turbojpeg_TJTransformer_transform (JNIEnv *, jobject, jbyteArray, jint, jobjectArray, jobjectArray, jint); #ifdef __cplusplus } #endif #endif libjpeg-turbo-1.4.2/java/org/0000755000076500007650000000000012600050446013003 500000000000000libjpeg-turbo-1.4.2/java/org/libjpegturbo/0000755000076500007650000000000012600050446015473 500000000000000libjpeg-turbo-1.4.2/java/org/libjpegturbo/turbojpeg/0000755000076500007650000000000012600050446017474 500000000000000libjpeg-turbo-1.4.2/java/org/libjpegturbo/turbojpeg/TJDecompressor.java0000644000076500007650000011511612600050400023155 00000000000000/* * Copyright (C)2011-2015 D. R. Commander. All Rights Reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * - Neither the name of the libjpeg-turbo Project nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS", * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ package org.libjpegturbo.turbojpeg; import java.awt.image.*; import java.nio.*; /** * TurboJPEG decompressor */ public class TJDecompressor { private static final String NO_ASSOC_ERROR = "No JPEG image is associated with this instance"; /** * Create a TurboJPEG decompresssor instance. */ public TJDecompressor() throws Exception { init(); } /** * Create a TurboJPEG decompressor instance and associate the JPEG source * image stored in jpegImage with the newly created instance. * * @param jpegImage JPEG image buffer (size of the JPEG image is assumed to * be the length of the array.) This buffer is not modified. */ public TJDecompressor(byte[] jpegImage) throws Exception { init(); setSourceImage(jpegImage, jpegImage.length); } /** * Create a TurboJPEG decompressor instance and associate the JPEG source * image of length imageSize bytes stored in * jpegImage with the newly created instance. * * @param jpegImage JPEG image buffer. This buffer is not modified. * * @param imageSize size of the JPEG image (in bytes) */ public TJDecompressor(byte[] jpegImage, int imageSize) throws Exception { init(); setSourceImage(jpegImage, imageSize); } /** * Create a TurboJPEG decompressor instance and associate the YUV planar * source image stored in yuvImage with the newly created * instance. * * @param yuvImage {@link YUVImage} instance containing a YUV planar * image to be decoded. This image is not modified. */ public TJDecompressor(YUVImage yuvImage) throws Exception { init(); setSourceImage(yuvImage); } /** * Associate the JPEG image of length imageSize bytes stored in * jpegImage with this decompressor instance. This image will * be used as the source image for subsequent decompress operations. * * @param jpegImage JPEG image buffer. This buffer is not modified. * * @param imageSize size of the JPEG image (in bytes) */ public void setSourceImage(byte[] jpegImage, int imageSize) throws Exception { if (jpegImage == null || imageSize < 1) throw new Exception("Invalid argument in setSourceImage()"); jpegBuf = jpegImage; jpegBufSize = imageSize; decompressHeader(jpegBuf, jpegBufSize); yuvImage = null; } /** * @deprecated Use {@link #setSourceImage(byte[], int)} instead. */ @Deprecated public void setJPEGImage(byte[] jpegImage, int imageSize) throws Exception { setSourceImage(jpegImage, imageSize); } /** * Associate the specified YUV planar source image with this decompressor * instance. Subsequent decompress operations will decode this image into an * RGB or grayscale destination image. * * @param srcImage {@link YUVImage} instance containing a YUV planar image to * be decoded. This image is not modified. */ public void setSourceImage(YUVImage srcImage) throws Exception { if (srcImage == null) throw new Exception("Invalid argument in setSourceImage()"); yuvImage = srcImage; jpegBuf = null; jpegBufSize = 0; } /** * Returns the width of the source image (JPEG or YUV) associated with this * decompressor instance. * * @return the width of the source image (JPEG or YUV) associated with this * decompressor instance. */ public int getWidth() throws Exception { if (yuvImage != null) return yuvImage.getWidth(); if (jpegWidth < 1) throw new Exception(NO_ASSOC_ERROR); return jpegWidth; } /** * Returns the height of the source image (JPEG or YUV) associated with this * decompressor instance. * * @return the height of the source image (JPEG or YUV) associated with this * decompressor instance. */ public int getHeight() throws Exception { if (yuvImage != null) return yuvImage.getHeight(); if (jpegHeight < 1) throw new Exception(NO_ASSOC_ERROR); return jpegHeight; } /** * Returns the level of chrominance subsampling used in the source image * (JPEG or YUV) associated with this decompressor instance. See * {@link TJ#SAMP_444 TJ.SAMP_*}. * * @return the level of chrominance subsampling used in the source image * (JPEG or YUV) associated with this decompressor instance. */ public int getSubsamp() throws Exception { if (yuvImage != null) return yuvImage.getSubsamp(); if (jpegSubsamp < 0) throw new Exception(NO_ASSOC_ERROR); if (jpegSubsamp >= TJ.NUMSAMP) throw new Exception("JPEG header information is invalid"); return jpegSubsamp; } /** * Returns the colorspace used in the source image (JPEG or YUV) associated * with this decompressor instance. See {@link TJ#CS_RGB TJ.CS_*}. If the * source image is YUV, then this always returns {@link TJ#CS_YCbCr}. * * @return the colorspace used in the source image (JPEG or YUV) associated * with this decompressor instance. */ public int getColorspace() throws Exception { if (yuvImage != null) return TJ.CS_YCbCr; if (jpegColorspace < 0) throw new Exception(NO_ASSOC_ERROR); if (jpegColorspace >= TJ.NUMCS) throw new Exception("JPEG header information is invalid"); return jpegColorspace; } /** * Returns the JPEG image buffer associated with this decompressor instance. * * @return the JPEG image buffer associated with this decompressor instance. */ public byte[] getJPEGBuf() throws Exception { if (jpegBuf == null) throw new Exception(NO_ASSOC_ERROR); return jpegBuf; } /** * Returns the size of the JPEG image (in bytes) associated with this * decompressor instance. * * @return the size of the JPEG image (in bytes) associated with this * decompressor instance. */ public int getJPEGSize() throws Exception { if (jpegBufSize < 1) throw new Exception(NO_ASSOC_ERROR); return jpegBufSize; } /** * Returns the width of the largest scaled-down image that the TurboJPEG * decompressor can generate without exceeding the desired image width and * height. * * @param desiredWidth desired width (in pixels) of the decompressed image. * Setting this to 0 is the same as setting it to the width of the JPEG image * (in other words, the width will not be considered when determining the * scaled image size.) * * @param desiredHeight desired height (in pixels) of the decompressed image. * Setting this to 0 is the same as setting it to the height of the JPEG * image (in other words, the height will not be considered when determining * the scaled image size.) * * @return the width of the largest scaled-down image that the TurboJPEG * decompressor can generate without exceeding the desired image width and * height. */ public int getScaledWidth(int desiredWidth, int desiredHeight) throws Exception { if (jpegWidth < 1 || jpegHeight < 1) throw new Exception(NO_ASSOC_ERROR); if (desiredWidth < 0 || desiredHeight < 0) throw new Exception("Invalid argument in getScaledWidth()"); TJScalingFactor[] sf = TJ.getScalingFactors(); if (desiredWidth == 0) desiredWidth = jpegWidth; if (desiredHeight == 0) desiredHeight = jpegHeight; int scaledWidth = jpegWidth, scaledHeight = jpegHeight; for (int i = 0; i < sf.length; i++) { scaledWidth = sf[i].getScaled(jpegWidth); scaledHeight = sf[i].getScaled(jpegHeight); if (scaledWidth <= desiredWidth && scaledHeight <= desiredHeight) break; } if (scaledWidth > desiredWidth || scaledHeight > desiredHeight) throw new Exception("Could not scale down to desired image dimensions"); return scaledWidth; } /** * Returns the height of the largest scaled-down image that the TurboJPEG * decompressor can generate without exceeding the desired image width and * height. * * @param desiredWidth desired width (in pixels) of the decompressed image. * Setting this to 0 is the same as setting it to the width of the JPEG image * (in other words, the width will not be considered when determining the * scaled image size.) * * @param desiredHeight desired height (in pixels) of the decompressed image. * Setting this to 0 is the same as setting it to the height of the JPEG * image (in other words, the height will not be considered when determining * the scaled image size.) * * @return the height of the largest scaled-down image that the TurboJPEG * decompressor can generate without exceeding the desired image width and * height. */ public int getScaledHeight(int desiredWidth, int desiredHeight) throws Exception { if (jpegWidth < 1 || jpegHeight < 1) throw new Exception(NO_ASSOC_ERROR); if (desiredWidth < 0 || desiredHeight < 0) throw new Exception("Invalid argument in getScaledHeight()"); TJScalingFactor[] sf = TJ.getScalingFactors(); if (desiredWidth == 0) desiredWidth = jpegWidth; if (desiredHeight == 0) desiredHeight = jpegHeight; int scaledWidth = jpegWidth, scaledHeight = jpegHeight; for (int i = 0; i < sf.length; i++) { scaledWidth = sf[i].getScaled(jpegWidth); scaledHeight = sf[i].getScaled(jpegHeight); if (scaledWidth <= desiredWidth && scaledHeight <= desiredHeight) break; } if (scaledWidth > desiredWidth || scaledHeight > desiredHeight) throw new Exception("Could not scale down to desired image dimensions"); return scaledHeight; } /** * Decompress the JPEG source image or decode the YUV source image associated * with this decompressor instance and output a grayscale, RGB, or CMYK image * to the given destination buffer. * * @param dstBuf buffer that will receive the decompressed/decoded image. * If the source image is a JPEG image, then this buffer should normally be * pitch * scaledHeight bytes in size, where * scaledHeight can be determined by calling * scalingFactor.{@link TJScalingFactor#getScaled getScaled}(jpegHeight) * with one of the scaling factors returned from {@link * TJ#getScalingFactors} or by calling {@link #getScaledHeight}. If the * source image is a YUV image, then this buffer should normally be * pitch * height bytes in size, where height is * the height of the YUV image. However, the buffer may also be larger than * the dimensions of the source image, in which case the x, * y, and pitch parameters can be used to specify * the region into which the source image should be decompressed/decoded. * * @param x x offset (in pixels) of the region in the destination image into * which the source image should be decompressed/decoded * * @param y y offset (in pixels) of the region in the destination image into * which the source image should be decompressed/decoded * * @param desiredWidth If the source image is a JPEG image, then this * specifies the desired width (in pixels) of the decompressed image (or * image region.) If the desired destination image dimensions are different * than the source image dimensions, then TurboJPEG will use scaling in the * JPEG decompressor to generate the largest possible image that will fit * within the desired dimensions. Setting this to 0 is the same as setting * it to the width of the JPEG image (in other words, the width will not be * considered when determining the scaled image size.) This parameter is * ignored if the source image is a YUV image. * * @param pitch bytes per line of the destination image. Normally, this * should be set to scaledWidth * TJ.pixelSize(pixelFormat) if * the destination image is unpadded, but you can use this to, for instance, * pad each line of the destination image to a 4-byte boundary or to * decompress/decode the source image into a region of a larger image. NOTE: * if the source image is a JPEG image, then scaledWidth can be * determined by calling * scalingFactor.{@link TJScalingFactor#getScaled getScaled}(jpegWidth) * or by calling {@link #getScaledWidth}. If the source image is a * YUV image, then scaledWidth is the width of the YUV image. * Setting this parameter to 0 is the equivalent of setting it to * scaledWidth * TJ.pixelSize(pixelFormat). * * @param desiredHeight If the source image is a JPEG image, then this * specifies the desired height (in pixels) of the decompressed image (or * image region.) If the desired destination image dimensions are different * than the source image dimensions, then TurboJPEG will use scaling in the * JPEG decompressor to generate the largest possible image that will fit * within the desired dimensions. Setting this to 0 is the same as setting * it to the height of the JPEG image (in other words, the height will not be * considered when determining the scaled image size.) This parameter is * ignored if the source image is a YUV image. * * @param pixelFormat pixel format of the decompressed/decoded image (one of * {@link TJ#PF_RGB TJ.PF_*}) * * @param flags the bitwise OR of one or more of * {@link TJ#FLAG_BOTTOMUP TJ.FLAG_*} */ public void decompress(byte[] dstBuf, int x, int y, int desiredWidth, int pitch, int desiredHeight, int pixelFormat, int flags) throws Exception { if (jpegBuf == null && yuvImage == null) throw new Exception(NO_ASSOC_ERROR); if (dstBuf == null || x < 0 || y < 0 || pitch < 0 || (yuvImage != null && (desiredWidth < 0 || desiredHeight < 0)) || pixelFormat < 0 || pixelFormat >= TJ.NUMPF || flags < 0) throw new Exception("Invalid argument in decompress()"); if (yuvImage != null) decodeYUV(yuvImage.getPlanes(), yuvImage.getOffsets(), yuvImage.getStrides(), yuvImage.getSubsamp(), dstBuf, x, y, yuvImage.getWidth(), pitch, yuvImage.getHeight(), pixelFormat, flags); else { if (x > 0 || y > 0) decompress(jpegBuf, jpegBufSize, dstBuf, x, y, desiredWidth, pitch, desiredHeight, pixelFormat, flags); else decompress(jpegBuf, jpegBufSize, dstBuf, desiredWidth, pitch, desiredHeight, pixelFormat, flags); } } /** * @deprecated Use * {@link #decompress(byte[], int, int, int, int, int, int, int)} instead. */ @Deprecated public void decompress(byte[] dstBuf, int desiredWidth, int pitch, int desiredHeight, int pixelFormat, int flags) throws Exception { decompress(dstBuf, 0, 0, desiredWidth, pitch, desiredHeight, pixelFormat, flags); } /** * Decompress the JPEG source image associated with this decompressor * instance and return a buffer containing the decompressed image. * * @param desiredWidth see * {@link #decompress(byte[], int, int, int, int, int, int, int)} * for description * * @param pitch see * {@link #decompress(byte[], int, int, int, int, int, int, int)} * for description * * @param desiredHeight see * {@link #decompress(byte[], int, int, int, int, int, int, int)} * for description * * @param pixelFormat pixel format of the decompressed image (one of * {@link TJ#PF_RGB TJ.PF_*}) * * @param flags the bitwise OR of one or more of * {@link TJ#FLAG_BOTTOMUP TJ.FLAG_*} * * @return a buffer containing the decompressed image. */ public byte[] decompress(int desiredWidth, int pitch, int desiredHeight, int pixelFormat, int flags) throws Exception { if (pitch < 0 || (yuvImage == null && (desiredWidth < 0 || desiredHeight < 0)) || pixelFormat < 0 || pixelFormat >= TJ.NUMPF || flags < 0) throw new Exception("Invalid argument in decompress()"); int pixelSize = TJ.getPixelSize(pixelFormat); int scaledWidth = getScaledWidth(desiredWidth, desiredHeight); int scaledHeight = getScaledHeight(desiredWidth, desiredHeight); if (pitch == 0) pitch = scaledWidth * pixelSize; byte[] buf = new byte[pitch * scaledHeight]; decompress(buf, desiredWidth, pitch, desiredHeight, pixelFormat, flags); return buf; } /** * Decompress the JPEG source image associated with this decompressor * instance into a YUV planar image and store it in the given * YUVImage instance. This method performs JPEG decompression * but leaves out the color conversion step, so a planar YUV image is * generated instead of an RGB or grayscale image. This method cannot be * used to decompress JPEG source images with the CMYK or YCCK colorspace. * * @param dstImage {@link YUVImage} instance that will receive the YUV planar * image. The level of subsampling specified in this YUVImage * instance must match that of the JPEG image, and the width and height * specified in the YUVImage instance must match one of the * scaled image sizes that TurboJPEG is capable of generating from the JPEG * source image. * * @param flags the bitwise OR of one or more of * {@link TJ#FLAG_BOTTOMUP TJ.FLAG_*} */ public void decompressToYUV(YUVImage dstImage, int flags) throws Exception { if (jpegBuf == null) throw new Exception(NO_ASSOC_ERROR); if (dstImage == null || flags < 0) throw new Exception("Invalid argument in decompressToYUV()"); int scaledWidth = getScaledWidth(dstImage.getWidth(), dstImage.getHeight()); int scaledHeight = getScaledHeight(dstImage.getWidth(), dstImage.getHeight()); if (scaledWidth != dstImage.getWidth() || scaledHeight != dstImage.getHeight()) throw new Exception("YUVImage dimensions do not match one of the scaled image sizes that TurboJPEG is capable of generating."); if (jpegSubsamp != dstImage.getSubsamp()) throw new Exception("YUVImage subsampling level does not match that of the JPEG image"); decompressToYUV(jpegBuf, jpegBufSize, dstImage.getPlanes(), dstImage.getOffsets(), dstImage.getWidth(), dstImage.getStrides(), dstImage.getHeight(), flags); } /** * @deprecated Use {@link #decompressToYUV(YUVImage, int)} instead. */ @Deprecated public void decompressToYUV(byte[] dstBuf, int flags) throws Exception { YUVImage dstImage = new YUVImage(dstBuf, jpegWidth, 4, jpegHeight, jpegSubsamp); decompressToYUV(dstImage, flags); } /** * Decompress the JPEG source image associated with this decompressor * instance into a set of Y, U (Cb), and V (Cr) image planes and return a * YUVImage instance containing the decompressed image planes. * This method performs JPEG decompression but leaves out the color * conversion step, so a planar YUV image is generated instead of an RGB or * grayscale image. This method cannot be used to decompress JPEG source * images with the CMYK or YCCK colorspace. * * @param desiredWidth desired width (in pixels) of the YUV image. If the * desired image dimensions are different than the dimensions of the JPEG * image being decompressed, then TurboJPEG will use scaling in the JPEG * decompressor to generate the largest possible image that will fit within * the desired dimensions. Setting this to 0 is the same as setting it to * the width of the JPEG image (in other words, the width will not be * considered when determining the scaled image size.) * * @param strides an array of integers, each specifying the number of bytes * per line in the corresponding plane of the output image. Setting the * stride for any plane to 0 is the same as setting it to the scaled * component width of the plane. If strides is NULL, then the * strides for all planes will be set to their respective scaled component * widths. You can adjust the strides in order to add an arbitrary amount of * line padding to each plane. * * @param desiredHeight desired height (in pixels) of the YUV image. If the * desired image dimensions are different than the dimensions of the JPEG * image being decompressed, then TurboJPEG will use scaling in the JPEG * decompressor to generate the largest possible image that will fit within * the desired dimensions. Setting this to 0 is the same as setting it to * the height of the JPEG image (in other words, the height will not be * considered when determining the scaled image size.) * * @param flags the bitwise OR of one or more of * {@link TJ#FLAG_BOTTOMUP TJ.FLAG_*} * * @return a YUV planar image. */ public YUVImage decompressToYUV(int desiredWidth, int[] strides, int desiredHeight, int flags) throws Exception { if (flags < 0) throw new Exception("Invalid argument in decompressToYUV()"); if (jpegWidth < 1 || jpegHeight < 1 || jpegSubsamp < 0) throw new Exception(NO_ASSOC_ERROR); if (jpegSubsamp >= TJ.NUMSAMP) throw new Exception("JPEG header information is invalid"); if (yuvImage != null) throw new Exception("Source image is the wrong type"); int scaledWidth = getScaledWidth(desiredWidth, desiredHeight); int scaledHeight = getScaledHeight(desiredWidth, desiredHeight); YUVImage yuvImage = new YUVImage(scaledWidth, null, scaledHeight, jpegSubsamp); decompressToYUV(yuvImage, flags); return yuvImage; } /** * Decompress the JPEG source image associated with this decompressor * instance into a unified YUV planar image buffer and return a * YUVImage instance containing the decompressed image. This * method performs JPEG decompression but leaves out the color conversion * step, so a planar YUV image is generated instead of an RGB or grayscale * image. This method cannot be used to decompress JPEG source images with * the CMYK or YCCK colorspace. * * @param desiredWidth desired width (in pixels) of the YUV image. If the * desired image dimensions are different than the dimensions of the JPEG * image being decompressed, then TurboJPEG will use scaling in the JPEG * decompressor to generate the largest possible image that will fit within * the desired dimensions. Setting this to 0 is the same as setting it to * the width of the JPEG image (in other words, the width will not be * considered when determining the scaled image size.) * * @param pad the width of each line in each plane of the YUV image will be * padded to the nearest multiple of this number of bytes (must be a power of * 2.) * * @param desiredHeight desired height (in pixels) of the YUV image. If the * desired image dimensions are different than the dimensions of the JPEG * image being decompressed, then TurboJPEG will use scaling in the JPEG * decompressor to generate the largest possible image that will fit within * the desired dimensions. Setting this to 0 is the same as setting it to * the height of the JPEG image (in other words, the height will not be * considered when determining the scaled image size.) * * @param flags the bitwise OR of one or more of * {@link TJ#FLAG_BOTTOMUP TJ.FLAG_*} * * @return a YUV planar image. */ public YUVImage decompressToYUV(int desiredWidth, int pad, int desiredHeight, int flags) throws Exception { if (flags < 0) throw new Exception("Invalid argument in decompressToYUV()"); if (jpegWidth < 1 || jpegHeight < 1 || jpegSubsamp < 0) throw new Exception(NO_ASSOC_ERROR); if (jpegSubsamp >= TJ.NUMSAMP) throw new Exception("JPEG header information is invalid"); if (yuvImage != null) throw new Exception("Source image is the wrong type"); int scaledWidth = getScaledWidth(desiredWidth, desiredHeight); int scaledHeight = getScaledHeight(desiredWidth, desiredHeight); YUVImage yuvImage = new YUVImage(scaledWidth, pad, scaledHeight, jpegSubsamp); decompressToYUV(yuvImage, flags); return yuvImage; } /** * @deprecated Use {@link #decompressToYUV(int, int, int, int)} instead. */ @Deprecated public byte[] decompressToYUV(int flags) throws Exception { YUVImage dstImage = new YUVImage(jpegWidth, 4, jpegHeight, jpegSubsamp); decompressToYUV(dstImage, flags); return dstImage.getBuf(); } /** * Decompress the JPEG source image or decode the YUV source image associated * with this decompressor instance and output a grayscale, RGB, or CMYK image * to the given destination buffer. * * @param dstBuf buffer that will receive the decompressed/decoded image. * If the source image is a JPEG image, then this buffer should normally be * stride * scaledHeight pixels in size, where * scaledHeight can be determined by calling * scalingFactor.{@link TJScalingFactor#getScaled getScaled}(jpegHeight) * with one of the scaling factors returned from {@link * TJ#getScalingFactors} or by calling {@link #getScaledHeight}. If the * source image is a YUV image, then this buffer should normally be * stride * height pixels in size, where height is * the height of the YUV image. However, the buffer may also be larger than * the dimensions of the JPEG image, in which case the x, * y, and stride parameters can be used to specify * the region into which the source image should be decompressed. * * @param x x offset (in pixels) of the region in the destination image into * which the source image should be decompressed/decoded * * @param y y offset (in pixels) of the region in the destination image into * which the source image should be decompressed/decoded * * @param desiredWidth If the source image is a JPEG image, then this * specifies the desired width (in pixels) of the decompressed image (or * image region.) If the desired destination image dimensions are different * than the source image dimensions, then TurboJPEG will use scaling in the * JPEG decompressor to generate the largest possible image that will fit * within the desired dimensions. Setting this to 0 is the same as setting * it to the width of the JPEG image (in other words, the width will not be * considered when determining the scaled image size.) This parameter is * ignored if the source image is a YUV image. * * @param stride pixels per line of the destination image. Normally, this * should be set to scaledWidth, but you can use this to, for * instance, decompress the JPEG image into a region of a larger image. * NOTE: if the source image is a JPEG image, then scaledWidth * can be determined by calling * scalingFactor.{@link TJScalingFactor#getScaled getScaled}(jpegWidth) * or by calling {@link #getScaledWidth}. If the source image is a * YUV image, then scaledWidth is the width of the YUV image. * Setting this parameter to 0 is the equivalent of setting it to * scaledWidth. * * @param desiredHeight If the source image is a JPEG image, then this * specifies the desired height (in pixels) of the decompressed image (or * image region.) If the desired destination image dimensions are different * than the source image dimensions, then TurboJPEG will use scaling in the * JPEG decompressor to generate the largest possible image that will fit * within the desired dimensions. Setting this to 0 is the same as setting * it to the height of the JPEG image (in other words, the height will not be * considered when determining the scaled image size.) This parameter is * ignored if the source image is a YUV image. * * @param pixelFormat pixel format of the decompressed image (one of * {@link TJ#PF_RGB TJ.PF_*}) * * @param flags the bitwise OR of one or more of * {@link TJ#FLAG_BOTTOMUP TJ.FLAG_*} */ public void decompress(int[] dstBuf, int x, int y, int desiredWidth, int stride, int desiredHeight, int pixelFormat, int flags) throws Exception { if (jpegBuf == null && yuvImage == null) throw new Exception(NO_ASSOC_ERROR); if (dstBuf == null || x < 0 || y < 0 || stride < 0 || (yuvImage != null && (desiredWidth < 0 || desiredHeight < 0)) || pixelFormat < 0 || pixelFormat >= TJ.NUMPF || flags < 0) throw new Exception("Invalid argument in decompress()"); if (yuvImage != null) decodeYUV(yuvImage.getPlanes(), yuvImage.getOffsets(), yuvImage.getStrides(), yuvImage.getSubsamp(), dstBuf, x, y, yuvImage.getWidth(), stride, yuvImage.getHeight(), pixelFormat, flags); else decompress(jpegBuf, jpegBufSize, dstBuf, x, y, desiredWidth, stride, desiredHeight, pixelFormat, flags); } /** * Decompress the JPEG source image or decode the YUV source image associated * with this decompressor instance and output a decompressed/decoded image to * the given BufferedImage instance. * * @param dstImage a BufferedImage instance that will receive * the decompressed/decoded image. If the source image is a JPEG image, then * the width and height of the BufferedImage instance must match * one of the scaled image sizes that TurboJPEG is capable of generating from * the JPEG image. If the source image is a YUV image, then the width and * height of the BufferedImage instance must match the width and * height of the YUV image. * * @param flags the bitwise OR of one or more of * {@link TJ#FLAG_BOTTOMUP TJ.FLAG_*} */ public void decompress(BufferedImage dstImage, int flags) throws Exception { if (dstImage == null || flags < 0) throw new Exception("Invalid argument in decompress()"); int desiredWidth = dstImage.getWidth(); int desiredHeight = dstImage.getHeight(); int scaledWidth, scaledHeight; if (yuvImage != null) { if (desiredWidth != yuvImage.getWidth() || desiredHeight != yuvImage.getHeight()) throw new Exception("BufferedImage dimensions do not match the dimensions of the source image."); scaledWidth = yuvImage.getWidth(); scaledHeight = yuvImage.getHeight(); } else { scaledWidth = getScaledWidth(desiredWidth, desiredHeight); scaledHeight = getScaledHeight(desiredWidth, desiredHeight); if (scaledWidth != desiredWidth || scaledHeight != desiredHeight) throw new Exception("BufferedImage dimensions do not match one of the scaled image sizes that TurboJPEG is capable of generating."); } int pixelFormat; boolean intPixels = false; if (byteOrder == null) byteOrder = ByteOrder.nativeOrder(); switch(dstImage.getType()) { case BufferedImage.TYPE_3BYTE_BGR: pixelFormat = TJ.PF_BGR; break; case BufferedImage.TYPE_4BYTE_ABGR: case BufferedImage.TYPE_4BYTE_ABGR_PRE: pixelFormat = TJ.PF_XBGR; break; case BufferedImage.TYPE_BYTE_GRAY: pixelFormat = TJ.PF_GRAY; break; case BufferedImage.TYPE_INT_BGR: if (byteOrder == ByteOrder.BIG_ENDIAN) pixelFormat = TJ.PF_XBGR; else pixelFormat = TJ.PF_RGBX; intPixels = true; break; case BufferedImage.TYPE_INT_RGB: if (byteOrder == ByteOrder.BIG_ENDIAN) pixelFormat = TJ.PF_XRGB; else pixelFormat = TJ.PF_BGRX; intPixels = true; break; case BufferedImage.TYPE_INT_ARGB: case BufferedImage.TYPE_INT_ARGB_PRE: if (byteOrder == ByteOrder.BIG_ENDIAN) pixelFormat = TJ.PF_ARGB; else pixelFormat = TJ.PF_BGRA; intPixels = true; break; default: throw new Exception("Unsupported BufferedImage format"); } WritableRaster wr = dstImage.getRaster(); if (intPixels) { SinglePixelPackedSampleModel sm = (SinglePixelPackedSampleModel)dstImage.getSampleModel(); int stride = sm.getScanlineStride(); DataBufferInt db = (DataBufferInt)wr.getDataBuffer(); int[] buf = db.getData(); if (yuvImage != null) decodeYUV(yuvImage.getPlanes(), yuvImage.getOffsets(), yuvImage.getStrides(), yuvImage.getSubsamp(), buf, 0, 0, yuvImage.getWidth(), stride, yuvImage.getHeight(), pixelFormat, flags); else { if (jpegBuf == null) throw new Exception(NO_ASSOC_ERROR); decompress(jpegBuf, jpegBufSize, buf, 0, 0, scaledWidth, stride, scaledHeight, pixelFormat, flags); } } else { ComponentSampleModel sm = (ComponentSampleModel)dstImage.getSampleModel(); int pixelSize = sm.getPixelStride(); if (pixelSize != TJ.getPixelSize(pixelFormat)) throw new Exception("Inconsistency between pixel format and pixel size in BufferedImage"); int pitch = sm.getScanlineStride(); DataBufferByte db = (DataBufferByte)wr.getDataBuffer(); byte[] buf = db.getData(); decompress(buf, 0, 0, scaledWidth, pitch, scaledHeight, pixelFormat, flags); } } /** * Decompress the JPEG source image or decode the YUV source image associated * with this decompressor instance and return a BufferedImage * instance containing the decompressed/decoded image. * * @param desiredWidth see * {@link #decompress(byte[], int, int, int, int, int, int, int)} for * description * * @param desiredHeight see * {@link #decompress(byte[], int, int, int, int, int, int, int)} for * description * * @param bufferedImageType the image type of the BufferedImage * instance that will be created (for instance, * BufferedImage.TYPE_INT_RGB) * * @param flags the bitwise OR of one or more of * {@link TJ#FLAG_BOTTOMUP TJ.FLAG_*} * * @return a BufferedImage instance containing the * decompressed/decoded image. */ public BufferedImage decompress(int desiredWidth, int desiredHeight, int bufferedImageType, int flags) throws Exception { if ((yuvImage == null && (desiredWidth < 0 || desiredHeight < 0)) || flags < 0) throw new Exception("Invalid argument in decompress()"); int scaledWidth = getScaledWidth(desiredWidth, desiredHeight); int scaledHeight = getScaledHeight(desiredWidth, desiredHeight); BufferedImage img = new BufferedImage(scaledWidth, scaledHeight, bufferedImageType); decompress(img, flags); return img; } /** * Free the native structures associated with this decompressor instance. */ public void close() throws Exception { if (handle != 0) destroy(); } protected void finalize() throws Throwable { try { close(); } catch(Exception e) { } finally { super.finalize(); } }; private native void init() throws Exception; private native void destroy() throws Exception; private native void decompressHeader(byte[] srcBuf, int size) throws Exception; private native void decompress(byte[] srcBuf, int size, byte[] dstBuf, int desiredWidth, int pitch, int desiredHeight, int pixelFormat, int flags) throws Exception; // deprecated private native void decompress(byte[] srcBuf, int size, byte[] dstBuf, int x, int y, int desiredWidth, int pitch, int desiredHeight, int pixelFormat, int flags) throws Exception; private native void decompress(byte[] srcBuf, int size, int[] dstBuf, int desiredWidth, int stride, int desiredHeight, int pixelFormat, int flags) throws Exception; // deprecated private native void decompress(byte[] srcBuf, int size, int[] dstBuf, int x, int y, int desiredWidth, int stride, int desiredHeight, int pixelFormat, int flags) throws Exception; private native void decompressToYUV(byte[] srcBuf, int size, byte[] dstBuf, int flags) throws Exception; // deprecated private native void decompressToYUV(byte[] srcBuf, int size, byte[][] dstPlanes, int[] dstOffsets, int desiredWidth, int[] dstStrides, int desiredheight, int flags) throws Exception; private native void decodeYUV(byte[][] srcPlanes, int[] srcOffsets, int[] srcStrides, int subsamp, byte[] dstBuf, int x, int y, int width, int pitch, int height, int pixelFormat, int flags) throws Exception; private native void decodeYUV(byte[][] srcPlanes, int[] srcOffsets, int[] srcStrides, int subsamp, int[] dstBuf, int x, int y, int width, int stride, int height, int pixelFormat, int flags) throws Exception; static { TJLoader.load(); } protected long handle = 0; protected byte[] jpegBuf = null; protected int jpegBufSize = 0; protected YUVImage yuvImage = null; protected int jpegWidth = 0; protected int jpegHeight = 0; protected int jpegSubsamp = -1; protected int jpegColorspace = -1; private ByteOrder byteOrder = null; }; libjpeg-turbo-1.4.2/java/org/libjpegturbo/turbojpeg/TJLoader.java.in0000644000076500007650000000326512600050400022324 00000000000000/* * Copyright (C)2011 D. R. Commander. All Rights Reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * - Neither the name of the libjpeg-turbo Project nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS", * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ package org.libjpegturbo.turbojpeg; final class TJLoader { static void load() { System.loadLibrary("@TURBOJPEG_DLL_NAME@"); } }; libjpeg-turbo-1.4.2/java/org/libjpegturbo/turbojpeg/TJ.java0000644000076500007650000005017112600050400020566 00000000000000/* * Copyright (C)2011-2013 D. R. Commander. All Rights Reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * - Neither the name of the libjpeg-turbo Project nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS", * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ package org.libjpegturbo.turbojpeg; /** * TurboJPEG utility class (cannot be instantiated) */ public final class TJ { /** * The number of chrominance subsampling options */ public static final int NUMSAMP = 6; /** * 4:4:4 chrominance subsampling (no chrominance subsampling). The JPEG * or YUV image will contain one chrominance component for every pixel in the * source image. */ public static final int SAMP_444 = 0; /** * 4:2:2 chrominance subsampling. The JPEG or YUV image will contain one * chrominance component for every 2x1 block of pixels in the source image. */ public static final int SAMP_422 = 1; /** * 4:2:0 chrominance subsampling. The JPEG or YUV image will contain one * chrominance component for every 2x2 block of pixels in the source image. */ public static final int SAMP_420 = 2; /** * Grayscale. The JPEG or YUV image will contain no chrominance components. */ public static final int SAMP_GRAY = 3; /** * 4:4:0 chrominance subsampling. The JPEG or YUV image will contain one * chrominance component for every 1x2 block of pixels in the source image. * Note that 4:4:0 subsampling is not fully accelerated in libjpeg-turbo. */ public static final int SAMP_440 = 4; /** * 4:1:1 chrominance subsampling. The JPEG or YUV image will contain one * chrominance component for every 4x1 block of pixels in the source image. * JPEG images compressed with 4:1:1 subsampling will be almost exactly the * same size as those compressed with 4:2:0 subsampling, and in the * aggregate, both subsampling methods produce approximately the same * perceptual quality. However, 4:1:1 is better able to reproduce sharp * horizontal features. Note that 4:1:1 subsampling is not fully accelerated * in libjpeg-turbo. */ public static final int SAMP_411 = 5; /** * Returns the MCU block width for the given level of chrominance * subsampling. * * @param subsamp the level of chrominance subsampling (one of * SAMP_*) * * @return the MCU block width for the given level of chrominance * subsampling. */ public static int getMCUWidth(int subsamp) throws Exception { if (subsamp < 0 || subsamp >= NUMSAMP) throw new Exception("Invalid subsampling type"); return mcuWidth[subsamp]; } private static final int[] mcuWidth = { 8, 16, 16, 8, 8, 32 }; /** * Returns the MCU block height for the given level of chrominance * subsampling. * * @param subsamp the level of chrominance subsampling (one of * SAMP_*) * * @return the MCU block height for the given level of chrominance * subsampling. */ public static int getMCUHeight(int subsamp) throws Exception { if (subsamp < 0 || subsamp >= NUMSAMP) throw new Exception("Invalid subsampling type"); return mcuHeight[subsamp]; } private static final int[] mcuHeight = { 8, 8, 16, 8, 16, 8 }; /** * The number of pixel formats */ public static final int NUMPF = 12; /** * RGB pixel format. The red, green, and blue components in the image are * stored in 3-byte pixels in the order R, G, B from lowest to highest byte * address within each pixel. */ public static final int PF_RGB = 0; /** * BGR pixel format. The red, green, and blue components in the image are * stored in 3-byte pixels in the order B, G, R from lowest to highest byte * address within each pixel. */ public static final int PF_BGR = 1; /** * RGBX pixel format. The red, green, and blue components in the image are * stored in 4-byte pixels in the order R, G, B from lowest to highest byte * address within each pixel. The X component is ignored when compressing * and undefined when decompressing. */ public static final int PF_RGBX = 2; /** * BGRX pixel format. The red, green, and blue components in the image are * stored in 4-byte pixels in the order B, G, R from lowest to highest byte * address within each pixel. The X component is ignored when compressing * and undefined when decompressing. */ public static final int PF_BGRX = 3; /** * XBGR pixel format. The red, green, and blue components in the image are * stored in 4-byte pixels in the order R, G, B from highest to lowest byte * address within each pixel. The X component is ignored when compressing * and undefined when decompressing. */ public static final int PF_XBGR = 4; /** * XRGB pixel format. The red, green, and blue components in the image are * stored in 4-byte pixels in the order B, G, R from highest to lowest byte * address within each pixel. The X component is ignored when compressing * and undefined when decompressing. */ public static final int PF_XRGB = 5; /** * Grayscale pixel format. Each 1-byte pixel represents a luminance * (brightness) level from 0 to 255. */ public static final int PF_GRAY = 6; /** * RGBA pixel format. This is the same as {@link #PF_RGBX}, except that when * decompressing, the X byte is guaranteed to be 0xFF, which can be * interpreted as an opaque alpha channel. */ public static final int PF_RGBA = 7; /** * BGRA pixel format. This is the same as {@link #PF_BGRX}, except that when * decompressing, the X byte is guaranteed to be 0xFF, which can be * interpreted as an opaque alpha channel. */ public static final int PF_BGRA = 8; /** * ABGR pixel format. This is the same as {@link #PF_XBGR}, except that when * decompressing, the X byte is guaranteed to be 0xFF, which can be * interpreted as an opaque alpha channel. */ public static final int PF_ABGR = 9; /** * ARGB pixel format. This is the same as {@link #PF_XRGB}, except that when * decompressing, the X byte is guaranteed to be 0xFF, which can be * interpreted as an opaque alpha channel. */ public static final int PF_ARGB = 10; /** * CMYK pixel format. Unlike RGB, which is an additive color model used * primarily for display, CMYK (Cyan/Magenta/Yellow/Key) is a subtractive * color model used primarily for printing. In the CMYK color model, the * value of each color component typically corresponds to an amount of cyan, * magenta, yellow, or black ink that is applied to a white background. In * order to convert between CMYK and RGB, it is necessary to use a color * management system (CMS.) A CMS will attempt to map colors within the * printer's gamut to perceptually similar colors in the display's gamut and * vice versa, but the mapping is typically not 1:1 or reversible, nor can it * be defined with a simple formula. Thus, such a conversion is out of scope * for a codec library. However, the TurboJPEG API allows for compressing * CMYK pixels into a YCCK JPEG image (see {@link #CS_YCCK}) and * decompressing YCCK JPEG images into CMYK pixels. */ public static final int PF_CMYK = 11; /** * Returns the pixel size (in bytes) for the given pixel format. * * @param pixelFormat the pixel format (one of PF_*) * * @return the pixel size (in bytes) for the given pixel format. */ public static int getPixelSize(int pixelFormat) throws Exception { if (pixelFormat < 0 || pixelFormat >= NUMPF) throw new Exception("Invalid pixel format"); return pixelSize[pixelFormat]; } private static final int[] pixelSize = { 3, 3, 4, 4, 4, 4, 1, 4, 4, 4, 4, 4 }; /** * For the given pixel format, returns the number of bytes that the red * component is offset from the start of the pixel. For instance, if a pixel * of format TJ.PF_BGRX is stored in char pixel[], * then the red component will be * pixel[TJ.getRedOffset(TJ.PF_BGRX)]. * * @param pixelFormat the pixel format (one of PF_*) * * @return the red offset for the given pixel format. */ public static int getRedOffset(int pixelFormat) throws Exception { if (pixelFormat < 0 || pixelFormat >= NUMPF) throw new Exception("Invalid pixel format"); return redOffset[pixelFormat]; } private static final int[] redOffset = { 0, 2, 0, 2, 3, 1, 0, 0, 2, 3, 1, -1 }; /** * For the given pixel format, returns the number of bytes that the green * component is offset from the start of the pixel. For instance, if a pixel * of format TJ.PF_BGRX is stored in char pixel[], * then the green component will be * pixel[TJ.getGreenOffset(TJ.PF_BGRX)]. * * @param pixelFormat the pixel format (one of PF_*) * * @return the green offset for the given pixel format. */ public static int getGreenOffset(int pixelFormat) throws Exception { if (pixelFormat < 0 || pixelFormat >= NUMPF) throw new Exception("Invalid pixel format"); return greenOffset[pixelFormat]; } private static final int[] greenOffset = { 1, 1, 1, 1, 2, 2, 0, 1, 1, 2, 2, -1 }; /** * For the given pixel format, returns the number of bytes that the blue * component is offset from the start of the pixel. For instance, if a pixel * of format TJ.PF_BGRX is stored in char pixel[], * then the blue component will be * pixel[TJ.getBlueOffset(TJ.PF_BGRX)]. * * @param pixelFormat the pixel format (one of PF_*) * * @return the blue offset for the given pixel format. */ public static int getBlueOffset(int pixelFormat) throws Exception { if (pixelFormat < 0 || pixelFormat >= NUMPF) throw new Exception("Invalid pixel format"); return blueOffset[pixelFormat]; } private static final int[] blueOffset = { 2, 0, 2, 0, 1, 3, 0, 2, 0, 1, 3, -1 }; /** * The number of JPEG colorspaces */ public static final int NUMCS = 5; /** * RGB colorspace. When compressing the JPEG image, the R, G, and B * components in the source image are reordered into image planes, but no * colorspace conversion or subsampling is performed. RGB JPEG images can be * decompressed to any of the extended RGB pixel formats or grayscale, but * they cannot be decompressed to YUV images. */ public static final int CS_RGB = 0; /** * YCbCr colorspace. YCbCr is not an absolute colorspace but rather a * mathematical transformation of RGB designed solely for storage and * transmission. YCbCr images must be converted to RGB before they can * actually be displayed. In the YCbCr colorspace, the Y (luminance) * component represents the black & white portion of the original image, and * the Cb and Cr (chrominance) components represent the color portion of the * original image. Originally, the analog equivalent of this transformation * allowed the same signal to drive both black & white and color televisions, * but JPEG images use YCbCr primarily because it allows the color data to be * optionally subsampled for the purposes of reducing bandwidth or disk * space. YCbCr is the most common JPEG colorspace, and YCbCr JPEG images * can be compressed from and decompressed to any of the extended RGB pixel * formats or grayscale, or they can be decompressed to YUV planar images. */ public static final int CS_YCbCr = 1; /** * Grayscale colorspace. The JPEG image retains only the luminance data (Y * component), and any color data from the source image is discarded. * Grayscale JPEG images can be compressed from and decompressed to any of * the extended RGB pixel formats or grayscale, or they can be decompressed * to YUV planar images. */ public static final int CS_GRAY = 2; /** * CMYK colorspace. When compressing the JPEG image, the C, M, Y, and K * components in the source image are reordered into image planes, but no * colorspace conversion or subsampling is performed. CMYK JPEG images can * only be decompressed to CMYK pixels. */ public static final int CS_CMYK = 3; /** * YCCK colorspace. YCCK (AKA "YCbCrK") is not an absolute colorspace but * rather a mathematical transformation of CMYK designed solely for storage * and transmission. It is to CMYK as YCbCr is to RGB. CMYK pixels can be * reversibly transformed into YCCK, and as with YCbCr, the chrominance * components in the YCCK pixels can be subsampled without incurring major * perceptual loss. YCCK JPEG images can only be compressed from and * decompressed to CMYK pixels. */ public static final int CS_YCCK = 4; /** * The uncompressed source/destination image is stored in bottom-up (Windows, * OpenGL) order, not top-down (X11) order. */ public static final int FLAG_BOTTOMUP = 2; @Deprecated public static final int FLAG_FORCEMMX = 8; @Deprecated public static final int FLAG_FORCESSE = 16; @Deprecated public static final int FLAG_FORCESSE2 = 32; @Deprecated public static final int FLAG_FORCESSE3 = 128; /** * When decompressing an image that was compressed using chrominance * subsampling, use the fastest chrominance upsampling algorithm available in * the underlying codec. The default is to use smooth upsampling, which * creates a smooth transition between neighboring chrominance components in * order to reduce upsampling artifacts in the decompressed image. */ public static final int FLAG_FASTUPSAMPLE = 256; /** * Use the fastest DCT/IDCT algorithm available in the underlying codec. The * default if this flag is not specified is implementation-specific. For * example, the implementation of TurboJPEG for libjpeg[-turbo] uses the fast * algorithm by default when compressing, because this has been shown to have * only a very slight effect on accuracy, but it uses the accurate algorithm * when decompressing, because this has been shown to have a larger effect. */ public static final int FLAG_FASTDCT = 2048; /** * Use the most accurate DCT/IDCT algorithm available in the underlying * codec. The default if this flag is not specified is * implementation-specific. For example, the implementation of TurboJPEG for * libjpeg[-turbo] uses the fast algorithm by default when compressing, * because this has been shown to have only a very slight effect on accuracy, * but it uses the accurate algorithm when decompressing, because this has * been shown to have a larger effect. */ public static final int FLAG_ACCURATEDCT = 4096; /** * Returns the maximum size of the buffer (in bytes) required to hold a JPEG * image with the given width, height, and level of chrominance subsampling. * * @param width the width (in pixels) of the JPEG image * * @param height the height (in pixels) of the JPEG image * * @param jpegSubsamp the level of chrominance subsampling to be used when * generating the JPEG image (one of {@link TJ TJ.SAMP_*}) * * @return the maximum size of the buffer (in bytes) required to hold a JPEG * image with the given width, height, and level of chrominance subsampling. */ public static native int bufSize(int width, int height, int jpegSubsamp) throws Exception; /** * Returns the size of the buffer (in bytes) required to hold a YUV planar * image with the given width, height, and level of chrominance subsampling. * * @param width the width (in pixels) of the YUV image * * @param pad the width of each line in each plane of the image is padded to * the nearest multiple of this number of bytes (must be a power of 2.) * * @param height the height (in pixels) of the YUV image * * @param subsamp the level of chrominance subsampling used in the YUV * image (one of {@link TJ TJ.SAMP_*}) * * @return the size of the buffer (in bytes) required to hold a YUV planar * image with the given width, height, and level of chrominance subsampling. */ public static native int bufSizeYUV(int width, int pad, int height, int subsamp) throws Exception; /** * @deprecated Use {@link #bufSizeYUV(int, int, int, int)} instead. */ @Deprecated public static native int bufSizeYUV(int width, int height, int subsamp) throws Exception; /** * Returns the size of the buffer (in bytes) required to hold a YUV image * plane with the given parameters. * * @param componentID ID number of the image plane (0 = Y, 1 = U/Cb, * 2 = V/Cr) * * @param width width (in pixels) of the YUV image. NOTE: this is the width * of the whole image, not the plane width. * * @param stride bytes per line in the image plane. * * @param height height (in pixels) of the YUV image. NOTE: this is the * height of the whole image, not the plane height. * * @param subsamp the level of chrominance subsampling used in the YUV * image (one of {@link TJ TJ.SAMP_*}) * * @return the size of the buffer (in bytes) required to hold a YUV planar * image with the given parameters. */ public static native int planeSizeYUV(int componentID, int width, int stride, int height, int subsamp) throws Exception; /** * Returns the plane width of a YUV image plane with the given parameters. * Refer to {@link YUVImage YUVImage} for a description of plane width. * * @param componentID ID number of the image plane (0 = Y, 1 = U/Cb, * 2 = V/Cr) * * @param width width (in pixels) of the YUV image * * @param subsamp the level of chrominance subsampling used in the YUV image * (one of {@link TJ TJ.SAMP_*}) * * @return the plane width of a YUV image plane with the given parameters. */ public static native int planeWidth(int componentID, int width, int subsamp) throws Exception; /** * Returns the plane height of a YUV image plane with the given parameters. * Refer to {@link YUVImage YUVImage} for a description of plane height. * * @param componentID ID number of the image plane (0 = Y, 1 = U/Cb, * 2 = V/Cr) * * @param height height (in pixels) of the YUV image * * @param subsamp the level of chrominance subsampling used in the YUV image * (one of {@link TJ TJ.SAMP_*}) * * @return the plane height of a YUV image plane with the given parameters. */ public static native int planeHeight(int componentID, int height, int subsamp) throws Exception; /** * Returns a list of fractional scaling factors that the JPEG decompressor in * this implementation of TurboJPEG supports. * * @return a list of fractional scaling factors that the JPEG decompressor in * this implementation of TurboJPEG supports. */ public static native TJScalingFactor[] getScalingFactors() throws Exception; static { TJLoader.load(); } }; libjpeg-turbo-1.4.2/java/org/libjpegturbo/turbojpeg/TJCompressor.java0000644000076500007650000006102412600050400022642 00000000000000/* * Copyright (C)2011-2015 D. R. Commander. All Rights Reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * - Neither the name of the libjpeg-turbo Project nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS", * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ package org.libjpegturbo.turbojpeg; import java.awt.image.*; import java.nio.*; /** * TurboJPEG compressor */ public class TJCompressor { private static final String NO_ASSOC_ERROR = "No source image is associated with this instance"; /** * Create a TurboJPEG compressor instance. */ public TJCompressor() throws Exception { init(); } /** * Create a TurboJPEG compressor instance and associate the uncompressed * source image stored in srcImage with the newly created * instance. * * @param srcImage see {@link #setSourceImage} for description * * @param x see {@link #setSourceImage} for description * * @param y see {@link #setSourceImage} for description * * @param width see {@link #setSourceImage} for description * * @param pitch see {@link #setSourceImage} for description * * @param height see {@link #setSourceImage} for description * * @param pixelFormat pixel format of the source image (one of * {@link TJ#PF_RGB TJ.PF_*}) */ public TJCompressor(byte[] srcImage, int x, int y, int width, int pitch, int height, int pixelFormat) throws Exception { setSourceImage(srcImage, x, y, width, pitch, height, pixelFormat); } /** * @deprecated Use * {@link #TJCompressor(byte[], int, int, int, int, int, int)} instead. */ @Deprecated public TJCompressor(byte[] srcImage, int width, int pitch, int height, int pixelFormat) throws Exception { setSourceImage(srcImage, width, pitch, height, pixelFormat); } /** * Create a TurboJPEG compressor instance and associate the uncompressed * source image stored in srcImage with the newly created * instance. * * @param srcImage see * {@link #setSourceImage(BufferedImage, int, int, int, int)} for description * * @param x see * {@link #setSourceImage(BufferedImage, int, int, int, int)} for description * * @param y see * {@link #setSourceImage(BufferedImage, int, int, int, int)} for description * * @param width see * {@link #setSourceImage(BufferedImage, int, int, int, int)} for description * * @param height see * {@link #setSourceImage(BufferedImage, int, int, int, int)} for description */ public TJCompressor(BufferedImage srcImage, int x, int y, int width, int height) throws Exception { setSourceImage(srcImage, x, y, width, height); } /** * Associate an uncompressed RGB, grayscale, or CMYK source image with this * compressor instance. * * @param srcImage image buffer containing RGB, grayscale, or CMYK pixels to * be compressed or encoded. This buffer is not modified. * * @param x x offset (in pixels) of the region in the source image from which * the JPEG or YUV image should be compressed/encoded * * @param y y offset (in pixels) of the region in the source image from which * the JPEG or YUV image should be compressed/encoded * * @param width width (in pixels) of the region in the source image from * which the JPEG or YUV image should be compressed/encoded * * @param pitch bytes per line of the source image. Normally, this should be * width * TJ.pixelSize(pixelFormat) if the source image is * unpadded, but you can use this parameter to, for instance, specify that * the scanlines in the source image are padded to a 4-byte boundary or to * compress/encode a JPEG or YUV image from a region of a larger source * image. You can also be clever and use this parameter to skip lines, etc. * Setting this parameter to 0 is the equivalent of setting it to * width * TJ.pixelSize(pixelFormat). * * @param height height (in pixels) of the region in the source image from * which the JPEG or YUV image should be compressed/encoded * * @param pixelFormat pixel format of the source image (one of * {@link TJ#PF_RGB TJ.PF_*}) */ public void setSourceImage(byte[] srcImage, int x, int y, int width, int pitch, int height, int pixelFormat) throws Exception { if (handle == 0) init(); if (srcImage == null || x < 0 || y < 0 || width < 1 || height < 1 || pitch < 0 || pixelFormat < 0 || pixelFormat >= TJ.NUMPF) throw new Exception("Invalid argument in setSourceImage()"); srcBuf = srcImage; srcWidth = width; if (pitch == 0) srcPitch = width * TJ.getPixelSize(pixelFormat); else srcPitch = pitch; srcHeight = height; srcPixelFormat = pixelFormat; srcX = x; srcY = y; srcBufInt = null; srcYUVImage = null; } /** * @deprecated Use * {@link #setSourceImage(byte[], int, int, int, int, int, int)} instead. */ @Deprecated public void setSourceImage(byte[] srcImage, int width, int pitch, int height, int pixelFormat) throws Exception { setSourceImage(srcImage, 0, 0, width, pitch, height, pixelFormat); srcX = srcY = -1; } /** * Associate an uncompressed RGB or grayscale source image with this * compressor instance. * * @param srcImage a BufferedImage instance containing RGB or * grayscale pixels to be compressed or encoded. This image is not modified. * * @param x x offset (in pixels) of the region in the source image from which * the JPEG or YUV image should be compressed/encoded * * @param y y offset (in pixels) of the region in the source image from which * the JPEG or YUV image should be compressed/encoded * * @param width width (in pixels) of the region in the source image from * which the JPEG or YUV image should be compressed/encoded (0 = use the * width of the source image) * * @param height height (in pixels) of the region in the source image from * which the JPEG or YUV image should be compressed/encoded (0 = use the * height of the source image) */ public void setSourceImage(BufferedImage srcImage, int x, int y, int width, int height) throws Exception { if (handle == 0) init(); if (srcImage == null || x < 0 || y < 0 || width < 0 || height < 0) throw new Exception("Invalid argument in setSourceImage()"); srcX = x; srcY = y; srcWidth = (width == 0) ? srcImage.getWidth(): width; srcHeight = (height == 0) ? srcImage.getHeight() : height; if (x + width > srcImage.getWidth() || y + height > srcImage.getHeight()) throw new Exception("Compression region exceeds the bounds of the source image"); int pixelFormat; boolean intPixels = false; if (byteOrder == null) byteOrder = ByteOrder.nativeOrder(); switch(srcImage.getType()) { case BufferedImage.TYPE_3BYTE_BGR: pixelFormat = TJ.PF_BGR; break; case BufferedImage.TYPE_4BYTE_ABGR: case BufferedImage.TYPE_4BYTE_ABGR_PRE: pixelFormat = TJ.PF_XBGR; break; case BufferedImage.TYPE_BYTE_GRAY: pixelFormat = TJ.PF_GRAY; break; case BufferedImage.TYPE_INT_BGR: if (byteOrder == ByteOrder.BIG_ENDIAN) pixelFormat = TJ.PF_XBGR; else pixelFormat = TJ.PF_RGBX; intPixels = true; break; case BufferedImage.TYPE_INT_RGB: case BufferedImage.TYPE_INT_ARGB: case BufferedImage.TYPE_INT_ARGB_PRE: if (byteOrder == ByteOrder.BIG_ENDIAN) pixelFormat = TJ.PF_XRGB; else pixelFormat = TJ.PF_BGRX; intPixels = true; break; default: throw new Exception("Unsupported BufferedImage format"); } srcPixelFormat = pixelFormat; WritableRaster wr = srcImage.getRaster(); if (intPixels) { SinglePixelPackedSampleModel sm = (SinglePixelPackedSampleModel)srcImage.getSampleModel(); srcStride = sm.getScanlineStride(); DataBufferInt db = (DataBufferInt)wr.getDataBuffer(); srcBufInt = db.getData(); srcBuf = null; } else { ComponentSampleModel sm = (ComponentSampleModel)srcImage.getSampleModel(); int pixelSize = sm.getPixelStride(); if (pixelSize != TJ.getPixelSize(pixelFormat)) throw new Exception("Inconsistency between pixel format and pixel size in BufferedImage"); srcPitch = sm.getScanlineStride(); DataBufferByte db = (DataBufferByte)wr.getDataBuffer(); srcBuf = db.getData(); srcBufInt = null; } srcYUVImage = null; } /** * Associate an uncompressed YUV planar source image with this compressor * instance. * * @param srcImage YUV planar image to be compressed. This image is not * modified. */ public void setSourceImage(YUVImage srcImage) throws Exception { if (handle == 0) init(); if (srcImage == null) throw new Exception("Invalid argument in setSourceImage()"); srcYUVImage = srcImage; srcBuf = null; srcBufInt = null; } /** * Set the level of chrominance subsampling for subsequent compress/encode * operations. When pixels are converted from RGB to YCbCr (see * {@link TJ#CS_YCbCr}) or from CMYK to YCCK (see {@link TJ#CS_YCCK}) as part * of the JPEG compression process, some of the Cb and Cr (chrominance) * components can be discarded or averaged together to produce a smaller * image with little perceptible loss of image clarity (the human eye is more * sensitive to small changes in brightness than to small changes in color.) * This is called "chrominance subsampling". *

* NOTE: This method has no effect when compressing a JPEG image from a YUV * planar source. In that case, the level of chrominance subsampling in * the JPEG image is determined by the source. Further, this method has no * effect when encoding to a pre-allocated {@link YUVImage} instance. In * that case, the level of chrominance subsampling is determined by the * destination. * * @param newSubsamp the level of chrominance subsampling to use in * subsequent compress/encode oeprations (one of * {@link TJ#SAMP_444 TJ.SAMP_*}) */ public void setSubsamp(int newSubsamp) throws Exception { if (newSubsamp < 0 || newSubsamp >= TJ.NUMSAMP) throw new Exception("Invalid argument in setSubsamp()"); subsamp = newSubsamp; } /** * Set the JPEG image quality level for subsequent compress operations. * * @param quality the new JPEG image quality level (1 to 100, 1 = worst, * 100 = best) */ public void setJPEGQuality(int quality) throws Exception { if (quality < 1 || quality > 100) throw new Exception("Invalid argument in setJPEGQuality()"); jpegQuality = quality; } /** * Compress the uncompressed source image associated with this compressor * instance and output a JPEG image to the given destination buffer. * * @param dstBuf buffer that will receive the JPEG image. Use * {@link TJ#bufSize} to determine the maximum size for this buffer based on * the source image's width and height and the desired level of chrominance * subsampling. * * @param flags the bitwise OR of one or more of * {@link TJ#FLAG_BOTTOMUP TJ.FLAG_*} */ public void compress(byte[] dstBuf, int flags) throws Exception { if (dstBuf == null || flags < 0) throw new Exception("Invalid argument in compress()"); if (srcBuf == null && srcBufInt == null && srcYUVImage == null) throw new Exception(NO_ASSOC_ERROR); if (jpegQuality < 0) throw new Exception("JPEG Quality not set"); if (subsamp < 0 && srcYUVImage == null) throw new Exception("Subsampling level not set"); if (srcYUVImage != null) compressedSize = compressFromYUV(srcYUVImage.getPlanes(), srcYUVImage.getOffsets(), srcYUVImage.getWidth(), srcYUVImage.getStrides(), srcYUVImage.getHeight(), srcYUVImage.getSubsamp(), dstBuf, jpegQuality, flags); else if (srcBuf != null) { if (srcX >= 0 && srcY >= 0) compressedSize = compress(srcBuf, srcX, srcY, srcWidth, srcPitch, srcHeight, srcPixelFormat, dstBuf, subsamp, jpegQuality, flags); else compressedSize = compress(srcBuf, srcWidth, srcPitch, srcHeight, srcPixelFormat, dstBuf, subsamp, jpegQuality, flags); } else if (srcBufInt != null) { if (srcX >= 0 && srcY >= 0) compressedSize = compress(srcBufInt, srcX, srcY, srcWidth, srcStride, srcHeight, srcPixelFormat, dstBuf, subsamp, jpegQuality, flags); else compressedSize = compress(srcBufInt, srcWidth, srcStride, srcHeight, srcPixelFormat, dstBuf, subsamp, jpegQuality, flags); } } /** * Compress the uncompressed source image associated with this compressor * instance and return a buffer containing a JPEG image. * * @param flags the bitwise OR of one or more of * {@link TJ#FLAG_BOTTOMUP TJ.FLAG_*} * * @return a buffer containing a JPEG image. The length of this buffer will * not be equal to the size of the JPEG image. Use {@link * #getCompressedSize} to obtain the size of the JPEG image. */ public byte[] compress(int flags) throws Exception { if (srcWidth < 1 || srcHeight < 1) throw new Exception(NO_ASSOC_ERROR); byte[] buf = new byte[TJ.bufSize(srcWidth, srcHeight, subsamp)]; compress(buf, flags); return buf; } /** * @deprecated Use * {@link #setSourceImage(BufferedImage, int, int, int, int)} and * {@link #compress(byte[], int)} instead. */ @Deprecated public void compress(BufferedImage srcImage, byte[] dstBuf, int flags) throws Exception { setSourceImage(srcImage, 0, 0, 0, 0); compress(dstBuf, flags); } /** * @deprecated Use * {@link #setSourceImage(BufferedImage, int, int, int, int)} and * {@link #compress(int)} instead. */ @Deprecated public byte[] compress(BufferedImage srcImage, int flags) throws Exception { setSourceImage(srcImage, 0, 0, 0, 0); return compress(flags); } /** * Encode the uncompressed source image associated with this compressor * instance into a YUV planar image and store it in the given * YUVImage instance. This method uses the accelerated color * conversion routines in TurboJPEG's underlying codec but does not execute * any of the other steps in the JPEG compression process. Encoding * CMYK source images to YUV is not supported. * * @param dstImage {@link YUVImage} instance that will receive the YUV planar * image * * @param flags the bitwise OR of one or more of * {@link TJ#FLAG_BOTTOMUP TJ.FLAG_*} */ public void encodeYUV(YUVImage dstImage, int flags) throws Exception { if (dstImage == null || flags < 0) throw new Exception("Invalid argument in encodeYUV()"); if (srcBuf == null && srcBufInt == null) throw new Exception(NO_ASSOC_ERROR); if (srcYUVImage != null) throw new Exception("Source image is not correct type"); if (subsamp < 0) throw new Exception("Subsampling level not set"); if (srcWidth != dstImage.getWidth() || srcHeight != dstImage.getHeight()) throw new Exception("Destination image is the wrong size"); if (srcBufInt != null) { encodeYUV(srcBufInt, srcX, srcY, srcWidth, srcStride, srcHeight, srcPixelFormat, dstImage.getPlanes(), dstImage.getOffsets(), dstImage.getStrides(), dstImage.getSubsamp(), flags); } else { encodeYUV(srcBuf, srcX, srcY, srcWidth, srcPitch, srcHeight, srcPixelFormat, dstImage.getPlanes(), dstImage.getOffsets(), dstImage.getStrides(), dstImage.getSubsamp(), flags); } compressedSize = 0; } /** * @deprecated Use {@link #encodeYUV(YUVImage, int)} instead. */ @Deprecated public void encodeYUV(byte[] dstBuf, int flags) throws Exception { if(dstBuf == null) throw new Exception("Invalid argument in encodeYUV()"); if (srcWidth < 1 || srcHeight < 1) throw new Exception(NO_ASSOC_ERROR); if (subsamp < 0) throw new Exception("Subsampling level not set"); YUVImage yuvImage = new YUVImage(dstBuf, srcWidth, 4, srcHeight, subsamp); encodeYUV(yuvImage, flags); } /** * Encode the uncompressed source image associated with this compressor * instance into a unified YUV planar image buffer and return a * YUVImage instance containing the encoded image. This method * uses the accelerated color conversion routines in TurboJPEG's underlying * codec but does not execute any of the other steps in the JPEG compression * process. Encoding CMYK source images to YUV is not supported. * * @param pad the width of each line in each plane of the YUV image will be * padded to the nearest multiple of this number of bytes (must be a power of * 2.) * * @param flags the bitwise OR of one or more of * {@link TJ#FLAG_BOTTOMUP TJ.FLAG_*} * * @return a YUV planar image. */ public YUVImage encodeYUV(int pad, int flags) throws Exception { if (srcWidth < 1 || srcHeight < 1) throw new Exception(NO_ASSOC_ERROR); if (subsamp < 0) throw new Exception("Subsampling level not set"); if(pad < 1 || ((pad & (pad - 1)) != 0)) throw new Exception("Invalid argument in encodeYUV()"); YUVImage yuvImage = new YUVImage(srcWidth, pad, srcHeight, subsamp); encodeYUV(yuvImage, flags); return yuvImage; } /** * Encode the uncompressed source image associated with this compressor * instance into separate Y, U (Cb), and V (Cr) image planes and return a * YUVImage instance containing the encoded image planes. This * method uses the accelerated color conversion routines in TurboJPEG's * underlying codec but does not execute any of the other steps in the JPEG * compression process. Encoding CMYK source images to YUV is not supported. * * @param strides an array of integers, each specifying the number of bytes * per line in the corresponding plane of the output image. Setting the * stride for any plane to 0 is the same as setting it to the component width * of the plane. If strides is null, then the strides for all * planes will be set to their respective component widths. You can adjust * the strides in order to add an arbitrary amount of line padding to each * plane. * * @param flags the bitwise OR of one or more of * {@link TJ#FLAG_BOTTOMUP TJ.FLAG_*} * * @return a YUV planar image. */ public YUVImage encodeYUV(int[] strides, int flags) throws Exception { if (srcWidth < 1 || srcHeight < 1) throw new Exception(NO_ASSOC_ERROR); if (subsamp < 0) throw new Exception("Subsampling level not set"); YUVImage yuvImage = new YUVImage(srcWidth, strides, srcHeight, subsamp); encodeYUV(yuvImage, flags); return yuvImage; } /** * @deprecated Use {@link #encodeYUV(int, int)} instead. */ @Deprecated public byte[] encodeYUV(int flags) throws Exception { if (srcWidth < 1 || srcHeight < 1) throw new Exception(NO_ASSOC_ERROR); if (subsamp < 0) throw new Exception("Subsampling level not set"); YUVImage yuvImage = new YUVImage(srcWidth, 4, srcHeight, subsamp); encodeYUV(yuvImage, flags); return yuvImage.getBuf(); } /** * @deprecated Use * {@link #setSourceImage(BufferedImage, int, int, int, int)} and * {@link #encodeYUV(byte[], int)} instead. */ @Deprecated public void encodeYUV(BufferedImage srcImage, byte[] dstBuf, int flags) throws Exception { setSourceImage(srcImage, 0, 0, 0, 0); encodeYUV(dstBuf, flags); } /** * @deprecated Use * {@link #setSourceImage(BufferedImage, int, int, int, int)} and * {@link #encodeYUV(int, int)} instead. */ @Deprecated public byte[] encodeYUV(BufferedImage srcImage, int flags) throws Exception { setSourceImage(srcImage, 0, 0, 0, 0); return encodeYUV(flags); } /** * Returns the size of the image (in bytes) generated by the most recent * compress operation. * * @return the size of the image (in bytes) generated by the most recent * compress operation. */ public int getCompressedSize() { return compressedSize; } /** * Free the native structures associated with this compressor instance. */ public void close() throws Exception { if (handle != 0) destroy(); } protected void finalize() throws Throwable { try { close(); } catch(Exception e) { } finally { super.finalize(); } }; private native void init() throws Exception; private native void destroy() throws Exception; // JPEG size in bytes is returned private native int compress(byte[] srcBuf, int width, int pitch, int height, int pixelFormat, byte[] dstBuf, int jpegSubsamp, int jpegQual, int flags) throws Exception; // deprecated private native int compress(byte[] srcBuf, int x, int y, int width, int pitch, int height, int pixelFormat, byte[] dstBuf, int jpegSubsamp, int jpegQual, int flags) throws Exception; private native int compress(int[] srcBuf, int width, int stride, int height, int pixelFormat, byte[] dstBuf, int jpegSubsamp, int jpegQual, int flags) throws Exception; // deprecated private native int compress(int[] srcBuf, int x, int y, int width, int stride, int height, int pixelFormat, byte[] dstBuf, int jpegSubsamp, int jpegQual, int flags) throws Exception; private native int compressFromYUV(byte[][] srcPlanes, int[] srcOffsets, int width, int[] srcStrides, int height, int subsamp, byte[] dstBuf, int jpegQual, int flags) throws Exception; private native void encodeYUV(byte[] srcBuf, int width, int pitch, int height, int pixelFormat, byte[] dstBuf, int subsamp, int flags) throws Exception; // deprecated private native void encodeYUV(byte[] srcBuf, int x, int y, int width, int pitch, int height, int pixelFormat, byte[][] dstPlanes, int[] dstOffsets, int[] dstStrides, int subsamp, int flags) throws Exception; private native void encodeYUV(int[] srcBuf, int width, int stride, int height, int pixelFormat, byte[] dstBuf, int subsamp, int flags) throws Exception; // deprecated private native void encodeYUV(int[] srcBuf, int x, int y, int width, int srcStride, int height, int pixelFormat, byte[][] dstPlanes, int[] dstOffsets, int[] dstStrides, int subsamp, int flags) throws Exception; static { TJLoader.load(); } private long handle = 0; private byte[] srcBuf = null; private int[] srcBufInt = null; private int srcWidth = 0; private int srcHeight = 0; private int srcX = -1; private int srcY = -1; private int srcPitch = 0; private int srcStride = 0; private int srcPixelFormat = -1; private YUVImage srcYUVImage = null; private int subsamp = -1; private int jpegQuality = -1; private int compressedSize = 0; private int yuvPad = 4; private ByteOrder byteOrder = null; }; libjpeg-turbo-1.4.2/java/org/libjpegturbo/turbojpeg/TJTransformer.java0000644000076500007650000001540512600050400023012 00000000000000/* * Copyright (C)2011, 2013-2015 D. R. Commander. All Rights Reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * - Neither the name of the libjpeg-turbo Project nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS", * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ package org.libjpegturbo.turbojpeg; /** * TurboJPEG lossless transformer */ public class TJTransformer extends TJDecompressor { /** * Create a TurboJPEG lossless transformer instance. */ public TJTransformer() throws Exception { init(); } /** * Create a TurboJPEG lossless transformer instance and associate the JPEG * image stored in jpegImage with the newly created instance. * * @param jpegImage JPEG image buffer (size of the JPEG image is assumed to * be the length of the array.) This buffer is not modified. */ public TJTransformer(byte[] jpegImage) throws Exception { init(); setSourceImage(jpegImage, jpegImage.length); } /** * Create a TurboJPEG lossless transformer instance and associate the JPEG * image of length imageSize bytes stored in * jpegImage with the newly created instance. * * @param jpegImage JPEG image buffer. This buffer is not modified. * * @param imageSize size of the JPEG image (in bytes) */ public TJTransformer(byte[] jpegImage, int imageSize) throws Exception { init(); setSourceImage(jpegImage, imageSize); } /** * Losslessly transform the JPEG image associated with this transformer * instance into one or more JPEG images stored in the given destination * buffers. Lossless transforms work by moving the raw coefficients from one * JPEG image structure to another without altering the values of the * coefficients. While this is typically faster than decompressing the * image, transforming it, and re-compressing it, lossless transforms are not * free. Each lossless transform requires reading and performing Huffman * decoding on all of the coefficients in the source image, regardless of the * size of the destination image. Thus, this method provides a means of * generating multiple transformed images from the same source or of applying * multiple transformations simultaneously, in order to eliminate the need to * read the source coefficients multiple times. * * @param dstBufs an array of image buffers. dstbufs[i] will * receive a JPEG image that has been transformed using the parameters in * transforms[i]. Use {@link TJ#bufSize} to determine the * maximum size for each buffer based on the transformed or cropped width and * height and the level of subsampling used in the source image. * * @param transforms an array of {@link TJTransform} instances, each of * which specifies the transform parameters and/or cropping region for the * corresponding transformed output image * * @param flags the bitwise OR of one or more of * {@link TJ#FLAG_BOTTOMUP TJ.FLAG_*} */ public void transform(byte[][] dstBufs, TJTransform[] transforms, int flags) throws Exception { if (jpegBuf == null) throw new Exception("JPEG buffer not initialized"); transformedSizes = transform(jpegBuf, jpegBufSize, dstBufs, transforms, flags); } /** * Losslessly transform the JPEG image associated with this transformer * instance and return an array of {@link TJDecompressor} instances, each of * which has a transformed JPEG image associated with it. * * @param transforms an array of {@link TJTransform} instances, each of * which specifies the transform parameters and/or cropping region for the * corresponding transformed output image * * @return an array of {@link TJDecompressor} instances, each of * which has a transformed JPEG image associated with it. * * @param flags the bitwise OR of one or more of * {@link TJ#FLAG_BOTTOMUP TJ.FLAG_*} */ public TJDecompressor[] transform(TJTransform[] transforms, int flags) throws Exception { byte[][] dstBufs = new byte[transforms.length][]; if (jpegWidth < 1 || jpegHeight < 1) throw new Exception("JPEG buffer not initialized"); for (int i = 0; i < transforms.length; i++) { int w = jpegWidth, h = jpegHeight; if ((transforms[i].options & TJTransform.OPT_CROP) != 0) { if (transforms[i].width != 0) w = transforms[i].width; if (transforms[i].height != 0) h = transforms[i].height; } dstBufs[i] = new byte[TJ.bufSize(w, h, jpegSubsamp)]; } TJDecompressor[] tjd = new TJDecompressor[transforms.length]; transform(dstBufs, transforms, flags); for (int i = 0; i < transforms.length; i++) tjd[i] = new TJDecompressor(dstBufs[i], transformedSizes[i]); return tjd; } /** * Returns an array containing the sizes of the transformed JPEG images * generated by the most recent transform operation. * * @return an array containing the sizes of the transformed JPEG images * generated by the most recent transform operation. */ public int[] getTransformedSizes() throws Exception { if (transformedSizes == null) throw new Exception("No image has been transformed yet"); return transformedSizes; } private native void init() throws Exception; private native int[] transform(byte[] srcBuf, int srcSize, byte[][] dstBufs, TJTransform[] transforms, int flags) throws Exception; static { TJLoader.load(); } private int[] transformedSizes = null; }; libjpeg-turbo-1.4.2/java/org/libjpegturbo/turbojpeg/YUVImage.java0000644000076500007650000004421012600050400021674 00000000000000/* * Copyright (C)2014 D. R. Commander. All Rights Reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * - Neither the name of the libjpeg-turbo Project nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS", * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ package org.libjpegturbo.turbojpeg; /** * This class encapsulates a YUV planar image and the metadata * associated with it. The TurboJPEG API allows both the JPEG compression and * decompression pipelines to be split into stages: YUV encode, compress from * YUV, decompress to YUV, and YUV decode. A YUVImage instance * serves as the destination image for YUV encode and decompress-to-YUV * operations and as the source image for compress-from-YUV and YUV decode * operations. *

* Technically, the JPEG format uses the YCbCr colorspace (which technically is * not a "colorspace" but rather a "color transform"), but per the convention * of the digital video community, the TurboJPEG API uses "YUV" to refer to an * image format consisting of Y, Cb, and Cr image planes. *

* Each plane is simply a 2D array of bytes, each byte representing the value * of one of the components (Y, Cb, or Cr) at a particular location in the * image. The width and height of each plane are determined by the image * width, height, and level of chrominance subsampling. The luminance plane * width is the image width padded to the nearest multiple of the horizontal * subsampling factor (2 in the case of 4:2:0 and 4:2:2, 4 in the case of * 4:1:1, 1 in the case of 4:4:4 or grayscale.) Similarly, the luminance plane * height is the image height padded to the nearest multiple of the vertical * subsampling factor (2 in the case of 4:2:0 or 4:4:0, 1 in the case of 4:4:4 * or grayscale.) The chrominance plane width is equal to the luminance plane * width divided by the horizontal subsampling factor, and the chrominance * plane height is equal to the luminance plane height divided by the vertical * subsampling factor. *

* For example, if the source image is 35 x 35 pixels and 4:2:2 subsampling is * used, then the luminance plane would be 36 x 35 bytes, and each of the * chrominance planes would be 18 x 35 bytes. If you specify a line padding of * 4 bytes on top of this, then the luminance plane would be 36 x 35 bytes, and * each of the chrominance planes would be 20 x 35 bytes. */ public class YUVImage { private static final String NO_ASSOC_ERROR = "No image data is associated with this instance"; /** * Create a new YUVImage instance backed by separate image * planes, and allocate memory for the image planes. * * @param width width (in pixels) of the YUV image * * @param strides an array of integers, each specifying the number of bytes * per line in the corresponding plane of the YUV image. Setting the stride * for any plane to 0 is the same as setting it to the plane width (see * {@link YUVImage above}.) If strides is null, then the * strides for all planes will be set to their respective plane widths. When * using this constructor, the stride for each plane must be equal to or * greater than the plane width. * * @param height height (in pixels) of the YUV image * * @param subsamp the level of chrominance subsampling to be used in the YUV * image (one of {@link TJ#SAMP_444 TJ.SAMP_*}) */ public YUVImage(int width, int[] strides, int height, int subsamp) throws Exception { setBuf(null, null, width, strides, height, subsamp, true); } /** * Create a new YUVImage instance backed by a unified image * buffer, and allocate memory for the image buffer. * * @param width width (in pixels) of the YUV image * * @param pad Each line of each plane in the YUV image buffer will be padded * to this number of bytes (must be a power of 2.) * * @param height height (in pixels) of the YUV image * * @param subsamp the level of chrominance subsampling to be used in the YUV * image (one of {@link TJ#SAMP_444 TJ.SAMP_*}) */ public YUVImage(int width, int pad, int height, int subsamp) throws Exception { setBuf(new byte[TJ.bufSizeYUV(width, pad, height, subsamp)], width, pad, height, subsamp); } /** * Create a new YUVImage instance from a set of existing image * planes. * * @param planes an array of buffers representing the Y, U (Cb), and V (Cr) * image planes (or just the Y plane, if the image is grayscale.) These * planes can be contiguous or non-contiguous in memory. Plane * i should be at least offsets[i] + * {@link TJ#planeSizeYUV TJ.planeSizeYUV}(i, width, strides[i], height, subsamp) * bytes in size. * * @param offsets If this YUVImage instance represents a * subregion of a larger image, then offsets[i] specifies the * offset (in bytes) of the subregion within plane i of the * larger image. Setting this to null is the same as setting the offsets for * all planes to 0. * * @param width width (in pixels) of the new YUV image (or subregion) * * @param strides an array of integers, each specifying the number of bytes * per line in the corresponding plane of the YUV image. Setting the stride * for any plane to 0 is the same as setting it to the plane width (see * {@link YUVImage above}.) If strides is null, then the * strides for all planes will be set to their respective plane widths. You * can adjust the strides in order to add an arbitrary amount of line padding * to each plane or to specify that this YUVImage instance is a * subregion of a larger image (in which case, strides[i] should * be set to the plane width of plane i in the larger image.) * * @param height height (in pixels) of the new YUV image (or subregion) * * @param subsamp the level of chrominance subsampling used in the YUV * image (one of {@link TJ#SAMP_444 TJ.SAMP_*}) */ public YUVImage(byte[][] planes, int[] offsets, int width, int[] strides, int height, int subsamp) throws Exception { setBuf(planes, offsets, width, strides, height, subsamp, false); } /** * Create a new YUVImage instance from an existing unified image * buffer. * * @param yuvImage image buffer that contains or will contain YUV planar * image data. Use {@link TJ#bufSizeYUV} to determine the minimum size for * this buffer. The Y, U (Cb), and V (Cr) image planes are stored * sequentially in the buffer (see {@link YUVImage above} for a description * of the image format.) * * @param width width (in pixels) of the YUV image * * @param pad the line padding used in the YUV image buffer. For * instance, if each line in each plane of the buffer is padded to the * nearest multiple of 4 bytes, then pad should be set to 4. * * @param height height (in pixels) of the YUV image * * @param subsamp the level of chrominance subsampling used in the YUV * image (one of {@link TJ#SAMP_444 TJ.SAMP_*}) */ public YUVImage(byte[] yuvImage, int width, int pad, int height, int subsamp) throws Exception { setBuf(yuvImage, width, pad, height, subsamp); } /** * Assign a set of image planes to this YUVImage instance. * * @param planes an array of buffers representing the Y, U (Cb), and V (Cr) * image planes (or just the Y plane, if the image is grayscale.) These * planes can be contiguous or non-contiguous in memory. Plane * i should be at least offsets[i] + * {@link TJ#planeSizeYUV TJ.planeSizeYUV}(i, width, strides[i], height, subsamp) * bytes in size. * * @param offsets If this YUVImage instance represents a * subregion of a larger image, then offsets[i] specifies the * offset (in bytes) of the subregion within plane i of the * larger image. Setting this to null is the same as setting the offsets for * all planes to 0. * * @param width width (in pixels) of the YUV image (or subregion) * * @param strides an array of integers, each specifying the number of bytes * per line in the corresponding plane of the YUV image. Setting the stride * for any plane to 0 is the same as setting it to the plane width (see * {@link YUVImage above}.) If strides is null, then the * strides for all planes will be set to their respective plane widths. You * can adjust the strides in order to add an arbitrary amount of line padding * to each plane or to specify that this YUVImage image is a * subregion of a larger image (in which case, strides[i] should * be set to the plane width of plane i in the larger image.) * * @param height height (in pixels) of the YUV image (or subregion) * * @param subsamp the level of chrominance subsampling used in the YUV * image (one of {@link TJ#SAMP_444 TJ.SAMP_*}) */ public void setBuf(byte[][] planes, int[] offsets, int width, int strides[], int height, int subsamp) throws Exception { setBuf(planes, offsets, width, strides, height, subsamp, false); } private void setBuf(byte[][] planes, int[] offsets, int width, int strides[], int height, int subsamp, boolean alloc) throws Exception { if ((planes == null && !alloc) || width < 1 || height < 1 || subsamp < 0 || subsamp >= TJ.NUMSAMP) throw new Exception("Invalid argument in YUVImage::setBuf()"); int nc = (subsamp == TJ.SAMP_GRAY ? 1 : 3); if (planes.length != nc || (offsets != null && offsets.length != nc) || (strides != null && strides.length != nc)) throw new Exception("YUVImage::setBuf(): planes, offsets, or strides array is the wrong size"); if (offsets == null) offsets = new int[nc]; if (strides == null) strides = new int[nc]; for (int i = 0; i < nc; i++) { int pw = TJ.planeWidth(i, width, subsamp); int ph = TJ.planeHeight(i, height, subsamp); int planeSize = TJ.planeSizeYUV(i, width, strides[i], height, subsamp); if (strides[i] == 0) strides[i] = pw; if (alloc) { if (strides[i] < pw) throw new Exception("Stride must be >= plane width when allocating a new YUV image"); planes[i] = new byte[strides[i] * ph]; } if (planes[i] == null || offsets[i] < 0) throw new Exception("Invalid argument in YUVImage::setBuf()"); if (strides[i] < 0 && offsets[i] - planeSize + pw < 0) throw new Exception("Stride for plane " + i + " would cause memory to be accessed below plane boundary"); if (planes[i].length < offsets[i] + planeSize) throw new Exception("Image plane " + i + " is not large enough"); } yuvPlanes = planes; yuvOffsets = offsets; yuvWidth = width; yuvStrides = strides; yuvHeight = height; yuvSubsamp = subsamp; } /** * Assign a unified image buffer to this YUVImage instance. * * @param yuvImage image buffer that contains or will contain YUV planar * image data. Use {@link TJ#bufSizeYUV} to determine the minimum size for * this buffer. The Y, U (Cb), and V (Cr) image planes are stored * sequentially in the buffer (see {@link YUVImage above} for a description * of the image format.) * * @param width width (in pixels) of the YUV image * * @param pad the line padding used in the YUV image buffer. For * instance, if each line in each plane of the buffer is padded to the * nearest multiple of 4 bytes, then pad should be set to 4. * * @param height height (in pixels) of the YUV image * * @param subsamp the level of chrominance subsampling used in the YUV * image (one of {@link TJ#SAMP_444 TJ.SAMP_*}) */ public void setBuf(byte[] yuvImage, int width, int pad, int height, int subsamp) throws Exception { if (yuvImage == null || width < 1 || pad < 1 || ((pad & (pad - 1)) != 0) || height < 1 || subsamp < 0 || subsamp >= TJ.NUMSAMP) throw new Exception("Invalid argument in YUVImage::setBuf()"); if (yuvImage.length < TJ.bufSizeYUV(width, pad, height, subsamp)) throw new Exception("YUV image buffer is not large enough"); int nc = (subsamp == TJ.SAMP_GRAY ? 1 : 3); byte[][] planes = new byte[nc][]; int[] strides = new int[nc]; int[] offsets = new int[nc]; planes[0] = yuvImage; strides[0] = PAD(TJ.planeWidth(0, width, subsamp), pad); if (subsamp != TJ.SAMP_GRAY) { strides[1] = strides[2] = PAD(TJ.planeWidth(1, width, subsamp), pad); planes[1] = planes[2] = yuvImage; offsets[1] = offsets[0] + strides[0] * TJ.planeHeight(0, height, subsamp); offsets[2] = offsets[1] + strides[1] * TJ.planeHeight(1, height, subsamp); } yuvPad = pad; setBuf(planes, offsets, width, strides, height, subsamp); } /** * Returns the width of the YUV image (or subregion.) * * @return the width of the YUV image (or subregion) */ public int getWidth() throws Exception { if (yuvWidth < 1) throw new Exception(NO_ASSOC_ERROR); return yuvWidth; } /** * Returns the height of the YUV image (or subregion.) * * @return the height of the YUV image (or subregion) */ public int getHeight() throws Exception { if (yuvHeight < 1) throw new Exception(NO_ASSOC_ERROR); return yuvHeight; } /** * Returns the line padding used in the YUV image buffer (if this image is * stored in a unified buffer rather than separate image planes.) * * @return the line padding used in the YUV image buffer */ public int getPad() throws Exception { if (yuvPlanes == null) throw new Exception(NO_ASSOC_ERROR); if (yuvPad < 1 || ((yuvPad & (yuvPad - 1)) != 0)) throw new Exception("Image is not stored in a unified buffer"); return yuvPad; } /** * Returns the number of bytes per line of each plane in the YUV image. * * @return the number of bytes per line of each plane in the YUV image */ public int[] getStrides() throws Exception { if (yuvStrides == null) throw new Exception(NO_ASSOC_ERROR); return yuvStrides; } /** * Returns the offsets (in bytes) of each plane within the planes of a larger * YUV image. * * @return the offsets (in bytes) of each plane within the planes of a larger * YUV image */ public int[] getOffsets() throws Exception { if (yuvOffsets == null) throw new Exception(NO_ASSOC_ERROR); return yuvOffsets; } /** * Returns the level of chrominance subsampling used in the YUV image. See * {@link TJ#SAMP_444 TJ.SAMP_*}. * * @return the level of chrominance subsampling used in the YUV image */ public int getSubsamp() throws Exception { if (yuvSubsamp < 0 || yuvSubsamp >= TJ.NUMSAMP) throw new Exception(NO_ASSOC_ERROR); return yuvSubsamp; } /** * Returns the YUV image planes. If the image is stored in a unified buffer, * then all image planes will point to that buffer. * * @return the YUV image planes */ public byte[][] getPlanes() throws Exception { if (yuvPlanes == null) throw new Exception(NO_ASSOC_ERROR); return yuvPlanes; } /** * Returns the YUV image buffer (if this image is stored in a unified * buffer rather than separate image planes.) * * @return the YUV image buffer */ public byte[] getBuf() throws Exception { if (yuvPlanes == null || yuvSubsamp < 0 || yuvSubsamp >= TJ.NUMSAMP) throw new Exception(NO_ASSOC_ERROR); int nc = (yuvSubsamp == TJ.SAMP_GRAY ? 1 : 3); for (int i = 1; i < nc; i++) { if (yuvPlanes[i] != yuvPlanes[0]) throw new Exception("Image is not stored in a unified buffer"); } return yuvPlanes[0]; } /** * Returns the size (in bytes) of the YUV image buffer (if this image is * stored in a unified buffer rather than separate image planes.) * * @return the size (in bytes) of the YUV image buffer */ public int getSize() throws Exception { if (yuvPlanes == null || yuvSubsamp < 0 || yuvSubsamp >= TJ.NUMSAMP) throw new Exception(NO_ASSOC_ERROR); int nc = (yuvSubsamp == TJ.SAMP_GRAY ? 1 : 3); if (yuvPad < 1) throw new Exception("Image is not stored in a unified buffer"); for (int i = 1; i < nc; i++) { if (yuvPlanes[i] != yuvPlanes[0]) throw new Exception("Image is not stored in a unified buffer"); } return TJ.bufSizeYUV(yuvWidth, yuvPad, yuvHeight, yuvSubsamp); } private static final int PAD(int v, int p) { return (v + p - 1) & (~(p - 1)); } protected long handle = 0; protected byte[][] yuvPlanes = null; protected int[] yuvOffsets = null; protected int[] yuvStrides = null; protected int yuvPad = 0; protected int yuvWidth = 0; protected int yuvHeight = 0; protected int yuvSubsamp = -1; }; libjpeg-turbo-1.4.2/java/org/libjpegturbo/turbojpeg/TJCustomFilter.java0000644000076500007650000000710412600050400023125 00000000000000/* * Copyright (C)2011, 2013 D. R. Commander. All Rights Reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * - Neither the name of the libjpeg-turbo Project nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS", * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ package org.libjpegturbo.turbojpeg; import java.awt.*; import java.nio.*; /** * Custom filter callback interface */ public interface TJCustomFilter { /** * A callback function that can be used to modify the DCT coefficients after * they are losslessly transformed but before they are transcoded to a new * JPEG image. This allows for custom filters or other transformations to be * applied in the frequency domain. * * @param coeffBuffer a buffer containing transformed DCT coefficients. * (NOTE: this buffer is not guaranteed to be valid once the callback * returns, so applications wishing to hand off the DCT coefficients to * another function or library should make a copy of them within the body of * the callback.) * * @param bufferRegion rectangle containing the width and height of * coeffBuffer as well as its offset relative to the component * plane. TurboJPEG implementations may choose to split each component plane * into multiple DCT coefficient buffers and call the callback function once * for each buffer. * * @param planeRegion rectangle containing the width and height of the * component plane to which coeffBuffer belongs * * @param componentID ID number of the component plane to which * coeffBuffer belongs (Y, Cb, and Cr have, respectively, ID's * of 0, 1, and 2 in typical JPEG images.) * * @param transformID ID number of the transformed image to which * coeffBuffer belongs. This is the same as the index of the * transform in the transforms array that was passed to {@link * TJTransformer#transform TJTransformer.transform()}. * * @param transform a {@link TJTransform} instance that specifies the * parameters and/or cropping region for this transform */ void customFilter(ShortBuffer coeffBuffer, Rectangle bufferRegion, Rectangle planeRegion, int componentID, int transformID, TJTransform transform) throws Exception; } libjpeg-turbo-1.4.2/java/org/libjpegturbo/turbojpeg/TJScalingFactor.java0000644000076500007650000000622112600050400023223 00000000000000/* * Copyright (C)2011 D. R. Commander. All Rights Reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * - Neither the name of the libjpeg-turbo Project nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS", * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ package org.libjpegturbo.turbojpeg; /** * Fractional scaling factor */ public class TJScalingFactor { public TJScalingFactor(int num, int denom) throws Exception { if (num < 1 || denom < 1) throw new Exception("Numerator and denominator must be >= 1"); this.num = num; this.denom = denom; } /** * Returns numerator * * @return numerator */ public int getNum() { return num; } /** * Returns denominator * * @return denominator */ public int getDenom() { return denom; } /** * Returns the scaled value of dimension. This function * performs the integer equivalent of * ceil(dimension * scalingFactor). * * @return the scaled value of dimension. */ public int getScaled(int dimension) { return (dimension * num + denom - 1) / denom; } /** * Returns true or false, depending on whether this instance and * other have the same numerator and denominator. * * @return true or false, depending on whether this instance and * other have the same numerator and denominator. */ public boolean equals(TJScalingFactor other) { return (this.num == other.num && this.denom == other.denom); } /** * Returns true or false, depending on whether this instance is equal to * 1/1. * * @return true or false, depending on whether this instance is equal to * 1/1. */ public boolean isOne() { return (num == 1 && denom == 1); } /** * Numerator */ private int num = 1; /** * Denominator */ private int denom = 1; }; libjpeg-turbo-1.4.2/java/org/libjpegturbo/turbojpeg/TJTransform.java0000644000076500007650000001665012600050400022466 00000000000000/* * Copyright (C)2011, 2013 D. R. Commander. All Rights Reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * - Neither the name of the libjpeg-turbo Project nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS", * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ package org.libjpegturbo.turbojpeg; import java.awt.*; /** * Lossless transform parameters */ public class TJTransform extends Rectangle { private static final long serialVersionUID = -127367705761430371L; /** * The number of lossless transform operations */ public static final int NUMOP = 8; /** * Do not transform the position of the image pixels. */ public static final int OP_NONE = 0; /** * Flip (mirror) image horizontally. This transform is imperfect if there * are any partial MCU blocks on the right edge. * @see #OPT_PERFECT */ public static final int OP_HFLIP = 1; /** * Flip (mirror) image vertically. This transform is imperfect if there are * any partial MCU blocks on the bottom edge. * @see #OPT_PERFECT */ public static final int OP_VFLIP = 2; /** * Transpose image (flip/mirror along upper left to lower right axis). This * transform is always perfect. * @see #OPT_PERFECT */ public static final int OP_TRANSPOSE = 3; /** * Transverse transpose image (flip/mirror along upper right to lower left * axis). This transform is imperfect if there are any partial MCU blocks in * the image. * @see #OPT_PERFECT */ public static final int OP_TRANSVERSE = 4; /** * Rotate image clockwise by 90 degrees. This transform is imperfect if * there are any partial MCU blocks on the bottom edge. * @see #OPT_PERFECT */ public static final int OP_ROT90 = 5; /** * Rotate image 180 degrees. This transform is imperfect if there are any * partial MCU blocks in the image. * @see #OPT_PERFECT */ public static final int OP_ROT180 = 6; /** * Rotate image counter-clockwise by 90 degrees. This transform is imperfect * if there are any partial MCU blocks on the right edge. * @see #OPT_PERFECT */ public static final int OP_ROT270 = 7; /** * This option will cause {@link TJTransformer#transform * TJTransformer.transform()} to throw an exception if the transform is not * perfect. Lossless transforms operate on MCU blocks, whose size depends on * the level of chrominance subsampling used. If the image's width or height * is not evenly divisible by the MCU block size (see {@link TJ#getMCUWidth} * and {@link TJ#getMCUHeight}), then there will be partial MCU blocks on the * right and/or bottom edges. It is not possible to move these partial MCU * blocks to the top or left of the image, so any transform that would * require that is "imperfect." If this option is not specified, then any * partial MCU blocks that cannot be transformed will be left in place, which * will create odd-looking strips on the right or bottom edge of the image. */ public static final int OPT_PERFECT = 1; /** * This option will discard any partial MCU blocks that cannot be * transformed. */ public static final int OPT_TRIM = 2; /** * This option will enable lossless cropping. */ public static final int OPT_CROP = 4; /** * This option will discard the color data in the input image and produce * a grayscale output image. */ public static final int OPT_GRAY = 8; /** * This option will prevent {@link TJTransformer#transform * TJTransformer.transform()} from outputting a JPEG image for this * particular transform. This can be used in conjunction with a custom * filter to capture the transformed DCT coefficients without transcoding * them. */ public static final int OPT_NOOUTPUT = 16; /** * Create a new lossless transform instance. */ public TJTransform() { } /** * Create a new lossless transform instance with the given parameters. * * @param x the left boundary of the cropping region. This must be evenly * divisible by the MCU block width (see {@link TJ#getMCUWidth}) * * @param y the upper boundary of the cropping region. This must be evenly * divisible by the MCU block height (see {@link TJ#getMCUHeight}) * * @param w the width of the cropping region. Setting this to 0 is the * equivalent of setting it to (width of the source JPEG image - * x). * * @param h the height of the cropping region. Setting this to 0 is the * equivalent of setting it to (height of the source JPEG image - * y). * * @param op one of the transform operations (OP_*) * * @param options the bitwise OR of one or more of the transform options * (OPT_*) * * @param cf an instance of an object that implements the {@link * TJCustomFilter} interface, or null if no custom filter is needed */ public TJTransform(int x, int y, int w, int h, int op, int options, TJCustomFilter cf) throws Exception { super(x, y, w, h); this.op = op; this.options = options; this.cf = cf; } /** * Create a new lossless transform instance with the given parameters. * * @param r a Rectangle instance that specifies the cropping * region. See {@link * #TJTransform(int, int, int, int, int, int, TJCustomFilter)} for more * detail. * * @param op one of the transform operations (OP_*) * * @param options the bitwise OR of one or more of the transform options * (OPT_*) * * @param cf an instance of an object that implements the {@link * TJCustomFilter} interface, or null if no custom filter is needed */ public TJTransform(Rectangle r, int op, int options, TJCustomFilter cf) throws Exception { super(r); this.op = op; this.options = options; this.cf = cf; } /** * Transform operation (one of OP_*) */ public int op = 0; /** * Transform options (bitwise OR of one or more of OPT_*) */ public int options = 0; /** * Custom filter instance */ public TJCustomFilter cf = null; } libjpeg-turbo-1.4.2/java/org/libjpegturbo/turbojpeg/TJLoader.java.tmpl0000644000076500007650000000502412600050400022665 00000000000000/* * Copyright (C)2011-2013 D. R. Commander. All Rights Reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * - Neither the name of the libjpeg-turbo Project nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS", * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ package org.libjpegturbo.turbojpeg; final class TJLoader { static void load() { try { System.loadLibrary("turbojpeg"); } catch (java.lang.UnsatisfiedLinkError e) { String os = System.getProperty("os.name").toLowerCase(); if (os.indexOf("mac") >= 0) { try { System.load("%{__libdir}/libturbojpeg.jnilib"); } catch (java.lang.UnsatisfiedLinkError e2) { System.load("/usr/lib/libturbojpeg.jnilib"); } } else { try { System.load("%{__libdir}/libturbojpeg.so"); } catch (java.lang.UnsatisfiedLinkError e3) { String libdir = "%{__libdir}"; if (libdir.equals("/opt/libjpeg-turbo/lib64")) { System.load("/opt/libjpeg-turbo/lib32/libturbojpeg.so"); } else if (libdir.equals("/opt/libjpeg-turbo/lib32")) { System.load("/opt/libjpeg-turbo/lib64/libturbojpeg.so"); } else { throw e3; } } } } } }; libjpeg-turbo-1.4.2/java/README0000644000076500007650000000505312600050400013005 00000000000000TurboJPEG Java Wrapper ====================== The TurboJPEG shared library can optionally be built with a Java Native Interface wrapper, which allows the library to be loaded and used directly from Java applications. The Java front end for this is defined in several classes located under org/libjpegturbo/turbojpeg. The source code for these Java classes is licensed under a BSD-style license, so the files can be incorporated directly into both open source and proprietary projects without restriction. A Java archive (JAR) file containing these classes is also shipped with the "official" distribution packages of libjpeg-turbo. TJExample.java, which should also be located in the same directory as this README file, demonstrates how to use the TurboJPEG Java API to compress and decompress JPEG images in memory. Performance Pitfalls -------------------- The TurboJPEG Java API defines several convenience methods that can allocate image buffers or instantiate classes to hold the result of compress, decompress, or transform operations. However, if you use these methods, then be mindful of the amount of new data you are creating on the heap. It may be necessary to manually invoke the garbage collector to prevent heap exhaustion or to prevent performance degradation. Background garbage collection can kill performance, particularly in a multi-threaded environment (Java pauses all threads when the GC runs.) The TurboJPEG Java API always gives you the option of pre-allocating your own source and destination buffers, which allows you to re-use those buffers for compressing/decompressing multiple images. If the image sequence you are compressing or decompressing consists of images of the same size, then pre-allocating the buffers is recommended. Installation Directory ---------------------- The TurboJPEG Java Wrapper will look for the TurboJPEG JNI library (libturbojpeg.so, libturbojpeg.jnilib, or turbojpeg.dll) in the system library paths or in any paths specified in LD_LIBRARY_PATH (Un*x), DYLD_LIBRARY_PATH (Mac), or PATH (Windows.) Failing this, on Un*x and Mac systems, the wrapper will look for the JNI library under the library directory configured when libjpeg-turbo was built. If that library directory is /opt/libjpeg-turbo/lib32, then /opt/libjpeg-turbo/lib64 is also searched, and vice versa. If you installed the JNI library into another directory, then you will need to pass an argument of -Djava.library.path={path_to_JNI_library} to java, or manipulate LD_LIBRARY_PATH, DYLD_LIBRARY_PATH, or PATH to include the directory containing the JNI library. libjpeg-turbo-1.4.2/java/Makefile.am0000644000076500007650000000476012600050400014165 00000000000000JAVAROOT = . org/libjpegturbo/turbojpeg/TJLoader.java: $(srcdir)/org/libjpegturbo/turbojpeg/TJLoader.java.tmpl mkdir -p org/libjpegturbo/turbojpeg; \ cat $(srcdir)/org/libjpegturbo/turbojpeg/TJLoader.java.tmpl | \ sed s@%{__libdir}@$(libdir)@g > org/libjpegturbo/turbojpeg/TJLoader.java JAVASOURCES = org/libjpegturbo/turbojpeg/TJ.java \ org/libjpegturbo/turbojpeg/TJCompressor.java \ org/libjpegturbo/turbojpeg/TJCustomFilter.java \ org/libjpegturbo/turbojpeg/TJDecompressor.java \ org/libjpegturbo/turbojpeg/TJScalingFactor.java \ org/libjpegturbo/turbojpeg/TJTransform.java \ org/libjpegturbo/turbojpeg/TJTransformer.java \ org/libjpegturbo/turbojpeg/YUVImage.java \ TJExample.java \ TJUnitTest.java \ TJBench.java JNIHEADERS = org_libjpegturbo_turbojpeg_TJ.h \ org_libjpegturbo_turbojpeg_TJCompressor.h \ org_libjpegturbo_turbojpeg_TJDecompressor.h \ org_libjpegturbo_turbojpeg_TJTransformer.h if WITH_JAVA nodist_noinst_JAVA = ${JAVASOURCES} org/libjpegturbo/turbojpeg/TJLoader.java JAVA_CLASSES = org/libjpegturbo/turbojpeg/TJ.class \ org/libjpegturbo/turbojpeg/TJCompressor.class \ org/libjpegturbo/turbojpeg/TJCustomFilter.class \ org/libjpegturbo/turbojpeg/TJDecompressor.class \ org/libjpegturbo/turbojpeg/TJLoader.class \ org/libjpegturbo/turbojpeg/TJScalingFactor.class \ org/libjpegturbo/turbojpeg/TJTransform.class \ org/libjpegturbo/turbojpeg/TJTransformer.class \ org/libjpegturbo/turbojpeg/YUVImage.class \ TJExample.class \ TJUnitTest.class \ TJBench.class all: all-am turbojpeg.jar turbojpeg.jar: $(JAVA_CLASSES) ${srcdir}/MANIFEST.MF $(JAR) cfm turbojpeg.jar ${srcdir}/MANIFEST.MF $(JAVA_CLASSES) clean-local: rm -f turbojpeg.jar install-exec-local: turbojpeg.jar mkdir -p $(DESTDIR)/$(datadir)/classes $(INSTALL) -m 644 turbojpeg.jar $(DESTDIR)/$(datadir)/classes/ uninstall-local: rm -f $(DESTDIR)/$(datadir)/classes/turbojpeg.jar if [ -d $(DESTDIR)/$(datadir)/classes ]; then rmdir $(DESTDIR)/$(datadir)/classes; fi headers: all javah -d ${srcdir} org.libjpegturbo.turbojpeg.TJ; \ javah -d ${srcdir} org.libjpegturbo.turbojpeg.TJCompressor; \ javah -d ${srcdir} org.libjpegturbo.turbojpeg.TJDecompressor; \ javah -d ${srcdir} org.libjpegturbo.turbojpeg.TJTransformer docs: all mkdir -p ${srcdir}/doc; \ javadoc -notimestamp -d ${srcdir}/doc -sourcepath ${srcdir} org.libjpegturbo.turbojpeg endif EXTRA_DIST = MANIFEST.MF ${JAVASOURCES} ${JNIHEADERS} doc CMakeLists.txt \ org/libjpegturbo/turbojpeg/TJLoader.java.tmpl \ org/libjpegturbo/turbojpeg/TJLoader.java.in libjpeg-turbo-1.4.2/java/CMakeLists.txt0000644000076500007650000000364112600050400014666 00000000000000set(JAR_FILE turbojpeg.jar) set(MANIFEST_FILE ${CMAKE_CURRENT_SOURCE_DIR}/MANIFEST.MF) set(JAVA_CLASSNAMES org/libjpegturbo/turbojpeg/TJ org/libjpegturbo/turbojpeg/TJCompressor org/libjpegturbo/turbojpeg/TJCustomFilter org/libjpegturbo/turbojpeg/TJDecompressor org/libjpegturbo/turbojpeg/TJScalingFactor org/libjpegturbo/turbojpeg/TJTransform org/libjpegturbo/turbojpeg/TJTransformer org/libjpegturbo/turbojpeg/YUVImage TJUnitTest TJExample TJBench) if(MSVC_IDE) set(OBJDIR "${CMAKE_CURRENT_BINARY_DIR}/${CMAKE_CFG_INTDIR}") else() set(OBJDIR ${CMAKE_CURRENT_BINARY_DIR}) endif() set(TURBOJPEG_DLL_NAME "turbojpeg") if(MINGW) set(TURBOJPEG_DLL_NAME "libturbojpeg") endif() configure_file(org/libjpegturbo/turbojpeg/TJLoader.java.in ${CMAKE_CURRENT_BINARY_DIR}/org/libjpegturbo/turbojpeg/TJLoader.java) set(JAVA_SOURCES "") set(JAVA_CLASSES "") set(JAVA_CLASSES_FULL "") foreach(class ${JAVA_CLASSNAMES}) set(JAVA_SOURCES ${JAVA_SOURCES} ${CMAKE_CURRENT_SOURCE_DIR}/${class}.java) set(JAVA_CLASSES ${JAVA_CLASSES} ${class}.class) set(JAVA_CLASSES_FULL ${JAVA_CLASSES_FULL} ${OBJDIR}/${class}.class) endforeach() set(JAVA_SOURCES ${JAVA_SOURCES} ${CMAKE_CURRENT_BINARY_DIR}/org/libjpegturbo/turbojpeg/TJLoader.java) set(JAVA_CLASSES ${JAVA_CLASSES} org/libjpegturbo/turbojpeg/TJLoader.class) set(JAVA_CLASSES_FULL ${JAVA_CLASSES_FULL} ${OBJDIR}/org/libjpegturbo/turbojpeg/TJLoader.class) string(REGEX REPLACE " " ";" JAVACFLAGS "${JAVACFLAGS}") add_custom_command(OUTPUT ${JAVA_CLASSES_FULL} DEPENDS ${JAVA_SOURCES} COMMAND ${JAVA_COMPILE} ARGS ${JAVACFLAGS} -d ${OBJDIR} ${JAVA_SOURCES}) add_custom_command(OUTPUT ${JAR_FILE} DEPENDS ${JAVA_CLASSES_FULL} ${MANIFEST_FILE} COMMAND ${JAVA_ARCHIVE} cfm ${JAR_FILE} ${MANIFEST_FILE} ${JAVA_CLASSES} WORKING_DIRECTORY ${OBJDIR}) add_custom_target(java ALL DEPENDS ${JAR_FILE}) install(FILES ${CMAKE_CURRENT_BINARY_DIR}/${JAR_FILE} DESTINATION classes) libjpeg-turbo-1.4.2/java/TJExample.java0000644000076500007650000003525412600050400014627 00000000000000/* * Copyright (C)2011-2012, 2014 D. R. Commander. All Rights Reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * - Neither the name of the libjpeg-turbo Project nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS", * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * This program demonstrates how to compress and decompress JPEG files using * the TurboJPEG JNI wrapper */ import java.io.*; import java.awt.*; import java.awt.image.*; import java.nio.*; import javax.imageio.*; import javax.swing.*; import org.libjpegturbo.turbojpeg.*; public class TJExample implements TJCustomFilter { public static final String classname = new TJExample().getClass().getName(); private static void usage() throws Exception { System.out.println("\nUSAGE: java " + classname + " [options]\n"); System.out.println("Input and output files can be any image format that the Java Image I/O"); System.out.println("extensions understand. If either filename ends in a .jpg extension, then"); System.out.println("TurboJPEG will be used to compress or decompress the file.\n"); System.out.println("Options:\n"); System.out.println("-scale M/N = if the input image is a JPEG file, scale the width/height of the"); System.out.print(" output image by a factor of M/N (M/N = "); for (int i = 0; i < sf.length; i++) { System.out.print(sf[i].getNum() + "/" + sf[i].getDenom()); if (sf.length == 2 && i != sf.length - 1) System.out.print(" or "); else if (sf.length > 2) { if (i != sf.length - 1) System.out.print(", "); if (i == sf.length - 2) System.out.print("or "); } } System.out.println(")\n"); System.out.println("-samp <444|422|420|gray> = If the output image is a JPEG file, this specifies"); System.out.println(" the level of chrominance subsampling to use when"); System.out.println(" recompressing it. Default is to use the same level"); System.out.println(" of subsampling as the input, if the input is a JPEG"); System.out.println(" file, or 4:4:4 otherwise.\n"); System.out.println("-q <1-100> = If the output image is a JPEG file, this specifies the JPEG"); System.out.println(" quality to use when recompressing it (default = 95).\n"); System.out.println("-hflip, -vflip, -transpose, -transverse, -rot90, -rot180, -rot270 ="); System.out.println(" If the input image is a JPEG file, perform the corresponding lossless"); System.out.println(" transform prior to decompression (these options are mutually exclusive)\n"); System.out.println("-grayscale = If the input image is a JPEG file, perform lossless grayscale"); System.out.println(" conversion prior to decompression (can be combined with the other"); System.out.println(" transforms above)\n"); System.out.println("-crop X,Y,WxH = If the input image is a JPEG file, perform lossless cropping"); System.out.println(" prior to decompression. X,Y specifies the upper left corner of the"); System.out.println(" cropping region, and WxH specifies its width and height. X,Y must be"); System.out.println(" evenly divible by the MCU block size (8x8 if the source image was"); System.out.println(" compressed using no subsampling or grayscale, or 16x8 for 4:2:2 or 16x16"); System.out.println(" for 4:2:0.)\n"); System.out.println("-display = Display output image (Output file need not be specified in this"); System.out.println(" case.)\n"); System.out.println("-fastupsample = Use the fastest chrominance upsampling algorithm available in"); System.out.println(" the underlying codec\n"); System.out.println("-fastdct = Use the fastest DCT/IDCT algorithms available in the underlying"); System.out.println(" codec\n"); System.out.println("-accuratedct = Use the most accurate DCT/IDCT algorithms available in the"); System.out.println(" underlying codec\n"); System.exit(1); } private static final String[] sampName = { "4:4:4", "4:2:2", "4:2:0", "Grayscale", "4:4:0" }; public static void main(String[] argv) { BufferedImage img = null; byte[] bmpBuf = null; TJTransform xform = new TJTransform(); int flags = 0; try { sf = TJ.getScalingFactors(); if (argv.length < 2) { usage(); } TJScalingFactor scaleFactor = new TJScalingFactor(1, 1); String inFormat = "jpg", outFormat = "jpg"; int outSubsamp = -1, outQual = 95; boolean display = false; if (argv.length > 1) { for (int i = 1; i < argv.length; i++) { if (argv[i].length() < 2) continue; if (argv[i].length() > 2 && argv[i].substring(0, 3).equalsIgnoreCase("-sc")) { int match = 0; if (i < argv.length - 1) { String[] scaleArg = argv[++i].split("/"); if (scaleArg.length == 2) { TJScalingFactor tempsf = new TJScalingFactor(Integer.parseInt(scaleArg[0]), Integer.parseInt(scaleArg[1])); for (int j = 0; j < sf.length; j++) { if (tempsf.equals(sf[j])) { scaleFactor = sf[j]; match = 1; break; } } } } if (match != 1) usage(); } if (argv[i].equalsIgnoreCase("-h") || argv[i].equalsIgnoreCase("-?")) usage(); if (argv[i].length() > 2 && argv[i].substring(0, 3).equalsIgnoreCase("-sa")) { if (i < argv.length - 1) { i++; if (argv[i].substring(0, 1).equalsIgnoreCase("g")) outSubsamp = TJ.SAMP_GRAY; else if (argv[i].equals("444")) outSubsamp = TJ.SAMP_444; else if (argv[i].equals("422")) outSubsamp = TJ.SAMP_422; else if (argv[i].equals("420")) outSubsamp = TJ.SAMP_420; else usage(); } else usage(); } if (argv[i].substring(0, 2).equalsIgnoreCase("-q")) { if (i < argv.length - 1) { int qual = Integer.parseInt(argv[++i]); if (qual >= 1 && qual <= 100) outQual = qual; else usage(); } else usage(); } if (argv[i].substring(0, 2).equalsIgnoreCase("-g")) xform.options |= TJTransform.OPT_GRAY; if (argv[i].equalsIgnoreCase("-hflip")) xform.op = TJTransform.OP_HFLIP; if (argv[i].equalsIgnoreCase("-vflip")) xform.op = TJTransform.OP_VFLIP; if (argv[i].equalsIgnoreCase("-transpose")) xform.op = TJTransform.OP_TRANSPOSE; if (argv[i].equalsIgnoreCase("-transverse")) xform.op = TJTransform.OP_TRANSVERSE; if (argv[i].equalsIgnoreCase("-rot90")) xform.op = TJTransform.OP_ROT90; if (argv[i].equalsIgnoreCase("-rot180")) xform.op = TJTransform.OP_ROT180; if (argv[i].equalsIgnoreCase("-rot270")) xform.op = TJTransform.OP_ROT270; if (argv[i].equalsIgnoreCase("-custom")) xform.cf = new TJExample(); else if (argv[i].length() > 2 && argv[i].substring(0, 2).equalsIgnoreCase("-c")) { if (i >= argv.length - 1) usage(); String[] cropArg = argv[++i].split(","); if (cropArg.length != 3) usage(); String[] dimArg = cropArg[2].split("[xX]"); if (dimArg.length != 2) usage(); int tempx = Integer.parseInt(cropArg[0]); int tempy = Integer.parseInt(cropArg[1]); int tempw = Integer.parseInt(dimArg[0]); int temph = Integer.parseInt(dimArg[1]); if (tempx < 0 || tempy < 0 || tempw < 0 || temph < 0) usage(); xform.x = tempx; xform.y = tempy; xform.width = tempw; xform.height = temph; xform.options |= TJTransform.OPT_CROP; } if (argv[i].substring(0, 2).equalsIgnoreCase("-d")) display = true; if (argv[i].equalsIgnoreCase("-fastupsample")) { System.out.println("Using fast upsampling code"); flags |= TJ.FLAG_FASTUPSAMPLE; } if (argv[i].equalsIgnoreCase("-fastdct")) { System.out.println("Using fastest DCT/IDCT algorithm"); flags |= TJ.FLAG_FASTDCT; } if (argv[i].equalsIgnoreCase("-accuratedct")) { System.out.println("Using most accurate DCT/IDCT algorithm"); flags |= TJ.FLAG_ACCURATEDCT; } } } String[] inFileTokens = argv[0].split("\\."); if (inFileTokens.length > 1) inFormat = inFileTokens[inFileTokens.length - 1]; String[] outFileTokens; if (display) outFormat = "bmp"; else { outFileTokens = argv[1].split("\\."); if (outFileTokens.length > 1) outFormat = outFileTokens[outFileTokens.length - 1]; } File file = new File(argv[0]); int width, height; if (inFormat.equalsIgnoreCase("jpg")) { FileInputStream fis = new FileInputStream(file); int inputSize = fis.available(); if (inputSize < 1) { System.out.println("Input file contains no data"); System.exit(1); } byte[] inputBuf = new byte[inputSize]; fis.read(inputBuf); fis.close(); TJDecompressor tjd; if (xform.op != TJTransform.OP_NONE || xform.options != 0 || xform.cf != null) { TJTransformer tjt = new TJTransformer(inputBuf); TJTransform[] t = new TJTransform[1]; t[0] = xform; t[0].options |= TJTransform.OPT_TRIM; TJDecompressor[] tjdx = tjt.transform(t, 0); tjd = tjdx[0]; } else tjd = new TJDecompressor(inputBuf); width = tjd.getWidth(); height = tjd.getHeight(); int inSubsamp = tjd.getSubsamp(); System.out.println("Source Image: " + width + " x " + height + " pixels, " + sampName[inSubsamp] + " subsampling"); if (outSubsamp < 0) outSubsamp = inSubsamp; if (outFormat.equalsIgnoreCase("jpg") && (xform.op != TJTransform.OP_NONE || xform.options != 0) && scaleFactor.isOne()) { file = new File(argv[1]); FileOutputStream fos = new FileOutputStream(file); fos.write(tjd.getJPEGBuf(), 0, tjd.getJPEGSize()); fos.close(); System.exit(0); } width = scaleFactor.getScaled(width); height = scaleFactor.getScaled(height); if (!outFormat.equalsIgnoreCase("jpg")) img = tjd.decompress(width, height, BufferedImage.TYPE_INT_RGB, flags); else bmpBuf = tjd.decompress(width, 0, height, TJ.PF_BGRX, flags); tjd.close(); } else { img = ImageIO.read(file); if (img == null) throw new Exception("Input image type not supported."); width = img.getWidth(); height = img.getHeight(); if (outSubsamp < 0) { if (img.getType() == BufferedImage.TYPE_BYTE_GRAY) outSubsamp = TJ.SAMP_GRAY; else outSubsamp = TJ.SAMP_444; } } System.gc(); if (!display) System.out.print("Dest. Image (" + outFormat + "): " + width + " x " + height + " pixels"); if (display) { ImageIcon icon = new ImageIcon(img); JLabel label = new JLabel(icon, JLabel.CENTER); JOptionPane.showMessageDialog(null, label, "Output Image", JOptionPane.PLAIN_MESSAGE); } else if (outFormat.equalsIgnoreCase("jpg")) { System.out.println(", " + sampName[outSubsamp] + " subsampling, quality = " + outQual); TJCompressor tjc = new TJCompressor(); int jpegSize; byte[] jpegBuf; tjc.setSubsamp(outSubsamp); tjc.setJPEGQuality(outQual); if (img != null) tjc.setSourceImage(img, 0, 0, 0, 0); else { tjc.setSourceImage(bmpBuf, 0, 0, width, 0, height, TJ.PF_BGRX); } jpegBuf = tjc.compress(flags); jpegSize = tjc.getCompressedSize(); tjc.close(); file = new File(argv[1]); FileOutputStream fos = new FileOutputStream(file); fos.write(jpegBuf, 0, jpegSize); fos.close(); } else { System.out.print("\n"); file = new File(argv[1]); ImageIO.write(img, outFormat, file); } } catch(Exception e) { e.printStackTrace(); System.exit(-1); } } public void customFilter(ShortBuffer coeffBuffer, Rectangle bufferRegion, Rectangle planeRegion, int componentIndex, int transformIndex, TJTransform transform) throws Exception { for (int i = 0; i < bufferRegion.width * bufferRegion.height; i++) { coeffBuffer.put(i, (short)(-coeffBuffer.get(i))); } } static TJScalingFactor[] sf = null; }; libjpeg-turbo-1.4.2/java/Makefile.in0000644000076500007650000004010412600050415014174 00000000000000# Makefile.in generated by automake 1.15 from Makefile.am. # @configure_input@ # Copyright (C) 1994-2014 Free Software Foundation, Inc. # This Makefile.in is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY, to the extent permitted by law; without # even the implied warranty of MERCHANTABILITY or FITNESS FOR A # PARTICULAR PURPOSE. @SET_MAKE@ VPATH = @srcdir@ am__is_gnu_make = { \ if test -z '$(MAKELEVEL)'; then \ false; \ elif test -n '$(MAKE_HOST)'; then \ true; \ elif test -n '$(MAKE_VERSION)' && test -n '$(CURDIR)'; then \ true; \ else \ false; \ fi; \ } am__make_running_with_option = \ case $${target_option-} in \ ?) ;; \ *) echo "am__make_running_with_option: internal error: invalid" \ "target option '$${target_option-}' specified" >&2; \ exit 1;; \ esac; \ has_opt=no; \ sane_makeflags=$$MAKEFLAGS; \ if $(am__is_gnu_make); then \ sane_makeflags=$$MFLAGS; \ else \ case $$MAKEFLAGS in \ *\\[\ \ ]*) \ bs=\\; \ sane_makeflags=`printf '%s\n' "$$MAKEFLAGS" \ | sed "s/$$bs$$bs[$$bs $$bs ]*//g"`;; \ esac; \ fi; \ skip_next=no; \ strip_trailopt () \ { \ flg=`printf '%s\n' "$$flg" | sed "s/$$1.*$$//"`; \ }; \ for flg in $$sane_makeflags; do \ test $$skip_next = yes && { skip_next=no; continue; }; \ case $$flg in \ *=*|--*) continue;; \ -*I) strip_trailopt 'I'; skip_next=yes;; \ -*I?*) strip_trailopt 'I';; \ -*O) strip_trailopt 'O'; skip_next=yes;; \ -*O?*) strip_trailopt 'O';; \ -*l) strip_trailopt 'l'; skip_next=yes;; \ -*l?*) strip_trailopt 'l';; \ -[dEDm]) skip_next=yes;; \ -[JT]) skip_next=yes;; \ esac; \ case $$flg in \ *$$target_option*) has_opt=yes; break;; \ esac; \ done; \ test $$has_opt = yes am__make_dryrun = (target_option=n; $(am__make_running_with_option)) am__make_keepgoing = (target_option=k; $(am__make_running_with_option)) pkgdatadir = $(datadir)/@PACKAGE@ pkgincludedir = $(includedir)/@PACKAGE@ pkglibdir = $(libdir)/@PACKAGE@ pkglibexecdir = $(libexecdir)/@PACKAGE@ am__cd = CDPATH="$${ZSH_VERSION+.}$(PATH_SEPARATOR)" && cd install_sh_DATA = $(install_sh) -c -m 644 install_sh_PROGRAM = $(install_sh) -c install_sh_SCRIPT = $(install_sh) -c INSTALL_HEADER = $(INSTALL_DATA) transform = $(program_transform_name) NORMAL_INSTALL = : PRE_INSTALL = : POST_INSTALL = : NORMAL_UNINSTALL = : PRE_UNINSTALL = : POST_UNINSTALL = : build_triplet = @build@ host_triplet = @host@ subdir = java ACLOCAL_M4 = $(top_srcdir)/aclocal.m4 am__aclocal_m4_deps = $(top_srcdir)/acinclude.m4 \ $(top_srcdir)/configure.ac am__configure_deps = $(am__aclocal_m4_deps) $(CONFIGURE_DEPENDENCIES) \ $(ACLOCAL_M4) DIST_COMMON = $(srcdir)/Makefile.am $(am__DIST_COMMON) mkinstalldirs = $(install_sh) -d CONFIG_HEADER = $(top_builddir)/config.h $(top_builddir)/jconfig.h \ $(top_builddir)/jconfigint.h CONFIG_CLEAN_FILES = CONFIG_CLEAN_VPATH_FILES = AM_V_P = $(am__v_P_@AM_V@) am__v_P_ = $(am__v_P_@AM_DEFAULT_V@) am__v_P_0 = false am__v_P_1 = : AM_V_GEN = $(am__v_GEN_@AM_V@) am__v_GEN_ = $(am__v_GEN_@AM_DEFAULT_V@) am__v_GEN_0 = @echo " GEN " $@; am__v_GEN_1 = AM_V_at = $(am__v_at_@AM_V@) am__v_at_ = $(am__v_at_@AM_DEFAULT_V@) am__v_at_0 = @ am__v_at_1 = SOURCES = DIST_SOURCES = am__can_run_installinfo = \ case $$AM_UPDATE_INFO_DIR in \ n|no|NO) false;; \ *) (install-info --version) >/dev/null 2>&1;; \ esac CLASSPATH_ENV = CLASSPATH=$(JAVAROOT):$(srcdir)/$(JAVAROOT)$${CLASSPATH:+":$$CLASSPATH"} am__java_sources = $(nodist_noinst_JAVA) am__tagged_files = $(HEADERS) $(SOURCES) $(TAGS_FILES) $(LISP) am__DIST_COMMON = $(srcdir)/Makefile.in README DISTFILES = $(DIST_COMMON) $(DIST_SOURCES) $(TEXINFOS) $(EXTRA_DIST) ACLOCAL = @ACLOCAL@ AMTAR = @AMTAR@ AM_DEFAULT_VERBOSITY = @AM_DEFAULT_VERBOSITY@ AR = @AR@ AUTOCONF = @AUTOCONF@ AUTOHEADER = @AUTOHEADER@ AUTOMAKE = @AUTOMAKE@ AWK = @AWK@ BUILD = @BUILD@ CC = @CC@ CCAS = @CCAS@ CCASDEPMODE = @CCASDEPMODE@ CCASFLAGS = @CCASFLAGS@ CCDEPMODE = @CCDEPMODE@ CFLAGS = @CFLAGS@ CPP = @CPP@ CPPFLAGS = @CPPFLAGS@ CYGPATH_W = @CYGPATH_W@ DEBARCH = @DEBARCH@ DEFS = @DEFS@ DEPDIR = @DEPDIR@ DLLTOOL = @DLLTOOL@ DSYMUTIL = @DSYMUTIL@ DUMPBIN = @DUMPBIN@ ECHO_C = @ECHO_C@ ECHO_N = @ECHO_N@ ECHO_T = @ECHO_T@ EGREP = @EGREP@ EXEEXT = @EXEEXT@ FGREP = @FGREP@ GREP = @GREP@ INSTALL = @INSTALL@ INSTALL_DATA = @INSTALL_DATA@ INSTALL_PROGRAM = @INSTALL_PROGRAM@ INSTALL_SCRIPT = @INSTALL_SCRIPT@ INSTALL_STRIP_PROGRAM = @INSTALL_STRIP_PROGRAM@ JAR = @JAR@ JAVA = @JAVA@ JAVAC = @JAVAC@ JAVACFLAGS = @JAVACFLAGS@ JAVA_RPM_CONTENTS_1 = @JAVA_RPM_CONTENTS_1@ JAVA_RPM_CONTENTS_2 = @JAVA_RPM_CONTENTS_2@ JNI_CFLAGS = @JNI_CFLAGS@ JPEG_LIB_VERSION = @JPEG_LIB_VERSION@ JPEG_LIB_VERSION_DECIMAL = @JPEG_LIB_VERSION_DECIMAL@ LD = @LD@ LDFLAGS = @LDFLAGS@ LIBOBJS = @LIBOBJS@ LIBS = @LIBS@ LIBTOOL = @LIBTOOL@ LIBTOOL_CURRENT = @LIBTOOL_CURRENT@ LIPO = @LIPO@ LN_S = @LN_S@ LTLIBOBJS = @LTLIBOBJS@ LT_SYS_LIBRARY_PATH = @LT_SYS_LIBRARY_PATH@ MAKEINFO = @MAKEINFO@ MANIFEST_TOOL = @MANIFEST_TOOL@ MEM_SRCDST_FUNCTIONS = @MEM_SRCDST_FUNCTIONS@ MKDIR_P = @MKDIR_P@ NAFLAGS = @NAFLAGS@ NASM = @NASM@ NM = @NM@ NMEDIT = @NMEDIT@ OBJDUMP = @OBJDUMP@ OBJEXT = @OBJEXT@ OTOOL = @OTOOL@ OTOOL64 = @OTOOL64@ PACKAGE = @PACKAGE@ PACKAGE_BUGREPORT = @PACKAGE_BUGREPORT@ PACKAGE_NAME = @PACKAGE_NAME@ PACKAGE_STRING = @PACKAGE_STRING@ PACKAGE_TARNAME = @PACKAGE_TARNAME@ PACKAGE_URL = @PACKAGE_URL@ PACKAGE_VERSION = @PACKAGE_VERSION@ PATH_SEPARATOR = @PATH_SEPARATOR@ PKGNAME = @PKGNAME@ RANLIB = @RANLIB@ RPMARCH = @RPMARCH@ RPM_CONFIG_ARGS = @RPM_CONFIG_ARGS@ SED = @SED@ SET_MAKE = @SET_MAKE@ SHELL = @SHELL@ SO_AGE = @SO_AGE@ SO_MAJOR_VERSION = @SO_MAJOR_VERSION@ SO_MINOR_VERSION = @SO_MINOR_VERSION@ STRIP = @STRIP@ VERSION = @VERSION@ VERSION_SCRIPT_FLAG = @VERSION_SCRIPT_FLAG@ WITH_JAVA = @WITH_JAVA@ abs_builddir = @abs_builddir@ abs_srcdir = @abs_srcdir@ abs_top_builddir = @abs_top_builddir@ abs_top_srcdir = @abs_top_srcdir@ ac_ct_AR = @ac_ct_AR@ ac_ct_CC = @ac_ct_CC@ ac_ct_DUMPBIN = @ac_ct_DUMPBIN@ am__include = @am__include@ am__leading_dot = @am__leading_dot@ am__quote = @am__quote@ am__tar = @am__tar@ am__untar = @am__untar@ bindir = @bindir@ build = @build@ build_alias = @build_alias@ build_cpu = @build_cpu@ build_os = @build_os@ build_vendor = @build_vendor@ builddir = @builddir@ datadir = @datadir@ datarootdir = @datarootdir@ docdir = @docdir@ dvidir = @dvidir@ exec_prefix = @exec_prefix@ host = @host@ host_alias = @host_alias@ host_cpu = @host_cpu@ host_os = @host_os@ host_vendor = @host_vendor@ htmldir = @htmldir@ includedir = @includedir@ infodir = @infodir@ install_sh = @install_sh@ libdir = @libdir@ libexecdir = @libexecdir@ localedir = @localedir@ localstatedir = @localstatedir@ mandir = @mandir@ mkdir_p = @mkdir_p@ oldincludedir = @oldincludedir@ pdfdir = @pdfdir@ prefix = @prefix@ program_transform_name = @program_transform_name@ psdir = @psdir@ sbindir = @sbindir@ sharedstatedir = @sharedstatedir@ srcdir = @srcdir@ sysconfdir = @sysconfdir@ target_alias = @target_alias@ top_build_prefix = @top_build_prefix@ top_builddir = @top_builddir@ top_srcdir = @top_srcdir@ JAVAROOT = . JAVASOURCES = org/libjpegturbo/turbojpeg/TJ.java \ org/libjpegturbo/turbojpeg/TJCompressor.java \ org/libjpegturbo/turbojpeg/TJCustomFilter.java \ org/libjpegturbo/turbojpeg/TJDecompressor.java \ org/libjpegturbo/turbojpeg/TJScalingFactor.java \ org/libjpegturbo/turbojpeg/TJTransform.java \ org/libjpegturbo/turbojpeg/TJTransformer.java \ org/libjpegturbo/turbojpeg/YUVImage.java \ TJExample.java \ TJUnitTest.java \ TJBench.java JNIHEADERS = org_libjpegturbo_turbojpeg_TJ.h \ org_libjpegturbo_turbojpeg_TJCompressor.h \ org_libjpegturbo_turbojpeg_TJDecompressor.h \ org_libjpegturbo_turbojpeg_TJTransformer.h @WITH_JAVA_TRUE@nodist_noinst_JAVA = ${JAVASOURCES} org/libjpegturbo/turbojpeg/TJLoader.java @WITH_JAVA_TRUE@JAVA_CLASSES = org/libjpegturbo/turbojpeg/TJ.class \ @WITH_JAVA_TRUE@ org/libjpegturbo/turbojpeg/TJCompressor.class \ @WITH_JAVA_TRUE@ org/libjpegturbo/turbojpeg/TJCustomFilter.class \ @WITH_JAVA_TRUE@ org/libjpegturbo/turbojpeg/TJDecompressor.class \ @WITH_JAVA_TRUE@ org/libjpegturbo/turbojpeg/TJLoader.class \ @WITH_JAVA_TRUE@ org/libjpegturbo/turbojpeg/TJScalingFactor.class \ @WITH_JAVA_TRUE@ org/libjpegturbo/turbojpeg/TJTransform.class \ @WITH_JAVA_TRUE@ org/libjpegturbo/turbojpeg/TJTransformer.class \ @WITH_JAVA_TRUE@ org/libjpegturbo/turbojpeg/YUVImage.class \ @WITH_JAVA_TRUE@ TJExample.class \ @WITH_JAVA_TRUE@ TJUnitTest.class \ @WITH_JAVA_TRUE@ TJBench.class EXTRA_DIST = MANIFEST.MF ${JAVASOURCES} ${JNIHEADERS} doc CMakeLists.txt \ org/libjpegturbo/turbojpeg/TJLoader.java.tmpl \ org/libjpegturbo/turbojpeg/TJLoader.java.in all: all-am .SUFFIXES: $(srcdir)/Makefile.in: $(srcdir)/Makefile.am $(am__configure_deps) @for dep in $?; do \ case '$(am__configure_deps)' in \ *$$dep*) \ ( cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh ) \ && { if test -f $@; then exit 0; else break; fi; }; \ exit 1;; \ esac; \ done; \ echo ' cd $(top_srcdir) && $(AUTOMAKE) --foreign java/Makefile'; \ $(am__cd) $(top_srcdir) && \ $(AUTOMAKE) --foreign java/Makefile Makefile: $(srcdir)/Makefile.in $(top_builddir)/config.status @case '$?' in \ *config.status*) \ cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh;; \ *) \ echo ' cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe)'; \ cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe);; \ esac; $(top_builddir)/config.status: $(top_srcdir)/configure $(CONFIG_STATUS_DEPENDENCIES) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(top_srcdir)/configure: $(am__configure_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(ACLOCAL_M4): $(am__aclocal_m4_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(am__aclocal_m4_deps): mostlyclean-libtool: -rm -f *.lo clean-libtool: -rm -rf .libs _libs classnoinst.stamp: $(am__java_sources) @list1='$?'; list2=; if test -n "$$list1"; then \ for p in $$list1; do \ if test -f $$p; then d=; else d="$(srcdir)/"; fi; \ list2="$$list2 $$d$$p"; \ done; \ echo '$(CLASSPATH_ENV) $(JAVAC) -d $(JAVAROOT) $(AM_JAVACFLAGS) $(JAVACFLAGS) '"$$list2"; \ $(CLASSPATH_ENV) $(JAVAC) -d $(JAVAROOT) $(AM_JAVACFLAGS) $(JAVACFLAGS) $$list2; \ else :; fi echo timestamp > $@ clean-noinstJAVA: -rm -f *.class classnoinst.stamp tags TAGS: ctags CTAGS: cscope cscopelist: distdir: $(DISTFILES) @srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ topsrcdirstrip=`echo "$(top_srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ list='$(DISTFILES)'; \ dist_files=`for file in $$list; do echo $$file; done | \ sed -e "s|^$$srcdirstrip/||;t" \ -e "s|^$$topsrcdirstrip/|$(top_builddir)/|;t"`; \ case $$dist_files in \ */*) $(MKDIR_P) `echo "$$dist_files" | \ sed '/\//!d;s|^|$(distdir)/|;s,/[^/]*$$,,' | \ sort -u` ;; \ esac; \ for file in $$dist_files; do \ if test -f $$file || test -d $$file; then d=.; else d=$(srcdir); fi; \ if test -d $$d/$$file; then \ dir=`echo "/$$file" | sed -e 's,/[^/]*$$,,'`; \ if test -d "$(distdir)/$$file"; then \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ if test -d $(srcdir)/$$file && test $$d != $(srcdir); then \ cp -fpR $(srcdir)/$$file "$(distdir)$$dir" || exit 1; \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ cp -fpR $$d/$$file "$(distdir)$$dir" || exit 1; \ else \ test -f "$(distdir)/$$file" \ || cp -p $$d/$$file "$(distdir)/$$file" \ || exit 1; \ fi; \ done check-am: all-am check: check-am all-am: Makefile classnoinst.stamp installdirs: install: install-am install-exec: install-exec-am install-data: install-data-am uninstall: uninstall-am install-am: all-am @$(MAKE) $(AM_MAKEFLAGS) install-exec-am install-data-am installcheck: installcheck-am install-strip: if test -z '$(STRIP)'; then \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ install; \ else \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ "INSTALL_PROGRAM_ENV=STRIPPROG='$(STRIP)'" install; \ fi mostlyclean-generic: clean-generic: distclean-generic: -test -z "$(CONFIG_CLEAN_FILES)" || rm -f $(CONFIG_CLEAN_FILES) -test . = "$(srcdir)" || test -z "$(CONFIG_CLEAN_VPATH_FILES)" || rm -f $(CONFIG_CLEAN_VPATH_FILES) maintainer-clean-generic: @echo "This command is intended for maintainers to use" @echo "it deletes files that may require special tools to rebuild." @WITH_JAVA_FALSE@uninstall-local: @WITH_JAVA_FALSE@install-exec-local: @WITH_JAVA_FALSE@clean-local: clean: clean-am clean-am: clean-generic clean-libtool clean-local clean-noinstJAVA \ mostlyclean-am distclean: distclean-am -rm -f Makefile distclean-am: clean-am distclean-generic dvi: dvi-am dvi-am: html: html-am html-am: info: info-am info-am: install-data-am: install-dvi: install-dvi-am install-dvi-am: install-exec-am: install-exec-local install-html: install-html-am install-html-am: install-info: install-info-am install-info-am: install-man: install-pdf: install-pdf-am install-pdf-am: install-ps: install-ps-am install-ps-am: installcheck-am: maintainer-clean: maintainer-clean-am -rm -f Makefile maintainer-clean-am: distclean-am maintainer-clean-generic mostlyclean: mostlyclean-am mostlyclean-am: mostlyclean-generic mostlyclean-libtool pdf: pdf-am pdf-am: ps: ps-am ps-am: uninstall-am: uninstall-local .MAKE: install-am install-strip .PHONY: all all-am check check-am clean clean-generic clean-libtool \ clean-local clean-noinstJAVA cscopelist-am ctags-am distclean \ distclean-generic distclean-libtool distdir dvi dvi-am html \ html-am info info-am install install-am install-data \ install-data-am install-dvi install-dvi-am install-exec \ install-exec-am install-exec-local install-html \ install-html-am install-info install-info-am install-man \ install-pdf install-pdf-am install-ps install-ps-am \ install-strip installcheck installcheck-am installdirs \ maintainer-clean maintainer-clean-generic mostlyclean \ mostlyclean-generic mostlyclean-libtool pdf pdf-am ps ps-am \ tags-am uninstall uninstall-am uninstall-local .PRECIOUS: Makefile org/libjpegturbo/turbojpeg/TJLoader.java: $(srcdir)/org/libjpegturbo/turbojpeg/TJLoader.java.tmpl mkdir -p org/libjpegturbo/turbojpeg; \ cat $(srcdir)/org/libjpegturbo/turbojpeg/TJLoader.java.tmpl | \ sed s@%{__libdir}@$(libdir)@g > org/libjpegturbo/turbojpeg/TJLoader.java @WITH_JAVA_TRUE@all: all-am turbojpeg.jar @WITH_JAVA_TRUE@turbojpeg.jar: $(JAVA_CLASSES) ${srcdir}/MANIFEST.MF @WITH_JAVA_TRUE@ $(JAR) cfm turbojpeg.jar ${srcdir}/MANIFEST.MF $(JAVA_CLASSES) @WITH_JAVA_TRUE@clean-local: @WITH_JAVA_TRUE@ rm -f turbojpeg.jar @WITH_JAVA_TRUE@install-exec-local: turbojpeg.jar @WITH_JAVA_TRUE@ mkdir -p $(DESTDIR)/$(datadir)/classes @WITH_JAVA_TRUE@ $(INSTALL) -m 644 turbojpeg.jar $(DESTDIR)/$(datadir)/classes/ @WITH_JAVA_TRUE@uninstall-local: @WITH_JAVA_TRUE@ rm -f $(DESTDIR)/$(datadir)/classes/turbojpeg.jar @WITH_JAVA_TRUE@ if [ -d $(DESTDIR)/$(datadir)/classes ]; then rmdir $(DESTDIR)/$(datadir)/classes; fi @WITH_JAVA_TRUE@headers: all @WITH_JAVA_TRUE@ javah -d ${srcdir} org.libjpegturbo.turbojpeg.TJ; \ @WITH_JAVA_TRUE@ javah -d ${srcdir} org.libjpegturbo.turbojpeg.TJCompressor; \ @WITH_JAVA_TRUE@ javah -d ${srcdir} org.libjpegturbo.turbojpeg.TJDecompressor; \ @WITH_JAVA_TRUE@ javah -d ${srcdir} org.libjpegturbo.turbojpeg.TJTransformer @WITH_JAVA_TRUE@docs: all @WITH_JAVA_TRUE@ mkdir -p ${srcdir}/doc; \ @WITH_JAVA_TRUE@ javadoc -notimestamp -d ${srcdir}/doc -sourcepath ${srcdir} org.libjpegturbo.turbojpeg # Tell versions [3.59,3.63) of GNU make to not export all variables. # Otherwise a system limit (for SysV at least) may be exceeded. .NOEXPORT: libjpeg-turbo-1.4.2/java/TJBench.java0000644000076500007650000010557712600050400014261 00000000000000/* * Copyright (C)2009-2014 D. R. Commander. All Rights Reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * - Neither the name of the libjpeg-turbo Project nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS", * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ import java.io.*; import java.awt.image.*; import javax.imageio.*; import java.util.*; import org.libjpegturbo.turbojpeg.*; class TJBench { static int flags = 0, quiet = 0, pf = TJ.PF_BGR, yuvpad = 1, warmup = 1; static boolean compOnly, decompOnly, doTile, doYUV; static final String[] pixFormatStr = { "RGB", "BGR", "RGBX", "BGRX", "XBGR", "XRGB", "GRAY" }; static final String[] subNameLong = { "4:4:4", "4:2:2", "4:2:0", "GRAY", "4:4:0", "4:1:1" }; static final String[] subName = { "444", "422", "420", "GRAY", "440", "411" }; static final String[] csName = { "RGB", "YCbCr", "GRAY", "CMYK", "YCCK" }; static TJScalingFactor sf; static int xformOp = TJTransform.OP_NONE, xformOpt = 0; static double benchTime = 5.0; static final double getTime() { return (double)System.nanoTime() / 1.0e9; } static String formatName(int subsamp, int cs) { if (cs == TJ.CS_YCbCr) return subNameLong[subsamp]; else if (cs == TJ.CS_YCCK) return csName[cs] + " " + subNameLong[subsamp]; else return csName[cs]; } static String sigFig(double val, int figs) { String format; int digitsAfterDecimal = figs - (int)Math.ceil(Math.log10(Math.abs(val))); if (digitsAfterDecimal < 1) format = new String("%.0f"); else format = new String("%." + digitsAfterDecimal + "f"); return String.format(format, val); } static byte[] loadImage(String fileName, int[] w, int[] h, int pixelFormat) throws Exception { BufferedImage img = ImageIO.read(new File(fileName)); if (img == null) throw new Exception("Could not read " + fileName); w[0] = img.getWidth(); h[0] = img.getHeight(); int[] rgb = img.getRGB(0, 0, w[0], h[0], null, 0, w[0]); int ps = TJ.getPixelSize(pixelFormat); int rindex = TJ.getRedOffset(pixelFormat); int gindex = TJ.getGreenOffset(pixelFormat); int bindex = TJ.getBlueOffset(pixelFormat); byte[] dstBuf = new byte[w[0] * h[0] * ps]; int pixels = w[0] * h[0], dstPtr = 0, rgbPtr = 0; while (pixels-- > 0) { dstBuf[dstPtr + rindex] = (byte)((rgb[rgbPtr] >> 16) & 0xff); dstBuf[dstPtr + gindex] = (byte)((rgb[rgbPtr] >> 8) & 0xff); dstBuf[dstPtr + bindex] = (byte)(rgb[rgbPtr] & 0xff); dstPtr += ps; rgbPtr++; } return dstBuf; } static void saveImage(String fileName, byte[] srcBuf, int w, int h, int pixelFormat) throws Exception { BufferedImage img = new BufferedImage(w, h, BufferedImage.TYPE_INT_RGB); int pixels = w * h, srcPtr = 0; int ps = TJ.getPixelSize(pixelFormat); int rindex = TJ.getRedOffset(pixelFormat); int gindex = TJ.getGreenOffset(pixelFormat); int bindex = TJ.getBlueOffset(pixelFormat); for (int y = 0; y < h; y++) { for (int x = 0; x < w; x++, srcPtr += ps) { int pixel = (srcBuf[srcPtr + rindex] & 0xff) << 16 | (srcBuf[srcPtr + gindex] & 0xff) << 8 | (srcBuf[srcPtr + bindex] & 0xff); img.setRGB(x, y, pixel); } } ImageIO.write(img, "bmp", new File(fileName)); } /* Decompression test */ static void decomp(byte[] srcBuf, byte[][] jpegBuf, int[] jpegSize, byte[] dstBuf, int w, int h, int subsamp, int jpegQual, String fileName, int tilew, int tileh) throws Exception { String qualStr = new String(""), sizeStr, tempStr; TJDecompressor tjd; double elapsed, elapsedDecode; int ps = TJ.getPixelSize(pf), i, iter = 0; int scaledw = sf.getScaled(w); int scaledh = sf.getScaled(h); int pitch = scaledw * ps; YUVImage yuvImage = null; if (jpegQual > 0) qualStr = new String("_Q" + jpegQual); tjd = new TJDecompressor(); if (dstBuf == null) dstBuf = new byte[pitch * scaledh]; /* Set the destination buffer to gray so we know whether the decompressor attempted to write to it */ Arrays.fill(dstBuf, (byte)127); if (doYUV) { int width = doTile ? tilew : scaledw; int height = doTile ? tileh : scaledh; yuvImage = new YUVImage(width, yuvpad, height, subsamp); Arrays.fill(yuvImage.getBuf(), (byte)127); } /* Benchmark */ iter -= warmup; elapsed = elapsedDecode = 0.0; while (true) { int tile = 0; double start = getTime(); for (int y = 0; y < h; y += tileh) { for (int x = 0; x < w; x += tilew, tile++) { int width = doTile ? Math.min(tilew, w - x) : scaledw; int height = doTile ? Math.min(tileh, h - y) : scaledh; tjd.setSourceImage(jpegBuf[tile], jpegSize[tile]); if (doYUV) { yuvImage.setBuf(yuvImage.getBuf(), width, yuvpad, height, subsamp); tjd.decompressToYUV(yuvImage, flags); double startDecode = getTime(); tjd.setSourceImage(yuvImage); tjd.decompress(dstBuf, x, y, width, pitch, height, pf, flags); if (iter >= 0) elapsedDecode += getTime() - startDecode; } else tjd.decompress(dstBuf, x, y, width, pitch, height, pf, flags); } } iter++; if (iter >= 1) { elapsed += getTime() - start; if (elapsed >= benchTime) break; } } if(doYUV) elapsed -= elapsedDecode; tjd = null; for (i = 0; i < jpegBuf.length; i++) jpegBuf[i] = null; jpegBuf = null; jpegSize = null; System.gc(); if (quiet != 0) { System.out.format("%-6s%s", sigFig((double)(w * h) / 1000000. * (double)iter / elapsed, 4), quiet == 2 ? "\n" : " "); if (doYUV) System.out.format("%s\n", sigFig((double)(w * h) / 1000000. * (double)iter / elapsedDecode, 4)); else if (quiet != 2) System.out.print("\n"); } else { System.out.format("%s --> Frame rate: %f fps\n", (doYUV ? "Decomp to YUV":"Decompress "), (double)iter / elapsed); System.out.format(" Throughput: %f Megapixels/sec\n", (double)(w * h) / 1000000. * (double)iter / elapsed); if (doYUV) { System.out.format("YUV Decode --> Frame rate: %f fps\n", (double)iter / elapsedDecode); System.out.format(" Throughput: %f Megapixels/sec\n", (double)(w * h) / 1000000. * (double)iter / elapsedDecode); } } if (sf.getNum() != 1 || sf.getDenom() != 1) sizeStr = new String(sf.getNum() + "_" + sf.getDenom()); else if (tilew != w || tileh != h) sizeStr = new String(tilew + "x" + tileh); else sizeStr = new String("full"); if (decompOnly) tempStr = new String(fileName + "_" + sizeStr + ".bmp"); else tempStr = new String(fileName + "_" + subName[subsamp] + qualStr + "_" + sizeStr + ".bmp"); saveImage(tempStr, dstBuf, scaledw, scaledh, pf); int ndx = tempStr.lastIndexOf('.'); tempStr = new String(tempStr.substring(0, ndx) + "-err.bmp"); if (srcBuf != null && sf.getNum() == 1 && sf.getDenom() == 1) { if (quiet == 0) System.out.println("Compression error written to " + tempStr + "."); if (subsamp == TJ.SAMP_GRAY) { for (int y = 0, index = 0; y < h; y++, index += pitch) { for (int x = 0, index2 = index; x < w; x++, index2 += ps) { int rindex = index2 + TJ.getRedOffset(pf); int gindex = index2 + TJ.getGreenOffset(pf); int bindex = index2 + TJ.getBlueOffset(pf); int lum = (int)((double)(srcBuf[rindex] & 0xff) * 0.299 + (double)(srcBuf[gindex] & 0xff) * 0.587 + (double)(srcBuf[bindex] & 0xff) * 0.114 + 0.5); if (lum > 255) lum = 255; if (lum < 0) lum = 0; dstBuf[rindex] = (byte)Math.abs((dstBuf[rindex] & 0xff) - lum); dstBuf[gindex] = (byte)Math.abs((dstBuf[gindex] & 0xff) - lum); dstBuf[bindex] = (byte)Math.abs((dstBuf[bindex] & 0xff) - lum); } } } else { for (int y = 0; y < h; y++) for (int x = 0; x < w * ps; x++) dstBuf[pitch * y + x] = (byte)Math.abs((dstBuf[pitch * y + x] & 0xff) - (srcBuf[pitch * y + x] & 0xff)); } saveImage(tempStr, dstBuf, w, h, pf); } } static void fullTest(byte[] srcBuf, int w, int h, int subsamp, int jpegQual, String fileName) throws Exception { TJCompressor tjc; byte[] tmpBuf; byte[][] jpegBuf; int[] jpegSize; double start, elapsed, elapsedEncode; int totalJpegSize = 0, tilew, tileh, i, iter; int ps = TJ.getPixelSize(pf); int ntilesw = 1, ntilesh = 1, pitch = w * ps; String pfStr = pixFormatStr[pf]; YUVImage yuvImage = null; tmpBuf = new byte[pitch * h]; if (quiet == 0) System.out.format(">>>>> %s (%s) <--> JPEG %s Q%d <<<<<\n", pfStr, (flags & TJ.FLAG_BOTTOMUP) != 0 ? "Bottom-up" : "Top-down", subNameLong[subsamp], jpegQual); tjc = new TJCompressor(); for (tilew = doTile ? 8 : w, tileh = doTile ? 8 : h; ; tilew *= 2, tileh *= 2) { if (tilew > w) tilew = w; if (tileh > h) tileh = h; ntilesw = (w + tilew - 1) / tilew; ntilesh = (h + tileh - 1) / tileh; jpegBuf = new byte[ntilesw * ntilesh][TJ.bufSize(tilew, tileh, subsamp)]; jpegSize = new int[ntilesw * ntilesh]; /* Compression test */ if (quiet == 1) System.out.format("%-4s (%s) %-5s %-3d ", pfStr, (flags & TJ.FLAG_BOTTOMUP) != 0 ? "BU" : "TD", subNameLong[subsamp], jpegQual); for (i = 0; i < h; i++) System.arraycopy(srcBuf, w * ps * i, tmpBuf, pitch * i, w * ps); tjc.setJPEGQuality(jpegQual); tjc.setSubsamp(subsamp); if (doYUV) { yuvImage = new YUVImage(tilew, yuvpad, tileh, subsamp); Arrays.fill(yuvImage.getBuf(), (byte)127); } /* Benchmark */ iter = -warmup; elapsed = elapsedEncode = 0.0; while (true) { int tile = 0; totalJpegSize = 0; start = getTime(); for (int y = 0; y < h; y += tileh) { for (int x = 0; x < w; x += tilew, tile++) { int width = Math.min(tilew, w - x); int height = Math.min(tileh, h - y); tjc.setSourceImage(srcBuf, x, y, width, pitch, height, pf); if (doYUV) { double startEncode = getTime(); yuvImage.setBuf(yuvImage.getBuf(), width, yuvpad, height, subsamp); tjc.encodeYUV(yuvImage, flags); if (iter >= 0) elapsedEncode += getTime() - startEncode; tjc.setSourceImage(yuvImage); } tjc.compress(jpegBuf[tile], flags); jpegSize[tile] = tjc.getCompressedSize(); totalJpegSize += jpegSize[tile]; } } iter++; if (iter >= 1) { elapsed += getTime() - start; if (elapsed >= benchTime) break; } } if (doYUV) elapsed -= elapsedEncode; if (quiet == 1) System.out.format("%-5d %-5d ", tilew, tileh); if (quiet != 0) { if (doYUV) System.out.format("%-6s%s", sigFig((double)(w * h) / 1000000. * (double)iter / elapsedEncode, 4), quiet == 2 ? "\n" : " "); System.out.format("%-6s%s", sigFig((double)(w * h) / 1000000. * (double)iter / elapsed, 4), quiet == 2 ? "\n" : " "); System.out.format("%-6s%s", sigFig((double)(w * h * ps) / (double)totalJpegSize, 4), quiet == 2 ? "\n" : " "); } else { System.out.format("\n%s size: %d x %d\n", doTile ? "Tile" : "Image", tilew, tileh); if (doYUV) { System.out.format("Encode YUV --> Frame rate: %f fps\n", (double)iter / elapsedEncode); System.out.format(" Output image size: %d bytes\n", yuvImage.getSize()); System.out.format(" Compression ratio: %f:1\n", (double)(w * h * ps) / (double)yuvImage.getSize()); System.out.format(" Throughput: %f Megapixels/sec\n", (double)(w * h) / 1000000. * (double)iter / elapsedEncode); System.out.format(" Output bit stream: %f Megabits/sec\n", (double)yuvImage.getSize() * 8. / 1000000. * (double)iter / elapsedEncode); } System.out.format("%s --> Frame rate: %f fps\n", doYUV ? "Comp from YUV" : "Compress ", (double)iter / elapsed); System.out.format(" Output image size: %d bytes\n", totalJpegSize); System.out.format(" Compression ratio: %f:1\n", (double)(w * h * ps) / (double)totalJpegSize); System.out.format(" Throughput: %f Megapixels/sec\n", (double)(w * h) / 1000000. * (double)iter / elapsed); System.out.format(" Output bit stream: %f Megabits/sec\n", (double)totalJpegSize * 8. / 1000000. * (double)iter / elapsed); } if (tilew == w && tileh == h) { String tempStr = fileName + "_" + subName[subsamp] + "_" + "Q" + jpegQual + ".jpg"; FileOutputStream fos = new FileOutputStream(tempStr); fos.write(jpegBuf[0], 0, jpegSize[0]); fos.close(); if (quiet == 0) System.out.println("Reference image written to " + tempStr); } /* Decompression test */ if (!compOnly) decomp(srcBuf, jpegBuf, jpegSize, tmpBuf, w, h, subsamp, jpegQual, fileName, tilew, tileh); if (tilew == w && tileh == h) break; } } static void decompTest(String fileName) throws Exception { TJTransformer tjt; byte[][] jpegBuf = null; byte[] srcBuf; int[] jpegSize = null; int totalJpegSize; int w = 0, h = 0, subsamp = -1, cs = -1, _w, _h, _tilew, _tileh, _ntilesw, _ntilesh, _subsamp, x, y, iter; int ntilesw = 1, ntilesh = 1; double start, elapsed; int ps = TJ.getPixelSize(pf), tile; FileInputStream fis = new FileInputStream(fileName); int srcSize = (int)fis.getChannel().size(); srcBuf = new byte[srcSize]; fis.read(srcBuf, 0, srcSize); fis.close(); int index = fileName.lastIndexOf('.'); if (index >= 0) fileName = new String(fileName.substring(0, index)); tjt = new TJTransformer(); tjt.setSourceImage(srcBuf, srcSize); w = tjt.getWidth(); h = tjt.getHeight(); subsamp = tjt.getSubsamp(); cs = tjt.getColorspace(); if (quiet == 1) { System.out.println("All performance values in Mpixels/sec\n"); System.out.format("Bitmap JPEG JPEG %s %s Xform Comp Decomp ", (doTile ? "Tile " : "Image"), (doTile ? "Tile " : "Image")); if (doYUV) System.out.print("Decode"); System.out.print("\n"); System.out.print("Format CS Subsamp Width Height Perf Ratio Perf "); if (doYUV) System.out.print("Perf"); System.out.println("\n"); } else if (quiet == 0) System.out.format(">>>>> JPEG %s --> %s (%s) <<<<<\n", formatName(subsamp, cs), pixFormatStr[pf], (flags & TJ.FLAG_BOTTOMUP) != 0 ? "Bottom-up" : "Top-down"); for (int tilew = doTile ? 16 : w, tileh = doTile ? 16 : h; ; tilew *= 2, tileh *= 2) { if (tilew > w) tilew = w; if (tileh > h) tileh = h; ntilesw = (w + tilew - 1) / tilew; ntilesh = (h + tileh - 1) / tileh; _w = w; _h = h; _tilew = tilew; _tileh = tileh; if (quiet == 0) { System.out.format("\n%s size: %d x %d", (doTile ? "Tile" : "Image"), _tilew, _tileh); if (sf.getNum() != 1 || sf.getDenom() != 1) System.out.format(" --> %d x %d", sf.getScaled(_w), sf.getScaled(_h)); System.out.println(""); } else if (quiet == 1) { System.out.format("%-4s (%s) %-5s %-5s ", pixFormatStr[pf], (flags & TJ.FLAG_BOTTOMUP) != 0 ? "BU" : "TD", csName[cs], subNameLong[subsamp]); System.out.format("%-5d %-5d ", tilew, tileh); } _subsamp = subsamp; if (doTile || xformOp != TJTransform.OP_NONE || xformOpt != 0) { if (xformOp == TJTransform.OP_TRANSPOSE || xformOp == TJTransform.OP_TRANSVERSE || xformOp == TJTransform.OP_ROT90 || xformOp == TJTransform.OP_ROT270) { _w = h; _h = w; _tilew = tileh; _tileh = tilew; } if ((xformOpt & TJTransform.OPT_GRAY) != 0) _subsamp = TJ.SAMP_GRAY; if (xformOp == TJTransform.OP_HFLIP || xformOp == TJTransform.OP_ROT180) _w = _w - (_w % TJ.getMCUWidth(_subsamp)); if (xformOp == TJTransform.OP_VFLIP || xformOp == TJTransform.OP_ROT180) _h = _h - (_h % TJ.getMCUHeight(_subsamp)); if (xformOp == TJTransform.OP_TRANSVERSE || xformOp == TJTransform.OP_ROT90) _w = _w - (_w % TJ.getMCUHeight(_subsamp)); if (xformOp == TJTransform.OP_TRANSVERSE || xformOp == TJTransform.OP_ROT270) _h = _h - (_h % TJ.getMCUWidth(_subsamp)); _ntilesw = (_w + _tilew - 1) / _tilew; _ntilesh = (_h + _tileh - 1) / _tileh; if (xformOp == TJTransform.OP_TRANSPOSE || xformOp == TJTransform.OP_TRANSVERSE || xformOp == TJTransform.OP_ROT90 || xformOp == TJTransform.OP_ROT270) { if (_subsamp == TJ.SAMP_422) _subsamp = TJ.SAMP_440; else if (_subsamp == TJ.SAMP_440) _subsamp = TJ.SAMP_422; } TJTransform[] t = new TJTransform[_ntilesw * _ntilesh]; jpegBuf = new byte[_ntilesw * _ntilesh][TJ.bufSize(_tilew, _tileh, subsamp)]; for (y = 0, tile = 0; y < _h; y += _tileh) { for (x = 0; x < _w; x += _tilew, tile++) { t[tile] = new TJTransform(); t[tile].width = Math.min(_tilew, _w - x); t[tile].height = Math.min(_tileh, _h - y); t[tile].x = x; t[tile].y = y; t[tile].op = xformOp; t[tile].options = xformOpt | TJTransform.OPT_TRIM; if ((t[tile].options & TJTransform.OPT_NOOUTPUT) != 0 && jpegBuf[tile] != null) jpegBuf[tile] = null; } } iter = -warmup; elapsed = 0.; while (true) { start = getTime(); tjt.transform(jpegBuf, t, flags); jpegSize = tjt.getTransformedSizes(); iter++; if (iter >= 1) { elapsed += getTime() - start; if (elapsed >= benchTime) break; } } t = null; for (tile = 0, totalJpegSize = 0; tile < _ntilesw * _ntilesh; tile++) totalJpegSize += jpegSize[tile]; if (quiet != 0) { System.out.format("%-6s%s%-6s%s", sigFig((double)(w * h) / 1000000. / elapsed, 4), quiet == 2 ? "\n" : " ", sigFig((double)(w * h * ps) / (double)totalJpegSize, 4), quiet == 2 ? "\n" : " "); } else if (quiet == 0) { System.out.format("Transform --> Frame rate: %f fps\n", 1.0 / elapsed); System.out.format(" Output image size: %d bytes\n", totalJpegSize); System.out.format(" Compression ratio: %f:1\n", (double)(w * h * ps) / (double)totalJpegSize); System.out.format(" Throughput: %f Megapixels/sec\n", (double)(w * h) / 1000000. / elapsed); System.out.format(" Output bit stream: %f Megabits/sec\n", (double)totalJpegSize * 8. / 1000000. / elapsed); } } else { if (quiet == 1) System.out.print("N/A N/A "); jpegBuf = new byte[1][TJ.bufSize(_tilew, _tileh, subsamp)]; jpegSize = new int[1]; jpegSize[0] = srcSize; System.arraycopy(srcBuf, 0, jpegBuf[0], 0, srcSize); } if (w == tilew) _tilew = _w; if (h == tileh) _tileh = _h; if ((xformOpt & TJTransform.OPT_NOOUTPUT) == 0) decomp(null, jpegBuf, jpegSize, null, _w, _h, _subsamp, 0, fileName, _tilew, _tileh); else if (quiet == 1) System.out.println("N/A"); jpegBuf = null; jpegSize = null; if (tilew == w && tileh == h) break; } } static void usage() throws Exception { int i; TJScalingFactor[] scalingFactors = TJ.getScalingFactors(); int nsf = scalingFactors.length; String className = new TJBench().getClass().getName(); System.out.println("\nUSAGE: java " + className); System.out.println(" [options]\n"); System.out.println(" java " + className); System.out.println(" [options]\n"); System.out.println("Options:\n"); System.out.println("-alloc = Dynamically allocate JPEG image buffers"); System.out.println("-bottomup = Test bottom-up compression/decompression"); System.out.println("-tile = Test performance of the codec when the image is encoded as separate"); System.out.println(" tiles of varying sizes."); System.out.println("-rgb, -bgr, -rgbx, -bgrx, -xbgr, -xrgb ="); System.out.println(" Test the specified color conversion path in the codec (default = BGR)"); System.out.println("-fastupsample = Use the fastest chrominance upsampling algorithm available in"); System.out.println(" the underlying codec"); System.out.println("-fastdct = Use the fastest DCT/IDCT algorithms available in the underlying"); System.out.println(" codec"); System.out.println("-accuratedct = Use the most accurate DCT/IDCT algorithms available in the"); System.out.println(" underlying codec"); System.out.println("-subsamp = When testing JPEG compression, this option specifies the level"); System.out.println(" of chrominance subsampling to use ( = 444, 422, 440, 420, 411, or"); System.out.println(" GRAY). The default is to test Grayscale, 4:2:0, 4:2:2, and 4:4:4 in"); System.out.println(" sequence."); System.out.println("-quiet = Output results in tabular rather than verbose format"); System.out.println("-yuv = Test YUV encoding/decoding functions"); System.out.println("-yuvpad

= If testing YUV encoding/decoding, this specifies the number of"); System.out.println(" bytes to which each row of each plane in the intermediate YUV image is"); System.out.println(" padded (default = 1)"); System.out.println("-scale M/N = Scale down the width/height of the decompressed JPEG image by a"); System.out.print (" factor of M/N (M/N = "); for (i = 0; i < nsf; i++) { System.out.format("%d/%d", scalingFactors[i].getNum(), scalingFactors[i].getDenom()); if (nsf == 2 && i != nsf - 1) System.out.print(" or "); else if (nsf > 2) { if (i != nsf - 1) System.out.print(", "); if (i == nsf - 2) System.out.print("or "); } if (i % 8 == 0 && i != 0) System.out.print("\n "); } System.out.println(")"); System.out.println("-hflip, -vflip, -transpose, -transverse, -rot90, -rot180, -rot270 ="); System.out.println(" Perform the corresponding lossless transform prior to"); System.out.println(" decompression (these options are mutually exclusive)"); System.out.println("-grayscale = Perform lossless grayscale conversion prior to decompression"); System.out.println(" test (can be combined with the other transforms above)"); System.out.println("-benchtime = Run each benchmark for at least seconds (default = 5.0)"); System.out.println("-warmup = Execute each benchmark times to prime the cache before"); System.out.println(" taking performance measurements (default = 1)"); System.out.println("-componly = Stop after running compression tests. Do not test decompression.\n"); System.out.println("NOTE: If the quality is specified as a range (e.g. 90-100), a separate"); System.out.println("test will be performed for all quality values in the range.\n"); System.exit(1); } public static void main(String[] argv) { byte[] srcBuf = null; int w = 0, h = 0; int minQual = -1, maxQual = -1; int minArg = 1; int retval = 0; int subsamp = -1; try { if (argv.length < minArg) usage(); String tempStr = argv[0].toLowerCase(); if (tempStr.endsWith(".jpg") || tempStr.endsWith(".jpeg")) decompOnly = true; System.out.println(""); if (!decompOnly) { minArg = 2; if (argv.length < minArg) usage(); try { minQual = Integer.parseInt(argv[1]); } catch (NumberFormatException e) {} if (minQual < 1 || minQual > 100) throw new Exception("Quality must be between 1 and 100."); int dashIndex = argv[1].indexOf('-'); if (dashIndex > 0 && argv[1].length() > dashIndex + 1) { try { maxQual = Integer.parseInt(argv[1].substring(dashIndex + 1)); } catch (NumberFormatException e) {} } if (maxQual < 1 || maxQual > 100) maxQual = minQual; } if (argv.length > minArg) { for (int i = minArg; i < argv.length; i++) { if (argv[i].equalsIgnoreCase("-tile")) { doTile = true; xformOpt |= TJTransform.OPT_CROP; } if (argv[i].equalsIgnoreCase("-fastupsample")) { System.out.println("Using fast upsampling code\n"); flags |= TJ.FLAG_FASTUPSAMPLE; } if (argv[i].equalsIgnoreCase("-fastdct")) { System.out.println("Using fastest DCT/IDCT algorithm\n"); flags |= TJ.FLAG_FASTDCT; } if (argv[i].equalsIgnoreCase("-accuratedct")) { System.out.println("Using most accurate DCT/IDCT algorithm\n"); flags |= TJ.FLAG_ACCURATEDCT; } if (argv[i].equalsIgnoreCase("-rgb")) pf = TJ.PF_RGB; if (argv[i].equalsIgnoreCase("-rgbx")) pf = TJ.PF_RGBX; if (argv[i].equalsIgnoreCase("-bgr")) pf = TJ.PF_BGR; if (argv[i].equalsIgnoreCase("-bgrx")) pf = TJ.PF_BGRX; if (argv[i].equalsIgnoreCase("-xbgr")) pf = TJ.PF_XBGR; if (argv[i].equalsIgnoreCase("-xrgb")) pf = TJ.PF_XRGB; if (argv[i].equalsIgnoreCase("-bottomup")) flags |= TJ.FLAG_BOTTOMUP; if (argv[i].equalsIgnoreCase("-quiet")) quiet = 1; if (argv[i].equalsIgnoreCase("-qq")) quiet = 2; if (argv[i].equalsIgnoreCase("-scale") && i < argv.length - 1) { int temp1 = 0, temp2 = 0; boolean match = false, scanned = true; Scanner scanner = new Scanner(argv[++i]).useDelimiter("/"); try { temp1 = scanner.nextInt(); temp2 = scanner.nextInt(); } catch(Exception e) {} if (temp2 <= 0) temp2 = 1; if (temp1 > 0) { TJScalingFactor[] scalingFactors = TJ.getScalingFactors(); for (int j = 0; j < scalingFactors.length; j++) { if ((double)temp1 / (double)temp2 == (double)scalingFactors[j].getNum() / (double)scalingFactors[j].getDenom()) { sf = scalingFactors[j]; match = true; break; } } if (!match) usage(); } else usage(); } if (argv[i].equalsIgnoreCase("-hflip")) xformOp = TJTransform.OP_HFLIP; if (argv[i].equalsIgnoreCase("-vflip")) xformOp = TJTransform.OP_VFLIP; if (argv[i].equalsIgnoreCase("-transpose")) xformOp = TJTransform.OP_TRANSPOSE; if (argv[i].equalsIgnoreCase("-transverse")) xformOp = TJTransform.OP_TRANSVERSE; if (argv[i].equalsIgnoreCase("-rot90")) xformOp = TJTransform.OP_ROT90; if (argv[i].equalsIgnoreCase("-rot180")) xformOp = TJTransform.OP_ROT180; if (argv[i].equalsIgnoreCase("-rot270")) xformOp = TJTransform.OP_ROT270; if (argv[i].equalsIgnoreCase("-grayscale")) xformOpt |= TJTransform.OPT_GRAY; if (argv[i].equalsIgnoreCase("-nooutput")) xformOpt |= TJTransform.OPT_NOOUTPUT; if (argv[i].equalsIgnoreCase("-benchtime") && i < argv.length - 1) { double temp = -1; try { temp = Double.parseDouble(argv[++i]); } catch (NumberFormatException e) {} if (temp > 0.0) benchTime = temp; else usage(); } if (argv[i].equalsIgnoreCase("-yuv")) { System.out.println("Testing YUV planar encoding/decoding\n"); doYUV = true; } if (argv[i].equalsIgnoreCase("-yuvpad") && i < argv.length - 1) { int temp = 0; try { temp = Integer.parseInt(argv[++i]); } catch (NumberFormatException e) {} if (temp >= 1) yuvpad = temp; } if (argv[i].equalsIgnoreCase("-subsamp") && i < argv.length - 1) { i++; if (argv[i].toUpperCase().startsWith("G")) subsamp = TJ.SAMP_GRAY; else if (argv[i].equals("444")) subsamp = TJ.SAMP_444; else if (argv[i].equals("422")) subsamp = TJ.SAMP_422; else if (argv[i].equals("440")) subsamp = TJ.SAMP_440; else if (argv[i].equals("420")) subsamp = TJ.SAMP_420; else if (argv[i].equals("411")) subsamp = TJ.SAMP_411; } if (argv[i].equalsIgnoreCase("-componly")) compOnly = true; if (argv[i].equalsIgnoreCase("-warmup") && i < argv.length - 1) { int temp = -1; try { temp = Integer.parseInt(argv[++i]); } catch (NumberFormatException e) {} if (temp >= 0) { warmup = temp; System.out.format("Warmup runs = %d\n\n", warmup); } } if (argv[i].equalsIgnoreCase("-?")) usage(); } } if (sf == null) sf = new TJScalingFactor(1, 1); if ((sf.getNum() != 1 || sf.getDenom() != 1) && doTile) { System.out.println("Disabling tiled compression/decompression tests, because those tests do not"); System.out.println("work when scaled decompression is enabled."); doTile = false; } if (!decompOnly) { int[] width = new int[1], height = new int[1]; srcBuf = loadImage(argv[0], width, height, pf); w = width[0]; h = height[0]; int index = -1; if ((index = argv[0].lastIndexOf('.')) >= 0) argv[0] = argv[0].substring(0, index); } if (quiet == 1 && !decompOnly) { System.out.println("All performance values in Mpixels/sec\n"); System.out.format("Bitmap JPEG JPEG %s %s ", (doTile ? "Tile " : "Image"), (doTile ? "Tile " : "Image")); if (doYUV) System.out.print("Encode "); System.out.print("Comp Comp Decomp "); if (doYUV) System.out.print("Decode"); System.out.print("\n"); System.out.print("Format Subsamp Qual Width Height "); if (doYUV) System.out.print("Perf "); System.out.print("Perf Ratio Perf "); if (doYUV) System.out.print("Perf"); System.out.println("\n"); } if (decompOnly) { decompTest(argv[0]); System.out.println(""); System.exit(retval); } System.gc(); if (subsamp >= 0 && subsamp < TJ.NUMSAMP) { for (int i = maxQual; i >= minQual; i--) fullTest(srcBuf, w, h, subsamp, i, argv[0]); System.out.println(""); } else { for (int i = maxQual; i >= minQual; i--) fullTest(srcBuf, w, h, TJ.SAMP_GRAY, i, argv[0]); System.out.println(""); System.gc(); for (int i = maxQual; i >= minQual; i--) fullTest(srcBuf, w, h, TJ.SAMP_420, i, argv[0]); System.out.println(""); System.gc(); for (int i = maxQual; i >= minQual; i--) fullTest(srcBuf, w, h, TJ.SAMP_422, i, argv[0]); System.out.println(""); System.gc(); for (int i = maxQual; i >= minQual; i--) fullTest(srcBuf, w, h, TJ.SAMP_444, i, argv[0]); System.out.println(""); } } catch (Exception e) { System.out.println("ERROR: " + e.getMessage()); e.printStackTrace(); retval = -1; } System.exit(retval); } } libjpeg-turbo-1.4.2/java/MANIFEST.MF0000644000076500007650000000005412600050400013553 00000000000000Manifest-Version: 1.0 Main-Class: TJExample libjpeg-turbo-1.4.2/java/doc/0000755000076500007650000000000012600050400012747 500000000000000libjpeg-turbo-1.4.2/java/doc/stylesheet.css0000644000076500007650000002560312600050400015600 00000000000000/* Javadoc style sheet */ /* Overall document style */ body { background-color:#ffffff; color:#353833; font-family:Arial, Helvetica, sans-serif; font-size:76%; margin:0; } a:link, a:visited { text-decoration:none; color:#4c6b87; } a:hover, a:focus { text-decoration:none; color:#bb7a2a; } a:active { text-decoration:none; color:#4c6b87; } a[name] { color:#353833; } a[name]:hover { text-decoration:none; color:#353833; } pre { font-size:1.3em; } h1 { font-size:1.8em; } h2 { font-size:1.5em; } h3 { font-size:1.4em; } h4 { font-size:1.3em; } h5 { font-size:1.2em; } h6 { font-size:1.1em; } ul { list-style-type:disc; } code, tt { font-size:1.2em; } dt code { font-size:1.2em; } table tr td dt code { font-size:1.2em; vertical-align:top; } sup { font-size:.6em; } /* Document title and Copyright styles */ .clear { clear:both; height:0px; overflow:hidden; } .aboutLanguage { float:right; padding:0px 21px; font-size:.8em; z-index:200; margin-top:-7px; } .legalCopy { margin-left:.5em; } .bar a, .bar a:link, .bar a:visited, .bar a:active { color:#FFFFFF; text-decoration:none; } .bar a:hover, .bar a:focus { color:#bb7a2a; } .tab { background-color:#0066FF; background-image:url(resources/titlebar.gif); background-position:left top; background-repeat:no-repeat; color:#ffffff; padding:8px; width:5em; font-weight:bold; } /* Navigation bar styles */ .bar { background-image:url(resources/background.gif); background-repeat:repeat-x; color:#FFFFFF; padding:.8em .5em .4em .8em; height:auto;/*height:1.8em;*/ font-size:1em; margin:0; } .topNav { background-image:url(resources/background.gif); background-repeat:repeat-x; color:#FFFFFF; float:left; padding:0; width:100%; clear:right; height:2.8em; padding-top:10px; overflow:hidden; } .bottomNav { margin-top:10px; background-image:url(resources/background.gif); background-repeat:repeat-x; color:#FFFFFF; float:left; padding:0; width:100%; clear:right; height:2.8em; padding-top:10px; overflow:hidden; } .subNav { background-color:#dee3e9; border-bottom:1px solid #9eadc0; float:left; width:100%; overflow:hidden; } .subNav div { clear:left; float:left; padding:0 0 5px 6px; } ul.navList, ul.subNavList { float:left; margin:0 25px 0 0; padding:0; } ul.navList li{ list-style:none; float:left; padding:3px 6px; } ul.subNavList li{ list-style:none; float:left; font-size:90%; } .topNav a:link, .topNav a:active, .topNav a:visited, .bottomNav a:link, .bottomNav a:active, .bottomNav a:visited { color:#FFFFFF; text-decoration:none; } .topNav a:hover, .bottomNav a:hover { text-decoration:none; color:#bb7a2a; } .navBarCell1Rev { background-image:url(resources/tab.gif); background-color:#a88834; color:#FFFFFF; margin: auto 5px; border:1px solid #c9aa44; } /* Page header and footer styles */ .header, .footer { clear:both; margin:0 20px; padding:5px 0 0 0; } .indexHeader { margin:10px; position:relative; } .indexHeader h1 { font-size:1.3em; } .title { color:#2c4557; margin:10px 0; } .subTitle { margin:5px 0 0 0; } .header ul { margin:0 0 25px 0; padding:0; } .footer ul { margin:20px 0 5px 0; } .header ul li, .footer ul li { list-style:none; font-size:1.2em; } /* Heading styles */ div.details ul.blockList ul.blockList ul.blockList li.blockList h4, div.details ul.blockList ul.blockList ul.blockListLast li.blockList h4 { background-color:#dee3e9; border-top:1px solid #9eadc0; border-bottom:1px solid #9eadc0; margin:0 0 6px -8px; padding:2px 5px; } ul.blockList ul.blockList ul.blockList li.blockList h3 { background-color:#dee3e9; border-top:1px solid #9eadc0; border-bottom:1px solid #9eadc0; margin:0 0 6px -8px; padding:2px 5px; } ul.blockList ul.blockList li.blockList h3 { padding:0; margin:15px 0; } ul.blockList li.blockList h2 { padding:0px 0 20px 0; } /* Page layout container styles */ .contentContainer, .sourceContainer, .classUseContainer, .serializedFormContainer, .constantValuesContainer { clear:both; padding:10px 20px; position:relative; } .indexContainer { margin:10px; position:relative; font-size:1.0em; } .indexContainer h2 { font-size:1.1em; padding:0 0 3px 0; } .indexContainer ul { margin:0; padding:0; } .indexContainer ul li { list-style:none; } .contentContainer .description dl dt, .contentContainer .details dl dt, .serializedFormContainer dl dt { font-size:1.1em; font-weight:bold; margin:10px 0 0 0; color:#4E4E4E; } .contentContainer .description dl dd, .contentContainer .details dl dd, .serializedFormContainer dl dd { margin:10px 0 10px 20px; } .serializedFormContainer dl.nameValue dt { margin-left:1px; font-size:1.1em; display:inline; font-weight:bold; } .serializedFormContainer dl.nameValue dd { margin:0 0 0 1px; font-size:1.1em; display:inline; } /* List styles */ ul.horizontal li { display:inline; font-size:0.9em; } ul.inheritance { margin:0; padding:0; } ul.inheritance li { display:inline; list-style:none; } ul.inheritance li ul.inheritance { margin-left:15px; padding-left:15px; padding-top:1px; } ul.blockList, ul.blockListLast { margin:10px 0 10px 0; padding:0; } ul.blockList li.blockList, ul.blockListLast li.blockList { list-style:none; margin-bottom:25px; } ul.blockList ul.blockList li.blockList, ul.blockList ul.blockListLast li.blockList { padding:0px 20px 5px 10px; border:1px solid #9eadc0; background-color:#f9f9f9; } ul.blockList ul.blockList ul.blockList li.blockList, ul.blockList ul.blockList ul.blockListLast li.blockList { padding:0 0 5px 8px; background-color:#ffffff; border:1px solid #9eadc0; border-top:none; } ul.blockList ul.blockList ul.blockList ul.blockList li.blockList { margin-left:0; padding-left:0; padding-bottom:15px; border:none; border-bottom:1px solid #9eadc0; } ul.blockList ul.blockList ul.blockList ul.blockList li.blockListLast { list-style:none; border-bottom:none; padding-bottom:0; } table tr td dl, table tr td dl dt, table tr td dl dd { margin-top:0; margin-bottom:1px; } /* Table styles */ .contentContainer table, .classUseContainer table, .constantValuesContainer table { border-bottom:1px solid #9eadc0; width:100%; } .contentContainer ul li table, .classUseContainer ul li table, .constantValuesContainer ul li table { width:100%; } .contentContainer .description table, .contentContainer .details table { border-bottom:none; } .contentContainer ul li table th.colOne, .contentContainer ul li table th.colFirst, .contentContainer ul li table th.colLast, .classUseContainer ul li table th, .constantValuesContainer ul li table th, .contentContainer ul li table td.colOne, .contentContainer ul li table td.colFirst, .contentContainer ul li table td.colLast, .classUseContainer ul li table td, .constantValuesContainer ul li table td{ vertical-align:top; padding-right:20px; } .contentContainer ul li table th.colLast, .classUseContainer ul li table th.colLast,.constantValuesContainer ul li table th.colLast, .contentContainer ul li table td.colLast, .classUseContainer ul li table td.colLast,.constantValuesContainer ul li table td.colLast, .contentContainer ul li table th.colOne, .classUseContainer ul li table th.colOne, .contentContainer ul li table td.colOne, .classUseContainer ul li table td.colOne { padding-right:3px; } .overviewSummary caption, .packageSummary caption, .contentContainer ul.blockList li.blockList caption, .summary caption, .classUseContainer caption, .constantValuesContainer caption { position:relative; text-align:left; background-repeat:no-repeat; color:#FFFFFF; font-weight:bold; clear:none; overflow:hidden; padding:0px; margin:0px; } caption a:link, caption a:hover, caption a:active, caption a:visited { color:#FFFFFF; } .overviewSummary caption span, .packageSummary caption span, .contentContainer ul.blockList li.blockList caption span, .summary caption span, .classUseContainer caption span, .constantValuesContainer caption span { white-space:nowrap; padding-top:8px; padding-left:8px; display:block; float:left; background-image:url(resources/titlebar.gif); height:18px; } .overviewSummary .tabEnd, .packageSummary .tabEnd, .contentContainer ul.blockList li.blockList .tabEnd, .summary .tabEnd, .classUseContainer .tabEnd, .constantValuesContainer .tabEnd { width:10px; background-image:url(resources/titlebar_end.gif); background-repeat:no-repeat; background-position:top right; position:relative; float:left; } ul.blockList ul.blockList li.blockList table { margin:0 0 12px 0px; width:100%; } .tableSubHeadingColor { background-color: #EEEEFF; } .altColor { background-color:#eeeeef; } .rowColor { background-color:#ffffff; } .overviewSummary td, .packageSummary td, .contentContainer ul.blockList li.blockList td, .summary td, .classUseContainer td, .constantValuesContainer td { text-align:left; padding:3px 3px 3px 7px; } th.colFirst, th.colLast, th.colOne, .constantValuesContainer th { background:#dee3e9; border-top:1px solid #9eadc0; border-bottom:1px solid #9eadc0; text-align:left; padding:3px 3px 3px 7px; } td.colOne a:link, td.colOne a:active, td.colOne a:visited, td.colOne a:hover, td.colFirst a:link, td.colFirst a:active, td.colFirst a:visited, td.colFirst a:hover, td.colLast a:link, td.colLast a:active, td.colLast a:visited, td.colLast a:hover, .constantValuesContainer td a:link, .constantValuesContainer td a:active, .constantValuesContainer td a:visited, .constantValuesContainer td a:hover { font-weight:bold; } td.colFirst, th.colFirst { border-left:1px solid #9eadc0; white-space:nowrap; } td.colLast, th.colLast { border-right:1px solid #9eadc0; } td.colOne, th.colOne { border-right:1px solid #9eadc0; border-left:1px solid #9eadc0; } table.overviewSummary { padding:0px; margin-left:0px; } table.overviewSummary td.colFirst, table.overviewSummary th.colFirst, table.overviewSummary td.colOne, table.overviewSummary th.colOne { width:25%; vertical-align:middle; } table.packageSummary td.colFirst, table.overviewSummary th.colFirst { width:25%; vertical-align:middle; } /* Content styles */ .description pre { margin-top:0; } .deprecatedContent { margin:0; padding:10px 0; } .docSummary { padding:0; } /* Formatting effect styles */ .sourceLineNo { color:green; padding:0 30px 0 0; } h1.hidden { visibility:hidden; overflow:hidden; font-size:.9em; } .block { display:block; margin:3px 0 0 0; } .strong { font-weight:bold; } libjpeg-turbo-1.4.2/java/doc/org/0000755000076500007650000000000012600050400013536 500000000000000libjpeg-turbo-1.4.2/java/doc/org/libjpegturbo/0000755000076500007650000000000012600050400016226 500000000000000libjpeg-turbo-1.4.2/java/doc/org/libjpegturbo/turbojpeg/0000755000076500007650000000000012600050400020227 500000000000000libjpeg-turbo-1.4.2/java/doc/org/libjpegturbo/turbojpeg/TJCustomFilter.html0000644000076500007650000002257512600050400023726 00000000000000 TJCustomFilter

JavaScript is disabled on your browser.
org.libjpegturbo.turbojpeg

Interface TJCustomFilter



  • public interface TJCustomFilter
    Custom filter callback interface
    • Method Summary

      Methods 
      Modifier and Type Method and Description
      void customFilter(java.nio.ShortBuffer coeffBuffer, java.awt.Rectangle bufferRegion, java.awt.Rectangle planeRegion, int componentID, int transformID, TJTransform transform)
      A callback function that can be used to modify the DCT coefficients after they are losslessly transformed but before they are transcoded to a new JPEG image.
    • Method Detail

      • customFilter

        void customFilter(java.nio.ShortBuffer coeffBuffer,
                        java.awt.Rectangle bufferRegion,
                        java.awt.Rectangle planeRegion,
                        int componentID,
                        int transformID,
                        TJTransform transform)
                          throws java.lang.Exception
        A callback function that can be used to modify the DCT coefficients after they are losslessly transformed but before they are transcoded to a new JPEG image. This allows for custom filters or other transformations to be applied in the frequency domain.
        Parameters:
        coeffBuffer - a buffer containing transformed DCT coefficients. (NOTE: this buffer is not guaranteed to be valid once the callback returns, so applications wishing to hand off the DCT coefficients to another function or library should make a copy of them within the body of the callback.)
        bufferRegion - rectangle containing the width and height of coeffBuffer as well as its offset relative to the component plane. TurboJPEG implementations may choose to split each component plane into multiple DCT coefficient buffers and call the callback function once for each buffer.
        planeRegion - rectangle containing the width and height of the component plane to which coeffBuffer belongs
        componentID - ID number of the component plane to which coeffBuffer belongs (Y, Cb, and Cr have, respectively, ID's of 0, 1, and 2 in typical JPEG images.)
        transformID - ID number of the transformed image to which coeffBuffer belongs. This is the same as the index of the transform in the transforms array that was passed to TJTransformer.transform().
        transform - a TJTransform instance that specifies the parameters and/or cropping region for this transform
        Throws:
        java.lang.Exception
libjpeg-turbo-1.4.2/java/doc/org/libjpegturbo/turbojpeg/package-tree.html0000644000076500007650000001255612600050400023376 00000000000000 org.libjpegturbo.turbojpeg Class Hierarchy

Hierarchy For Package org.libjpegturbo.turbojpeg

Class Hierarchy

  • java.lang.Object
    • java.awt.geom.RectangularShape (implements java.lang.Cloneable, java.awt.Shape)
      • java.awt.geom.Rectangle2D
        • java.awt.Rectangle (implements java.io.Serializable, java.awt.Shape)
    • org.libjpegturbo.turbojpeg.TJ
    • org.libjpegturbo.turbojpeg.TJCompressor
    • org.libjpegturbo.turbojpeg.TJDecompressor
    • org.libjpegturbo.turbojpeg.TJScalingFactor
    • org.libjpegturbo.turbojpeg.YUVImage

Interface Hierarchy

libjpeg-turbo-1.4.2/java/doc/org/libjpegturbo/turbojpeg/YUVImage.html0000644000076500007650000010240212600050400022462 00000000000000 YUVImage
org.libjpegturbo.turbojpeg

Class YUVImage

  • java.lang.Object
    • org.libjpegturbo.turbojpeg.YUVImage


  • public class YUVImage
    extends java.lang.Object
    This class encapsulates a YUV planar image and the metadata associated with it. The TurboJPEG API allows both the JPEG compression and decompression pipelines to be split into stages: YUV encode, compress from YUV, decompress to YUV, and YUV decode. A YUVImage instance serves as the destination image for YUV encode and decompress-to-YUV operations and as the source image for compress-from-YUV and YUV decode operations.

    Technically, the JPEG format uses the YCbCr colorspace (which technically is not a "colorspace" but rather a "color transform"), but per the convention of the digital video community, the TurboJPEG API uses "YUV" to refer to an image format consisting of Y, Cb, and Cr image planes.

    Each plane is simply a 2D array of bytes, each byte representing the value of one of the components (Y, Cb, or Cr) at a particular location in the image. The width and height of each plane are determined by the image width, height, and level of chrominance subsampling. The luminance plane width is the image width padded to the nearest multiple of the horizontal subsampling factor (2 in the case of 4:2:0 and 4:2:2, 4 in the case of 4:1:1, 1 in the case of 4:4:4 or grayscale.) Similarly, the luminance plane height is the image height padded to the nearest multiple of the vertical subsampling factor (2 in the case of 4:2:0 or 4:4:0, 1 in the case of 4:4:4 or grayscale.) The chrominance plane width is equal to the luminance plane width divided by the horizontal subsampling factor, and the chrominance plane height is equal to the luminance plane height divided by the vertical subsampling factor.

    For example, if the source image is 35 x 35 pixels and 4:2:2 subsampling is used, then the luminance plane would be 36 x 35 bytes, and each of the chrominance planes would be 18 x 35 bytes. If you specify a line padding of 4 bytes on top of this, then the luminance plane would be 36 x 35 bytes, and each of the chrominance planes would be 20 x 35 bytes.

    • Constructor Summary

      Constructors 
      Constructor and Description
      YUVImage(byte[][] planes, int[] offsets, int width, int[] strides, int height, int subsamp)
      Create a new YUVImage instance from a set of existing image planes.
      YUVImage(byte[] yuvImage, int width, int pad, int height, int subsamp)
      Create a new YUVImage instance from an existing unified image buffer.
      YUVImage(int width, int[] strides, int height, int subsamp)
      Create a new YUVImage instance backed by separate image planes, and allocate memory for the image planes.
      YUVImage(int width, int pad, int height, int subsamp)
      Create a new YUVImage instance backed by a unified image buffer, and allocate memory for the image buffer.
    • Method Summary

      Methods 
      Modifier and Type Method and Description
      byte[] getBuf()
      Returns the YUV image buffer (if this image is stored in a unified buffer rather than separate image planes.)
      int getHeight()
      Returns the height of the YUV image (or subregion.)
      int[] getOffsets()
      Returns the offsets (in bytes) of each plane within the planes of a larger YUV image.
      int getPad()
      Returns the line padding used in the YUV image buffer (if this image is stored in a unified buffer rather than separate image planes.)
      byte[][] getPlanes()
      Returns the YUV image planes.
      int getSize()
      Returns the size (in bytes) of the YUV image buffer (if this image is stored in a unified buffer rather than separate image planes.)
      int[] getStrides()
      Returns the number of bytes per line of each plane in the YUV image.
      int getSubsamp()
      Returns the level of chrominance subsampling used in the YUV image.
      int getWidth()
      Returns the width of the YUV image (or subregion.)
      void setBuf(byte[][] planes, int[] offsets, int width, int[] strides, int height, int subsamp)
      Assign a set of image planes to this YUVImage instance.
      void setBuf(byte[] yuvImage, int width, int pad, int height, int subsamp)
      Assign a unified image buffer to this YUVImage instance.
      • Methods inherited from class java.lang.Object

        clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
    • Field Detail

      • handle

        protected long handle
      • yuvPlanes

        protected byte[][] yuvPlanes
      • yuvOffsets

        protected int[] yuvOffsets
      • yuvStrides

        protected int[] yuvStrides
      • yuvPad

        protected int yuvPad
      • yuvWidth

        protected int yuvWidth
      • yuvHeight

        protected int yuvHeight
      • yuvSubsamp

        protected int yuvSubsamp
    • Constructor Detail

      • YUVImage

        public YUVImage(int width,
                int[] strides,
                int height,
                int subsamp)
                 throws java.lang.Exception
        Create a new YUVImage instance backed by separate image planes, and allocate memory for the image planes.
        Parameters:
        width - width (in pixels) of the YUV image
        strides - an array of integers, each specifying the number of bytes per line in the corresponding plane of the YUV image. Setting the stride for any plane to 0 is the same as setting it to the plane width (see above.) If strides is null, then the strides for all planes will be set to their respective plane widths. When using this constructor, the stride for each plane must be equal to or greater than the plane width.
        height - height (in pixels) of the YUV image
        subsamp - the level of chrominance subsampling to be used in the YUV image (one of TJ.SAMP_*)
        Throws:
        java.lang.Exception
      • YUVImage

        public YUVImage(int width,
                int pad,
                int height,
                int subsamp)
                 throws java.lang.Exception
        Create a new YUVImage instance backed by a unified image buffer, and allocate memory for the image buffer.
        Parameters:
        width - width (in pixels) of the YUV image
        pad - Each line of each plane in the YUV image buffer will be padded to this number of bytes (must be a power of 2.)
        height - height (in pixels) of the YUV image
        subsamp - the level of chrominance subsampling to be used in the YUV image (one of TJ.SAMP_*)
        Throws:
        java.lang.Exception
      • YUVImage

        public YUVImage(byte[][] planes,
                int[] offsets,
                int width,
                int[] strides,
                int height,
                int subsamp)
                 throws java.lang.Exception
        Create a new YUVImage instance from a set of existing image planes.
        Parameters:
        planes - an array of buffers representing the Y, U (Cb), and V (Cr) image planes (or just the Y plane, if the image is grayscale.) These planes can be contiguous or non-contiguous in memory. Plane i should be at least offsets[i] + TJ.planeSizeYUV(i, width, strides[i], height, subsamp) bytes in size.
        offsets - If this YUVImage instance represents a subregion of a larger image, then offsets[i] specifies the offset (in bytes) of the subregion within plane i of the larger image. Setting this to null is the same as setting the offsets for all planes to 0.
        width - width (in pixels) of the new YUV image (or subregion)
        strides - an array of integers, each specifying the number of bytes per line in the corresponding plane of the YUV image. Setting the stride for any plane to 0 is the same as setting it to the plane width (see above.) If strides is null, then the strides for all planes will be set to their respective plane widths. You can adjust the strides in order to add an arbitrary amount of line padding to each plane or to specify that this YUVImage instance is a subregion of a larger image (in which case, strides[i] should be set to the plane width of plane i in the larger image.)
        height - height (in pixels) of the new YUV image (or subregion)
        subsamp - the level of chrominance subsampling used in the YUV image (one of TJ.SAMP_*)
        Throws:
        java.lang.Exception
      • YUVImage

        public YUVImage(byte[] yuvImage,
                int width,
                int pad,
                int height,
                int subsamp)
                 throws java.lang.Exception
        Create a new YUVImage instance from an existing unified image buffer.
        Parameters:
        yuvImage - image buffer that contains or will contain YUV planar image data. Use TJ.bufSizeYUV(int, int, int, int) to determine the minimum size for this buffer. The Y, U (Cb), and V (Cr) image planes are stored sequentially in the buffer (see above for a description of the image format.)
        width - width (in pixels) of the YUV image
        pad - the line padding used in the YUV image buffer. For instance, if each line in each plane of the buffer is padded to the nearest multiple of 4 bytes, then pad should be set to 4.
        height - height (in pixels) of the YUV image
        subsamp - the level of chrominance subsampling used in the YUV image (one of TJ.SAMP_*)
        Throws:
        java.lang.Exception
    • Method Detail

      • setBuf

        public void setBuf(byte[][] planes,
                  int[] offsets,
                  int width,
                  int[] strides,
                  int height,
                  int subsamp)
                    throws java.lang.Exception
        Assign a set of image planes to this YUVImage instance.
        Parameters:
        planes - an array of buffers representing the Y, U (Cb), and V (Cr) image planes (or just the Y plane, if the image is grayscale.) These planes can be contiguous or non-contiguous in memory. Plane i should be at least offsets[i] + TJ.planeSizeYUV(i, width, strides[i], height, subsamp) bytes in size.
        offsets - If this YUVImage instance represents a subregion of a larger image, then offsets[i] specifies the offset (in bytes) of the subregion within plane i of the larger image. Setting this to null is the same as setting the offsets for all planes to 0.
        width - width (in pixels) of the YUV image (or subregion)
        strides - an array of integers, each specifying the number of bytes per line in the corresponding plane of the YUV image. Setting the stride for any plane to 0 is the same as setting it to the plane width (see above.) If strides is null, then the strides for all planes will be set to their respective plane widths. You can adjust the strides in order to add an arbitrary amount of line padding to each plane or to specify that this YUVImage image is a subregion of a larger image (in which case, strides[i] should be set to the plane width of plane i in the larger image.)
        height - height (in pixels) of the YUV image (or subregion)
        subsamp - the level of chrominance subsampling used in the YUV image (one of TJ.SAMP_*)
        Throws:
        java.lang.Exception
      • setBuf

        public void setBuf(byte[] yuvImage,
                  int width,
                  int pad,
                  int height,
                  int subsamp)
                    throws java.lang.Exception
        Assign a unified image buffer to this YUVImage instance.
        Parameters:
        yuvImage - image buffer that contains or will contain YUV planar image data. Use TJ.bufSizeYUV(int, int, int, int) to determine the minimum size for this buffer. The Y, U (Cb), and V (Cr) image planes are stored sequentially in the buffer (see above for a description of the image format.)
        width - width (in pixels) of the YUV image
        pad - the line padding used in the YUV image buffer. For instance, if each line in each plane of the buffer is padded to the nearest multiple of 4 bytes, then pad should be set to 4.
        height - height (in pixels) of the YUV image
        subsamp - the level of chrominance subsampling used in the YUV image (one of TJ.SAMP_*)
        Throws:
        java.lang.Exception
      • getWidth

        public int getWidth()
                     throws java.lang.Exception
        Returns the width of the YUV image (or subregion.)
        Returns:
        the width of the YUV image (or subregion)
        Throws:
        java.lang.Exception
      • getHeight

        public int getHeight()
                      throws java.lang.Exception
        Returns the height of the YUV image (or subregion.)
        Returns:
        the height of the YUV image (or subregion)
        Throws:
        java.lang.Exception
      • getPad

        public int getPad()
                   throws java.lang.Exception
        Returns the line padding used in the YUV image buffer (if this image is stored in a unified buffer rather than separate image planes.)
        Returns:
        the line padding used in the YUV image buffer
        Throws:
        java.lang.Exception
      • getStrides

        public int[] getStrides()
                         throws java.lang.Exception
        Returns the number of bytes per line of each plane in the YUV image.
        Returns:
        the number of bytes per line of each plane in the YUV image
        Throws:
        java.lang.Exception
      • getOffsets

        public int[] getOffsets()
                         throws java.lang.Exception
        Returns the offsets (in bytes) of each plane within the planes of a larger YUV image.
        Returns:
        the offsets (in bytes) of each plane within the planes of a larger YUV image
        Throws:
        java.lang.Exception
      • getSubsamp

        public int getSubsamp()
                       throws java.lang.Exception
        Returns the level of chrominance subsampling used in the YUV image. See TJ.SAMP_*.
        Returns:
        the level of chrominance subsampling used in the YUV image
        Throws:
        java.lang.Exception
      • getPlanes

        public byte[][] getPlanes()
                           throws java.lang.Exception
        Returns the YUV image planes. If the image is stored in a unified buffer, then all image planes will point to that buffer.
        Returns:
        the YUV image planes
        Throws:
        java.lang.Exception
      • getBuf

        public byte[] getBuf()
                      throws java.lang.Exception
        Returns the YUV image buffer (if this image is stored in a unified buffer rather than separate image planes.)
        Returns:
        the YUV image buffer
        Throws:
        java.lang.Exception
      • getSize

        public int getSize()
                    throws java.lang.Exception
        Returns the size (in bytes) of the YUV image buffer (if this image is stored in a unified buffer rather than separate image planes.)
        Returns:
        the size (in bytes) of the YUV image buffer
        Throws:
        java.lang.Exception
libjpeg-turbo-1.4.2/java/doc/org/libjpegturbo/turbojpeg/TJScalingFactor.html0000644000076500007650000002654212600050400024023 00000000000000 TJScalingFactor
org.libjpegturbo.turbojpeg

Class TJScalingFactor

  • java.lang.Object
    • org.libjpegturbo.turbojpeg.TJScalingFactor


  • public class TJScalingFactor
    extends java.lang.Object
    Fractional scaling factor
    • Constructor Summary

      Constructors 
      Constructor and Description
      TJScalingFactor(int num, int denom) 
    • Method Summary

      Methods 
      Modifier and Type Method and Description
      boolean equals(TJScalingFactor other)
      Returns true or false, depending on whether this instance and other have the same numerator and denominator.
      int getDenom()
      Returns denominator
      int getNum()
      Returns numerator
      int getScaled(int dimension)
      Returns the scaled value of dimension.
      boolean isOne()
      Returns true or false, depending on whether this instance is equal to 1/1.
      • Methods inherited from class java.lang.Object

        clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
    • Constructor Detail

      • TJScalingFactor

        public TJScalingFactor(int num,
                       int denom)
                        throws java.lang.Exception
        Throws:
        java.lang.Exception
    • Method Detail

      • getNum

        public int getNum()
        Returns numerator
        Returns:
        numerator
      • getDenom

        public int getDenom()
        Returns denominator
        Returns:
        denominator
      • getScaled

        public int getScaled(int dimension)
        Returns the scaled value of dimension. This function performs the integer equivalent of ceil(dimension * scalingFactor).
        Returns:
        the scaled value of dimension.
      • equals

        public boolean equals(TJScalingFactor other)
        Returns true or false, depending on whether this instance and other have the same numerator and denominator.
        Returns:
        true or false, depending on whether this instance and other have the same numerator and denominator.
      • isOne

        public boolean isOne()
        Returns true or false, depending on whether this instance is equal to 1/1.
        Returns:
        true or false, depending on whether this instance is equal to 1/1.
libjpeg-turbo-1.4.2/java/doc/org/libjpegturbo/turbojpeg/TJ.html0000644000076500007650000015613712600050400021367 00000000000000 TJ
org.libjpegturbo.turbojpeg

Class TJ

  • java.lang.Object
    • org.libjpegturbo.turbojpeg.TJ


  • public final class TJ
    extends java.lang.Object
    TurboJPEG utility class (cannot be instantiated)
    • Field Summary

      Fields 
      Modifier and Type Field and Description
      static int CS_CMYK
      CMYK colorspace.
      static int CS_GRAY
      Grayscale colorspace.
      static int CS_RGB
      RGB colorspace.
      static int CS_YCbCr
      YCbCr colorspace.
      static int CS_YCCK
      YCCK colorspace.
      static int FLAG_ACCURATEDCT
      Use the most accurate DCT/IDCT algorithm available in the underlying codec.
      static int FLAG_BOTTOMUP
      The uncompressed source/destination image is stored in bottom-up (Windows, OpenGL) order, not top-down (X11) order.
      static int FLAG_FASTDCT
      Use the fastest DCT/IDCT algorithm available in the underlying codec.
      static int FLAG_FASTUPSAMPLE
      When decompressing an image that was compressed using chrominance subsampling, use the fastest chrominance upsampling algorithm available in the underlying codec.
      static int FLAG_FORCEMMX
      Deprecated. 
      static int FLAG_FORCESSE
      Deprecated. 
      static int FLAG_FORCESSE2
      Deprecated. 
      static int FLAG_FORCESSE3
      Deprecated. 
      static int NUMCS
      The number of JPEG colorspaces
      static int NUMPF
      The number of pixel formats
      static int NUMSAMP
      The number of chrominance subsampling options
      static int PF_ABGR
      ABGR pixel format.
      static int PF_ARGB
      ARGB pixel format.
      static int PF_BGR
      BGR pixel format.
      static int PF_BGRA
      BGRA pixel format.
      static int PF_BGRX
      BGRX pixel format.
      static int PF_CMYK
      CMYK pixel format.
      static int PF_GRAY
      Grayscale pixel format.
      static int PF_RGB
      RGB pixel format.
      static int PF_RGBA
      RGBA pixel format.
      static int PF_RGBX
      RGBX pixel format.
      static int PF_XBGR
      XBGR pixel format.
      static int PF_XRGB
      XRGB pixel format.
      static int SAMP_411
      4:1:1 chrominance subsampling.
      static int SAMP_420
      4:2:0 chrominance subsampling.
      static int SAMP_422
      4:2:2 chrominance subsampling.
      static int SAMP_440
      4:4:0 chrominance subsampling.
      static int SAMP_444
      4:4:4 chrominance subsampling (no chrominance subsampling).
      static int SAMP_GRAY
      Grayscale.
    • Constructor Summary

      Constructors 
      Constructor and Description
      TJ() 
    • Method Summary

      Methods 
      Modifier and Type Method and Description
      static int bufSize(int width, int height, int jpegSubsamp)
      Returns the maximum size of the buffer (in bytes) required to hold a JPEG image with the given width, height, and level of chrominance subsampling.
      static int bufSizeYUV(int width, int height, int subsamp)
      Deprecated. 
      static int bufSizeYUV(int width, int pad, int height, int subsamp)
      Returns the size of the buffer (in bytes) required to hold a YUV planar image with the given width, height, and level of chrominance subsampling.
      static int getBlueOffset(int pixelFormat)
      For the given pixel format, returns the number of bytes that the blue component is offset from the start of the pixel.
      static int getGreenOffset(int pixelFormat)
      For the given pixel format, returns the number of bytes that the green component is offset from the start of the pixel.
      static int getMCUHeight(int subsamp)
      Returns the MCU block height for the given level of chrominance subsampling.
      static int getMCUWidth(int subsamp)
      Returns the MCU block width for the given level of chrominance subsampling.
      static int getPixelSize(int pixelFormat)
      Returns the pixel size (in bytes) for the given pixel format.
      static int getRedOffset(int pixelFormat)
      For the given pixel format, returns the number of bytes that the red component is offset from the start of the pixel.
      static TJScalingFactor[] getScalingFactors()
      Returns a list of fractional scaling factors that the JPEG decompressor in this implementation of TurboJPEG supports.
      static int planeHeight(int componentID, int height, int subsamp)
      Returns the plane height of a YUV image plane with the given parameters.
      static int planeSizeYUV(int componentID, int width, int stride, int height, int subsamp)
      Returns the size of the buffer (in bytes) required to hold a YUV image plane with the given parameters.
      static int planeWidth(int componentID, int width, int subsamp)
      Returns the plane width of a YUV image plane with the given parameters.
      • Methods inherited from class java.lang.Object

        clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
    • Field Detail

      • NUMSAMP

        public static final int NUMSAMP
        The number of chrominance subsampling options
        See Also:
        Constant Field Values
      • SAMP_444

        public static final int SAMP_444
        4:4:4 chrominance subsampling (no chrominance subsampling). The JPEG or YUV image will contain one chrominance component for every pixel in the source image.
        See Also:
        Constant Field Values
      • SAMP_422

        public static final int SAMP_422
        4:2:2 chrominance subsampling. The JPEG or YUV image will contain one chrominance component for every 2x1 block of pixels in the source image.
        See Also:
        Constant Field Values
      • SAMP_420

        public static final int SAMP_420
        4:2:0 chrominance subsampling. The JPEG or YUV image will contain one chrominance component for every 2x2 block of pixels in the source image.
        See Also:
        Constant Field Values
      • SAMP_GRAY

        public static final int SAMP_GRAY
        Grayscale. The JPEG or YUV image will contain no chrominance components.
        See Also:
        Constant Field Values
      • SAMP_440

        public static final int SAMP_440
        4:4:0 chrominance subsampling. The JPEG or YUV image will contain one chrominance component for every 1x2 block of pixels in the source image. Note that 4:4:0 subsampling is not fully accelerated in libjpeg-turbo.
        See Also:
        Constant Field Values
      • SAMP_411

        public static final int SAMP_411
        4:1:1 chrominance subsampling. The JPEG or YUV image will contain one chrominance component for every 4x1 block of pixels in the source image. JPEG images compressed with 4:1:1 subsampling will be almost exactly the same size as those compressed with 4:2:0 subsampling, and in the aggregate, both subsampling methods produce approximately the same perceptual quality. However, 4:1:1 is better able to reproduce sharp horizontal features. Note that 4:1:1 subsampling is not fully accelerated in libjpeg-turbo.
        See Also:
        Constant Field Values
      • PF_RGB

        public static final int PF_RGB
        RGB pixel format. The red, green, and blue components in the image are stored in 3-byte pixels in the order R, G, B from lowest to highest byte address within each pixel.
        See Also:
        Constant Field Values
      • PF_BGR

        public static final int PF_BGR
        BGR pixel format. The red, green, and blue components in the image are stored in 3-byte pixels in the order B, G, R from lowest to highest byte address within each pixel.
        See Also:
        Constant Field Values
      • PF_RGBX

        public static final int PF_RGBX
        RGBX pixel format. The red, green, and blue components in the image are stored in 4-byte pixels in the order R, G, B from lowest to highest byte address within each pixel. The X component is ignored when compressing and undefined when decompressing.
        See Also:
        Constant Field Values
      • PF_BGRX

        public static final int PF_BGRX
        BGRX pixel format. The red, green, and blue components in the image are stored in 4-byte pixels in the order B, G, R from lowest to highest byte address within each pixel. The X component is ignored when compressing and undefined when decompressing.
        See Also:
        Constant Field Values
      • PF_XBGR

        public static final int PF_XBGR
        XBGR pixel format. The red, green, and blue components in the image are stored in 4-byte pixels in the order R, G, B from highest to lowest byte address within each pixel. The X component is ignored when compressing and undefined when decompressing.
        See Also:
        Constant Field Values
      • PF_XRGB

        public static final int PF_XRGB
        XRGB pixel format. The red, green, and blue components in the image are stored in 4-byte pixels in the order B, G, R from highest to lowest byte address within each pixel. The X component is ignored when compressing and undefined when decompressing.
        See Also:
        Constant Field Values
      • PF_GRAY

        public static final int PF_GRAY
        Grayscale pixel format. Each 1-byte pixel represents a luminance (brightness) level from 0 to 255.
        See Also:
        Constant Field Values
      • PF_RGBA

        public static final int PF_RGBA
        RGBA pixel format. This is the same as PF_RGBX, except that when decompressing, the X byte is guaranteed to be 0xFF, which can be interpreted as an opaque alpha channel.
        See Also:
        Constant Field Values
      • PF_BGRA

        public static final int PF_BGRA
        BGRA pixel format. This is the same as PF_BGRX, except that when decompressing, the X byte is guaranteed to be 0xFF, which can be interpreted as an opaque alpha channel.
        See Also:
        Constant Field Values
      • PF_ABGR

        public static final int PF_ABGR
        ABGR pixel format. This is the same as PF_XBGR, except that when decompressing, the X byte is guaranteed to be 0xFF, which can be interpreted as an opaque alpha channel.
        See Also:
        Constant Field Values
      • PF_ARGB

        public static final int PF_ARGB
        ARGB pixel format. This is the same as PF_XRGB, except that when decompressing, the X byte is guaranteed to be 0xFF, which can be interpreted as an opaque alpha channel.
        See Also:
        Constant Field Values
      • PF_CMYK

        public static final int PF_CMYK
        CMYK pixel format. Unlike RGB, which is an additive color model used primarily for display, CMYK (Cyan/Magenta/Yellow/Key) is a subtractive color model used primarily for printing. In the CMYK color model, the value of each color component typically corresponds to an amount of cyan, magenta, yellow, or black ink that is applied to a white background. In order to convert between CMYK and RGB, it is necessary to use a color management system (CMS.) A CMS will attempt to map colors within the printer's gamut to perceptually similar colors in the display's gamut and vice versa, but the mapping is typically not 1:1 or reversible, nor can it be defined with a simple formula. Thus, such a conversion is out of scope for a codec library. However, the TurboJPEG API allows for compressing CMYK pixels into a YCCK JPEG image (see CS_YCCK) and decompressing YCCK JPEG images into CMYK pixels.
        See Also:
        Constant Field Values
      • CS_RGB

        public static final int CS_RGB
        RGB colorspace. When compressing the JPEG image, the R, G, and B components in the source image are reordered into image planes, but no colorspace conversion or subsampling is performed. RGB JPEG images can be decompressed to any of the extended RGB pixel formats or grayscale, but they cannot be decompressed to YUV images.
        See Also:
        Constant Field Values
      • CS_YCbCr

        public static final int CS_YCbCr
        YCbCr colorspace. YCbCr is not an absolute colorspace but rather a mathematical transformation of RGB designed solely for storage and transmission. YCbCr images must be converted to RGB before they can actually be displayed. In the YCbCr colorspace, the Y (luminance) component represents the black & white portion of the original image, and the Cb and Cr (chrominance) components represent the color portion of the original image. Originally, the analog equivalent of this transformation allowed the same signal to drive both black & white and color televisions, but JPEG images use YCbCr primarily because it allows the color data to be optionally subsampled for the purposes of reducing bandwidth or disk space. YCbCr is the most common JPEG colorspace, and YCbCr JPEG images can be compressed from and decompressed to any of the extended RGB pixel formats or grayscale, or they can be decompressed to YUV planar images.
        See Also:
        Constant Field Values
      • CS_GRAY

        public static final int CS_GRAY
        Grayscale colorspace. The JPEG image retains only the luminance data (Y component), and any color data from the source image is discarded. Grayscale JPEG images can be compressed from and decompressed to any of the extended RGB pixel formats or grayscale, or they can be decompressed to YUV planar images.
        See Also:
        Constant Field Values
      • CS_CMYK

        public static final int CS_CMYK
        CMYK colorspace. When compressing the JPEG image, the C, M, Y, and K components in the source image are reordered into image planes, but no colorspace conversion or subsampling is performed. CMYK JPEG images can only be decompressed to CMYK pixels.
        See Also:
        Constant Field Values
      • CS_YCCK

        public static final int CS_YCCK
        YCCK colorspace. YCCK (AKA "YCbCrK") is not an absolute colorspace but rather a mathematical transformation of CMYK designed solely for storage and transmission. It is to CMYK as YCbCr is to RGB. CMYK pixels can be reversibly transformed into YCCK, and as with YCbCr, the chrominance components in the YCCK pixels can be subsampled without incurring major perceptual loss. YCCK JPEG images can only be compressed from and decompressed to CMYK pixels.
        See Also:
        Constant Field Values
      • FLAG_BOTTOMUP

        public static final int FLAG_BOTTOMUP
        The uncompressed source/destination image is stored in bottom-up (Windows, OpenGL) order, not top-down (X11) order.
        See Also:
        Constant Field Values
      • FLAG_FORCEMMX

        @Deprecated
        public static final int FLAG_FORCEMMX
        Deprecated. 
        See Also:
        Constant Field Values
      • FLAG_FORCESSE

        @Deprecated
        public static final int FLAG_FORCESSE
        Deprecated. 
        See Also:
        Constant Field Values
      • FLAG_FORCESSE2

        @Deprecated
        public static final int FLAG_FORCESSE2
        Deprecated. 
        See Also:
        Constant Field Values
      • FLAG_FORCESSE3

        @Deprecated
        public static final int FLAG_FORCESSE3
        Deprecated. 
        See Also:
        Constant Field Values
      • FLAG_FASTUPSAMPLE

        public static final int FLAG_FASTUPSAMPLE
        When decompressing an image that was compressed using chrominance subsampling, use the fastest chrominance upsampling algorithm available in the underlying codec. The default is to use smooth upsampling, which creates a smooth transition between neighboring chrominance components in order to reduce upsampling artifacts in the decompressed image.
        See Also:
        Constant Field Values
      • FLAG_FASTDCT

        public static final int FLAG_FASTDCT
        Use the fastest DCT/IDCT algorithm available in the underlying codec. The default if this flag is not specified is implementation-specific. For example, the implementation of TurboJPEG for libjpeg[-turbo] uses the fast algorithm by default when compressing, because this has been shown to have only a very slight effect on accuracy, but it uses the accurate algorithm when decompressing, because this has been shown to have a larger effect.
        See Also:
        Constant Field Values
      • FLAG_ACCURATEDCT

        public static final int FLAG_ACCURATEDCT
        Use the most accurate DCT/IDCT algorithm available in the underlying codec. The default if this flag is not specified is implementation-specific. For example, the implementation of TurboJPEG for libjpeg[-turbo] uses the fast algorithm by default when compressing, because this has been shown to have only a very slight effect on accuracy, but it uses the accurate algorithm when decompressing, because this has been shown to have a larger effect.
        See Also:
        Constant Field Values
    • Constructor Detail

      • TJ

        public TJ()
    • Method Detail

      • getMCUWidth

        public static int getMCUWidth(int subsamp)
                               throws java.lang.Exception
        Returns the MCU block width for the given level of chrominance subsampling.
        Parameters:
        subsamp - the level of chrominance subsampling (one of SAMP_*)
        Returns:
        the MCU block width for the given level of chrominance subsampling.
        Throws:
        java.lang.Exception
      • getMCUHeight

        public static int getMCUHeight(int subsamp)
                                throws java.lang.Exception
        Returns the MCU block height for the given level of chrominance subsampling.
        Parameters:
        subsamp - the level of chrominance subsampling (one of SAMP_*)
        Returns:
        the MCU block height for the given level of chrominance subsampling.
        Throws:
        java.lang.Exception
      • getPixelSize

        public static int getPixelSize(int pixelFormat)
                                throws java.lang.Exception
        Returns the pixel size (in bytes) for the given pixel format.
        Parameters:
        pixelFormat - the pixel format (one of PF_*)
        Returns:
        the pixel size (in bytes) for the given pixel format.
        Throws:
        java.lang.Exception
      • getRedOffset

        public static int getRedOffset(int pixelFormat)
                                throws java.lang.Exception
        For the given pixel format, returns the number of bytes that the red component is offset from the start of the pixel. For instance, if a pixel of format TJ.PF_BGRX is stored in char pixel[], then the red component will be pixel[TJ.getRedOffset(TJ.PF_BGRX)].
        Parameters:
        pixelFormat - the pixel format (one of PF_*)
        Returns:
        the red offset for the given pixel format.
        Throws:
        java.lang.Exception
      • getGreenOffset

        public static int getGreenOffset(int pixelFormat)
                                  throws java.lang.Exception
        For the given pixel format, returns the number of bytes that the green component is offset from the start of the pixel. For instance, if a pixel of format TJ.PF_BGRX is stored in char pixel[], then the green component will be pixel[TJ.getGreenOffset(TJ.PF_BGRX)].
        Parameters:
        pixelFormat - the pixel format (one of PF_*)
        Returns:
        the green offset for the given pixel format.
        Throws:
        java.lang.Exception
      • getBlueOffset

        public static int getBlueOffset(int pixelFormat)
                                 throws java.lang.Exception
        For the given pixel format, returns the number of bytes that the blue component is offset from the start of the pixel. For instance, if a pixel of format TJ.PF_BGRX is stored in char pixel[], then the blue component will be pixel[TJ.getBlueOffset(TJ.PF_BGRX)].
        Parameters:
        pixelFormat - the pixel format (one of PF_*)
        Returns:
        the blue offset for the given pixel format.
        Throws:
        java.lang.Exception
      • bufSize

        public static int bufSize(int width,
                  int height,
                  int jpegSubsamp)
                           throws java.lang.Exception
        Returns the maximum size of the buffer (in bytes) required to hold a JPEG image with the given width, height, and level of chrominance subsampling.
        Parameters:
        width - the width (in pixels) of the JPEG image
        height - the height (in pixels) of the JPEG image
        jpegSubsamp - the level of chrominance subsampling to be used when generating the JPEG image (one of TJ.SAMP_*)
        Returns:
        the maximum size of the buffer (in bytes) required to hold a JPEG image with the given width, height, and level of chrominance subsampling.
        Throws:
        java.lang.Exception
      • bufSizeYUV

        public static int bufSizeYUV(int width,
                     int pad,
                     int height,
                     int subsamp)
                              throws java.lang.Exception
        Returns the size of the buffer (in bytes) required to hold a YUV planar image with the given width, height, and level of chrominance subsampling.
        Parameters:
        width - the width (in pixels) of the YUV image
        pad - the width of each line in each plane of the image is padded to the nearest multiple of this number of bytes (must be a power of 2.)
        height - the height (in pixels) of the YUV image
        subsamp - the level of chrominance subsampling used in the YUV image (one of TJ.SAMP_*)
        Returns:
        the size of the buffer (in bytes) required to hold a YUV planar image with the given width, height, and level of chrominance subsampling.
        Throws:
        java.lang.Exception
      • bufSizeYUV

        @Deprecated
        public static int bufSizeYUV(int width,
                                int height,
                                int subsamp)
                              throws java.lang.Exception
        Deprecated. Use bufSizeYUV(int, int, int, int) instead.
        Throws:
        java.lang.Exception
      • planeSizeYUV

        public static int planeSizeYUV(int componentID,
                       int width,
                       int stride,
                       int height,
                       int subsamp)
                                throws java.lang.Exception
        Returns the size of the buffer (in bytes) required to hold a YUV image plane with the given parameters.
        Parameters:
        componentID - ID number of the image plane (0 = Y, 1 = U/Cb, 2 = V/Cr)
        width - width (in pixels) of the YUV image. NOTE: this is the width of the whole image, not the plane width.
        stride - bytes per line in the image plane.
        height - height (in pixels) of the YUV image. NOTE: this is the height of the whole image, not the plane height.
        subsamp - the level of chrominance subsampling used in the YUV image (one of TJ.SAMP_*)
        Returns:
        the size of the buffer (in bytes) required to hold a YUV planar image with the given parameters.
        Throws:
        java.lang.Exception
      • planeWidth

        public static int planeWidth(int componentID,
                     int width,
                     int subsamp)
                              throws java.lang.Exception
        Returns the plane width of a YUV image plane with the given parameters. Refer to YUVImage for a description of plane width.
        Parameters:
        componentID - ID number of the image plane (0 = Y, 1 = U/Cb, 2 = V/Cr)
        width - width (in pixels) of the YUV image
        subsamp - the level of chrominance subsampling used in the YUV image (one of TJ.SAMP_*)
        Returns:
        the plane width of a YUV image plane with the given parameters.
        Throws:
        java.lang.Exception
      • planeHeight

        public static int planeHeight(int componentID,
                      int height,
                      int subsamp)
                               throws java.lang.Exception
        Returns the plane height of a YUV image plane with the given parameters. Refer to YUVImage for a description of plane height.
        Parameters:
        componentID - ID number of the image plane (0 = Y, 1 = U/Cb, 2 = V/Cr)
        height - height (in pixels) of the YUV image
        subsamp - the level of chrominance subsampling used in the YUV image (one of TJ.SAMP_*)
        Returns:
        the plane height of a YUV image plane with the given parameters.
        Throws:
        java.lang.Exception
      • getScalingFactors

        public static TJScalingFactor[] getScalingFactors()
                                                   throws java.lang.Exception
        Returns a list of fractional scaling factors that the JPEG decompressor in this implementation of TurboJPEG supports.
        Returns:
        a list of fractional scaling factors that the JPEG decompressor in this implementation of TurboJPEG supports.
        Throws:
        java.lang.Exception
libjpeg-turbo-1.4.2/java/doc/org/libjpegturbo/turbojpeg/package-frame.html0000644000076500007650000000301312600050400023515 00000000000000 org.libjpegturbo.turbojpeg

org.libjpegturbo.turbojpeg

libjpeg-turbo-1.4.2/java/doc/org/libjpegturbo/turbojpeg/package-summary.html0000644000076500007650000001434512600050400024132 00000000000000 org.libjpegturbo.turbojpeg

Package org.libjpegturbo.turbojpeg

  • Interface Summary 
    Interface Description
    TJCustomFilter
    Custom filter callback interface
  • Class Summary 
    Class Description
    TJ
    TurboJPEG utility class (cannot be instantiated)
    TJCompressor
    TurboJPEG compressor
    TJDecompressor
    TurboJPEG decompressor
    TJScalingFactor
    Fractional scaling factor
    TJTransform
    Lossless transform parameters
    TJTransformer
    TurboJPEG lossless transformer
    YUVImage
    This class encapsulates a YUV planar image and the metadata associated with it.
libjpeg-turbo-1.4.2/java/doc/org/libjpegturbo/turbojpeg/TJTransform.html0000644000076500007650000007431712600050400023262 00000000000000 TJTransform
org.libjpegturbo.turbojpeg

Class TJTransform

  • java.lang.Object
    • java.awt.geom.RectangularShape
      • java.awt.geom.Rectangle2D
        • java.awt.Rectangle
          • org.libjpegturbo.turbojpeg.TJTransform
  • All Implemented Interfaces:
    java.awt.Shape, java.io.Serializable, java.lang.Cloneable


    public class TJTransform
    extends java.awt.Rectangle
    Lossless transform parameters
    See Also:
    Serialized Form
    • Nested Class Summary

      • Nested classes/interfaces inherited from class java.awt.geom.Rectangle2D

        java.awt.geom.Rectangle2D.Double, java.awt.geom.Rectangle2D.Float
    • Field Summary

      Fields 
      Modifier and Type Field and Description
      TJCustomFilter cf
      Custom filter instance
      static int NUMOP
      The number of lossless transform operations
      int op
      Transform operation (one of OP_*)
      static int OP_HFLIP
      Flip (mirror) image horizontally.
      static int OP_NONE
      Do not transform the position of the image pixels.
      static int OP_ROT180
      Rotate image 180 degrees.
      static int OP_ROT270
      Rotate image counter-clockwise by 90 degrees.
      static int OP_ROT90
      Rotate image clockwise by 90 degrees.
      static int OP_TRANSPOSE
      Transpose image (flip/mirror along upper left to lower right axis).
      static int OP_TRANSVERSE
      Transverse transpose image (flip/mirror along upper right to lower left axis).
      static int OP_VFLIP
      Flip (mirror) image vertically.
      static int OPT_CROP
      This option will enable lossless cropping.
      static int OPT_GRAY
      This option will discard the color data in the input image and produce a grayscale output image.
      static int OPT_NOOUTPUT
      This option will prevent TJTransformer.transform() from outputting a JPEG image for this particular transform.
      static int OPT_PERFECT
      This option will cause TJTransformer.transform() to throw an exception if the transform is not perfect.
      static int OPT_TRIM
      This option will discard any partial MCU blocks that cannot be transformed.
      int options
      Transform options (bitwise OR of one or more of OPT_*)
      • Fields inherited from class java.awt.Rectangle

        height, width, x, y
      • Fields inherited from class java.awt.geom.Rectangle2D

        OUT_BOTTOM, OUT_LEFT, OUT_RIGHT, OUT_TOP
    • Constructor Summary

      Constructors 
      Constructor and Description
      TJTransform()
      Create a new lossless transform instance.
      TJTransform(int x, int y, int w, int h, int op, int options, TJCustomFilter cf)
      Create a new lossless transform instance with the given parameters.
      TJTransform(java.awt.Rectangle r, int op, int options, TJCustomFilter cf)
      Create a new lossless transform instance with the given parameters.
    • Method Summary

      • Methods inherited from class java.awt.Rectangle

        add, add, add, contains, contains, contains, contains, createIntersection, createUnion, equals, getBounds, getBounds2D, getHeight, getLocation, getSize, getWidth, getX, getY, grow, inside, intersection, intersects, isEmpty, move, outcode, reshape, resize, setBounds, setBounds, setLocation, setLocation, setRect, setSize, setSize, toString, translate, union
      • Methods inherited from class java.awt.geom.Rectangle2D

        add, add, add, contains, contains, getPathIterator, getPathIterator, hashCode, intersect, intersects, intersectsLine, intersectsLine, outcode, setFrame, setRect, union
      • Methods inherited from class java.awt.geom.RectangularShape

        clone, contains, contains, getCenterX, getCenterY, getFrame, getMaxX, getMaxY, getMinX, getMinY, intersects, setFrame, setFrame, setFrameFromCenter, setFrameFromCenter, setFrameFromDiagonal, setFrameFromDiagonal
      • Methods inherited from class java.lang.Object

        finalize, getClass, notify, notifyAll, wait, wait, wait
      • Methods inherited from interface java.awt.Shape

        contains, contains, contains, contains, getPathIterator, getPathIterator, intersects, intersects
    • Field Detail

      • NUMOP

        public static final int NUMOP
        The number of lossless transform operations
        See Also:
        Constant Field Values
      • OP_NONE

        public static final int OP_NONE
        Do not transform the position of the image pixels.
        See Also:
        Constant Field Values
      • OP_HFLIP

        public static final int OP_HFLIP
        Flip (mirror) image horizontally. This transform is imperfect if there are any partial MCU blocks on the right edge.
        See Also:
        OPT_PERFECT, Constant Field Values
      • OP_VFLIP

        public static final int OP_VFLIP
        Flip (mirror) image vertically. This transform is imperfect if there are any partial MCU blocks on the bottom edge.
        See Also:
        OPT_PERFECT, Constant Field Values
      • OP_TRANSPOSE

        public static final int OP_TRANSPOSE
        Transpose image (flip/mirror along upper left to lower right axis). This transform is always perfect.
        See Also:
        OPT_PERFECT, Constant Field Values
      • OP_TRANSVERSE

        public static final int OP_TRANSVERSE
        Transverse transpose image (flip/mirror along upper right to lower left axis). This transform is imperfect if there are any partial MCU blocks in the image.
        See Also:
        OPT_PERFECT, Constant Field Values
      • OP_ROT90

        public static final int OP_ROT90
        Rotate image clockwise by 90 degrees. This transform is imperfect if there are any partial MCU blocks on the bottom edge.
        See Also:
        OPT_PERFECT, Constant Field Values
      • OP_ROT180

        public static final int OP_ROT180
        Rotate image 180 degrees. This transform is imperfect if there are any partial MCU blocks in the image.
        See Also:
        OPT_PERFECT, Constant Field Values
      • OP_ROT270

        public static final int OP_ROT270
        Rotate image counter-clockwise by 90 degrees. This transform is imperfect if there are any partial MCU blocks on the right edge.
        See Also:
        OPT_PERFECT, Constant Field Values
      • OPT_PERFECT

        public static final int OPT_PERFECT
        This option will cause TJTransformer.transform() to throw an exception if the transform is not perfect. Lossless transforms operate on MCU blocks, whose size depends on the level of chrominance subsampling used. If the image's width or height is not evenly divisible by the MCU block size (see TJ.getMCUWidth(int) and TJ.getMCUHeight(int)), then there will be partial MCU blocks on the right and/or bottom edges. It is not possible to move these partial MCU blocks to the top or left of the image, so any transform that would require that is "imperfect." If this option is not specified, then any partial MCU blocks that cannot be transformed will be left in place, which will create odd-looking strips on the right or bottom edge of the image.
        See Also:
        Constant Field Values
      • OPT_TRIM

        public static final int OPT_TRIM
        This option will discard any partial MCU blocks that cannot be transformed.
        See Also:
        Constant Field Values
      • OPT_CROP

        public static final int OPT_CROP
        This option will enable lossless cropping.
        See Also:
        Constant Field Values
      • OPT_GRAY

        public static final int OPT_GRAY
        This option will discard the color data in the input image and produce a grayscale output image.
        See Also:
        Constant Field Values
      • OPT_NOOUTPUT

        public static final int OPT_NOOUTPUT
        This option will prevent TJTransformer.transform() from outputting a JPEG image for this particular transform. This can be used in conjunction with a custom filter to capture the transformed DCT coefficients without transcoding them.
        See Also:
        Constant Field Values
      • op

        public int op
        Transform operation (one of OP_*)
      • options

        public int options
        Transform options (bitwise OR of one or more of OPT_*)
    • Constructor Detail

      • TJTransform

        public TJTransform()
        Create a new lossless transform instance.
      • TJTransform

        public TJTransform(int x,
                   int y,
                   int w,
                   int h,
                   int op,
                   int options,
                   TJCustomFilter cf)
                    throws java.lang.Exception
        Create a new lossless transform instance with the given parameters.
        Parameters:
        x - the left boundary of the cropping region. This must be evenly divisible by the MCU block width (see TJ.getMCUWidth(int))
        y - the upper boundary of the cropping region. This must be evenly divisible by the MCU block height (see TJ.getMCUHeight(int))
        w - the width of the cropping region. Setting this to 0 is the equivalent of setting it to (width of the source JPEG image - x).
        h - the height of the cropping region. Setting this to 0 is the equivalent of setting it to (height of the source JPEG image - y).
        op - one of the transform operations (OP_*)
        options - the bitwise OR of one or more of the transform options (OPT_*)
        cf - an instance of an object that implements the TJCustomFilter interface, or null if no custom filter is needed
        Throws:
        java.lang.Exception
      • TJTransform

        public TJTransform(java.awt.Rectangle r,
                   int op,
                   int options,
                   TJCustomFilter cf)
                    throws java.lang.Exception
        Create a new lossless transform instance with the given parameters.
        Parameters:
        r - a Rectangle instance that specifies the cropping region. See TJTransform(int, int, int, int, int, int, TJCustomFilter) for more detail.
        op - one of the transform operations (OP_*)
        options - the bitwise OR of one or more of the transform options (OPT_*)
        cf - an instance of an object that implements the TJCustomFilter interface, or null if no custom filter is needed
        Throws:
        java.lang.Exception
libjpeg-turbo-1.4.2/java/doc/org/libjpegturbo/turbojpeg/TJTransformer.html0000644000076500007650000005257612600050400023614 00000000000000 TJTransformer
org.libjpegturbo.turbojpeg

Class TJTransformer



  • public class TJTransformer
    extends TJDecompressor
    TurboJPEG lossless transformer
    • Constructor Detail

      • TJTransformer

        public TJTransformer()
                      throws java.lang.Exception
        Create a TurboJPEG lossless transformer instance.
        Throws:
        java.lang.Exception
      • TJTransformer

        public TJTransformer(byte[] jpegImage)
                      throws java.lang.Exception
        Create a TurboJPEG lossless transformer instance and associate the JPEG image stored in jpegImage with the newly created instance.
        Parameters:
        jpegImage - JPEG image buffer (size of the JPEG image is assumed to be the length of the array.) This buffer is not modified.
        Throws:
        java.lang.Exception
      • TJTransformer

        public TJTransformer(byte[] jpegImage,
                     int imageSize)
                      throws java.lang.Exception
        Create a TurboJPEG lossless transformer instance and associate the JPEG image of length imageSize bytes stored in jpegImage with the newly created instance.
        Parameters:
        jpegImage - JPEG image buffer. This buffer is not modified.
        imageSize - size of the JPEG image (in bytes)
        Throws:
        java.lang.Exception
    • Method Detail

      • transform

        public void transform(byte[][] dstBufs,
                     TJTransform[] transforms,
                     int flags)
                       throws java.lang.Exception
        Losslessly transform the JPEG image associated with this transformer instance into one or more JPEG images stored in the given destination buffers. Lossless transforms work by moving the raw coefficients from one JPEG image structure to another without altering the values of the coefficients. While this is typically faster than decompressing the image, transforming it, and re-compressing it, lossless transforms are not free. Each lossless transform requires reading and performing Huffman decoding on all of the coefficients in the source image, regardless of the size of the destination image. Thus, this method provides a means of generating multiple transformed images from the same source or of applying multiple transformations simultaneously, in order to eliminate the need to read the source coefficients multiple times.
        Parameters:
        dstBufs - an array of image buffers. dstbufs[i] will receive a JPEG image that has been transformed using the parameters in transforms[i]. Use TJ.bufSize(int, int, int) to determine the maximum size for each buffer based on the transformed or cropped width and height and the level of subsampling used in the source image.
        transforms - an array of TJTransform instances, each of which specifies the transform parameters and/or cropping region for the corresponding transformed output image
        flags - the bitwise OR of one or more of TJ.FLAG_*
        Throws:
        java.lang.Exception
      • transform

        public TJDecompressor[] transform(TJTransform[] transforms,
                                 int flags)
                                   throws java.lang.Exception
        Losslessly transform the JPEG image associated with this transformer instance and return an array of TJDecompressor instances, each of which has a transformed JPEG image associated with it.
        Parameters:
        transforms - an array of TJTransform instances, each of which specifies the transform parameters and/or cropping region for the corresponding transformed output image
        flags - the bitwise OR of one or more of TJ.FLAG_*
        Returns:
        an array of TJDecompressor instances, each of which has a transformed JPEG image associated with it.
        Throws:
        java.lang.Exception
      • getTransformedSizes

        public int[] getTransformedSizes()
                                  throws java.lang.Exception
        Returns an array containing the sizes of the transformed JPEG images generated by the most recent transform operation.
        Returns:
        an array containing the sizes of the transformed JPEG images generated by the most recent transform operation.
        Throws:
        java.lang.Exception
libjpeg-turbo-1.4.2/java/doc/org/libjpegturbo/turbojpeg/TJCompressor.html0000644000076500007650000013076612600050400023444 00000000000000 TJCompressor
org.libjpegturbo.turbojpeg

Class TJCompressor

  • java.lang.Object
    • org.libjpegturbo.turbojpeg.TJCompressor


  • public class TJCompressor
    extends java.lang.Object
    TurboJPEG compressor
    • Constructor Summary

      Constructors 
      Constructor and Description
      TJCompressor()
      Create a TurboJPEG compressor instance.
      TJCompressor(java.awt.image.BufferedImage srcImage, int x, int y, int width, int height)
      Create a TurboJPEG compressor instance and associate the uncompressed source image stored in srcImage with the newly created instance.
      TJCompressor(byte[] srcImage, int width, int pitch, int height, int pixelFormat)
      TJCompressor(byte[] srcImage, int x, int y, int width, int pitch, int height, int pixelFormat)
      Create a TurboJPEG compressor instance and associate the uncompressed source image stored in srcImage with the newly created instance.
    • Method Summary

      Methods 
      Modifier and Type Method and Description
      void close()
      Free the native structures associated with this compressor instance.
      void compress(java.awt.image.BufferedImage srcImage, byte[] dstBuf, int flags)
      byte[] compress(java.awt.image.BufferedImage srcImage, int flags)
      void compress(byte[] dstBuf, int flags)
      Compress the uncompressed source image associated with this compressor instance and output a JPEG image to the given destination buffer.
      byte[] compress(int flags)
      Compress the uncompressed source image associated with this compressor instance and return a buffer containing a JPEG image.
      void encodeYUV(java.awt.image.BufferedImage srcImage, byte[] dstBuf, int flags)
      byte[] encodeYUV(java.awt.image.BufferedImage srcImage, int flags)
      void encodeYUV(byte[] dstBuf, int flags)
      Deprecated. 
      byte[] encodeYUV(int flags)
      Deprecated. 
      Use encodeYUV(int, int) instead.
      YUVImage encodeYUV(int[] strides, int flags)
      Encode the uncompressed source image associated with this compressor instance into separate Y, U (Cb), and V (Cr) image planes and return a YUVImage instance containing the encoded image planes.
      YUVImage encodeYUV(int pad, int flags)
      Encode the uncompressed source image associated with this compressor instance into a unified YUV planar image buffer and return a YUVImage instance containing the encoded image.
      void encodeYUV(YUVImage dstImage, int flags)
      Encode the uncompressed source image associated with this compressor instance into a YUV planar image and store it in the given YUVImage instance.
      protected void finalize() 
      int getCompressedSize()
      Returns the size of the image (in bytes) generated by the most recent compress operation.
      void setJPEGQuality(int quality)
      Set the JPEG image quality level for subsequent compress operations.
      void setSourceImage(java.awt.image.BufferedImage srcImage, int x, int y, int width, int height)
      Associate an uncompressed RGB or grayscale source image with this compressor instance.
      void setSourceImage(byte[] srcImage, int width, int pitch, int height, int pixelFormat)
      void setSourceImage(byte[] srcImage, int x, int y, int width, int pitch, int height, int pixelFormat)
      Associate an uncompressed RGB, grayscale, or CMYK source image with this compressor instance.
      void setSourceImage(YUVImage srcImage)
      Associate an uncompressed YUV planar source image with this compressor instance.
      void setSubsamp(int newSubsamp)
      Set the level of chrominance subsampling for subsequent compress/encode operations.
      • Methods inherited from class java.lang.Object

        clone, equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
    • Method Detail

      • setSourceImage

        public void setSourceImage(byte[] srcImage,
                          int x,
                          int y,
                          int width,
                          int pitch,
                          int height,
                          int pixelFormat)
                            throws java.lang.Exception
        Associate an uncompressed RGB, grayscale, or CMYK source image with this compressor instance.
        Parameters:
        srcImage - image buffer containing RGB, grayscale, or CMYK pixels to be compressed or encoded. This buffer is not modified.
        x - x offset (in pixels) of the region in the source image from which the JPEG or YUV image should be compressed/encoded
        y - y offset (in pixels) of the region in the source image from which the JPEG or YUV image should be compressed/encoded
        width - width (in pixels) of the region in the source image from which the JPEG or YUV image should be compressed/encoded
        pitch - bytes per line of the source image. Normally, this should be width * TJ.pixelSize(pixelFormat) if the source image is unpadded, but you can use this parameter to, for instance, specify that the scanlines in the source image are padded to a 4-byte boundary or to compress/encode a JPEG or YUV image from a region of a larger source image. You can also be clever and use this parameter to skip lines, etc. Setting this parameter to 0 is the equivalent of setting it to width * TJ.pixelSize(pixelFormat).
        height - height (in pixels) of the region in the source image from which the JPEG or YUV image should be compressed/encoded
        pixelFormat - pixel format of the source image (one of TJ.PF_*)
        Throws:
        java.lang.Exception
      • setSourceImage

        @Deprecated
        public void setSourceImage(byte[] srcImage,
                                     int width,
                                     int pitch,
                                     int height,
                                     int pixelFormat)
                            throws java.lang.Exception
        Throws:
        java.lang.Exception
      • setSourceImage

        public void setSourceImage(java.awt.image.BufferedImage srcImage,
                          int x,
                          int y,
                          int width,
                          int height)
                            throws java.lang.Exception
        Associate an uncompressed RGB or grayscale source image with this compressor instance.
        Parameters:
        srcImage - a BufferedImage instance containing RGB or grayscale pixels to be compressed or encoded. This image is not modified.
        x - x offset (in pixels) of the region in the source image from which the JPEG or YUV image should be compressed/encoded
        y - y offset (in pixels) of the region in the source image from which the JPEG or YUV image should be compressed/encoded
        width - width (in pixels) of the region in the source image from which the JPEG or YUV image should be compressed/encoded (0 = use the width of the source image)
        height - height (in pixels) of the region in the source image from which the JPEG or YUV image should be compressed/encoded (0 = use the height of the source image)
        Throws:
        java.lang.Exception
      • setSourceImage

        public void setSourceImage(YUVImage srcImage)
                            throws java.lang.Exception
        Associate an uncompressed YUV planar source image with this compressor instance.
        Parameters:
        srcImage - YUV planar image to be compressed. This image is not modified.
        Throws:
        java.lang.Exception
      • setSubsamp

        public void setSubsamp(int newSubsamp)
                        throws java.lang.Exception
        Set the level of chrominance subsampling for subsequent compress/encode operations. When pixels are converted from RGB to YCbCr (see TJ.CS_YCbCr) or from CMYK to YCCK (see TJ.CS_YCCK) as part of the JPEG compression process, some of the Cb and Cr (chrominance) components can be discarded or averaged together to produce a smaller image with little perceptible loss of image clarity (the human eye is more sensitive to small changes in brightness than to small changes in color.) This is called "chrominance subsampling".

        NOTE: This method has no effect when compressing a JPEG image from a YUV planar source. In that case, the level of chrominance subsampling in the JPEG image is determined by the source. Further, this method has no effect when encoding to a pre-allocated YUVImage instance. In that case, the level of chrominance subsampling is determined by the destination.

        Parameters:
        newSubsamp - the level of chrominance subsampling to use in subsequent compress/encode oeprations (one of TJ.SAMP_*)
        Throws:
        java.lang.Exception
      • setJPEGQuality

        public void setJPEGQuality(int quality)
                            throws java.lang.Exception
        Set the JPEG image quality level for subsequent compress operations.
        Parameters:
        quality - the new JPEG image quality level (1 to 100, 1 = worst, 100 = best)
        Throws:
        java.lang.Exception
      • compress

        public void compress(byte[] dstBuf,
                    int flags)
                      throws java.lang.Exception
        Compress the uncompressed source image associated with this compressor instance and output a JPEG image to the given destination buffer.
        Parameters:
        dstBuf - buffer that will receive the JPEG image. Use TJ.bufSize(int, int, int) to determine the maximum size for this buffer based on the source image's width and height and the desired level of chrominance subsampling.
        flags - the bitwise OR of one or more of TJ.FLAG_*
        Throws:
        java.lang.Exception
      • compress

        public byte[] compress(int flags)
                        throws java.lang.Exception
        Compress the uncompressed source image associated with this compressor instance and return a buffer containing a JPEG image.
        Parameters:
        flags - the bitwise OR of one or more of TJ.FLAG_*
        Returns:
        a buffer containing a JPEG image. The length of this buffer will not be equal to the size of the JPEG image. Use getCompressedSize() to obtain the size of the JPEG image.
        Throws:
        java.lang.Exception
      • encodeYUV

        public void encodeYUV(YUVImage dstImage,
                     int flags)
                       throws java.lang.Exception
        Encode the uncompressed source image associated with this compressor instance into a YUV planar image and store it in the given YUVImage instance. This method uses the accelerated color conversion routines in TurboJPEG's underlying codec but does not execute any of the other steps in the JPEG compression process. Encoding CMYK source images to YUV is not supported.
        Parameters:
        dstImage - YUVImage instance that will receive the YUV planar image
        flags - the bitwise OR of one or more of TJ.FLAG_*
        Throws:
        java.lang.Exception
      • encodeYUV

        @Deprecated
        public void encodeYUV(byte[] dstBuf,
                                int flags)
                       throws java.lang.Exception
        Deprecated. Use encodeYUV(YUVImage, int) instead.
        Throws:
        java.lang.Exception
      • encodeYUV

        public YUVImage encodeYUV(int pad,
                         int flags)
                           throws java.lang.Exception
        Encode the uncompressed source image associated with this compressor instance into a unified YUV planar image buffer and return a YUVImage instance containing the encoded image. This method uses the accelerated color conversion routines in TurboJPEG's underlying codec but does not execute any of the other steps in the JPEG compression process. Encoding CMYK source images to YUV is not supported.
        Parameters:
        pad - the width of each line in each plane of the YUV image will be padded to the nearest multiple of this number of bytes (must be a power of 2.)
        flags - the bitwise OR of one or more of TJ.FLAG_*
        Returns:
        a YUV planar image.
        Throws:
        java.lang.Exception
      • encodeYUV

        public YUVImage encodeYUV(int[] strides,
                         int flags)
                           throws java.lang.Exception
        Encode the uncompressed source image associated with this compressor instance into separate Y, U (Cb), and V (Cr) image planes and return a YUVImage instance containing the encoded image planes. This method uses the accelerated color conversion routines in TurboJPEG's underlying codec but does not execute any of the other steps in the JPEG compression process. Encoding CMYK source images to YUV is not supported.
        Parameters:
        strides - an array of integers, each specifying the number of bytes per line in the corresponding plane of the output image. Setting the stride for any plane to 0 is the same as setting it to the component width of the plane. If strides is null, then the strides for all planes will be set to their respective component widths. You can adjust the strides in order to add an arbitrary amount of line padding to each plane.
        flags - the bitwise OR of one or more of TJ.FLAG_*
        Returns:
        a YUV planar image.
        Throws:
        java.lang.Exception
      • encodeYUV

        @Deprecated
        public byte[] encodeYUV(int flags)
                         throws java.lang.Exception
        Deprecated. Use encodeYUV(int, int) instead.
        Throws:
        java.lang.Exception
      • getCompressedSize

        public int getCompressedSize()
        Returns the size of the image (in bytes) generated by the most recent compress operation.
        Returns:
        the size of the image (in bytes) generated by the most recent compress operation.
      • close

        public void close()
                   throws java.lang.Exception
        Free the native structures associated with this compressor instance.
        Throws:
        java.lang.Exception
      • finalize

        protected void finalize()
                         throws java.lang.Throwable
        Overrides:
        finalize in class java.lang.Object
        Throws:
        java.lang.Throwable
libjpeg-turbo-1.4.2/java/doc/org/libjpegturbo/turbojpeg/TJDecompressor.html0000644000076500007650000017052112600050400023746 00000000000000 TJDecompressor
org.libjpegturbo.turbojpeg

Class TJDecompressor

  • java.lang.Object
    • org.libjpegturbo.turbojpeg.TJDecompressor
  • Direct Known Subclasses:
    TJTransformer


    public class TJDecompressor
    extends java.lang.Object
    TurboJPEG decompressor
    • Constructor Summary

      Constructors 
      Constructor and Description
      TJDecompressor()
      Create a TurboJPEG decompresssor instance.
      TJDecompressor(byte[] jpegImage)
      Create a TurboJPEG decompressor instance and associate the JPEG source image stored in jpegImage with the newly created instance.
      TJDecompressor(byte[] jpegImage, int imageSize)
      Create a TurboJPEG decompressor instance and associate the JPEG source image of length imageSize bytes stored in jpegImage with the newly created instance.
      TJDecompressor(YUVImage yuvImage)
      Create a TurboJPEG decompressor instance and associate the YUV planar source image stored in yuvImage with the newly created instance.
    • Method Summary

      Methods 
      Modifier and Type Method and Description
      void close()
      Free the native structures associated with this decompressor instance.
      void decompress(java.awt.image.BufferedImage dstImage, int flags)
      Decompress the JPEG source image or decode the YUV source image associated with this decompressor instance and output a decompressed/decoded image to the given BufferedImage instance.
      void decompress(byte[] dstBuf, int desiredWidth, int pitch, int desiredHeight, int pixelFormat, int flags)
      void decompress(byte[] dstBuf, int x, int y, int desiredWidth, int pitch, int desiredHeight, int pixelFormat, int flags)
      Decompress the JPEG source image or decode the YUV source image associated with this decompressor instance and output a grayscale, RGB, or CMYK image to the given destination buffer.
      void decompress(int[] dstBuf, int x, int y, int desiredWidth, int stride, int desiredHeight, int pixelFormat, int flags)
      Decompress the JPEG source image or decode the YUV source image associated with this decompressor instance and output a grayscale, RGB, or CMYK image to the given destination buffer.
      java.awt.image.BufferedImage decompress(int desiredWidth, int desiredHeight, int bufferedImageType, int flags)
      Decompress the JPEG source image or decode the YUV source image associated with this decompressor instance and return a BufferedImage instance containing the decompressed/decoded image.
      byte[] decompress(int desiredWidth, int pitch, int desiredHeight, int pixelFormat, int flags)
      Decompress the JPEG source image associated with this decompressor instance and return a buffer containing the decompressed image.
      void decompressToYUV(byte[] dstBuf, int flags)
      Deprecated. 
      byte[] decompressToYUV(int flags)
      Deprecated. 
      YUVImage decompressToYUV(int desiredWidth, int[] strides, int desiredHeight, int flags)
      Decompress the JPEG source image associated with this decompressor instance into a set of Y, U (Cb), and V (Cr) image planes and return a YUVImage instance containing the decompressed image planes.
      YUVImage decompressToYUV(int desiredWidth, int pad, int desiredHeight, int flags)
      Decompress the JPEG source image associated with this decompressor instance into a unified YUV planar image buffer and return a YUVImage instance containing the decompressed image.
      void decompressToYUV(YUVImage dstImage, int flags)
      Decompress the JPEG source image associated with this decompressor instance into a YUV planar image and store it in the given YUVImage instance.
      protected void finalize() 
      int getColorspace()
      Returns the colorspace used in the source image (JPEG or YUV) associated with this decompressor instance.
      int getHeight()
      Returns the height of the source image (JPEG or YUV) associated with this decompressor instance.
      byte[] getJPEGBuf()
      Returns the JPEG image buffer associated with this decompressor instance.
      int getJPEGSize()
      Returns the size of the JPEG image (in bytes) associated with this decompressor instance.
      int getScaledHeight(int desiredWidth, int desiredHeight)
      Returns the height of the largest scaled-down image that the TurboJPEG decompressor can generate without exceeding the desired image width and height.
      int getScaledWidth(int desiredWidth, int desiredHeight)
      Returns the width of the largest scaled-down image that the TurboJPEG decompressor can generate without exceeding the desired image width and height.
      int getSubsamp()
      Returns the level of chrominance subsampling used in the source image (JPEG or YUV) associated with this decompressor instance.
      int getWidth()
      Returns the width of the source image (JPEG or YUV) associated with this decompressor instance.
      void setJPEGImage(byte[] jpegImage, int imageSize)
      Deprecated. 
      void setSourceImage(byte[] jpegImage, int imageSize)
      Associate the JPEG image of length imageSize bytes stored in jpegImage with this decompressor instance.
      void setSourceImage(YUVImage srcImage)
      Associate the specified YUV planar source image with this decompressor instance.
      • Methods inherited from class java.lang.Object

        clone, equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
    • Field Detail

      • handle

        protected long handle
      • jpegBuf

        protected byte[] jpegBuf
      • jpegBufSize

        protected int jpegBufSize
      • jpegWidth

        protected int jpegWidth
      • jpegHeight

        protected int jpegHeight
      • jpegSubsamp

        protected int jpegSubsamp
      • jpegColorspace

        protected int jpegColorspace
    • Constructor Detail

      • TJDecompressor

        public TJDecompressor()
                       throws java.lang.Exception
        Create a TurboJPEG decompresssor instance.
        Throws:
        java.lang.Exception
      • TJDecompressor

        public TJDecompressor(byte[] jpegImage)
                       throws java.lang.Exception
        Create a TurboJPEG decompressor instance and associate the JPEG source image stored in jpegImage with the newly created instance.
        Parameters:
        jpegImage - JPEG image buffer (size of the JPEG image is assumed to be the length of the array.) This buffer is not modified.
        Throws:
        java.lang.Exception
      • TJDecompressor

        public TJDecompressor(byte[] jpegImage,
                      int imageSize)
                       throws java.lang.Exception
        Create a TurboJPEG decompressor instance and associate the JPEG source image of length imageSize bytes stored in jpegImage with the newly created instance.
        Parameters:
        jpegImage - JPEG image buffer. This buffer is not modified.
        imageSize - size of the JPEG image (in bytes)
        Throws:
        java.lang.Exception
      • TJDecompressor

        public TJDecompressor(YUVImage yuvImage)
                       throws java.lang.Exception
        Create a TurboJPEG decompressor instance and associate the YUV planar source image stored in yuvImage with the newly created instance.
        Parameters:
        yuvImage - YUVImage instance containing a YUV planar image to be decoded. This image is not modified.
        Throws:
        java.lang.Exception
    • Method Detail

      • setSourceImage

        public void setSourceImage(byte[] jpegImage,
                          int imageSize)
                            throws java.lang.Exception
        Associate the JPEG image of length imageSize bytes stored in jpegImage with this decompressor instance. This image will be used as the source image for subsequent decompress operations.
        Parameters:
        jpegImage - JPEG image buffer. This buffer is not modified.
        imageSize - size of the JPEG image (in bytes)
        Throws:
        java.lang.Exception
      • setJPEGImage

        @Deprecated
        public void setJPEGImage(byte[] jpegImage,
                                   int imageSize)
                          throws java.lang.Exception
        Deprecated. Use setSourceImage(byte[], int) instead.
        Throws:
        java.lang.Exception
      • setSourceImage

        public void setSourceImage(YUVImage srcImage)
                            throws java.lang.Exception
        Associate the specified YUV planar source image with this decompressor instance. Subsequent decompress operations will decode this image into an RGB or grayscale destination image.
        Parameters:
        srcImage - YUVImage instance containing a YUV planar image to be decoded. This image is not modified.
        Throws:
        java.lang.Exception
      • getWidth

        public int getWidth()
                     throws java.lang.Exception
        Returns the width of the source image (JPEG or YUV) associated with this decompressor instance.
        Returns:
        the width of the source image (JPEG or YUV) associated with this decompressor instance.
        Throws:
        java.lang.Exception
      • getHeight

        public int getHeight()
                      throws java.lang.Exception
        Returns the height of the source image (JPEG or YUV) associated with this decompressor instance.
        Returns:
        the height of the source image (JPEG or YUV) associated with this decompressor instance.
        Throws:
        java.lang.Exception
      • getSubsamp

        public int getSubsamp()
                       throws java.lang.Exception
        Returns the level of chrominance subsampling used in the source image (JPEG or YUV) associated with this decompressor instance. See TJ.SAMP_*.
        Returns:
        the level of chrominance subsampling used in the source image (JPEG or YUV) associated with this decompressor instance.
        Throws:
        java.lang.Exception
      • getColorspace

        public int getColorspace()
                          throws java.lang.Exception
        Returns the colorspace used in the source image (JPEG or YUV) associated with this decompressor instance. See TJ.CS_*. If the source image is YUV, then this always returns TJ.CS_YCbCr.
        Returns:
        the colorspace used in the source image (JPEG or YUV) associated with this decompressor instance.
        Throws:
        java.lang.Exception
      • getJPEGBuf

        public byte[] getJPEGBuf()
                          throws java.lang.Exception
        Returns the JPEG image buffer associated with this decompressor instance.
        Returns:
        the JPEG image buffer associated with this decompressor instance.
        Throws:
        java.lang.Exception
      • getJPEGSize

        public int getJPEGSize()
                        throws java.lang.Exception
        Returns the size of the JPEG image (in bytes) associated with this decompressor instance.
        Returns:
        the size of the JPEG image (in bytes) associated with this decompressor instance.
        Throws:
        java.lang.Exception
      • getScaledWidth

        public int getScaledWidth(int desiredWidth,
                         int desiredHeight)
                           throws java.lang.Exception
        Returns the width of the largest scaled-down image that the TurboJPEG decompressor can generate without exceeding the desired image width and height.
        Parameters:
        desiredWidth - desired width (in pixels) of the decompressed image. Setting this to 0 is the same as setting it to the width of the JPEG image (in other words, the width will not be considered when determining the scaled image size.)
        desiredHeight - desired height (in pixels) of the decompressed image. Setting this to 0 is the same as setting it to the height of the JPEG image (in other words, the height will not be considered when determining the scaled image size.)
        Returns:
        the width of the largest scaled-down image that the TurboJPEG decompressor can generate without exceeding the desired image width and height.
        Throws:
        java.lang.Exception
      • getScaledHeight

        public int getScaledHeight(int desiredWidth,
                          int desiredHeight)
                            throws java.lang.Exception
        Returns the height of the largest scaled-down image that the TurboJPEG decompressor can generate without exceeding the desired image width and height.
        Parameters:
        desiredWidth - desired width (in pixels) of the decompressed image. Setting this to 0 is the same as setting it to the width of the JPEG image (in other words, the width will not be considered when determining the scaled image size.)
        desiredHeight - desired height (in pixels) of the decompressed image. Setting this to 0 is the same as setting it to the height of the JPEG image (in other words, the height will not be considered when determining the scaled image size.)
        Returns:
        the height of the largest scaled-down image that the TurboJPEG decompressor can generate without exceeding the desired image width and height.
        Throws:
        java.lang.Exception
      • decompress

        public void decompress(byte[] dstBuf,
                      int x,
                      int y,
                      int desiredWidth,
                      int pitch,
                      int desiredHeight,
                      int pixelFormat,
                      int flags)
                        throws java.lang.Exception
        Decompress the JPEG source image or decode the YUV source image associated with this decompressor instance and output a grayscale, RGB, or CMYK image to the given destination buffer.
        Parameters:
        dstBuf - buffer that will receive the decompressed/decoded image. If the source image is a JPEG image, then this buffer should normally be pitch * scaledHeight bytes in size, where scaledHeight can be determined by calling scalingFactor.getScaled(jpegHeight) with one of the scaling factors returned from TJ.getScalingFactors() or by calling getScaledHeight(int, int). If the source image is a YUV image, then this buffer should normally be pitch * height bytes in size, where height is the height of the YUV image. However, the buffer may also be larger than the dimensions of the source image, in which case the x, y, and pitch parameters can be used to specify the region into which the source image should be decompressed/decoded.
        x - x offset (in pixels) of the region in the destination image into which the source image should be decompressed/decoded
        y - y offset (in pixels) of the region in the destination image into which the source image should be decompressed/decoded
        desiredWidth - If the source image is a JPEG image, then this specifies the desired width (in pixels) of the decompressed image (or image region.) If the desired destination image dimensions are different than the source image dimensions, then TurboJPEG will use scaling in the JPEG decompressor to generate the largest possible image that will fit within the desired dimensions. Setting this to 0 is the same as setting it to the width of the JPEG image (in other words, the width will not be considered when determining the scaled image size.) This parameter is ignored if the source image is a YUV image.
        pitch - bytes per line of the destination image. Normally, this should be set to scaledWidth * TJ.pixelSize(pixelFormat) if the destination image is unpadded, but you can use this to, for instance, pad each line of the destination image to a 4-byte boundary or to decompress/decode the source image into a region of a larger image. NOTE: if the source image is a JPEG image, then scaledWidth can be determined by calling scalingFactor.getScaled(jpegWidth) or by calling getScaledWidth(int, int). If the source image is a YUV image, then scaledWidth is the width of the YUV image. Setting this parameter to 0 is the equivalent of setting it to scaledWidth * TJ.pixelSize(pixelFormat).
        desiredHeight - If the source image is a JPEG image, then this specifies the desired height (in pixels) of the decompressed image (or image region.) If the desired destination image dimensions are different than the source image dimensions, then TurboJPEG will use scaling in the JPEG decompressor to generate the largest possible image that will fit within the desired dimensions. Setting this to 0 is the same as setting it to the height of the JPEG image (in other words, the height will not be considered when determining the scaled image size.) This parameter is ignored if the source image is a YUV image.
        pixelFormat - pixel format of the decompressed/decoded image (one of TJ.PF_*)
        flags - the bitwise OR of one or more of TJ.FLAG_*
        Throws:
        java.lang.Exception
      • decompress

        @Deprecated
        public void decompress(byte[] dstBuf,
                                 int desiredWidth,
                                 int pitch,
                                 int desiredHeight,
                                 int pixelFormat,
                                 int flags)
                        throws java.lang.Exception
        Throws:
        java.lang.Exception
      • decompressToYUV

        public void decompressToYUV(YUVImage dstImage,
                           int flags)
                             throws java.lang.Exception
        Decompress the JPEG source image associated with this decompressor instance into a YUV planar image and store it in the given YUVImage instance. This method performs JPEG decompression but leaves out the color conversion step, so a planar YUV image is generated instead of an RGB or grayscale image. This method cannot be used to decompress JPEG source images with the CMYK or YCCK colorspace.
        Parameters:
        dstImage - YUVImage instance that will receive the YUV planar image. The level of subsampling specified in this YUVImage instance must match that of the JPEG image, and the width and height specified in the YUVImage instance must match one of the scaled image sizes that TurboJPEG is capable of generating from the JPEG source image.
        flags - the bitwise OR of one or more of TJ.FLAG_*
        Throws:
        java.lang.Exception
      • decompressToYUV

        @Deprecated
        public void decompressToYUV(byte[] dstBuf,
                                      int flags)
                             throws java.lang.Exception
        Deprecated. Use decompressToYUV(YUVImage, int) instead.
        Throws:
        java.lang.Exception
      • decompressToYUV

        public YUVImage decompressToYUV(int desiredWidth,
                               int[] strides,
                               int desiredHeight,
                               int flags)
                                 throws java.lang.Exception
        Decompress the JPEG source image associated with this decompressor instance into a set of Y, U (Cb), and V (Cr) image planes and return a YUVImage instance containing the decompressed image planes. This method performs JPEG decompression but leaves out the color conversion step, so a planar YUV image is generated instead of an RGB or grayscale image. This method cannot be used to decompress JPEG source images with the CMYK or YCCK colorspace.
        Parameters:
        desiredWidth - desired width (in pixels) of the YUV image. If the desired image dimensions are different than the dimensions of the JPEG image being decompressed, then TurboJPEG will use scaling in the JPEG decompressor to generate the largest possible image that will fit within the desired dimensions. Setting this to 0 is the same as setting it to the width of the JPEG image (in other words, the width will not be considered when determining the scaled image size.)
        strides - an array of integers, each specifying the number of bytes per line in the corresponding plane of the output image. Setting the stride for any plane to 0 is the same as setting it to the scaled component width of the plane. If strides is NULL, then the strides for all planes will be set to their respective scaled component widths. You can adjust the strides in order to add an arbitrary amount of line padding to each plane.
        desiredHeight - desired height (in pixels) of the YUV image. If the desired image dimensions are different than the dimensions of the JPEG image being decompressed, then TurboJPEG will use scaling in the JPEG decompressor to generate the largest possible image that will fit within the desired dimensions. Setting this to 0 is the same as setting it to the height of the JPEG image (in other words, the height will not be considered when determining the scaled image size.)
        flags - the bitwise OR of one or more of TJ.FLAG_*
        Returns:
        a YUV planar image.
        Throws:
        java.lang.Exception
      • decompressToYUV

        public YUVImage decompressToYUV(int desiredWidth,
                               int pad,
                               int desiredHeight,
                               int flags)
                                 throws java.lang.Exception
        Decompress the JPEG source image associated with this decompressor instance into a unified YUV planar image buffer and return a YUVImage instance containing the decompressed image. This method performs JPEG decompression but leaves out the color conversion step, so a planar YUV image is generated instead of an RGB or grayscale image. This method cannot be used to decompress JPEG source images with the CMYK or YCCK colorspace.
        Parameters:
        desiredWidth - desired width (in pixels) of the YUV image. If the desired image dimensions are different than the dimensions of the JPEG image being decompressed, then TurboJPEG will use scaling in the JPEG decompressor to generate the largest possible image that will fit within the desired dimensions. Setting this to 0 is the same as setting it to the width of the JPEG image (in other words, the width will not be considered when determining the scaled image size.)
        pad - the width of each line in each plane of the YUV image will be padded to the nearest multiple of this number of bytes (must be a power of 2.)
        desiredHeight - desired height (in pixels) of the YUV image. If the desired image dimensions are different than the dimensions of the JPEG image being decompressed, then TurboJPEG will use scaling in the JPEG decompressor to generate the largest possible image that will fit within the desired dimensions. Setting this to 0 is the same as setting it to the height of the JPEG image (in other words, the height will not be considered when determining the scaled image size.)
        flags - the bitwise OR of one or more of TJ.FLAG_*
        Returns:
        a YUV planar image.
        Throws:
        java.lang.Exception
      • decompressToYUV

        @Deprecated
        public byte[] decompressToYUV(int flags)
                               throws java.lang.Exception
        Deprecated. Use decompressToYUV(int, int, int, int) instead.
        Throws:
        java.lang.Exception
      • decompress

        public void decompress(int[] dstBuf,
                      int x,
                      int y,
                      int desiredWidth,
                      int stride,
                      int desiredHeight,
                      int pixelFormat,
                      int flags)
                        throws java.lang.Exception
        Decompress the JPEG source image or decode the YUV source image associated with this decompressor instance and output a grayscale, RGB, or CMYK image to the given destination buffer.
        Parameters:
        dstBuf - buffer that will receive the decompressed/decoded image. If the source image is a JPEG image, then this buffer should normally be stride * scaledHeight pixels in size, where scaledHeight can be determined by calling scalingFactor.getScaled(jpegHeight) with one of the scaling factors returned from TJ.getScalingFactors() or by calling getScaledHeight(int, int). If the source image is a YUV image, then this buffer should normally be stride * height pixels in size, where height is the height of the YUV image. However, the buffer may also be larger than the dimensions of the JPEG image, in which case the x, y, and stride parameters can be used to specify the region into which the source image should be decompressed.
        x - x offset (in pixels) of the region in the destination image into which the source image should be decompressed/decoded
        y - y offset (in pixels) of the region in the destination image into which the source image should be decompressed/decoded
        desiredWidth - If the source image is a JPEG image, then this specifies the desired width (in pixels) of the decompressed image (or image region.) If the desired destination image dimensions are different than the source image dimensions, then TurboJPEG will use scaling in the JPEG decompressor to generate the largest possible image that will fit within the desired dimensions. Setting this to 0 is the same as setting it to the width of the JPEG image (in other words, the width will not be considered when determining the scaled image size.) This parameter is ignored if the source image is a YUV image.
        stride - pixels per line of the destination image. Normally, this should be set to scaledWidth, but you can use this to, for instance, decompress the JPEG image into a region of a larger image. NOTE: if the source image is a JPEG image, then scaledWidth can be determined by calling scalingFactor.getScaled(jpegWidth) or by calling getScaledWidth(int, int). If the source image is a YUV image, then scaledWidth is the width of the YUV image. Setting this parameter to 0 is the equivalent of setting it to scaledWidth.
        desiredHeight - If the source image is a JPEG image, then this specifies the desired height (in pixels) of the decompressed image (or image region.) If the desired destination image dimensions are different than the source image dimensions, then TurboJPEG will use scaling in the JPEG decompressor to generate the largest possible image that will fit within the desired dimensions. Setting this to 0 is the same as setting it to the height of the JPEG image (in other words, the height will not be considered when determining the scaled image size.) This parameter is ignored if the source image is a YUV image.
        pixelFormat - pixel format of the decompressed image (one of TJ.PF_*)
        flags - the bitwise OR of one or more of TJ.FLAG_*
        Throws:
        java.lang.Exception
      • decompress

        public void decompress(java.awt.image.BufferedImage dstImage,
                      int flags)
                        throws java.lang.Exception
        Decompress the JPEG source image or decode the YUV source image associated with this decompressor instance and output a decompressed/decoded image to the given BufferedImage instance.
        Parameters:
        dstImage - a BufferedImage instance that will receive the decompressed/decoded image. If the source image is a JPEG image, then the width and height of the BufferedImage instance must match one of the scaled image sizes that TurboJPEG is capable of generating from the JPEG image. If the source image is a YUV image, then the width and height of the BufferedImage instance must match the width and height of the YUV image.
        flags - the bitwise OR of one or more of TJ.FLAG_*
        Throws:
        java.lang.Exception
      • decompress

        public java.awt.image.BufferedImage decompress(int desiredWidth,
                                              int desiredHeight,
                                              int bufferedImageType,
                                              int flags)
                                                throws java.lang.Exception
        Decompress the JPEG source image or decode the YUV source image associated with this decompressor instance and return a BufferedImage instance containing the decompressed/decoded image.
        Parameters:
        desiredWidth - see decompress(byte[], int, int, int, int, int, int, int) for description
        desiredHeight - see decompress(byte[], int, int, int, int, int, int, int) for description
        bufferedImageType - the image type of the BufferedImage instance that will be created (for instance, BufferedImage.TYPE_INT_RGB)
        flags - the bitwise OR of one or more of TJ.FLAG_*
        Returns:
        a BufferedImage instance containing the decompressed/decoded image.
        Throws:
        java.lang.Exception
      • close

        public void close()
                   throws java.lang.Exception
        Free the native structures associated with this decompressor instance.
        Throws:
        java.lang.Exception
      • finalize

        protected void finalize()
                         throws java.lang.Throwable
        Overrides:
        finalize in class java.lang.Object
        Throws:
        java.lang.Throwable
libjpeg-turbo-1.4.2/java/doc/resources/0000755000076500007650000000000012600050400014761 500000000000000libjpeg-turbo-1.4.2/java/doc/resources/titlebar.gif0000644000076500007650000002471512600050400017207 00000000000000GIF89a(98ߕ5:96;:ڎ0|*{*|*z)z)v(w(ۏ1ڎ1ڏ1̅.̆.ȃ-À,~+}+~+|+z*w)x)w)Ҋ0ҋ0ψ/̆/Ʉ.ȃ.Ȅ.Ƃ-Ł-ł-,€,x*x*ҋ1ω066ߔ5ܑ4ُ3Ս2:887776ݒ5ڐ4ِ4Վ3;;::9998<ݕ?ݗAߛHwz!R,(QOM  ŭùDzӌԺ˻ƛݙֲ͒溟ݫYp3OwBX<6ԥ?_e1_3e (c#tҤƅ,VXG;o%jHXfcIs( gxrIhCN)nB!9_<]x>c|bYi 7`mڪkҚj  kJ˫F{+Z~[l2˭R{{n*n o;-oΫ;̯n+ G;ƽ[q$;l2[/+{˱+r:/65;sq;#3&M̲@ ¼tC\QSV?ݵ^,p mZ7kqL:-KMpށtSvn uH#0wyB. @E1z騗>:驫~:꯷:;Nz޺z»>|N<7_<~'_?O7{~~݋_=ۧ{o@?Տ@0~^7A{TUB;aF ) Ђ" a SHB5Px &b(@jqc7FЇ^DaXQd4nw@# }A @#)H> iπsD'-OxB3ѹP`vդ@P3%I۩ДmH PN~g; Ӑ t'MSt Cg*ΒED*SJjSYJЏ4Kj,GQ4Z=+J_Ւ1jO0$ I+^W~_kWuիaֱ}d#ZlcKY6Eh;v=brVk+Kھ6ejS Z6jWڽV%m6-.t{;ֺՕ-n[i r䅬t]^Ve:udK_0z+YMe[_7px8M{^µ%\651|K7™ pA x;c!=qZ@j AJ$?J!JBڣZ MZVX a*gLʥM7ljڦ[e5*-:i(]|*j vU 2j4:;Jzڦ9A`jApʩکZZJڪꪰ ꪵjj ʫȚ*JjՊ ʬªjJຮzڭʮ뺭گJ蚮:z ۰j њ* k{۫k+,[Z[밚*.0*=K9{;:F{B[:J7Zڴ*R ʳZ ?KjZ-˩A0/"!k ot+vKozs;vx~붂|+ w[{۸u+}K˷ {k{kۺ KK[rK{[빨ۻλ;{;{ K˼ܻ۷ҫ曾뻰۾[ۼ; ;˿+k~; \l[{{kK!, <{̺웿٫ 0-!@#000?\@~k>nN_^mny藾扞N>((?)O( o //O  &O'* /!?)!?,;2O_.?$/%OJF?W6O"?=/_VoUd9^f_hlC?T?n/bC?uJjN[m|_j/op_o7Q<?OlO_//_t?_oxO-+,,,ÓʘӺƹׯȏȠ⥎ı Fm]X <ʡ~2rY&=Jj$ip‹ uxR"~UgǂB Gj) K2iUJJjTVUu,٦`jMm[XԬ\v-[]n{vk޺u`!7ak3eɠ'6qeΑ/?\4^ԟU;Ypڑ^tyᙟ^x݊kj,nǾKv[bԚ+/z쩪* .2@wX܁c1xq"o(|r'L-qӌ13/k= 3<4E"|AoQOP'MuK)Smu>:/KO]lh>@0p T(. @ VpChA z'` %P, _І&$?HRPԡ [(q7Da C&:3$!XDF"A(갃^b(F,0Uh'qjxE&ЍsdF<0["Q:oE@h d!y6񎋄GA IJ&ѓT$(EI4#S9HFNcyIR"D(OJKĠ})S%2[M.ͬ"9MnV \+)gnD'gylR;oiKd̥5?@ π5AЂ6CP'Cщ4G-χT%%iDQzP *(K]Q:43Nszѝ4,}iP+:T)R}jԟ7S:UVݨRUzҨ:դLiQӄtcjVVZuX(ZR>tR\W•c=+Wc ӽ~*DiZV"McKFv^5KYVvl^?R=^;ҺujY [2ֳukl*؅fvmS[vbkWZ6kmUs[ׁ^+_;[]lXW+&wy.tbE)JsvI LsӔg0`S\,g- S{7 Oֻ-rܷ~آ-}RMUlZ֮p maOصa;uvk~F7Ukus;VjZkp;n kw˾7dGF|ߪ|v8O+kێ|%An[($x p.e#ds ]K>.Htr"MNw3hLf΍f`9(9=z2,e9Yl]a_\ab]K4oKΉW:N=f~d3Mvw΁f{їH?y~SvnQ[m>p咵Mrl7o8zuw7ok߇ĥ>仧wOZrW˿}$G5{>gm͆pqFoH~#eo|Wq~qlp~~kHro}+~&ȂQ }6W-h1q&(q.X_sfvsgxW{Ry]C Ԅnwt7fxHdwvZyW'f6{Z&vySsdtWhzz{&wybyq`7VeD{Dž4xsW~8LuQeqc`xyu$zTxs{({xzzfAM(sM]gaCwxuyhvxhCXȇ^7HxwWm(hl(dFhSFt(oƉxouVd茮8YI؍[8y Y?ǎPY`莇W~?Xtzs؋Mh秀X*X|9x8('؀=G]Aj(|FqhqE'䷔(ڷ\ǃ֗rAHXM k: h9헂&%GV6~Q9jiC tYT)Wey]iـWƀ){ W)AGWoyiŋu'0GXyU8#%GdKL) LĹz$9vNǏhəiwH牜Ȉ,ɛyxyXBy}(`cy%ٟɠRvogv9IݙY L4If8陗FR8VIXiZIxGAɔǖ$x:U5*FfYCzȕ9Iǚz闣I>&ꁥ٤L=H7o"P:餌iٗvWEږ\7[9p9;nz0z{R)/ j:@1 [G i "  j y ^&鍠v j J#zڞڙ9:yo(HHj "*|ĮڮĄ鑿M% ,_(բN9n^:4Z2xVm:p J Y{ۥ+iu*}!]}B&ɗtU3{/1@۱$;z/՘@)ڲ)Rjj{00}ob;A{8+`II󕟧:۫*١ȫ˷ʐ cjz۷HFϩuWڎZyJ Gג>Ǻ޺C jc;t;$z{Kp[ iٰlkMVkD[ZKjk[h~ʩۻ`kn6*,[>{=d+;\QiU<֦57o%\r?]sCby@^tDczA_uKmVz<[q=\r<[p>]s=\q;YmBbyAaw?^t>]r47kPpa@Ԡ`#E3V 1Ȅ/B 2DI"LN列0Yx9s H@O;uP`ĉ%Pj4i '$@A5 WX;6X +0Lؠ!C p}m 0`A_ymAB<8܁1"SÇ-c "@"BiӡIbr̝7g ZӧUnMYlٱ?:5nޯ1|Boؾ9kn4n㫑^.pEw=o<['^7k7>xDL H ( ;libjpeg-turbo-1.4.2/java/doc/resources/tab.gif0000644000076500007650000000044312600050400016137 00000000000000GIF89aߕ5:96|*|*z)w(̆.~+z*x)w)Ҋ0ψ/̆/Ʉ.ȃ.Ł-ł-€,x*ҋ1ߔ5ܑ4ُ3Ս2:8776ڐ4;:98<!(,@p0:S'Tev#pBVDɤBXދp` K#H}|~z}A;libjpeg-turbo-1.4.2/java/doc/overview-tree.html0000644000076500007650000001234112600050400016361 00000000000000 Class Hierarchy

Hierarchy For All Packages

Package Hierarchies:

Class Hierarchy

  • java.lang.Object
    • java.awt.geom.RectangularShape (implements java.lang.Cloneable, java.awt.Shape)
      • java.awt.geom.Rectangle2D
        • java.awt.Rectangle (implements java.io.Serializable, java.awt.Shape)
    • org.libjpegturbo.turbojpeg.TJ
    • org.libjpegturbo.turbojpeg.TJCompressor
    • org.libjpegturbo.turbojpeg.TJDecompressor
    • org.libjpegturbo.turbojpeg.TJScalingFactor
    • org.libjpegturbo.turbojpeg.YUVImage

Interface Hierarchy

libjpeg-turbo-1.4.2/java/doc/index.html0000644000076500007650000000516712600050400014675 00000000000000 Generated Documentation (Untitled) <noscript> <div>JavaScript is disabled on your browser.</div> </noscript> <h2>Frame Alert</h2> <p>This document is designed to be viewed using the frames feature. If you see this message, you are using a non-frame-capable web client. Link to <a href="org/libjpegturbo/turbojpeg/package-summary.html">Non-frame version</a>.</p> libjpeg-turbo-1.4.2/java/doc/serialized-form.html0000644000076500007650000001057312600050400016657 00000000000000 Serialized Form

Serialized Form

  • Package org.libjpegturbo.turbojpeg

    • Class org.libjpegturbo.turbojpeg.TJTransform extends java.awt.Rectangle implements Serializable

      serialVersionUID:
      -127367705761430371L
      • Serialized Fields

        • op

          int op
          Transform operation (one of OP_*)
        • options

          int options
          Transform options (bitwise OR of one or more of OPT_*)
        • cf

          TJCustomFilter cf
          Custom filter instance
libjpeg-turbo-1.4.2/java/doc/index-all.html0000644000076500007650000022766112600050400015450 00000000000000 Index
B C D E F G H I J N O P S T Y 

B

bufSize(int, int, int) - Static method in class org.libjpegturbo.turbojpeg.TJ
Returns the maximum size of the buffer (in bytes) required to hold a JPEG image with the given width, height, and level of chrominance subsampling.
bufSizeYUV(int, int, int, int) - Static method in class org.libjpegturbo.turbojpeg.TJ
Returns the size of the buffer (in bytes) required to hold a YUV planar image with the given width, height, and level of chrominance subsampling.
bufSizeYUV(int, int, int) - Static method in class org.libjpegturbo.turbojpeg.TJ
Deprecated.

C

cf - Variable in class org.libjpegturbo.turbojpeg.TJTransform
Custom filter instance
close() - Method in class org.libjpegturbo.turbojpeg.TJCompressor
Free the native structures associated with this compressor instance.
close() - Method in class org.libjpegturbo.turbojpeg.TJDecompressor
Free the native structures associated with this decompressor instance.
compress(byte[], int) - Method in class org.libjpegturbo.turbojpeg.TJCompressor
Compress the uncompressed source image associated with this compressor instance and output a JPEG image to the given destination buffer.
compress(int) - Method in class org.libjpegturbo.turbojpeg.TJCompressor
Compress the uncompressed source image associated with this compressor instance and return a buffer containing a JPEG image.
compress(BufferedImage, byte[], int) - Method in class org.libjpegturbo.turbojpeg.TJCompressor
compress(BufferedImage, int) - Method in class org.libjpegturbo.turbojpeg.TJCompressor
CS_CMYK - Static variable in class org.libjpegturbo.turbojpeg.TJ
CMYK colorspace.
CS_GRAY - Static variable in class org.libjpegturbo.turbojpeg.TJ
Grayscale colorspace.
CS_RGB - Static variable in class org.libjpegturbo.turbojpeg.TJ
RGB colorspace.
CS_YCbCr - Static variable in class org.libjpegturbo.turbojpeg.TJ
YCbCr colorspace.
CS_YCCK - Static variable in class org.libjpegturbo.turbojpeg.TJ
YCCK colorspace.
customFilter(ShortBuffer, Rectangle, Rectangle, int, int, TJTransform) - Method in interface org.libjpegturbo.turbojpeg.TJCustomFilter
A callback function that can be used to modify the DCT coefficients after they are losslessly transformed but before they are transcoded to a new JPEG image.

D

decompress(byte[], int, int, int, int, int, int, int) - Method in class org.libjpegturbo.turbojpeg.TJDecompressor
Decompress the JPEG source image or decode the YUV source image associated with this decompressor instance and output a grayscale, RGB, or CMYK image to the given destination buffer.
decompress(byte[], int, int, int, int, int) - Method in class org.libjpegturbo.turbojpeg.TJDecompressor
decompress(int, int, int, int, int) - Method in class org.libjpegturbo.turbojpeg.TJDecompressor
Decompress the JPEG source image associated with this decompressor instance and return a buffer containing the decompressed image.
decompress(int[], int, int, int, int, int, int, int) - Method in class org.libjpegturbo.turbojpeg.TJDecompressor
Decompress the JPEG source image or decode the YUV source image associated with this decompressor instance and output a grayscale, RGB, or CMYK image to the given destination buffer.
decompress(BufferedImage, int) - Method in class org.libjpegturbo.turbojpeg.TJDecompressor
Decompress the JPEG source image or decode the YUV source image associated with this decompressor instance and output a decompressed/decoded image to the given BufferedImage instance.
decompress(int, int, int, int) - Method in class org.libjpegturbo.turbojpeg.TJDecompressor
Decompress the JPEG source image or decode the YUV source image associated with this decompressor instance and return a BufferedImage instance containing the decompressed/decoded image.
decompressToYUV(YUVImage, int) - Method in class org.libjpegturbo.turbojpeg.TJDecompressor
Decompress the JPEG source image associated with this decompressor instance into a YUV planar image and store it in the given YUVImage instance.
decompressToYUV(byte[], int) - Method in class org.libjpegturbo.turbojpeg.TJDecompressor
decompressToYUV(int, int[], int, int) - Method in class org.libjpegturbo.turbojpeg.TJDecompressor
Decompress the JPEG source image associated with this decompressor instance into a set of Y, U (Cb), and V (Cr) image planes and return a YUVImage instance containing the decompressed image planes.
decompressToYUV(int, int, int, int) - Method in class org.libjpegturbo.turbojpeg.TJDecompressor
Decompress the JPEG source image associated with this decompressor instance into a unified YUV planar image buffer and return a YUVImage instance containing the decompressed image.
decompressToYUV(int) - Method in class org.libjpegturbo.turbojpeg.TJDecompressor

E

encodeYUV(YUVImage, int) - Method in class org.libjpegturbo.turbojpeg.TJCompressor
Encode the uncompressed source image associated with this compressor instance into a YUV planar image and store it in the given YUVImage instance.
encodeYUV(byte[], int) - Method in class org.libjpegturbo.turbojpeg.TJCompressor
Deprecated.
encodeYUV(int, int) - Method in class org.libjpegturbo.turbojpeg.TJCompressor
Encode the uncompressed source image associated with this compressor instance into a unified YUV planar image buffer and return a YUVImage instance containing the encoded image.
encodeYUV(int[], int) - Method in class org.libjpegturbo.turbojpeg.TJCompressor
Encode the uncompressed source image associated with this compressor instance into separate Y, U (Cb), and V (Cr) image planes and return a YUVImage instance containing the encoded image planes.
encodeYUV(int) - Method in class org.libjpegturbo.turbojpeg.TJCompressor
Deprecated.
encodeYUV(BufferedImage, byte[], int) - Method in class org.libjpegturbo.turbojpeg.TJCompressor
encodeYUV(BufferedImage, int) - Method in class org.libjpegturbo.turbojpeg.TJCompressor
equals(TJScalingFactor) - Method in class org.libjpegturbo.turbojpeg.TJScalingFactor
Returns true or false, depending on whether this instance and other have the same numerator and denominator.

F

finalize() - Method in class org.libjpegturbo.turbojpeg.TJCompressor
 
finalize() - Method in class org.libjpegturbo.turbojpeg.TJDecompressor
 
FLAG_ACCURATEDCT - Static variable in class org.libjpegturbo.turbojpeg.TJ
Use the most accurate DCT/IDCT algorithm available in the underlying codec.
FLAG_BOTTOMUP - Static variable in class org.libjpegturbo.turbojpeg.TJ
The uncompressed source/destination image is stored in bottom-up (Windows, OpenGL) order, not top-down (X11) order.
FLAG_FASTDCT - Static variable in class org.libjpegturbo.turbojpeg.TJ
Use the fastest DCT/IDCT algorithm available in the underlying codec.
FLAG_FASTUPSAMPLE - Static variable in class org.libjpegturbo.turbojpeg.TJ
When decompressing an image that was compressed using chrominance subsampling, use the fastest chrominance upsampling algorithm available in the underlying codec.
FLAG_FORCEMMX - Static variable in class org.libjpegturbo.turbojpeg.TJ
Deprecated.
FLAG_FORCESSE - Static variable in class org.libjpegturbo.turbojpeg.TJ
Deprecated.
FLAG_FORCESSE2 - Static variable in class org.libjpegturbo.turbojpeg.TJ
Deprecated.
FLAG_FORCESSE3 - Static variable in class org.libjpegturbo.turbojpeg.TJ
Deprecated.

G

getBlueOffset(int) - Static method in class org.libjpegturbo.turbojpeg.TJ
For the given pixel format, returns the number of bytes that the blue component is offset from the start of the pixel.
getBuf() - Method in class org.libjpegturbo.turbojpeg.YUVImage
Returns the YUV image buffer (if this image is stored in a unified buffer rather than separate image planes.)
getColorspace() - Method in class org.libjpegturbo.turbojpeg.TJDecompressor
Returns the colorspace used in the source image (JPEG or YUV) associated with this decompressor instance.
getCompressedSize() - Method in class org.libjpegturbo.turbojpeg.TJCompressor
Returns the size of the image (in bytes) generated by the most recent compress operation.
getDenom() - Method in class org.libjpegturbo.turbojpeg.TJScalingFactor
Returns denominator
getGreenOffset(int) - Static method in class org.libjpegturbo.turbojpeg.TJ
For the given pixel format, returns the number of bytes that the green component is offset from the start of the pixel.
getHeight() - Method in class org.libjpegturbo.turbojpeg.TJDecompressor
Returns the height of the source image (JPEG or YUV) associated with this decompressor instance.
getHeight() - Method in class org.libjpegturbo.turbojpeg.YUVImage
Returns the height of the YUV image (or subregion.)
getJPEGBuf() - Method in class org.libjpegturbo.turbojpeg.TJDecompressor
Returns the JPEG image buffer associated with this decompressor instance.
getJPEGSize() - Method in class org.libjpegturbo.turbojpeg.TJDecompressor
Returns the size of the JPEG image (in bytes) associated with this decompressor instance.
getMCUHeight(int) - Static method in class org.libjpegturbo.turbojpeg.TJ
Returns the MCU block height for the given level of chrominance subsampling.
getMCUWidth(int) - Static method in class org.libjpegturbo.turbojpeg.TJ
Returns the MCU block width for the given level of chrominance subsampling.
getNum() - Method in class org.libjpegturbo.turbojpeg.TJScalingFactor
Returns numerator
getOffsets() - Method in class org.libjpegturbo.turbojpeg.YUVImage
Returns the offsets (in bytes) of each plane within the planes of a larger YUV image.
getPad() - Method in class org.libjpegturbo.turbojpeg.YUVImage
Returns the line padding used in the YUV image buffer (if this image is stored in a unified buffer rather than separate image planes.)
getPixelSize(int) - Static method in class org.libjpegturbo.turbojpeg.TJ
Returns the pixel size (in bytes) for the given pixel format.
getPlanes() - Method in class org.libjpegturbo.turbojpeg.YUVImage
Returns the YUV image planes.
getRedOffset(int) - Static method in class org.libjpegturbo.turbojpeg.TJ
For the given pixel format, returns the number of bytes that the red component is offset from the start of the pixel.
getScaled(int) - Method in class org.libjpegturbo.turbojpeg.TJScalingFactor
Returns the scaled value of dimension.
getScaledHeight(int, int) - Method in class org.libjpegturbo.turbojpeg.TJDecompressor
Returns the height of the largest scaled-down image that the TurboJPEG decompressor can generate without exceeding the desired image width and height.
getScaledWidth(int, int) - Method in class org.libjpegturbo.turbojpeg.TJDecompressor
Returns the width of the largest scaled-down image that the TurboJPEG decompressor can generate without exceeding the desired image width and height.
getScalingFactors() - Static method in class org.libjpegturbo.turbojpeg.TJ
Returns a list of fractional scaling factors that the JPEG decompressor in this implementation of TurboJPEG supports.
getSize() - Method in class org.libjpegturbo.turbojpeg.YUVImage
Returns the size (in bytes) of the YUV image buffer (if this image is stored in a unified buffer rather than separate image planes.)
getStrides() - Method in class org.libjpegturbo.turbojpeg.YUVImage
Returns the number of bytes per line of each plane in the YUV image.
getSubsamp() - Method in class org.libjpegturbo.turbojpeg.TJDecompressor
Returns the level of chrominance subsampling used in the source image (JPEG or YUV) associated with this decompressor instance.
getSubsamp() - Method in class org.libjpegturbo.turbojpeg.YUVImage
Returns the level of chrominance subsampling used in the YUV image.
getTransformedSizes() - Method in class org.libjpegturbo.turbojpeg.TJTransformer
Returns an array containing the sizes of the transformed JPEG images generated by the most recent transform operation.
getWidth() - Method in class org.libjpegturbo.turbojpeg.TJDecompressor
Returns the width of the source image (JPEG or YUV) associated with this decompressor instance.
getWidth() - Method in class org.libjpegturbo.turbojpeg.YUVImage
Returns the width of the YUV image (or subregion.)

H

handle - Variable in class org.libjpegturbo.turbojpeg.TJDecompressor
 
handle - Variable in class org.libjpegturbo.turbojpeg.YUVImage
 

I

isOne() - Method in class org.libjpegturbo.turbojpeg.TJScalingFactor
Returns true or false, depending on whether this instance is equal to 1/1.

J

jpegBuf - Variable in class org.libjpegturbo.turbojpeg.TJDecompressor
 
jpegBufSize - Variable in class org.libjpegturbo.turbojpeg.TJDecompressor
 
jpegColorspace - Variable in class org.libjpegturbo.turbojpeg.TJDecompressor
 
jpegHeight - Variable in class org.libjpegturbo.turbojpeg.TJDecompressor
 
jpegSubsamp - Variable in class org.libjpegturbo.turbojpeg.TJDecompressor
 
jpegWidth - Variable in class org.libjpegturbo.turbojpeg.TJDecompressor
 

N

NUMCS - Static variable in class org.libjpegturbo.turbojpeg.TJ
The number of JPEG colorspaces
NUMOP - Static variable in class org.libjpegturbo.turbojpeg.TJTransform
The number of lossless transform operations
NUMPF - Static variable in class org.libjpegturbo.turbojpeg.TJ
The number of pixel formats
NUMSAMP - Static variable in class org.libjpegturbo.turbojpeg.TJ
The number of chrominance subsampling options

O

op - Variable in class org.libjpegturbo.turbojpeg.TJTransform
Transform operation (one of OP_*)
OP_HFLIP - Static variable in class org.libjpegturbo.turbojpeg.TJTransform
Flip (mirror) image horizontally.
OP_NONE - Static variable in class org.libjpegturbo.turbojpeg.TJTransform
Do not transform the position of the image pixels.
OP_ROT180 - Static variable in class org.libjpegturbo.turbojpeg.TJTransform
Rotate image 180 degrees.
OP_ROT270 - Static variable in class org.libjpegturbo.turbojpeg.TJTransform
Rotate image counter-clockwise by 90 degrees.
OP_ROT90 - Static variable in class org.libjpegturbo.turbojpeg.TJTransform
Rotate image clockwise by 90 degrees.
OP_TRANSPOSE - Static variable in class org.libjpegturbo.turbojpeg.TJTransform
Transpose image (flip/mirror along upper left to lower right axis).
OP_TRANSVERSE - Static variable in class org.libjpegturbo.turbojpeg.TJTransform
Transverse transpose image (flip/mirror along upper right to lower left axis).
OP_VFLIP - Static variable in class org.libjpegturbo.turbojpeg.TJTransform
Flip (mirror) image vertically.
OPT_CROP - Static variable in class org.libjpegturbo.turbojpeg.TJTransform
This option will enable lossless cropping.
OPT_GRAY - Static variable in class org.libjpegturbo.turbojpeg.TJTransform
This option will discard the color data in the input image and produce a grayscale output image.
OPT_NOOUTPUT - Static variable in class org.libjpegturbo.turbojpeg.TJTransform
This option will prevent TJTransformer.transform() from outputting a JPEG image for this particular transform.
OPT_PERFECT - Static variable in class org.libjpegturbo.turbojpeg.TJTransform
This option will cause TJTransformer.transform() to throw an exception if the transform is not perfect.
OPT_TRIM - Static variable in class org.libjpegturbo.turbojpeg.TJTransform
This option will discard any partial MCU blocks that cannot be transformed.
options - Variable in class org.libjpegturbo.turbojpeg.TJTransform
Transform options (bitwise OR of one or more of OPT_*)
org.libjpegturbo.turbojpeg - package org.libjpegturbo.turbojpeg
 

P

PF_ABGR - Static variable in class org.libjpegturbo.turbojpeg.TJ
ABGR pixel format.
PF_ARGB - Static variable in class org.libjpegturbo.turbojpeg.TJ
ARGB pixel format.
PF_BGR - Static variable in class org.libjpegturbo.turbojpeg.TJ
BGR pixel format.
PF_BGRA - Static variable in class org.libjpegturbo.turbojpeg.TJ
BGRA pixel format.
PF_BGRX - Static variable in class org.libjpegturbo.turbojpeg.TJ
BGRX pixel format.
PF_CMYK - Static variable in class org.libjpegturbo.turbojpeg.TJ
CMYK pixel format.
PF_GRAY - Static variable in class org.libjpegturbo.turbojpeg.TJ
Grayscale pixel format.
PF_RGB - Static variable in class org.libjpegturbo.turbojpeg.TJ
RGB pixel format.
PF_RGBA - Static variable in class org.libjpegturbo.turbojpeg.TJ
RGBA pixel format.
PF_RGBX - Static variable in class org.libjpegturbo.turbojpeg.TJ
RGBX pixel format.
PF_XBGR - Static variable in class org.libjpegturbo.turbojpeg.TJ
XBGR pixel format.
PF_XRGB - Static variable in class org.libjpegturbo.turbojpeg.TJ
XRGB pixel format.
planeHeight(int, int, int) - Static method in class org.libjpegturbo.turbojpeg.TJ
Returns the plane height of a YUV image plane with the given parameters.
planeSizeYUV(int, int, int, int, int) - Static method in class org.libjpegturbo.turbojpeg.TJ
Returns the size of the buffer (in bytes) required to hold a YUV image plane with the given parameters.
planeWidth(int, int, int) - Static method in class org.libjpegturbo.turbojpeg.TJ
Returns the plane width of a YUV image plane with the given parameters.

S

SAMP_411 - Static variable in class org.libjpegturbo.turbojpeg.TJ
4:1:1 chrominance subsampling.
SAMP_420 - Static variable in class org.libjpegturbo.turbojpeg.TJ
4:2:0 chrominance subsampling.
SAMP_422 - Static variable in class org.libjpegturbo.turbojpeg.TJ
4:2:2 chrominance subsampling.
SAMP_440 - Static variable in class org.libjpegturbo.turbojpeg.TJ
4:4:0 chrominance subsampling.
SAMP_444 - Static variable in class org.libjpegturbo.turbojpeg.TJ
4:4:4 chrominance subsampling (no chrominance subsampling).
SAMP_GRAY - Static variable in class org.libjpegturbo.turbojpeg.TJ
Grayscale.
setBuf(byte[][], int[], int, int[], int, int) - Method in class org.libjpegturbo.turbojpeg.YUVImage
Assign a set of image planes to this YUVImage instance.
setBuf(byte[], int, int, int, int) - Method in class org.libjpegturbo.turbojpeg.YUVImage
Assign a unified image buffer to this YUVImage instance.
setJPEGImage(byte[], int) - Method in class org.libjpegturbo.turbojpeg.TJDecompressor
setJPEGQuality(int) - Method in class org.libjpegturbo.turbojpeg.TJCompressor
Set the JPEG image quality level for subsequent compress operations.
setSourceImage(byte[], int, int, int, int, int, int) - Method in class org.libjpegturbo.turbojpeg.TJCompressor
Associate an uncompressed RGB, grayscale, or CMYK source image with this compressor instance.
setSourceImage(byte[], int, int, int, int) - Method in class org.libjpegturbo.turbojpeg.TJCompressor
setSourceImage(BufferedImage, int, int, int, int) - Method in class org.libjpegturbo.turbojpeg.TJCompressor
Associate an uncompressed RGB or grayscale source image with this compressor instance.
setSourceImage(YUVImage) - Method in class org.libjpegturbo.turbojpeg.TJCompressor
Associate an uncompressed YUV planar source image with this compressor instance.
setSourceImage(byte[], int) - Method in class org.libjpegturbo.turbojpeg.TJDecompressor
Associate the JPEG image of length imageSize bytes stored in jpegImage with this decompressor instance.
setSourceImage(YUVImage) - Method in class org.libjpegturbo.turbojpeg.TJDecompressor
Associate the specified YUV planar source image with this decompressor instance.
setSubsamp(int) - Method in class org.libjpegturbo.turbojpeg.TJCompressor
Set the level of chrominance subsampling for subsequent compress/encode operations.

T

TJ - Class in org.libjpegturbo.turbojpeg
TurboJPEG utility class (cannot be instantiated)
TJ() - Constructor for class org.libjpegturbo.turbojpeg.TJ
 
TJCompressor - Class in org.libjpegturbo.turbojpeg
TurboJPEG compressor
TJCompressor() - Constructor for class org.libjpegturbo.turbojpeg.TJCompressor
Create a TurboJPEG compressor instance.
TJCompressor(byte[], int, int, int, int, int, int) - Constructor for class org.libjpegturbo.turbojpeg.TJCompressor
Create a TurboJPEG compressor instance and associate the uncompressed source image stored in srcImage with the newly created instance.
TJCompressor(byte[], int, int, int, int) - Constructor for class org.libjpegturbo.turbojpeg.TJCompressor
TJCompressor(BufferedImage, int, int, int, int) - Constructor for class org.libjpegturbo.turbojpeg.TJCompressor
Create a TurboJPEG compressor instance and associate the uncompressed source image stored in srcImage with the newly created instance.
TJCustomFilter - Interface in org.libjpegturbo.turbojpeg
Custom filter callback interface
TJDecompressor - Class in org.libjpegturbo.turbojpeg
TurboJPEG decompressor
TJDecompressor() - Constructor for class org.libjpegturbo.turbojpeg.TJDecompressor
Create a TurboJPEG decompresssor instance.
TJDecompressor(byte[]) - Constructor for class org.libjpegturbo.turbojpeg.TJDecompressor
Create a TurboJPEG decompressor instance and associate the JPEG source image stored in jpegImage with the newly created instance.
TJDecompressor(byte[], int) - Constructor for class org.libjpegturbo.turbojpeg.TJDecompressor
Create a TurboJPEG decompressor instance and associate the JPEG source image of length imageSize bytes stored in jpegImage with the newly created instance.
TJDecompressor(YUVImage) - Constructor for class org.libjpegturbo.turbojpeg.TJDecompressor
Create a TurboJPEG decompressor instance and associate the YUV planar source image stored in yuvImage with the newly created instance.
TJScalingFactor - Class in org.libjpegturbo.turbojpeg
Fractional scaling factor
TJScalingFactor(int, int) - Constructor for class org.libjpegturbo.turbojpeg.TJScalingFactor
 
TJTransform - Class in org.libjpegturbo.turbojpeg
Lossless transform parameters
TJTransform() - Constructor for class org.libjpegturbo.turbojpeg.TJTransform
Create a new lossless transform instance.
TJTransform(int, int, int, int, int, int, TJCustomFilter) - Constructor for class org.libjpegturbo.turbojpeg.TJTransform
Create a new lossless transform instance with the given parameters.
TJTransform(Rectangle, int, int, TJCustomFilter) - Constructor for class org.libjpegturbo.turbojpeg.TJTransform
Create a new lossless transform instance with the given parameters.
TJTransformer - Class in org.libjpegturbo.turbojpeg
TurboJPEG lossless transformer
TJTransformer() - Constructor for class org.libjpegturbo.turbojpeg.TJTransformer
Create a TurboJPEG lossless transformer instance.
TJTransformer(byte[]) - Constructor for class org.libjpegturbo.turbojpeg.TJTransformer
Create a TurboJPEG lossless transformer instance and associate the JPEG image stored in jpegImage with the newly created instance.
TJTransformer(byte[], int) - Constructor for class org.libjpegturbo.turbojpeg.TJTransformer
Create a TurboJPEG lossless transformer instance and associate the JPEG image of length imageSize bytes stored in jpegImage with the newly created instance.
transform(byte[][], TJTransform[], int) - Method in class org.libjpegturbo.turbojpeg.TJTransformer
Losslessly transform the JPEG image associated with this transformer instance into one or more JPEG images stored in the given destination buffers.
transform(TJTransform[], int) - Method in class org.libjpegturbo.turbojpeg.TJTransformer
Losslessly transform the JPEG image associated with this transformer instance and return an array of TJDecompressor instances, each of which has a transformed JPEG image associated with it.

Y

yuvHeight - Variable in class org.libjpegturbo.turbojpeg.YUVImage
 
yuvImage - Variable in class org.libjpegturbo.turbojpeg.TJDecompressor
 
YUVImage - Class in org.libjpegturbo.turbojpeg
This class encapsulates a YUV planar image and the metadata associated with it.
YUVImage(int, int[], int, int) - Constructor for class org.libjpegturbo.turbojpeg.YUVImage
Create a new YUVImage instance backed by separate image planes, and allocate memory for the image planes.
YUVImage(int, int, int, int) - Constructor for class org.libjpegturbo.turbojpeg.YUVImage
Create a new YUVImage instance backed by a unified image buffer, and allocate memory for the image buffer.
YUVImage(byte[][], int[], int, int[], int, int) - Constructor for class org.libjpegturbo.turbojpeg.YUVImage
Create a new YUVImage instance from a set of existing image planes.
YUVImage(byte[], int, int, int, int) - Constructor for class org.libjpegturbo.turbojpeg.YUVImage
Create a new YUVImage instance from an existing unified image buffer.
yuvOffsets - Variable in class org.libjpegturbo.turbojpeg.YUVImage
 
yuvPad - Variable in class org.libjpegturbo.turbojpeg.YUVImage
 
yuvPlanes - Variable in class org.libjpegturbo.turbojpeg.YUVImage
 
yuvStrides - Variable in class org.libjpegturbo.turbojpeg.YUVImage
 
yuvSubsamp - Variable in class org.libjpegturbo.turbojpeg.YUVImage
 
yuvWidth - Variable in class org.libjpegturbo.turbojpeg.YUVImage
 
B C D E F G H I J N O P S T Y 
libjpeg-turbo-1.4.2/java/doc/allclasses-frame.html0000644000076500007650000000275312600050400017002 00000000000000 All Classes

All Classes

libjpeg-turbo-1.4.2/java/doc/allclasses-noframe.html0000644000076500007650000000251312600050400017331 00000000000000 All Classes

All Classes

libjpeg-turbo-1.4.2/java/doc/help-doc.html0000644000076500007650000001671312600050400015260 00000000000000 API Help

How This API Document Is Organized

This API (Application Programming Interface) document has pages corresponding to the items in the navigation bar, described as follows.
  • Package

    Each package has a page that contains a list of its classes and interfaces, with a summary for each. This page can contain six categories:

    • Interfaces (italic)
    • Classes
    • Enums
    • Exceptions
    • Errors
    • Annotation Types
  • Class/Interface

    Each class, interface, nested class and nested interface has its own separate page. Each of these pages has three sections consisting of a class/interface description, summary tables, and detailed member descriptions:

    • Class inheritance diagram
    • Direct Subclasses
    • All Known Subinterfaces
    • All Known Implementing Classes
    • Class/interface declaration
    • Class/interface description
    • Nested Class Summary
    • Field Summary
    • Constructor Summary
    • Method Summary
    • Field Detail
    • Constructor Detail
    • Method Detail

    Each summary entry contains the first sentence from the detailed description for that item. The summary entries are alphabetical, while the detailed descriptions are in the order they appear in the source code. This preserves the logical groupings established by the programmer.

  • Annotation Type

    Each annotation type has its own separate page with the following sections:

    • Annotation Type declaration
    • Annotation Type description
    • Required Element Summary
    • Optional Element Summary
    • Element Detail
  • Enum

    Each enum has its own separate page with the following sections:

    • Enum declaration
    • Enum description
    • Enum Constant Summary
    • Enum Constant Detail
  • Tree (Class Hierarchy)

    There is a Class Hierarchy page for all packages, plus a hierarchy for each package. Each hierarchy page contains a list of classes and a list of interfaces. The classes are organized by inheritance structure starting with java.lang.Object. The interfaces do not inherit from java.lang.Object.

    • When viewing the Overview page, clicking on "Tree" displays the hierarchy for all packages.
    • When viewing a particular package, class or interface page, clicking "Tree" displays the hierarchy for only that package.
  • Deprecated API

    The Deprecated API page lists all of the API that have been deprecated. A deprecated API is not recommended for use, generally due to improvements, and a replacement API is usually given. Deprecated APIs may be removed in future implementations.

  • Index

    The Index contains an alphabetic list of all classes, interfaces, constructors, methods, and fields.

  • Prev/Next

    These links take you to the next or previous class, interface, package, or related page.

  • Frames/No Frames

    These links show and hide the HTML frames. All pages are available with or without frames.

  • All Classes

    The All Classes link shows all classes and interfaces except non-static nested types.

  • Serialized Form

    Each serializable or externalizable class has a description of its serialization fields and methods. This information is of interest to re-implementors, not to developers using the API. While there is no link in the navigation bar, you can get to this information by going to any serialized class and clicking "Serialized Form" in the "See also" section of the class description.

  • Constant Field Values

    The Constant Field Values page lists the static final fields and their values.

This help file applies to API documentation generated using the standard doclet.
libjpeg-turbo-1.4.2/java/doc/package-list0000644000076500007650000000003312600050400015152 00000000000000org.libjpegturbo.turbojpeg libjpeg-turbo-1.4.2/java/doc/deprecated-list.html0000644000076500007650000002661212600050400016635 00000000000000 Deprecated List
libjpeg-turbo-1.4.2/java/doc/constant-values.html0000644000076500007650000004561512600050400016716 00000000000000 Constant Field Values

Constant Field Values

Contents

org.libjpegturbo.*

libjpeg-turbo-1.4.2/java/TJUnitTest.java0000644000076500007650000010301312600050400015000 00000000000000/* * Copyright (C)2011-2015 D. R. Commander. All Rights Reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * - Neither the name of the libjpeg-turbo Project nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS", * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * This program tests the various code paths in the TurboJPEG JNI Wrapper */ import java.io.*; import java.util.*; import java.awt.image.*; import javax.imageio.*; import java.nio.*; import org.libjpegturbo.turbojpeg.*; public class TJUnitTest { private static final String classname = new TJUnitTest().getClass().getName(); private static void usage() { System.out.println("\nUSAGE: java " + classname + " [options]\n"); System.out.println("Options:\n"); System.out.println("-yuv = test YUV encoding/decoding support\n"); System.out.println("-noyuvpad = do not pad each line of each Y, U, and V plane to the nearest\n"); System.out.println(" 4-byte boundary\n"); System.out.println("-bi = test BufferedImage support\n"); System.exit(1); } private static final String[] subNameLong = { "4:4:4", "4:2:2", "4:2:0", "GRAY", "4:4:0", "4:1:1" }; private static final String[] subName = { "444", "422", "420", "GRAY", "440", "411" }; private static final String[] pixFormatStr = { "RGB", "BGR", "RGBX", "BGRX", "XBGR", "XRGB", "Grayscale", "RGBA", "BGRA", "ABGR", "ARGB", "CMYK" }; private static final int[] alphaOffset = { -1, -1, -1, -1, -1, -1, -1, 3, 3, 0, 0, -1 }; private static final int[] _3byteFormats = { TJ.PF_RGB, TJ.PF_BGR }; private static final int[] _3byteFormatsBI = { BufferedImage.TYPE_3BYTE_BGR }; private static final int[] _4byteFormats = { TJ.PF_RGBX, TJ.PF_BGRX, TJ.PF_XBGR, TJ.PF_XRGB, TJ.PF_CMYK }; private static final int[] _4byteFormatsBI = { BufferedImage.TYPE_INT_BGR, BufferedImage.TYPE_INT_RGB, BufferedImage.TYPE_4BYTE_ABGR, BufferedImage.TYPE_4BYTE_ABGR_PRE, BufferedImage.TYPE_INT_ARGB, BufferedImage.TYPE_INT_ARGB_PRE }; private static final int[] onlyGray = { TJ.PF_GRAY }; private static final int[] onlyGrayBI = { BufferedImage.TYPE_BYTE_GRAY }; private static final int[] onlyRGB = { TJ.PF_RGB }; private static boolean doYUV = false; private static int pad = 4; private static boolean bi = false; private static int exitStatus = 0; private static int biTypePF(int biType) { ByteOrder byteOrder = ByteOrder.nativeOrder(); switch(biType) { case BufferedImage.TYPE_3BYTE_BGR: return TJ.PF_BGR; case BufferedImage.TYPE_4BYTE_ABGR: case BufferedImage.TYPE_4BYTE_ABGR_PRE: return TJ.PF_ABGR; case BufferedImage.TYPE_BYTE_GRAY: return TJ.PF_GRAY; case BufferedImage.TYPE_INT_BGR: if (byteOrder == ByteOrder.BIG_ENDIAN) return TJ.PF_XBGR; else return TJ.PF_RGBX; case BufferedImage.TYPE_INT_RGB: if (byteOrder == ByteOrder.BIG_ENDIAN) return TJ.PF_XRGB; else return TJ.PF_BGRX; case BufferedImage.TYPE_INT_ARGB: case BufferedImage.TYPE_INT_ARGB_PRE: if (byteOrder == ByteOrder.BIG_ENDIAN) return TJ.PF_ARGB; else return TJ.PF_BGRA; } return 0; } private static String biTypeStr(int biType) { switch(biType) { case BufferedImage.TYPE_3BYTE_BGR: return "3BYTE_BGR"; case BufferedImage.TYPE_4BYTE_ABGR: return "4BYTE_ABGR"; case BufferedImage.TYPE_4BYTE_ABGR_PRE: return "4BYTE_ABGR_PRE"; case BufferedImage.TYPE_BYTE_GRAY: return "BYTE_GRAY"; case BufferedImage.TYPE_INT_BGR: return "INT_BGR"; case BufferedImage.TYPE_INT_RGB: return "INT_RGB"; case BufferedImage.TYPE_INT_ARGB: return "INT_ARGB"; case BufferedImage.TYPE_INT_ARGB_PRE: return "INT_ARGB_PRE"; } return "Unknown"; } private static void initBuf(byte[] buf, int w, int pitch, int h, int pf, int flags) throws Exception { int roffset = TJ.getRedOffset(pf); int goffset = TJ.getGreenOffset(pf); int boffset = TJ.getBlueOffset(pf); int aoffset = alphaOffset[pf]; int ps = TJ.getPixelSize(pf); int index, row, col, halfway = 16; if (pf == TJ.PF_GRAY) { Arrays.fill(buf, (byte)0); for (row = 0; row < h; row++) { for (col = 0; col < w; col++) { if ((flags & TJ.FLAG_BOTTOMUP) != 0) index = pitch * (h - row - 1) + col; else index = pitch * row + col; if (((row / 8) + (col / 8)) % 2 == 0) buf[index] = (row < halfway) ? (byte)255 : 0; else buf[index] = (row < halfway) ? 76 : (byte)226; } } return; } if (pf == TJ.PF_CMYK) { Arrays.fill(buf, (byte)255); for (row = 0; row < h; row++) { for (col = 0; col < w; col++) { if ((flags & TJ.FLAG_BOTTOMUP) != 0) index = (h - row - 1) * w + col; else index = row * w + col; if (((row / 8) + (col / 8)) % 2 == 0) { if (row >= halfway) buf[index * ps + 3] = 0; } else { buf[index * ps + 2] = 0; if (row < halfway) buf[index * ps + 1] = 0; } } } return; } Arrays.fill(buf, (byte)0); for (row = 0; row < h; row++) { for (col = 0; col < w; col++) { if ((flags & TJ.FLAG_BOTTOMUP) != 0) index = pitch * (h - row - 1) + col * ps; else index = pitch * row + col * ps; if (((row / 8) + (col / 8)) % 2 == 0) { if (row < halfway) { buf[index + roffset] = (byte)255; buf[index + goffset] = (byte)255; buf[index + boffset] = (byte)255; } } else { buf[index + roffset] = (byte)255; if (row >= halfway) buf[index + goffset] = (byte)255; } if (aoffset >= 0) buf[index + aoffset] = (byte)255; } } } private static void initIntBuf(int[] buf, int w, int pitch, int h, int pf, int flags) throws Exception { int rshift = TJ.getRedOffset(pf) * 8; int gshift = TJ.getGreenOffset(pf) * 8; int bshift = TJ.getBlueOffset(pf) * 8; int ashift = alphaOffset[pf] * 8; int index, row, col, halfway = 16; Arrays.fill(buf, 0); for (row = 0; row < h; row++) { for (col = 0; col < w; col++) { if ((flags & TJ.FLAG_BOTTOMUP) != 0) index = pitch * (h - row - 1) + col; else index = pitch * row + col; if (((row / 8) + (col / 8)) % 2 == 0) { if (row < halfway) { buf[index] |= (255 << rshift); buf[index] |= (255 << gshift); buf[index] |= (255 << bshift); } } else { buf[index] |= (255 << rshift); if (row >= halfway) buf[index] |= (255 << gshift); } if (ashift >= 0) buf[index] |= (255 << ashift); } } } private static void initImg(BufferedImage img, int pf, int flags) throws Exception { WritableRaster wr = img.getRaster(); int imgType = img.getType(); if (imgType == BufferedImage.TYPE_INT_RGB || imgType == BufferedImage.TYPE_INT_BGR || imgType == BufferedImage.TYPE_INT_ARGB || imgType == BufferedImage.TYPE_INT_ARGB_PRE) { SinglePixelPackedSampleModel sm = (SinglePixelPackedSampleModel)img.getSampleModel(); int pitch = sm.getScanlineStride(); DataBufferInt db = (DataBufferInt)wr.getDataBuffer(); int[] buf = db.getData(); initIntBuf(buf, img.getWidth(), pitch, img.getHeight(), pf, flags); } else { ComponentSampleModel sm = (ComponentSampleModel)img.getSampleModel(); int pitch = sm.getScanlineStride(); DataBufferByte db = (DataBufferByte)wr.getDataBuffer(); byte[] buf = db.getData(); initBuf(buf, img.getWidth(), pitch, img.getHeight(), pf, flags); } } private static void checkVal(int row, int col, int v, String vname, int cv) throws Exception { v = (v < 0) ? v + 256 : v; if (v < cv - 1 || v > cv + 1) { throw new Exception("Comp. " + vname + " at " + row + "," + col + " should be " + cv + ", not " + v); } } private static void checkVal0(int row, int col, int v, String vname) throws Exception { v = (v < 0) ? v + 256 : v; if (v > 1) { throw new Exception("Comp. " + vname + " at " + row + "," + col + " should be 0, not " + v); } } private static void checkVal255(int row, int col, int v, String vname) throws Exception { v = (v < 0) ? v + 256 : v; if (v < 254) { throw new Exception("Comp. " + vname + " at " + row + "," + col + " should be 255, not " + v); } } private static int checkBuf(byte[] buf, int w, int pitch, int h, int pf, int subsamp, TJScalingFactor sf, int flags) throws Exception { int roffset = TJ.getRedOffset(pf); int goffset = TJ.getGreenOffset(pf); int boffset = TJ.getBlueOffset(pf); int aoffset = alphaOffset[pf]; int ps = TJ.getPixelSize(pf); int index, row, col, retval = 1; int halfway = 16 * sf.getNum() / sf.getDenom(); int blockSize = 8 * sf.getNum() / sf.getDenom(); try { if (pf == TJ.PF_CMYK) { for (row = 0; row < h; row++) { for (col = 0; col < w; col++) { if ((flags & TJ.FLAG_BOTTOMUP) != 0) index = (h - row - 1) * w + col; else index = row * w + col; byte c = buf[index * ps]; byte m = buf[index * ps + 1]; byte y = buf[index * ps + 2]; byte k = buf[index * ps + 3]; checkVal255(row, col, c, "C"); if (((row / blockSize) + (col / blockSize)) % 2 == 0) { checkVal255(row, col, m, "M"); checkVal255(row, col, y, "Y"); if (row < halfway) checkVal255(row, col, k, "K"); else checkVal0(row, col, k, "K"); } else { checkVal0(row, col, y, "Y"); checkVal255(row, col, k, "K"); if (row < halfway) checkVal0(row, col, m, "M"); else checkVal255(row, col, m, "M"); } } } return 1; } for (row = 0; row < halfway; row++) { for (col = 0; col < w; col++) { if ((flags & TJ.FLAG_BOTTOMUP) != 0) index = pitch * (h - row - 1) + col * ps; else index = pitch * row + col * ps; byte r = buf[index + roffset]; byte g = buf[index + goffset]; byte b = buf[index + boffset]; byte a = aoffset >= 0 ? buf[index + aoffset] : (byte)255; if (((row / blockSize) + (col / blockSize)) % 2 == 0) { if (row < halfway) { checkVal255(row, col, r, "R"); checkVal255(row, col, g, "G"); checkVal255(row, col, b, "B"); } else { checkVal0(row, col, r, "R"); checkVal0(row, col, g, "G"); checkVal0(row, col, b, "B"); } } else { if (subsamp == TJ.SAMP_GRAY) { if (row < halfway) { checkVal(row, col, r, "R", 76); checkVal(row, col, g, "G", 76); checkVal(row, col, b, "B", 76); } else { checkVal(row, col, r, "R", 226); checkVal(row, col, g, "G", 226); checkVal(row, col, b, "B", 226); } } else { checkVal255(row, col, r, "R"); if (row < halfway) { checkVal0(row, col, g, "G"); } else { checkVal255(row, col, g, "G"); } checkVal0(row, col, b, "B"); } } checkVal255(row, col, a, "A"); } } } catch(Exception e) { System.out.println("\n" + e.getMessage()); retval = 0; } if (retval == 0) { for (row = 0; row < h; row++) { for (col = 0; col < w; col++) { if (pf == TJ.PF_CMYK) { int c = buf[pitch * row + col * ps]; int m = buf[pitch * row + col * ps + 1]; int y = buf[pitch * row + col * ps + 2]; int k = buf[pitch * row + col * ps + 3]; if (c < 0) c += 256; if (m < 0) m += 256; if (y < 0) y += 256; if (k < 0) k += 256; System.out.format("%3d/%3d/%3d/%3d ", c, m, y, k); } else { int r = buf[pitch * row + col * ps + roffset]; int g = buf[pitch * row + col * ps + goffset]; int b = buf[pitch * row + col * ps + boffset]; if (r < 0) r += 256; if (g < 0) g += 256; if (b < 0) b += 256; System.out.format("%3d/%3d/%3d ", r, g, b); } } System.out.print("\n"); } } return retval; } private static int checkIntBuf(int[] buf, int w, int pitch, int h, int pf, int subsamp, TJScalingFactor sf, int flags) throws Exception { int rshift = TJ.getRedOffset(pf) * 8; int gshift = TJ.getGreenOffset(pf) * 8; int bshift = TJ.getBlueOffset(pf) * 8; int ashift = alphaOffset[pf] * 8; int index, row, col, retval = 1; int halfway = 16 * sf.getNum() / sf.getDenom(); int blockSize = 8 * sf.getNum() / sf.getDenom(); try { for (row = 0; row < halfway; row++) { for (col = 0; col < w; col++) { if ((flags & TJ.FLAG_BOTTOMUP) != 0) index = pitch * (h - row - 1) + col; else index = pitch * row + col; int r = (buf[index] >> rshift) & 0xFF; int g = (buf[index] >> gshift) & 0xFF; int b = (buf[index] >> bshift) & 0xFF; int a = ashift >= 0 ? (buf[index] >> ashift) & 0xFF : 255; if (((row / blockSize) + (col / blockSize)) % 2 == 0) { if (row < halfway) { checkVal255(row, col, r, "R"); checkVal255(row, col, g, "G"); checkVal255(row, col, b, "B"); } else { checkVal0(row, col, r, "R"); checkVal0(row, col, g, "G"); checkVal0(row, col, b, "B"); } } else { if (subsamp == TJ.SAMP_GRAY) { if (row < halfway) { checkVal(row, col, r, "R", 76); checkVal(row, col, g, "G", 76); checkVal(row, col, b, "B", 76); } else { checkVal(row, col, r, "R", 226); checkVal(row, col, g, "G", 226); checkVal(row, col, b, "B", 226); } } else { checkVal255(row, col, r, "R"); if (row < halfway) { checkVal0(row, col, g, "G"); } else { checkVal255(row, col, g, "G"); } checkVal0(row, col, b, "B"); } } checkVal255(row, col, a, "A"); } } } catch(Exception e) { System.out.println("\n" + e.getMessage()); retval = 0; } if (retval == 0) { for (row = 0; row < h; row++) { for (col = 0; col < w; col++) { int r = (buf[pitch * row + col] >> rshift) & 0xFF; int g = (buf[pitch * row + col] >> gshift) & 0xFF; int b = (buf[pitch * row + col] >> bshift) & 0xFF; if (r < 0) r += 256; if (g < 0) g += 256; if (b < 0) b += 256; System.out.format("%3d/%3d/%3d ", r, g, b); } System.out.print("\n"); } } return retval; } private static int checkImg(BufferedImage img, int pf, int subsamp, TJScalingFactor sf, int flags) throws Exception { WritableRaster wr = img.getRaster(); int imgType = img.getType(); if (imgType == BufferedImage.TYPE_INT_RGB || imgType == BufferedImage.TYPE_INT_BGR || imgType == BufferedImage.TYPE_INT_ARGB || imgType == BufferedImage.TYPE_INT_ARGB_PRE) { SinglePixelPackedSampleModel sm = (SinglePixelPackedSampleModel)img.getSampleModel(); int pitch = sm.getScanlineStride(); DataBufferInt db = (DataBufferInt)wr.getDataBuffer(); int[] buf = db.getData(); return checkIntBuf(buf, img.getWidth(), pitch, img.getHeight(), pf, subsamp, sf, flags); } else { ComponentSampleModel sm = (ComponentSampleModel)img.getSampleModel(); int pitch = sm.getScanlineStride(); DataBufferByte db = (DataBufferByte)wr.getDataBuffer(); byte[] buf = db.getData(); return checkBuf(buf, img.getWidth(), pitch, img.getHeight(), pf, subsamp, sf, flags); } } private static int PAD(int v, int p) { return ((v + (p) - 1) & (~((p) - 1))); } private static int checkBufYUV(byte[] buf, int size, int w, int h, int subsamp, TJScalingFactor sf) throws Exception { int row, col; int hsf = TJ.getMCUWidth(subsamp) / 8, vsf = TJ.getMCUHeight(subsamp) / 8; int pw = PAD(w, hsf), ph = PAD(h, vsf); int cw = pw / hsf, ch = ph / vsf; int ypitch = PAD(pw, pad), uvpitch = PAD(cw, pad); int retval = 1; int correctsize = ypitch * ph + (subsamp == TJ.SAMP_GRAY ? 0 : uvpitch * ch * 2); int halfway = 16 * sf.getNum() / sf.getDenom(); int blockSize = 8 * sf.getNum() / sf.getDenom(); try { if (size != correctsize) throw new Exception("Incorrect size " + size + ". Should be " + correctsize); for (row = 0; row < ph; row++) { for (col = 0; col < pw; col++) { byte y = buf[ypitch * row + col]; if (((row / blockSize) + (col / blockSize)) % 2 == 0) { if (row < halfway) checkVal255(row, col, y, "Y"); else checkVal0(row, col, y, "Y"); } else { if (row < halfway) checkVal(row, col, y, "Y", 76); else checkVal(row, col, y, "Y", 226); } } } if (subsamp != TJ.SAMP_GRAY) { halfway = 16 / vsf * sf.getNum() / sf.getDenom(); for (row = 0; row < ch; row++) { for (col = 0; col < cw; col++) { byte u = buf[ypitch * ph + (uvpitch * row + col)], v = buf[ypitch * ph + uvpitch * ch + (uvpitch * row + col)]; if (((row * vsf / blockSize) + (col * hsf / blockSize)) % 2 == 0) { checkVal(row, col, u, "U", 128); checkVal(row, col, v, "V", 128); } else { if (row < halfway) { checkVal(row, col, u, "U", 85); checkVal255(row, col, v, "V"); } else { checkVal0(row, col, u, "U"); checkVal(row, col, v, "V", 149); } } } } } } catch(Exception e) { System.out.println("\n" + e.getMessage()); retval = 0; } if (retval == 0) { for (row = 0; row < ph; row++) { for (col = 0; col < pw; col++) { int y = buf[ypitch * row + col]; if (y < 0) y += 256; System.out.format("%3d ", y); } System.out.print("\n"); } System.out.print("\n"); for (row = 0; row < ch; row++) { for (col = 0; col < cw; col++) { int u = buf[ypitch * ph + (uvpitch * row + col)]; if (u < 0) u += 256; System.out.format("%3d ", u); } System.out.print("\n"); } System.out.print("\n"); for (row = 0; row < ch; row++) { for (col = 0; col < cw; col++) { int v = buf[ypitch * ph + uvpitch * ch + (uvpitch * row + col)]; if (v < 0) v += 256; System.out.format("%3d ", v); } System.out.print("\n"); } } return retval; } private static void writeJPEG(byte[] jpegBuf, int jpegBufSize, String filename) throws Exception { File file = new File(filename); FileOutputStream fos = new FileOutputStream(file); fos.write(jpegBuf, 0, jpegBufSize); fos.close(); } private static int compTest(TJCompressor tjc, byte[] dstBuf, int w, int h, int pf, String baseName, int subsamp, int jpegQual, int flags) throws Exception { String tempStr; byte[] srcBuf = null; BufferedImage img = null; String pfStr, pfStrLong; String buStr = (flags & TJ.FLAG_BOTTOMUP) != 0 ? "BU" : "TD"; String buStrLong = (flags & TJ.FLAG_BOTTOMUP) != 0 ? "Bottom-Up" : "Top-Down "; int size = 0, ps, imgType = pf; if (bi) { pf = biTypePF(imgType); pfStr = biTypeStr(imgType); pfStrLong = pfStr + " (" + pixFormatStr[pf] + ")"; } else { pfStr = pixFormatStr[pf]; pfStrLong = pfStr; } ps = TJ.getPixelSize(pf); if (bi) { img = new BufferedImage(w, h, imgType); initImg(img, pf, flags); tempStr = baseName + "_enc_" + pfStr + "_" + buStr + "_" + subName[subsamp] + "_Q" + jpegQual + ".png"; File file = new File(tempStr); ImageIO.write(img, "png", file); tjc.setSourceImage(img, 0, 0, 0, 0); } else { srcBuf = new byte[w * h * ps + 1]; initBuf(srcBuf, w, w * ps, h, pf, flags); tjc.setSourceImage(srcBuf, 0, 0, w, 0, h, pf); } Arrays.fill(dstBuf, (byte)0); tjc.setSubsamp(subsamp); tjc.setJPEGQuality(jpegQual); if (doYUV) { System.out.format("%s %s -> YUV %s ... ", pfStrLong, buStrLong, subNameLong[subsamp]); YUVImage yuvImage = tjc.encodeYUV(pad, flags); if (checkBufYUV(yuvImage.getBuf(), yuvImage.getSize(), w, h, subsamp, new TJScalingFactor(1, 1)) == 1) System.out.print("Passed.\n"); else { System.out.print("FAILED!\n"); exitStatus = -1; } System.out.format("YUV %s %s -> JPEG Q%d ... ", subNameLong[subsamp], buStrLong, jpegQual); tjc.setSourceImage(yuvImage); } else { System.out.format("%s %s -> %s Q%d ... ", pfStrLong, buStrLong, subNameLong[subsamp], jpegQual); } tjc.compress(dstBuf, flags); size = tjc.getCompressedSize(); tempStr = baseName + "_enc_" + pfStr + "_" + buStr + "_" + subName[subsamp] + "_Q" + jpegQual + ".jpg"; writeJPEG(dstBuf, size, tempStr); System.out.println("Done.\n Result in " + tempStr); return size; } private static void decompTest(TJDecompressor tjd, byte[] jpegBuf, int jpegSize, int w, int h, int pf, String baseName, int subsamp, int flags, TJScalingFactor sf) throws Exception { String pfStr, pfStrLong, tempStr; String buStrLong = (flags & TJ.FLAG_BOTTOMUP) != 0 ? "Bottom-Up" : "Top-Down "; int scaledWidth = sf.getScaled(w); int scaledHeight = sf.getScaled(h); int temp1, temp2, imgType = pf; BufferedImage img = null; byte[] dstBuf = null; if (bi) { pf = biTypePF(imgType); pfStr = biTypeStr(imgType); pfStrLong = pfStr + " (" + pixFormatStr[pf] + ")"; } else { pfStr = pixFormatStr[pf]; pfStrLong = pfStr; } tjd.setSourceImage(jpegBuf, jpegSize); if (tjd.getWidth() != w || tjd.getHeight() != h || tjd.getSubsamp() != subsamp) throw new Exception("Incorrect JPEG header"); temp1 = scaledWidth; temp2 = scaledHeight; temp1 = tjd.getScaledWidth(temp1, temp2); temp2 = tjd.getScaledHeight(temp1, temp2); if (temp1 != scaledWidth || temp2 != scaledHeight) throw new Exception("Scaled size mismatch"); if (doYUV) { System.out.format("JPEG -> YUV %s ", subNameLong[subsamp]); if(!sf.isOne()) System.out.format("%d/%d ... ", sf.getNum(), sf.getDenom()); else System.out.print("... "); YUVImage yuvImage = tjd.decompressToYUV(scaledWidth, pad, scaledHeight, flags); if (checkBufYUV(yuvImage.getBuf(), yuvImage.getSize(), scaledWidth, scaledHeight, subsamp, sf) == 1) System.out.print("Passed.\n"); else { System.out.print("FAILED!\n"); exitStatus = -1; } System.out.format("YUV %s -> %s %s ... ", subNameLong[subsamp], pfStrLong, buStrLong); tjd.setSourceImage(yuvImage); } else { System.out.format("JPEG -> %s %s ", pfStrLong, buStrLong); if(!sf.isOne()) System.out.format("%d/%d ... ", sf.getNum(), sf.getDenom()); else System.out.print("... "); } if (bi) img = tjd.decompress(scaledWidth, scaledHeight, imgType, flags); else dstBuf = tjd.decompress(scaledWidth, 0, scaledHeight, pf, flags); if (bi) { tempStr = baseName + "_dec_" + pfStr + "_" + (((flags & TJ.FLAG_BOTTOMUP) != 0) ? "BU" : "TD") + "_" + subName[subsamp] + "_" + (double)sf.getNum() / (double)sf.getDenom() + "x" + ".png"; File file = new File(tempStr); ImageIO.write(img, "png", file); } if ((bi && checkImg(img, pf, subsamp, sf, flags) == 1) || (!bi && checkBuf(dstBuf, scaledWidth, scaledWidth * TJ.getPixelSize(pf), scaledHeight, pf, subsamp, sf, flags) == 1)) System.out.print("Passed.\n"); else { System.out.print("FAILED!\n"); exitStatus = -1; } } private static void decompTest(TJDecompressor tjd, byte[] jpegBuf, int jpegSize, int w, int h, int pf, String baseName, int subsamp, int flags) throws Exception { int i; TJScalingFactor[] sf = TJ.getScalingFactors(); for (i = 0; i < sf.length; i++) { int num = sf[i].getNum(); int denom = sf[i].getDenom(); if (subsamp == TJ.SAMP_444 || subsamp == TJ.SAMP_GRAY || (subsamp == TJ.SAMP_411 && num == 1 && (denom == 2 || denom == 1)) || (subsamp != TJ.SAMP_411 && num == 1 && (denom == 4 || denom == 2 || denom == 1))) decompTest(tjd, jpegBuf, jpegSize, w, h, pf, baseName, subsamp, flags, sf[i]); } } private static void doTest(int w, int h, int[] formats, int subsamp, String baseName) throws Exception { TJCompressor tjc = null; TJDecompressor tjd = null; int size; byte[] dstBuf; dstBuf = new byte[TJ.bufSize(w, h, subsamp)]; try { tjc = new TJCompressor(); tjd = new TJDecompressor(); for (int pf : formats) { if (pf < 0) continue; for (int i = 0; i < 2; i++) { int flags = 0; if (subsamp == TJ.SAMP_422 || subsamp == TJ.SAMP_420 || subsamp == TJ.SAMP_440 || subsamp == TJ.SAMP_411) flags |= TJ.FLAG_FASTUPSAMPLE; if (i == 1) flags |= TJ.FLAG_BOTTOMUP; size = compTest(tjc, dstBuf, w, h, pf, baseName, subsamp, 100, flags); decompTest(tjd, dstBuf, size, w, h, pf, baseName, subsamp, flags); if (pf >= TJ.PF_RGBX && pf <= TJ.PF_XRGB && !bi) { System.out.print("\n"); decompTest(tjd, dstBuf, size, w, h, pf + (TJ.PF_RGBA - TJ.PF_RGBX), baseName, subsamp, flags); } System.out.print("\n"); } } System.out.print("--------------------\n\n"); } catch(Exception e) { if (tjc != null) tjc.close(); if (tjd != null) tjd.close(); throw e; } if (tjc != null) tjc.close(); if (tjd != null) tjd.close(); } private static void bufSizeTest() throws Exception { int w, h, i, subsamp; byte[] srcBuf, dstBuf = null; YUVImage dstImage = null; TJCompressor tjc = null; Random r = new Random(); try { tjc = new TJCompressor(); System.out.println("Buffer size regression test"); for (subsamp = 0; subsamp < TJ.NUMSAMP; subsamp++) { for (w = 1; w < 48; w++) { int maxh = (w == 1) ? 2048 : 48; for (h = 1; h < maxh; h++) { if (h % 100 == 0) System.out.format("%04d x %04d\b\b\b\b\b\b\b\b\b\b\b", w, h); srcBuf = new byte[w * h * 4]; if (doYUV) dstImage = new YUVImage(w, pad, h, subsamp); else dstBuf = new byte[TJ.bufSize(w, h, subsamp)]; for (i = 0; i < w * h * 4; i++) { srcBuf[i] = (byte)(r.nextInt(2) * 255); } tjc.setSourceImage(srcBuf, 0, 0, w, 0, h, TJ.PF_BGRX); tjc.setSubsamp(subsamp); tjc.setJPEGQuality(100); if (doYUV) tjc.encodeYUV(dstImage, 0); else tjc.compress(dstBuf, 0); srcBuf = new byte[h * w * 4]; if (doYUV) dstImage = new YUVImage(h, pad, w, subsamp); else dstBuf = new byte[TJ.bufSize(h, w, subsamp)]; for (i = 0; i < h * w * 4; i++) { srcBuf[i] = (byte)(r.nextInt(2) * 255); } tjc.setSourceImage(srcBuf, 0, 0, h, 0, w, TJ.PF_BGRX); if (doYUV) tjc.encodeYUV(dstImage, 0); else tjc.compress(dstBuf, 0); } } } System.out.println("Done. "); } catch(Exception e) { if (tjc != null) tjc.close(); throw e; } if (tjc != null) tjc.close(); } public static void main(String[] argv) { try { String testName = "javatest"; for (int i = 0; i < argv.length; i++) { if (argv[i].equalsIgnoreCase("-yuv")) doYUV = true; if (argv[i].equalsIgnoreCase("-noyuvpad")) pad = 1; if (argv[i].substring(0, 1).equalsIgnoreCase("-h") || argv[i].equalsIgnoreCase("-?")) usage(); if (argv[i].equalsIgnoreCase("-bi")) { bi = true; testName = "javabitest"; } } if (doYUV) _4byteFormats[4] = -1; doTest(35, 39, bi ? _3byteFormatsBI : _3byteFormats, TJ.SAMP_444, testName); doTest(39, 41, bi ? _4byteFormatsBI : _4byteFormats, TJ.SAMP_444, testName); doTest(41, 35, bi ? _3byteFormatsBI : _3byteFormats, TJ.SAMP_422, testName); doTest(35, 39, bi ? _4byteFormatsBI : _4byteFormats, TJ.SAMP_422, testName); doTest(39, 41, bi ? _3byteFormatsBI : _3byteFormats, TJ.SAMP_420, testName); doTest(41, 35, bi ? _4byteFormatsBI : _4byteFormats, TJ.SAMP_420, testName); doTest(35, 39, bi ? _3byteFormatsBI : _3byteFormats, TJ.SAMP_440, testName); doTest(39, 41, bi ? _4byteFormatsBI : _4byteFormats, TJ.SAMP_440, testName); doTest(41, 35, bi ? _3byteFormatsBI : _3byteFormats, TJ.SAMP_411, testName); doTest(35, 39, bi ? _4byteFormatsBI : _4byteFormats, TJ.SAMP_411, testName); doTest(39, 41, bi ? onlyGrayBI : onlyGray, TJ.SAMP_GRAY, testName); doTest(41, 35, bi ? _3byteFormatsBI : _3byteFormats, TJ.SAMP_GRAY, testName); _4byteFormats[4] = -1; doTest(35, 39, bi ? _4byteFormatsBI : _4byteFormats, TJ.SAMP_GRAY, testName); if (!bi) bufSizeTest(); if (doYUV && !bi) { System.out.print("\n--------------------\n\n"); doTest(48, 48, onlyRGB, TJ.SAMP_444, "javatest_yuv0"); doTest(48, 48, onlyRGB, TJ.SAMP_422, "javatest_yuv0"); doTest(48, 48, onlyRGB, TJ.SAMP_420, "javatest_yuv0"); doTest(48, 48, onlyRGB, TJ.SAMP_440, "javatest_yuv0"); doTest(48, 48, onlyRGB, TJ.SAMP_411, "javatest_yuv0"); doTest(48, 48, onlyRGB, TJ.SAMP_GRAY, "javatest_yuv0"); doTest(48, 48, onlyGray, TJ.SAMP_GRAY, "javatest_yuv0"); } } catch(Exception e) { e.printStackTrace(); exitStatus = -1; } System.exit(exitStatus); } } libjpeg-turbo-1.4.2/java/org_libjpegturbo_turbojpeg_TJCompressor.h0000644000076500007650000000670112600050400022371 00000000000000/* DO NOT EDIT THIS FILE - it is machine generated */ #include /* Header for class org_libjpegturbo_turbojpeg_TJCompressor */ #ifndef _Included_org_libjpegturbo_turbojpeg_TJCompressor #define _Included_org_libjpegturbo_turbojpeg_TJCompressor #ifdef __cplusplus extern "C" { #endif /* * Class: org_libjpegturbo_turbojpeg_TJCompressor * Method: init * Signature: ()V */ JNIEXPORT void JNICALL Java_org_libjpegturbo_turbojpeg_TJCompressor_init (JNIEnv *, jobject); /* * Class: org_libjpegturbo_turbojpeg_TJCompressor * Method: destroy * Signature: ()V */ JNIEXPORT void JNICALL Java_org_libjpegturbo_turbojpeg_TJCompressor_destroy (JNIEnv *, jobject); /* * Class: org_libjpegturbo_turbojpeg_TJCompressor * Method: compress * Signature: ([BIIII[BIII)I */ JNIEXPORT jint JNICALL Java_org_libjpegturbo_turbojpeg_TJCompressor_compress___3BIIII_3BIII (JNIEnv *, jobject, jbyteArray, jint, jint, jint, jint, jbyteArray, jint, jint, jint); /* * Class: org_libjpegturbo_turbojpeg_TJCompressor * Method: compress * Signature: ([BIIIIII[BIII)I */ JNIEXPORT jint JNICALL Java_org_libjpegturbo_turbojpeg_TJCompressor_compress___3BIIIIII_3BIII (JNIEnv *, jobject, jbyteArray, jint, jint, jint, jint, jint, jint, jbyteArray, jint, jint, jint); /* * Class: org_libjpegturbo_turbojpeg_TJCompressor * Method: compress * Signature: ([IIIII[BIII)I */ JNIEXPORT jint JNICALL Java_org_libjpegturbo_turbojpeg_TJCompressor_compress___3IIIII_3BIII (JNIEnv *, jobject, jintArray, jint, jint, jint, jint, jbyteArray, jint, jint, jint); /* * Class: org_libjpegturbo_turbojpeg_TJCompressor * Method: compress * Signature: ([IIIIIII[BIII)I */ JNIEXPORT jint JNICALL Java_org_libjpegturbo_turbojpeg_TJCompressor_compress___3IIIIIII_3BIII (JNIEnv *, jobject, jintArray, jint, jint, jint, jint, jint, jint, jbyteArray, jint, jint, jint); /* * Class: org_libjpegturbo_turbojpeg_TJCompressor * Method: compressFromYUV * Signature: ([[B[II[III[BII)I */ JNIEXPORT jint JNICALL Java_org_libjpegturbo_turbojpeg_TJCompressor_compressFromYUV___3_3B_3II_3III_3BII (JNIEnv *, jobject, jobjectArray, jintArray, jint, jintArray, jint, jint, jbyteArray, jint, jint); /* * Class: org_libjpegturbo_turbojpeg_TJCompressor * Method: encodeYUV * Signature: ([BIIII[BII)V */ JNIEXPORT void JNICALL Java_org_libjpegturbo_turbojpeg_TJCompressor_encodeYUV___3BIIII_3BII (JNIEnv *, jobject, jbyteArray, jint, jint, jint, jint, jbyteArray, jint, jint); /* * Class: org_libjpegturbo_turbojpeg_TJCompressor * Method: encodeYUV * Signature: ([BIIIIII[[B[I[III)V */ JNIEXPORT void JNICALL Java_org_libjpegturbo_turbojpeg_TJCompressor_encodeYUV___3BIIIIII_3_3B_3I_3III (JNIEnv *, jobject, jbyteArray, jint, jint, jint, jint, jint, jint, jobjectArray, jintArray, jintArray, jint, jint); /* * Class: org_libjpegturbo_turbojpeg_TJCompressor * Method: encodeYUV * Signature: ([IIIII[BII)V */ JNIEXPORT void JNICALL Java_org_libjpegturbo_turbojpeg_TJCompressor_encodeYUV___3IIIII_3BII (JNIEnv *, jobject, jintArray, jint, jint, jint, jint, jbyteArray, jint, jint); /* * Class: org_libjpegturbo_turbojpeg_TJCompressor * Method: encodeYUV * Signature: ([IIIIIII[[B[I[III)V */ JNIEXPORT void JNICALL Java_org_libjpegturbo_turbojpeg_TJCompressor_encodeYUV___3IIIIIII_3_3B_3I_3III (JNIEnv *, jobject, jintArray, jint, jint, jint, jint, jint, jint, jobjectArray, jintArray, jintArray, jint, jint); #ifdef __cplusplus } #endif #endif libjpeg-turbo-1.4.2/java/org_libjpegturbo_turbojpeg_TJ.h0000644000076500007650000001117312600050400020313 00000000000000/* DO NOT EDIT THIS FILE - it is machine generated */ #include /* Header for class org_libjpegturbo_turbojpeg_TJ */ #ifndef _Included_org_libjpegturbo_turbojpeg_TJ #define _Included_org_libjpegturbo_turbojpeg_TJ #ifdef __cplusplus extern "C" { #endif #undef org_libjpegturbo_turbojpeg_TJ_NUMSAMP #define org_libjpegturbo_turbojpeg_TJ_NUMSAMP 6L #undef org_libjpegturbo_turbojpeg_TJ_SAMP_444 #define org_libjpegturbo_turbojpeg_TJ_SAMP_444 0L #undef org_libjpegturbo_turbojpeg_TJ_SAMP_422 #define org_libjpegturbo_turbojpeg_TJ_SAMP_422 1L #undef org_libjpegturbo_turbojpeg_TJ_SAMP_420 #define org_libjpegturbo_turbojpeg_TJ_SAMP_420 2L #undef org_libjpegturbo_turbojpeg_TJ_SAMP_GRAY #define org_libjpegturbo_turbojpeg_TJ_SAMP_GRAY 3L #undef org_libjpegturbo_turbojpeg_TJ_SAMP_440 #define org_libjpegturbo_turbojpeg_TJ_SAMP_440 4L #undef org_libjpegturbo_turbojpeg_TJ_SAMP_411 #define org_libjpegturbo_turbojpeg_TJ_SAMP_411 5L #undef org_libjpegturbo_turbojpeg_TJ_NUMPF #define org_libjpegturbo_turbojpeg_TJ_NUMPF 12L #undef org_libjpegturbo_turbojpeg_TJ_PF_RGB #define org_libjpegturbo_turbojpeg_TJ_PF_RGB 0L #undef org_libjpegturbo_turbojpeg_TJ_PF_BGR #define org_libjpegturbo_turbojpeg_TJ_PF_BGR 1L #undef org_libjpegturbo_turbojpeg_TJ_PF_RGBX #define org_libjpegturbo_turbojpeg_TJ_PF_RGBX 2L #undef org_libjpegturbo_turbojpeg_TJ_PF_BGRX #define org_libjpegturbo_turbojpeg_TJ_PF_BGRX 3L #undef org_libjpegturbo_turbojpeg_TJ_PF_XBGR #define org_libjpegturbo_turbojpeg_TJ_PF_XBGR 4L #undef org_libjpegturbo_turbojpeg_TJ_PF_XRGB #define org_libjpegturbo_turbojpeg_TJ_PF_XRGB 5L #undef org_libjpegturbo_turbojpeg_TJ_PF_GRAY #define org_libjpegturbo_turbojpeg_TJ_PF_GRAY 6L #undef org_libjpegturbo_turbojpeg_TJ_PF_RGBA #define org_libjpegturbo_turbojpeg_TJ_PF_RGBA 7L #undef org_libjpegturbo_turbojpeg_TJ_PF_BGRA #define org_libjpegturbo_turbojpeg_TJ_PF_BGRA 8L #undef org_libjpegturbo_turbojpeg_TJ_PF_ABGR #define org_libjpegturbo_turbojpeg_TJ_PF_ABGR 9L #undef org_libjpegturbo_turbojpeg_TJ_PF_ARGB #define org_libjpegturbo_turbojpeg_TJ_PF_ARGB 10L #undef org_libjpegturbo_turbojpeg_TJ_PF_CMYK #define org_libjpegturbo_turbojpeg_TJ_PF_CMYK 11L #undef org_libjpegturbo_turbojpeg_TJ_NUMCS #define org_libjpegturbo_turbojpeg_TJ_NUMCS 5L #undef org_libjpegturbo_turbojpeg_TJ_CS_RGB #define org_libjpegturbo_turbojpeg_TJ_CS_RGB 0L #undef org_libjpegturbo_turbojpeg_TJ_CS_YCbCr #define org_libjpegturbo_turbojpeg_TJ_CS_YCbCr 1L #undef org_libjpegturbo_turbojpeg_TJ_CS_GRAY #define org_libjpegturbo_turbojpeg_TJ_CS_GRAY 2L #undef org_libjpegturbo_turbojpeg_TJ_CS_CMYK #define org_libjpegturbo_turbojpeg_TJ_CS_CMYK 3L #undef org_libjpegturbo_turbojpeg_TJ_CS_YCCK #define org_libjpegturbo_turbojpeg_TJ_CS_YCCK 4L #undef org_libjpegturbo_turbojpeg_TJ_FLAG_BOTTOMUP #define org_libjpegturbo_turbojpeg_TJ_FLAG_BOTTOMUP 2L #undef org_libjpegturbo_turbojpeg_TJ_FLAG_FASTUPSAMPLE #define org_libjpegturbo_turbojpeg_TJ_FLAG_FASTUPSAMPLE 256L #undef org_libjpegturbo_turbojpeg_TJ_FLAG_FASTDCT #define org_libjpegturbo_turbojpeg_TJ_FLAG_FASTDCT 2048L #undef org_libjpegturbo_turbojpeg_TJ_FLAG_ACCURATEDCT #define org_libjpegturbo_turbojpeg_TJ_FLAG_ACCURATEDCT 4096L /* * Class: org_libjpegturbo_turbojpeg_TJ * Method: bufSize * Signature: (III)I */ JNIEXPORT jint JNICALL Java_org_libjpegturbo_turbojpeg_TJ_bufSize (JNIEnv *, jclass, jint, jint, jint); /* * Class: org_libjpegturbo_turbojpeg_TJ * Method: bufSizeYUV * Signature: (IIII)I */ JNIEXPORT jint JNICALL Java_org_libjpegturbo_turbojpeg_TJ_bufSizeYUV__IIII (JNIEnv *, jclass, jint, jint, jint, jint); /* * Class: org_libjpegturbo_turbojpeg_TJ * Method: bufSizeYUV * Signature: (III)I */ JNIEXPORT jint JNICALL Java_org_libjpegturbo_turbojpeg_TJ_bufSizeYUV__III (JNIEnv *, jclass, jint, jint, jint); /* * Class: org_libjpegturbo_turbojpeg_TJ * Method: planeSizeYUV * Signature: (IIIII)I */ JNIEXPORT jint JNICALL Java_org_libjpegturbo_turbojpeg_TJ_planeSizeYUV__IIIII (JNIEnv *, jclass, jint, jint, jint, jint, jint); /* * Class: org_libjpegturbo_turbojpeg_TJ * Method: planeWidth * Signature: (III)I */ JNIEXPORT jint JNICALL Java_org_libjpegturbo_turbojpeg_TJ_planeWidth__III (JNIEnv *, jclass, jint, jint, jint); /* * Class: org_libjpegturbo_turbojpeg_TJ * Method: planeHeight * Signature: (III)I */ JNIEXPORT jint JNICALL Java_org_libjpegturbo_turbojpeg_TJ_planeHeight__III (JNIEnv *, jclass, jint, jint, jint); /* * Class: org_libjpegturbo_turbojpeg_TJ * Method: getScalingFactors * Signature: ()[Lorg/libjpegturbo/turbojpeg/TJScalingFactor; */ JNIEXPORT jobjectArray JNICALL Java_org_libjpegturbo_turbojpeg_TJ_getScalingFactors (JNIEnv *, jclass); #ifdef __cplusplus } #endif #endif libjpeg-turbo-1.4.2/java/org_libjpegturbo_turbojpeg_TJDecompressor.h0000644000076500007650000000662712600050400022711 00000000000000/* DO NOT EDIT THIS FILE - it is machine generated */ #include /* Header for class org_libjpegturbo_turbojpeg_TJDecompressor */ #ifndef _Included_org_libjpegturbo_turbojpeg_TJDecompressor #define _Included_org_libjpegturbo_turbojpeg_TJDecompressor #ifdef __cplusplus extern "C" { #endif /* * Class: org_libjpegturbo_turbojpeg_TJDecompressor * Method: init * Signature: ()V */ JNIEXPORT void JNICALL Java_org_libjpegturbo_turbojpeg_TJDecompressor_init (JNIEnv *, jobject); /* * Class: org_libjpegturbo_turbojpeg_TJDecompressor * Method: destroy * Signature: ()V */ JNIEXPORT void JNICALL Java_org_libjpegturbo_turbojpeg_TJDecompressor_destroy (JNIEnv *, jobject); /* * Class: org_libjpegturbo_turbojpeg_TJDecompressor * Method: decompressHeader * Signature: ([BI)V */ JNIEXPORT void JNICALL Java_org_libjpegturbo_turbojpeg_TJDecompressor_decompressHeader (JNIEnv *, jobject, jbyteArray, jint); /* * Class: org_libjpegturbo_turbojpeg_TJDecompressor * Method: decompress * Signature: ([BI[BIIIII)V */ JNIEXPORT void JNICALL Java_org_libjpegturbo_turbojpeg_TJDecompressor_decompress___3BI_3BIIIII (JNIEnv *, jobject, jbyteArray, jint, jbyteArray, jint, jint, jint, jint, jint); /* * Class: org_libjpegturbo_turbojpeg_TJDecompressor * Method: decompress * Signature: ([BI[BIIIIIII)V */ JNIEXPORT void JNICALL Java_org_libjpegturbo_turbojpeg_TJDecompressor_decompress___3BI_3BIIIIIII (JNIEnv *, jobject, jbyteArray, jint, jbyteArray, jint, jint, jint, jint, jint, jint, jint); /* * Class: org_libjpegturbo_turbojpeg_TJDecompressor * Method: decompress * Signature: ([BI[IIIIII)V */ JNIEXPORT void JNICALL Java_org_libjpegturbo_turbojpeg_TJDecompressor_decompress___3BI_3IIIIII (JNIEnv *, jobject, jbyteArray, jint, jintArray, jint, jint, jint, jint, jint); /* * Class: org_libjpegturbo_turbojpeg_TJDecompressor * Method: decompress * Signature: ([BI[IIIIIIII)V */ JNIEXPORT void JNICALL Java_org_libjpegturbo_turbojpeg_TJDecompressor_decompress___3BI_3IIIIIIII (JNIEnv *, jobject, jbyteArray, jint, jintArray, jint, jint, jint, jint, jint, jint, jint); /* * Class: org_libjpegturbo_turbojpeg_TJDecompressor * Method: decompressToYUV * Signature: ([BI[BI)V */ JNIEXPORT void JNICALL Java_org_libjpegturbo_turbojpeg_TJDecompressor_decompressToYUV___3BI_3BI (JNIEnv *, jobject, jbyteArray, jint, jbyteArray, jint); /* * Class: org_libjpegturbo_turbojpeg_TJDecompressor * Method: decompressToYUV * Signature: ([BI[[B[II[III)V */ JNIEXPORT void JNICALL Java_org_libjpegturbo_turbojpeg_TJDecompressor_decompressToYUV___3BI_3_3B_3II_3III (JNIEnv *, jobject, jbyteArray, jint, jobjectArray, jintArray, jint, jintArray, jint, jint); /* * Class: org_libjpegturbo_turbojpeg_TJDecompressor * Method: decodeYUV * Signature: ([[B[I[II[BIIIIIII)V */ JNIEXPORT void JNICALL Java_org_libjpegturbo_turbojpeg_TJDecompressor_decodeYUV___3_3B_3I_3II_3BIIIIIII (JNIEnv *, jobject, jobjectArray, jintArray, jintArray, jint, jbyteArray, jint, jint, jint, jint, jint, jint, jint); /* * Class: org_libjpegturbo_turbojpeg_TJDecompressor * Method: decodeYUV * Signature: ([[B[I[II[IIIIIIII)V */ JNIEXPORT void JNICALL Java_org_libjpegturbo_turbojpeg_TJDecompressor_decodeYUV___3_3B_3I_3II_3IIIIIIII (JNIEnv *, jobject, jobjectArray, jintArray, jintArray, jint, jintArray, jint, jint, jint, jint, jint, jint, jint); #ifdef __cplusplus } #endif #endif libjpeg-turbo-1.4.2/rdswitch.c0000644000076500007650000003130512600050400013176 00000000000000/* * rdswitch.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1991-1996, Thomas G. Lane. * libjpeg-turbo Modifications: * Copyright (C) 2010, D. R. Commander. * For conditions of distribution and use, see the accompanying README file. * * This file contains routines to process some of cjpeg's more complicated * command-line switches. Switches processed here are: * -qtables file Read quantization tables from text file * -scans file Read scan script from text file * -quality N[,N,...] Set quality ratings * -qslots N[,N,...] Set component quantization table selectors * -sample HxV[,HxV,...] Set component sampling factors */ #include "cdjpeg.h" /* Common decls for cjpeg/djpeg applications */ #include /* to declare isdigit(), isspace() */ LOCAL(int) text_getc (FILE * file) /* Read next char, skipping over any comments (# to end of line) */ /* A comment/newline sequence is returned as a newline */ { register int ch; ch = getc(file); if (ch == '#') { do { ch = getc(file); } while (ch != '\n' && ch != EOF); } return ch; } LOCAL(boolean) read_text_integer (FILE * file, long * result, int * termchar) /* Read an unsigned decimal integer from a file, store it in result */ /* Reads one trailing character after the integer; returns it in termchar */ { register int ch; register long val; /* Skip any leading whitespace, detect EOF */ do { ch = text_getc(file); if (ch == EOF) { *termchar = ch; return FALSE; } } while (isspace(ch)); if (! isdigit(ch)) { *termchar = ch; return FALSE; } val = ch - '0'; while ((ch = text_getc(file)) != EOF) { if (! isdigit(ch)) break; val *= 10; val += ch - '0'; } *result = val; *termchar = ch; return TRUE; } #if JPEG_LIB_VERSION < 70 static int q_scale_factor[NUM_QUANT_TBLS] = {100, 100, 100, 100}; #endif GLOBAL(boolean) read_quant_tables (j_compress_ptr cinfo, char * filename, boolean force_baseline) /* Read a set of quantization tables from the specified file. * The file is plain ASCII text: decimal numbers with whitespace between. * Comments preceded by '#' may be included in the file. * There may be one to NUM_QUANT_TBLS tables in the file, each of 64 values. * The tables are implicitly numbered 0,1,etc. * NOTE: does not affect the qslots mapping, which will default to selecting * table 0 for luminance (or primary) components, 1 for chrominance components. * You must use -qslots if you want a different component->table mapping. */ { FILE * fp; int tblno, i, termchar; long val; unsigned int table[DCTSIZE2]; if ((fp = fopen(filename, "r")) == NULL) { fprintf(stderr, "Can't open table file %s\n", filename); return FALSE; } tblno = 0; while (read_text_integer(fp, &val, &termchar)) { /* read 1st element of table */ if (tblno >= NUM_QUANT_TBLS) { fprintf(stderr, "Too many tables in file %s\n", filename); fclose(fp); return FALSE; } table[0] = (unsigned int) val; for (i = 1; i < DCTSIZE2; i++) { if (! read_text_integer(fp, &val, &termchar)) { fprintf(stderr, "Invalid table data in file %s\n", filename); fclose(fp); return FALSE; } table[i] = (unsigned int) val; } #if JPEG_LIB_VERSION >= 70 jpeg_add_quant_table(cinfo, tblno, table, cinfo->q_scale_factor[tblno], force_baseline); #else jpeg_add_quant_table(cinfo, tblno, table, q_scale_factor[tblno], force_baseline); #endif tblno++; } if (termchar != EOF) { fprintf(stderr, "Non-numeric data in file %s\n", filename); fclose(fp); return FALSE; } fclose(fp); return TRUE; } #ifdef C_MULTISCAN_FILES_SUPPORTED LOCAL(boolean) read_scan_integer (FILE * file, long * result, int * termchar) /* Variant of read_text_integer that always looks for a non-space termchar; * this simplifies parsing of punctuation in scan scripts. */ { register int ch; if (! read_text_integer(file, result, termchar)) return FALSE; ch = *termchar; while (ch != EOF && isspace(ch)) ch = text_getc(file); if (isdigit(ch)) { /* oops, put it back */ if (ungetc(ch, file) == EOF) return FALSE; ch = ' '; } else { /* Any separators other than ';' and ':' are ignored; * this allows user to insert commas, etc, if desired. */ if (ch != EOF && ch != ';' && ch != ':') ch = ' '; } *termchar = ch; return TRUE; } GLOBAL(boolean) read_scan_script (j_compress_ptr cinfo, char * filename) /* Read a scan script from the specified text file. * Each entry in the file defines one scan to be emitted. * Entries are separated by semicolons ';'. * An entry contains one to four component indexes, * optionally followed by a colon ':' and four progressive-JPEG parameters. * The component indexes denote which component(s) are to be transmitted * in the current scan. The first component has index 0. * Sequential JPEG is used if the progressive-JPEG parameters are omitted. * The file is free format text: any whitespace may appear between numbers * and the ':' and ';' punctuation marks. Also, other punctuation (such * as commas or dashes) can be placed between numbers if desired. * Comments preceded by '#' may be included in the file. * Note: we do very little validity checking here; * jcmaster.c will validate the script parameters. */ { FILE * fp; int scanno, ncomps, termchar; long val; jpeg_scan_info * scanptr; #define MAX_SCANS 100 /* quite arbitrary limit */ jpeg_scan_info scans[MAX_SCANS]; if ((fp = fopen(filename, "r")) == NULL) { fprintf(stderr, "Can't open scan definition file %s\n", filename); return FALSE; } scanptr = scans; scanno = 0; while (read_scan_integer(fp, &val, &termchar)) { if (scanno >= MAX_SCANS) { fprintf(stderr, "Too many scans defined in file %s\n", filename); fclose(fp); return FALSE; } scanptr->component_index[0] = (int) val; ncomps = 1; while (termchar == ' ') { if (ncomps >= MAX_COMPS_IN_SCAN) { fprintf(stderr, "Too many components in one scan in file %s\n", filename); fclose(fp); return FALSE; } if (! read_scan_integer(fp, &val, &termchar)) goto bogus; scanptr->component_index[ncomps] = (int) val; ncomps++; } scanptr->comps_in_scan = ncomps; if (termchar == ':') { if (! read_scan_integer(fp, &val, &termchar) || termchar != ' ') goto bogus; scanptr->Ss = (int) val; if (! read_scan_integer(fp, &val, &termchar) || termchar != ' ') goto bogus; scanptr->Se = (int) val; if (! read_scan_integer(fp, &val, &termchar) || termchar != ' ') goto bogus; scanptr->Ah = (int) val; if (! read_scan_integer(fp, &val, &termchar)) goto bogus; scanptr->Al = (int) val; } else { /* set non-progressive parameters */ scanptr->Ss = 0; scanptr->Se = DCTSIZE2-1; scanptr->Ah = 0; scanptr->Al = 0; } if (termchar != ';' && termchar != EOF) { bogus: fprintf(stderr, "Invalid scan entry format in file %s\n", filename); fclose(fp); return FALSE; } scanptr++, scanno++; } if (termchar != EOF) { fprintf(stderr, "Non-numeric data in file %s\n", filename); fclose(fp); return FALSE; } if (scanno > 0) { /* Stash completed scan list in cinfo structure. * NOTE: for cjpeg's use, JPOOL_IMAGE is the right lifetime for this data, * but if you want to compress multiple images you'd want JPOOL_PERMANENT. */ scanptr = (jpeg_scan_info *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, scanno * sizeof(jpeg_scan_info)); MEMCOPY(scanptr, scans, scanno * sizeof(jpeg_scan_info)); cinfo->scan_info = scanptr; cinfo->num_scans = scanno; } fclose(fp); return TRUE; } #endif /* C_MULTISCAN_FILES_SUPPORTED */ #if JPEG_LIB_VERSION < 70 /* These are the sample quantization tables given in JPEG spec section K.1. * The spec says that the values given produce "good" quality, and * when divided by 2, "very good" quality. */ static const unsigned int std_luminance_quant_tbl[DCTSIZE2] = { 16, 11, 10, 16, 24, 40, 51, 61, 12, 12, 14, 19, 26, 58, 60, 55, 14, 13, 16, 24, 40, 57, 69, 56, 14, 17, 22, 29, 51, 87, 80, 62, 18, 22, 37, 56, 68, 109, 103, 77, 24, 35, 55, 64, 81, 104, 113, 92, 49, 64, 78, 87, 103, 121, 120, 101, 72, 92, 95, 98, 112, 100, 103, 99 }; static const unsigned int std_chrominance_quant_tbl[DCTSIZE2] = { 17, 18, 24, 47, 99, 99, 99, 99, 18, 21, 26, 66, 99, 99, 99, 99, 24, 26, 56, 99, 99, 99, 99, 99, 47, 66, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99 }; LOCAL(void) jpeg_default_qtables (j_compress_ptr cinfo, boolean force_baseline) { jpeg_add_quant_table(cinfo, 0, std_luminance_quant_tbl, q_scale_factor[0], force_baseline); jpeg_add_quant_table(cinfo, 1, std_chrominance_quant_tbl, q_scale_factor[1], force_baseline); } #endif GLOBAL(boolean) set_quality_ratings (j_compress_ptr cinfo, char *arg, boolean force_baseline) /* Process a quality-ratings parameter string, of the form * N[,N,...] * If there are more q-table slots than parameters, the last value is replicated. */ { int val = 75; /* default value */ int tblno; char ch; for (tblno = 0; tblno < NUM_QUANT_TBLS; tblno++) { if (*arg) { ch = ','; /* if not set by sscanf, will be ',' */ if (sscanf(arg, "%d%c", &val, &ch) < 1) return FALSE; if (ch != ',') /* syntax check */ return FALSE; /* Convert user 0-100 rating to percentage scaling */ #if JPEG_LIB_VERSION >= 70 cinfo->q_scale_factor[tblno] = jpeg_quality_scaling(val); #else q_scale_factor[tblno] = jpeg_quality_scaling(val); #endif while (*arg && *arg++ != ',') /* advance to next segment of arg string */ ; } else { /* reached end of parameter, set remaining factors to last value */ #if JPEG_LIB_VERSION >= 70 cinfo->q_scale_factor[tblno] = jpeg_quality_scaling(val); #else q_scale_factor[tblno] = jpeg_quality_scaling(val); #endif } } jpeg_default_qtables(cinfo, force_baseline); return TRUE; } GLOBAL(boolean) set_quant_slots (j_compress_ptr cinfo, char *arg) /* Process a quantization-table-selectors parameter string, of the form * N[,N,...] * If there are more components than parameters, the last value is replicated. */ { int val = 0; /* default table # */ int ci; char ch; for (ci = 0; ci < MAX_COMPONENTS; ci++) { if (*arg) { ch = ','; /* if not set by sscanf, will be ',' */ if (sscanf(arg, "%d%c", &val, &ch) < 1) return FALSE; if (ch != ',') /* syntax check */ return FALSE; if (val < 0 || val >= NUM_QUANT_TBLS) { fprintf(stderr, "JPEG quantization tables are numbered 0..%d\n", NUM_QUANT_TBLS-1); return FALSE; } cinfo->comp_info[ci].quant_tbl_no = val; while (*arg && *arg++ != ',') /* advance to next segment of arg string */ ; } else { /* reached end of parameter, set remaining components to last table */ cinfo->comp_info[ci].quant_tbl_no = val; } } return TRUE; } GLOBAL(boolean) set_sample_factors (j_compress_ptr cinfo, char *arg) /* Process a sample-factors parameter string, of the form * HxV[,HxV,...] * If there are more components than parameters, "1x1" is assumed for the rest. */ { int ci, val1, val2; char ch1, ch2; for (ci = 0; ci < MAX_COMPONENTS; ci++) { if (*arg) { ch2 = ','; /* if not set by sscanf, will be ',' */ if (sscanf(arg, "%d%c%d%c", &val1, &ch1, &val2, &ch2) < 3) return FALSE; if ((ch1 != 'x' && ch1 != 'X') || ch2 != ',') /* syntax check */ return FALSE; if (val1 <= 0 || val1 > 4 || val2 <= 0 || val2 > 4) { fprintf(stderr, "JPEG sampling factors must be 1..4\n"); return FALSE; } cinfo->comp_info[ci].h_samp_factor = val1; cinfo->comp_info[ci].v_samp_factor = val2; while (*arg && *arg++ != ',') /* advance to next segment of arg string */ ; } else { /* reached end of parameter, set remaining components to 1x1 sampling */ cinfo->comp_info[ci].h_samp_factor = 1; cinfo->comp_info[ci].v_samp_factor = 1; } } return TRUE; } libjpeg-turbo-1.4.2/cderror.h0000644000076500007650000001246412600050400013021 00000000000000/* * cderror.h * * Copyright (C) 1994-1997, Thomas G. Lane. * Modified 2009 by Guido Vollbeding. * This file is part of the Independent JPEG Group's software. * For conditions of distribution and use, see the accompanying README file. * * This file defines the error and message codes for the cjpeg/djpeg * applications. These strings are not needed as part of the JPEG library * proper. * Edit this file to add new codes, or to translate the message strings to * some other language. */ /* * To define the enum list of message codes, include this file without * defining macro JMESSAGE. To create a message string table, include it * again with a suitable JMESSAGE definition (see jerror.c for an example). */ #ifndef JMESSAGE #ifndef CDERROR_H #define CDERROR_H /* First time through, define the enum list */ #define JMAKE_ENUM_LIST #else /* Repeated inclusions of this file are no-ops unless JMESSAGE is defined */ #define JMESSAGE(code,string) #endif /* CDERROR_H */ #endif /* JMESSAGE */ #ifdef JMAKE_ENUM_LIST typedef enum { #define JMESSAGE(code,string) code , #endif /* JMAKE_ENUM_LIST */ JMESSAGE(JMSG_FIRSTADDONCODE=1000, NULL) /* Must be first entry! */ #ifdef BMP_SUPPORTED JMESSAGE(JERR_BMP_BADCMAP, "Unsupported BMP colormap format") JMESSAGE(JERR_BMP_BADDEPTH, "Only 8- and 24-bit BMP files are supported") JMESSAGE(JERR_BMP_BADHEADER, "Invalid BMP file: bad header length") JMESSAGE(JERR_BMP_BADPLANES, "Invalid BMP file: biPlanes not equal to 1") JMESSAGE(JERR_BMP_COLORSPACE, "BMP output must be grayscale or RGB") JMESSAGE(JERR_BMP_COMPRESSED, "Sorry, compressed BMPs not yet supported") JMESSAGE(JERR_BMP_EMPTY, "Empty BMP image") JMESSAGE(JERR_BMP_NOT, "Not a BMP file - does not start with BM") JMESSAGE(JTRC_BMP, "%ux%u 24-bit BMP image") JMESSAGE(JTRC_BMP_MAPPED, "%ux%u 8-bit colormapped BMP image") JMESSAGE(JTRC_BMP_OS2, "%ux%u 24-bit OS2 BMP image") JMESSAGE(JTRC_BMP_OS2_MAPPED, "%ux%u 8-bit colormapped OS2 BMP image") #endif /* BMP_SUPPORTED */ #ifdef GIF_SUPPORTED JMESSAGE(JERR_GIF_BUG, "GIF output got confused") JMESSAGE(JERR_GIF_CODESIZE, "Bogus GIF codesize %d") JMESSAGE(JERR_GIF_COLORSPACE, "GIF output must be grayscale or RGB") JMESSAGE(JERR_GIF_IMAGENOTFOUND, "Too few images in GIF file") JMESSAGE(JERR_GIF_NOT, "Not a GIF file") JMESSAGE(JTRC_GIF, "%ux%ux%d GIF image") JMESSAGE(JTRC_GIF_BADVERSION, "Warning: unexpected GIF version number '%c%c%c'") JMESSAGE(JTRC_GIF_EXTENSION, "Ignoring GIF extension block of type 0x%02x") JMESSAGE(JTRC_GIF_NONSQUARE, "Caution: nonsquare pixels in input") JMESSAGE(JWRN_GIF_BADDATA, "Corrupt data in GIF file") JMESSAGE(JWRN_GIF_CHAR, "Bogus char 0x%02x in GIF file, ignoring") JMESSAGE(JWRN_GIF_ENDCODE, "Premature end of GIF image") JMESSAGE(JWRN_GIF_NOMOREDATA, "Ran out of GIF bits") #endif /* GIF_SUPPORTED */ #ifdef PPM_SUPPORTED JMESSAGE(JERR_PPM_COLORSPACE, "PPM output must be grayscale or RGB") JMESSAGE(JERR_PPM_NONNUMERIC, "Nonnumeric data in PPM file") JMESSAGE(JERR_PPM_TOOLARGE, "Integer value too large in PPM file") JMESSAGE(JERR_PPM_NOT, "Not a PPM/PGM file") JMESSAGE(JTRC_PGM, "%ux%u PGM image") JMESSAGE(JTRC_PGM_TEXT, "%ux%u text PGM image") JMESSAGE(JTRC_PPM, "%ux%u PPM image") JMESSAGE(JTRC_PPM_TEXT, "%ux%u text PPM image") #endif /* PPM_SUPPORTED */ #ifdef RLE_SUPPORTED JMESSAGE(JERR_RLE_BADERROR, "Bogus error code from RLE library") JMESSAGE(JERR_RLE_COLORSPACE, "RLE output must be grayscale or RGB") JMESSAGE(JERR_RLE_DIMENSIONS, "Image dimensions (%ux%u) too large for RLE") JMESSAGE(JERR_RLE_EMPTY, "Empty RLE file") JMESSAGE(JERR_RLE_EOF, "Premature EOF in RLE header") JMESSAGE(JERR_RLE_MEM, "Insufficient memory for RLE header") JMESSAGE(JERR_RLE_NOT, "Not an RLE file") JMESSAGE(JERR_RLE_TOOMANYCHANNELS, "Cannot handle %d output channels for RLE") JMESSAGE(JERR_RLE_UNSUPPORTED, "Cannot handle this RLE setup") JMESSAGE(JTRC_RLE, "%ux%u full-color RLE file") JMESSAGE(JTRC_RLE_FULLMAP, "%ux%u full-color RLE file with map of length %d") JMESSAGE(JTRC_RLE_GRAY, "%ux%u grayscale RLE file") JMESSAGE(JTRC_RLE_MAPGRAY, "%ux%u grayscale RLE file with map of length %d") JMESSAGE(JTRC_RLE_MAPPED, "%ux%u colormapped RLE file with map of length %d") #endif /* RLE_SUPPORTED */ #ifdef TARGA_SUPPORTED JMESSAGE(JERR_TGA_BADCMAP, "Unsupported Targa colormap format") JMESSAGE(JERR_TGA_BADPARMS, "Invalid or unsupported Targa file") JMESSAGE(JERR_TGA_COLORSPACE, "Targa output must be grayscale or RGB") JMESSAGE(JTRC_TGA, "%ux%u RGB Targa image") JMESSAGE(JTRC_TGA_GRAY, "%ux%u grayscale Targa image") JMESSAGE(JTRC_TGA_MAPPED, "%ux%u colormapped Targa image") #else JMESSAGE(JERR_TGA_NOTCOMP, "Targa support was not compiled") #endif /* TARGA_SUPPORTED */ JMESSAGE(JERR_BAD_CMAP_FILE, "Color map file is invalid or of unsupported format") JMESSAGE(JERR_TOO_MANY_COLORS, "Output file format cannot handle %d colormap entries") JMESSAGE(JERR_UNGETC_FAILED, "ungetc failed") #ifdef TARGA_SUPPORTED JMESSAGE(JERR_UNKNOWN_FORMAT, "Unrecognized input file format --- perhaps you need -targa") #else JMESSAGE(JERR_UNKNOWN_FORMAT, "Unrecognized input file format") #endif JMESSAGE(JERR_UNSUPPORTED_FORMAT, "Unsupported output file format") #ifdef JMAKE_ENUM_LIST JMSG_LASTADDONCODE } ADDON_MESSAGE_CODE; #undef JMAKE_ENUM_LIST #endif /* JMAKE_ENUM_LIST */ /* Zap JMESSAGE macro so that future re-inclusions do nothing by default */ #undef JMESSAGE libjpeg-turbo-1.4.2/tjunittest.c0000644000076500007650000004512412600050400013570 00000000000000/* * Copyright (C)2009-2014 D. R. Commander. All Rights Reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * - Neither the name of the libjpeg-turbo Project nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS", * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * This program tests the various code paths in the TurboJPEG C Wrapper */ #include #include #include #include #include "./tjutil.h" #include "./turbojpeg.h" #ifdef _WIN32 #include #define random() rand() #endif void usage(char *progName) { printf("\nUSAGE: %s [options]\n", progName); printf("Options:\n"); printf("-yuv = test YUV encoding/decoding support\n"); printf("-noyuvpad = do not pad each line of each Y, U, and V plane to the nearest\n"); printf(" 4-byte boundary\n"); printf("-alloc = test automatic buffer allocation\n"); exit(1); } #define _throwtj() {printf("TurboJPEG ERROR:\n%s\n", tjGetErrorStr()); \ bailout();} #define _tj(f) {if((f)==-1) _throwtj();} #define _throw(m) {printf("ERROR: %s\n", m); bailout();} const char *subNameLong[TJ_NUMSAMP]= { "4:4:4", "4:2:2", "4:2:0", "GRAY", "4:4:0", "4:1:1" }; const char *subName[TJ_NUMSAMP]={"444", "422", "420", "GRAY", "440", "411"}; const char *pixFormatStr[TJ_NUMPF]= { "RGB", "BGR", "RGBX", "BGRX", "XBGR", "XRGB", "Grayscale", "RGBA", "BGRA", "ABGR", "ARGB", "CMYK" }; const int alphaOffset[TJ_NUMPF] = {-1, -1, -1, -1, -1, -1, -1, 3, 3, 0, 0, -1}; const int _3byteFormats[]={TJPF_RGB, TJPF_BGR}; const int _4byteFormats[]={TJPF_RGBX, TJPF_BGRX, TJPF_XBGR, TJPF_XRGB, TJPF_CMYK}; const int _onlyGray[]={TJPF_GRAY}; const int _onlyRGB[]={TJPF_RGB}; int doyuv=0, alloc=0, pad=4; int exitStatus=0; #define bailout() {exitStatus=-1; goto bailout;} void initBuf(unsigned char *buf, int w, int h, int pf, int flags) { int roffset=tjRedOffset[pf]; int goffset=tjGreenOffset[pf]; int boffset=tjBlueOffset[pf]; int ps=tjPixelSize[pf]; int index, row, col, halfway=16; if(pf==TJPF_GRAY) { memset(buf, 0, w*h*ps); for(row=0; row=halfway) buf[index*ps+3]=0; } else { buf[index*ps+2]=0; if(row=halfway) buf[index*ps+goffset]=255; } } } } } #define checkval(v, cv) { \ if(vcv+1) { \ printf("\nComp. %s at %d,%d should be %d, not %d\n", \ #v, row, col, cv, v); \ retval=0; exitStatus=-1; goto bailout; \ }} #define checkval0(v) { \ if(v>1) { \ printf("\nComp. %s at %d,%d should be 0, not %d\n", #v, row, col, v); \ retval=0; exitStatus=-1; goto bailout; \ }} #define checkval255(v) { \ if(v<254) { \ printf("\nComp. %s at %d,%d should be 255, not %d\n", #v, row, col, v); \ retval=0; exitStatus=-1; goto bailout; \ }} int checkBuf(unsigned char *buf, int w, int h, int pf, int subsamp, tjscalingfactor sf, int flags) { int roffset=tjRedOffset[pf]; int goffset=tjGreenOffset[pf]; int boffset=tjBlueOffset[pf]; int aoffset=alphaOffset[pf]; int ps=tjPixelSize[pf]; int index, row, col, retval=1; int halfway=16*sf.num/sf.denom; int blocksize=8*sf.num/sf.denom; if(pf==TJPF_CMYK) { for(row=0; row=0? buf[index*ps+aoffset]:0xFF; if(((row/blocksize)+(col/blocksize))%2==0) { if(row0) memset(*dstBuf, 0, *dstSize); if(!alloc) flags|=TJFLAG_NOREALLOC; if(doyuv) { unsigned long yuvSize=tjBufSizeYUV2(w, pad, h, subsamp); tjscalingfactor sf={1, 1}; tjhandle handle2=tjInitCompress(); if(!handle2) _throwtj(); if((yuvBuf=(unsigned char *)malloc(yuvSize))==NULL) _throw("Memory allocation failure"); memset(yuvBuf, 0, yuvSize); printf("%s %s -> YUV %s ... ", pfStr, buStrLong, subNameLong[subsamp]); _tj(tjEncodeYUV3(handle2, srcBuf, w, 0, h, pf, yuvBuf, pad, subsamp, flags)); tjDestroy(handle2); if(checkBufYUV(yuvBuf, w, h, subsamp, sf)) printf("Passed.\n"); else printf("FAILED!\n"); printf("YUV %s %s -> JPEG Q%d ... ", subNameLong[subsamp], buStrLong, jpegQual); _tj(tjCompressFromYUV(handle, yuvBuf, w, pad, h, subsamp, dstBuf, dstSize, jpegQual, flags)); } else { printf("%s %s -> %s Q%d ... ", pfStr, buStrLong, subNameLong[subsamp], jpegQual); _tj(tjCompress2(handle, srcBuf, w, 0, h, pf, dstBuf, dstSize, subsamp, jpegQual, flags)); } snprintf(tempStr, 1024, "%s_enc_%s_%s_%s_Q%d.jpg", basename, pfStr, buStr, subName[subsamp], jpegQual); writeJPEG(*dstBuf, *dstSize, tempStr); printf("Done.\n Result in %s\n", tempStr); bailout: if(yuvBuf) free(yuvBuf); if(srcBuf) free(srcBuf); } void _decompTest(tjhandle handle, unsigned char *jpegBuf, unsigned long jpegSize, int w, int h, int pf, char *basename, int subsamp, int flags, tjscalingfactor sf) { unsigned char *dstBuf=NULL, *yuvBuf=NULL; int _hdrw=0, _hdrh=0, _hdrsubsamp=-1; int scaledWidth=TJSCALED(w, sf); int scaledHeight=TJSCALED(h, sf); unsigned long dstSize=0; _tj(tjDecompressHeader2(handle, jpegBuf, jpegSize, &_hdrw, &_hdrh, &_hdrsubsamp)); if(_hdrw!=w || _hdrh!=h || _hdrsubsamp!=subsamp) _throw("Incorrect JPEG header"); dstSize=scaledWidth*scaledHeight*tjPixelSize[pf]; if((dstBuf=(unsigned char *)malloc(dstSize))==NULL) _throw("Memory allocation failure"); memset(dstBuf, 0, dstSize); if(doyuv) { unsigned long yuvSize=tjBufSizeYUV2(scaledWidth, pad, scaledHeight, subsamp); tjhandle handle2=tjInitDecompress(); if(!handle2) _throwtj(); if((yuvBuf=(unsigned char *)malloc(yuvSize))==NULL) _throw("Memory allocation failure"); memset(yuvBuf, 0, yuvSize); printf("JPEG -> YUV %s ", subNameLong[subsamp]); if(sf.num!=1 || sf.denom!=1) printf("%d/%d ... ", sf.num, sf.denom); else printf("... "); _tj(tjDecompressToYUV2(handle, jpegBuf, jpegSize, yuvBuf, scaledWidth, pad, scaledHeight, flags)); if(checkBufYUV(yuvBuf, scaledWidth, scaledHeight, subsamp, sf)) printf("Passed.\n"); else printf("FAILED!\n"); printf("YUV %s -> %s %s ... ", subNameLong[subsamp], pixFormatStr[pf], (flags&TJFLAG_BOTTOMUP)? "Bottom-Up":"Top-Down "); _tj(tjDecodeYUV(handle2, yuvBuf, pad, subsamp, dstBuf, scaledWidth, 0, scaledHeight, pf, flags)); tjDestroy(handle2); } else { printf("JPEG -> %s %s ", pixFormatStr[pf], (flags&TJFLAG_BOTTOMUP)? "Bottom-Up":"Top-Down "); if(sf.num!=1 || sf.denom!=1) printf("%d/%d ... ", sf.num, sf.denom); else printf("... "); _tj(tjDecompress2(handle, jpegBuf, jpegSize, dstBuf, scaledWidth, 0, scaledHeight, pf, flags)); } if(checkBuf(dstBuf, scaledWidth, scaledHeight, pf, subsamp, sf, flags)) printf("Passed."); else printf("FAILED!"); printf("\n"); bailout: if(yuvBuf) free(yuvBuf); if(dstBuf) free(dstBuf); } void decompTest(tjhandle handle, unsigned char *jpegBuf, unsigned long jpegSize, int w, int h, int pf, char *basename, int subsamp, int flags) { int i, n=0; tjscalingfactor *sf=tjGetScalingFactors(&n); if(!sf || !n) _throwtj(); for(i=0; i=TJPF_RGBX && pf<=TJPF_XRGB) { printf("\n"); decompTest(dhandle, dstBuf, size, w, h, pf+(TJPF_RGBA-TJPF_RGBX), basename, subsamp, flags); } printf("\n"); } } printf("--------------------\n\n"); bailout: if(chandle) tjDestroy(chandle); if(dhandle) tjDestroy(dhandle); if(dstBuf) tjFree(dstBuf); } void bufSizeTest(void) { int w, h, i, subsamp; unsigned char *srcBuf=NULL, *dstBuf=NULL; tjhandle handle=NULL; unsigned long dstSize=0; if((handle=tjInitCompress())==NULL) _throwtj(); printf("Buffer size regression test\n"); for(subsamp=0; subsamp1) { for(i=1; icconvert; register int y, cb, cr; register JSAMPROW outptr; register JSAMPROW inptr0, inptr1, inptr2; register JDIMENSION col; JDIMENSION num_cols = cinfo->output_width; /* copy these pointers into registers if possible */ register JSAMPLE * range_limit = cinfo->sample_range_limit; register int * Crrtab = cconvert->Cr_r_tab; register int * Cbbtab = cconvert->Cb_b_tab; register INT32 * Crgtab = cconvert->Cr_g_tab; register INT32 * Cbgtab = cconvert->Cb_g_tab; SHIFT_TEMPS while (--num_rows >= 0) { INT32 rgb; unsigned int r, g, b; inptr0 = input_buf[0][input_row]; inptr1 = input_buf[1][input_row]; inptr2 = input_buf[2][input_row]; input_row++; outptr = *output_buf++; if (PACK_NEED_ALIGNMENT(outptr)) { y = GETJSAMPLE(*inptr0++); cb = GETJSAMPLE(*inptr1++); cr = GETJSAMPLE(*inptr2++); r = range_limit[y + Crrtab[cr]]; g = range_limit[y + ((int)RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS))]; b = range_limit[y + Cbbtab[cb]]; rgb = PACK_SHORT_565(r, g, b); *(INT16*)outptr = rgb; outptr += 2; num_cols--; } for (col = 0; col < (num_cols >> 1); col++) { y = GETJSAMPLE(*inptr0++); cb = GETJSAMPLE(*inptr1++); cr = GETJSAMPLE(*inptr2++); r = range_limit[y + Crrtab[cr]]; g = range_limit[y + ((int)RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS))]; b = range_limit[y + Cbbtab[cb]]; rgb = PACK_SHORT_565(r, g, b); y = GETJSAMPLE(*inptr0++); cb = GETJSAMPLE(*inptr1++); cr = GETJSAMPLE(*inptr2++); r = range_limit[y + Crrtab[cr]]; g = range_limit[y + ((int)RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS))]; b = range_limit[y + Cbbtab[cb]]; rgb = PACK_TWO_PIXELS(rgb, PACK_SHORT_565(r, g, b)); WRITE_TWO_ALIGNED_PIXELS(outptr, rgb); outptr += 4; } if (num_cols & 1) { y = GETJSAMPLE(*inptr0); cb = GETJSAMPLE(*inptr1); cr = GETJSAMPLE(*inptr2); r = range_limit[y + Crrtab[cr]]; g = range_limit[y + ((int)RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS))]; b = range_limit[y + Cbbtab[cb]]; rgb = PACK_SHORT_565(r, g, b); *(INT16*)outptr = rgb; } } } INLINE LOCAL(void) ycc_rgb565D_convert_internal (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) { my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; register int y, cb, cr; register JSAMPROW outptr; register JSAMPROW inptr0, inptr1, inptr2; register JDIMENSION col; JDIMENSION num_cols = cinfo->output_width; /* copy these pointers into registers if possible */ register JSAMPLE * range_limit = cinfo->sample_range_limit; register int * Crrtab = cconvert->Cr_r_tab; register int * Cbbtab = cconvert->Cb_b_tab; register INT32 * Crgtab = cconvert->Cr_g_tab; register INT32 * Cbgtab = cconvert->Cb_g_tab; INT32 d0 = dither_matrix[cinfo->output_scanline & DITHER_MASK]; SHIFT_TEMPS while (--num_rows >= 0) { INT32 rgb; unsigned int r, g, b; inptr0 = input_buf[0][input_row]; inptr1 = input_buf[1][input_row]; inptr2 = input_buf[2][input_row]; input_row++; outptr = *output_buf++; if (PACK_NEED_ALIGNMENT(outptr)) { y = GETJSAMPLE(*inptr0++); cb = GETJSAMPLE(*inptr1++); cr = GETJSAMPLE(*inptr2++); r = range_limit[DITHER_565_R(y + Crrtab[cr], d0)]; g = range_limit[DITHER_565_G(y + ((int)RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS)), d0)]; b = range_limit[DITHER_565_B(y + Cbbtab[cb], d0)]; rgb = PACK_SHORT_565(r, g, b); *(INT16*)outptr = rgb; outptr += 2; num_cols--; } for (col = 0; col < (num_cols >> 1); col++) { y = GETJSAMPLE(*inptr0++); cb = GETJSAMPLE(*inptr1++); cr = GETJSAMPLE(*inptr2++); r = range_limit[DITHER_565_R(y + Crrtab[cr], d0)]; g = range_limit[DITHER_565_G(y + ((int)RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS)), d0)]; b = range_limit[DITHER_565_B(y + Cbbtab[cb], d0)]; d0 = DITHER_ROTATE(d0); rgb = PACK_SHORT_565(r, g, b); y = GETJSAMPLE(*inptr0++); cb = GETJSAMPLE(*inptr1++); cr = GETJSAMPLE(*inptr2++); r = range_limit[DITHER_565_R(y + Crrtab[cr], d0)]; g = range_limit[DITHER_565_G(y + ((int)RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS)), d0)]; b = range_limit[DITHER_565_B(y + Cbbtab[cb], d0)]; d0 = DITHER_ROTATE(d0); rgb = PACK_TWO_PIXELS(rgb, PACK_SHORT_565(r, g, b)); WRITE_TWO_ALIGNED_PIXELS(outptr, rgb); outptr += 4; } if (num_cols & 1) { y = GETJSAMPLE(*inptr0); cb = GETJSAMPLE(*inptr1); cr = GETJSAMPLE(*inptr2); r = range_limit[DITHER_565_R(y + Crrtab[cr], d0)]; g = range_limit[DITHER_565_G(y + ((int)RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS)), d0)]; b = range_limit[DITHER_565_B(y + Cbbtab[cb], d0)]; rgb = PACK_SHORT_565(r, g, b); *(INT16*)outptr = rgb; } } } INLINE LOCAL(void) rgb_rgb565_convert_internal (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) { register JSAMPROW outptr; register JSAMPROW inptr0, inptr1, inptr2; register JDIMENSION col; JDIMENSION num_cols = cinfo->output_width; SHIFT_TEMPS while (--num_rows >= 0) { INT32 rgb; unsigned int r, g, b; inptr0 = input_buf[0][input_row]; inptr1 = input_buf[1][input_row]; inptr2 = input_buf[2][input_row]; input_row++; outptr = *output_buf++; if (PACK_NEED_ALIGNMENT(outptr)) { r = GETJSAMPLE(*inptr0++); g = GETJSAMPLE(*inptr1++); b = GETJSAMPLE(*inptr2++); rgb = PACK_SHORT_565(r, g, b); *(INT16*)outptr = rgb; outptr += 2; num_cols--; } for (col = 0; col < (num_cols >> 1); col++) { r = GETJSAMPLE(*inptr0++); g = GETJSAMPLE(*inptr1++); b = GETJSAMPLE(*inptr2++); rgb = PACK_SHORT_565(r, g, b); r = GETJSAMPLE(*inptr0++); g = GETJSAMPLE(*inptr1++); b = GETJSAMPLE(*inptr2++); rgb = PACK_TWO_PIXELS(rgb, PACK_SHORT_565(r, g, b)); WRITE_TWO_ALIGNED_PIXELS(outptr, rgb); outptr += 4; } if (num_cols & 1) { r = GETJSAMPLE(*inptr0); g = GETJSAMPLE(*inptr1); b = GETJSAMPLE(*inptr2); rgb = PACK_SHORT_565(r, g, b); *(INT16*)outptr = rgb; } } } INLINE LOCAL(void) rgb_rgb565D_convert_internal (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) { register JSAMPROW outptr; register JSAMPROW inptr0, inptr1, inptr2; register JDIMENSION col; register JSAMPLE * range_limit = cinfo->sample_range_limit; JDIMENSION num_cols = cinfo->output_width; INT32 d0 = dither_matrix[cinfo->output_scanline & DITHER_MASK]; SHIFT_TEMPS while (--num_rows >= 0) { INT32 rgb; unsigned int r, g, b; inptr0 = input_buf[0][input_row]; inptr1 = input_buf[1][input_row]; inptr2 = input_buf[2][input_row]; input_row++; outptr = *output_buf++; if (PACK_NEED_ALIGNMENT(outptr)) { r = range_limit[DITHER_565_R(GETJSAMPLE(*inptr0++), d0)]; g = range_limit[DITHER_565_G(GETJSAMPLE(*inptr1++), d0)]; b = range_limit[DITHER_565_B(GETJSAMPLE(*inptr2++), d0)]; rgb = PACK_SHORT_565(r, g, b); *(INT16*)outptr = rgb; outptr += 2; num_cols--; } for (col = 0; col < (num_cols >> 1); col++) { r = range_limit[DITHER_565_R(GETJSAMPLE(*inptr0++), d0)]; g = range_limit[DITHER_565_G(GETJSAMPLE(*inptr1++), d0)]; b = range_limit[DITHER_565_B(GETJSAMPLE(*inptr2++), d0)]; d0 = DITHER_ROTATE(d0); rgb = PACK_SHORT_565(r, g, b); r = range_limit[DITHER_565_R(GETJSAMPLE(*inptr0++), d0)]; g = range_limit[DITHER_565_G(GETJSAMPLE(*inptr1++), d0)]; b = range_limit[DITHER_565_B(GETJSAMPLE(*inptr2++), d0)]; d0 = DITHER_ROTATE(d0); rgb = PACK_TWO_PIXELS(rgb, PACK_SHORT_565(r, g, b)); WRITE_TWO_ALIGNED_PIXELS(outptr, rgb); outptr += 4; } if (num_cols & 1) { r = range_limit[DITHER_565_R(GETJSAMPLE(*inptr0), d0)]; g = range_limit[DITHER_565_G(GETJSAMPLE(*inptr1), d0)]; b = range_limit[DITHER_565_B(GETJSAMPLE(*inptr2), d0)]; rgb = PACK_SHORT_565(r, g, b); *(INT16*)outptr = rgb; } } } INLINE LOCAL(void) gray_rgb565_convert_internal (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) { register JSAMPROW inptr, outptr; register JDIMENSION col; JDIMENSION num_cols = cinfo->output_width; while (--num_rows >= 0) { INT32 rgb; unsigned int g; inptr = input_buf[0][input_row++]; outptr = *output_buf++; if (PACK_NEED_ALIGNMENT(outptr)) { g = *inptr++; rgb = PACK_SHORT_565(g, g, g); *(INT16*)outptr = rgb; outptr += 2; num_cols--; } for (col = 0; col < (num_cols >> 1); col++) { g = *inptr++; rgb = PACK_SHORT_565(g, g, g); g = *inptr++; rgb = PACK_TWO_PIXELS(rgb, PACK_SHORT_565(g, g, g)); WRITE_TWO_ALIGNED_PIXELS(outptr, rgb); outptr += 4; } if (num_cols & 1) { g = *inptr; rgb = PACK_SHORT_565(g, g, g); *(INT16*)outptr = rgb; } } } INLINE LOCAL(void) gray_rgb565D_convert_internal (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) { register JSAMPROW inptr, outptr; register JDIMENSION col; register JSAMPLE * range_limit = cinfo->sample_range_limit; JDIMENSION num_cols = cinfo->output_width; INT32 d0 = dither_matrix[cinfo->output_scanline & DITHER_MASK]; while (--num_rows >= 0) { INT32 rgb; unsigned int g; inptr = input_buf[0][input_row++]; outptr = *output_buf++; if (PACK_NEED_ALIGNMENT(outptr)) { g = *inptr++; g = range_limit[DITHER_565_R(g, d0)]; rgb = PACK_SHORT_565(g, g, g); *(INT16*)outptr = rgb; outptr += 2; num_cols--; } for (col = 0; col < (num_cols >> 1); col++) { g = *inptr++; g = range_limit[DITHER_565_R(g, d0)]; rgb = PACK_SHORT_565(g, g, g); d0 = DITHER_ROTATE(d0); g = *inptr++; g = range_limit[DITHER_565_R(g, d0)]; rgb = PACK_TWO_PIXELS(rgb, PACK_SHORT_565(g, g, g)); d0 = DITHER_ROTATE(d0); WRITE_TWO_ALIGNED_PIXELS(outptr, rgb); outptr += 4; } if (num_cols & 1) { g = *inptr; g = range_limit[DITHER_565_R(g, d0)]; rgb = PACK_SHORT_565(g, g, g); *(INT16*)outptr = rgb; } } } libjpeg-turbo-1.4.2/jdmrg565.c0000644000076500007650000002623612600050400012721 00000000000000/* * jdmrg565.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1994-1996, Thomas G. Lane. * libjpeg-turbo Modifications: * Copyright (C) 2013, Linaro Limited. * Copyright (C) 2014, D. R. Commander. * For conditions of distribution and use, see the accompanying README file. * * This file contains code for merged upsampling/color conversion. */ INLINE LOCAL(void) h2v1_merged_upsample_565_internal (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf) { my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; register int y, cred, cgreen, cblue; int cb, cr; register JSAMPROW outptr; JSAMPROW inptr0, inptr1, inptr2; JDIMENSION col; /* copy these pointers into registers if possible */ register JSAMPLE * range_limit = cinfo->sample_range_limit; int * Crrtab = upsample->Cr_r_tab; int * Cbbtab = upsample->Cb_b_tab; INT32 * Crgtab = upsample->Cr_g_tab; INT32 * Cbgtab = upsample->Cb_g_tab; unsigned int r, g, b; INT32 rgb; SHIFT_TEMPS inptr0 = input_buf[0][in_row_group_ctr]; inptr1 = input_buf[1][in_row_group_ctr]; inptr2 = input_buf[2][in_row_group_ctr]; outptr = output_buf[0]; /* Loop for each pair of output pixels */ for (col = cinfo->output_width >> 1; col > 0; col--) { /* Do the chroma part of the calculation */ cb = GETJSAMPLE(*inptr1++); cr = GETJSAMPLE(*inptr2++); cred = Crrtab[cr]; cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS); cblue = Cbbtab[cb]; /* Fetch 2 Y values and emit 2 pixels */ y = GETJSAMPLE(*inptr0++); r = range_limit[y + cred]; g = range_limit[y + cgreen]; b = range_limit[y + cblue]; rgb = PACK_SHORT_565(r, g, b); y = GETJSAMPLE(*inptr0++); r = range_limit[y + cred]; g = range_limit[y + cgreen]; b = range_limit[y + cblue]; rgb = PACK_TWO_PIXELS(rgb, PACK_SHORT_565(r, g, b)); WRITE_TWO_PIXELS(outptr, rgb); outptr += 4; } /* If image width is odd, do the last output column separately */ if (cinfo->output_width & 1) { cb = GETJSAMPLE(*inptr1); cr = GETJSAMPLE(*inptr2); cred = Crrtab[cr]; cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS); cblue = Cbbtab[cb]; y = GETJSAMPLE(*inptr0); r = range_limit[y + cred]; g = range_limit[y + cgreen]; b = range_limit[y + cblue]; rgb = PACK_SHORT_565(r, g, b); *(INT16*)outptr = rgb; } } INLINE LOCAL(void) h2v1_merged_upsample_565D_internal (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf) { my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; register int y, cred, cgreen, cblue; int cb, cr; register JSAMPROW outptr; JSAMPROW inptr0, inptr1, inptr2; JDIMENSION col; /* copy these pointers into registers if possible */ register JSAMPLE * range_limit = cinfo->sample_range_limit; int * Crrtab = upsample->Cr_r_tab; int * Cbbtab = upsample->Cb_b_tab; INT32 * Crgtab = upsample->Cr_g_tab; INT32 * Cbgtab = upsample->Cb_g_tab; INT32 d0 = dither_matrix[cinfo->output_scanline & DITHER_MASK]; unsigned int r, g, b; INT32 rgb; SHIFT_TEMPS inptr0 = input_buf[0][in_row_group_ctr]; inptr1 = input_buf[1][in_row_group_ctr]; inptr2 = input_buf[2][in_row_group_ctr]; outptr = output_buf[0]; /* Loop for each pair of output pixels */ for (col = cinfo->output_width >> 1; col > 0; col--) { /* Do the chroma part of the calculation */ cb = GETJSAMPLE(*inptr1++); cr = GETJSAMPLE(*inptr2++); cred = Crrtab[cr]; cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS); cblue = Cbbtab[cb]; /* Fetch 2 Y values and emit 2 pixels */ y = GETJSAMPLE(*inptr0++); r = range_limit[DITHER_565_R(y + cred, d0)]; g = range_limit[DITHER_565_G(y + cgreen, d0)]; b = range_limit[DITHER_565_B(y + cblue, d0)]; d0 = DITHER_ROTATE(d0); rgb = PACK_SHORT_565(r, g, b); y = GETJSAMPLE(*inptr0++); r = range_limit[DITHER_565_R(y + cred, d0)]; g = range_limit[DITHER_565_G(y + cgreen, d0)]; b = range_limit[DITHER_565_B(y + cblue, d0)]; d0 = DITHER_ROTATE(d0); rgb = PACK_TWO_PIXELS(rgb, PACK_SHORT_565(r, g, b)); WRITE_TWO_PIXELS(outptr, rgb); outptr += 4; } /* If image width is odd, do the last output column separately */ if (cinfo->output_width & 1) { cb = GETJSAMPLE(*inptr1); cr = GETJSAMPLE(*inptr2); cred = Crrtab[cr]; cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS); cblue = Cbbtab[cb]; y = GETJSAMPLE(*inptr0); r = range_limit[DITHER_565_R(y + cred, d0)]; g = range_limit[DITHER_565_G(y + cgreen, d0)]; b = range_limit[DITHER_565_B(y + cblue, d0)]; rgb = PACK_SHORT_565(r, g, b); *(INT16*)outptr = rgb; } } INLINE LOCAL(void) h2v2_merged_upsample_565_internal (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf) { my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; register int y, cred, cgreen, cblue; int cb, cr; register JSAMPROW outptr0, outptr1; JSAMPROW inptr00, inptr01, inptr1, inptr2; JDIMENSION col; /* copy these pointers into registers if possible */ register JSAMPLE * range_limit = cinfo->sample_range_limit; int * Crrtab = upsample->Cr_r_tab; int * Cbbtab = upsample->Cb_b_tab; INT32 * Crgtab = upsample->Cr_g_tab; INT32 * Cbgtab = upsample->Cb_g_tab; unsigned int r, g, b; INT32 rgb; SHIFT_TEMPS inptr00 = input_buf[0][in_row_group_ctr * 2]; inptr01 = input_buf[0][in_row_group_ctr * 2 + 1]; inptr1 = input_buf[1][in_row_group_ctr]; inptr2 = input_buf[2][in_row_group_ctr]; outptr0 = output_buf[0]; outptr1 = output_buf[1]; /* Loop for each group of output pixels */ for (col = cinfo->output_width >> 1; col > 0; col--) { /* Do the chroma part of the calculation */ cb = GETJSAMPLE(*inptr1++); cr = GETJSAMPLE(*inptr2++); cred = Crrtab[cr]; cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS); cblue = Cbbtab[cb]; /* Fetch 4 Y values and emit 4 pixels */ y = GETJSAMPLE(*inptr00++); r = range_limit[y + cred]; g = range_limit[y + cgreen]; b = range_limit[y + cblue]; rgb = PACK_SHORT_565(r, g, b); y = GETJSAMPLE(*inptr00++); r = range_limit[y + cred]; g = range_limit[y + cgreen]; b = range_limit[y + cblue]; rgb = PACK_TWO_PIXELS(rgb, PACK_SHORT_565(r, g, b)); WRITE_TWO_PIXELS(outptr0, rgb); outptr0 += 4; y = GETJSAMPLE(*inptr01++); r = range_limit[y + cred]; g = range_limit[y + cgreen]; b = range_limit[y + cblue]; rgb = PACK_SHORT_565(r, g, b); y = GETJSAMPLE(*inptr01++); r = range_limit[y + cred]; g = range_limit[y + cgreen]; b = range_limit[y + cblue]; rgb = PACK_TWO_PIXELS(rgb, PACK_SHORT_565(r, g, b)); WRITE_TWO_PIXELS(outptr1, rgb); outptr1 += 4; } /* If image width is odd, do the last output column separately */ if (cinfo->output_width & 1) { cb = GETJSAMPLE(*inptr1); cr = GETJSAMPLE(*inptr2); cred = Crrtab[cr]; cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS); cblue = Cbbtab[cb]; y = GETJSAMPLE(*inptr00); r = range_limit[y + cred]; g = range_limit[y + cgreen]; b = range_limit[y + cblue]; rgb = PACK_SHORT_565(r, g, b); *(INT16*)outptr0 = rgb; y = GETJSAMPLE(*inptr01); r = range_limit[y + cred]; g = range_limit[y + cgreen]; b = range_limit[y + cblue]; rgb = PACK_SHORT_565(r, g, b); *(INT16*)outptr1 = rgb; } } INLINE LOCAL(void) h2v2_merged_upsample_565D_internal (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf) { my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; register int y, cred, cgreen, cblue; int cb, cr; register JSAMPROW outptr0, outptr1; JSAMPROW inptr00, inptr01, inptr1, inptr2; JDIMENSION col; /* copy these pointers into registers if possible */ register JSAMPLE * range_limit = cinfo->sample_range_limit; int * Crrtab = upsample->Cr_r_tab; int * Cbbtab = upsample->Cb_b_tab; INT32 * Crgtab = upsample->Cr_g_tab; INT32 * Cbgtab = upsample->Cb_g_tab; INT32 d0 = dither_matrix[cinfo->output_scanline & DITHER_MASK]; INT32 d1 = dither_matrix[(cinfo->output_scanline+1) & DITHER_MASK]; unsigned int r, g, b; INT32 rgb; SHIFT_TEMPS inptr00 = input_buf[0][in_row_group_ctr*2]; inptr01 = input_buf[0][in_row_group_ctr*2 + 1]; inptr1 = input_buf[1][in_row_group_ctr]; inptr2 = input_buf[2][in_row_group_ctr]; outptr0 = output_buf[0]; outptr1 = output_buf[1]; /* Loop for each group of output pixels */ for (col = cinfo->output_width >> 1; col > 0; col--) { /* Do the chroma part of the calculation */ cb = GETJSAMPLE(*inptr1++); cr = GETJSAMPLE(*inptr2++); cred = Crrtab[cr]; cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS); cblue = Cbbtab[cb]; /* Fetch 4 Y values and emit 4 pixels */ y = GETJSAMPLE(*inptr00++); r = range_limit[DITHER_565_R(y + cred, d0)]; g = range_limit[DITHER_565_G(y + cgreen, d0)]; b = range_limit[DITHER_565_B(y + cblue, d0)]; d0 = DITHER_ROTATE(d0); rgb = PACK_SHORT_565(r, g, b); y = GETJSAMPLE(*inptr00++); r = range_limit[DITHER_565_R(y + cred, d1)]; g = range_limit[DITHER_565_G(y + cgreen, d1)]; b = range_limit[DITHER_565_B(y + cblue, d1)]; d1 = DITHER_ROTATE(d1); rgb = PACK_TWO_PIXELS(rgb, PACK_SHORT_565(r, g, b)); WRITE_TWO_PIXELS(outptr0, rgb); outptr0 += 4; y = GETJSAMPLE(*inptr01++); r = range_limit[DITHER_565_R(y + cred, d0)]; g = range_limit[DITHER_565_G(y + cgreen, d0)]; b = range_limit[DITHER_565_B(y + cblue, d0)]; d0 = DITHER_ROTATE(d0); rgb = PACK_SHORT_565(r, g, b); y = GETJSAMPLE(*inptr01++); r = range_limit[DITHER_565_R(y + cred, d1)]; g = range_limit[DITHER_565_G(y + cgreen, d1)]; b = range_limit[DITHER_565_B(y + cblue, d1)]; d1 = DITHER_ROTATE(d1); rgb = PACK_TWO_PIXELS(rgb, PACK_SHORT_565(r, g, b)); WRITE_TWO_PIXELS(outptr1, rgb); outptr1 += 4; } /* If image width is odd, do the last output column separately */ if (cinfo->output_width & 1) { cb = GETJSAMPLE(*inptr1); cr = GETJSAMPLE(*inptr2); cred = Crrtab[cr]; cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS); cblue = Cbbtab[cb]; y = GETJSAMPLE(*inptr00); r = range_limit[DITHER_565_R(y + cred, d0)]; g = range_limit[DITHER_565_G(y + cgreen, d0)]; b = range_limit[DITHER_565_B(y + cblue, d0)]; rgb = PACK_SHORT_565(r, g, b); *(INT16*)outptr0 = rgb; y = GETJSAMPLE(*inptr01); r = range_limit[DITHER_565_R(y + cred, d1)]; g = range_limit[DITHER_565_G(y + cgreen, d1)]; b = range_limit[DITHER_565_B(y + cblue, d1)]; rgb = PACK_SHORT_565(r, g, b); *(INT16*)outptr1 = rgb; } } libjpeg-turbo-1.4.2/acinclude.m40000644000076500007650000001336512600050400013402 00000000000000# AC_PROG_NASM # -------------------------- # Check that NASM exists and determine flags AC_DEFUN([AC_PROG_NASM],[ AC_CHECK_PROGS(NASM, [nasm nasmw yasm]) test -z "$NASM" && AC_MSG_ERROR([no nasm (Netwide Assembler) found]) AC_MSG_CHECKING([for object file format of host system]) case "$host_os" in cygwin* | mingw* | pw32* | interix*) case "$host_cpu" in x86_64) objfmt='Win64-COFF' ;; *) objfmt='Win32-COFF' ;; esac ;; msdosdjgpp* | go32*) objfmt='COFF' ;; os2-emx*) # not tested objfmt='MSOMF' # obj ;; linux*coff* | linux*oldld*) objfmt='COFF' # ??? ;; linux*aout*) objfmt='a.out' ;; linux*) case "$host_cpu" in x86_64) objfmt='ELF64' ;; *) objfmt='ELF' ;; esac ;; kfreebsd* | freebsd* | netbsd* | openbsd*) if echo __ELF__ | $CC -E - | grep __ELF__ > /dev/null; then objfmt='BSD-a.out' else case "$host_cpu" in x86_64 | amd64) objfmt='ELF64' ;; *) objfmt='ELF' ;; esac fi ;; solaris* | sunos* | sysv* | sco*) case "$host_cpu" in x86_64) objfmt='ELF64' ;; *) objfmt='ELF' ;; esac ;; darwin* | rhapsody* | nextstep* | openstep* | macos*) case "$host_cpu" in x86_64) objfmt='Mach-O64' ;; *) objfmt='Mach-O' ;; esac ;; *) objfmt='ELF ?' ;; esac AC_MSG_RESULT([$objfmt]) if test "$objfmt" = 'ELF ?'; then objfmt='ELF' AC_MSG_WARN([unexpected host system. assumed that the format is $objfmt.]) fi AC_MSG_CHECKING([for object file format specifier (NAFLAGS) ]) case "$objfmt" in MSOMF) NAFLAGS='-fobj -DOBJ32';; Win32-COFF) NAFLAGS='-fwin32 -DWIN32';; Win64-COFF) NAFLAGS='-fwin64 -DWIN64 -D__x86_64__';; COFF) NAFLAGS='-fcoff -DCOFF';; a.out) NAFLAGS='-faout -DAOUT';; BSD-a.out) NAFLAGS='-faoutb -DAOUT';; ELF) NAFLAGS='-felf -DELF';; ELF64) NAFLAGS='-felf64 -DELF -D__x86_64__';; RDF) NAFLAGS='-frdf -DRDF';; Mach-O) NAFLAGS='-fmacho -DMACHO';; Mach-O64) NAFLAGS='-fmacho64 -DMACHO -D__x86_64__';; esac AC_MSG_RESULT([$NAFLAGS]) AC_SUBST([NAFLAGS]) AC_MSG_CHECKING([whether the assembler ($NASM $NAFLAGS) works]) cat > conftest.asm <&AC_FD_CC cat conftest.asm >&AC_FD_CC rm -rf conftest* AC_MSG_RESULT(no) AC_MSG_ERROR([installation or configuration problem: assembler cannot create object files.]) fi AC_MSG_CHECKING([whether the linker accepts assembler output]) try_nasm='${CC-cc} -o conftest${ac_exeext} $LDFLAGS conftest.o $LIBS 1>&AC_FD_CC' if AC_TRY_EVAL(try_nasm) && test -s conftest${ac_exeext}; then rm -rf conftest* AC_MSG_RESULT(yes) else rm -rf conftest* AC_MSG_RESULT(no) AC_MSG_ERROR([configuration problem: maybe object file format mismatch.]) fi ]) # AC_CHECK_COMPATIBLE_ARM_ASSEMBLER_IFELSE # -------------------------- # Test whether the assembler is suitable and supports NEON instructions AC_DEFUN([AC_CHECK_COMPATIBLE_ARM_ASSEMBLER_IFELSE],[ ac_good_gnu_arm_assembler=no ac_save_CC="$CC" ac_save_CFLAGS="$CFLAGS" CFLAGS="$CCASFLAGS -x assembler-with-cpp" CC="$CCAS" AC_COMPILE_IFELSE([AC_LANG_SOURCE([[ .text .fpu neon .arch armv7a .object_arch armv4 .arm pld [r0] vmovn.u16 d0, q0]])], ac_good_gnu_arm_assembler=yes) ac_use_gas_preprocessor=no if test "x$ac_good_gnu_arm_assembler" = "xno" ; then CC="gas-preprocessor.pl $CCAS" AC_COMPILE_IFELSE([AC_LANG_SOURCE([[ .text .fpu neon .arch armv7a .object_arch armv4 .arm pld [r0] vmovn.u16 d0, q0]])], ac_use_gas_preprocessor=yes) fi CFLAGS="$ac_save_CFLAGS" CC="$ac_save_CC" if test "x$ac_use_gas_preprocessor" = "xyes" ; then CCAS="gas-preprocessor.pl $CCAS" AC_SUBST([CCAS]) ac_good_gnu_arm_assembler=yes fi if test "x$ac_good_gnu_arm_assembler" = "xyes" ; then $1 else $2 fi ]) # AC_CHECK_COMPATIBLE_MIPSEL_ASSEMBLER_IFELSE # -------------------------- # Test whether the assembler is suitable and supports MIPS instructions AC_DEFUN([AC_CHECK_COMPATIBLE_MIPS_ASSEMBLER_IFELSE],[ have_mips_dspr2=no ac_save_CFLAGS="$CFLAGS" CFLAGS="$CCASFLAGS -mdspr2" AC_COMPILE_IFELSE([AC_LANG_SOURCE([[ int main () { int c = 0, a = 0, b = 0; __asm__ __volatile__ ( "precr.qb.ph %[c], %[a], %[b] \n\t" : [c] "=r" (c) : [a] "r" (a), [b] "r" (b) ); return c; } ]])], have_mips_dspr2=yes) CFLAGS=$ac_save_CFLAGS if test "x$have_mips_dspr2" = "xyes" ; then $1 else $2 fi ]) AC_DEFUN([AC_CHECK_COMPATIBLE_ARM64_ASSEMBLER_IFELSE],[ ac_good_gnu_arm_assembler=no ac_save_CC="$CC" ac_save_CFLAGS="$CFLAGS" CFLAGS="$CCASFLAGS -x assembler-with-cpp" CC="$CCAS" AC_COMPILE_IFELSE([AC_LANG_SOURCE([[ .text .arch armv8-a+fp+simd movi v0.16b, #100]])], ac_good_gnu_arm_assembler=yes) ac_use_gas_preprocessor=no if test "x$ac_good_gnu_arm_assembler" = "xno" ; then CC="gas-preprocessor.pl $CCAS" AC_COMPILE_IFELSE([AC_LANG_SOURCE([[ .text .arch armv8-a+fp+simd movi v0.16b, #100]])], ac_use_gas_preprocessor=yes) fi CFLAGS="$ac_save_CFLAGS" CC="$ac_save_CC" if test "x$ac_use_gas_preprocessor" = "xyes" ; then CCAS="gas-preprocessor.pl $CCAS" AC_SUBST([CCAS]) ac_good_gnu_arm_assembler=yes fi if test "x$ac_good_gnu_arm_assembler" = "xyes" ; then $1 else $2 fi ]) libjpeg-turbo-1.4.2/jdhuff.c0000644000076500007650000006242212600050400012621 00000000000000/* * jdhuff.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1991-1997, Thomas G. Lane. * libjpeg-turbo Modifications: * Copyright (C) 2009-2011, D. R. Commander. * For conditions of distribution and use, see the accompanying README file. * * This file contains Huffman entropy decoding routines. * * Much of the complexity here has to do with supporting input suspension. * If the data source module demands suspension, we want to be able to back * up to the start of the current MCU. To do this, we copy state variables * into local working storage, and update them back to the permanent * storage only upon successful completion of an MCU. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" #include "jdhuff.h" /* Declarations shared with jdphuff.c */ #include "jpegcomp.h" #include "jstdhuff.c" /* * Expanded entropy decoder object for Huffman decoding. * * The savable_state subrecord contains fields that change within an MCU, * but must not be updated permanently until we complete the MCU. */ typedef struct { int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ } savable_state; /* This macro is to work around compilers with missing or broken * structure assignment. You'll need to fix this code if you have * such a compiler and you change MAX_COMPS_IN_SCAN. */ #ifndef NO_STRUCT_ASSIGN #define ASSIGN_STATE(dest,src) ((dest) = (src)) #else #if MAX_COMPS_IN_SCAN == 4 #define ASSIGN_STATE(dest,src) \ ((dest).last_dc_val[0] = (src).last_dc_val[0], \ (dest).last_dc_val[1] = (src).last_dc_val[1], \ (dest).last_dc_val[2] = (src).last_dc_val[2], \ (dest).last_dc_val[3] = (src).last_dc_val[3]) #endif #endif typedef struct { struct jpeg_entropy_decoder pub; /* public fields */ /* These fields are loaded into local variables at start of each MCU. * In case of suspension, we exit WITHOUT updating them. */ bitread_perm_state bitstate; /* Bit buffer at start of MCU */ savable_state saved; /* Other state at start of MCU */ /* These fields are NOT loaded into local working state. */ unsigned int restarts_to_go; /* MCUs left in this restart interval */ /* Pointers to derived tables (these workspaces have image lifespan) */ d_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS]; d_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS]; /* Precalculated info set up by start_pass for use in decode_mcu: */ /* Pointers to derived tables to be used for each block within an MCU */ d_derived_tbl * dc_cur_tbls[D_MAX_BLOCKS_IN_MCU]; d_derived_tbl * ac_cur_tbls[D_MAX_BLOCKS_IN_MCU]; /* Whether we care about the DC and AC coefficient values for each block */ boolean dc_needed[D_MAX_BLOCKS_IN_MCU]; boolean ac_needed[D_MAX_BLOCKS_IN_MCU]; } huff_entropy_decoder; typedef huff_entropy_decoder * huff_entropy_ptr; /* * Initialize for a Huffman-compressed scan. */ METHODDEF(void) start_pass_huff_decoder (j_decompress_ptr cinfo) { huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; int ci, blkn, dctbl, actbl; d_derived_tbl **pdtbl; jpeg_component_info * compptr; /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG. * This ought to be an error condition, but we make it a warning because * there are some baseline files out there with all zeroes in these bytes. */ if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2-1 || cinfo->Ah != 0 || cinfo->Al != 0) WARNMS(cinfo, JWRN_NOT_SEQUENTIAL); for (ci = 0; ci < cinfo->comps_in_scan; ci++) { compptr = cinfo->cur_comp_info[ci]; dctbl = compptr->dc_tbl_no; actbl = compptr->ac_tbl_no; /* Compute derived values for Huffman tables */ /* We may do this more than once for a table, but it's not expensive */ pdtbl = entropy->dc_derived_tbls + dctbl; jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl, pdtbl); pdtbl = entropy->ac_derived_tbls + actbl; jpeg_make_d_derived_tbl(cinfo, FALSE, actbl, pdtbl); /* Initialize DC predictions to 0 */ entropy->saved.last_dc_val[ci] = 0; } /* Precalculate decoding info for each block in an MCU of this scan */ for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { ci = cinfo->MCU_membership[blkn]; compptr = cinfo->cur_comp_info[ci]; /* Precalculate which table to use for each block */ entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no]; entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no]; /* Decide whether we really care about the coefficient values */ if (compptr->component_needed) { entropy->dc_needed[blkn] = TRUE; /* we don't need the ACs if producing a 1/8th-size image */ entropy->ac_needed[blkn] = (compptr->_DCT_scaled_size > 1); } else { entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE; } } /* Initialize bitread state variables */ entropy->bitstate.bits_left = 0; entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */ entropy->pub.insufficient_data = FALSE; /* Initialize restart counter */ entropy->restarts_to_go = cinfo->restart_interval; } /* * Compute the derived values for a Huffman table. * This routine also performs some validation checks on the table. * * Note this is also used by jdphuff.c. */ GLOBAL(void) jpeg_make_d_derived_tbl (j_decompress_ptr cinfo, boolean isDC, int tblno, d_derived_tbl ** pdtbl) { JHUFF_TBL *htbl; d_derived_tbl *dtbl; int p, i, l, si, numsymbols; int lookbits, ctr; char huffsize[257]; unsigned int huffcode[257]; unsigned int code; /* Note that huffsize[] and huffcode[] are filled in code-length order, * paralleling the order of the symbols themselves in htbl->huffval[]. */ /* Find the input Huffman table */ if (tblno < 0 || tblno >= NUM_HUFF_TBLS) ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); htbl = isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno]; if (htbl == NULL) ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); /* Allocate a workspace if we haven't already done so. */ if (*pdtbl == NULL) *pdtbl = (d_derived_tbl *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, sizeof(d_derived_tbl)); dtbl = *pdtbl; dtbl->pub = htbl; /* fill in back link */ /* Figure C.1: make table of Huffman code length for each symbol */ p = 0; for (l = 1; l <= 16; l++) { i = (int) htbl->bits[l]; if (i < 0 || p + i > 256) /* protect against table overrun */ ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); while (i--) huffsize[p++] = (char) l; } huffsize[p] = 0; numsymbols = p; /* Figure C.2: generate the codes themselves */ /* We also validate that the counts represent a legal Huffman code tree. */ code = 0; si = huffsize[0]; p = 0; while (huffsize[p]) { while (((int) huffsize[p]) == si) { huffcode[p++] = code; code++; } /* code is now 1 more than the last code used for codelength si; but * it must still fit in si bits, since no code is allowed to be all ones. */ if (((INT32) code) >= (((INT32) 1) << si)) ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); code <<= 1; si++; } /* Figure F.15: generate decoding tables for bit-sequential decoding */ p = 0; for (l = 1; l <= 16; l++) { if (htbl->bits[l]) { /* valoffset[l] = huffval[] index of 1st symbol of code length l, * minus the minimum code of length l */ dtbl->valoffset[l] = (INT32) p - (INT32) huffcode[p]; p += htbl->bits[l]; dtbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */ } else { dtbl->maxcode[l] = -1; /* -1 if no codes of this length */ } } dtbl->valoffset[17] = 0; dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */ /* Compute lookahead tables to speed up decoding. * First we set all the table entries to 0, indicating "too long"; * then we iterate through the Huffman codes that are short enough and * fill in all the entries that correspond to bit sequences starting * with that code. */ for (i = 0; i < (1 << HUFF_LOOKAHEAD); i++) dtbl->lookup[i] = (HUFF_LOOKAHEAD + 1) << HUFF_LOOKAHEAD; p = 0; for (l = 1; l <= HUFF_LOOKAHEAD; l++) { for (i = 1; i <= (int) htbl->bits[l]; i++, p++) { /* l = current code's length, p = its index in huffcode[] & huffval[]. */ /* Generate left-justified code followed by all possible bit sequences */ lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l); for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--) { dtbl->lookup[lookbits] = (l << HUFF_LOOKAHEAD) | htbl->huffval[p]; lookbits++; } } } /* Validate symbols as being reasonable. * For AC tables, we make no check, but accept all byte values 0..255. * For DC tables, we require the symbols to be in range 0..15. * (Tighter bounds could be applied depending on the data depth and mode, * but this is sufficient to ensure safe decoding.) */ if (isDC) { for (i = 0; i < numsymbols; i++) { int sym = htbl->huffval[i]; if (sym < 0 || sym > 15) ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); } } } /* * Out-of-line code for bit fetching (shared with jdphuff.c). * See jdhuff.h for info about usage. * Note: current values of get_buffer and bits_left are passed as parameters, * but are returned in the corresponding fields of the state struct. * * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width * of get_buffer to be used. (On machines with wider words, an even larger * buffer could be used.) However, on some machines 32-bit shifts are * quite slow and take time proportional to the number of places shifted. * (This is true with most PC compilers, for instance.) In this case it may * be a win to set MIN_GET_BITS to the minimum value of 15. This reduces the * average shift distance at the cost of more calls to jpeg_fill_bit_buffer. */ #ifdef SLOW_SHIFT_32 #define MIN_GET_BITS 15 /* minimum allowable value */ #else #define MIN_GET_BITS (BIT_BUF_SIZE-7) #endif GLOBAL(boolean) jpeg_fill_bit_buffer (bitread_working_state * state, register bit_buf_type get_buffer, register int bits_left, int nbits) /* Load up the bit buffer to a depth of at least nbits */ { /* Copy heavily used state fields into locals (hopefully registers) */ register const JOCTET * next_input_byte = state->next_input_byte; register size_t bytes_in_buffer = state->bytes_in_buffer; j_decompress_ptr cinfo = state->cinfo; /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */ /* (It is assumed that no request will be for more than that many bits.) */ /* We fail to do so only if we hit a marker or are forced to suspend. */ if (cinfo->unread_marker == 0) { /* cannot advance past a marker */ while (bits_left < MIN_GET_BITS) { register int c; /* Attempt to read a byte */ if (bytes_in_buffer == 0) { if (! (*cinfo->src->fill_input_buffer) (cinfo)) return FALSE; next_input_byte = cinfo->src->next_input_byte; bytes_in_buffer = cinfo->src->bytes_in_buffer; } bytes_in_buffer--; c = GETJOCTET(*next_input_byte++); /* If it's 0xFF, check and discard stuffed zero byte */ if (c == 0xFF) { /* Loop here to discard any padding FF's on terminating marker, * so that we can save a valid unread_marker value. NOTE: we will * accept multiple FF's followed by a 0 as meaning a single FF data * byte. This data pattern is not valid according to the standard. */ do { if (bytes_in_buffer == 0) { if (! (*cinfo->src->fill_input_buffer) (cinfo)) return FALSE; next_input_byte = cinfo->src->next_input_byte; bytes_in_buffer = cinfo->src->bytes_in_buffer; } bytes_in_buffer--; c = GETJOCTET(*next_input_byte++); } while (c == 0xFF); if (c == 0) { /* Found FF/00, which represents an FF data byte */ c = 0xFF; } else { /* Oops, it's actually a marker indicating end of compressed data. * Save the marker code for later use. * Fine point: it might appear that we should save the marker into * bitread working state, not straight into permanent state. But * once we have hit a marker, we cannot need to suspend within the * current MCU, because we will read no more bytes from the data * source. So it is OK to update permanent state right away. */ cinfo->unread_marker = c; /* See if we need to insert some fake zero bits. */ goto no_more_bytes; } } /* OK, load c into get_buffer */ get_buffer = (get_buffer << 8) | c; bits_left += 8; } /* end while */ } else { no_more_bytes: /* We get here if we've read the marker that terminates the compressed * data segment. There should be enough bits in the buffer register * to satisfy the request; if so, no problem. */ if (nbits > bits_left) { /* Uh-oh. Report corrupted data to user and stuff zeroes into * the data stream, so that we can produce some kind of image. * We use a nonvolatile flag to ensure that only one warning message * appears per data segment. */ if (! cinfo->entropy->insufficient_data) { WARNMS(cinfo, JWRN_HIT_MARKER); cinfo->entropy->insufficient_data = TRUE; } /* Fill the buffer with zero bits */ get_buffer <<= MIN_GET_BITS - bits_left; bits_left = MIN_GET_BITS; } } /* Unload the local registers */ state->next_input_byte = next_input_byte; state->bytes_in_buffer = bytes_in_buffer; state->get_buffer = get_buffer; state->bits_left = bits_left; return TRUE; } /* Macro version of the above, which performs much better but does not handle markers. We have to hand off any blocks with markers to the slower routines. */ #define GET_BYTE \ { \ register int c0, c1; \ c0 = GETJOCTET(*buffer++); \ c1 = GETJOCTET(*buffer); \ /* Pre-execute most common case */ \ get_buffer = (get_buffer << 8) | c0; \ bits_left += 8; \ if (c0 == 0xFF) { \ /* Pre-execute case of FF/00, which represents an FF data byte */ \ buffer++; \ if (c1 != 0) { \ /* Oops, it's actually a marker indicating end of compressed data. */ \ cinfo->unread_marker = c1; \ /* Back out pre-execution and fill the buffer with zero bits */ \ buffer -= 2; \ get_buffer &= ~0xFF; \ } \ } \ } #if SIZEOF_SIZE_T==8 || defined(_WIN64) /* Pre-fetch 48 bytes, because the holding register is 64-bit */ #define FILL_BIT_BUFFER_FAST \ if (bits_left <= 16) { \ GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE \ } #else /* Pre-fetch 16 bytes, because the holding register is 32-bit */ #define FILL_BIT_BUFFER_FAST \ if (bits_left <= 16) { \ GET_BYTE GET_BYTE \ } #endif /* * Out-of-line code for Huffman code decoding. * See jdhuff.h for info about usage. */ GLOBAL(int) jpeg_huff_decode (bitread_working_state * state, register bit_buf_type get_buffer, register int bits_left, d_derived_tbl * htbl, int min_bits) { register int l = min_bits; register INT32 code; /* HUFF_DECODE has determined that the code is at least min_bits */ /* bits long, so fetch that many bits in one swoop. */ CHECK_BIT_BUFFER(*state, l, return -1); code = GET_BITS(l); /* Collect the rest of the Huffman code one bit at a time. */ /* This is per Figure F.16 in the JPEG spec. */ while (code > htbl->maxcode[l]) { code <<= 1; CHECK_BIT_BUFFER(*state, 1, return -1); code |= GET_BITS(1); l++; } /* Unload the local registers */ state->get_buffer = get_buffer; state->bits_left = bits_left; /* With garbage input we may reach the sentinel value l = 17. */ if (l > 16) { WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE); return 0; /* fake a zero as the safest result */ } return htbl->pub->huffval[ (int) (code + htbl->valoffset[l]) ]; } /* * Figure F.12: extend sign bit. * On some machines, a shift and add will be faster than a table lookup. */ #define AVOID_TABLES #ifdef AVOID_TABLES #define NEG_1 ((unsigned int)-1) #define HUFF_EXTEND(x,s) ((x) + ((((x) - (1<<((s)-1))) >> 31) & (((NEG_1)<<(s)) + 1))) #else #define HUFF_EXTEND(x,s) ((x) < extend_test[s] ? (x) + extend_offset[s] : (x)) static const int extend_test[16] = /* entry n is 2**(n-1) */ { 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 }; static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */ { 0, ((-1)<<1) + 1, ((-1)<<2) + 1, ((-1)<<3) + 1, ((-1)<<4) + 1, ((-1)<<5) + 1, ((-1)<<6) + 1, ((-1)<<7) + 1, ((-1)<<8) + 1, ((-1)<<9) + 1, ((-1)<<10) + 1, ((-1)<<11) + 1, ((-1)<<12) + 1, ((-1)<<13) + 1, ((-1)<<14) + 1, ((-1)<<15) + 1 }; #endif /* AVOID_TABLES */ /* * Check for a restart marker & resynchronize decoder. * Returns FALSE if must suspend. */ LOCAL(boolean) process_restart (j_decompress_ptr cinfo) { huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; int ci; /* Throw away any unused bits remaining in bit buffer; */ /* include any full bytes in next_marker's count of discarded bytes */ cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8; entropy->bitstate.bits_left = 0; /* Advance past the RSTn marker */ if (! (*cinfo->marker->read_restart_marker) (cinfo)) return FALSE; /* Re-initialize DC predictions to 0 */ for (ci = 0; ci < cinfo->comps_in_scan; ci++) entropy->saved.last_dc_val[ci] = 0; /* Reset restart counter */ entropy->restarts_to_go = cinfo->restart_interval; /* Reset out-of-data flag, unless read_restart_marker left us smack up * against a marker. In that case we will end up treating the next data * segment as empty, and we can avoid producing bogus output pixels by * leaving the flag set. */ if (cinfo->unread_marker == 0) entropy->pub.insufficient_data = FALSE; return TRUE; } LOCAL(boolean) decode_mcu_slow (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) { huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; BITREAD_STATE_VARS; int blkn; savable_state state; /* Outer loop handles each block in the MCU */ /* Load up working state */ BITREAD_LOAD_STATE(cinfo,entropy->bitstate); ASSIGN_STATE(state, entropy->saved); for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { JBLOCKROW block = MCU_data[blkn]; d_derived_tbl * dctbl = entropy->dc_cur_tbls[blkn]; d_derived_tbl * actbl = entropy->ac_cur_tbls[blkn]; register int s, k, r; /* Decode a single block's worth of coefficients */ /* Section F.2.2.1: decode the DC coefficient difference */ HUFF_DECODE(s, br_state, dctbl, return FALSE, label1); if (s) { CHECK_BIT_BUFFER(br_state, s, return FALSE); r = GET_BITS(s); s = HUFF_EXTEND(r, s); } if (entropy->dc_needed[blkn]) { /* Convert DC difference to actual value, update last_dc_val */ int ci = cinfo->MCU_membership[blkn]; s += state.last_dc_val[ci]; state.last_dc_val[ci] = s; /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */ (*block)[0] = (JCOEF) s; } if (entropy->ac_needed[blkn]) { /* Section F.2.2.2: decode the AC coefficients */ /* Since zeroes are skipped, output area must be cleared beforehand */ for (k = 1; k < DCTSIZE2; k++) { HUFF_DECODE(s, br_state, actbl, return FALSE, label2); r = s >> 4; s &= 15; if (s) { k += r; CHECK_BIT_BUFFER(br_state, s, return FALSE); r = GET_BITS(s); s = HUFF_EXTEND(r, s); /* Output coefficient in natural (dezigzagged) order. * Note: the extra entries in jpeg_natural_order[] will save us * if k >= DCTSIZE2, which could happen if the data is corrupted. */ (*block)[jpeg_natural_order[k]] = (JCOEF) s; } else { if (r != 15) break; k += 15; } } } else { /* Section F.2.2.2: decode the AC coefficients */ /* In this path we just discard the values */ for (k = 1; k < DCTSIZE2; k++) { HUFF_DECODE(s, br_state, actbl, return FALSE, label3); r = s >> 4; s &= 15; if (s) { k += r; CHECK_BIT_BUFFER(br_state, s, return FALSE); DROP_BITS(s); } else { if (r != 15) break; k += 15; } } } } /* Completed MCU, so update state */ BITREAD_SAVE_STATE(cinfo,entropy->bitstate); ASSIGN_STATE(entropy->saved, state); return TRUE; } LOCAL(boolean) decode_mcu_fast (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) { huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; BITREAD_STATE_VARS; JOCTET *buffer; int blkn; savable_state state; /* Outer loop handles each block in the MCU */ /* Load up working state */ BITREAD_LOAD_STATE(cinfo,entropy->bitstate); buffer = (JOCTET *) br_state.next_input_byte; ASSIGN_STATE(state, entropy->saved); for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { JBLOCKROW block = MCU_data[blkn]; d_derived_tbl * dctbl = entropy->dc_cur_tbls[blkn]; d_derived_tbl * actbl = entropy->ac_cur_tbls[blkn]; register int s, k, r, l; HUFF_DECODE_FAST(s, l, dctbl); if (s) { FILL_BIT_BUFFER_FAST r = GET_BITS(s); s = HUFF_EXTEND(r, s); } if (entropy->dc_needed[blkn]) { int ci = cinfo->MCU_membership[blkn]; s += state.last_dc_val[ci]; state.last_dc_val[ci] = s; (*block)[0] = (JCOEF) s; } if (entropy->ac_needed[blkn]) { for (k = 1; k < DCTSIZE2; k++) { HUFF_DECODE_FAST(s, l, actbl); r = s >> 4; s &= 15; if (s) { k += r; FILL_BIT_BUFFER_FAST r = GET_BITS(s); s = HUFF_EXTEND(r, s); (*block)[jpeg_natural_order[k]] = (JCOEF) s; } else { if (r != 15) break; k += 15; } } } else { for (k = 1; k < DCTSIZE2; k++) { HUFF_DECODE_FAST(s, l, actbl); r = s >> 4; s &= 15; if (s) { k += r; FILL_BIT_BUFFER_FAST DROP_BITS(s); } else { if (r != 15) break; k += 15; } } } } if (cinfo->unread_marker != 0) { cinfo->unread_marker = 0; return FALSE; } br_state.bytes_in_buffer -= (buffer - br_state.next_input_byte); br_state.next_input_byte = buffer; BITREAD_SAVE_STATE(cinfo,entropy->bitstate); ASSIGN_STATE(entropy->saved, state); return TRUE; } /* * Decode and return one MCU's worth of Huffman-compressed coefficients. * The coefficients are reordered from zigzag order into natural array order, * but are not dequantized. * * The i'th block of the MCU is stored into the block pointed to by * MCU_data[i]. WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER. * (Wholesale zeroing is usually a little faster than retail...) * * Returns FALSE if data source requested suspension. In that case no * changes have been made to permanent state. (Exception: some output * coefficients may already have been assigned. This is harmless for * this module, since we'll just re-assign them on the next call.) */ #define BUFSIZE (DCTSIZE2 * 2) METHODDEF(boolean) decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) { huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; int usefast = 1; /* Process restart marker if needed; may have to suspend */ if (cinfo->restart_interval) { if (entropy->restarts_to_go == 0) if (! process_restart(cinfo)) return FALSE; usefast = 0; } if (cinfo->src->bytes_in_buffer < BUFSIZE * (size_t)cinfo->blocks_in_MCU || cinfo->unread_marker != 0) usefast = 0; /* If we've run out of data, just leave the MCU set to zeroes. * This way, we return uniform gray for the remainder of the segment. */ if (! entropy->pub.insufficient_data) { if (usefast) { if (!decode_mcu_fast(cinfo, MCU_data)) goto use_slow; } else { use_slow: if (!decode_mcu_slow(cinfo, MCU_data)) return FALSE; } } /* Account for restart interval (no-op if not using restarts) */ entropy->restarts_to_go--; return TRUE; } /* * Module initialization routine for Huffman entropy decoding. */ GLOBAL(void) jinit_huff_decoder (j_decompress_ptr cinfo) { huff_entropy_ptr entropy; int i; /* Motion JPEG frames typically do not include the Huffman tables if they are the default tables. Thus, if the tables are not set by the time the Huffman decoder is initialized (usually within the body of jpeg_start_decompress()), we set them to default values. */ std_huff_tables((j_common_ptr) cinfo); entropy = (huff_entropy_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, sizeof(huff_entropy_decoder)); cinfo->entropy = (struct jpeg_entropy_decoder *) entropy; entropy->pub.start_pass = start_pass_huff_decoder; entropy->pub.decode_mcu = decode_mcu; /* Mark tables unallocated */ for (i = 0; i < NUM_HUFF_TBLS; i++) { entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL; } } libjpeg-turbo-1.4.2/jdmainct.c0000644000076500007650000005176412600050400013153 00000000000000/* * jdmainct.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1994-1996, Thomas G. Lane. * libjpeg-turbo Modifications: * Copyright (C) 2010, D. R. Commander. * For conditions of distribution and use, see the accompanying README file. * * This file contains the main buffer controller for decompression. * The main buffer lies between the JPEG decompressor proper and the * post-processor; it holds downsampled data in the JPEG colorspace. * * Note that this code is bypassed in raw-data mode, since the application * supplies the equivalent of the main buffer in that case. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" #include "jpegcomp.h" /* * In the current system design, the main buffer need never be a full-image * buffer; any full-height buffers will be found inside the coefficient or * postprocessing controllers. Nonetheless, the main controller is not * trivial. Its responsibility is to provide context rows for upsampling/ * rescaling, and doing this in an efficient fashion is a bit tricky. * * Postprocessor input data is counted in "row groups". A row group * is defined to be (v_samp_factor * DCT_scaled_size / min_DCT_scaled_size) * sample rows of each component. (We require DCT_scaled_size values to be * chosen such that these numbers are integers. In practice DCT_scaled_size * values will likely be powers of two, so we actually have the stronger * condition that DCT_scaled_size / min_DCT_scaled_size is an integer.) * Upsampling will typically produce max_v_samp_factor pixel rows from each * row group (times any additional scale factor that the upsampler is * applying). * * The coefficient controller will deliver data to us one iMCU row at a time; * each iMCU row contains v_samp_factor * DCT_scaled_size sample rows, or * exactly min_DCT_scaled_size row groups. (This amount of data corresponds * to one row of MCUs when the image is fully interleaved.) Note that the * number of sample rows varies across components, but the number of row * groups does not. Some garbage sample rows may be included in the last iMCU * row at the bottom of the image. * * Depending on the vertical scaling algorithm used, the upsampler may need * access to the sample row(s) above and below its current input row group. * The upsampler is required to set need_context_rows TRUE at global selection * time if so. When need_context_rows is FALSE, this controller can simply * obtain one iMCU row at a time from the coefficient controller and dole it * out as row groups to the postprocessor. * * When need_context_rows is TRUE, this controller guarantees that the buffer * passed to postprocessing contains at least one row group's worth of samples * above and below the row group(s) being processed. Note that the context * rows "above" the first passed row group appear at negative row offsets in * the passed buffer. At the top and bottom of the image, the required * context rows are manufactured by duplicating the first or last real sample * row; this avoids having special cases in the upsampling inner loops. * * The amount of context is fixed at one row group just because that's a * convenient number for this controller to work with. The existing * upsamplers really only need one sample row of context. An upsampler * supporting arbitrary output rescaling might wish for more than one row * group of context when shrinking the image; tough, we don't handle that. * (This is justified by the assumption that downsizing will be handled mostly * by adjusting the DCT_scaled_size values, so that the actual scale factor at * the upsample step needn't be much less than one.) * * To provide the desired context, we have to retain the last two row groups * of one iMCU row while reading in the next iMCU row. (The last row group * can't be processed until we have another row group for its below-context, * and so we have to save the next-to-last group too for its above-context.) * We could do this most simply by copying data around in our buffer, but * that'd be very slow. We can avoid copying any data by creating a rather * strange pointer structure. Here's how it works. We allocate a workspace * consisting of M+2 row groups (where M = min_DCT_scaled_size is the number * of row groups per iMCU row). We create two sets of redundant pointers to * the workspace. Labeling the physical row groups 0 to M+1, the synthesized * pointer lists look like this: * M+1 M-1 * master pointer --> 0 master pointer --> 0 * 1 1 * ... ... * M-3 M-3 * M-2 M * M-1 M+1 * M M-2 * M+1 M-1 * 0 0 * We read alternate iMCU rows using each master pointer; thus the last two * row groups of the previous iMCU row remain un-overwritten in the workspace. * The pointer lists are set up so that the required context rows appear to * be adjacent to the proper places when we pass the pointer lists to the * upsampler. * * The above pictures describe the normal state of the pointer lists. * At top and bottom of the image, we diddle the pointer lists to duplicate * the first or last sample row as necessary (this is cheaper than copying * sample rows around). * * This scheme breaks down if M < 2, ie, min_DCT_scaled_size is 1. In that * situation each iMCU row provides only one row group so the buffering logic * must be different (eg, we must read two iMCU rows before we can emit the * first row group). For now, we simply do not support providing context * rows when min_DCT_scaled_size is 1. That combination seems unlikely to * be worth providing --- if someone wants a 1/8th-size preview, they probably * want it quick and dirty, so a context-free upsampler is sufficient. */ /* Private buffer controller object */ typedef struct { struct jpeg_d_main_controller pub; /* public fields */ /* Pointer to allocated workspace (M or M+2 row groups). */ JSAMPARRAY buffer[MAX_COMPONENTS]; boolean buffer_full; /* Have we gotten an iMCU row from decoder? */ JDIMENSION rowgroup_ctr; /* counts row groups output to postprocessor */ /* Remaining fields are only used in the context case. */ /* These are the master pointers to the funny-order pointer lists. */ JSAMPIMAGE xbuffer[2]; /* pointers to weird pointer lists */ int whichptr; /* indicates which pointer set is now in use */ int context_state; /* process_data state machine status */ JDIMENSION rowgroups_avail; /* row groups available to postprocessor */ JDIMENSION iMCU_row_ctr; /* counts iMCU rows to detect image top/bot */ } my_main_controller; typedef my_main_controller * my_main_ptr; /* context_state values: */ #define CTX_PREPARE_FOR_IMCU 0 /* need to prepare for MCU row */ #define CTX_PROCESS_IMCU 1 /* feeding iMCU to postprocessor */ #define CTX_POSTPONED_ROW 2 /* feeding postponed row group */ /* Forward declarations */ METHODDEF(void) process_data_simple_main (j_decompress_ptr cinfo, JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail); METHODDEF(void) process_data_context_main (j_decompress_ptr cinfo, JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail); #ifdef QUANT_2PASS_SUPPORTED METHODDEF(void) process_data_crank_post (j_decompress_ptr cinfo, JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail); #endif LOCAL(void) alloc_funny_pointers (j_decompress_ptr cinfo) /* Allocate space for the funny pointer lists. * This is done only once, not once per pass. */ { my_main_ptr main_ptr = (my_main_ptr) cinfo->main; int ci, rgroup; int M = cinfo->_min_DCT_scaled_size; jpeg_component_info *compptr; JSAMPARRAY xbuf; /* Get top-level space for component array pointers. * We alloc both arrays with one call to save a few cycles. */ main_ptr->xbuffer[0] = (JSAMPIMAGE) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, cinfo->num_components * 2 * sizeof(JSAMPARRAY)); main_ptr->xbuffer[1] = main_ptr->xbuffer[0] + cinfo->num_components; for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { rgroup = (compptr->v_samp_factor * compptr->_DCT_scaled_size) / cinfo->_min_DCT_scaled_size; /* height of a row group of component */ /* Get space for pointer lists --- M+4 row groups in each list. * We alloc both pointer lists with one call to save a few cycles. */ xbuf = (JSAMPARRAY) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, 2 * (rgroup * (M + 4)) * sizeof(JSAMPROW)); xbuf += rgroup; /* want one row group at negative offsets */ main_ptr->xbuffer[0][ci] = xbuf; xbuf += rgroup * (M + 4); main_ptr->xbuffer[1][ci] = xbuf; } } LOCAL(void) make_funny_pointers (j_decompress_ptr cinfo) /* Create the funny pointer lists discussed in the comments above. * The actual workspace is already allocated (in main_ptr->buffer), * and the space for the pointer lists is allocated too. * This routine just fills in the curiously ordered lists. * This will be repeated at the beginning of each pass. */ { my_main_ptr main_ptr = (my_main_ptr) cinfo->main; int ci, i, rgroup; int M = cinfo->_min_DCT_scaled_size; jpeg_component_info *compptr; JSAMPARRAY buf, xbuf0, xbuf1; for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { rgroup = (compptr->v_samp_factor * compptr->_DCT_scaled_size) / cinfo->_min_DCT_scaled_size; /* height of a row group of component */ xbuf0 = main_ptr->xbuffer[0][ci]; xbuf1 = main_ptr->xbuffer[1][ci]; /* First copy the workspace pointers as-is */ buf = main_ptr->buffer[ci]; for (i = 0; i < rgroup * (M + 2); i++) { xbuf0[i] = xbuf1[i] = buf[i]; } /* In the second list, put the last four row groups in swapped order */ for (i = 0; i < rgroup * 2; i++) { xbuf1[rgroup*(M-2) + i] = buf[rgroup*M + i]; xbuf1[rgroup*M + i] = buf[rgroup*(M-2) + i]; } /* The wraparound pointers at top and bottom will be filled later * (see set_wraparound_pointers, below). Initially we want the "above" * pointers to duplicate the first actual data line. This only needs * to happen in xbuffer[0]. */ for (i = 0; i < rgroup; i++) { xbuf0[i - rgroup] = xbuf0[0]; } } } LOCAL(void) set_wraparound_pointers (j_decompress_ptr cinfo) /* Set up the "wraparound" pointers at top and bottom of the pointer lists. * This changes the pointer list state from top-of-image to the normal state. */ { my_main_ptr main_ptr = (my_main_ptr) cinfo->main; int ci, i, rgroup; int M = cinfo->_min_DCT_scaled_size; jpeg_component_info *compptr; JSAMPARRAY xbuf0, xbuf1; for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { rgroup = (compptr->v_samp_factor * compptr->_DCT_scaled_size) / cinfo->_min_DCT_scaled_size; /* height of a row group of component */ xbuf0 = main_ptr->xbuffer[0][ci]; xbuf1 = main_ptr->xbuffer[1][ci]; for (i = 0; i < rgroup; i++) { xbuf0[i - rgroup] = xbuf0[rgroup*(M+1) + i]; xbuf1[i - rgroup] = xbuf1[rgroup*(M+1) + i]; xbuf0[rgroup*(M+2) + i] = xbuf0[i]; xbuf1[rgroup*(M+2) + i] = xbuf1[i]; } } } LOCAL(void) set_bottom_pointers (j_decompress_ptr cinfo) /* Change the pointer lists to duplicate the last sample row at the bottom * of the image. whichptr indicates which xbuffer holds the final iMCU row. * Also sets rowgroups_avail to indicate number of nondummy row groups in row. */ { my_main_ptr main_ptr = (my_main_ptr) cinfo->main; int ci, i, rgroup, iMCUheight, rows_left; jpeg_component_info *compptr; JSAMPARRAY xbuf; for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { /* Count sample rows in one iMCU row and in one row group */ iMCUheight = compptr->v_samp_factor * compptr->_DCT_scaled_size; rgroup = iMCUheight / cinfo->_min_DCT_scaled_size; /* Count nondummy sample rows remaining for this component */ rows_left = (int) (compptr->downsampled_height % (JDIMENSION) iMCUheight); if (rows_left == 0) rows_left = iMCUheight; /* Count nondummy row groups. Should get same answer for each component, * so we need only do it once. */ if (ci == 0) { main_ptr->rowgroups_avail = (JDIMENSION) ((rows_left-1) / rgroup + 1); } /* Duplicate the last real sample row rgroup*2 times; this pads out the * last partial rowgroup and ensures at least one full rowgroup of context. */ xbuf = main_ptr->xbuffer[main_ptr->whichptr][ci]; for (i = 0; i < rgroup * 2; i++) { xbuf[rows_left + i] = xbuf[rows_left-1]; } } } /* * Initialize for a processing pass. */ METHODDEF(void) start_pass_main (j_decompress_ptr cinfo, J_BUF_MODE pass_mode) { my_main_ptr main_ptr = (my_main_ptr) cinfo->main; switch (pass_mode) { case JBUF_PASS_THRU: if (cinfo->upsample->need_context_rows) { main_ptr->pub.process_data = process_data_context_main; make_funny_pointers(cinfo); /* Create the xbuffer[] lists */ main_ptr->whichptr = 0; /* Read first iMCU row into xbuffer[0] */ main_ptr->context_state = CTX_PREPARE_FOR_IMCU; main_ptr->iMCU_row_ctr = 0; } else { /* Simple case with no context needed */ main_ptr->pub.process_data = process_data_simple_main; } main_ptr->buffer_full = FALSE; /* Mark buffer empty */ main_ptr->rowgroup_ctr = 0; break; #ifdef QUANT_2PASS_SUPPORTED case JBUF_CRANK_DEST: /* For last pass of 2-pass quantization, just crank the postprocessor */ main_ptr->pub.process_data = process_data_crank_post; break; #endif default: ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); break; } } /* * Process some data. * This handles the simple case where no context is required. */ METHODDEF(void) process_data_simple_main (j_decompress_ptr cinfo, JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail) { my_main_ptr main_ptr = (my_main_ptr) cinfo->main; JDIMENSION rowgroups_avail; /* Read input data if we haven't filled the main buffer yet */ if (! main_ptr->buffer_full) { if (! (*cinfo->coef->decompress_data) (cinfo, main_ptr->buffer)) return; /* suspension forced, can do nothing more */ main_ptr->buffer_full = TRUE; /* OK, we have an iMCU row to work with */ } /* There are always min_DCT_scaled_size row groups in an iMCU row. */ rowgroups_avail = (JDIMENSION) cinfo->_min_DCT_scaled_size; /* Note: at the bottom of the image, we may pass extra garbage row groups * to the postprocessor. The postprocessor has to check for bottom * of image anyway (at row resolution), so no point in us doing it too. */ /* Feed the postprocessor */ (*cinfo->post->post_process_data) (cinfo, main_ptr->buffer, &main_ptr->rowgroup_ctr, rowgroups_avail, output_buf, out_row_ctr, out_rows_avail); /* Has postprocessor consumed all the data yet? If so, mark buffer empty */ if (main_ptr->rowgroup_ctr >= rowgroups_avail) { main_ptr->buffer_full = FALSE; main_ptr->rowgroup_ctr = 0; } } /* * Process some data. * This handles the case where context rows must be provided. */ METHODDEF(void) process_data_context_main (j_decompress_ptr cinfo, JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail) { my_main_ptr main_ptr = (my_main_ptr) cinfo->main; /* Read input data if we haven't filled the main buffer yet */ if (! main_ptr->buffer_full) { if (! (*cinfo->coef->decompress_data) (cinfo, main_ptr->xbuffer[main_ptr->whichptr])) return; /* suspension forced, can do nothing more */ main_ptr->buffer_full = TRUE; /* OK, we have an iMCU row to work with */ main_ptr->iMCU_row_ctr++; /* count rows received */ } /* Postprocessor typically will not swallow all the input data it is handed * in one call (due to filling the output buffer first). Must be prepared * to exit and restart. This switch lets us keep track of how far we got. * Note that each case falls through to the next on successful completion. */ switch (main_ptr->context_state) { case CTX_POSTPONED_ROW: /* Call postprocessor using previously set pointers for postponed row */ (*cinfo->post->post_process_data) (cinfo, main_ptr->xbuffer[main_ptr->whichptr], &main_ptr->rowgroup_ctr, main_ptr->rowgroups_avail, output_buf, out_row_ctr, out_rows_avail); if (main_ptr->rowgroup_ctr < main_ptr->rowgroups_avail) return; /* Need to suspend */ main_ptr->context_state = CTX_PREPARE_FOR_IMCU; if (*out_row_ctr >= out_rows_avail) return; /* Postprocessor exactly filled output buf */ /*FALLTHROUGH*/ case CTX_PREPARE_FOR_IMCU: /* Prepare to process first M-1 row groups of this iMCU row */ main_ptr->rowgroup_ctr = 0; main_ptr->rowgroups_avail = (JDIMENSION) (cinfo->_min_DCT_scaled_size - 1); /* Check for bottom of image: if so, tweak pointers to "duplicate" * the last sample row, and adjust rowgroups_avail to ignore padding rows. */ if (main_ptr->iMCU_row_ctr == cinfo->total_iMCU_rows) set_bottom_pointers(cinfo); main_ptr->context_state = CTX_PROCESS_IMCU; /*FALLTHROUGH*/ case CTX_PROCESS_IMCU: /* Call postprocessor using previously set pointers */ (*cinfo->post->post_process_data) (cinfo, main_ptr->xbuffer[main_ptr->whichptr], &main_ptr->rowgroup_ctr, main_ptr->rowgroups_avail, output_buf, out_row_ctr, out_rows_avail); if (main_ptr->rowgroup_ctr < main_ptr->rowgroups_avail) return; /* Need to suspend */ /* After the first iMCU, change wraparound pointers to normal state */ if (main_ptr->iMCU_row_ctr == 1) set_wraparound_pointers(cinfo); /* Prepare to load new iMCU row using other xbuffer list */ main_ptr->whichptr ^= 1; /* 0=>1 or 1=>0 */ main_ptr->buffer_full = FALSE; /* Still need to process last row group of this iMCU row, */ /* which is saved at index M+1 of the other xbuffer */ main_ptr->rowgroup_ctr = (JDIMENSION) (cinfo->_min_DCT_scaled_size + 1); main_ptr->rowgroups_avail = (JDIMENSION) (cinfo->_min_DCT_scaled_size + 2); main_ptr->context_state = CTX_POSTPONED_ROW; } } /* * Process some data. * Final pass of two-pass quantization: just call the postprocessor. * Source data will be the postprocessor controller's internal buffer. */ #ifdef QUANT_2PASS_SUPPORTED METHODDEF(void) process_data_crank_post (j_decompress_ptr cinfo, JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail) { (*cinfo->post->post_process_data) (cinfo, (JSAMPIMAGE) NULL, (JDIMENSION *) NULL, (JDIMENSION) 0, output_buf, out_row_ctr, out_rows_avail); } #endif /* QUANT_2PASS_SUPPORTED */ /* * Initialize main buffer controller. */ GLOBAL(void) jinit_d_main_controller (j_decompress_ptr cinfo, boolean need_full_buffer) { my_main_ptr main_ptr; int ci, rgroup, ngroups; jpeg_component_info *compptr; main_ptr = (my_main_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, sizeof(my_main_controller)); cinfo->main = (struct jpeg_d_main_controller *) main_ptr; main_ptr->pub.start_pass = start_pass_main; if (need_full_buffer) /* shouldn't happen */ ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); /* Allocate the workspace. * ngroups is the number of row groups we need. */ if (cinfo->upsample->need_context_rows) { if (cinfo->_min_DCT_scaled_size < 2) /* unsupported, see comments above */ ERREXIT(cinfo, JERR_NOTIMPL); alloc_funny_pointers(cinfo); /* Alloc space for xbuffer[] lists */ ngroups = cinfo->_min_DCT_scaled_size + 2; } else { ngroups = cinfo->_min_DCT_scaled_size; } for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { rgroup = (compptr->v_samp_factor * compptr->_DCT_scaled_size) / cinfo->_min_DCT_scaled_size; /* height of a row group of component */ main_ptr->buffer[ci] = (*cinfo->mem->alloc_sarray) ((j_common_ptr) cinfo, JPOOL_IMAGE, compptr->width_in_blocks * compptr->_DCT_scaled_size, (JDIMENSION) (rgroup * ngroups)); } } libjpeg-turbo-1.4.2/config.sub0000755000076500007650000010622312600050414013175 00000000000000#! /bin/sh # Configuration validation subroutine script. # Copyright 1992-2014 Free Software Foundation, Inc. timestamp='2014-12-03' # This file is free software; you can redistribute it and/or modify it # under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, see . # # As a special exception to the GNU General Public License, if you # distribute this file as part of a program that contains a # configuration script generated by Autoconf, you may include it under # the same distribution terms that you use for the rest of that # program. This Exception is an additional permission under section 7 # of the GNU General Public License, version 3 ("GPLv3"). # Please send patches to . # # Configuration subroutine to validate and canonicalize a configuration type. # Supply the specified configuration type as an argument. # If it is invalid, we print an error message on stderr and exit with code 1. # Otherwise, we print the canonical config type on stdout and succeed. # You can get the latest version of this script from: # http://git.savannah.gnu.org/gitweb/?p=config.git;a=blob_plain;f=config.sub;hb=HEAD # This file is supposed to be the same for all GNU packages # and recognize all the CPU types, system types and aliases # that are meaningful with *any* GNU software. # Each package is responsible for reporting which valid configurations # it does not support. The user should be able to distinguish # a failure to support a valid configuration from a meaningless # configuration. # The goal of this file is to map all the various variations of a given # machine specification into a single specification in the form: # CPU_TYPE-MANUFACTURER-OPERATING_SYSTEM # or in some cases, the newer four-part form: # CPU_TYPE-MANUFACTURER-KERNEL-OPERATING_SYSTEM # It is wrong to echo any other type of specification. me=`echo "$0" | sed -e 's,.*/,,'` usage="\ Usage: $0 [OPTION] CPU-MFR-OPSYS $0 [OPTION] ALIAS Canonicalize a configuration name. Operation modes: -h, --help print this help, then exit -t, --time-stamp print date of last modification, then exit -v, --version print version number, then exit Report bugs and patches to ." version="\ GNU config.sub ($timestamp) Copyright 1992-2014 Free Software Foundation, Inc. This is free software; see the source for copying conditions. There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE." help=" Try \`$me --help' for more information." # Parse command line while test $# -gt 0 ; do case $1 in --time-stamp | --time* | -t ) echo "$timestamp" ; exit ;; --version | -v ) echo "$version" ; exit ;; --help | --h* | -h ) echo "$usage"; exit ;; -- ) # Stop option processing shift; break ;; - ) # Use stdin as input. break ;; -* ) echo "$me: invalid option $1$help" exit 1 ;; *local*) # First pass through any local machine types. echo $1 exit ;; * ) break ;; esac done case $# in 0) echo "$me: missing argument$help" >&2 exit 1;; 1) ;; *) echo "$me: too many arguments$help" >&2 exit 1;; esac # Separate what the user gave into CPU-COMPANY and OS or KERNEL-OS (if any). # Here we must recognize all the valid KERNEL-OS combinations. maybe_os=`echo $1 | sed 's/^\(.*\)-\([^-]*-[^-]*\)$/\2/'` case $maybe_os in nto-qnx* | linux-gnu* | linux-android* | linux-dietlibc | linux-newlib* | \ linux-musl* | linux-uclibc* | uclinux-uclibc* | uclinux-gnu* | kfreebsd*-gnu* | \ knetbsd*-gnu* | netbsd*-gnu* | \ kopensolaris*-gnu* | \ storm-chaos* | os2-emx* | rtmk-nova*) os=-$maybe_os basic_machine=`echo $1 | sed 's/^\(.*\)-\([^-]*-[^-]*\)$/\1/'` ;; android-linux) os=-linux-android basic_machine=`echo $1 | sed 's/^\(.*\)-\([^-]*-[^-]*\)$/\1/'`-unknown ;; *) basic_machine=`echo $1 | sed 's/-[^-]*$//'` if [ $basic_machine != $1 ] then os=`echo $1 | sed 's/.*-/-/'` else os=; fi ;; esac ### Let's recognize common machines as not being operating systems so ### that things like config.sub decstation-3100 work. We also ### recognize some manufacturers as not being operating systems, so we ### can provide default operating systems below. case $os in -sun*os*) # Prevent following clause from handling this invalid input. ;; -dec* | -mips* | -sequent* | -encore* | -pc532* | -sgi* | -sony* | \ -att* | -7300* | -3300* | -delta* | -motorola* | -sun[234]* | \ -unicom* | -ibm* | -next | -hp | -isi* | -apollo | -altos* | \ -convergent* | -ncr* | -news | -32* | -3600* | -3100* | -hitachi* |\ -c[123]* | -convex* | -sun | -crds | -omron* | -dg | -ultra | -tti* | \ -harris | -dolphin | -highlevel | -gould | -cbm | -ns | -masscomp | \ -apple | -axis | -knuth | -cray | -microblaze*) os= basic_machine=$1 ;; -bluegene*) os=-cnk ;; -sim | -cisco | -oki | -wec | -winbond) os= basic_machine=$1 ;; -scout) ;; -wrs) os=-vxworks basic_machine=$1 ;; -chorusos*) os=-chorusos basic_machine=$1 ;; -chorusrdb) os=-chorusrdb basic_machine=$1 ;; -hiux*) os=-hiuxwe2 ;; -sco6) os=-sco5v6 basic_machine=`echo $1 | sed -e 's/86-.*/86-pc/'` ;; -sco5) os=-sco3.2v5 basic_machine=`echo $1 | sed -e 's/86-.*/86-pc/'` ;; -sco4) os=-sco3.2v4 basic_machine=`echo $1 | sed -e 's/86-.*/86-pc/'` ;; -sco3.2.[4-9]*) os=`echo $os | sed -e 's/sco3.2./sco3.2v/'` basic_machine=`echo $1 | sed -e 's/86-.*/86-pc/'` ;; -sco3.2v[4-9]*) # Don't forget version if it is 3.2v4 or newer. basic_machine=`echo $1 | sed -e 's/86-.*/86-pc/'` ;; -sco5v6*) # Don't forget version if it is 3.2v4 or newer. basic_machine=`echo $1 | sed -e 's/86-.*/86-pc/'` ;; -sco*) os=-sco3.2v2 basic_machine=`echo $1 | sed -e 's/86-.*/86-pc/'` ;; -udk*) basic_machine=`echo $1 | sed -e 's/86-.*/86-pc/'` ;; -isc) os=-isc2.2 basic_machine=`echo $1 | sed -e 's/86-.*/86-pc/'` ;; -clix*) basic_machine=clipper-intergraph ;; -isc*) basic_machine=`echo $1 | sed -e 's/86-.*/86-pc/'` ;; -lynx*178) os=-lynxos178 ;; -lynx*5) os=-lynxos5 ;; -lynx*) os=-lynxos ;; -ptx*) basic_machine=`echo $1 | sed -e 's/86-.*/86-sequent/'` ;; -windowsnt*) os=`echo $os | sed -e 's/windowsnt/winnt/'` ;; -psos*) os=-psos ;; -mint | -mint[0-9]*) basic_machine=m68k-atari os=-mint ;; esac # Decode aliases for certain CPU-COMPANY combinations. case $basic_machine in # Recognize the basic CPU types without company name. # Some are omitted here because they have special meanings below. 1750a | 580 \ | a29k \ | aarch64 | aarch64_be \ | alpha | alphaev[4-8] | alphaev56 | alphaev6[78] | alphapca5[67] \ | alpha64 | alpha64ev[4-8] | alpha64ev56 | alpha64ev6[78] | alpha64pca5[67] \ | am33_2.0 \ | arc | arceb \ | arm | arm[bl]e | arme[lb] | armv[2-8] | armv[3-8][lb] | armv7[arm] \ | avr | avr32 \ | be32 | be64 \ | bfin \ | c4x | c8051 | clipper \ | d10v | d30v | dlx | dsp16xx \ | epiphany \ | fido | fr30 | frv \ | h8300 | h8500 | hppa | hppa1.[01] | hppa2.0 | hppa2.0[nw] | hppa64 \ | hexagon \ | i370 | i860 | i960 | ia64 \ | ip2k | iq2000 \ | k1om \ | le32 | le64 \ | lm32 \ | m32c | m32r | m32rle | m68000 | m68k | m88k \ | maxq | mb | microblaze | microblazeel | mcore | mep | metag \ | mips | mipsbe | mipseb | mipsel | mipsle \ | mips16 \ | mips64 | mips64el \ | mips64octeon | mips64octeonel \ | mips64orion | mips64orionel \ | mips64r5900 | mips64r5900el \ | mips64vr | mips64vrel \ | mips64vr4100 | mips64vr4100el \ | mips64vr4300 | mips64vr4300el \ | mips64vr5000 | mips64vr5000el \ | mips64vr5900 | mips64vr5900el \ | mipsisa32 | mipsisa32el \ | mipsisa32r2 | mipsisa32r2el \ | mipsisa32r6 | mipsisa32r6el \ | mipsisa64 | mipsisa64el \ | mipsisa64r2 | mipsisa64r2el \ | mipsisa64r6 | mipsisa64r6el \ | mipsisa64sb1 | mipsisa64sb1el \ | mipsisa64sr71k | mipsisa64sr71kel \ | mipsr5900 | mipsr5900el \ | mipstx39 | mipstx39el \ | mn10200 | mn10300 \ | moxie \ | mt \ | msp430 \ | nds32 | nds32le | nds32be \ | nios | nios2 | nios2eb | nios2el \ | ns16k | ns32k \ | open8 | or1k | or1knd | or32 \ | pdp10 | pdp11 | pj | pjl \ | powerpc | powerpc64 | powerpc64le | powerpcle \ | pyramid \ | riscv32 | riscv64 \ | rl78 | rx \ | score \ | sh | sh[1234] | sh[24]a | sh[24]aeb | sh[23]e | sh[34]eb | sheb | shbe | shle | sh[1234]le | sh3ele \ | sh64 | sh64le \ | sparc | sparc64 | sparc64b | sparc64v | sparc86x | sparclet | sparclite \ | sparcv8 | sparcv9 | sparcv9b | sparcv9v \ | spu \ | tahoe | tic4x | tic54x | tic55x | tic6x | tic80 | tron \ | ubicom32 \ | v850 | v850e | v850e1 | v850e2 | v850es | v850e2v3 \ | visium \ | we32k \ | x86 | xc16x | xstormy16 | xtensa \ | z8k | z80) basic_machine=$basic_machine-unknown ;; c54x) basic_machine=tic54x-unknown ;; c55x) basic_machine=tic55x-unknown ;; c6x) basic_machine=tic6x-unknown ;; leon|leon[3-9]) basic_machine=sparc-$basic_machine ;; m6811 | m68hc11 | m6812 | m68hc12 | m68hcs12x | nvptx | picochip) basic_machine=$basic_machine-unknown os=-none ;; m88110 | m680[12346]0 | m683?2 | m68360 | m5200 | v70 | w65 | z8k) ;; ms1) basic_machine=mt-unknown ;; strongarm | thumb | xscale) basic_machine=arm-unknown ;; xgate) basic_machine=$basic_machine-unknown os=-none ;; xscaleeb) basic_machine=armeb-unknown ;; xscaleel) basic_machine=armel-unknown ;; # We use `pc' rather than `unknown' # because (1) that's what they normally are, and # (2) the word "unknown" tends to confuse beginning users. i*86 | x86_64) basic_machine=$basic_machine-pc ;; # Object if more than one company name word. *-*-*) echo Invalid configuration \`$1\': machine \`$basic_machine\' not recognized 1>&2 exit 1 ;; # Recognize the basic CPU types with company name. 580-* \ | a29k-* \ | aarch64-* | aarch64_be-* \ | alpha-* | alphaev[4-8]-* | alphaev56-* | alphaev6[78]-* \ | alpha64-* | alpha64ev[4-8]-* | alpha64ev56-* | alpha64ev6[78]-* \ | alphapca5[67]-* | alpha64pca5[67]-* | arc-* | arceb-* \ | arm-* | armbe-* | armle-* | armeb-* | armv*-* \ | avr-* | avr32-* \ | be32-* | be64-* \ | bfin-* | bs2000-* \ | c[123]* | c30-* | [cjt]90-* | c4x-* \ | c8051-* | clipper-* | craynv-* | cydra-* \ | d10v-* | d30v-* | dlx-* \ | elxsi-* \ | f30[01]-* | f700-* | fido-* | fr30-* | frv-* | fx80-* \ | h8300-* | h8500-* \ | hppa-* | hppa1.[01]-* | hppa2.0-* | hppa2.0[nw]-* | hppa64-* \ | hexagon-* \ | i*86-* | i860-* | i960-* | ia64-* \ | ip2k-* | iq2000-* \ | k1om-* \ | le32-* | le64-* \ | lm32-* \ | m32c-* | m32r-* | m32rle-* \ | m68000-* | m680[012346]0-* | m68360-* | m683?2-* | m68k-* \ | m88110-* | m88k-* | maxq-* | mcore-* | metag-* \ | microblaze-* | microblazeel-* \ | mips-* | mipsbe-* | mipseb-* | mipsel-* | mipsle-* \ | mips16-* \ | mips64-* | mips64el-* \ | mips64octeon-* | mips64octeonel-* \ | mips64orion-* | mips64orionel-* \ | mips64r5900-* | mips64r5900el-* \ | mips64vr-* | mips64vrel-* \ | mips64vr4100-* | mips64vr4100el-* \ | mips64vr4300-* | mips64vr4300el-* \ | mips64vr5000-* | mips64vr5000el-* \ | mips64vr5900-* | mips64vr5900el-* \ | mipsisa32-* | mipsisa32el-* \ | mipsisa32r2-* | mipsisa32r2el-* \ | mipsisa32r6-* | mipsisa32r6el-* \ | mipsisa64-* | mipsisa64el-* \ | mipsisa64r2-* | mipsisa64r2el-* \ | mipsisa64r6-* | mipsisa64r6el-* \ | mipsisa64sb1-* | mipsisa64sb1el-* \ | mipsisa64sr71k-* | mipsisa64sr71kel-* \ | mipsr5900-* | mipsr5900el-* \ | mipstx39-* | mipstx39el-* \ | mmix-* \ | mt-* \ | msp430-* \ | nds32-* | nds32le-* | nds32be-* \ | nios-* | nios2-* | nios2eb-* | nios2el-* \ | none-* | np1-* | ns16k-* | ns32k-* \ | open8-* \ | or1k*-* \ | orion-* \ | pdp10-* | pdp11-* | pj-* | pjl-* | pn-* | power-* \ | powerpc-* | powerpc64-* | powerpc64le-* | powerpcle-* \ | pyramid-* \ | rl78-* | romp-* | rs6000-* | rx-* \ | sh-* | sh[1234]-* | sh[24]a-* | sh[24]aeb-* | sh[23]e-* | sh[34]eb-* | sheb-* | shbe-* \ | shle-* | sh[1234]le-* | sh3ele-* | sh64-* | sh64le-* \ | sparc-* | sparc64-* | sparc64b-* | sparc64v-* | sparc86x-* | sparclet-* \ | sparclite-* \ | sparcv8-* | sparcv9-* | sparcv9b-* | sparcv9v-* | sv1-* | sx?-* \ | tahoe-* \ | tic30-* | tic4x-* | tic54x-* | tic55x-* | tic6x-* | tic80-* \ | tile*-* \ | tron-* \ | ubicom32-* \ | v850-* | v850e-* | v850e1-* | v850es-* | v850e2-* | v850e2v3-* \ | vax-* \ | visium-* \ | we32k-* \ | x86-* | x86_64-* | xc16x-* | xps100-* \ | xstormy16-* | xtensa*-* \ | ymp-* \ | z8k-* | z80-*) ;; # Recognize the basic CPU types without company name, with glob match. xtensa*) basic_machine=$basic_machine-unknown ;; # Recognize the various machine names and aliases which stand # for a CPU type and a company and sometimes even an OS. 386bsd) basic_machine=i386-unknown os=-bsd ;; 3b1 | 7300 | 7300-att | att-7300 | pc7300 | safari | unixpc) basic_machine=m68000-att ;; 3b*) basic_machine=we32k-att ;; a29khif) basic_machine=a29k-amd os=-udi ;; abacus) basic_machine=abacus-unknown ;; adobe68k) basic_machine=m68010-adobe os=-scout ;; alliant | fx80) basic_machine=fx80-alliant ;; altos | altos3068) basic_machine=m68k-altos ;; am29k) basic_machine=a29k-none os=-bsd ;; amd64) basic_machine=x86_64-pc ;; amd64-*) basic_machine=x86_64-`echo $basic_machine | sed 's/^[^-]*-//'` ;; amdahl) basic_machine=580-amdahl os=-sysv ;; amiga | amiga-*) basic_machine=m68k-unknown ;; amigaos | amigados) basic_machine=m68k-unknown os=-amigaos ;; amigaunix | amix) basic_machine=m68k-unknown os=-sysv4 ;; apollo68) basic_machine=m68k-apollo os=-sysv ;; apollo68bsd) basic_machine=m68k-apollo os=-bsd ;; aros) basic_machine=i386-pc os=-aros ;; aux) basic_machine=m68k-apple os=-aux ;; balance) basic_machine=ns32k-sequent os=-dynix ;; blackfin) basic_machine=bfin-unknown os=-linux ;; blackfin-*) basic_machine=bfin-`echo $basic_machine | sed 's/^[^-]*-//'` os=-linux ;; bluegene*) basic_machine=powerpc-ibm os=-cnk ;; c54x-*) basic_machine=tic54x-`echo $basic_machine | sed 's/^[^-]*-//'` ;; c55x-*) basic_machine=tic55x-`echo $basic_machine | sed 's/^[^-]*-//'` ;; c6x-*) basic_machine=tic6x-`echo $basic_machine | sed 's/^[^-]*-//'` ;; c90) basic_machine=c90-cray os=-unicos ;; cegcc) basic_machine=arm-unknown os=-cegcc ;; convex-c1) basic_machine=c1-convex os=-bsd ;; convex-c2) basic_machine=c2-convex os=-bsd ;; convex-c32) basic_machine=c32-convex os=-bsd ;; convex-c34) basic_machine=c34-convex os=-bsd ;; convex-c38) basic_machine=c38-convex os=-bsd ;; cray | j90) basic_machine=j90-cray os=-unicos ;; craynv) basic_machine=craynv-cray os=-unicosmp ;; cr16 | cr16-*) basic_machine=cr16-unknown os=-elf ;; crds | unos) basic_machine=m68k-crds ;; crisv32 | crisv32-* | etraxfs*) basic_machine=crisv32-axis ;; cris | cris-* | etrax*) basic_machine=cris-axis ;; crx) basic_machine=crx-unknown os=-elf ;; da30 | da30-*) basic_machine=m68k-da30 ;; decstation | decstation-3100 | pmax | pmax-* | pmin | dec3100 | decstatn) basic_machine=mips-dec ;; decsystem10* | dec10*) basic_machine=pdp10-dec os=-tops10 ;; decsystem20* | dec20*) basic_machine=pdp10-dec os=-tops20 ;; delta | 3300 | motorola-3300 | motorola-delta \ | 3300-motorola | delta-motorola) basic_machine=m68k-motorola ;; delta88) basic_machine=m88k-motorola os=-sysv3 ;; dicos) basic_machine=i686-pc os=-dicos ;; djgpp) basic_machine=i586-pc os=-msdosdjgpp ;; dpx20 | dpx20-*) basic_machine=rs6000-bull os=-bosx ;; dpx2* | dpx2*-bull) basic_machine=m68k-bull os=-sysv3 ;; ebmon29k) basic_machine=a29k-amd os=-ebmon ;; elxsi) basic_machine=elxsi-elxsi os=-bsd ;; encore | umax | mmax) basic_machine=ns32k-encore ;; es1800 | OSE68k | ose68k | ose | OSE) basic_machine=m68k-ericsson os=-ose ;; fx2800) basic_machine=i860-alliant ;; genix) basic_machine=ns32k-ns ;; gmicro) basic_machine=tron-gmicro os=-sysv ;; go32) basic_machine=i386-pc os=-go32 ;; h3050r* | hiux*) basic_machine=hppa1.1-hitachi os=-hiuxwe2 ;; h8300hms) basic_machine=h8300-hitachi os=-hms ;; h8300xray) basic_machine=h8300-hitachi os=-xray ;; h8500hms) basic_machine=h8500-hitachi os=-hms ;; harris) basic_machine=m88k-harris os=-sysv3 ;; hp300-*) basic_machine=m68k-hp ;; hp300bsd) basic_machine=m68k-hp os=-bsd ;; hp300hpux) basic_machine=m68k-hp os=-hpux ;; hp3k9[0-9][0-9] | hp9[0-9][0-9]) basic_machine=hppa1.0-hp ;; hp9k2[0-9][0-9] | hp9k31[0-9]) basic_machine=m68000-hp ;; hp9k3[2-9][0-9]) basic_machine=m68k-hp ;; hp9k6[0-9][0-9] | hp6[0-9][0-9]) basic_machine=hppa1.0-hp ;; hp9k7[0-79][0-9] | hp7[0-79][0-9]) basic_machine=hppa1.1-hp ;; hp9k78[0-9] | hp78[0-9]) # FIXME: really hppa2.0-hp basic_machine=hppa1.1-hp ;; hp9k8[67]1 | hp8[67]1 | hp9k80[24] | hp80[24] | hp9k8[78]9 | hp8[78]9 | hp9k893 | hp893) # FIXME: really hppa2.0-hp basic_machine=hppa1.1-hp ;; hp9k8[0-9][13679] | hp8[0-9][13679]) basic_machine=hppa1.1-hp ;; hp9k8[0-9][0-9] | hp8[0-9][0-9]) basic_machine=hppa1.0-hp ;; hppa-next) os=-nextstep3 ;; hppaosf) basic_machine=hppa1.1-hp os=-osf ;; hppro) basic_machine=hppa1.1-hp os=-proelf ;; i370-ibm* | ibm*) basic_machine=i370-ibm ;; i*86v32) basic_machine=`echo $1 | sed -e 's/86.*/86-pc/'` os=-sysv32 ;; i*86v4*) basic_machine=`echo $1 | sed -e 's/86.*/86-pc/'` os=-sysv4 ;; i*86v) basic_machine=`echo $1 | sed -e 's/86.*/86-pc/'` os=-sysv ;; i*86sol2) basic_machine=`echo $1 | sed -e 's/86.*/86-pc/'` os=-solaris2 ;; i386mach) basic_machine=i386-mach os=-mach ;; i386-vsta | vsta) basic_machine=i386-unknown os=-vsta ;; iris | iris4d) basic_machine=mips-sgi case $os in -irix*) ;; *) os=-irix4 ;; esac ;; isi68 | isi) basic_machine=m68k-isi os=-sysv ;; leon-*|leon[3-9]-*) basic_machine=sparc-`echo $basic_machine | sed 's/-.*//'` ;; m68knommu) basic_machine=m68k-unknown os=-linux ;; m68knommu-*) basic_machine=m68k-`echo $basic_machine | sed 's/^[^-]*-//'` os=-linux ;; m88k-omron*) basic_machine=m88k-omron ;; magnum | m3230) basic_machine=mips-mips os=-sysv ;; merlin) basic_machine=ns32k-utek os=-sysv ;; microblaze*) basic_machine=microblaze-xilinx ;; mingw64) basic_machine=x86_64-pc os=-mingw64 ;; mingw32) basic_machine=i686-pc os=-mingw32 ;; mingw32ce) basic_machine=arm-unknown os=-mingw32ce ;; miniframe) basic_machine=m68000-convergent ;; *mint | -mint[0-9]* | *MiNT | *MiNT[0-9]*) basic_machine=m68k-atari os=-mint ;; mips3*-*) basic_machine=`echo $basic_machine | sed -e 's/mips3/mips64/'` ;; mips3*) basic_machine=`echo $basic_machine | sed -e 's/mips3/mips64/'`-unknown ;; monitor) basic_machine=m68k-rom68k os=-coff ;; morphos) basic_machine=powerpc-unknown os=-morphos ;; moxiebox) basic_machine=moxie-unknown os=-moxiebox ;; msdos) basic_machine=i386-pc os=-msdos ;; ms1-*) basic_machine=`echo $basic_machine | sed -e 's/ms1-/mt-/'` ;; msys) basic_machine=i686-pc os=-msys ;; mvs) basic_machine=i370-ibm os=-mvs ;; nacl) basic_machine=le32-unknown os=-nacl ;; ncr3000) basic_machine=i486-ncr os=-sysv4 ;; netbsd386) basic_machine=i386-unknown os=-netbsd ;; netwinder) basic_machine=armv4l-rebel os=-linux ;; news | news700 | news800 | news900) basic_machine=m68k-sony os=-newsos ;; news1000) basic_machine=m68030-sony os=-newsos ;; news-3600 | risc-news) basic_machine=mips-sony os=-newsos ;; necv70) basic_machine=v70-nec os=-sysv ;; next | m*-next ) basic_machine=m68k-next case $os in -nextstep* ) ;; -ns2*) os=-nextstep2 ;; *) os=-nextstep3 ;; esac ;; nh3000) basic_machine=m68k-harris os=-cxux ;; nh[45]000) basic_machine=m88k-harris os=-cxux ;; nindy960) basic_machine=i960-intel os=-nindy ;; mon960) basic_machine=i960-intel os=-mon960 ;; nonstopux) basic_machine=mips-compaq os=-nonstopux ;; np1) basic_machine=np1-gould ;; neo-tandem) basic_machine=neo-tandem ;; nse-tandem) basic_machine=nse-tandem ;; nsr-tandem) basic_machine=nsr-tandem ;; op50n-* | op60c-*) basic_machine=hppa1.1-oki os=-proelf ;; openrisc | openrisc-*) basic_machine=or32-unknown ;; os400) basic_machine=powerpc-ibm os=-os400 ;; OSE68000 | ose68000) basic_machine=m68000-ericsson os=-ose ;; os68k) basic_machine=m68k-none os=-os68k ;; pa-hitachi) basic_machine=hppa1.1-hitachi os=-hiuxwe2 ;; paragon) basic_machine=i860-intel os=-osf ;; parisc) basic_machine=hppa-unknown os=-linux ;; parisc-*) basic_machine=hppa-`echo $basic_machine | sed 's/^[^-]*-//'` os=-linux ;; pbd) basic_machine=sparc-tti ;; pbb) basic_machine=m68k-tti ;; pc532 | pc532-*) basic_machine=ns32k-pc532 ;; pc98) basic_machine=i386-pc ;; pc98-*) basic_machine=i386-`echo $basic_machine | sed 's/^[^-]*-//'` ;; pentium | p5 | k5 | k6 | nexgen | viac3) basic_machine=i586-pc ;; pentiumpro | p6 | 6x86 | athlon | athlon_*) basic_machine=i686-pc ;; pentiumii | pentium2 | pentiumiii | pentium3) basic_machine=i686-pc ;; pentium4) basic_machine=i786-pc ;; pentium-* | p5-* | k5-* | k6-* | nexgen-* | viac3-*) basic_machine=i586-`echo $basic_machine | sed 's/^[^-]*-//'` ;; pentiumpro-* | p6-* | 6x86-* | athlon-*) basic_machine=i686-`echo $basic_machine | sed 's/^[^-]*-//'` ;; pentiumii-* | pentium2-* | pentiumiii-* | pentium3-*) basic_machine=i686-`echo $basic_machine | sed 's/^[^-]*-//'` ;; pentium4-*) basic_machine=i786-`echo $basic_machine | sed 's/^[^-]*-//'` ;; pn) basic_machine=pn-gould ;; power) basic_machine=power-ibm ;; ppc | ppcbe) basic_machine=powerpc-unknown ;; ppc-* | ppcbe-*) basic_machine=powerpc-`echo $basic_machine | sed 's/^[^-]*-//'` ;; ppcle | powerpclittle | ppc-le | powerpc-little) basic_machine=powerpcle-unknown ;; ppcle-* | powerpclittle-*) basic_machine=powerpcle-`echo $basic_machine | sed 's/^[^-]*-//'` ;; ppc64) basic_machine=powerpc64-unknown ;; ppc64-*) basic_machine=powerpc64-`echo $basic_machine | sed 's/^[^-]*-//'` ;; ppc64le | powerpc64little | ppc64-le | powerpc64-little) basic_machine=powerpc64le-unknown ;; ppc64le-* | powerpc64little-*) basic_machine=powerpc64le-`echo $basic_machine | sed 's/^[^-]*-//'` ;; ps2) basic_machine=i386-ibm ;; pw32) basic_machine=i586-unknown os=-pw32 ;; rdos | rdos64) basic_machine=x86_64-pc os=-rdos ;; rdos32) basic_machine=i386-pc os=-rdos ;; rom68k) basic_machine=m68k-rom68k os=-coff ;; rm[46]00) basic_machine=mips-siemens ;; rtpc | rtpc-*) basic_machine=romp-ibm ;; s390 | s390-*) basic_machine=s390-ibm ;; s390x | s390x-*) basic_machine=s390x-ibm ;; sa29200) basic_machine=a29k-amd os=-udi ;; sb1) basic_machine=mipsisa64sb1-unknown ;; sb1el) basic_machine=mipsisa64sb1el-unknown ;; sde) basic_machine=mipsisa32-sde os=-elf ;; sei) basic_machine=mips-sei os=-seiux ;; sequent) basic_machine=i386-sequent ;; sh) basic_machine=sh-hitachi os=-hms ;; sh5el) basic_machine=sh5le-unknown ;; sh64) basic_machine=sh64-unknown ;; sparclite-wrs | simso-wrs) basic_machine=sparclite-wrs os=-vxworks ;; sps7) basic_machine=m68k-bull os=-sysv2 ;; spur) basic_machine=spur-unknown ;; st2000) basic_machine=m68k-tandem ;; stratus) basic_machine=i860-stratus os=-sysv4 ;; strongarm-* | thumb-*) basic_machine=arm-`echo $basic_machine | sed 's/^[^-]*-//'` ;; sun2) basic_machine=m68000-sun ;; sun2os3) basic_machine=m68000-sun os=-sunos3 ;; sun2os4) basic_machine=m68000-sun os=-sunos4 ;; sun3os3) basic_machine=m68k-sun os=-sunos3 ;; sun3os4) basic_machine=m68k-sun os=-sunos4 ;; sun4os3) basic_machine=sparc-sun os=-sunos3 ;; sun4os4) basic_machine=sparc-sun os=-sunos4 ;; sun4sol2) basic_machine=sparc-sun os=-solaris2 ;; sun3 | sun3-*) basic_machine=m68k-sun ;; sun4) basic_machine=sparc-sun ;; sun386 | sun386i | roadrunner) basic_machine=i386-sun ;; sv1) basic_machine=sv1-cray os=-unicos ;; symmetry) basic_machine=i386-sequent os=-dynix ;; t3e) basic_machine=alphaev5-cray os=-unicos ;; t90) basic_machine=t90-cray os=-unicos ;; tile*) basic_machine=$basic_machine-unknown os=-linux-gnu ;; tx39) basic_machine=mipstx39-unknown ;; tx39el) basic_machine=mipstx39el-unknown ;; toad1) basic_machine=pdp10-xkl os=-tops20 ;; tower | tower-32) basic_machine=m68k-ncr ;; tpf) basic_machine=s390x-ibm os=-tpf ;; udi29k) basic_machine=a29k-amd os=-udi ;; ultra3) basic_machine=a29k-nyu os=-sym1 ;; v810 | necv810) basic_machine=v810-nec os=-none ;; vaxv) basic_machine=vax-dec os=-sysv ;; vms) basic_machine=vax-dec os=-vms ;; vpp*|vx|vx-*) basic_machine=f301-fujitsu ;; vxworks960) basic_machine=i960-wrs os=-vxworks ;; vxworks68) basic_machine=m68k-wrs os=-vxworks ;; vxworks29k) basic_machine=a29k-wrs os=-vxworks ;; w65*) basic_machine=w65-wdc os=-none ;; w89k-*) basic_machine=hppa1.1-winbond os=-proelf ;; xbox) basic_machine=i686-pc os=-mingw32 ;; xps | xps100) basic_machine=xps100-honeywell ;; xscale-* | xscalee[bl]-*) basic_machine=`echo $basic_machine | sed 's/^xscale/arm/'` ;; ymp) basic_machine=ymp-cray os=-unicos ;; z8k-*-coff) basic_machine=z8k-unknown os=-sim ;; z80-*-coff) basic_machine=z80-unknown os=-sim ;; none) basic_machine=none-none os=-none ;; # Here we handle the default manufacturer of certain CPU types. It is in # some cases the only manufacturer, in others, it is the most popular. w89k) basic_machine=hppa1.1-winbond ;; op50n) basic_machine=hppa1.1-oki ;; op60c) basic_machine=hppa1.1-oki ;; romp) basic_machine=romp-ibm ;; mmix) basic_machine=mmix-knuth ;; rs6000) basic_machine=rs6000-ibm ;; vax) basic_machine=vax-dec ;; pdp10) # there are many clones, so DEC is not a safe bet basic_machine=pdp10-unknown ;; pdp11) basic_machine=pdp11-dec ;; we32k) basic_machine=we32k-att ;; sh[1234] | sh[24]a | sh[24]aeb | sh[34]eb | sh[1234]le | sh[23]ele) basic_machine=sh-unknown ;; sparc | sparcv8 | sparcv9 | sparcv9b | sparcv9v) basic_machine=sparc-sun ;; cydra) basic_machine=cydra-cydrome ;; orion) basic_machine=orion-highlevel ;; orion105) basic_machine=clipper-highlevel ;; mac | mpw | mac-mpw) basic_machine=m68k-apple ;; pmac | pmac-mpw) basic_machine=powerpc-apple ;; *-unknown) # Make sure to match an already-canonicalized machine name. ;; *) echo Invalid configuration \`$1\': machine \`$basic_machine\' not recognized 1>&2 exit 1 ;; esac # Here we canonicalize certain aliases for manufacturers. case $basic_machine in *-digital*) basic_machine=`echo $basic_machine | sed 's/digital.*/dec/'` ;; *-commodore*) basic_machine=`echo $basic_machine | sed 's/commodore.*/cbm/'` ;; *) ;; esac # Decode manufacturer-specific aliases for certain operating systems. if [ x"$os" != x"" ] then case $os in # First match some system type aliases # that might get confused with valid system types. # -solaris* is a basic system type, with this one exception. -auroraux) os=-auroraux ;; -solaris1 | -solaris1.*) os=`echo $os | sed -e 's|solaris1|sunos4|'` ;; -solaris) os=-solaris2 ;; -svr4*) os=-sysv4 ;; -unixware*) os=-sysv4.2uw ;; -gnu/linux*) os=`echo $os | sed -e 's|gnu/linux|linux-gnu|'` ;; # First accept the basic system types. # The portable systems comes first. # Each alternative MUST END IN A *, to match a version number. # -sysv* is not here because it comes later, after sysvr4. -gnu* | -bsd* | -mach* | -minix* | -genix* | -ultrix* | -irix* \ | -*vms* | -sco* | -esix* | -isc* | -aix* | -cnk* | -sunos | -sunos[34]*\ | -hpux* | -unos* | -osf* | -luna* | -dgux* | -auroraux* | -solaris* \ | -sym* | -kopensolaris* | -plan9* \ | -amigaos* | -amigados* | -msdos* | -newsos* | -unicos* | -aof* \ | -aos* | -aros* \ | -nindy* | -vxsim* | -vxworks* | -ebmon* | -hms* | -mvs* \ | -clix* | -riscos* | -uniplus* | -iris* | -rtu* | -xenix* \ | -hiux* | -386bsd* | -knetbsd* | -mirbsd* | -netbsd* \ | -bitrig* | -openbsd* | -solidbsd* \ | -ekkobsd* | -kfreebsd* | -freebsd* | -riscix* | -lynxos* \ | -bosx* | -nextstep* | -cxux* | -aout* | -elf* | -oabi* \ | -ptx* | -coff* | -ecoff* | -winnt* | -domain* | -vsta* \ | -udi* | -eabi* | -lites* | -ieee* | -go32* | -aux* \ | -chorusos* | -chorusrdb* | -cegcc* \ | -cygwin* | -msys* | -pe* | -psos* | -moss* | -proelf* | -rtems* \ | -mingw32* | -mingw64* | -linux-gnu* | -linux-android* \ | -linux-newlib* | -linux-musl* | -linux-uclibc* \ | -uxpv* | -beos* | -mpeix* | -udk* | -moxiebox* \ | -interix* | -uwin* | -mks* | -rhapsody* | -darwin* | -opened* \ | -openstep* | -oskit* | -conix* | -pw32* | -nonstopux* \ | -storm-chaos* | -tops10* | -tenex* | -tops20* | -its* \ | -os2* | -vos* | -palmos* | -uclinux* | -nucleus* \ | -morphos* | -superux* | -rtmk* | -rtmk-nova* | -windiss* \ | -powermax* | -dnix* | -nx6 | -nx7 | -sei* | -dragonfly* \ | -skyos* | -haiku* | -rdos* | -toppers* | -drops* | -es* | -tirtos*) # Remember, each alternative MUST END IN *, to match a version number. ;; -qnx*) case $basic_machine in x86-* | i*86-*) ;; *) os=-nto$os ;; esac ;; -nto-qnx*) ;; -nto*) os=`echo $os | sed -e 's|nto|nto-qnx|'` ;; -sim | -es1800* | -hms* | -xray | -os68k* | -none* | -v88r* \ | -windows* | -osx | -abug | -netware* | -os9* | -beos* | -haiku* \ | -macos* | -mpw* | -magic* | -mmixware* | -mon960* | -lnews*) ;; -mac*) os=`echo $os | sed -e 's|mac|macos|'` ;; -linux-dietlibc) os=-linux-dietlibc ;; -linux*) os=`echo $os | sed -e 's|linux|linux-gnu|'` ;; -sunos5*) os=`echo $os | sed -e 's|sunos5|solaris2|'` ;; -sunos6*) os=`echo $os | sed -e 's|sunos6|solaris3|'` ;; -opened*) os=-openedition ;; -os400*) os=-os400 ;; -wince*) os=-wince ;; -osfrose*) os=-osfrose ;; -osf*) os=-osf ;; -utek*) os=-bsd ;; -dynix*) os=-bsd ;; -acis*) os=-aos ;; -atheos*) os=-atheos ;; -syllable*) os=-syllable ;; -386bsd) os=-bsd ;; -ctix* | -uts*) os=-sysv ;; -nova*) os=-rtmk-nova ;; -ns2 ) os=-nextstep2 ;; -nsk*) os=-nsk ;; # Preserve the version number of sinix5. -sinix5.*) os=`echo $os | sed -e 's|sinix|sysv|'` ;; -sinix*) os=-sysv4 ;; -tpf*) os=-tpf ;; -triton*) os=-sysv3 ;; -oss*) os=-sysv3 ;; -svr4) os=-sysv4 ;; -svr3) os=-sysv3 ;; -sysvr4) os=-sysv4 ;; # This must come after -sysvr4. -sysv*) ;; -ose*) os=-ose ;; -es1800*) os=-ose ;; -xenix) os=-xenix ;; -*mint | -mint[0-9]* | -*MiNT | -MiNT[0-9]*) os=-mint ;; -aros*) os=-aros ;; -zvmoe) os=-zvmoe ;; -dicos*) os=-dicos ;; -nacl*) ;; -none) ;; *) # Get rid of the `-' at the beginning of $os. os=`echo $os | sed 's/[^-]*-//'` echo Invalid configuration \`$1\': system \`$os\' not recognized 1>&2 exit 1 ;; esac else # Here we handle the default operating systems that come with various machines. # The value should be what the vendor currently ships out the door with their # machine or put another way, the most popular os provided with the machine. # Note that if you're going to try to match "-MANUFACTURER" here (say, # "-sun"), then you have to tell the case statement up towards the top # that MANUFACTURER isn't an operating system. Otherwise, code above # will signal an error saying that MANUFACTURER isn't an operating # system, and we'll never get to this point. case $basic_machine in score-*) os=-elf ;; spu-*) os=-elf ;; *-acorn) os=-riscix1.2 ;; arm*-rebel) os=-linux ;; arm*-semi) os=-aout ;; c4x-* | tic4x-*) os=-coff ;; c8051-*) os=-elf ;; hexagon-*) os=-elf ;; tic54x-*) os=-coff ;; tic55x-*) os=-coff ;; tic6x-*) os=-coff ;; # This must come before the *-dec entry. pdp10-*) os=-tops20 ;; pdp11-*) os=-none ;; *-dec | vax-*) os=-ultrix4.2 ;; m68*-apollo) os=-domain ;; i386-sun) os=-sunos4.0.2 ;; m68000-sun) os=-sunos3 ;; m68*-cisco) os=-aout ;; mep-*) os=-elf ;; mips*-cisco) os=-elf ;; mips*-*) os=-elf ;; or32-*) os=-coff ;; *-tti) # must be before sparc entry or we get the wrong os. os=-sysv3 ;; sparc-* | *-sun) os=-sunos4.1.1 ;; *-be) os=-beos ;; *-haiku) os=-haiku ;; *-ibm) os=-aix ;; *-knuth) os=-mmixware ;; *-wec) os=-proelf ;; *-winbond) os=-proelf ;; *-oki) os=-proelf ;; *-hp) os=-hpux ;; *-hitachi) os=-hiux ;; i860-* | *-att | *-ncr | *-altos | *-motorola | *-convergent) os=-sysv ;; *-cbm) os=-amigaos ;; *-dg) os=-dgux ;; *-dolphin) os=-sysv3 ;; m68k-ccur) os=-rtu ;; m88k-omron*) os=-luna ;; *-next ) os=-nextstep ;; *-sequent) os=-ptx ;; *-crds) os=-unos ;; *-ns) os=-genix ;; i370-*) os=-mvs ;; *-next) os=-nextstep3 ;; *-gould) os=-sysv ;; *-highlevel) os=-bsd ;; *-encore) os=-bsd ;; *-sgi) os=-irix ;; *-siemens) os=-sysv4 ;; *-masscomp) os=-rtu ;; f30[01]-fujitsu | f700-fujitsu) os=-uxpv ;; *-rom68k) os=-coff ;; *-*bug) os=-coff ;; *-apple) os=-macos ;; *-atari*) os=-mint ;; *) os=-none ;; esac fi # Here we handle the case where we know the os, and the CPU type, but not the # manufacturer. We pick the logical manufacturer. vendor=unknown case $basic_machine in *-unknown) case $os in -riscix*) vendor=acorn ;; -sunos*) vendor=sun ;; -cnk*|-aix*) vendor=ibm ;; -beos*) vendor=be ;; -hpux*) vendor=hp ;; -mpeix*) vendor=hp ;; -hiux*) vendor=hitachi ;; -unos*) vendor=crds ;; -dgux*) vendor=dg ;; -luna*) vendor=omron ;; -genix*) vendor=ns ;; -mvs* | -opened*) vendor=ibm ;; -os400*) vendor=ibm ;; -ptx*) vendor=sequent ;; -tpf*) vendor=ibm ;; -vxsim* | -vxworks* | -windiss*) vendor=wrs ;; -aux*) vendor=apple ;; -hms*) vendor=hitachi ;; -mpw* | -macos*) vendor=apple ;; -*mint | -mint[0-9]* | -*MiNT | -MiNT[0-9]*) vendor=atari ;; -vos*) vendor=stratus ;; esac basic_machine=`echo $basic_machine | sed "s/unknown/$vendor/"` ;; esac echo $basic_machine$os exit # Local variables: # eval: (add-hook 'write-file-hooks 'time-stamp) # time-stamp-start: "timestamp='" # time-stamp-format: "%:y-%02m-%02d" # time-stamp-end: "'" # End: libjpeg-turbo-1.4.2/doc/0000755000076500007650000000000012600050400012026 500000000000000libjpeg-turbo-1.4.2/doc/html/0000755000076500007650000000000012600050400012772 500000000000000libjpeg-turbo-1.4.2/doc/html/tabs.css0000644000076500007650000000221312600050400014353 00000000000000.tabs, .tabs2, .tabs3 { background-image: url('tab_b.png'); width: 100%; z-index: 101; font-size: 13px; font-family: 'Lucida Grande',Geneva,Helvetica,Arial,sans-serif; } .tabs2 { font-size: 10px; } .tabs3 { font-size: 9px; } .tablist { margin: 0; padding: 0; display: table; } .tablist li { float: left; display: table-cell; background-image: url('tab_b.png'); line-height: 36px; list-style: none; } .tablist a { display: block; padding: 0 20px; font-weight: bold; background-image:url('tab_s.png'); background-repeat:no-repeat; background-position:right; color: #283A5D; text-shadow: 0px 1px 1px rgba(255, 255, 255, 0.9); text-decoration: none; outline: none; } .tabs3 .tablist a { padding: 0 10px; } .tablist a:hover { background-image: url('tab_h.png'); background-repeat:repeat-x; color: #fff; text-shadow: 0px 1px 1px rgba(0, 0, 0, 1.0); text-decoration: none; } .tablist li.current a { background-image: url('tab_a.png'); background-repeat:repeat-x; color: #fff; text-shadow: 0px 1px 1px rgba(0, 0, 0, 1.0); } libjpeg-turbo-1.4.2/doc/html/functions.html0000644000076500007650000001434312600050400015615 00000000000000 TurboJPEG: Data Fields
TurboJPEG  1.4
Here is a list of all documented struct and union fields with links to the struct/union documentation for each field:
libjpeg-turbo-1.4.2/doc/html/ftv2folderopen.png0000644000076500007650000000112512600050400016356 00000000000000PNG  IHDR}\IDATx]?oP9i4i;iiZ7`b٬,HU'$*T]TDP6w};C; aӝߟjAInS}9Hӎ|? =_Ɗue*;YEsYBėsٌ ɫYq !Gǿv̇خ F}qb]70)d-}PfY{4@}2ԗNIǃc%UImcƝ>xt9$ OVE*Û#׈r@l$PrHaa dZrqIoT\,tj2FAxv-Lp׌p TI/ \sf; jViTo^cpb]€<a՜y9:+,E f6NEKU}^;nZuUS4 ѬbN.kjT% iV )GJ@TxIENDB`libjpeg-turbo-1.4.2/doc/html/ftv2vertline.png0000644000076500007650000000012612600050400016051 00000000000000PNG  IHDRɪ|IDATxݱðScOx@ y}IENDB`libjpeg-turbo-1.4.2/doc/html/tab_a.png0000644000076500007650000000021612600050400014465 00000000000000PNG  IHDR$[UIDATxK 0C'o([Ž%x#٩ We# 3t I 3+E~\D9wM}Y_A4Y}IENDB`libjpeg-turbo-1.4.2/doc/html/structtjtransform.html0000644000076500007650000003263012600050400017422 00000000000000 TurboJPEG: tjtransform Struct Reference
tjtransform Struct Reference

Lossless transform. More...

#include <turbojpeg.h>

Data Fields

tjregion r
 Cropping region. More...
 
int op
 One of the transform operations. More...
 
int options
 The bitwise OR of one of more of the transform options. More...
 
void * data
 Arbitrary data that can be accessed within the body of the callback function. More...
 
int(* customFilter )(short *coeffs, tjregion arrayRegion, tjregion planeRegion, int componentIndex, int transformIndex, struct tjtransform *transform)
 A callback function that can be used to modify the DCT coefficients after they are losslessly transformed but before they are transcoded to a new JPEG image. More...
 

Detailed Description

Lossless transform.

Field Documentation

int(* tjtransform::customFilter)(short *coeffs, tjregion arrayRegion, tjregion planeRegion, int componentIndex, int transformIndex, struct tjtransform *transform)

A callback function that can be used to modify the DCT coefficients after they are losslessly transformed but before they are transcoded to a new JPEG image.

This allows for custom filters or other transformations to be applied in the frequency domain.

Parameters
coeffspointer to an array of transformed DCT coefficients. (NOTE: this pointer is not guaranteed to be valid once the callback returns, so applications wishing to hand off the DCT coefficients to another function or library should make a copy of them within the body of the callback.)
arrayRegiontjregion structure containing the width and height of the array pointed to by coeffs as well as its offset relative to the component plane. TurboJPEG implementations may choose to split each component plane into multiple DCT coefficient arrays and call the callback function once for each array.
planeRegiontjregion structure containing the width and height of the component plane to which coeffs belongs
componentIDID number of the component plane to which coeffs belongs (Y, Cb, and Cr have, respectively, ID's of 0, 1, and 2 in typical JPEG images.)
transformIDID number of the transformed image to which coeffs belongs. This is the same as the index of the transform in the transforms array that was passed to tjTransform().
transforma pointer to a tjtransform structure that specifies the parameters and/or cropping region for this transform
Returns
0 if the callback was successful, or -1 if an error occurred.
void* tjtransform::data

Arbitrary data that can be accessed within the body of the callback function.

int tjtransform::op

One of the transform operations.

int tjtransform::options

The bitwise OR of one of more of the transform options.

tjregion tjtransform::r

Cropping region.


The documentation for this struct was generated from the following file:
  • turbojpeg.h
libjpeg-turbo-1.4.2/doc/html/ftv2lastnode.png0000644000076500007650000000012612600050400016032 00000000000000PNG  IHDRɪ|IDATxݱðScOx@ y}IENDB`libjpeg-turbo-1.4.2/doc/html/ftv2splitbar.png0000644000076500007650000000047212600050400016045 00000000000000PNG  IHDRMIDATxݡJCa( %4 bȘͶ3v^EL ,b;{Ï/aYկq:\IIIIIIIIIIIIIIIIII-l揊_t/ϻYQVYivk_ۣI@$I@$I@$I@$I@$I@$I@$I@$I@$I@$I@$I@$I@$I@$I@$I@$I@$I@$C[V=[fIENDB`libjpeg-turbo-1.4.2/doc/html/nav_h.png0000644000076500007650000000014212600050400014510 00000000000000PNG  IHDR ,@)IDATxA @BQۛТ) ) aܿoRlIENDB`libjpeg-turbo-1.4.2/doc/html/structtjregion.html0000644000076500007650000002333712600050400016676 00000000000000 TurboJPEG: tjregion Struct Reference
tjregion Struct Reference

Cropping region. More...

#include <turbojpeg.h>

Data Fields

int x
 The left boundary of the cropping region. More...
 
int y
 The upper boundary of the cropping region. More...
 
int w
 The width of the cropping region. More...
 
int h
 The height of the cropping region. More...
 

Detailed Description

Cropping region.

Field Documentation

int tjregion::h

The height of the cropping region.

Setting this to 0 is the equivalent of setting it to the height of the source JPEG image - y.

int tjregion::w

The width of the cropping region.

Setting this to 0 is the equivalent of setting it to the width of the source JPEG image - x.

int tjregion::x

The left boundary of the cropping region.

This must be evenly divisible by the MCU block width (see tjMCUWidth.)

int tjregion::y

The upper boundary of the cropping region.

This must be evenly divisible by the MCU block height (see tjMCUHeight.)


The documentation for this struct was generated from the following file:
  • turbojpeg.h
libjpeg-turbo-1.4.2/doc/html/ftv2cl.png0000644000076500007650000000070512600050400014622 00000000000000PNG  IHDR}\IDATx;H#Ao4ႇK ,m vڞJ XY B|drcvoİ 0Ò3ͤe״1X8nQ88֧3*rb-$P1@Z-#011HkK wO@!fuc;sB[EA\>]Pzf| +g5b i5mM_q,cod!,{Y,zT8H]𤕘7/8Q!F~6?Y A@Ũ.@TYr8*>?e[6xIENDB`libjpeg-turbo-1.4.2/doc/html/search/0000755000076500007650000000000012600050400014237 500000000000000libjpeg-turbo-1.4.2/doc/html/search/mag_sel.png0000644000076500007650000000106312600050400016274 00000000000000PNG  IHDR- pHYs   cHRMms8zʴ3Dv6*IDATx䔻"A:/xQL@7010|173sVD6@PTmPjٝu &X?9S%|~|Ʉrf!LT**PH)9Nr0`Y'CZh NS,"JQ*d2V+fɄH$B^d۶(T*4MPH*zƶm:Ha0jSS-bMiP(ka<`ˉDq']?cǘ4M1tZ>z|)tu]F
Loading...
Searching...
No Matches
libjpeg-turbo-1.4.2/doc/html/search/enumvalues_74.html0000644000076500007650000000177512600050400017555 00000000000000
Loading...
Searching...
No Matches
libjpeg-turbo-1.4.2/doc/html/search/variables_63.html0000644000076500007650000000177412600050400017336 00000000000000
Loading...
Searching...
No Matches
libjpeg-turbo-1.4.2/doc/html/search/all_68.js0000644000076500007650000000015512600050400015603 00000000000000var searchData= [ ['h',['h',['../structtjregion.html#aecefc45a26f4d8b60dd4d825c1710115',1,'tjregion']]] ]; libjpeg-turbo-1.4.2/doc/html/search/search_m.png0000644000076500007650000000023612600050400016447 00000000000000PNG  IHDR5^KMgAMAOX2tEXtSoftwareAdobe ImageReadyqe<0IDATxb,//g```<~8#?bbZP,Xnݺ <~EIENDB`libjpeg-turbo-1.4.2/doc/html/search/variables_79.js0000644000076500007650000000015512600050400017005 00000000000000var searchData= [ ['y',['y',['../structtjregion.html#a7b3e0c24cfe87acc80e334cafdcf22c2',1,'tjregion']]] ]; libjpeg-turbo-1.4.2/doc/html/search/enumvalues_74.js0000644000076500007650000001127212600050400017216 00000000000000var searchData= [ ['tjcs_5fcmyk',['TJCS_CMYK',['../group___turbo_j_p_e_g.html#gga4f83ad3368e0e29d1957be0efa7c3720a6c8b636152ac8195b869587db315ee53',1,'turbojpeg.h']]], ['tjcs_5fgray',['TJCS_GRAY',['../group___turbo_j_p_e_g.html#gga4f83ad3368e0e29d1957be0efa7c3720ab3e7d6a87f695e45b81c1b5262b5a50a',1,'turbojpeg.h']]], ['tjcs_5frgb',['TJCS_RGB',['../group___turbo_j_p_e_g.html#gga4f83ad3368e0e29d1957be0efa7c3720a677cb7ccb85c4038ac41964a2e09e555',1,'turbojpeg.h']]], ['tjcs_5fycbcr',['TJCS_YCbCr',['../group___turbo_j_p_e_g.html#gga4f83ad3368e0e29d1957be0efa7c3720a7389b8f65bb387ffedce3efd0d78ec75',1,'turbojpeg.h']]], ['tjcs_5fycck',['TJCS_YCCK',['../group___turbo_j_p_e_g.html#gga4f83ad3368e0e29d1957be0efa7c3720a53839e0fe867b76b58d16b0a1a7c598e',1,'turbojpeg.h']]], ['tjpf_5fabgr',['TJPF_ABGR',['../group___turbo_j_p_e_g.html#ggac916144e26c3817ac514e64ae5d12e2aa1ba1a7f1631dbeaa49a0a85fc4a40081',1,'turbojpeg.h']]], ['tjpf_5fargb',['TJPF_ARGB',['../group___turbo_j_p_e_g.html#ggac916144e26c3817ac514e64ae5d12e2aae8f846ed9d9de99b6e1dfe448848765c',1,'turbojpeg.h']]], ['tjpf_5fbgr',['TJPF_BGR',['../group___turbo_j_p_e_g.html#ggac916144e26c3817ac514e64ae5d12e2aab10624437fb8ef495a0b153e65749839',1,'turbojpeg.h']]], ['tjpf_5fbgra',['TJPF_BGRA',['../group___turbo_j_p_e_g.html#ggac916144e26c3817ac514e64ae5d12e2aac037ff1845cf9b74bb81a3659c2b9fb4',1,'turbojpeg.h']]], ['tjpf_5fbgrx',['TJPF_BGRX',['../group___turbo_j_p_e_g.html#ggac916144e26c3817ac514e64ae5d12e2aa2a1fbf569ca79897eae886e3376ca4c8',1,'turbojpeg.h']]], ['tjpf_5fcmyk',['TJPF_CMYK',['../group___turbo_j_p_e_g.html#ggac916144e26c3817ac514e64ae5d12e2aa7f5100ec44c91994e243f1cf55553f8b',1,'turbojpeg.h']]], ['tjpf_5fgray',['TJPF_GRAY',['../group___turbo_j_p_e_g.html#ggac916144e26c3817ac514e64ae5d12e2aa5431b54b015337705f13118073711a1a',1,'turbojpeg.h']]], ['tjpf_5frgb',['TJPF_RGB',['../group___turbo_j_p_e_g.html#ggac916144e26c3817ac514e64ae5d12e2aa7ce93230bff449518ce387c17e6ed37c',1,'turbojpeg.h']]], ['tjpf_5frgba',['TJPF_RGBA',['../group___turbo_j_p_e_g.html#ggac916144e26c3817ac514e64ae5d12e2aa88d2e88fab67f6503cf972e14851cc12',1,'turbojpeg.h']]], ['tjpf_5frgbx',['TJPF_RGBX',['../group___turbo_j_p_e_g.html#ggac916144e26c3817ac514e64ae5d12e2aa83973bebb7e2dc6fa8bae89ff3f42e01',1,'turbojpeg.h']]], ['tjpf_5fxbgr',['TJPF_XBGR',['../group___turbo_j_p_e_g.html#ggac916144e26c3817ac514e64ae5d12e2aaf6603b27147de47e212e75dac027b2af',1,'turbojpeg.h']]], ['tjpf_5fxrgb',['TJPF_XRGB',['../group___turbo_j_p_e_g.html#ggac916144e26c3817ac514e64ae5d12e2aadae996905efcfa3b42a0bb3bea7f9d84',1,'turbojpeg.h']]], ['tjsamp_5f411',['TJSAMP_411',['../group___turbo_j_p_e_g.html#gga1d047060ea80bb9820d540bb928e9074a28ec62575e5ea295c3fde3001dc628e2',1,'turbojpeg.h']]], ['tjsamp_5f420',['TJSAMP_420',['../group___turbo_j_p_e_g.html#gga1d047060ea80bb9820d540bb928e9074a63085dbf683cfe39e513cdb6343e3737',1,'turbojpeg.h']]], ['tjsamp_5f422',['TJSAMP_422',['../group___turbo_j_p_e_g.html#gga1d047060ea80bb9820d540bb928e9074a136130902cc578f11f32429b59368404',1,'turbojpeg.h']]], ['tjsamp_5f440',['TJSAMP_440',['../group___turbo_j_p_e_g.html#gga1d047060ea80bb9820d540bb928e9074accf740e6f3aa6ba20ba922cad13cb974',1,'turbojpeg.h']]], ['tjsamp_5f444',['TJSAMP_444',['../group___turbo_j_p_e_g.html#gga1d047060ea80bb9820d540bb928e9074afb8da4f44197837bdec0a4f593dacae3',1,'turbojpeg.h']]], ['tjsamp_5fgray',['TJSAMP_GRAY',['../group___turbo_j_p_e_g.html#gga1d047060ea80bb9820d540bb928e9074a3f1c9504842ddc7a48d0f690754b6248',1,'turbojpeg.h']]], ['tjxop_5fhflip',['TJXOP_HFLIP',['../group___turbo_j_p_e_g.html#gga2de531af4e7e6c4f124908376b354866aa0df69776caa30f0fa28e26332d311ce',1,'turbojpeg.h']]], ['tjxop_5fnone',['TJXOP_NONE',['../group___turbo_j_p_e_g.html#gga2de531af4e7e6c4f124908376b354866aad88c0366cd3f7d0eac9d7a3fa1c2c27',1,'turbojpeg.h']]], ['tjxop_5frot180',['TJXOP_ROT180',['../group___turbo_j_p_e_g.html#gga2de531af4e7e6c4f124908376b354866a140952eb8dd0300accfcc22726d69692',1,'turbojpeg.h']]], ['tjxop_5frot270',['TJXOP_ROT270',['../group___turbo_j_p_e_g.html#gga2de531af4e7e6c4f124908376b354866a3064ee5dfb7f032df332818587567a08',1,'turbojpeg.h']]], ['tjxop_5frot90',['TJXOP_ROT90',['../group___turbo_j_p_e_g.html#gga2de531af4e7e6c4f124908376b354866a43b2bbb23bc4bd548422d43fbe9af128',1,'turbojpeg.h']]], ['tjxop_5ftranspose',['TJXOP_TRANSPOSE',['../group___turbo_j_p_e_g.html#gga2de531af4e7e6c4f124908376b354866a31060aed199f886afdd417f80499c32d',1,'turbojpeg.h']]], ['tjxop_5ftransverse',['TJXOP_TRANSVERSE',['../group___turbo_j_p_e_g.html#gga2de531af4e7e6c4f124908376b354866af3b14d488aea6ece9e5b3df73a74d6a4',1,'turbojpeg.h']]], ['tjxop_5fvflip',['TJXOP_VFLIP',['../group___turbo_j_p_e_g.html#gga2de531af4e7e6c4f124908376b354866a324eddfbec53b7e691f61e56929d0d5d',1,'turbojpeg.h']]] ]; libjpeg-turbo-1.4.2/doc/html/search/variables_68.js0000644000076500007650000000015512600050400017003 00000000000000var searchData= [ ['h',['h',['../structtjregion.html#aecefc45a26f4d8b60dd4d825c1710115',1,'tjregion']]] ]; libjpeg-turbo-1.4.2/doc/html/search/search_r.png0000644000076500007650000000114412600050400016453 00000000000000PNG  IHDR] pHYs   cHRMms8zʴ3Dv6*IDATxڤԿAo kVi|YIR߼C+Lg,R\B$`4)BPA!UI( 檧Ïsu:‰B$|~Z,?J^ZR.F!`08 eY$I
Loading...
Searching...
No Matches
libjpeg-turbo-1.4.2/doc/html/search/all_6e.js0000644000076500007650000000017712600050400015664 00000000000000var searchData= [ ['num',['num',['../structtjscalingfactor.html#a9b011e57f981ee23083e2c1aa5e640ec',1,'tjscalingfactor']]] ]; libjpeg-turbo-1.4.2/doc/html/search/groups_74.js0000644000076500007650000000013212600050400016342 00000000000000var searchData= [ ['turbojpeg',['TurboJPEG',['../group___turbo_j_p_e_g.html',1,'']]] ]; libjpeg-turbo-1.4.2/doc/html/search/variables_77.html0000644000076500007650000000177412600050400017343 00000000000000
Loading...
Searching...
No Matches
libjpeg-turbo-1.4.2/doc/html/search/typedefs_74.html0000644000076500007650000000177312600050400017212 00000000000000
Loading...
Searching...
No Matches
libjpeg-turbo-1.4.2/doc/html/search/all_64.js0000644000076500007650000000035012600050400015574 00000000000000var searchData= [ ['data',['data',['../structtjtransform.html#a688fe8f1a8ecc12a538d9e561cf338e3',1,'tjtransform']]], ['denom',['denom',['../structtjscalingfactor.html#aefbcdf3e9e62274b2d312c695f133ce3',1,'tjscalingfactor']]] ]; libjpeg-turbo-1.4.2/doc/html/search/variables_77.js0000644000076500007650000000015512600050400017003 00000000000000var searchData= [ ['w',['w',['../structtjregion.html#ab6eb73ceef584fc23c8c8097926dce42',1,'tjregion']]] ]; libjpeg-turbo-1.4.2/doc/html/search/all_74.html0000644000076500007650000000176612600050400016141 00000000000000
Loading...
Searching...
No Matches
libjpeg-turbo-1.4.2/doc/html/search/variables_78.js0000644000076500007650000000015512600050400017004 00000000000000var searchData= [ ['x',['x',['../structtjregion.html#a4b6a37a93997091b26a75831fa291ad9',1,'tjregion']]] ]; libjpeg-turbo-1.4.2/doc/html/search/all_74.js0000644000076500007650000002673012600050400015607 00000000000000var searchData= [ ['tj_5fnumcs',['TJ_NUMCS',['../group___turbo_j_p_e_g.html#ga39f57a6fb02d9cf32e7b6890099b5a71',1,'turbojpeg.h']]], ['tj_5fnumpf',['TJ_NUMPF',['../group___turbo_j_p_e_g.html#ga7010a4402f54a45ba822ad8675a4655e',1,'turbojpeg.h']]], ['tj_5fnumsamp',['TJ_NUMSAMP',['../group___turbo_j_p_e_g.html#ga5ef3d169162ce77ce348e292a0b7477c',1,'turbojpeg.h']]], ['tj_5fnumxop',['TJ_NUMXOP',['../group___turbo_j_p_e_g.html#ga0f6dbd18adf38b7d46ac547f0f4d562c',1,'turbojpeg.h']]], ['tjalloc',['tjAlloc',['../group___turbo_j_p_e_g.html#ga5c9234bda6d993cdaffdd89bf81a00ff',1,'turbojpeg.h']]], ['tjblueoffset',['tjBlueOffset',['../group___turbo_j_p_e_g.html#ga84e2e35d3f08025f976ec1ec53693dea',1,'turbojpeg.h']]], ['tjbufsize',['tjBufSize',['../group___turbo_j_p_e_g.html#gaccc5bca7f12fcdcc302e6e1c6d4b311b',1,'turbojpeg.h']]], ['tjbufsizeyuv2',['tjBufSizeYUV2',['../group___turbo_j_p_e_g.html#gaf451664a62c1f6c7cc5a6401f32908c9',1,'turbojpeg.h']]], ['tjcompress2',['tjCompress2',['../group___turbo_j_p_e_g.html#gaba62b7a98f960839b588579898495cf2',1,'turbojpeg.h']]], ['tjcompressfromyuv',['tjCompressFromYUV',['../group___turbo_j_p_e_g.html#ga0b931126c7a615ddc3bbd0cca6698d67',1,'turbojpeg.h']]], ['tjcompressfromyuvplanes',['tjCompressFromYUVPlanes',['../group___turbo_j_p_e_g.html#gaa89a1982cb4556b12ae7af4439991af6',1,'turbojpeg.h']]], ['tjcs',['TJCS',['../group___turbo_j_p_e_g.html#ga4f83ad3368e0e29d1957be0efa7c3720',1,'turbojpeg.h']]], ['tjcs_5fcmyk',['TJCS_CMYK',['../group___turbo_j_p_e_g.html#gga4f83ad3368e0e29d1957be0efa7c3720a6c8b636152ac8195b869587db315ee53',1,'turbojpeg.h']]], ['tjcs_5fgray',['TJCS_GRAY',['../group___turbo_j_p_e_g.html#gga4f83ad3368e0e29d1957be0efa7c3720ab3e7d6a87f695e45b81c1b5262b5a50a',1,'turbojpeg.h']]], ['tjcs_5frgb',['TJCS_RGB',['../group___turbo_j_p_e_g.html#gga4f83ad3368e0e29d1957be0efa7c3720a677cb7ccb85c4038ac41964a2e09e555',1,'turbojpeg.h']]], ['tjcs_5fycbcr',['TJCS_YCbCr',['../group___turbo_j_p_e_g.html#gga4f83ad3368e0e29d1957be0efa7c3720a7389b8f65bb387ffedce3efd0d78ec75',1,'turbojpeg.h']]], ['tjcs_5fycck',['TJCS_YCCK',['../group___turbo_j_p_e_g.html#gga4f83ad3368e0e29d1957be0efa7c3720a53839e0fe867b76b58d16b0a1a7c598e',1,'turbojpeg.h']]], ['tjdecodeyuv',['tjDecodeYUV',['../group___turbo_j_p_e_g.html#ga132ae2c2cadcf64c8bb0f3bdf69da3ed',1,'turbojpeg.h']]], ['tjdecodeyuvplanes',['tjDecodeYUVPlanes',['../group___turbo_j_p_e_g.html#ga6cb5b0e1101a2b20edea576e11faf93d',1,'turbojpeg.h']]], ['tjdecompress2',['tjDecompress2',['../group___turbo_j_p_e_g.html#gada69cc6443d1bb493b40f1626259e5e9',1,'turbojpeg.h']]], ['tjdecompressheader3',['tjDecompressHeader3',['../group___turbo_j_p_e_g.html#gacd0fac3af74b3511d39b4781b7103086',1,'turbojpeg.h']]], ['tjdecompresstoyuv2',['tjDecompressToYUV2',['../group___turbo_j_p_e_g.html#ga7c08b340ad7f8e85d407bd9e81d44d07',1,'turbojpeg.h']]], ['tjdecompresstoyuvplanes',['tjDecompressToYUVPlanes',['../group___turbo_j_p_e_g.html#ga0828a38ae29631ac28b6857cefb0eebf',1,'turbojpeg.h']]], ['tjdestroy',['tjDestroy',['../group___turbo_j_p_e_g.html#ga674adee917b95ad4a896f1ba39e12540',1,'turbojpeg.h']]], ['tjencodeyuv3',['tjEncodeYUV3',['../group___turbo_j_p_e_g.html#ga0a5ffbf7cb58a5b6a8201114fe889360',1,'turbojpeg.h']]], ['tjencodeyuvplanes',['tjEncodeYUVPlanes',['../group___turbo_j_p_e_g.html#gaa791db8598853ddcad24e42897ef1269',1,'turbojpeg.h']]], ['tjflag_5faccuratedct',['TJFLAG_ACCURATEDCT',['../group___turbo_j_p_e_g.html#gacb233cfd722d66d1ccbf48a7de81f0e0',1,'turbojpeg.h']]], ['tjflag_5fbottomup',['TJFLAG_BOTTOMUP',['../group___turbo_j_p_e_g.html#ga72ecf4ebe6eb702d3c6f5ca27455e1ec',1,'turbojpeg.h']]], ['tjflag_5ffastdct',['TJFLAG_FASTDCT',['../group___turbo_j_p_e_g.html#gaabce235db80d3f698b27f36cbd453da2',1,'turbojpeg.h']]], ['tjflag_5ffastupsample',['TJFLAG_FASTUPSAMPLE',['../group___turbo_j_p_e_g.html#ga4ee4506c81177a06f77e2504a22efd2d',1,'turbojpeg.h']]], ['tjflag_5fnorealloc',['TJFLAG_NOREALLOC',['../group___turbo_j_p_e_g.html#ga8808d403c68b62aaa58a4c1e58e98963',1,'turbojpeg.h']]], ['tjfree',['tjFree',['../group___turbo_j_p_e_g.html#ga8c4a1231dc06a450514c835f6471f137',1,'turbojpeg.h']]], ['tjgeterrorstr',['tjGetErrorStr',['../group___turbo_j_p_e_g.html#ga9af79c908ec131b1ae8d52fe40375abf',1,'turbojpeg.h']]], ['tjgetscalingfactors',['tjGetScalingFactors',['../group___turbo_j_p_e_g.html#ga6449044b9af402999ccf52f401333be8',1,'turbojpeg.h']]], ['tjgreenoffset',['tjGreenOffset',['../group___turbo_j_p_e_g.html#ga82d6e35da441112a411da41923c0ba2f',1,'turbojpeg.h']]], ['tjhandle',['tjhandle',['../group___turbo_j_p_e_g.html#ga758d2634ecb4949de7815cba621f5763',1,'turbojpeg.h']]], ['tjinitcompress',['tjInitCompress',['../group___turbo_j_p_e_g.html#ga3d10c47fbe4a2489a2b30c931551d01a',1,'turbojpeg.h']]], ['tjinitdecompress',['tjInitDecompress',['../group___turbo_j_p_e_g.html#gae5408179d041e2a2f7199c8283cf649e',1,'turbojpeg.h']]], ['tjinittransform',['tjInitTransform',['../group___turbo_j_p_e_g.html#ga3155b775bfbac9dbba869b95a0367902',1,'turbojpeg.h']]], ['tjmcuheight',['tjMCUHeight',['../group___turbo_j_p_e_g.html#gabd247bb9fecb393eca57366feb8327bf',1,'turbojpeg.h']]], ['tjmcuwidth',['tjMCUWidth',['../group___turbo_j_p_e_g.html#ga9e61e7cd47a15a173283ba94e781308c',1,'turbojpeg.h']]], ['tjpad',['TJPAD',['../group___turbo_j_p_e_g.html#ga0aba955473315e405295d978f0c16511',1,'turbojpeg.h']]], ['tjpf',['TJPF',['../group___turbo_j_p_e_g.html#gac916144e26c3817ac514e64ae5d12e2a',1,'turbojpeg.h']]], ['tjpf_5fabgr',['TJPF_ABGR',['../group___turbo_j_p_e_g.html#ggac916144e26c3817ac514e64ae5d12e2aa1ba1a7f1631dbeaa49a0a85fc4a40081',1,'turbojpeg.h']]], ['tjpf_5fargb',['TJPF_ARGB',['../group___turbo_j_p_e_g.html#ggac916144e26c3817ac514e64ae5d12e2aae8f846ed9d9de99b6e1dfe448848765c',1,'turbojpeg.h']]], ['tjpf_5fbgr',['TJPF_BGR',['../group___turbo_j_p_e_g.html#ggac916144e26c3817ac514e64ae5d12e2aab10624437fb8ef495a0b153e65749839',1,'turbojpeg.h']]], ['tjpf_5fbgra',['TJPF_BGRA',['../group___turbo_j_p_e_g.html#ggac916144e26c3817ac514e64ae5d12e2aac037ff1845cf9b74bb81a3659c2b9fb4',1,'turbojpeg.h']]], ['tjpf_5fbgrx',['TJPF_BGRX',['../group___turbo_j_p_e_g.html#ggac916144e26c3817ac514e64ae5d12e2aa2a1fbf569ca79897eae886e3376ca4c8',1,'turbojpeg.h']]], ['tjpf_5fcmyk',['TJPF_CMYK',['../group___turbo_j_p_e_g.html#ggac916144e26c3817ac514e64ae5d12e2aa7f5100ec44c91994e243f1cf55553f8b',1,'turbojpeg.h']]], ['tjpf_5fgray',['TJPF_GRAY',['../group___turbo_j_p_e_g.html#ggac916144e26c3817ac514e64ae5d12e2aa5431b54b015337705f13118073711a1a',1,'turbojpeg.h']]], ['tjpf_5frgb',['TJPF_RGB',['../group___turbo_j_p_e_g.html#ggac916144e26c3817ac514e64ae5d12e2aa7ce93230bff449518ce387c17e6ed37c',1,'turbojpeg.h']]], ['tjpf_5frgba',['TJPF_RGBA',['../group___turbo_j_p_e_g.html#ggac916144e26c3817ac514e64ae5d12e2aa88d2e88fab67f6503cf972e14851cc12',1,'turbojpeg.h']]], ['tjpf_5frgbx',['TJPF_RGBX',['../group___turbo_j_p_e_g.html#ggac916144e26c3817ac514e64ae5d12e2aa83973bebb7e2dc6fa8bae89ff3f42e01',1,'turbojpeg.h']]], ['tjpf_5fxbgr',['TJPF_XBGR',['../group___turbo_j_p_e_g.html#ggac916144e26c3817ac514e64ae5d12e2aaf6603b27147de47e212e75dac027b2af',1,'turbojpeg.h']]], ['tjpf_5fxrgb',['TJPF_XRGB',['../group___turbo_j_p_e_g.html#ggac916144e26c3817ac514e64ae5d12e2aadae996905efcfa3b42a0bb3bea7f9d84',1,'turbojpeg.h']]], ['tjpixelsize',['tjPixelSize',['../group___turbo_j_p_e_g.html#gad77cf8fe5b2bfd3cb3f53098146abb4c',1,'turbojpeg.h']]], ['tjplaneheight',['tjPlaneHeight',['../group___turbo_j_p_e_g.html#ga1a209696c6a80748f20e134b3c64789f',1,'turbojpeg.h']]], ['tjplanesizeyuv',['tjPlaneSizeYUV',['../group___turbo_j_p_e_g.html#ga6f98d977bfa9d167c97172e876ba61e2',1,'turbojpeg.h']]], ['tjplanewidth',['tjPlaneWidth',['../group___turbo_j_p_e_g.html#ga63fb66bb1e36c74008c4634360becbb1',1,'turbojpeg.h']]], ['tjredoffset',['tjRedOffset',['../group___turbo_j_p_e_g.html#gadd9b446742ac8a3923f7992c7988fea8',1,'turbojpeg.h']]], ['tjregion',['tjregion',['../structtjregion.html',1,'']]], ['tjsamp',['TJSAMP',['../group___turbo_j_p_e_g.html#ga1d047060ea80bb9820d540bb928e9074',1,'turbojpeg.h']]], ['tjsamp_5f411',['TJSAMP_411',['../group___turbo_j_p_e_g.html#gga1d047060ea80bb9820d540bb928e9074a28ec62575e5ea295c3fde3001dc628e2',1,'turbojpeg.h']]], ['tjsamp_5f420',['TJSAMP_420',['../group___turbo_j_p_e_g.html#gga1d047060ea80bb9820d540bb928e9074a63085dbf683cfe39e513cdb6343e3737',1,'turbojpeg.h']]], ['tjsamp_5f422',['TJSAMP_422',['../group___turbo_j_p_e_g.html#gga1d047060ea80bb9820d540bb928e9074a136130902cc578f11f32429b59368404',1,'turbojpeg.h']]], ['tjsamp_5f440',['TJSAMP_440',['../group___turbo_j_p_e_g.html#gga1d047060ea80bb9820d540bb928e9074accf740e6f3aa6ba20ba922cad13cb974',1,'turbojpeg.h']]], ['tjsamp_5f444',['TJSAMP_444',['../group___turbo_j_p_e_g.html#gga1d047060ea80bb9820d540bb928e9074afb8da4f44197837bdec0a4f593dacae3',1,'turbojpeg.h']]], ['tjsamp_5fgray',['TJSAMP_GRAY',['../group___turbo_j_p_e_g.html#gga1d047060ea80bb9820d540bb928e9074a3f1c9504842ddc7a48d0f690754b6248',1,'turbojpeg.h']]], ['tjscaled',['TJSCALED',['../group___turbo_j_p_e_g.html#ga84878bb65404204743aa18cac02781df',1,'turbojpeg.h']]], ['tjscalingfactor',['tjscalingfactor',['../structtjscalingfactor.html',1,'']]], ['tjtransform',['tjtransform',['../structtjtransform.html',1,'tjtransform'],['../group___turbo_j_p_e_g.html#gae403193ceb4aafb7e0f56ab587b48616',1,'tjTransform(tjhandle handle, unsigned char *jpegBuf, unsigned long jpegSize, int n, unsigned char **dstBufs, unsigned long *dstSizes, tjtransform *transforms, int flags): turbojpeg.h'],['../group___turbo_j_p_e_g.html#gaa29f3189c41be12ec5dee7caec318a31',1,'tjtransform(): turbojpeg.h']]], ['tjxop',['TJXOP',['../group___turbo_j_p_e_g.html#ga2de531af4e7e6c4f124908376b354866',1,'turbojpeg.h']]], ['tjxop_5fhflip',['TJXOP_HFLIP',['../group___turbo_j_p_e_g.html#gga2de531af4e7e6c4f124908376b354866aa0df69776caa30f0fa28e26332d311ce',1,'turbojpeg.h']]], ['tjxop_5fnone',['TJXOP_NONE',['../group___turbo_j_p_e_g.html#gga2de531af4e7e6c4f124908376b354866aad88c0366cd3f7d0eac9d7a3fa1c2c27',1,'turbojpeg.h']]], ['tjxop_5frot180',['TJXOP_ROT180',['../group___turbo_j_p_e_g.html#gga2de531af4e7e6c4f124908376b354866a140952eb8dd0300accfcc22726d69692',1,'turbojpeg.h']]], ['tjxop_5frot270',['TJXOP_ROT270',['../group___turbo_j_p_e_g.html#gga2de531af4e7e6c4f124908376b354866a3064ee5dfb7f032df332818587567a08',1,'turbojpeg.h']]], ['tjxop_5frot90',['TJXOP_ROT90',['../group___turbo_j_p_e_g.html#gga2de531af4e7e6c4f124908376b354866a43b2bbb23bc4bd548422d43fbe9af128',1,'turbojpeg.h']]], ['tjxop_5ftranspose',['TJXOP_TRANSPOSE',['../group___turbo_j_p_e_g.html#gga2de531af4e7e6c4f124908376b354866a31060aed199f886afdd417f80499c32d',1,'turbojpeg.h']]], ['tjxop_5ftransverse',['TJXOP_TRANSVERSE',['../group___turbo_j_p_e_g.html#gga2de531af4e7e6c4f124908376b354866af3b14d488aea6ece9e5b3df73a74d6a4',1,'turbojpeg.h']]], ['tjxop_5fvflip',['TJXOP_VFLIP',['../group___turbo_j_p_e_g.html#gga2de531af4e7e6c4f124908376b354866a324eddfbec53b7e691f61e56929d0d5d',1,'turbojpeg.h']]], ['tjxopt_5fcrop',['TJXOPT_CROP',['../group___turbo_j_p_e_g.html#ga9c771a757fc1294add611906b89ab2d2',1,'turbojpeg.h']]], ['tjxopt_5fgray',['TJXOPT_GRAY',['../group___turbo_j_p_e_g.html#ga3acee7b48ade1b99e5588736007c2589',1,'turbojpeg.h']]], ['tjxopt_5fnooutput',['TJXOPT_NOOUTPUT',['../group___turbo_j_p_e_g.html#gafbf992bbf6e006705886333703ffab31',1,'turbojpeg.h']]], ['tjxopt_5fperfect',['TJXOPT_PERFECT',['../group___turbo_j_p_e_g.html#ga50e03cb5ed115330e212417429600b00',1,'turbojpeg.h']]], ['tjxopt_5ftrim',['TJXOPT_TRIM',['../group___turbo_j_p_e_g.html#ga319826b7eb1583c0595bbe7b95428709',1,'turbojpeg.h']]], ['turbojpeg',['TurboJPEG',['../group___turbo_j_p_e_g.html',1,'']]] ]; libjpeg-turbo-1.4.2/doc/html/search/variables_74.html0000644000076500007650000000177412600050400017340 00000000000000
Loading...
Searching...
No Matches
libjpeg-turbo-1.4.2/doc/html/search/variables_63.js0000644000076500007650000000021112600050400016767 00000000000000var searchData= [ ['customfilter',['customFilter',['../structtjtransform.html#a43ee1bcdd2a8d7249a756774f78793c1',1,'tjtransform']]] ]; libjpeg-turbo-1.4.2/doc/html/search/typedefs_74.js0000644000076500007650000000037612600050400016660 00000000000000var searchData= [ ['tjhandle',['tjhandle',['../group___turbo_j_p_e_g.html#ga758d2634ecb4949de7815cba621f5763',1,'turbojpeg.h']]], ['tjtransform',['tjtransform',['../group___turbo_j_p_e_g.html#gaa29f3189c41be12ec5dee7caec318a31',1,'turbojpeg.h']]] ]; libjpeg-turbo-1.4.2/doc/html/search/all_63.js0000644000076500007650000000021112600050400015567 00000000000000var searchData= [ ['customfilter',['customFilter',['../structtjtransform.html#a43ee1bcdd2a8d7249a756774f78793c1',1,'tjtransform']]] ]; libjpeg-turbo-1.4.2/doc/html/search/all_72.html0000644000076500007650000000176612600050400016137 00000000000000
Loading...
Searching...
No Matches
libjpeg-turbo-1.4.2/doc/html/search/all_79.html0000644000076500007650000000176612600050400016146 00000000000000
Loading...
Searching...
No Matches
libjpeg-turbo-1.4.2/doc/html/search/classes_74.js0000644000076500007650000000035112600050400016463 00000000000000var searchData= [ ['tjregion',['tjregion',['../structtjregion.html',1,'']]], ['tjscalingfactor',['tjscalingfactor',['../structtjscalingfactor.html',1,'']]], ['tjtransform',['tjtransform',['../structtjtransform.html',1,'']]] ]; libjpeg-turbo-1.4.2/doc/html/search/all_72.js0000644000076500007650000000016312600050400015575 00000000000000var searchData= [ ['r',['r',['../structtjtransform.html#ac324e5e442abec8a961e5bf219db12cf',1,'tjtransform']]] ]; libjpeg-turbo-1.4.2/doc/html/search/variables_79.html0000644000076500007650000000177412600050400017345 00000000000000
Loading...
Searching...
No Matches
libjpeg-turbo-1.4.2/doc/html/search/all_78.js0000644000076500007650000000015512600050400015604 00000000000000var searchData= [ ['x',['x',['../structtjregion.html#a4b6a37a93997091b26a75831fa291ad9',1,'tjregion']]] ]; libjpeg-turbo-1.4.2/doc/html/search/all_79.js0000644000076500007650000000015512600050400015605 00000000000000var searchData= [ ['y',['y',['../structtjregion.html#a7b3e0c24cfe87acc80e334cafdcf22c2',1,'tjregion']]] ]; libjpeg-turbo-1.4.2/doc/html/search/groups_74.html0000644000076500007650000000177112600050400016704 00000000000000
Loading...
Searching...
No Matches
libjpeg-turbo-1.4.2/doc/html/search/nomatches.html0000644000076500007650000000071512600050400017031 00000000000000
No Matches
libjpeg-turbo-1.4.2/doc/html/search/variables_6e.js0000644000076500007650000000017712600050400017064 00000000000000var searchData= [ ['num',['num',['../structtjscalingfactor.html#a9b011e57f981ee23083e2c1aa5e640ec',1,'tjscalingfactor']]] ]; libjpeg-turbo-1.4.2/doc/html/search/functions_74.js0000644000076500007650000000614612600050400017046 00000000000000var searchData= [ ['tjalloc',['tjAlloc',['../group___turbo_j_p_e_g.html#ga5c9234bda6d993cdaffdd89bf81a00ff',1,'turbojpeg.h']]], ['tjbufsize',['tjBufSize',['../group___turbo_j_p_e_g.html#gaccc5bca7f12fcdcc302e6e1c6d4b311b',1,'turbojpeg.h']]], ['tjbufsizeyuv2',['tjBufSizeYUV2',['../group___turbo_j_p_e_g.html#gaf451664a62c1f6c7cc5a6401f32908c9',1,'turbojpeg.h']]], ['tjcompress2',['tjCompress2',['../group___turbo_j_p_e_g.html#gaba62b7a98f960839b588579898495cf2',1,'turbojpeg.h']]], ['tjcompressfromyuv',['tjCompressFromYUV',['../group___turbo_j_p_e_g.html#ga0b931126c7a615ddc3bbd0cca6698d67',1,'turbojpeg.h']]], ['tjcompressfromyuvplanes',['tjCompressFromYUVPlanes',['../group___turbo_j_p_e_g.html#gaa89a1982cb4556b12ae7af4439991af6',1,'turbojpeg.h']]], ['tjdecodeyuv',['tjDecodeYUV',['../group___turbo_j_p_e_g.html#ga132ae2c2cadcf64c8bb0f3bdf69da3ed',1,'turbojpeg.h']]], ['tjdecodeyuvplanes',['tjDecodeYUVPlanes',['../group___turbo_j_p_e_g.html#ga6cb5b0e1101a2b20edea576e11faf93d',1,'turbojpeg.h']]], ['tjdecompress2',['tjDecompress2',['../group___turbo_j_p_e_g.html#gada69cc6443d1bb493b40f1626259e5e9',1,'turbojpeg.h']]], ['tjdecompressheader3',['tjDecompressHeader3',['../group___turbo_j_p_e_g.html#gacd0fac3af74b3511d39b4781b7103086',1,'turbojpeg.h']]], ['tjdecompresstoyuv2',['tjDecompressToYUV2',['../group___turbo_j_p_e_g.html#ga7c08b340ad7f8e85d407bd9e81d44d07',1,'turbojpeg.h']]], ['tjdecompresstoyuvplanes',['tjDecompressToYUVPlanes',['../group___turbo_j_p_e_g.html#ga0828a38ae29631ac28b6857cefb0eebf',1,'turbojpeg.h']]], ['tjdestroy',['tjDestroy',['../group___turbo_j_p_e_g.html#ga674adee917b95ad4a896f1ba39e12540',1,'turbojpeg.h']]], ['tjencodeyuv3',['tjEncodeYUV3',['../group___turbo_j_p_e_g.html#ga0a5ffbf7cb58a5b6a8201114fe889360',1,'turbojpeg.h']]], ['tjencodeyuvplanes',['tjEncodeYUVPlanes',['../group___turbo_j_p_e_g.html#gaa791db8598853ddcad24e42897ef1269',1,'turbojpeg.h']]], ['tjfree',['tjFree',['../group___turbo_j_p_e_g.html#ga8c4a1231dc06a450514c835f6471f137',1,'turbojpeg.h']]], ['tjgeterrorstr',['tjGetErrorStr',['../group___turbo_j_p_e_g.html#ga9af79c908ec131b1ae8d52fe40375abf',1,'turbojpeg.h']]], ['tjgetscalingfactors',['tjGetScalingFactors',['../group___turbo_j_p_e_g.html#ga6449044b9af402999ccf52f401333be8',1,'turbojpeg.h']]], ['tjinitcompress',['tjInitCompress',['../group___turbo_j_p_e_g.html#ga3d10c47fbe4a2489a2b30c931551d01a',1,'turbojpeg.h']]], ['tjinitdecompress',['tjInitDecompress',['../group___turbo_j_p_e_g.html#gae5408179d041e2a2f7199c8283cf649e',1,'turbojpeg.h']]], ['tjinittransform',['tjInitTransform',['../group___turbo_j_p_e_g.html#ga3155b775bfbac9dbba869b95a0367902',1,'turbojpeg.h']]], ['tjplaneheight',['tjPlaneHeight',['../group___turbo_j_p_e_g.html#ga1a209696c6a80748f20e134b3c64789f',1,'turbojpeg.h']]], ['tjplanesizeyuv',['tjPlaneSizeYUV',['../group___turbo_j_p_e_g.html#ga6f98d977bfa9d167c97172e876ba61e2',1,'turbojpeg.h']]], ['tjplanewidth',['tjPlaneWidth',['../group___turbo_j_p_e_g.html#ga63fb66bb1e36c74008c4634360becbb1',1,'turbojpeg.h']]], ['tjtransform',['tjTransform',['../group___turbo_j_p_e_g.html#gae403193ceb4aafb7e0f56ab587b48616',1,'turbojpeg.h']]] ]; libjpeg-turbo-1.4.2/doc/html/search/functions_74.html0000644000076500007650000000177412600050400017400 00000000000000
Loading...
Searching...
No Matches
libjpeg-turbo-1.4.2/doc/html/search/enums_74.html0000644000076500007650000000177012600050400016513 00000000000000
Loading...
Searching...
No Matches
libjpeg-turbo-1.4.2/doc/html/search/close.png0000644000076500007650000000042112600050400015767 00000000000000PNG  IHDR w&IDATuQF@  C5Cg3(w{#*&9}Ͳ,ض y""q<ϑi8K߾6 Ce(;//BVx</ڶEUUte,"gL}ߣk2VSF1 s1 DZwA$IYQ[ ouk*AiWY(G/0{A,)eln]? yEIENDB`libjpeg-turbo-1.4.2/doc/html/search/variables_6e.html0000644000076500007650000000177412600050400017420 00000000000000
Loading...
Searching...
No Matches
libjpeg-turbo-1.4.2/doc/html/search/all_6e.html0000644000076500007650000000176612600050400016221 00000000000000
Loading...
Searching...
No Matches
libjpeg-turbo-1.4.2/doc/html/search/all_77.js0000644000076500007650000000015512600050400015603 00000000000000var searchData= [ ['w',['w',['../structtjregion.html#ab6eb73ceef584fc23c8c8097926dce42',1,'tjregion']]] ]; libjpeg-turbo-1.4.2/doc/html/search/variables_6f.html0000644000076500007650000000177412600050400017421 00000000000000
Loading...
Searching...
No Matches
libjpeg-turbo-1.4.2/doc/html/search/all_77.html0000644000076500007650000000176612600050400016144 00000000000000
Loading...
Searching...
No Matches
libjpeg-turbo-1.4.2/doc/html/search/search.js0000644000076500007650000005707412600050400015777 00000000000000// Search script generated by doxygen // Copyright (C) 2009 by Dimitri van Heesch. // The code in this file is loosly based on main.js, part of Natural Docs, // which is Copyright (C) 2003-2008 Greg Valure // Natural Docs is licensed under the GPL. var indexSectionsWithContent = { 0: "0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001100010000011001010011100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000", 1: "0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000", 2: "0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000", 3: "0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001100010000011001010011100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000", 4: "0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000", 5: "0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000", 6: "0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000", 7: "0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000" }; var indexSectionNames = { 0: "all", 1: "classes", 2: "functions", 3: "variables", 4: "typedefs", 5: "enums", 6: "enumvalues", 7: "groups" }; function convertToId(search) { var result = ''; for (i=0;i do a search { this.Search(); } } this.OnSearchSelectKey = function(evt) { var e = (evt) ? evt : window.event; // for IE if (e.keyCode==40 && this.searchIndex0) // Up { this.searchIndex--; this.OnSelectItem(this.searchIndex); } else if (e.keyCode==13 || e.keyCode==27) { this.OnSelectItem(this.searchIndex); this.CloseSelectionWindow(); this.DOMSearchField().focus(); } return false; } // --------- Actions // Closes the results window. this.CloseResultsWindow = function() { this.DOMPopupSearchResultsWindow().style.display = 'none'; this.DOMSearchClose().style.display = 'none'; this.Activate(false); } this.CloseSelectionWindow = function() { this.DOMSearchSelectWindow().style.display = 'none'; } // Performs a search. this.Search = function() { this.keyTimeout = 0; // strip leading whitespace var searchValue = this.DOMSearchField().value.replace(/^ +/, ""); var code = searchValue.toLowerCase().charCodeAt(0); var hexCode; if (code<16) { hexCode="0"+code.toString(16); } else { hexCode=code.toString(16); } var resultsPage; var resultsPageWithSearch; var hasResultsPage; if (indexSectionsWithContent[this.searchIndex].charAt(code) == '1') { resultsPage = this.resultsPath + '/' + indexSectionNames[this.searchIndex] + '_' + hexCode + '.html'; resultsPageWithSearch = resultsPage+'?'+escape(searchValue); hasResultsPage = true; } else // nothing available for this search term { resultsPage = this.resultsPath + '/nomatches.html'; resultsPageWithSearch = resultsPage; hasResultsPage = false; } window.frames.MSearchResults.location = resultsPageWithSearch; var domPopupSearchResultsWindow = this.DOMPopupSearchResultsWindow(); if (domPopupSearchResultsWindow.style.display!='block') { var domSearchBox = this.DOMSearchBox(); this.DOMSearchClose().style.display = 'inline'; if (this.insideFrame) { var domPopupSearchResults = this.DOMPopupSearchResults(); domPopupSearchResultsWindow.style.position = 'relative'; domPopupSearchResultsWindow.style.display = 'block'; var width = document.body.clientWidth - 8; // the -8 is for IE :-( domPopupSearchResultsWindow.style.width = width + 'px'; domPopupSearchResults.style.width = width + 'px'; } else { var domPopupSearchResults = this.DOMPopupSearchResults(); var left = getXPos(domSearchBox) + 150; // domSearchBox.offsetWidth; var top = getYPos(domSearchBox) + 20; // domSearchBox.offsetHeight + 1; domPopupSearchResultsWindow.style.display = 'block'; left -= domPopupSearchResults.offsetWidth; domPopupSearchResultsWindow.style.top = top + 'px'; domPopupSearchResultsWindow.style.left = left + 'px'; } } this.lastSearchValue = searchValue; this.lastResultsPage = resultsPage; } // -------- Activation Functions // Activates or deactivates the search panel, resetting things to // their default values if necessary. this.Activate = function(isActive) { if (isActive || // open it this.DOMPopupSearchResultsWindow().style.display == 'block' ) { this.DOMSearchBox().className = 'MSearchBoxActive'; var searchField = this.DOMSearchField(); if (searchField.value == this.searchLabel) // clear "Search" term upon entry { searchField.value = ''; this.searchActive = true; } } else if (!isActive) // directly remove the panel { this.DOMSearchBox().className = 'MSearchBoxInactive'; this.DOMSearchField().value = this.searchLabel; this.searchActive = false; this.lastSearchValue = '' this.lastResultsPage = ''; } } } // ----------------------------------------------------------------------- // The class that handles everything on the search results page. function SearchResults(name) { // The number of matches from the last run of . this.lastMatchCount = 0; this.lastKey = 0; this.repeatOn = false; // Toggles the visibility of the passed element ID. this.FindChildElement = function(id) { var parentElement = document.getElementById(id); var element = parentElement.firstChild; while (element && element!=parentElement) { if (element.nodeName == 'DIV' && element.className == 'SRChildren') { return element; } if (element.nodeName == 'DIV' && element.hasChildNodes()) { element = element.firstChild; } else if (element.nextSibling) { element = element.nextSibling; } else { do { element = element.parentNode; } while (element && element!=parentElement && !element.nextSibling); if (element && element!=parentElement) { element = element.nextSibling; } } } } this.Toggle = function(id) { var element = this.FindChildElement(id); if (element) { if (element.style.display == 'block') { element.style.display = 'none'; } else { element.style.display = 'block'; } } } // Searches for the passed string. If there is no parameter, // it takes it from the URL query. // // Always returns true, since other documents may try to call it // and that may or may not be possible. this.Search = function(search) { if (!search) // get search word from URL { search = window.location.search; search = search.substring(1); // Remove the leading '?' search = unescape(search); } search = search.replace(/^ +/, ""); // strip leading spaces search = search.replace(/ +$/, ""); // strip trailing spaces search = search.toLowerCase(); search = convertToId(search); var resultRows = document.getElementsByTagName("div"); var matches = 0; var i = 0; while (i < resultRows.length) { var row = resultRows.item(i); if (row.className == "SRResult") { var rowMatchName = row.id.toLowerCase(); rowMatchName = rowMatchName.replace(/^sr\d*_/, ''); // strip 'sr123_' if (search.length<=rowMatchName.length && rowMatchName.substr(0, search.length)==search) { row.style.display = 'block'; matches++; } else { row.style.display = 'none'; } } i++; } document.getElementById("Searching").style.display='none'; if (matches == 0) // no results { document.getElementById("NoMatches").style.display='block'; } else // at least one result { document.getElementById("NoMatches").style.display='none'; } this.lastMatchCount = matches; return true; } // return the first item with index index or higher that is visible this.NavNext = function(index) { var focusItem; while (1) { var focusName = 'Item'+index; focusItem = document.getElementById(focusName); if (focusItem && focusItem.parentNode.parentNode.style.display=='block') { break; } else if (!focusItem) // last element { break; } focusItem=null; index++; } return focusItem; } this.NavPrev = function(index) { var focusItem; while (1) { var focusName = 'Item'+index; focusItem = document.getElementById(focusName); if (focusItem && focusItem.parentNode.parentNode.style.display=='block') { break; } else if (!focusItem) // last element { break; } focusItem=null; index--; } return focusItem; } this.ProcessKeys = function(e) { if (e.type == "keydown") { this.repeatOn = false; this.lastKey = e.keyCode; } else if (e.type == "keypress") { if (!this.repeatOn) { if (this.lastKey) this.repeatOn = true; return false; // ignore first keypress after keydown } } else if (e.type == "keyup") { this.lastKey = 0; this.repeatOn = false; } return this.lastKey!=0; } this.Nav = function(evt,itemIndex) { var e = (evt) ? evt : window.event; // for IE if (e.keyCode==13) return true; if (!this.ProcessKeys(e)) return false; if (this.lastKey==38) // Up { var newIndex = itemIndex-1; var focusItem = this.NavPrev(newIndex); if (focusItem) { var child = this.FindChildElement(focusItem.parentNode.parentNode.id); if (child && child.style.display == 'block') // children visible { var n=0; var tmpElem; while (1) // search for last child { tmpElem = document.getElementById('Item'+newIndex+'_c'+n); if (tmpElem) { focusItem = tmpElem; } else // found it! { break; } n++; } } } if (focusItem) { focusItem.focus(); } else // return focus to search field { parent.document.getElementById("MSearchField").focus(); } } else if (this.lastKey==40) // Down { var newIndex = itemIndex+1; var focusItem; var item = document.getElementById('Item'+itemIndex); var elem = this.FindChildElement(item.parentNode.parentNode.id); if (elem && elem.style.display == 'block') // children visible { focusItem = document.getElementById('Item'+itemIndex+'_c0'); } if (!focusItem) focusItem = this.NavNext(newIndex); if (focusItem) focusItem.focus(); } else if (this.lastKey==39) // Right { var item = document.getElementById('Item'+itemIndex); var elem = this.FindChildElement(item.parentNode.parentNode.id); if (elem) elem.style.display = 'block'; } else if (this.lastKey==37) // Left { var item = document.getElementById('Item'+itemIndex); var elem = this.FindChildElement(item.parentNode.parentNode.id); if (elem) elem.style.display = 'none'; } else if (this.lastKey==27) // Escape { parent.searchBox.CloseResultsWindow(); parent.document.getElementById("MSearchField").focus(); } else if (this.lastKey==13) // Enter { return true; } return false; } this.NavChild = function(evt,itemIndex,childIndex) { var e = (evt) ? evt : window.event; // for IE if (e.keyCode==13) return true; if (!this.ProcessKeys(e)) return false; if (this.lastKey==38) // Up { if (childIndex>0) { var newIndex = childIndex-1; document.getElementById('Item'+itemIndex+'_c'+newIndex).focus(); } else // already at first child, jump to parent { document.getElementById('Item'+itemIndex).focus(); } } else if (this.lastKey==40) // Down { var newIndex = childIndex+1; var elem = document.getElementById('Item'+itemIndex+'_c'+newIndex); if (!elem) // last child, jump to parent next parent { elem = this.NavNext(itemIndex+1); } if (elem) { elem.focus(); } } else if (this.lastKey==27) // Escape { parent.searchBox.CloseResultsWindow(); parent.document.getElementById("MSearchField").focus(); } else if (this.lastKey==13) // Enter { return true; } return false; } } function setKeyActions(elem,action) { elem.setAttribute('onkeydown',action); elem.setAttribute('onkeypress',action); elem.setAttribute('onkeyup',action); } function setClassAttr(elem,attr) { elem.setAttribute('class',attr); elem.setAttribute('className',attr); } function createResults() { var results = document.getElementById("SRResults"); for (var e=0; e
Loading...
Searching...
No Matches
libjpeg-turbo-1.4.2/doc/html/search/variables_74.js0000644000076500007650000000135012600050400016776 00000000000000var searchData= [ ['tjblueoffset',['tjBlueOffset',['../group___turbo_j_p_e_g.html#ga84e2e35d3f08025f976ec1ec53693dea',1,'turbojpeg.h']]], ['tjgreenoffset',['tjGreenOffset',['../group___turbo_j_p_e_g.html#ga82d6e35da441112a411da41923c0ba2f',1,'turbojpeg.h']]], ['tjmcuheight',['tjMCUHeight',['../group___turbo_j_p_e_g.html#gabd247bb9fecb393eca57366feb8327bf',1,'turbojpeg.h']]], ['tjmcuwidth',['tjMCUWidth',['../group___turbo_j_p_e_g.html#ga9e61e7cd47a15a173283ba94e781308c',1,'turbojpeg.h']]], ['tjpixelsize',['tjPixelSize',['../group___turbo_j_p_e_g.html#gad77cf8fe5b2bfd3cb3f53098146abb4c',1,'turbojpeg.h']]], ['tjredoffset',['tjRedOffset',['../group___turbo_j_p_e_g.html#gadd9b446742ac8a3923f7992c7988fea8',1,'turbojpeg.h']]] ]; libjpeg-turbo-1.4.2/doc/html/search/all_78.html0000644000076500007650000000176612600050400016145 00000000000000
Loading...
Searching...
No Matches
libjpeg-turbo-1.4.2/doc/html/search/variables_68.html0000644000076500007650000000177412600050400017343 00000000000000
Loading...
Searching...
No Matches
libjpeg-turbo-1.4.2/doc/html/search/all_6f.html0000644000076500007650000000176612600050400016222 00000000000000
Loading...
Searching...
No Matches
libjpeg-turbo-1.4.2/doc/html/search/all_63.html0000644000076500007650000000176612600050400016137 00000000000000
Loading...
Searching...
No Matches
libjpeg-turbo-1.4.2/doc/html/search/variables_72.html0000644000076500007650000000177412600050400017336 00000000000000
Loading...
Searching...
No Matches
libjpeg-turbo-1.4.2/doc/html/search/variables_6f.js0000644000076500007650000000034012600050400017055 00000000000000var searchData= [ ['op',['op',['../structtjtransform.html#a2525aab4ba6978a1c273f74fef50e498',1,'tjtransform']]], ['options',['options',['../structtjtransform.html#ac0e74655baa4402209a21e1ae481c8f6',1,'tjtransform']]] ]; libjpeg-turbo-1.4.2/doc/html/search/search_l.png0000644000076500007650000000113412600050400016444 00000000000000PNG  IHDR- pHYs   cHRMms8zʴ3Dv6*IDATxڬT=P~91M@0FPD/ѡ.;JtCڥ܊D(I.xo4hpFD8Ecmmnnl1 ,"vh4zl6{D:iP%>aax
Loading...
Searching...
No Matches
libjpeg-turbo-1.4.2/doc/html/search/search.css0000644000076500007650000001055512600050400016144 00000000000000/*---------------- Search Box */ #FSearchBox { float: left; } #MSearchBox { white-space : nowrap; position: absolute; float: none; display: inline; margin-top: 8px; right: 0px; width: 170px; z-index: 102; background-color: white; } #MSearchBox .left { display:block; position:absolute; left:10px; width:20px; height:19px; background:url('search_l.png') no-repeat; background-position:right; } #MSearchSelect { display:block; position:absolute; width:20px; height:19px; } .left #MSearchSelect { left:4px; } .right #MSearchSelect { right:5px; } #MSearchField { display:block; position:absolute; height:19px; background:url('search_m.png') repeat-x; border:none; width:116px; margin-left:20px; padding-left:4px; color: #909090; outline: none; font: 9pt Arial, Verdana, sans-serif; } #FSearchBox #MSearchField { margin-left:15px; } #MSearchBox .right { display:block; position:absolute; right:10px; top:0px; width:20px; height:19px; background:url('search_r.png') no-repeat; background-position:left; } #MSearchClose { display: none; position: absolute; top: 4px; background : none; border: none; margin: 0px 4px 0px 0px; padding: 0px 0px; outline: none; } .left #MSearchClose { left: 6px; } .right #MSearchClose { right: 2px; } .MSearchBoxActive #MSearchField { color: #000000; } /*---------------- Search filter selection */ #MSearchSelectWindow { display: none; position: absolute; left: 0; top: 0; border: 1px solid #90A5CE; background-color: #F9FAFC; z-index: 1; padding-top: 4px; padding-bottom: 4px; -moz-border-radius: 4px; -webkit-border-top-left-radius: 4px; -webkit-border-top-right-radius: 4px; -webkit-border-bottom-left-radius: 4px; -webkit-border-bottom-right-radius: 4px; -webkit-box-shadow: 5px 5px 5px rgba(0, 0, 0, 0.15); } .SelectItem { font: 8pt Arial, Verdana, sans-serif; padding-left: 2px; padding-right: 12px; border: 0px; } span.SelectionMark { margin-right: 4px; font-family: monospace; outline-style: none; text-decoration: none; } a.SelectItem { display: block; outline-style: none; color: #000000; text-decoration: none; padding-left: 6px; padding-right: 12px; } a.SelectItem:focus, a.SelectItem:active { color: #000000; outline-style: none; text-decoration: none; } a.SelectItem:hover { color: #FFFFFF; background-color: #3D578C; outline-style: none; text-decoration: none; cursor: pointer; display: block; } /*---------------- Search results window */ iframe#MSearchResults { width: 60ex; height: 15em; } #MSearchResultsWindow { display: none; position: absolute; left: 0; top: 0; border: 1px solid #000; background-color: #EEF1F7; } /* ----------------------------------- */ #SRIndex { clear:both; padding-bottom: 15px; } .SREntry { font-size: 10pt; padding-left: 1ex; } .SRPage .SREntry { font-size: 8pt; padding: 1px 5px; } body.SRPage { margin: 5px 2px; } .SRChildren { padding-left: 3ex; padding-bottom: .5em } .SRPage .SRChildren { display: none; } .SRSymbol { font-weight: bold; color: #425E97; font-family: Arial, Verdana, sans-serif; text-decoration: none; outline: none; } a.SRScope { display: block; color: #425E97; font-family: Arial, Verdana, sans-serif; text-decoration: none; outline: none; } a.SRSymbol:focus, a.SRSymbol:active, a.SRScope:focus, a.SRScope:active { text-decoration: underline; } span.SRScope { padding-left: 4px; } .SRPage .SRStatus { padding: 2px 5px; font-size: 8pt; font-style: italic; } .SRResult { display: none; } DIV.searchresults { margin-left: 10px; margin-right: 10px; } /*---------------- External search page results */ .searchresult { background-color: #F0F3F8; } .pages b { color: white; padding: 5px 5px 3px 5px; background-image: url("../tab_a.png"); background-repeat: repeat-x; text-shadow: 0 1px 1px #000000; } .pages { line-height: 17px; margin-left: 4px; text-decoration: none; } .hl { font-weight: bold; } #searchresults { margin-bottom: 20px; } .searchpages { margin-top: 10px; } libjpeg-turbo-1.4.2/doc/html/search/all_64.html0000644000076500007650000000176612600050400016140 00000000000000
Loading...
Searching...
No Matches
libjpeg-turbo-1.4.2/doc/html/group___turbo_j_p_e_g.html0000644000076500007650000054442412600050400020124 00000000000000 TurboJPEG: TurboJPEG
TurboJPEG  1.4

TurboJPEG API. More...

Data Structures

struct  tjscalingfactor
 Scaling factor. More...
 
struct  tjregion
 Cropping region. More...
 
struct  tjtransform
 Lossless transform. More...
 

Macros

#define TJ_NUMSAMP
 The number of chrominance subsampling options. More...
 
#define TJ_NUMPF
 The number of pixel formats. More...
 
#define TJ_NUMCS
 The number of JPEG colorspaces. More...
 
#define TJFLAG_BOTTOMUP
 The uncompressed source/destination image is stored in bottom-up (Windows, OpenGL) order, not top-down (X11) order. More...
 
#define TJFLAG_FASTUPSAMPLE
 When decompressing an image that was compressed using chrominance subsampling, use the fastest chrominance upsampling algorithm available in the underlying codec. More...
 
#define TJFLAG_NOREALLOC
 Disable buffer (re)allocation. More...
 
#define TJFLAG_FASTDCT
 Use the fastest DCT/IDCT algorithm available in the underlying codec. More...
 
#define TJFLAG_ACCURATEDCT
 Use the most accurate DCT/IDCT algorithm available in the underlying codec. More...
 
#define TJ_NUMXOP
 The number of transform operations. More...
 
#define TJXOPT_PERFECT
 This option will cause tjTransform() to return an error if the transform is not perfect. More...
 
#define TJXOPT_TRIM
 This option will cause tjTransform() to discard any partial MCU blocks that cannot be transformed. More...
 
#define TJXOPT_CROP
 This option will enable lossless cropping. More...
 
#define TJXOPT_GRAY
 This option will discard the color data in the input image and produce a grayscale output image. More...
 
#define TJXOPT_NOOUTPUT
 This option will prevent tjTransform() from outputting a JPEG image for this particular transform (this can be used in conjunction with a custom filter to capture the transformed DCT coefficients without transcoding them.) More...
 
#define TJPAD(width)
 Pad the given width to the nearest 32-bit boundary. More...
 
#define TJSCALED(dimension, scalingFactor)
 Compute the scaled value of dimension using the given scaling factor. More...
 

Typedefs

typedef struct tjtransform tjtransform
 Lossless transform. More...
 
typedef void * tjhandle
 TurboJPEG instance handle. More...
 

Enumerations

enum  TJSAMP {
  TJSAMP_444, TJSAMP_422, TJSAMP_420, TJSAMP_GRAY,
  TJSAMP_440, TJSAMP_411
}
 Chrominance subsampling options. More...
 
enum  TJPF {
  TJPF_RGB, TJPF_BGR, TJPF_RGBX, TJPF_BGRX,
  TJPF_XBGR, TJPF_XRGB, TJPF_GRAY, TJPF_RGBA,
  TJPF_BGRA, TJPF_ABGR, TJPF_ARGB, TJPF_CMYK
}
 Pixel formats. More...
 
enum  TJCS {
  TJCS_RGB, TJCS_YCbCr, TJCS_GRAY, TJCS_CMYK,
  TJCS_YCCK
}
 JPEG colorspaces. More...
 
enum  TJXOP {
  TJXOP_NONE, TJXOP_HFLIP, TJXOP_VFLIP, TJXOP_TRANSPOSE,
  TJXOP_TRANSVERSE, TJXOP_ROT90, TJXOP_ROT180, TJXOP_ROT270
}
 Transform operations for tjTransform() More...
 

Functions

DLLEXPORT tjhandle DLLCALL tjInitCompress (void)
 Create a TurboJPEG compressor instance. More...
 
DLLEXPORT int DLLCALL tjCompress2 (tjhandle handle, unsigned char *srcBuf, int width, int pitch, int height, int pixelFormat, unsigned char **jpegBuf, unsigned long *jpegSize, int jpegSubsamp, int jpegQual, int flags)
 Compress an RGB, grayscale, or CMYK image into a JPEG image. More...
 
DLLEXPORT int DLLCALL tjCompressFromYUV (tjhandle handle, unsigned char *srcBuf, int width, int pad, int height, int subsamp, unsigned char **jpegBuf, unsigned long *jpegSize, int jpegQual, int flags)
 Compress a YUV planar image into a JPEG image. More...
 
DLLEXPORT int DLLCALL tjCompressFromYUVPlanes (tjhandle handle, unsigned char **srcPlanes, int width, int *strides, int height, int subsamp, unsigned char **jpegBuf, unsigned long *jpegSize, int jpegQual, int flags)
 Compress a set of Y, U (Cb), and V (Cr) image planes into a JPEG image. More...
 
DLLEXPORT unsigned long DLLCALL tjBufSize (int width, int height, int jpegSubsamp)
 The maximum size of the buffer (in bytes) required to hold a JPEG image with the given parameters. More...
 
DLLEXPORT unsigned long DLLCALL tjBufSizeYUV2 (int width, int pad, int height, int subsamp)
 The size of the buffer (in bytes) required to hold a YUV planar image with the given parameters. More...
 
DLLEXPORT unsigned long DLLCALL tjPlaneSizeYUV (int componentID, int width, int stride, int height, int subsamp)
 The size of the buffer (in bytes) required to hold a YUV image plane with the given parameters. More...
 
DLLEXPORT int tjPlaneWidth (int componentID, int width, int subsamp)
 The plane width of a YUV image plane with the given parameters. More...
 
DLLEXPORT int tjPlaneHeight (int componentID, int height, int subsamp)
 The plane height of a YUV image plane with the given parameters. More...
 
DLLEXPORT int DLLCALL tjEncodeYUV3 (tjhandle handle, unsigned char *srcBuf, int width, int pitch, int height, int pixelFormat, unsigned char *dstBuf, int pad, int subsamp, int flags)
 Encode an RGB or grayscale image into a YUV planar image. More...
 
DLLEXPORT int DLLCALL tjEncodeYUVPlanes (tjhandle handle, unsigned char *srcBuf, int width, int pitch, int height, int pixelFormat, unsigned char **dstPlanes, int *strides, int subsamp, int flags)
 Encode an RGB or grayscale image into separate Y, U (Cb), and V (Cr) image planes. More...
 
DLLEXPORT tjhandle DLLCALL tjInitDecompress (void)
 Create a TurboJPEG decompressor instance. More...
 
DLLEXPORT int DLLCALL tjDecompressHeader3 (tjhandle handle, unsigned char *jpegBuf, unsigned long jpegSize, int *width, int *height, int *jpegSubsamp, int *jpegColorspace)
 Retrieve information about a JPEG image without decompressing it. More...
 
DLLEXPORT tjscalingfactor *DLLCALL tjGetScalingFactors (int *numscalingfactors)
 Returns a list of fractional scaling factors that the JPEG decompressor in this implementation of TurboJPEG supports. More...
 
DLLEXPORT int DLLCALL tjDecompress2 (tjhandle handle, unsigned char *jpegBuf, unsigned long jpegSize, unsigned char *dstBuf, int width, int pitch, int height, int pixelFormat, int flags)
 Decompress a JPEG image to an RGB, grayscale, or CMYK image. More...
 
DLLEXPORT int DLLCALL tjDecompressToYUV2 (tjhandle handle, unsigned char *jpegBuf, unsigned long jpegSize, unsigned char *dstBuf, int width, int pad, int height, int flags)
 Decompress a JPEG image to a YUV planar image. More...
 
DLLEXPORT int DLLCALL tjDecompressToYUVPlanes (tjhandle handle, unsigned char *jpegBuf, unsigned long jpegSize, unsigned char **dstPlanes, int width, int *strides, int height, int flags)
 Decompress a JPEG image into separate Y, U (Cb), and V (Cr) image planes. More...
 
DLLEXPORT int DLLCALL tjDecodeYUV (tjhandle handle, unsigned char *srcBuf, int pad, int subsamp, unsigned char *dstBuf, int width, int pitch, int height, int pixelFormat, int flags)
 Decode a YUV planar image into an RGB or grayscale image. More...
 
DLLEXPORT int DLLCALL tjDecodeYUVPlanes (tjhandle handle, unsigned char **srcPlanes, int *strides, int subsamp, unsigned char *dstBuf, int width, int pitch, int height, int pixelFormat, int flags)
 Decode a set of Y, U (Cb), and V (Cr) image planes into an RGB or grayscale image. More...
 
DLLEXPORT tjhandle DLLCALL tjInitTransform (void)
 Create a new TurboJPEG transformer instance. More...
 
DLLEXPORT int DLLCALL tjTransform (tjhandle handle, unsigned char *jpegBuf, unsigned long jpegSize, int n, unsigned char **dstBufs, unsigned long *dstSizes, tjtransform *transforms, int flags)
 Losslessly transform a JPEG image into another JPEG image. More...
 
DLLEXPORT int DLLCALL tjDestroy (tjhandle handle)
 Destroy a TurboJPEG compressor, decompressor, or transformer instance. More...
 
DLLEXPORT unsigned char *DLLCALL tjAlloc (int bytes)
 Allocate an image buffer for use with TurboJPEG. More...
 
DLLEXPORT void DLLCALL tjFree (unsigned char *buffer)
 Free an image buffer previously allocated by TurboJPEG. More...
 
DLLEXPORT char *DLLCALL tjGetErrorStr (void)
 Returns a descriptive error message explaining why the last command failed. More...
 

Variables

static const int tjMCUWidth [TJ_NUMSAMP]
 MCU block width (in pixels) for a given level of chrominance subsampling. More...
 
static const int tjMCUHeight [TJ_NUMSAMP]
 MCU block height (in pixels) for a given level of chrominance subsampling. More...
 
static const int tjRedOffset [TJ_NUMPF]
 Red offset (in bytes) for a given pixel format. More...
 
static const int tjGreenOffset [TJ_NUMPF]
 Green offset (in bytes) for a given pixel format. More...
 
static const int tjBlueOffset [TJ_NUMPF]
 Blue offset (in bytes) for a given pixel format. More...
 
static const int tjPixelSize [TJ_NUMPF]
 Pixel size (in bytes) for a given pixel format. More...
 

Detailed Description

TurboJPEG API.

This API provides an interface for generating, decoding, and transforming planar YUV and JPEG images in memory.

YUV Image Format Notes

Technically, the JPEG format uses the YCbCr colorspace (which is technically not a colorspace but a color transform), but per the convention of the digital video community, the TurboJPEG API uses "YUV" to refer to an image format consisting of Y, Cb, and Cr image planes.

Each plane is simply a 2D array of bytes, each byte representing the value of one of the components (Y, Cb, or Cr) at a particular location in the image. The width and height of each plane are determined by the image width, height, and level of chrominance subsampling. The luminance plane width is the image width padded to the nearest multiple of the horizontal subsampling factor (2 in the case of 4:2:0 and 4:2:2, 4 in the case of 4:1:1, 1 in the case of 4:4:4 or grayscale.) Similarly, the luminance plane height is the image height padded to the nearest multiple of the vertical subsampling factor (2 in the case of 4:2:0 or 4:4:0, 1 in the case of 4:4:4 or grayscale.) This is irrespective of any additional padding that may be specified as an argument to the various YUV functions. The chrominance plane width is equal to the luminance plane width divided by the horizontal subsampling factor, and the chrominance plane height is equal to the luminance plane height divided by the vertical subsampling factor.

For example, if the source image is 35 x 35 pixels and 4:2:2 subsampling is used, then the luminance plane would be 36 x 35 bytes, and each of the chrominance planes would be 18 x 35 bytes. If you specify a line padding of 4 bytes on top of this, then the luminance plane would be 36 x 35 bytes, and each of the chrominance planes would be 20 x 35 bytes.

Macro Definition Documentation

#define TJ_NUMCS

The number of JPEG colorspaces.

#define TJ_NUMPF

The number of pixel formats.

#define TJ_NUMSAMP

The number of chrominance subsampling options.

#define TJ_NUMXOP

The number of transform operations.

#define TJFLAG_ACCURATEDCT

Use the most accurate DCT/IDCT algorithm available in the underlying codec.

The default if this flag is not specified is implementation-specific. For example, the implementation of TurboJPEG for libjpeg[-turbo] uses the fast algorithm by default when compressing, because this has been shown to have only a very slight effect on accuracy, but it uses the accurate algorithm when decompressing, because this has been shown to have a larger effect.

#define TJFLAG_BOTTOMUP

The uncompressed source/destination image is stored in bottom-up (Windows, OpenGL) order, not top-down (X11) order.

#define TJFLAG_FASTDCT

Use the fastest DCT/IDCT algorithm available in the underlying codec.

The default if this flag is not specified is implementation-specific. For example, the implementation of TurboJPEG for libjpeg[-turbo] uses the fast algorithm by default when compressing, because this has been shown to have only a very slight effect on accuracy, but it uses the accurate algorithm when decompressing, because this has been shown to have a larger effect.

#define TJFLAG_FASTUPSAMPLE

When decompressing an image that was compressed using chrominance subsampling, use the fastest chrominance upsampling algorithm available in the underlying codec.

The default is to use smooth upsampling, which creates a smooth transition between neighboring chrominance components in order to reduce upsampling artifacts in the decompressed image.

#define TJFLAG_NOREALLOC

Disable buffer (re)allocation.

If passed to tjCompress2() or tjTransform(), this flag will cause those functions to generate an error if the JPEG image buffer is invalid or too small rather than attempting to allocate or reallocate that buffer. This reproduces the behavior of earlier versions of TurboJPEG.

#define TJPAD (   width)

Pad the given width to the nearest 32-bit boundary.

#define TJSCALED (   dimension,
  scalingFactor 
)

Compute the scaled value of dimension using the given scaling factor.

This macro performs the integer equivalent of ceil(dimension * scalingFactor).

#define TJXOPT_CROP

This option will enable lossless cropping.

See tjTransform() for more information.

#define TJXOPT_GRAY

This option will discard the color data in the input image and produce a grayscale output image.

#define TJXOPT_NOOUTPUT

This option will prevent tjTransform() from outputting a JPEG image for this particular transform (this can be used in conjunction with a custom filter to capture the transformed DCT coefficients without transcoding them.)

#define TJXOPT_PERFECT

This option will cause tjTransform() to return an error if the transform is not perfect.

Lossless transforms operate on MCU blocks, whose size depends on the level of chrominance subsampling used (see tjMCUWidth and tjMCUHeight.) If the image's width or height is not evenly divisible by the MCU block size, then there will be partial MCU blocks on the right and/or bottom edges. It is not possible to move these partial MCU blocks to the top or left of the image, so any transform that would require that is "imperfect." If this option is not specified, then any partial MCU blocks that cannot be transformed will be left in place, which will create odd-looking strips on the right or bottom edge of the image.

#define TJXOPT_TRIM

This option will cause tjTransform() to discard any partial MCU blocks that cannot be transformed.

Typedef Documentation

typedef void* tjhandle

TurboJPEG instance handle.

typedef struct tjtransform tjtransform

Lossless transform.

Enumeration Type Documentation

enum TJCS

JPEG colorspaces.

Enumerator
TJCS_RGB 

RGB colorspace.

When compressing the JPEG image, the R, G, and B components in the source image are reordered into image planes, but no colorspace conversion or subsampling is performed. RGB JPEG images can be decompressed to any of the extended RGB pixel formats or grayscale, but they cannot be decompressed to YUV images.

TJCS_YCbCr 

YCbCr colorspace.

YCbCr is not an absolute colorspace but rather a mathematical transformation of RGB designed solely for storage and transmission. YCbCr images must be converted to RGB before they can actually be displayed. In the YCbCr colorspace, the Y (luminance) component represents the black & white portion of the original image, and the Cb and Cr (chrominance) components represent the color portion of the original image. Originally, the analog equivalent of this transformation allowed the same signal to drive both black & white and color televisions, but JPEG images use YCbCr primarily because it allows the color data to be optionally subsampled for the purposes of reducing bandwidth or disk space. YCbCr is the most common JPEG colorspace, and YCbCr JPEG images can be compressed from and decompressed to any of the extended RGB pixel formats or grayscale, or they can be decompressed to YUV planar images.

TJCS_GRAY 

Grayscale colorspace.

The JPEG image retains only the luminance data (Y component), and any color data from the source image is discarded. Grayscale JPEG images can be compressed from and decompressed to any of the extended RGB pixel formats or grayscale, or they can be decompressed to YUV planar images.

TJCS_CMYK 

CMYK colorspace.

When compressing the JPEG image, the C, M, Y, and K components in the source image are reordered into image planes, but no colorspace conversion or subsampling is performed. CMYK JPEG images can only be decompressed to CMYK pixels.

TJCS_YCCK 

YCCK colorspace.

YCCK (AKA "YCbCrK") is not an absolute colorspace but rather a mathematical transformation of CMYK designed solely for storage and transmission. It is to CMYK as YCbCr is to RGB. CMYK pixels can be reversibly transformed into YCCK, and as with YCbCr, the chrominance components in the YCCK pixels can be subsampled without incurring major perceptual loss. YCCK JPEG images can only be compressed from and decompressed to CMYK pixels.

enum TJPF

Pixel formats.

Enumerator
TJPF_RGB 

RGB pixel format.

The red, green, and blue components in the image are stored in 3-byte pixels in the order R, G, B from lowest to highest byte address within each pixel.

TJPF_BGR 

BGR pixel format.

The red, green, and blue components in the image are stored in 3-byte pixels in the order B, G, R from lowest to highest byte address within each pixel.

TJPF_RGBX 

RGBX pixel format.

The red, green, and blue components in the image are stored in 4-byte pixels in the order R, G, B from lowest to highest byte address within each pixel. The X component is ignored when compressing and undefined when decompressing.

TJPF_BGRX 

BGRX pixel format.

The red, green, and blue components in the image are stored in 4-byte pixels in the order B, G, R from lowest to highest byte address within each pixel. The X component is ignored when compressing and undefined when decompressing.

TJPF_XBGR 

XBGR pixel format.

The red, green, and blue components in the image are stored in 4-byte pixels in the order R, G, B from highest to lowest byte address within each pixel. The X component is ignored when compressing and undefined when decompressing.

TJPF_XRGB 

XRGB pixel format.

The red, green, and blue components in the image are stored in 4-byte pixels in the order B, G, R from highest to lowest byte address within each pixel. The X component is ignored when compressing and undefined when decompressing.

TJPF_GRAY 

Grayscale pixel format.

Each 1-byte pixel represents a luminance (brightness) level from 0 to 255.

TJPF_RGBA 

RGBA pixel format.

This is the same as TJPF_RGBX, except that when decompressing, the X component is guaranteed to be 0xFF, which can be interpreted as an opaque alpha channel.

TJPF_BGRA 

BGRA pixel format.

This is the same as TJPF_BGRX, except that when decompressing, the X component is guaranteed to be 0xFF, which can be interpreted as an opaque alpha channel.

TJPF_ABGR 

ABGR pixel format.

This is the same as TJPF_XBGR, except that when decompressing, the X component is guaranteed to be 0xFF, which can be interpreted as an opaque alpha channel.

TJPF_ARGB 

ARGB pixel format.

This is the same as TJPF_XRGB, except that when decompressing, the X component is guaranteed to be 0xFF, which can be interpreted as an opaque alpha channel.

TJPF_CMYK 

CMYK pixel format.

Unlike RGB, which is an additive color model used primarily for display, CMYK (Cyan/Magenta/Yellow/Key) is a subtractive color model used primarily for printing. In the CMYK color model, the value of each color component typically corresponds to an amount of cyan, magenta, yellow, or black ink that is applied to a white background. In order to convert between CMYK and RGB, it is necessary to use a color management system (CMS.) A CMS will attempt to map colors within the printer's gamut to perceptually similar colors in the display's gamut and vice versa, but the mapping is typically not 1:1 or reversible, nor can it be defined with a simple formula. Thus, such a conversion is out of scope for a codec library. However, the TurboJPEG API allows for compressing CMYK pixels into a YCCK JPEG image (see TJCS_YCCK) and decompressing YCCK JPEG images into CMYK pixels.

enum TJSAMP

Chrominance subsampling options.

When pixels are converted from RGB to YCbCr (see TJCS_YCbCr) or from CMYK to YCCK (see TJCS_YCCK) as part of the JPEG compression process, some of the Cb and Cr (chrominance) components can be discarded or averaged together to produce a smaller image with little perceptible loss of image clarity (the human eye is more sensitive to small changes in brightness than to small changes in color.) This is called "chrominance subsampling".

Enumerator
TJSAMP_444 

4:4:4 chrominance subsampling (no chrominance subsampling).

The JPEG or YUV image will contain one chrominance component for every pixel in the source image.

TJSAMP_422 

4:2:2 chrominance subsampling.

The JPEG or YUV image will contain one chrominance component for every 2x1 block of pixels in the source image.

TJSAMP_420 

4:2:0 chrominance subsampling.

The JPEG or YUV image will contain one chrominance component for every 2x2 block of pixels in the source image.

TJSAMP_GRAY 

Grayscale.

The JPEG or YUV image will contain no chrominance components.

TJSAMP_440 

4:4:0 chrominance subsampling.

The JPEG or YUV image will contain one chrominance component for every 1x2 block of pixels in the source image.

Note
4:4:0 subsampling is not fully accelerated in libjpeg-turbo.
TJSAMP_411 

4:1:1 chrominance subsampling.

The JPEG or YUV image will contain one chrominance component for every 4x1 block of pixels in the source image. JPEG images compressed with 4:1:1 subsampling will be almost exactly the same size as those compressed with 4:2:0 subsampling, and in the aggregate, both subsampling methods produce approximately the same perceptual quality. However, 4:1:1 is better able to reproduce sharp horizontal features.

Note
4:1:1 subsampling is not fully accelerated in libjpeg-turbo.
enum TJXOP

Transform operations for tjTransform()

Enumerator
TJXOP_NONE 

Do not transform the position of the image pixels.

TJXOP_HFLIP 

Flip (mirror) image horizontally.

This transform is imperfect if there are any partial MCU blocks on the right edge (see TJXOPT_PERFECT.)

TJXOP_VFLIP 

Flip (mirror) image vertically.

This transform is imperfect if there are any partial MCU blocks on the bottom edge (see TJXOPT_PERFECT.)

TJXOP_TRANSPOSE 

Transpose image (flip/mirror along upper left to lower right axis.) This transform is always perfect.

TJXOP_TRANSVERSE 

Transverse transpose image (flip/mirror along upper right to lower left axis.) This transform is imperfect if there are any partial MCU blocks in the image (see TJXOPT_PERFECT.)

TJXOP_ROT90 

Rotate image clockwise by 90 degrees.

This transform is imperfect if there are any partial MCU blocks on the bottom edge (see TJXOPT_PERFECT.)

TJXOP_ROT180 

Rotate image 180 degrees.

This transform is imperfect if there are any partial MCU blocks in the image (see TJXOPT_PERFECT.)

TJXOP_ROT270 

Rotate image counter-clockwise by 90 degrees.

This transform is imperfect if there are any partial MCU blocks on the right edge (see TJXOPT_PERFECT.)

Function Documentation

DLLEXPORT unsigned char* DLLCALL tjAlloc ( int  bytes)

Allocate an image buffer for use with TurboJPEG.

You should always use this function to allocate the JPEG destination buffer(s) for tjCompress2() and tjTransform() unless you are disabling automatic buffer (re)allocation (by setting TJFLAG_NOREALLOC.)

Parameters
bytesthe number of bytes to allocate
Returns
a pointer to a newly-allocated buffer with the specified number of bytes.
See Also
tjFree()
DLLEXPORT unsigned long DLLCALL tjBufSize ( int  width,
int  height,
int  jpegSubsamp 
)

The maximum size of the buffer (in bytes) required to hold a JPEG image with the given parameters.

The number of bytes returned by this function is larger than the size of the uncompressed source image. The reason for this is that the JPEG format uses 16-bit coefficients, and it is thus possible for a very high-quality JPEG image with very high-frequency content to expand rather than compress when converted to the JPEG format. Such images represent a very rare corner case, but since there is no way to predict the size of a JPEG image prior to compression, the corner case has to be handled.

Parameters
widthwidth (in pixels) of the image
heightheight (in pixels) of the image
jpegSubsampthe level of chrominance subsampling to be used when generating the JPEG image (see Chrominance subsampling options.)
Returns
the maximum size of the buffer (in bytes) required to hold the image, or -1 if the arguments are out of bounds.
DLLEXPORT unsigned long DLLCALL tjBufSizeYUV2 ( int  width,
int  pad,
int  height,
int  subsamp 
)

The size of the buffer (in bytes) required to hold a YUV planar image with the given parameters.

Parameters
widthwidth (in pixels) of the image
padthe width of each line in each plane of the image is padded to the nearest multiple of this number of bytes (must be a power of 2.)
heightheight (in pixels) of the image
subsamplevel of chrominance subsampling in the image (see Chrominance subsampling options.)
Returns
the size of the buffer (in bytes) required to hold the image, or -1 if the arguments are out of bounds.
DLLEXPORT int DLLCALL tjCompress2 ( tjhandle  handle,
unsigned char *  srcBuf,
int  width,
int  pitch,
int  height,
int  pixelFormat,
unsigned char **  jpegBuf,
unsigned long *  jpegSize,
int  jpegSubsamp,
int  jpegQual,
int  flags 
)

Compress an RGB, grayscale, or CMYK image into a JPEG image.

Parameters
handlea handle to a TurboJPEG compressor or transformer instance
srcBufpointer to an image buffer containing RGB, grayscale, or CMYK pixels to be compressed. This buffer is not modified.
widthwidth (in pixels) of the source image
pitchbytes per line in the source image. Normally, this should be width * tjPixelSize[pixelFormat] if the image is unpadded, or TJPAD(width * tjPixelSize[pixelFormat]) if each line of the image is padded to the nearest 32-bit boundary, as is the case for Windows bitmaps. You can also be clever and use this parameter to skip lines, etc. Setting this parameter to 0 is the equivalent of setting it to width * tjPixelSize[pixelFormat].
heightheight (in pixels) of the source image
pixelFormatpixel format of the source image (see Pixel formats.)
jpegBufaddress of a pointer to an image buffer that will receive the JPEG image. TurboJPEG has the ability to reallocate the JPEG buffer to accommodate the size of the JPEG image. Thus, you can choose to:
  1. pre-allocate the JPEG buffer with an arbitrary size using tjAlloc() and let TurboJPEG grow the buffer as needed,
  2. set *jpegBuf to NULL to tell TurboJPEG to allocate the buffer for you, or
  3. pre-allocate the buffer to a "worst case" size determined by calling tjBufSize(). This should ensure that the buffer never has to be re-allocated (setting TJFLAG_NOREALLOC guarantees this.)
If you choose option 1, *jpegSize should be set to the size of your pre-allocated buffer. In any case, unless you have set TJFLAG_NOREALLOC, you should always check *jpegBuf upon return from this function, as it may have changed.
jpegSizepointer to an unsigned long variable that holds the size of the JPEG image buffer. If *jpegBuf points to a pre-allocated buffer, then *jpegSize should be set to the size of the buffer. Upon return, *jpegSize will contain the size of the JPEG image (in bytes.) If *jpegBuf points to a JPEG image buffer that is being reused from a previous call to one of the JPEG compression functions, then *jpegSize is ignored.
jpegSubsampthe level of chrominance subsampling to be used when generating the JPEG image (see Chrominance subsampling options.)
jpegQualthe image quality of the generated JPEG image (1 = worst, 100 = best)
flagsthe bitwise OR of one or more of the flags
Returns
0 if successful, or -1 if an error occurred (see tjGetErrorStr().)
DLLEXPORT int DLLCALL tjCompressFromYUV ( tjhandle  handle,
unsigned char *  srcBuf,
int  width,
int  pad,
int  height,
int  subsamp,
unsigned char **  jpegBuf,
unsigned long *  jpegSize,
int  jpegQual,
int  flags 
)

Compress a YUV planar image into a JPEG image.

Parameters
handlea handle to a TurboJPEG compressor or transformer instance
srcBufpointer to an image buffer containing a YUV planar image to be compressed. The size of this buffer should match the value returned by tjBufSizeYUV2() for the given image width, height, padding, and level of chrominance subsampling. The Y, U (Cb), and V (Cr) image planes should be stored sequentially in the source buffer (refer to YUV Image Format Notes.) This buffer is not modified.
widthwidth (in pixels) of the source image. If the width is not an even multiple of the MCU block width (see tjMCUWidth), then an intermediate buffer copy will be performed within TurboJPEG.
padthe line padding used in the source image. For instance, if each line in each plane of the YUV image is padded to the nearest multiple of 4 bytes, then pad should be set to 4.
heightheight (in pixels) of the source image. If the height is not an even multiple of the MCU block height (see tjMCUHeight), then an intermediate buffer copy will be performed within TurboJPEG.
subsampthe level of chrominance subsampling used in the source image (see Chrominance subsampling options.)
jpegBufaddress of a pointer to an image buffer that will receive the JPEG image. TurboJPEG has the ability to reallocate the JPEG buffer to accommodate the size of the JPEG image. Thus, you can choose to:
  1. pre-allocate the JPEG buffer with an arbitrary size using tjAlloc() and let TurboJPEG grow the buffer as needed,
  2. set *jpegBuf to NULL to tell TurboJPEG to allocate the buffer for you, or
  3. pre-allocate the buffer to a "worst case" size determined by calling tjBufSize(). This should ensure that the buffer never has to be re-allocated (setting TJFLAG_NOREALLOC guarantees this.)
If you choose option 1, *jpegSize should be set to the size of your pre-allocated buffer. In any case, unless you have set TJFLAG_NOREALLOC, you should always check *jpegBuf upon return from this function, as it may have changed.
jpegSizepointer to an unsigned long variable that holds the size of the JPEG image buffer. If *jpegBuf points to a pre-allocated buffer, then *jpegSize should be set to the size of the buffer. Upon return, *jpegSize will contain the size of the JPEG image (in bytes.) If *jpegBuf points to a JPEG image buffer that is being reused from a previous call to one of the JPEG compression functions, then *jpegSize is ignored.
jpegQualthe image quality of the generated JPEG image (1 = worst, 100 = best)
flagsthe bitwise OR of one or more of the flags
Returns
0 if successful, or -1 if an error occurred (see tjGetErrorStr().)
DLLEXPORT int DLLCALL tjCompressFromYUVPlanes ( tjhandle  handle,
unsigned char **  srcPlanes,
int  width,
int *  strides,
int  height,
int  subsamp,
unsigned char **  jpegBuf,
unsigned long *  jpegSize,
int  jpegQual,
int  flags 
)

Compress a set of Y, U (Cb), and V (Cr) image planes into a JPEG image.

Parameters
handlea handle to a TurboJPEG compressor or transformer instance
srcPlanesan array of pointers to Y, U (Cb), and V (Cr) image planes (or just a Y plane, if compressing a grayscale image) that contain a YUV image to be compressed. These planes can be contiguous or non-contiguous in memory. The size of each plane should match the value returned by tjPlaneSizeYUV() for the given image width, height, strides, and level of chrominance subsampling. Refer to YUV Image Format Notes for more details. These image planes are not modified.
widthwidth (in pixels) of the source image. If the width is not an even multiple of the MCU block width (see tjMCUWidth), then an intermediate buffer copy will be performed within TurboJPEG.
stridesan array of integers, each specifying the number of bytes per line in the corresponding plane of the YUV source image. Setting the stride for any plane to 0 is the same as setting it to the plane width (see YUV Image Format Notes.) If strides is NULL, then the strides for all planes will be set to their respective plane widths. You can adjust the strides in order to specify an arbitrary amount of line padding in each plane or to create a JPEG image from a subregion of a larger YUV planar image.
heightheight (in pixels) of the source image. If the height is not an even multiple of the MCU block height (see tjMCUHeight), then an intermediate buffer copy will be performed within TurboJPEG.
subsampthe level of chrominance subsampling used in the source image (see Chrominance subsampling options.)
jpegBufaddress of a pointer to an image buffer that will receive the JPEG image. TurboJPEG has the ability to reallocate the JPEG buffer to accommodate the size of the JPEG image. Thus, you can choose to:
  1. pre-allocate the JPEG buffer with an arbitrary size using tjAlloc() and let TurboJPEG grow the buffer as needed,
  2. set *jpegBuf to NULL to tell TurboJPEG to allocate the buffer for you, or
  3. pre-allocate the buffer to a "worst case" size determined by calling tjBufSize(). This should ensure that the buffer never has to be re-allocated (setting TJFLAG_NOREALLOC guarantees this.)
If you choose option 1, *jpegSize should be set to the size of your pre-allocated buffer. In any case, unless you have set TJFLAG_NOREALLOC, you should always check *jpegBuf upon return from this function, as it may have changed.
jpegSizepointer to an unsigned long variable that holds the size of the JPEG image buffer. If *jpegBuf points to a pre-allocated buffer, then *jpegSize should be set to the size of the buffer. Upon return, *jpegSize will contain the size of the JPEG image (in bytes.) If *jpegBuf points to a JPEG image buffer that is being reused from a previous call to one of the JPEG compression functions, then *jpegSize is ignored.
jpegQualthe image quality of the generated JPEG image (1 = worst, 100 = best)
flagsthe bitwise OR of one or more of the flags
Returns
0 if successful, or -1 if an error occurred (see tjGetErrorStr().)
DLLEXPORT int DLLCALL tjDecodeYUV ( tjhandle  handle,
unsigned char *  srcBuf,
int  pad,
int  subsamp,
unsigned char *  dstBuf,
int  width,
int  pitch,
int  height,
int  pixelFormat,
int  flags 
)

Decode a YUV planar image into an RGB or grayscale image.

This function uses the accelerated color conversion routines in the underlying codec but does not execute any of the other steps in the JPEG decompression process.

Parameters
handlea handle to a TurboJPEG decompressor or transformer instance
srcBufpointer to an image buffer containing a YUV planar image to be decoded. The size of this buffer should match the value returned by tjBufSizeYUV2() for the given image width, height, padding, and level of chrominance subsampling. The Y, U (Cb), and V (Cr) image planes should be stored sequentially in the source buffer (refer to YUV Image Format Notes.) This buffer is not modified.
padUse this parameter to specify that the width of each line in each plane of the YUV source image is padded to the nearest multiple of this number of bytes (must be a power of 2.)
subsampthe level of chrominance subsampling used in the YUV source image (see Chrominance subsampling options.)
dstBufpointer to an image buffer that will receive the decoded image. This buffer should normally be pitch * height bytes in size, but the dstBuf pointer can also be used to decode into a specific region of a larger buffer.
widthwidth (in pixels) of the source and destination images
pitchbytes per line in the destination image. Normally, this should be width * tjPixelSize[pixelFormat] if the destination image is unpadded, or TJPAD(width * tjPixelSize[pixelFormat]) if each line of the destination image should be padded to the nearest 32-bit boundary, as is the case for Windows bitmaps. You can also be clever and use the pitch parameter to skip lines, etc. Setting this parameter to 0 is the equivalent of setting it to width * tjPixelSize[pixelFormat].
heightheight (in pixels) of the source and destination images
pixelFormatpixel format of the destination image (see Pixel formats.)
flagsthe bitwise OR of one or more of the flags
Returns
0 if successful, or -1 if an error occurred (see tjGetErrorStr().)
DLLEXPORT int DLLCALL tjDecodeYUVPlanes ( tjhandle  handle,
unsigned char **  srcPlanes,
int *  strides,
int  subsamp,
unsigned char *  dstBuf,
int  width,
int  pitch,
int  height,
int  pixelFormat,
int  flags 
)

Decode a set of Y, U (Cb), and V (Cr) image planes into an RGB or grayscale image.

This function uses the accelerated color conversion routines in the underlying codec but does not execute any of the other steps in the JPEG decompression process.

Parameters
handlea handle to a TurboJPEG decompressor or transformer instance
srcPlanesan array of pointers to Y, U (Cb), and V (Cr) image planes (or just a Y plane, if decoding a grayscale image) that contain a YUV image to be decoded. These planes can be contiguous or non-contiguous in memory. The size of each plane should match the value returned by tjPlaneSizeYUV() for the given image width, height, strides, and level of chrominance subsampling. Refer to YUV Image Format Notes for more details. These image planes are not modified.
stridesan array of integers, each specifying the number of bytes per line in the corresponding plane of the YUV source image. Setting the stride for any plane to 0 is the same as setting it to the plane width (see YUV Image Format Notes.) If strides is NULL, then the strides for all planes will be set to their respective plane widths. You can adjust the strides in order to specify an arbitrary amount of line padding in each plane or to decode a subregion of a larger YUV planar image.
subsampthe level of chrominance subsampling used in the YUV source image (see Chrominance subsampling options.)
dstBufpointer to an image buffer that will receive the decoded image. This buffer should normally be pitch * height bytes in size, but the dstBuf pointer can also be used to decode into a specific region of a larger buffer.
widthwidth (in pixels) of the source and destination images
pitchbytes per line in the destination image. Normally, this should be width * tjPixelSize[pixelFormat] if the destination image is unpadded, or TJPAD(width * tjPixelSize[pixelFormat]) if each line of the destination image should be padded to the nearest 32-bit boundary, as is the case for Windows bitmaps. You can also be clever and use the pitch parameter to skip lines, etc. Setting this parameter to 0 is the equivalent of setting it to width * tjPixelSize[pixelFormat].
heightheight (in pixels) of the source and destination images
pixelFormatpixel format of the destination image (see Pixel formats.)
flagsthe bitwise OR of one or more of the flags
Returns
0 if successful, or -1 if an error occurred (see tjGetErrorStr().)
DLLEXPORT int DLLCALL tjDecompress2 ( tjhandle  handle,
unsigned char *  jpegBuf,
unsigned long  jpegSize,
unsigned char *  dstBuf,
int  width,
int  pitch,
int  height,
int  pixelFormat,
int  flags 
)

Decompress a JPEG image to an RGB, grayscale, or CMYK image.

Parameters
handlea handle to a TurboJPEG decompressor or transformer instance
jpegBufpointer to a buffer containing the JPEG image to decompress. This buffer is not modified.
jpegSizesize of the JPEG image (in bytes)
dstBufpointer to an image buffer that will receive the decompressed image. This buffer should normally be pitch * scaledHeight bytes in size, where scaledHeight can be determined by calling TJSCALED() with the JPEG image height and one of the scaling factors returned by tjGetScalingFactors(). The dstBuf pointer may also be used to decompress into a specific region of a larger buffer.
widthdesired width (in pixels) of the destination image. If this is different than the width of the JPEG image being decompressed, then TurboJPEG will use scaling in the JPEG decompressor to generate the largest possible image that will fit within the desired width. If width is set to 0, then only the height will be considered when determining the scaled image size.
pitchbytes per line in the destination image. Normally, this is scaledWidth * tjPixelSize[pixelFormat] if the decompressed image is unpadded, else TJPAD(scaledWidth * tjPixelSize[pixelFormat]) if each line of the decompressed image is padded to the nearest 32-bit boundary, as is the case for Windows bitmaps. (NOTE: scaledWidth can be determined by calling TJSCALED() with the JPEG image width and one of the scaling factors returned by tjGetScalingFactors().) You can also be clever and use the pitch parameter to skip lines, etc. Setting this parameter to 0 is the equivalent of setting it to scaledWidth * tjPixelSize[pixelFormat].
heightdesired height (in pixels) of the destination image. If this is different than the height of the JPEG image being decompressed, then TurboJPEG will use scaling in the JPEG decompressor to generate the largest possible image that will fit within the desired height. If height is set to 0, then only the width will be considered when determining the scaled image size.
pixelFormatpixel format of the destination image (see Pixel formats.)
flagsthe bitwise OR of one or more of the flags
Returns
0 if successful, or -1 if an error occurred (see tjGetErrorStr().)
DLLEXPORT int DLLCALL tjDecompressHeader3 ( tjhandle  handle,
unsigned char *  jpegBuf,
unsigned long  jpegSize,
int *  width,
int *  height,
int *  jpegSubsamp,
int *  jpegColorspace 
)

Retrieve information about a JPEG image without decompressing it.

Parameters
handlea handle to a TurboJPEG decompressor or transformer instance
jpegBufpointer to a buffer containing a JPEG image. This buffer is not modified.
jpegSizesize of the JPEG image (in bytes)
widthpointer to an integer variable that will receive the width (in pixels) of the JPEG image
heightpointer to an integer variable that will receive the height (in pixels) of the JPEG image
jpegSubsamppointer to an integer variable that will receive the level of chrominance subsampling used when the JPEG image was compressed (see Chrominance subsampling options.)
jpegColorspacepointer to an integer variable that will receive one of the JPEG colorspace constants, indicating the colorspace of the JPEG image (see JPEG colorspaces.)
Returns
0 if successful, or -1 if an error occurred (see tjGetErrorStr().)
DLLEXPORT int DLLCALL tjDecompressToYUV2 ( tjhandle  handle,
unsigned char *  jpegBuf,
unsigned long  jpegSize,
unsigned char *  dstBuf,
int  width,
int  pad,
int  height,
int  flags 
)

Decompress a JPEG image to a YUV planar image.

This function performs JPEG decompression but leaves out the color conversion step, so a planar YUV image is generated instead of an RGB image.

Parameters
handlea handle to a TurboJPEG decompressor or transformer instance
jpegBufpointer to a buffer containing the JPEG image to decompress. This buffer is not modified.
jpegSizesize of the JPEG image (in bytes)
dstBufpointer to an image buffer that will receive the YUV image. Use tjBufSizeYUV2() to determine the appropriate size for this buffer based on the image width, height, padding, and level of subsampling. The Y, U (Cb), and V (Cr) image planes will be stored sequentially in the buffer (refer to YUV Image Format Notes.)
widthdesired width (in pixels) of the YUV image. If this is different than the width of the JPEG image being decompressed, then TurboJPEG will use scaling in the JPEG decompressor to generate the largest possible image that will fit within the desired width. If width is set to 0, then only the height will be considered when determining the scaled image size. If the scaled width is not an even multiple of the MCU block width (see tjMCUWidth), then an intermediate buffer copy will be performed within TurboJPEG.
padthe width of each line in each plane of the YUV image will be padded to the nearest multiple of this number of bytes (must be a power of 2.) To generate images suitable for X Video, pad should be set to 4.
heightdesired height (in pixels) of the YUV image. If this is different than the height of the JPEG image being decompressed, then TurboJPEG will use scaling in the JPEG decompressor to generate the largest possible image that will fit within the desired height. If height is set to 0, then only the width will be considered when determining the scaled image size. If the scaled height is not an even multiple of the MCU block height (see tjMCUHeight), then an intermediate buffer copy will be performed within TurboJPEG.
flagsthe bitwise OR of one or more of the flags
Returns
0 if successful, or -1 if an error occurred (see tjGetErrorStr().)
DLLEXPORT int DLLCALL tjDecompressToYUVPlanes ( tjhandle  handle,
unsigned char *  jpegBuf,
unsigned long  jpegSize,
unsigned char **  dstPlanes,
int  width,
int *  strides,
int  height,
int  flags 
)

Decompress a JPEG image into separate Y, U (Cb), and V (Cr) image planes.

This function performs JPEG decompression but leaves out the color conversion step, so a planar YUV image is generated instead of an RGB image.

Parameters
handlea handle to a TurboJPEG decompressor or transformer instance
jpegBufpointer to a buffer containing the JPEG image to decompress. This buffer is not modified.
jpegSizesize of the JPEG image (in bytes)
dstPlanesan array of pointers to Y, U (Cb), and V (Cr) image planes (or just a Y plane, if decompressing a grayscale image) that will receive the YUV image. These planes can be contiguous or non-contiguous in memory. Use tjPlaneSizeYUV() to determine the appropriate size for each plane based on the scaled image width, scaled image height, strides, and level of chrominance subsampling. Refer to YUV Image Format Notes for more details.
widthdesired width (in pixels) of the YUV image. If this is different than the width of the JPEG image being decompressed, then TurboJPEG will use scaling in the JPEG decompressor to generate the largest possible image that will fit within the desired width. If width is set to 0, then only the height will be considered when determining the scaled image size. If the scaled width is not an even multiple of the MCU block width (see tjMCUWidth), then an intermediate buffer copy will be performed within TurboJPEG.
stridesan array of integers, each specifying the number of bytes per line in the corresponding plane of the output image. Setting the stride for any plane to 0 is the same as setting it to the scaled plane width (see YUV Image Format Notes.) If strides is NULL, then the strides for all planes will be set to their respective scaled plane widths. You can adjust the strides in order to add an arbitrary amount of line padding to each plane or to decompress the JPEG image into a subregion of a larger YUV planar image.
heightdesired height (in pixels) of the YUV image. If this is different than the height of the JPEG image being decompressed, then TurboJPEG will use scaling in the JPEG decompressor to generate the largest possible image that will fit within the desired height. If height is set to 0, then only the width will be considered when determining the scaled image size. If the scaled height is not an even multiple of the MCU block height (see tjMCUHeight), then an intermediate buffer copy will be performed within TurboJPEG.
flagsthe bitwise OR of one or more of the flags
Returns
0 if successful, or -1 if an error occurred (see tjGetErrorStr().)
DLLEXPORT int DLLCALL tjDestroy ( tjhandle  handle)

Destroy a TurboJPEG compressor, decompressor, or transformer instance.

Parameters
handlea handle to a TurboJPEG compressor, decompressor or transformer instance
Returns
0 if successful, or -1 if an error occurred (see tjGetErrorStr().)
DLLEXPORT int DLLCALL tjEncodeYUV3 ( tjhandle  handle,
unsigned char *  srcBuf,
int  width,
int  pitch,
int  height,
int  pixelFormat,
unsigned char *  dstBuf,
int  pad,
int  subsamp,
int  flags 
)

Encode an RGB or grayscale image into a YUV planar image.

This function uses the accelerated color conversion routines in the underlying codec but does not execute any of the other steps in the JPEG compression process.

Parameters
handlea handle to a TurboJPEG compressor or transformer instance
srcBufpointer to an image buffer containing RGB or grayscale pixels to be encoded. This buffer is not modified.
widthwidth (in pixels) of the source image
pitchbytes per line in the source image. Normally, this should be width * tjPixelSize[pixelFormat] if the image is unpadded, or TJPAD(width * tjPixelSize[pixelFormat]) if each line of the image is padded to the nearest 32-bit boundary, as is the case for Windows bitmaps. You can also be clever and use this parameter to skip lines, etc. Setting this parameter to 0 is the equivalent of setting it to width * tjPixelSize[pixelFormat].
heightheight (in pixels) of the source image
pixelFormatpixel format of the source image (see Pixel formats.)
dstBufpointer to an image buffer that will receive the YUV image. Use tjBufSizeYUV2() to determine the appropriate size for this buffer based on the image width, height, padding, and level of chrominance subsampling. The Y, U (Cb), and V (Cr) image planes will be stored sequentially in the buffer (refer to YUV Image Format Notes.)
padthe width of each line in each plane of the YUV image will be padded to the nearest multiple of this number of bytes (must be a power of 2.) To generate images suitable for X Video, pad should be set to 4.
subsampthe level of chrominance subsampling to be used when generating the YUV image (see Chrominance subsampling options.) To generate images suitable for X Video, subsamp should be set to TJSAMP_420. This produces an image compatible with the I420 (AKA "YUV420P") format.
flagsthe bitwise OR of one or more of the flags
Returns
0 if successful, or -1 if an error occurred (see tjGetErrorStr().)
DLLEXPORT int DLLCALL tjEncodeYUVPlanes ( tjhandle  handle,
unsigned char *  srcBuf,
int  width,
int  pitch,
int  height,
int  pixelFormat,
unsigned char **  dstPlanes,
int *  strides,
int  subsamp,
int  flags 
)

Encode an RGB or grayscale image into separate Y, U (Cb), and V (Cr) image planes.

This function uses the accelerated color conversion routines in the underlying codec but does not execute any of the other steps in the JPEG compression process.

Parameters
handlea handle to a TurboJPEG compressor or transformer instance
srcBufpointer to an image buffer containing RGB or grayscale pixels to be encoded. This buffer is not modified.
widthwidth (in pixels) of the source image
pitchbytes per line in the source image. Normally, this should be width * tjPixelSize[pixelFormat] if the image is unpadded, or TJPAD(width * tjPixelSize[pixelFormat]) if each line of the image is padded to the nearest 32-bit boundary, as is the case for Windows bitmaps. You can also be clever and use this parameter to skip lines, etc. Setting this parameter to 0 is the equivalent of setting it to width * tjPixelSize[pixelFormat].
heightheight (in pixels) of the source image
pixelFormatpixel format of the source image (see Pixel formats.)
dstPlanesan array of pointers to Y, U (Cb), and V (Cr) image planes (or just a Y plane, if generating a grayscale image) that will receive the encoded image. These planes can be contiguous or non-contiguous in memory. Use tjPlaneSizeYUV() to determine the appropriate size for each plane based on the image width, height, strides, and level of chrominance subsampling. Refer to YUV Image Format Notes for more details.
stridesan array of integers, each specifying the number of bytes per line in the corresponding plane of the output image. Setting the stride for any plane to 0 is the same as setting it to the plane width (see YUV Image Format Notes.) If strides is NULL, then the strides for all planes will be set to their respective plane widths. You can adjust the strides in order to add an arbitrary amount of line padding to each plane or to encode an RGB or grayscale image into a subregion of a larger YUV planar image.
subsampthe level of chrominance subsampling to be used when generating the YUV image (see Chrominance subsampling options.) To generate images suitable for X Video, subsamp should be set to TJSAMP_420. This produces an image compatible with the I420 (AKA "YUV420P") format.
flagsthe bitwise OR of one or more of the flags
Returns
0 if successful, or -1 if an error occurred (see tjGetErrorStr().)
DLLEXPORT void DLLCALL tjFree ( unsigned char *  buffer)

Free an image buffer previously allocated by TurboJPEG.

You should always use this function to free JPEG destination buffer(s) that were automatically (re)allocated by tjCompress2() or tjTransform() or that were manually allocated using tjAlloc().

Parameters
bufferaddress of the buffer to free
See Also
tjAlloc()
DLLEXPORT char* DLLCALL tjGetErrorStr ( void  )

Returns a descriptive error message explaining why the last command failed.

Returns
a descriptive error message explaining why the last command failed.
DLLEXPORT tjscalingfactor* DLLCALL tjGetScalingFactors ( int *  numscalingfactors)

Returns a list of fractional scaling factors that the JPEG decompressor in this implementation of TurboJPEG supports.

Parameters
numscalingfactorspointer to an integer variable that will receive the number of elements in the list
Returns
a pointer to a list of fractional scaling factors, or NULL if an error is encountered (see tjGetErrorStr().)
DLLEXPORT tjhandle DLLCALL tjInitCompress ( void  )

Create a TurboJPEG compressor instance.

Returns
a handle to the newly-created instance, or NULL if an error occurred (see tjGetErrorStr().)
DLLEXPORT tjhandle DLLCALL tjInitDecompress ( void  )

Create a TurboJPEG decompressor instance.

Returns
a handle to the newly-created instance, or NULL if an error occurred (see tjGetErrorStr().)
DLLEXPORT tjhandle DLLCALL tjInitTransform ( void  )

Create a new TurboJPEG transformer instance.

Returns
a handle to the newly-created instance, or NULL if an error occurred (see tjGetErrorStr().)
DLLEXPORT int tjPlaneHeight ( int  componentID,
int  height,
int  subsamp 
)

The plane height of a YUV image plane with the given parameters.

Refer to YUV Image Format Notes for a description of plane height.

Parameters
componentIDID number of the image plane (0 = Y, 1 = U/Cb, 2 = V/Cr)
heightheight (in pixels) of the YUV image
subsamplevel of chrominance subsampling in the image (see Chrominance subsampling options.)
Returns
the plane height of a YUV image plane with the given parameters, or -1 if the arguments are out of bounds.
DLLEXPORT unsigned long DLLCALL tjPlaneSizeYUV ( int  componentID,
int  width,
int  stride,
int  height,
int  subsamp 
)

The size of the buffer (in bytes) required to hold a YUV image plane with the given parameters.

Parameters
componentIDID number of the image plane (0 = Y, 1 = U/Cb, 2 = V/Cr)
widthwidth (in pixels) of the YUV image. NOTE: this is the width of the whole image, not the plane width.
stridebytes per line in the image plane. Setting this to 0 is the equivalent of setting it to the plane width.
heightheight (in pixels) of the YUV image. NOTE: this is the height of the whole image, not the plane height.
subsamplevel of chrominance subsampling in the image (see Chrominance subsampling options.)
Returns
the size of the buffer (in bytes) required to hold the YUV image plane, or -1 if the arguments are out of bounds.
DLLEXPORT int tjPlaneWidth ( int  componentID,
int  width,
int  subsamp 
)

The plane width of a YUV image plane with the given parameters.

Refer to YUV Image Format Notes for a description of plane width.

Parameters
componentIDID number of the image plane (0 = Y, 1 = U/Cb, 2 = V/Cr)
widthwidth (in pixels) of the YUV image
subsamplevel of chrominance subsampling in the image (see Chrominance subsampling options.)
Returns
the plane width of a YUV image plane with the given parameters, or -1 if the arguments are out of bounds.
DLLEXPORT int DLLCALL tjTransform ( tjhandle  handle,
unsigned char *  jpegBuf,
unsigned long  jpegSize,
int  n,
unsigned char **  dstBufs,
unsigned long *  dstSizes,
tjtransform transforms,
int  flags 
)

Losslessly transform a JPEG image into another JPEG image.

Lossless transforms work by moving the raw DCT coefficients from one JPEG image structure to another without altering the values of the coefficients. While this is typically faster than decompressing the image, transforming it, and re-compressing it, lossless transforms are not free. Each lossless transform requires reading and performing Huffman decoding on all of the coefficients in the source image, regardless of the size of the destination image. Thus, this function provides a means of generating multiple transformed images from the same source or applying multiple transformations simultaneously, in order to eliminate the need to read the source coefficients multiple times.

Parameters
handlea handle to a TurboJPEG transformer instance
jpegBufpointer to a buffer containing the JPEG source image to transform. This buffer is not modified.
jpegSizesize of the JPEG source image (in bytes)
nthe number of transformed JPEG images to generate
dstBufspointer to an array of n image buffers. dstBufs[i] will receive a JPEG image that has been transformed using the parameters in transforms[i]. TurboJPEG has the ability to reallocate the JPEG buffer to accommodate the size of the JPEG image. Thus, you can choose to:
  1. pre-allocate the JPEG buffer with an arbitrary size using tjAlloc() and let TurboJPEG grow the buffer as needed,
  2. set dstBufs[i] to NULL to tell TurboJPEG to allocate the buffer for you, or
  3. pre-allocate the buffer to a "worst case" size determined by calling tjBufSize() with the transformed or cropped width and height. This should ensure that the buffer never has to be re-allocated (setting TJFLAG_NOREALLOC guarantees this.)
If you choose option 1, dstSizes[i] should be set to the size of your pre-allocated buffer. In any case, unless you have set TJFLAG_NOREALLOC, you should always check dstBufs[i] upon return from this function, as it may have changed.
dstSizespointer to an array of n unsigned long variables that will receive the actual sizes (in bytes) of each transformed JPEG image. If dstBufs[i] points to a pre-allocated buffer, then dstSizes[i] should be set to the size of the buffer. Upon return, dstSizes[i] will contain the size of the JPEG image (in bytes.)
transformspointer to an array of n tjtransform structures, each of which specifies the transform parameters and/or cropping region for the corresponding transformed output image.
flagsthe bitwise OR of one or more of the flags
Returns
0 if successful, or -1 if an error occurred (see tjGetErrorStr().)

Variable Documentation

const int tjBlueOffset[TJ_NUMPF]
static

Blue offset (in bytes) for a given pixel format.

This specifies the number of bytes that the Blue component is offset from the start of the pixel. For instance, if a pixel of format TJ_BGRX is stored in char pixel[], then the blue component will be pixel[tjBlueOffset[TJ_BGRX]].

const int tjGreenOffset[TJ_NUMPF]
static

Green offset (in bytes) for a given pixel format.

This specifies the number of bytes that the green component is offset from the start of the pixel. For instance, if a pixel of format TJ_BGRX is stored in char pixel[], then the green component will be pixel[tjGreenOffset[TJ_BGRX]].

const int tjMCUHeight[TJ_NUMSAMP]
static

MCU block height (in pixels) for a given level of chrominance subsampling.

MCU block sizes:

  • 8x8 for no subsampling or grayscale
  • 16x8 for 4:2:2
  • 8x16 for 4:4:0
  • 16x16 for 4:2:0
  • 32x8 for 4:1:1
const int tjMCUWidth[TJ_NUMSAMP]
static

MCU block width (in pixels) for a given level of chrominance subsampling.

MCU block sizes:

  • 8x8 for no subsampling or grayscale
  • 16x8 for 4:2:2
  • 8x16 for 4:4:0
  • 16x16 for 4:2:0
  • 32x8 for 4:1:1
const int tjPixelSize[TJ_NUMPF]
static

Pixel size (in bytes) for a given pixel format.

const int tjRedOffset[TJ_NUMPF]
static

Red offset (in bytes) for a given pixel format.

This specifies the number of bytes that the red component is offset from the start of the pixel. For instance, if a pixel of format TJ_BGRX is stored in char pixel[], then the red component will be pixel[tjRedOffset[TJ_BGRX]].

libjpeg-turbo-1.4.2/doc/html/ftv2doc.png0000644000076500007650000000135212600050400014770 00000000000000PNG  IHDR}\IDATxMOS[sa?-XZ(PD4 AWbu`b 77wHFCԁ/`voAPqP@ 980 +y^Z9SW\83g3'Nçl_bpV"ֆXd]3xM[1W *PGz/Eg{ aoV:这1$RW,@56-,m/蹖 r5T*S(Vf89u գwa=<{ҡUr+dDF$`zNܮ0Q3~_^N=vpTLT}kqm<?ZhX_ݥ[) `ga_*2`'=F2EP l=8Wv%THqɿ<"GxH{#֫aJmKsVءM^ T ݛr߽m_?Wİ#uIENDB`libjpeg-turbo-1.4.2/doc/html/index.html0000644000076500007650000001073212600050400014712 00000000000000 TurboJPEG: Main Page
TurboJPEG  1.4
TurboJPEG Documentation
libjpeg-turbo-1.4.2/doc/html/structtjscalingfactor.html0000644000076500007650000001634612600050400020234 00000000000000 TurboJPEG: tjscalingfactor Struct Reference
tjscalingfactor Struct Reference

Scaling factor. More...

#include <turbojpeg.h>

Data Fields

int num
 Numerator. More...
 
int denom
 Denominator. More...
 

Detailed Description

Scaling factor.

Field Documentation

int tjscalingfactor::denom

Denominator.

int tjscalingfactor::num

Numerator.


The documentation for this struct was generated from the following file:
  • turbojpeg.h
libjpeg-turbo-1.4.2/doc/html/doxygen.css0000644000076500007650000004774412600050400015121 00000000000000/* The standard CSS for doxygen 1.8.3.1 */ body, table, div, p, dl { font: 400 14px/19px Roboto,sans-serif; } /* @group Heading Levels */ h1.groupheader { font-size: 150%; } .title { font-size: 150%; font-weight: bold; margin: 10px 2px; } h2.groupheader { border-bottom: 1px solid #879ECB; color: #354C7B; font-size: 150%; font-weight: normal; margin-top: 1.75em; padding-top: 8px; padding-bottom: 4px; width: 100%; } h3.groupheader { font-size: 100%; } h1, h2, h3, h4, h5, h6 { -webkit-transition: text-shadow 0.5s linear; -moz-transition: text-shadow 0.5s linear; -ms-transition: text-shadow 0.5s linear; -o-transition: text-shadow 0.5s linear; transition: text-shadow 0.5s linear; margin-right: 15px; } h1.glow, h2.glow, h3.glow, h4.glow, h5.glow, h6.glow { text-shadow: 0 0 15px cyan; } dt { font-weight: bold; } div.multicol { -moz-column-gap: 1em; -webkit-column-gap: 1em; -moz-column-count: 3; -webkit-column-count: 3; } p.startli, p.startdd, p.starttd { margin-top: 2px; } p.endli { margin-bottom: 0px; } p.enddd { margin-bottom: 4px; } p.endtd { margin-bottom: 2px; } /* @end */ caption { font-weight: bold; } span.legend { font-size: 70%; text-align: center; } h3.version { font-size: 90%; text-align: center; } div.qindex, div.navtab{ background-color: #EBEFF6; border: 1px solid #A3B4D7; text-align: center; } div.qindex, div.navpath { width: 100%; line-height: 140%; } div.navtab { margin-right: 15px; } /* @group Link Styling */ a { color: #3D578C; font-weight: normal; text-decoration: none; } .contents a:visited { color: #4665A2; } a:hover { text-decoration: underline; } a.qindex { font-weight: bold; } a.qindexHL { font-weight: bold; background-color: #9CAFD4; color: #ffffff; border: 1px double #869DCA; } .contents a.qindexHL:visited { color: #ffffff; } a.el { font-weight: bold; } a.elRef { } a.code, a.code:visited { color: #4665A2; } a.codeRef, a.codeRef:visited { color: #4665A2; } /* @end */ dl.el { margin-left: -1cm; } pre.fragment { border: 1px solid #C4CFE5; background-color: #FBFCFD; padding: 4px 6px; margin: 4px 8px 4px 2px; overflow: auto; word-wrap: break-word; font-size: 9pt; line-height: 125%; font-family: monospace, fixed; font-size: 105%; } div.fragment { padding: 4px; margin: 4px; background-color: #FBFCFD; border: 1px solid #C4CFE5; } div.line { font-family: monospace, fixed; font-size: 13px; min-height: 13px; line-height: 1.0; text-wrap: unrestricted; white-space: -moz-pre-wrap; /* Moz */ white-space: -pre-wrap; /* Opera 4-6 */ white-space: -o-pre-wrap; /* Opera 7 */ white-space: pre-wrap; /* CSS3 */ word-wrap: break-word; /* IE 5.5+ */ text-indent: -53px; padding-left: 53px; padding-bottom: 0px; margin: 0px; -webkit-transition-property: background-color, box-shadow; -webkit-transition-duration: 0.5s; -moz-transition-property: background-color, box-shadow; -moz-transition-duration: 0.5s; -ms-transition-property: background-color, box-shadow; -ms-transition-duration: 0.5s; -o-transition-property: background-color, box-shadow; -o-transition-duration: 0.5s; transition-property: background-color, box-shadow; transition-duration: 0.5s; } div.line.glow { background-color: cyan; box-shadow: 0 0 10px cyan; } span.lineno { padding-right: 4px; text-align: right; border-right: 2px solid #0F0; background-color: #E8E8E8; white-space: pre; } span.lineno a { background-color: #D8D8D8; } span.lineno a:hover { background-color: #C8C8C8; } div.ah { background-color: black; font-weight: bold; color: #ffffff; margin-bottom: 3px; margin-top: 3px; padding: 0.2em; border: solid thin #333; border-radius: 0.5em; -webkit-border-radius: .5em; -moz-border-radius: .5em; box-shadow: 2px 2px 3px #999; -webkit-box-shadow: 2px 2px 3px #999; -moz-box-shadow: rgba(0, 0, 0, 0.15) 2px 2px 2px; background-image: -webkit-gradient(linear, left top, left bottom, from(#eee), to(#000),color-stop(0.3, #444)); background-image: -moz-linear-gradient(center top, #eee 0%, #444 40%, #000); } div.groupHeader { margin-left: 16px; margin-top: 12px; font-weight: bold; } div.groupText { margin-left: 16px; font-style: italic; } body { background-color: white; color: black; margin: 0; } div.contents { margin-top: 10px; margin-left: 12px; margin-right: 8px; } td.indexkey { background-color: #EBEFF6; font-weight: bold; border: 1px solid #C4CFE5; margin: 2px 0px 2px 0; padding: 2px 10px; white-space: nowrap; vertical-align: top; } td.indexvalue { background-color: #EBEFF6; border: 1px solid #C4CFE5; padding: 2px 10px; margin: 2px 0px; } tr.memlist { background-color: #EEF1F7; } p.formulaDsp { text-align: center; } img.formulaDsp { } img.formulaInl { vertical-align: middle; } div.center { text-align: center; margin-top: 0px; margin-bottom: 0px; padding: 0px; } div.center img { border: 0px; } address.footer { text-align: right; padding-right: 12px; } img.footer { border: 0px; vertical-align: middle; } /* @group Code Colorization */ span.keyword { color: #008000 } span.keywordtype { color: #604020 } span.keywordflow { color: #e08000 } span.comment { color: #800000 } span.preprocessor { color: #806020 } span.stringliteral { color: #002080 } span.charliteral { color: #008080 } span.vhdldigit { color: #ff00ff } span.vhdlchar { color: #000000 } span.vhdlkeyword { color: #700070 } span.vhdllogic { color: #ff0000 } blockquote { background-color: #F7F8FB; border-left: 2px solid #9CAFD4; margin: 0 24px 0 4px; padding: 0 12px 0 16px; } /* @end */ /* .search { color: #003399; font-weight: bold; } form.search { margin-bottom: 0px; margin-top: 0px; } input.search { font-size: 75%; color: #000080; font-weight: normal; background-color: #e8eef2; } */ td.tiny { font-size: 75%; } .dirtab { padding: 4px; border-collapse: collapse; border: 1px solid #A3B4D7; } th.dirtab { background: #EBEFF6; font-weight: bold; } hr { height: 0px; border: none; border-top: 1px solid #4A6AAA; } hr.footer { height: 1px; } /* @group Member Descriptions */ table.memberdecls { border-spacing: 0px; padding: 0px; } .memberdecls td, .fieldtable tr { -webkit-transition-property: background-color, box-shadow; -webkit-transition-duration: 0.5s; -moz-transition-property: background-color, box-shadow; -moz-transition-duration: 0.5s; -ms-transition-property: background-color, box-shadow; -ms-transition-duration: 0.5s; -o-transition-property: background-color, box-shadow; -o-transition-duration: 0.5s; transition-property: background-color, box-shadow; transition-duration: 0.5s; } .memberdecls td.glow, .fieldtable tr.glow { background-color: cyan; box-shadow: 0 0 15px cyan; } .mdescLeft, .mdescRight, .memItemLeft, .memItemRight, .memTemplItemLeft, .memTemplItemRight, .memTemplParams { background-color: #F9FAFC; border: none; margin: 4px; padding: 1px 0 0 8px; } .mdescLeft, .mdescRight { padding: 0px 8px 4px 8px; color: #555; } .memSeparator { border-bottom: 1px solid #DEE4F0; line-height: 1px; margin: 0px; padding: 0px; } .memItemLeft, .memTemplItemLeft { white-space: nowrap; } .memItemRight { width: 100%; } .memTemplParams { color: #4665A2; white-space: nowrap; font-size: 80%; } /* @end */ /* @group Member Details */ /* Styles for detailed member documentation */ .memtemplate { font-size: 80%; color: #4665A2; font-weight: normal; margin-left: 9px; } .memnav { background-color: #EBEFF6; border: 1px solid #A3B4D7; text-align: center; margin: 2px; margin-right: 15px; padding: 2px; } .mempage { width: 100%; } .memitem { padding: 0; margin-bottom: 10px; margin-right: 5px; -webkit-transition: box-shadow 0.5s linear; -moz-transition: box-shadow 0.5s linear; -ms-transition: box-shadow 0.5s linear; -o-transition: box-shadow 0.5s linear; transition: box-shadow 0.5s linear; display: table !important; width: 100%; } .memitem.glow { box-shadow: 0 0 15px cyan; } .memname { font-weight: bold; margin-left: 6px; } .memname td { vertical-align: bottom; } .memproto, dl.reflist dt { border-top: 1px solid #A8B8D9; border-left: 1px solid #A8B8D9; border-right: 1px solid #A8B8D9; padding: 6px 0px 6px 0px; color: #253555; font-weight: bold; text-shadow: 0px 1px 1px rgba(255, 255, 255, 0.9); background-image:url('nav_f.png'); background-repeat:repeat-x; background-color: #E2E8F2; /* opera specific markup */ box-shadow: 5px 5px 5px rgba(0, 0, 0, 0.15); border-top-right-radius: 4px; border-top-left-radius: 4px; /* firefox specific markup */ -moz-box-shadow: rgba(0, 0, 0, 0.15) 5px 5px 5px; -moz-border-radius-topright: 4px; -moz-border-radius-topleft: 4px; /* webkit specific markup */ -webkit-box-shadow: 5px 5px 5px rgba(0, 0, 0, 0.15); -webkit-border-top-right-radius: 4px; -webkit-border-top-left-radius: 4px; } .memdoc, dl.reflist dd { border-bottom: 1px solid #A8B8D9; border-left: 1px solid #A8B8D9; border-right: 1px solid #A8B8D9; padding: 6px 10px 2px 10px; background-color: #FBFCFD; border-top-width: 0; background-image:url('nav_g.png'); background-repeat:repeat-x; background-color: #FFFFFF; /* opera specific markup */ border-bottom-left-radius: 4px; border-bottom-right-radius: 4px; box-shadow: 5px 5px 5px rgba(0, 0, 0, 0.15); /* firefox specific markup */ -moz-border-radius-bottomleft: 4px; -moz-border-radius-bottomright: 4px; -moz-box-shadow: rgba(0, 0, 0, 0.15) 5px 5px 5px; /* webkit specific markup */ -webkit-border-bottom-left-radius: 4px; -webkit-border-bottom-right-radius: 4px; -webkit-box-shadow: 5px 5px 5px rgba(0, 0, 0, 0.15); } dl.reflist dt { padding: 5px; } dl.reflist dd { margin: 0px 0px 10px 0px; padding: 5px; } .paramkey { text-align: right; } .paramtype { white-space: nowrap; } .paramname { color: #602020; white-space: nowrap; } .paramname em { font-style: normal; } .paramname code { line-height: 14px; } .params, .retval, .exception, .tparams { margin-left: 0px; padding-left: 0px; } .params .paramname, .retval .paramname { font-weight: bold; vertical-align: top; } .params .paramtype { font-style: italic; vertical-align: top; } .params .paramdir { font-family: "courier new",courier,monospace; vertical-align: top; } table.mlabels { border-spacing: 0px; } td.mlabels-left { width: 100%; padding: 0px; } td.mlabels-right { vertical-align: bottom; padding: 0px; white-space: nowrap; } span.mlabels { margin-left: 8px; } span.mlabel { background-color: #728DC1; border-top:1px solid #5373B4; border-left:1px solid #5373B4; border-right:1px solid #C4CFE5; border-bottom:1px solid #C4CFE5; text-shadow: none; color: white; margin-right: 4px; padding: 2px 3px; border-radius: 3px; font-size: 7pt; white-space: nowrap; vertical-align: middle; } /* @end */ /* these are for tree view when not used as main index */ div.directory { margin: 10px 0px; border-top: 1px solid #A8B8D9; border-bottom: 1px solid #A8B8D9; width: 100%; } .directory table { border-collapse:collapse; } .directory td { margin: 0px; padding: 0px; vertical-align: top; } .directory td.entry { white-space: nowrap; padding-right: 6px; } .directory td.entry a { outline:none; } .directory td.entry a img { border: none; } .directory td.desc { width: 100%; padding-left: 6px; padding-right: 6px; padding-top: 3px; border-left: 1px solid rgba(0,0,0,0.05); } .directory tr.even { padding-left: 6px; background-color: #F7F8FB; } .directory img { vertical-align: -30%; } .directory .levels { white-space: nowrap; width: 100%; text-align: right; font-size: 9pt; } .directory .levels span { cursor: pointer; padding-left: 2px; padding-right: 2px; color: #3D578C; } div.dynheader { margin-top: 8px; -webkit-touch-callout: none; -webkit-user-select: none; -khtml-user-select: none; -moz-user-select: none; -ms-user-select: none; user-select: none; } address { font-style: normal; color: #2A3D61; } table.doxtable { border-collapse:collapse; margin-top: 4px; margin-bottom: 4px; } table.doxtable td, table.doxtable th { border: 1px solid #2D4068; padding: 3px 7px 2px; } table.doxtable th { background-color: #374F7F; color: #FFFFFF; font-size: 110%; padding-bottom: 4px; padding-top: 5px; } table.fieldtable { /*width: 100%;*/ margin-bottom: 10px; border: 1px solid #A8B8D9; border-spacing: 0px; -moz-border-radius: 4px; -webkit-border-radius: 4px; border-radius: 4px; -moz-box-shadow: rgba(0, 0, 0, 0.15) 2px 2px 2px; -webkit-box-shadow: 2px 2px 2px rgba(0, 0, 0, 0.15); box-shadow: 2px 2px 2px rgba(0, 0, 0, 0.15); } .fieldtable td, .fieldtable th { padding: 3px 7px 2px; } .fieldtable td.fieldtype, .fieldtable td.fieldname { white-space: nowrap; border-right: 1px solid #A8B8D9; border-bottom: 1px solid #A8B8D9; vertical-align: top; } .fieldtable td.fieldname { padding-top: 5px; } .fieldtable td.fielddoc { border-bottom: 1px solid #A8B8D9; /*width: 100%;*/ } .fieldtable td.fielddoc p:first-child { margin-top: 2px; } .fieldtable td.fielddoc p:last-child { margin-bottom: 2px; } .fieldtable tr:last-child td { border-bottom: none; } .fieldtable th { background-image:url('nav_f.png'); background-repeat:repeat-x; background-color: #E2E8F2; font-size: 90%; color: #253555; padding-bottom: 4px; padding-top: 5px; text-align:left; -moz-border-radius-topleft: 4px; -moz-border-radius-topright: 4px; -webkit-border-top-left-radius: 4px; -webkit-border-top-right-radius: 4px; border-top-left-radius: 4px; border-top-right-radius: 4px; border-bottom: 1px solid #A8B8D9; } .tabsearch { top: 0px; left: 10px; height: 36px; background-image: url('tab_b.png'); z-index: 101; overflow: hidden; font-size: 13px; } .navpath ul { font-size: 11px; background-image:url('tab_b.png'); background-repeat:repeat-x; background-position: 0 -5px; height:30px; line-height:30px; color:#8AA0CC; border:solid 1px #C2CDE4; overflow:hidden; margin:0px; padding:0px; } .navpath li { list-style-type:none; float:left; padding-left:10px; padding-right:15px; background-image:url('bc_s.png'); background-repeat:no-repeat; background-position:right; color:#364D7C; } .navpath li.navelem a { height:32px; display:block; text-decoration: none; outline: none; color: #283A5D; font-family: 'Lucida Grande',Geneva,Helvetica,Arial,sans-serif; text-shadow: 0px 1px 1px rgba(255, 255, 255, 0.9); text-decoration: none; } .navpath li.navelem a:hover { color:#6884BD; } .navpath li.footer { list-style-type:none; float:right; padding-left:10px; padding-right:15px; background-image:none; background-repeat:no-repeat; background-position:right; color:#364D7C; font-size: 8pt; } div.summary { float: right; font-size: 8pt; padding-right: 5px; width: 50%; text-align: right; } div.summary a { white-space: nowrap; } div.ingroups { font-size: 8pt; width: 50%; text-align: left; } div.ingroups a { white-space: nowrap; } div.header { background-image:url('nav_h.png'); background-repeat:repeat-x; background-color: #F9FAFC; margin: 0px; border-bottom: 1px solid #C4CFE5; } div.headertitle { padding: 5px 5px 5px 10px; } dl { padding: 0 0 0 10px; } /* dl.note, dl.warning, dl.attention, dl.pre, dl.post, dl.invariant, dl.deprecated, dl.todo, dl.test, dl.bug */ dl.section { margin-left: 0px; padding-left: 0px; } dl.note { margin-left:-7px; padding-left: 3px; border-left:4px solid; border-color: #D0C000; } dl.warning, dl.attention { margin-left:-7px; padding-left: 3px; border-left:4px solid; border-color: #FF0000; } dl.pre, dl.post, dl.invariant { margin-left:-7px; padding-left: 3px; border-left:4px solid; border-color: #00D000; } dl.deprecated { margin-left:-7px; padding-left: 3px; border-left:4px solid; border-color: #505050; } dl.todo { margin-left:-7px; padding-left: 3px; border-left:4px solid; border-color: #00C0E0; } dl.test { margin-left:-7px; padding-left: 3px; border-left:4px solid; border-color: #3030E0; } dl.bug { margin-left:-7px; padding-left: 3px; border-left:4px solid; border-color: #C08050; } dl.section dd { margin-bottom: 6px; } #projectlogo { text-align: center; vertical-align: bottom; border-collapse: separate; } #projectlogo img { border: 0px none; } #projectname { font: 300% Tahoma, Arial,sans-serif; margin: 0px; padding: 2px 0px; } #projectbrief { font: 120% Tahoma, Arial,sans-serif; margin: 0px; padding: 0px; } #projectnumber { font: 50% Tahoma, Arial,sans-serif; margin: 0px; padding: 0px; } #titlearea { padding: 0px; margin: 0px; width: 100%; border-bottom: 1px solid #5373B4; } .image { text-align: center; } .dotgraph { text-align: center; } .mscgraph { text-align: center; } .caption { font-weight: bold; } div.zoom { border: 1px solid #90A5CE; } dl.citelist { margin-bottom:50px; } dl.citelist dt { color:#334975; float:left; font-weight:bold; margin-right:10px; padding:5px; } dl.citelist dd { margin:2px 0; padding:5px 0; } div.toc { padding: 14px 25px; background-color: #F4F6FA; border: 1px solid #D8DFEE; border-radius: 7px 7px 7px 7px; float: right; height: auto; margin: 0 20px 10px 10px; width: 200px; } div.toc li { background: url("bdwn.png") no-repeat scroll 0 5px transparent; font: 10px/1.2 Verdana,DejaVu Sans,Geneva,sans-serif; margin-top: 5px; padding-left: 10px; padding-top: 2px; } div.toc h3 { font: bold 12px/1.2 Arial,FreeSans,sans-serif; color: #4665A2; border-bottom: 0 none; margin: 0; } div.toc ul { list-style: none outside none; border: medium none; padding: 0px; } div.toc li.level1 { margin-left: 0px; } div.toc li.level2 { margin-left: 15px; } div.toc li.level3 { margin-left: 30px; } div.toc li.level4 { margin-left: 45px; } .inherit_header { font-weight: bold; color: gray; cursor: pointer; -webkit-touch-callout: none; -webkit-user-select: none; -khtml-user-select: none; -moz-user-select: none; -ms-user-select: none; user-select: none; } .inherit_header td { padding: 6px 0px 2px 5px; } .inherit { display: none; } tr.heading h2 { margin-top: 12px; margin-bottom: 4px; } @media print { #top { display: none; } #side-nav { display: none; } #nav-path { display: none; } body { overflow:visible; } h1, h2, h3, h4, h5, h6 { page-break-after: avoid; } .summary { display: none; } .memitem { page-break-inside: avoid; } #doc-content { margin-left:0 !important; height:auto !important; width:auto !important; overflow:inherit; display:inline; } } libjpeg-turbo-1.4.2/doc/html/ftv2mnode.png0000644000076500007650000000036612600050400015331 00000000000000PNG  IHDRɪ|IDATx!NA\ Um@`5i`h W7] b&ofdY4 c 3v=]\B I=BB;k WN@vy4]Y|M}]x6a }dׇY>||5?>|B"'IENDB`libjpeg-turbo-1.4.2/doc/html/doxygen-extra.css0000644000076500007650000000003312600050400016216 00000000000000code { color: #4665A2; } libjpeg-turbo-1.4.2/doc/html/ftv2folderclosed.png0000644000076500007650000000115012600050400016664 00000000000000PNG  IHDR}\/IDATx]MO@~uؐlp]#]PYEC\9y`xC &=qvZv3m؃vLN}}ޝZA@n ONp xKxj8s _[D'yye+ 7#rNlk* 0Ь_d_(Öz=xvhzP-䍒̪u$\DJcB4.:Ϗ-}LE #gN;B6䬜@p&h>p9EEάʑ"un$R"?{<%PNt$߶+^<"2Dqq\ҙaA"ԵP}#Ez{.8i p(ADwDE߂z;Kק8t q:uvvݛvEn{MFXgfZ֝*ߩ:jYq#3SWr'  IENDB`libjpeg-turbo-1.4.2/doc/html/nav_g.png0000644000076500007650000000013712600050400014513 00000000000000PNG  IHDR1&IDATx1 OHf_ ->~M iMS<IENDB`libjpeg-turbo-1.4.2/doc/html/ftv2blank.png0000644000076500007650000000012612600050400015310 00000000000000PNG  IHDRɪ|IDATxݱðScOx@ y}IENDB`libjpeg-turbo-1.4.2/doc/html/ftv2ns.png0000644000076500007650000000060412600050400014642 00000000000000PNG  IHDR}\KIDATx1K1 G⁂n lE(nࢋMA@ tK%ܕ ]BI%uͅa,e v祫i\tun0oV\$G.&@Y=%$um6'߫9Q\b)0-ZTH`pcsm 5:>ަI F] jgo[ on Ԭvq?\ 6Tee lQ c3*dWTM\rh61F fIENDB`libjpeg-turbo-1.4.2/doc/html/modules.html0000644000076500007650000001147512600050400015260 00000000000000 TurboJPEG: Modules
TurboJPEG  1.4
Modules
Here is a list of all modules:
\TurboJPEGTurboJPEG API
libjpeg-turbo-1.4.2/doc/html/ftv2mo.png0000644000076500007650000000062312600050400014636 00000000000000PNG  IHDR}\ZIDATx1K@iBҡ(h"EI'oک 8R- BTP]zB3 _㒻}]V}dIiJb+|K…,[P\ʘMƢ#F`JݤkA?Y4ck6"Z)0SHM@㋺Wmo4HJ+Qobt *~8_+3Y- PwA+^}+xhϕMAE]TD~EÞߴ^R)`A9pq-۾ۍ3tƛTH) ICxd#1 m@V?Zgo_3-\IENDB`libjpeg-turbo-1.4.2/doc/html/ftv2mlastnode.png0000644000076500007650000000036612600050400016215 00000000000000PNG  IHDRɪ|IDATx!NA\ Um@`5i`h W7] b&ofdY4 c 3v=]\B I=BB;k WN@vy4]Y|M}]x6a }dׇY>||5?>|B"'IENDB`libjpeg-turbo-1.4.2/doc/html/open.png0000644000076500007650000000017312600050400014362 00000000000000PNG  IHDR BIDATx 0 ׬ՙ\39b!9{|I>$#ߴ8/z/>2[giU,/~\ 9ٸIENDB`libjpeg-turbo-1.4.2/doc/html/nav_f.png0000644000076500007650000000023112600050400014505 00000000000000PNG  IHDR8`IDATxK Eі[BmkHprӼ.ꎤR6Z VIE5jliIJ0/u޿6sH yIENDB`libjpeg-turbo-1.4.2/doc/html/doxygen.png0000644000076500007650000000730312600050400015100 00000000000000PNG  IHDRh ;IDATx]y\պ~45%TL QPE"q11]8aw*(*" z`8 m,p$%B(8k6lk[߷;?kPx'tz3_Q4g@m ci{~4:Hc'PP7^h zbcP 3}OqNkT(?d ~z<4ǡ؞vz٦Zd,6k]Fz< Zs?sU2Sw1c`[}%ѽ.Լ6BLZ!F8[ T #g]:vu?vbR?wgb$kF~;عƕX?lNʪ,HCgAzlӺg ]jM3oҳ'=$f}GS_co.ȹ:ds:1={9?zqviDp moaEqҵw}~{j{ºFNë[OqOSXO]>muľe5{Jկ(bl}`UyacCAklysA7oJ .Be. Z'-PyF.lp&.j7rez19HG%qz׈c_k_")HJn~֘5 q5#+9T Rܸrzϴ̝ =υ{áOfwg|/$;֙ƭ]W"/< DఽB}yIEc^=[VhM$l];Kr¦* t$]M;I1!M (f<5~z mՠ>کIz;u[ie^ӳNF6B\}7+,'a -yHY,^f~?Hc{Z+4\sٷnߣFơsغD?<vkx0MlذIxdEEAMg*YE7ۙ^[uv[wG=Edn׶l'pGk+C82 dz3H BS[wŘ ~xptmţiQ歉AB1fى4uI]6% 1t.NJphz̠R1"3-"&1[:N mW0_œ 6&)ꦬ}~{m]zMP~^:eQT_*798ˍ 347E¿uSɻU_ NWeNӏ|;;d"ȉ޵ᆴ"ĴMM+bY_E]PXKНIޥoE<_(EP|m,өZߺk,kM`jzeU t36˷r}w:Χ |TܵQK_pໃYd0!a –W$$/\$ 2mLH dHV,:RZJaz*>_NT(‚^SVFU8E܈nd;8\C]=m:bDd=ߞUU5O|]Pv\]2"y[yzg{Y{Ù5;w{N3nĨwKݭ29Id y)P8ũ@mPwjl,6 hWd ump.DžtwR xBδYcxg*vo y򑕓[?V0NO난~󒯷h#Hk8kӍ^q@]ӓ,56-κUn[>]@nϜp[6# 4tn:}8T9_Y$/GK(ђM`dѺ;OB &P{qhJ+閧l2M_1ӫtlya L^y.۽[ u/]iS}N>e1qjf&iT\=kϛX-.84V5u!TE .OH4zwTr. xքHHg hT$yqzp< qrwI]I鲘s":ՖbզL69VW<;3?M3AV#ޯKUr9!qtH+6V/TS^pqgLP'5E ޺ n"2|;W"֬TwtO' +W+Z̖<&nO,I06.Z.h*INڒOegBXZ9hDSʍ A/c`A"z|ş;H#|%OOD mcƤqmu&~n πZj =_n[nN$_bE)8?6l}#bW( d-p&a"9ņ$ڛA!;{~8ޣ10`#kuN Qbh 8Mawhq(bK Z%m֍(J)@> 7% {y ohf>{p.­_%glZ\B2B #Һphݚ[<#SpA7Ht4:|gtL*($Ʃ$;b`=MM5ǾHH.HeA5}rd)T};Q5i2O00;,냔}g]79_{C>h{.II?[Kswz6u;OJa˶zvd l舊yc'rTWӰL |ʽhB T'ò]K(=Kx  L,Pʵu׈ž1ݫ;pGDxZY kf676oھH~޸ 8Up6(? K+?%ݷ/19U?B)l @=ޞkIENDB`libjpeg-turbo-1.4.2/doc/html/annotated.html0000644000076500007650000001342112600050400015556 00000000000000 TurboJPEG: Data Structures
TurboJPEG  1.4
Data Structures
Here are the data structures with brief descriptions:
oCtjregionCropping region
oCtjscalingfactorScaling factor
\CtjtransformLossless transform
libjpeg-turbo-1.4.2/doc/html/tab_h.png0000644000076500007650000000026112600050400014474 00000000000000PNG  IHDR$[xIDATxM@~ΒEv"!d*rGq={SݧH uO^[_Xvyұ=VCff{R%_rug(?gh\i>|sIENDB`libjpeg-turbo-1.4.2/doc/html/bc_s.png0000644000076500007650000000124412600050400014327 00000000000000PNG  IHDR_ kIDATxkQϝ̤I&m&156*nąܸR,4 +H(Ub1J.(EmߏhJmKS'C(х & r3g(z&_9}՟@mu ` h`ԯ &~M4%3?h)\Yi>Jb @giވkg\轭EUv+?E"pB\Y&$vM+Dn)}:Xo 3گ'.f0u9Ljf6%3Gf#sm(,k*ʒJJˢou_~ r]%%mnu]zr5[ưXeI TurboJPEG: Data Structure Index
TurboJPEG  1.4
Data Structure Index
  T  
tjscalingfactor   tjtransform   
tjregion   
libjpeg-turbo-1.4.2/doc/html/ftv2plastnode.png0000644000076500007650000000034512600050400016215 00000000000000PNG  IHDRɪ|IDATx=QFDk:FPK؃=V@ճ 8SHx0bnrr{򽿾$ TP XOd6"SOB(Q)+YĈ ҪR>Vtsm9(k-@ȧ-$ b [he Kp-l|CApRG'rͭaIENDB`libjpeg-turbo-1.4.2/doc/html/sync_on.png0000644000076500007650000000151512600050400015072 00000000000000PNG  IHDRw=IDATx_HTY8i4-g6&kQ)!0URKڅ/PE>K-+K.YdEPaAZSܝ;3wgfsWK.Da'q_k DQCg 0Y:qZ)~L0HV z-C%g68%wUϿ }? ?3 K@h aaUe s~2&&B*Alji*˨,oƣT,d[3-*> LɟfkҠw#*AEjKUy>&{8m5Ki jjD*Nigw7DmzK۾M!k?o_lX#~XӑR*EՂדE;6e"Q(=Ezæ5Kؼָ_ 1zBJ X96jL^7{J1i@%8'7M_\Q#Uy Wo x8sv|Sn q_m >b[JX,4[T{Ratjjzz'ȶiIws KC^Y%6ꈺ]vhiWvh'̂|[^YrD=ѝlU_?]Y(N8f1qn-etm 0}b%׌=0?1s08;_ W|%\Zð >舽lnp.a{ )t; b n652?>Oдunm`׭ZWjC~>־0+ {{fMŕټ` ݛ%uA6,]kWu]7ihu1 l Ҷ̺:\cxhRQt$ fd<4B[fd7=.M9//O a},j?.5ښm?X2#d p(?c!a1ޗةܾ7dK:)3],H+ku<|`LhC7e םt H$^2%l.aeÉ|s }D^hz~Rá]|#@חև[k<|(*ݹdtM:,]' X_n| /cfOIENDB`libjpeg-turbo-1.4.2/doc/html/closed.png0000644000076500007650000000020412600050400014665 00000000000000PNG  IHDR KIDATxm @!Gk7-`&sts@k}2 P%_N .:0Dk›x" ֛)x5IENDB`libjpeg-turbo-1.4.2/doc/html/ftv2link.png0000644000076500007650000000135212600050400015160 00000000000000PNG  IHDR}\IDATxMOS[sa?-XZ(PD4 AWbu`b 77wHFCԁ/`voAPqP@ 980 +y^Z9SW\83g3'Nçl_bpV"ֆXd]3xM[1W *PGz/Eg{ aoV:这1$RW,@56-,m/蹖 r5T*S(Vf89u գwa=<{ҡUr+dDF$`zNܮ0Q3~_^N=vpTLT}kqm<?ZhX_ݥ[) `ga_*2`'=F2EP l=8Wv%THqɿ<"GxH{#֫aJmKsVءM^ T ݛr߽m_?Wİ#uIENDB`libjpeg-turbo-1.4.2/doc/html/tab_s.png0000644000076500007650000000027012600050400014507 00000000000000PNG  IHDR$[IDATx݁ @@ѣ?Q"%If6[HQ<]dr s?O=w'F -~rÍ[芭m֬ݯнF)Y% `n,9B!ь\<#IENDB`libjpeg-turbo-1.4.2/doc/html/jquery.js0000644000076500007650000026726112600050400014605 00000000000000/*! jQuery v1.7.1 jquery.com | jquery.org/license */ (function(a,b){function cy(a){return f.isWindow(a)?a:a.nodeType===9?a.defaultView||a.parentWindow:!1}function cv(a){if(!ck[a]){var b=c.body,d=f("<"+a+">").appendTo(b),e=d.css("display");d.remove();if(e==="none"||e===""){cl||(cl=c.createElement("iframe"),cl.frameBorder=cl.width=cl.height=0),b.appendChild(cl);if(!cm||!cl.createElement)cm=(cl.contentWindow||cl.contentDocument).document,cm.write((c.compatMode==="CSS1Compat"?"":"")+""),cm.close();d=cm.createElement(a),cm.body.appendChild(d),e=f.css(d,"display"),b.removeChild(cl)}ck[a]=e}return ck[a]}function cu(a,b){var c={};f.each(cq.concat.apply([],cq.slice(0,b)),function(){c[this]=a});return c}function ct(){cr=b}function cs(){setTimeout(ct,0);return cr=f.now()}function cj(){try{return new a.ActiveXObject("Microsoft.XMLHTTP")}catch(b){}}function ci(){try{return new a.XMLHttpRequest}catch(b){}}function cc(a,c){a.dataFilter&&(c=a.dataFilter(c,a.dataType));var d=a.dataTypes,e={},g,h,i=d.length,j,k=d[0],l,m,n,o,p;for(g=1;g0){if(c!=="border")for(;g=0===c})}function S(a){return!a||!a.parentNode||a.parentNode.nodeType===11}function K(){return!0}function J(){return!1}function n(a,b,c){var d=b+"defer",e=b+"queue",g=b+"mark",h=f._data(a,d);h&&(c==="queue"||!f._data(a,e))&&(c==="mark"||!f._data(a,g))&&setTimeout(function(){!f._data(a,e)&&!f._data(a,g)&&(f.removeData(a,d,!0),h.fire())},0)}function m(a){for(var b in a){if(b==="data"&&f.isEmptyObject(a[b]))continue;if(b!=="toJSON")return!1}return!0}function l(a,c,d){if(d===b&&a.nodeType===1){var e="data-"+c.replace(k,"-$1").toLowerCase();d=a.getAttribute(e);if(typeof d=="string"){try{d=d==="true"?!0:d==="false"?!1:d==="null"?null:f.isNumeric(d)?parseFloat(d):j.test(d)?f.parseJSON(d):d}catch(g){}f.data(a,c,d)}else d=b}return d}function h(a){var b=g[a]={},c,d;a=a.split(/\s+/);for(c=0,d=a.length;c)[^>]*$|#([\w\-]*)$)/,j=/\S/,k=/^\s+/,l=/\s+$/,m=/^<(\w+)\s*\/?>(?:<\/\1>)?$/,n=/^[\],:{}\s]*$/,o=/\\(?:["\\\/bfnrt]|u[0-9a-fA-F]{4})/g,p=/"[^"\\\n\r]*"|true|false|null|-?\d+(?:\.\d*)?(?:[eE][+\-]?\d+)?/g,q=/(?:^|:|,)(?:\s*\[)+/g,r=/(webkit)[ \/]([\w.]+)/,s=/(opera)(?:.*version)?[ \/]([\w.]+)/,t=/(msie) ([\w.]+)/,u=/(mozilla)(?:.*? rv:([\w.]+))?/,v=/-([a-z]|[0-9])/ig,w=/^-ms-/,x=function(a,b){return(b+"").toUpperCase()},y=d.userAgent,z,A,B,C=Object.prototype.toString,D=Object.prototype.hasOwnProperty,E=Array.prototype.push,F=Array.prototype.slice,G=String.prototype.trim,H=Array.prototype.indexOf,I={};e.fn=e.prototype={constructor:e,init:function(a,d,f){var g,h,j,k;if(!a)return this;if(a.nodeType){this.context=this[0]=a,this.length=1;return this}if(a==="body"&&!d&&c.body){this.context=c,this[0]=c.body,this.selector=a,this.length=1;return this}if(typeof a=="string"){a.charAt(0)!=="<"||a.charAt(a.length-1)!==">"||a.length<3?g=i.exec(a):g=[null,a,null];if(g&&(g[1]||!d)){if(g[1]){d=d instanceof e?d[0]:d,k=d?d.ownerDocument||d:c,j=m.exec(a),j?e.isPlainObject(d)?(a=[c.createElement(j[1])],e.fn.attr.call(a,d,!0)):a=[k.createElement(j[1])]:(j=e.buildFragment([g[1]],[k]),a=(j.cacheable?e.clone(j.fragment):j.fragment).childNodes);return e.merge(this,a)}h=c.getElementById(g[2]);if(h&&h.parentNode){if(h.id!==g[2])return f.find(a);this.length=1,this[0]=h}this.context=c,this.selector=a;return this}return!d||d.jquery?(d||f).find(a):this.constructor(d).find(a)}if(e.isFunction(a))return f.ready(a);a.selector!==b&&(this.selector=a.selector,this.context=a.context);return e.makeArray(a,this)},selector:"",jquery:"1.7.1",length:0,size:function(){return this.length},toArray:function(){return F.call(this,0)},get:function(a){return a==null?this.toArray():a<0?this[this.length+a]:this[a]},pushStack:function(a,b,c){var d=this.constructor();e.isArray(a)?E.apply(d,a):e.merge(d,a),d.prevObject=this,d.context=this.context,b==="find"?d.selector=this.selector+(this.selector?" ":"")+c:b&&(d.selector=this.selector+"."+b+"("+c+")");return d},each:function(a,b){return e.each(this,a,b)},ready:function(a){e.bindReady(),A.add(a);return this},eq:function(a){a=+a;return a===-1?this.slice(a):this.slice(a,a+1)},first:function(){return this.eq(0)},last:function(){return this.eq(-1)},slice:function(){return this.pushStack(F.apply(this,arguments),"slice",F.call(arguments).join(","))},map:function(a){return this.pushStack(e.map(this,function(b,c){return a.call(b,c,b)}))},end:function(){return this.prevObject||this.constructor(null)},push:E,sort:[].sort,splice:[].splice},e.fn.init.prototype=e.fn,e.extend=e.fn.extend=function(){var a,c,d,f,g,h,i=arguments[0]||{},j=1,k=arguments.length,l=!1;typeof i=="boolean"&&(l=i,i=arguments[1]||{},j=2),typeof i!="object"&&!e.isFunction(i)&&(i={}),k===j&&(i=this,--j);for(;j0)return;A.fireWith(c,[e]),e.fn.trigger&&e(c).trigger("ready").off("ready")}},bindReady:function(){if(!A){A=e.Callbacks("once memory");if(c.readyState==="complete")return setTimeout(e.ready,1);if(c.addEventListener)c.addEventListener("DOMContentLoaded",B,!1),a.addEventListener("load",e.ready,!1);else if(c.attachEvent){c.attachEvent("onreadystatechange",B),a.attachEvent("onload",e.ready);var b=!1;try{b=a.frameElement==null}catch(d){}c.documentElement.doScroll&&b&&J()}}},isFunction:function(a){return e.type(a)==="function"},isArray:Array.isArray||function(a){return e.type(a)==="array"},isWindow:function(a){return a&&typeof a=="object"&&"setInterval"in a},isNumeric:function(a){return!isNaN(parseFloat(a))&&isFinite(a)},type:function(a){return a==null?String(a):I[C.call(a)]||"object"},isPlainObject:function(a){if(!a||e.type(a)!=="object"||a.nodeType||e.isWindow(a))return!1;try{if(a.constructor&&!D.call(a,"constructor")&&!D.call(a.constructor.prototype,"isPrototypeOf"))return!1}catch(c){return!1}var d;for(d in a);return d===b||D.call(a,d)},isEmptyObject:function(a){for(var b in a)return!1;return!0},error:function(a){throw new Error(a)},parseJSON:function(b){if(typeof b!="string"||!b)return null;b=e.trim(b);if(a.JSON&&a.JSON.parse)return a.JSON.parse(b);if(n.test(b.replace(o,"@").replace(p,"]").replace(q,"")))return(new Function("return "+b))();e.error("Invalid JSON: "+b)},parseXML:function(c){var d,f;try{a.DOMParser?(f=new DOMParser,d=f.parseFromString(c,"text/xml")):(d=new ActiveXObject("Microsoft.XMLDOM"),d.async="false",d.loadXML(c))}catch(g){d=b}(!d||!d.documentElement||d.getElementsByTagName("parsererror").length)&&e.error("Invalid XML: "+c);return d},noop:function(){},globalEval:function(b){b&&j.test(b)&&(a.execScript||function(b){a.eval.call(a,b)})(b)},camelCase:function(a){return a.replace(w,"ms-").replace(v,x)},nodeName:function(a,b){return a.nodeName&&a.nodeName.toUpperCase()===b.toUpperCase()},each:function(a,c,d){var f,g=0,h=a.length,i=h===b||e.isFunction(a);if(d){if(i){for(f in a)if(c.apply(a[f],d)===!1)break}else for(;g0&&a[0]&&a[j-1]||j===0||e.isArray(a));if(k)for(;i1?i.call(arguments,0):b,j.notifyWith(k,e)}}function l(a){return function(c){b[a]=arguments.length>1?i.call(arguments,0):c,--g||j.resolveWith(j,b)}}var b=i.call(arguments,0),c=0,d=b.length,e=Array(d),g=d,h=d,j=d<=1&&a&&f.isFunction(a.promise)?a:f.Deferred(),k=j.promise();if(d>1){for(;c
a",d=q.getElementsByTagName("*"),e=q.getElementsByTagName("a")[0];if(!d||!d.length||!e)return{};g=c.createElement("select"),h=g.appendChild(c.createElement("option")),i=q.getElementsByTagName("input")[0],b={leadingWhitespace:q.firstChild.nodeType===3,tbody:!q.getElementsByTagName("tbody").length,htmlSerialize:!!q.getElementsByTagName("link").length,style:/top/.test(e.getAttribute("style")),hrefNormalized:e.getAttribute("href")==="/a",opacity:/^0.55/.test(e.style.opacity),cssFloat:!!e.style.cssFloat,checkOn:i.value==="on",optSelected:h.selected,getSetAttribute:q.className!=="t",enctype:!!c.createElement("form").enctype,html5Clone:c.createElement("nav").cloneNode(!0).outerHTML!=="<:nav>",submitBubbles:!0,changeBubbles:!0,focusinBubbles:!1,deleteExpando:!0,noCloneEvent:!0,inlineBlockNeedsLayout:!1,shrinkWrapBlocks:!1,reliableMarginRight:!0},i.checked=!0,b.noCloneChecked=i.cloneNode(!0).checked,g.disabled=!0,b.optDisabled=!h.disabled;try{delete q.test}catch(s){b.deleteExpando=!1}!q.addEventListener&&q.attachEvent&&q.fireEvent&&(q.attachEvent("onclick",function(){b.noCloneEvent=!1}),q.cloneNode(!0).fireEvent("onclick")),i=c.createElement("input"),i.value="t",i.setAttribute("type","radio"),b.radioValue=i.value==="t",i.setAttribute("checked","checked"),q.appendChild(i),k=c.createDocumentFragment(),k.appendChild(q.lastChild),b.checkClone=k.cloneNode(!0).cloneNode(!0).lastChild.checked,b.appendChecked=i.checked,k.removeChild(i),k.appendChild(q),q.innerHTML="",a.getComputedStyle&&(j=c.createElement("div"),j.style.width="0",j.style.marginRight="0",q.style.width="2px",q.appendChild(j),b.reliableMarginRight=(parseInt((a.getComputedStyle(j,null)||{marginRight:0}).marginRight,10)||0)===0);if(q.attachEvent)for(o in{submit:1,change:1,focusin:1})n="on"+o,p=n in q,p||(q.setAttribute(n,"return;"),p=typeof q[n]=="function"),b[o+"Bubbles"]=p;k.removeChild(q),k=g=h=j=q=i=null,f(function(){var a,d,e,g,h,i,j,k,m,n,o,r=c.getElementsByTagName("body")[0];!r||(j=1,k="position:absolute;top:0;left:0;width:1px;height:1px;margin:0;",m="visibility:hidden;border:0;",n="style='"+k+"border:5px solid #000;padding:0;'",o="
"+""+"
",a=c.createElement("div"),a.style.cssText=m+"width:0;height:0;position:static;top:0;margin-top:"+j+"px",r.insertBefore(a,r.firstChild),q=c.createElement("div"),a.appendChild(q),q.innerHTML="
t
",l=q.getElementsByTagName("td"),p=l[0].offsetHeight===0,l[0].style.display="",l[1].style.display="none",b.reliableHiddenOffsets=p&&l[0].offsetHeight===0,q.innerHTML="",q.style.width=q.style.paddingLeft="1px",f.boxModel=b.boxModel=q.offsetWidth===2,typeof q.style.zoom!="undefined"&&(q.style.display="inline",q.style.zoom=1,b.inlineBlockNeedsLayout=q.offsetWidth===2,q.style.display="",q.innerHTML="
",b.shrinkWrapBlocks=q.offsetWidth!==2),q.style.cssText=k+m,q.innerHTML=o,d=q.firstChild,e=d.firstChild,h=d.nextSibling.firstChild.firstChild,i={doesNotAddBorder:e.offsetTop!==5,doesAddBorderForTableAndCells:h.offsetTop===5},e.style.position="fixed",e.style.top="20px",i.fixedPosition=e.offsetTop===20||e.offsetTop===15,e.style.position=e.style.top="",d.style.overflow="hidden",d.style.position="relative",i.subtractsBorderForOverflowNotVisible=e.offsetTop===-5,i.doesNotIncludeMarginInBodyOffset=r.offsetTop!==j,r.removeChild(a),q=a=null,f.extend(b,i))});return b}();var j=/^(?:\{.*\}|\[.*\])$/,k=/([A-Z])/g;f.extend({cache:{},uuid:0,expando:"jQuery"+(f.fn.jquery+Math.random()).replace(/\D/g,""),noData:{embed:!0,object:"clsid:D27CDB6E-AE6D-11cf-96B8-444553540000",applet:!0},hasData:function(a){a=a.nodeType?f.cache[a[f.expando]]:a[f.expando];return!!a&&!m(a)},data:function(a,c,d,e){if(!!f.acceptData(a)){var g,h,i,j=f.expando,k=typeof c=="string",l=a.nodeType,m=l?f.cache:a,n=l?a[j]:a[j]&&j,o=c==="events";if((!n||!m[n]||!o&&!e&&!m[n].data)&&k&&d===b)return;n||(l?a[j]=n=++f.uuid:n=j),m[n]||(m[n]={},l||(m[n].toJSON=f.noop));if(typeof c=="object"||typeof c=="function")e?m[n]=f.extend(m[n],c):m[n].data=f.extend(m[n].data,c);g=h=m[n],e||(h.data||(h.data={}),h=h.data),d!==b&&(h[f.camelCase(c)]=d);if(o&&!h[c])return g.events;k?(i=h[c],i==null&&(i=h[f.camelCase(c)])):i=h;return i}},removeData:function(a,b,c){if(!!f.acceptData(a)){var d,e,g,h=f.expando,i=a.nodeType,j=i?f.cache:a,k=i?a[h]:h;if(!j[k])return;if(b){d=c?j[k]:j[k].data;if(d){f.isArray(b)||(b in d?b=[b]:(b=f.camelCase(b),b in d?b=[b]:b=b.split(" ")));for(e=0,g=b.length;e-1)return!0;return!1},val:function(a){var c,d,e,g=this[0];{if(!!arguments.length){e=f.isFunction(a);return this.each(function(d){var g=f(this),h;if(this.nodeType===1){e?h=a.call(this,d,g.val()):h=a,h==null?h="":typeof h=="number"?h+="":f.isArray(h)&&(h=f.map(h,function(a){return a==null?"":a+""})),c=f.valHooks[this.nodeName.toLowerCase()]||f.valHooks[this.type];if(!c||!("set"in c)||c.set(this,h,"value")===b)this.value=h}})}if(g){c=f.valHooks[g.nodeName.toLowerCase()]||f.valHooks[g.type];if(c&&"get"in c&&(d=c.get(g,"value"))!==b)return d;d=g.value;return typeof d=="string"?d.replace(q,""):d==null?"":d}}}}),f.extend({valHooks:{option:{get:function(a){var b=a.attributes.value;return!b||b.specified?a.value:a.text}},select:{get:function(a){var b,c,d,e,g=a.selectedIndex,h=[],i=a.options,j=a.type==="select-one";if(g<0)return null;c=j?g:0,d=j?g+1:i.length;for(;c=0}),c.length||(a.selectedIndex=-1);return c}}},attrFn:{val:!0,css:!0,html:!0,text:!0,data:!0,width:!0,height:!0,offset:!0},attr:function(a,c,d,e){var g,h,i,j=a.nodeType;if(!!a&&j!==3&&j!==8&&j!==2){if(e&&c in f.attrFn)return f(a)[c](d);if(typeof a.getAttribute=="undefined")return f.prop(a,c,d);i=j!==1||!f.isXMLDoc(a),i&&(c=c.toLowerCase(),h=f.attrHooks[c]||(u.test(c)?x:w));if(d!==b){if(d===null){f.removeAttr(a,c);return}if(h&&"set"in h&&i&&(g=h.set(a,d,c))!==b)return g;a.setAttribute(c,""+d);return d}if(h&&"get"in h&&i&&(g=h.get(a,c))!==null)return g;g=a.getAttribute(c);return g===null?b:g}},removeAttr:function(a,b){var c,d,e,g,h=0;if(b&&a.nodeType===1){d=b.toLowerCase().split(p),g=d.length;for(;h=0}})});var z=/^(?:textarea|input|select)$/i,A=/^([^\.]*)?(?:\.(.+))?$/,B=/\bhover(\.\S+)?\b/,C=/^key/,D=/^(?:mouse|contextmenu)|click/,E=/^(?:focusinfocus|focusoutblur)$/,F=/^(\w*)(?:#([\w\-]+))?(?:\.([\w\-]+))?$/,G=function(a){var b=F.exec(a);b&&(b[1]=(b[1]||"").toLowerCase(),b[3]=b[3]&&new RegExp("(?:^|\\s)"+b[3]+"(?:\\s|$)"));return b},H=function(a,b){var c=a.attributes||{};return(!b[1]||a.nodeName.toLowerCase()===b[1])&&(!b[2]||(c.id||{}).value===b[2])&&(!b[3]||b[3].test((c["class"]||{}).value))},I=function(a){return f.event.special.hover?a:a.replace(B,"mouseenter$1 mouseleave$1")}; f.event={add:function(a,c,d,e,g){var h,i,j,k,l,m,n,o,p,q,r,s;if(!(a.nodeType===3||a.nodeType===8||!c||!d||!(h=f._data(a)))){d.handler&&(p=d,d=p.handler),d.guid||(d.guid=f.guid++),j=h.events,j||(h.events=j={}),i=h.handle,i||(h.handle=i=function(a){return typeof f!="undefined"&&(!a||f.event.triggered!==a.type)?f.event.dispatch.apply(i.elem,arguments):b},i.elem=a),c=f.trim(I(c)).split(" ");for(k=0;k=0&&(h=h.slice(0,-1),k=!0),h.indexOf(".")>=0&&(i=h.split("."),h=i.shift(),i.sort());if((!e||f.event.customEvent[h])&&!f.event.global[h])return;c=typeof c=="object"?c[f.expando]?c:new f.Event(h,c):new f.Event(h),c.type=h,c.isTrigger=!0,c.exclusive=k,c.namespace=i.join("."),c.namespace_re=c.namespace?new RegExp("(^|\\.)"+i.join("\\.(?:.*\\.)?")+"(\\.|$)"):null,o=h.indexOf(":")<0?"on"+h:"";if(!e){j=f.cache;for(l in j)j[l].events&&j[l].events[h]&&f.event.trigger(c,d,j[l].handle.elem,!0);return}c.result=b,c.target||(c.target=e),d=d!=null?f.makeArray(d):[],d.unshift(c),p=f.event.special[h]||{};if(p.trigger&&p.trigger.apply(e,d)===!1)return;r=[[e,p.bindType||h]];if(!g&&!p.noBubble&&!f.isWindow(e)){s=p.delegateType||h,m=E.test(s+h)?e:e.parentNode,n=null;for(;m;m=m.parentNode)r.push([m,s]),n=m;n&&n===e.ownerDocument&&r.push([n.defaultView||n.parentWindow||a,s])}for(l=0;le&&i.push({elem:this,matches:d.slice(e)});for(j=0;j0?this.on(b,null,a,c):this.trigger(b)},f.attrFn&&(f.attrFn[b]=!0),C.test(b)&&(f.event.fixHooks[b]=f.event.keyHooks),D.test(b)&&(f.event.fixHooks[b]=f.event.mouseHooks)}),function(){function x(a,b,c,e,f,g){for(var h=0,i=e.length;h0){k=j;break}}j=j[a]}e[h]=k}}}function w(a,b,c,e,f,g){for(var h=0,i=e.length;h+~,(\[\\]+)+|[>+~])(\s*,\s*)?((?:.|\r|\n)*)/g,d="sizcache"+(Math.random()+"").replace(".",""),e=0,g=Object.prototype.toString,h=!1,i=!0,j=/\\/g,k=/\r\n/g,l=/\W/;[0,0].sort(function(){i=!1;return 0});var m=function(b,d,e,f){e=e||[],d=d||c;var h=d;if(d.nodeType!==1&&d.nodeType!==9)return[];if(!b||typeof b!="string")return e;var i,j,k,l,n,q,r,t,u=!0,v=m.isXML(d),w=[],x=b;do{a.exec(""),i=a.exec(x);if(i){x=i[3],w.push(i[1]);if(i[2]){l=i[3];break}}}while(i);if(w.length>1&&p.exec(b))if(w.length===2&&o.relative[w[0]])j=y(w[0]+w[1],d,f);else{j=o.relative[w[0]]?[d]:m(w.shift(),d);while(w.length)b=w.shift(),o.relative[b]&&(b+=w.shift()),j=y(b,j,f)}else{!f&&w.length>1&&d.nodeType===9&&!v&&o.match.ID.test(w[0])&&!o.match.ID.test(w[w.length-1])&&(n=m.find(w.shift(),d,v),d=n.expr?m.filter(n.expr,n.set)[0]:n.set[0]);if(d){n=f?{expr:w.pop(),set:s(f)}:m.find(w.pop(),w.length===1&&(w[0]==="~"||w[0]==="+")&&d.parentNode?d.parentNode:d,v),j=n.expr?m.filter(n.expr,n.set):n.set,w.length>0?k=s(j):u=!1;while(w.length)q=w.pop(),r=q,o.relative[q]?r=w.pop():q="",r==null&&(r=d),o.relative[q](k,r,v)}else k=w=[]}k||(k=j),k||m.error(q||b);if(g.call(k)==="[object Array]")if(!u)e.push.apply(e,k);else if(d&&d.nodeType===1)for(t=0;k[t]!=null;t++)k[t]&&(k[t]===!0||k[t].nodeType===1&&m.contains(d,k[t]))&&e.push(j[t]);else for(t=0;k[t]!=null;t++)k[t]&&k[t].nodeType===1&&e.push(j[t]);else s(k,e);l&&(m(l,h,e,f),m.uniqueSort(e));return e};m.uniqueSort=function(a){if(u){h=i,a.sort(u);if(h)for(var b=1;b0},m.find=function(a,b,c){var d,e,f,g,h,i;if(!a)return[];for(e=0,f=o.order.length;e":function(a,b){var c,d=typeof b=="string",e=0,f=a.length;if(d&&!l.test(b)){b=b.toLowerCase();for(;e=0)?c||d.push(h):c&&(b[g]=!1));return!1},ID:function(a){return a[1].replace(j,"")},TAG:function(a,b){return a[1].replace(j,"").toLowerCase()},CHILD:function(a){if(a[1]==="nth"){a[2]||m.error(a[0]),a[2]=a[2].replace(/^\+|\s*/g,"");var b=/(-?)(\d*)(?:n([+\-]?\d*))?/.exec(a[2]==="even"&&"2n"||a[2]==="odd"&&"2n+1"||!/\D/.test(a[2])&&"0n+"+a[2]||a[2]);a[2]=b[1]+(b[2]||1)-0,a[3]=b[3]-0}else a[2]&&m.error(a[0]);a[0]=e++;return a},ATTR:function(a,b,c,d,e,f){var g=a[1]=a[1].replace(j,"");!f&&o.attrMap[g]&&(a[1]=o.attrMap[g]),a[4]=(a[4]||a[5]||"").replace(j,""),a[2]==="~="&&(a[4]=" "+a[4]+" ");return a},PSEUDO:function(b,c,d,e,f){if(b[1]==="not")if((a.exec(b[3])||"").length>1||/^\w/.test(b[3]))b[3]=m(b[3],null,null,c);else{var g=m.filter(b[3],c,d,!0^f);d||e.push.apply(e,g);return!1}else if(o.match.POS.test(b[0])||o.match.CHILD.test(b[0]))return!0;return b},POS:function(a){a.unshift(!0);return a}},filters:{enabled:function(a){return a.disabled===!1&&a.type!=="hidden"},disabled:function(a){return a.disabled===!0},checked:function(a){return a.checked===!0},selected:function(a){a.parentNode&&a.parentNode.selectedIndex;return a.selected===!0},parent:function(a){return!!a.firstChild},empty:function(a){return!a.firstChild},has:function(a,b,c){return!!m(c[3],a).length},header:function(a){return/h\d/i.test(a.nodeName)},text:function(a){var b=a.getAttribute("type"),c=a.type;return a.nodeName.toLowerCase()==="input"&&"text"===c&&(b===c||b===null)},radio:function(a){return a.nodeName.toLowerCase()==="input"&&"radio"===a.type},checkbox:function(a){return a.nodeName.toLowerCase()==="input"&&"checkbox"===a.type},file:function(a){return a.nodeName.toLowerCase()==="input"&&"file"===a.type},password:function(a){return a.nodeName.toLowerCase()==="input"&&"password"===a.type},submit:function(a){var b=a.nodeName.toLowerCase();return(b==="input"||b==="button")&&"submit"===a.type},image:function(a){return a.nodeName.toLowerCase()==="input"&&"image"===a.type},reset:function(a){var b=a.nodeName.toLowerCase();return(b==="input"||b==="button")&&"reset"===a.type},button:function(a){var b=a.nodeName.toLowerCase();return b==="input"&&"button"===a.type||b==="button"},input:function(a){return/input|select|textarea|button/i.test(a.nodeName)},focus:function(a){return a===a.ownerDocument.activeElement}},setFilters:{first:function(a,b){return b===0},last:function(a,b,c,d){return b===d.length-1},even:function(a,b){return b%2===0},odd:function(a,b){return b%2===1},lt:function(a,b,c){return bc[3]-0},nth:function(a,b,c){return c[3]-0===b},eq:function(a,b,c){return c[3]-0===b}},filter:{PSEUDO:function(a,b,c,d){var e=b[1],f=o.filters[e];if(f)return f(a,c,b,d);if(e==="contains")return(a.textContent||a.innerText||n([a])||"").indexOf(b[3])>=0;if(e==="not"){var g=b[3];for(var h=0,i=g.length;h=0}},ID:function(a,b){return a.nodeType===1&&a.getAttribute("id")===b},TAG:function(a,b){return b==="*"&&a.nodeType===1||!!a.nodeName&&a.nodeName.toLowerCase()===b},CLASS:function(a,b){return(" "+(a.className||a.getAttribute("class"))+" ").indexOf(b)>-1},ATTR:function(a,b){var c=b[1],d=m.attr?m.attr(a,c):o.attrHandle[c]?o.attrHandle[c](a):a[c]!=null?a[c]:a.getAttribute(c),e=d+"",f=b[2],g=b[4];return d==null?f==="!=":!f&&m.attr?d!=null:f==="="?e===g:f==="*="?e.indexOf(g)>=0:f==="~="?(" "+e+" ").indexOf(g)>=0:g?f==="!="?e!==g:f==="^="?e.indexOf(g)===0:f==="$="?e.substr(e.length-g.length)===g:f==="|="?e===g||e.substr(0,g.length+1)===g+"-":!1:e&&d!==!1},POS:function(a,b,c,d){var e=b[2],f=o.setFilters[e];if(f)return f(a,c,b,d)}}},p=o.match.POS,q=function(a,b){return"\\"+(b-0+1)};for(var r in o.match)o.match[r]=new RegExp(o.match[r].source+/(?![^\[]*\])(?![^\(]*\))/.source),o.leftMatch[r]=new RegExp(/(^(?:.|\r|\n)*?)/.source+o.match[r].source.replace(/\\(\d+)/g,q));var s=function(a,b){a=Array.prototype.slice.call(a,0);if(b){b.push.apply(b,a);return b}return a};try{Array.prototype.slice.call(c.documentElement.childNodes,0)[0].nodeType}catch(t){s=function(a,b){var c=0,d=b||[];if(g.call(a)==="[object Array]")Array.prototype.push.apply(d,a);else if(typeof a.length=="number")for(var e=a.length;c",e.insertBefore(a,e.firstChild),c.getElementById(d)&&(o.find.ID=function(a,c,d){if(typeof c.getElementById!="undefined"&&!d){var e=c.getElementById(a[1]);return e?e.id===a[1]||typeof e.getAttributeNode!="undefined"&&e.getAttributeNode("id").nodeValue===a[1]?[e]:b:[]}},o.filter.ID=function(a,b){var c=typeof a.getAttributeNode!="undefined"&&a.getAttributeNode("id");return a.nodeType===1&&c&&c.nodeValue===b}),e.removeChild(a),e=a=null}(),function(){var a=c.createElement("div");a.appendChild(c.createComment("")),a.getElementsByTagName("*").length>0&&(o.find.TAG=function(a,b){var c=b.getElementsByTagName(a[1]);if(a[1]==="*"){var d=[];for(var e=0;c[e];e++)c[e].nodeType===1&&d.push(c[e]);c=d}return c}),a.innerHTML="",a.firstChild&&typeof a.firstChild.getAttribute!="undefined"&&a.firstChild.getAttribute("href")!=="#"&&(o.attrHandle.href=function(a){return a.getAttribute("href",2)}),a=null}(),c.querySelectorAll&&function(){var a=m,b=c.createElement("div"),d="__sizzle__";b.innerHTML="

";if(!b.querySelectorAll||b.querySelectorAll(".TEST").length!==0){m=function(b,e,f,g){e=e||c;if(!g&&!m.isXML(e)){var h=/^(\w+$)|^\.([\w\-]+$)|^#([\w\-]+$)/.exec(b);if(h&&(e.nodeType===1||e.nodeType===9)){if(h[1])return s(e.getElementsByTagName(b),f);if(h[2]&&o.find.CLASS&&e.getElementsByClassName)return s(e.getElementsByClassName(h[2]),f)}if(e.nodeType===9){if(b==="body"&&e.body)return s([e.body],f);if(h&&h[3]){var i=e.getElementById(h[3]);if(!i||!i.parentNode)return s([],f);if(i.id===h[3])return s([i],f)}try{return s(e.querySelectorAll(b),f)}catch(j){}}else if(e.nodeType===1&&e.nodeName.toLowerCase()!=="object"){var k=e,l=e.getAttribute("id"),n=l||d,p=e.parentNode,q=/^\s*[+~]/.test(b);l?n=n.replace(/'/g,"\\$&"):e.setAttribute("id",n),q&&p&&(e=e.parentNode);try{if(!q||p)return s(e.querySelectorAll("[id='"+n+"'] "+b),f)}catch(r){}finally{l||k.removeAttribute("id")}}}return a(b,e,f,g)};for(var e in a)m[e]=a[e];b=null}}(),function(){var a=c.documentElement,b=a.matchesSelector||a.mozMatchesSelector||a.webkitMatchesSelector||a.msMatchesSelector;if(b){var d=!b.call(c.createElement("div"),"div"),e=!1;try{b.call(c.documentElement,"[test!='']:sizzle")}catch(f){e=!0}m.matchesSelector=function(a,c){c=c.replace(/\=\s*([^'"\]]*)\s*\]/g,"='$1']");if(!m.isXML(a))try{if(e||!o.match.PSEUDO.test(c)&&!/!=/.test(c)){var f=b.call(a,c);if(f||!d||a.document&&a.document.nodeType!==11)return f}}catch(g){}return m(c,null,null,[a]).length>0}}}(),function(){var a=c.createElement("div");a.innerHTML="
";if(!!a.getElementsByClassName&&a.getElementsByClassName("e").length!==0){a.lastChild.className="e";if(a.getElementsByClassName("e").length===1)return;o.order.splice(1,0,"CLASS"),o.find.CLASS=function(a,b,c){if(typeof b.getElementsByClassName!="undefined"&&!c)return b.getElementsByClassName(a[1])},a=null}}(),c.documentElement.contains?m.contains=function(a,b){return a!==b&&(a.contains?a.contains(b):!0)}:c.documentElement.compareDocumentPosition?m.contains=function(a,b){return!!(a.compareDocumentPosition(b)&16)}:m.contains=function(){return!1},m.isXML=function(a){var b=(a?a.ownerDocument||a:0).documentElement;return b?b.nodeName!=="HTML":!1};var y=function(a,b,c){var d,e=[],f="",g=b.nodeType?[b]:b;while(d=o.match.PSEUDO.exec(a))f+=d[0],a=a.replace(o.match.PSEUDO,"");a=o.relative[a]?a+"*":a;for(var h=0,i=g.length;h0)for(h=g;h=0:f.filter(a,this).length>0:this.filter(a).length>0)},closest:function(a,b){var c=[],d,e,g=this[0];if(f.isArray(a)){var h=1;while(g&&g.ownerDocument&&g!==b){for(d=0;d-1:f.find.matchesSelector(g,a)){c.push(g);break}g=g.parentNode;if(!g||!g.ownerDocument||g===b||g.nodeType===11)break}}c=c.length>1?f.unique(c):c;return this.pushStack(c,"closest",a)},index:function(a){if(!a)return this[0]&&this[0].parentNode?this.prevAll().length:-1;if(typeof a=="string")return f.inArray(this[0],f(a));return f.inArray(a.jquery?a[0]:a,this)},add:function(a,b){var c=typeof a=="string"?f(a,b):f.makeArray(a&&a.nodeType?[a]:a),d=f.merge(this.get(),c);return this.pushStack(S(c[0])||S(d[0])?d:f.unique(d))},andSelf:function(){return this.add(this.prevObject)}}),f.each({parent:function(a){var b=a.parentNode;return b&&b.nodeType!==11?b:null},parents:function(a){return f.dir(a,"parentNode")},parentsUntil:function(a,b,c){return f.dir(a,"parentNode",c)},next:function(a){return f.nth(a,2,"nextSibling")},prev:function(a){return f.nth(a,2,"previousSibling")},nextAll:function(a){return f.dir(a,"nextSibling")},prevAll:function(a){return f.dir(a,"previousSibling")},nextUntil:function(a,b,c){return f.dir(a,"nextSibling",c)},prevUntil:function(a,b,c){return f.dir(a,"previousSibling",c)},siblings:function(a){return f.sibling(a.parentNode.firstChild,a)},children:function(a){return f.sibling(a.firstChild)},contents:function(a){return f.nodeName(a,"iframe")?a.contentDocument||a.contentWindow.document:f.makeArray(a.childNodes)}},function(a,b){f.fn[a]=function(c,d){var e=f.map(this,b,c);L.test(a)||(d=c),d&&typeof d=="string"&&(e=f.filter(d,e)),e=this.length>1&&!R[a]?f.unique(e):e,(this.length>1||N.test(d))&&M.test(a)&&(e=e.reverse());return this.pushStack(e,a,P.call(arguments).join(","))}}),f.extend({filter:function(a,b,c){c&&(a=":not("+a+")");return b.length===1?f.find.matchesSelector(b[0],a)?[b[0]]:[]:f.find.matches(a,b)},dir:function(a,c,d){var e=[],g=a[c];while(g&&g.nodeType!==9&&(d===b||g.nodeType!==1||!f(g).is(d)))g.nodeType===1&&e.push(g),g=g[c];return e},nth:function(a,b,c,d){b=b||1;var e=0;for(;a;a=a[c])if(a.nodeType===1&&++e===b)break;return a},sibling:function(a,b){var c=[];for(;a;a=a.nextSibling)a.nodeType===1&&a!==b&&c.push(a);return c}});var V="abbr|article|aside|audio|canvas|datalist|details|figcaption|figure|footer|header|hgroup|mark|meter|nav|output|progress|section|summary|time|video",W=/ jQuery\d+="(?:\d+|null)"/g,X=/^\s+/,Y=/<(?!area|br|col|embed|hr|img|input|link|meta|param)(([\w:]+)[^>]*)\/>/ig,Z=/<([\w:]+)/,$=/",""],legend:[1,"
","
"],thead:[1,"","
"],tr:[2,"","
"],td:[3,"","
"],col:[2,"","
"],area:[1,"",""],_default:[0,"",""]},bh=U(c);bg.optgroup=bg.option,bg.tbody=bg.tfoot=bg.colgroup=bg.caption=bg.thead,bg.th=bg.td,f.support.htmlSerialize||(bg._default=[1,"div
","
"]),f.fn.extend({text:function(a){if(f.isFunction(a))return this.each(function(b){var c=f(this);c.text(a.call(this,b,c.text()))});if(typeof a!="object"&&a!==b)return this.empty().append((this[0]&&this[0].ownerDocument||c).createTextNode(a));return f.text(this)},wrapAll:function(a){if(f.isFunction(a))return this.each(function(b){f(this).wrapAll(a.call(this,b))});if(this[0]){var b=f(a,this[0].ownerDocument).eq(0).clone(!0);this[0].parentNode&&b.insertBefore(this[0]),b.map(function(){var a=this;while(a.firstChild&&a.firstChild.nodeType===1)a=a.firstChild;return a}).append(this)}return this},wrapInner:function(a){if(f.isFunction(a))return this.each(function(b){f(this).wrapInner(a.call(this,b))});return this.each(function(){var b=f(this),c=b.contents();c.length?c.wrapAll(a):b.append(a)})},wrap:function(a){var b=f.isFunction(a);return this.each(function(c){f(this).wrapAll(b?a.call(this,c):a)})},unwrap:function(){return this.parent().each(function(){f.nodeName(this,"body")||f(this).replaceWith(this.childNodes)}).end()},append:function(){return this.domManip(arguments,!0,function(a){this.nodeType===1&&this.appendChild(a)})},prepend:function(){return this.domManip(arguments,!0,function(a){this.nodeType===1&&this.insertBefore(a,this.firstChild)})},before:function(){if(this[0]&&this[0].parentNode)return this.domManip(arguments,!1,function(a){this.parentNode.insertBefore(a,this)});if(arguments.length){var a=f.clean(arguments);a.push.apply(a,this.toArray());return this.pushStack(a,"before",arguments)}},after:function(){if(this[0]&&this[0].parentNode)return this.domManip(arguments,!1,function(a){this.parentNode.insertBefore(a,this.nextSibling)});if(arguments.length){var a=this.pushStack(this,"after",arguments);a.push.apply(a,f.clean(arguments));return a}},remove:function(a,b){for(var c=0,d;(d=this[c])!=null;c++)if(!a||f.filter(a,[d]).length)!b&&d.nodeType===1&&(f.cleanData(d.getElementsByTagName("*")), f.cleanData([d])),d.parentNode&&d.parentNode.removeChild(d);return this},empty:function() {for(var a=0,b;(b=this[a])!=null;a++){b.nodeType===1&&f.cleanData(b.getElementsByTagName("*"));while(b.firstChild)b.removeChild(b.firstChild)}return this},clone:function(a,b){a=a==null?!1:a,b=b==null?a:b;return this.map(function(){return f.clone(this,a,b)})},html:function(a){if(a===b)return this[0]&&this[0].nodeType===1?this[0].innerHTML.replace(W,""):null;if(typeof a=="string"&&!ba.test(a)&&(f.support.leadingWhitespace||!X.test(a))&&!bg[(Z.exec(a)||["",""])[1].toLowerCase()]){a=a.replace(Y,"<$1>");try{for(var c=0,d=this.length;c1&&l0?this.clone(!0):this).get();f(e[h])[b](j),d=d.concat(j)}return this.pushStack(d,a,e.selector)}}),f.extend({clone:function(a,b,c){var d,e,g,h=f.support.html5Clone||!bc.test("<"+a.nodeName)?a.cloneNode(!0):bo(a);if((!f.support.noCloneEvent||!f.support.noCloneChecked)&&(a.nodeType===1||a.nodeType===11)&&!f.isXMLDoc(a)){bk(a,h),d=bl(a),e=bl(h);for(g=0;d[g];++g)e[g]&&bk(d[g],e[g])}if(b){bj(a,h);if(c){d=bl(a),e=bl(h);for(g=0;d[g];++g)bj(d[g],e[g])}}d=e=null;return h},clean:function(a,b,d,e){var g;b=b||c,typeof b.createElement=="undefined"&&(b=b.ownerDocument||b[0]&&b[0].ownerDocument||c);var h=[],i;for(var j=0,k;(k=a[j])!=null;j++){typeof k=="number"&&(k+="");if(!k)continue;if(typeof k=="string")if(!_.test(k))k=b.createTextNode(k);else{k=k.replace(Y,"<$1>");var l=(Z.exec(k)||["",""])[1].toLowerCase(),m=bg[l]||bg._default,n=m[0],o=b.createElement("div");b===c?bh.appendChild(o):U(b).appendChild(o),o.innerHTML=m[1]+k+m[2];while(n--)o=o.lastChild;if(!f.support.tbody){var p=$.test(k),q=l==="table"&&!p?o.firstChild&&o.firstChild.childNodes:m[1]===""&&!p?o.childNodes:[];for(i=q.length-1;i>=0;--i)f.nodeName(q[i],"tbody")&&!q[i].childNodes.length&&q[i].parentNode.removeChild(q[i])}!f.support.leadingWhitespace&&X.test(k)&&o.insertBefore(b.createTextNode(X.exec(k)[0]),o.firstChild),k=o.childNodes}var r;if(!f.support.appendChecked)if(k[0]&&typeof (r=k.length)=="number")for(i=0;i=0)return b+"px"}}}),f.support.opacity||(f.cssHooks.opacity={get:function(a,b){return br.test((b&&a.currentStyle?a.currentStyle.filter:a.style.filter)||"")?parseFloat(RegExp.$1)/100+"":b?"1":""},set:function(a,b){var c=a.style,d=a.currentStyle,e=f.isNumeric(b)?"alpha(opacity="+b*100+")":"",g=d&&d.filter||c.filter||"";c.zoom=1;if(b>=1&&f.trim(g.replace(bq,""))===""){c.removeAttribute("filter");if(d&&!d.filter)return}c.filter=bq.test(g)?g.replace(bq,e):g+" "+e}}),f(function(){f.support.reliableMarginRight||(f.cssHooks.marginRight={get:function(a,b){var c;f.swap(a,{display:"inline-block"},function(){b?c=bz(a,"margin-right","marginRight"):c=a.style.marginRight});return c}})}),c.defaultView&&c.defaultView.getComputedStyle&&(bA=function(a,b){var c,d,e;b=b.replace(bs,"-$1").toLowerCase(),(d=a.ownerDocument.defaultView)&&(e=d.getComputedStyle(a,null))&&(c=e.getPropertyValue(b),c===""&&!f.contains(a.ownerDocument.documentElement,a)&&(c=f.style(a,b)));return c}),c.documentElement.currentStyle&&(bB=function(a,b){var c,d,e,f=a.currentStyle&&a.currentStyle[b],g=a.style;f===null&&g&&(e=g[b])&&(f=e),!bt.test(f)&&bu.test(f)&&(c=g.left,d=a.runtimeStyle&&a.runtimeStyle.left,d&&(a.runtimeStyle.left=a.currentStyle.left),g.left=b==="fontSize"?"1em":f||0,f=g.pixelLeft+"px",g.left=c,d&&(a.runtimeStyle.left=d));return f===""?"auto":f}),bz=bA||bB,f.expr&&f.expr.filters&&(f.expr.filters.hidden=function(a){var b=a.offsetWidth,c=a.offsetHeight;return b===0&&c===0||!f.support.reliableHiddenOffsets&&(a.style&&a.style.display||f.css(a,"display"))==="none"},f.expr.filters.visible=function(a){return!f.expr.filters.hidden(a)});var bD=/%20/g,bE=/\[\]$/,bF=/\r?\n/g,bG=/#.*$/,bH=/^(.*?):[ \t]*([^\r\n]*)\r?$/mg,bI=/^(?:color|date|datetime|datetime-local|email|hidden|month|number|password|range|search|tel|text|time|url|week)$/i,bJ=/^(?:about|app|app\-storage|.+\-extension|file|res|widget):$/,bK=/^(?:GET|HEAD)$/,bL=/^\/\//,bM=/\?/,bN=/)<[^<]*)*<\/script>/gi,bO=/^(?:select|textarea)/i,bP=/\s+/,bQ=/([?&])_=[^&]*/,bR=/^([\w\+\.\-]+:)(?:\/\/([^\/?#:]*)(?::(\d+))?)?/,bS=f.fn.load,bT={},bU={},bV,bW,bX=["*/"]+["*"];try{bV=e.href}catch(bY){bV=c.createElement("a"),bV.href="",bV=bV.href}bW=bR.exec(bV.toLowerCase())||[],f.fn.extend({load:function(a,c,d){if(typeof a!="string"&&bS)return bS.apply(this,arguments);if(!this.length)return this;var e=a.indexOf(" ");if(e>=0){var g=a.slice(e,a.length);a=a.slice(0,e)}var h="GET";c&&(f.isFunction(c)?(d=c,c=b):typeof c=="object"&&(c=f.param(c,f.ajaxSettings.traditional),h="POST"));var i=this;f.ajax({url:a,type:h,dataType:"html",data:c,complete:function(a,b,c){c=a.responseText,a.isResolved()&&(a.done(function(a){c=a}),i.html(g?f("
").append(c.replace(bN,"")).find(g):c)),d&&i.each(d,[c,b,a])}});return this},serialize:function(){return f.param(this.serializeArray())},serializeArray:function(){return this.map(function(){return this.elements?f.makeArray(this.elements):this}).filter(function(){return this.name&&!this.disabled&&(this.checked||bO.test(this.nodeName)||bI.test(this.type))}).map(function(a,b){var c=f(this).val();return c==null?null:f.isArray(c)?f.map(c,function(a,c){return{name:b.name,value:a.replace(bF,"\r\n")}}):{name:b.name,value:c.replace(bF,"\r\n")}}).get()}}),f.each("ajaxStart ajaxStop ajaxComplete ajaxError ajaxSuccess ajaxSend".split(" "),function(a,b){f.fn[b]=function(a){return this.on(b,a)}}),f.each(["get","post"],function(a,c){f[c]=function(a,d,e,g){f.isFunction(d)&&(g=g||e,e=d,d=b);return f.ajax({type:c,url:a,data:d,success:e,dataType:g})}}),f.extend({getScript:function(a,c){return f.get(a,b,c,"script")},getJSON:function(a,b,c){return f.get(a,b,c,"json")},ajaxSetup:function(a,b){b?b_(a,f.ajaxSettings):(b=a,a=f.ajaxSettings),b_(a,b);return a},ajaxSettings:{url:bV,isLocal:bJ.test(bW[1]),global:!0,type:"GET",contentType:"application/x-www-form-urlencoded",processData:!0,async:!0,accepts:{xml:"application/xml, text/xml",html:"text/html",text:"text/plain",json:"application/json, text/javascript","*":bX},contents:{xml:/xml/,html:/html/,json:/json/},responseFields:{xml:"responseXML",text:"responseText"},converters:{"* text":a.String,"text html":!0,"text json":f.parseJSON,"text xml":f.parseXML},flatOptions:{context:!0,url:!0}},ajaxPrefilter:bZ(bT),ajaxTransport:bZ(bU),ajax:function(a,c){function w(a,c,l,m){if(s!==2){s=2,q&&clearTimeout(q),p=b,n=m||"",v.readyState=a>0?4:0;var o,r,u,w=c,x=l?cb(d,v,l):b,y,z;if(a>=200&&a<300||a===304){if(d.ifModified){if(y=v.getResponseHeader("Last-Modified"))f.lastModified[k]=y;if(z=v.getResponseHeader("Etag"))f.etag[k]=z}if(a===304)w="notmodified",o=!0;else try{r=cc(d,x),w="success",o=!0}catch(A){w="parsererror",u=A}}else{u=w;if(!w||a)w="error",a<0&&(a=0)}v.status=a,v.statusText=""+(c||w),o?h.resolveWith(e,[r,w,v]):h.rejectWith(e,[v,w,u]),v.statusCode(j),j=b,t&&g.trigger("ajax"+(o?"Success":"Error"),[v,d,o?r:u]),i.fireWith(e,[v,w]),t&&(g.trigger("ajaxComplete",[v,d]),--f.active||f.event.trigger("ajaxStop"))}}typeof a=="object"&&(c=a,a=b),c=c||{};var d=f.ajaxSetup({},c),e=d.context||d,g=e!==d&&(e.nodeType||e instanceof f)?f(e):f.event,h=f.Deferred(),i=f.Callbacks("once memory"),j=d.statusCode||{},k,l={},m={},n,o,p,q,r,s=0,t,u,v={readyState:0,setRequestHeader:function(a,b){if(!s){var c=a.toLowerCase();a=m[c]=m[c]||a,l[a]=b}return this},getAllResponseHeaders:function(){return s===2?n:null},getResponseHeader:function(a){var c;if(s===2){if(!o){o={};while(c=bH.exec(n))o[c[1].toLowerCase()]=c[2]}c=o[a.toLowerCase()]}return c===b?null:c},overrideMimeType:function(a){s||(d.mimeType=a);return this},abort:function(a){a=a||"abort",p&&p.abort(a),w(0,a);return this}};h.promise(v),v.success=v.done,v.error=v.fail,v.complete=i.add,v.statusCode=function(a){if(a){var b;if(s<2)for(b in a)j[b]=[j[b],a[b]];else b=a[v.status],v.then(b,b)}return this},d.url=((a||d.url)+"").replace(bG,"").replace(bL,bW[1]+"//"),d.dataTypes=f.trim(d.dataType||"*").toLowerCase().split(bP),d.crossDomain==null&&(r=bR.exec(d.url.toLowerCase()),d.crossDomain=!(!r||r[1]==bW[1]&&r[2]==bW[2]&&(r[3]||(r[1]==="http:"?80:443))==(bW[3]||(bW[1]==="http:"?80:443)))),d.data&&d.processData&&typeof d.data!="string"&&(d.data=f.param(d.data,d.traditional)),b$(bT,d,c,v);if(s===2)return!1;t=d.global,d.type=d.type.toUpperCase(),d.hasContent=!bK.test(d.type),t&&f.active++===0&&f.event.trigger("ajaxStart");if(!d.hasContent){d.data&&(d.url+=(bM.test(d.url)?"&":"?")+d.data,delete d.data),k=d.url;if(d.cache===!1){var x=f.now(),y=d.url.replace(bQ,"$1_="+x);d.url=y+(y===d.url?(bM.test(d.url)?"&":"?")+"_="+x:"")}}(d.data&&d.hasContent&&d.contentType!==!1||c.contentType)&&v.setRequestHeader("Content-Type",d.contentType),d.ifModified&&(k=k||d.url,f.lastModified[k]&&v.setRequestHeader("If-Modified-Since",f.lastModified[k]),f.etag[k]&&v.setRequestHeader("If-None-Match",f.etag[k])),v.setRequestHeader("Accept",d.dataTypes[0]&&d.accepts[d.dataTypes[0]]?d.accepts[d.dataTypes[0]]+(d.dataTypes[0]!=="*"?", "+bX+"; q=0.01":""):d.accepts["*"]);for(u in d.headers)v.setRequestHeader(u,d.headers[u]);if(d.beforeSend&&(d.beforeSend.call(e,v,d)===!1||s===2)){v.abort();return!1}for(u in{success:1,error:1,complete:1})v[u](d[u]);p=b$(bU,d,c,v);if(!p)w(-1,"No Transport");else{v.readyState=1,t&&g.trigger("ajaxSend",[v,d]),d.async&&d.timeout>0&&(q=setTimeout(function(){v.abort("timeout")},d.timeout));try{s=1,p.send(l,w)}catch(z){if(s<2)w(-1,z);else throw z}}return v},param:function(a,c){var d=[],e=function(a,b){b=f.isFunction(b)?b():b,d[d.length]=encodeURIComponent(a)+"="+encodeURIComponent(b)};c===b&&(c=f.ajaxSettings.traditional);if(f.isArray(a)||a.jquery&&!f.isPlainObject(a))f.each(a,function(){e(this.name,this.value)});else for(var g in a)ca(g,a[g],c,e);return d.join("&").replace(bD,"+")}}),f.extend({active:0,lastModified:{},etag:{}});var cd=f.now(),ce=/(\=)\?(&|$)|\?\?/i;f.ajaxSetup({jsonp:"callback",jsonpCallback:function(){return f.expando+"_"+cd++}}),f.ajaxPrefilter("json jsonp",function(b,c,d){var e=b.contentType==="application/x-www-form-urlencoded"&&typeof b.data=="string";if(b.dataTypes[0]==="jsonp"||b.jsonp!==!1&&(ce.test(b.url)||e&&ce.test(b.data))){var g,h=b.jsonpCallback=f.isFunction(b.jsonpCallback)?b.jsonpCallback():b.jsonpCallback,i=a[h],j=b.url,k=b.data,l="$1"+h+"$2";b.jsonp!==!1&&(j=j.replace(ce,l),b.url===j&&(e&&(k=k.replace(ce,l)),b.data===k&&(j+=(/\?/.test(j)?"&":"?")+b.jsonp+"="+h))),b.url=j,b.data=k,a[h]=function(a){g=[a]},d.always(function(){a[h]=i,g&&f.isFunction(i)&&a[h](g[0])}),b.converters["script json"]=function(){g||f.error(h+" was not called");return g[0]},b.dataTypes[0]="json";return"script"}}),f.ajaxSetup({accepts:{script:"text/javascript, application/javascript, application/ecmascript, application/x-ecmascript"},contents:{script:/javascript|ecmascript/},converters:{"text script":function(a){f.globalEval(a);return a}}}),f.ajaxPrefilter("script",function(a){a.cache===b&&(a.cache=!1),a.crossDomain&&(a.type="GET",a.global=!1)}),f.ajaxTransport("script",function(a){if(a.crossDomain){var d,e=c.head||c.getElementsByTagName("head")[0]||c.documentElement;return{send:function(f,g){d=c.createElement("script"),d.async="async",a.scriptCharset&&(d.charset=a.scriptCharset),d.src=a.url,d.onload=d.onreadystatechange=function(a,c){if(c||!d.readyState||/loaded|complete/.test(d.readyState))d.onload=d.onreadystatechange=null,e&&d.parentNode&&e.removeChild(d),d=b,c||g(200,"success")},e.insertBefore(d,e.firstChild)},abort:function(){d&&d.onload(0,1)}}}});var cf=a.ActiveXObject?function(){for(var a in ch)ch[a](0,1)}:!1,cg=0,ch;f.ajaxSettings.xhr=a.ActiveXObject?function(){return!this.isLocal&&ci()||cj()}:ci,function(a){f.extend(f.support,{ajax:!!a,cors:!!a&&"withCredentials"in a})}(f.ajaxSettings.xhr()),f.support.ajax&&f.ajaxTransport(function(c) {if(!c.crossDomain||f.support.cors){var d;return{send:function(e,g){var h=c.xhr(),i,j;c.username?h.open(c.type,c.url,c.async,c.username,c.password):h.open(c.type,c.url,c.async);if(c.xhrFields)for(j in c.xhrFields)h[j]=c.xhrFields[j];c.mimeType&&h.overrideMimeType&&h.overrideMimeType(c.mimeType),!c.crossDomain&&!e["X-Requested-With"]&&(e["X-Requested-With"]="XMLHttpRequest");try{for(j in e)h.setRequestHeader(j,e[j])}catch(k){}h.send(c.hasContent&&c.data||null),d=function(a,e){var j,k,l,m,n;try{if(d&&(e||h.readyState===4)){d=b,i&&(h.onreadystatechange=f.noop,cf&&delete ch[i]);if(e)h.readyState!==4&&h.abort();else{j=h.status,l=h.getAllResponseHeaders(),m={},n=h.responseXML,n&&n.documentElement&&(m.xml=n),m.text=h.responseText;try{k=h.statusText}catch(o){k=""}!j&&c.isLocal&&!c.crossDomain?j=m.text?200:404:j===1223&&(j=204)}}}catch(p){e||g(-1,p)}m&&g(j,k,m,l)},!c.async||h.readyState===4?d():(i=++cg,cf&&(ch||(ch={},f(a).unload(cf)),ch[i]=d),h.onreadystatechange=d)},abort:function(){d&&d(0,1)}}}});var ck={},cl,cm,cn=/^(?:toggle|show|hide)$/,co=/^([+\-]=)?([\d+.\-]+)([a-z%]*)$/i,cp,cq=[["height","marginTop","marginBottom","paddingTop","paddingBottom"],["width","marginLeft","marginRight","paddingLeft","paddingRight"],["opacity"]],cr;f.fn.extend({show:function(a,b,c){var d,e;if(a||a===0)return this.animate(cu("show",3),a,b,c);for(var g=0,h=this.length;g=i.duration+this.startTime){this.now=this.end,this.pos=this.state=1,this.update(),i.animatedProperties[this.prop]=!0;for(b in i.animatedProperties)i.animatedProperties[b]!==!0&&(g=!1);if(g){i.overflow!=null&&!f.support.shrinkWrapBlocks&&f.each(["","X","Y"],function(a,b){h.style["overflow"+b]=i.overflow[a]}),i.hide&&f(h).hide();if(i.hide||i.show)for(b in i.animatedProperties)f.style(h,b,i.orig[b]),f.removeData(h,"fxshow"+b,!0),f.removeData(h,"toggle"+b,!0);d=i.complete,d&&(i.complete=!1,d.call(h))}return!1}i.duration==Infinity?this.now=e:(c=e-this.startTime,this.state=c/i.duration,this.pos=f.easing[i.animatedProperties[this.prop]](this.state,c,0,1,i.duration),this.now=this.start+(this.end-this.start)*this.pos),this.update();return!0}},f.extend(f.fx,{tick:function(){var a,b=f.timers,c=0;for(;c-1,k={},l={},m,n;j?(l=e.position(),m=l.top,n=l.left):(m=parseFloat(h)||0,n=parseFloat(i)||0),f.isFunction(b)&&(b=b.call(a,c,g)),b.top!=null&&(k.top=b.top-g.top+m),b.left!=null&&(k.left=b.left-g.left+n),"using"in b?b.using.call(a,k):e.css(k)}},f.fn.extend({position:function(){if(!this[0])return null;var a=this[0],b=this.offsetParent(),c=this.offset(),d=cx.test(b[0].nodeName)?{top:0,left:0}:b.offset();c.top-=parseFloat(f.css(a,"marginTop"))||0,c.left-=parseFloat(f.css(a,"marginLeft"))||0,d.top+=parseFloat(f.css(b[0],"borderTopWidth"))||0,d.left+=parseFloat(f.css(b[0],"borderLeftWidth"))||0;return{top:c.top-d.top,left:c.left-d.left}},offsetParent:function(){return this.map(function(){var a=this.offsetParent||c.body;while(a&&!cx.test(a.nodeName)&&f.css(a,"position")==="static")a=a.offsetParent;return a})}}),f.each(["Left","Top"],function(a,c){var d="scroll"+c;f.fn[d]=function(c){var e,g;if(c===b){e=this[0];if(!e)return null;g=cy(e);return g?"pageXOffset"in g?g[a?"pageYOffset":"pageXOffset"]:f.support.boxModel&&g.document.documentElement[d]||g.document.body[d]:e[d]}return this.each(function(){g=cy(this),g?g.scrollTo(a?f(g).scrollLeft():c,a?c:f(g).scrollTop()):this[d]=c})}}),f.each(["Height","Width"],function(a,c){var d=c.toLowerCase();f.fn["inner"+c]=function(){var a=this[0];return a?a.style?parseFloat(f.css(a,d,"padding")):this[d]():null},f.fn["outer"+c]=function(a){var b=this[0];return b?b.style?parseFloat(f.css(b,d,a?"margin":"border")):this[d]():null},f.fn[d]=function(a){var e=this[0];if(!e)return a==null?null:this;if(f.isFunction(a))return this.each(function(b){var c=f(this);c[d](a.call(this,b,c[d]()))});if(f.isWindow(e)){var g=e.document.documentElement["client"+c],h=e.document.body;return e.document.compatMode==="CSS1Compat"&&g||h&&h["client"+c]||g}if(e.nodeType===9)return Math.max(e.documentElement["client"+c],e.body["scroll"+c],e.documentElement["scroll"+c],e.body["offset"+c],e.documentElement["offset"+c]);if(a===b){var i=f.css(e,d),j=parseFloat(i);return f.isNumeric(j)?j:i}return this.css(d,typeof a=="string"?a:a+"px")}}),a.jQuery=a.$=f,typeof define=="function"&&define.amd&&define.amd.jQuery&&define("jquery",[],function(){return f})})(window); libjpeg-turbo-1.4.2/doc/html/ftv2node.png0000644000076500007650000000012612600050400015146 00000000000000PNG  IHDRɪ|IDATxݱðScOx@ y}IENDB`libjpeg-turbo-1.4.2/doc/html/bdwn.png0000644000076500007650000000022312600050400014347 00000000000000PNG  IHDR5ZIDATx DP1lm rj.e D[ɾ|6V3?Ls'(}>+ Kch` ^ލnIENDB`libjpeg-turbo-1.4.2/doc/html/ftv2pnode.png0000644000076500007650000000034512600050400015331 00000000000000PNG  IHDRɪ|IDATx=QFDk:FPK؃=V@ճ 8SHx0bnrr{򽿾$ TP XOd6"SOB(Q)+YĈ ҪR>Vtsm9(k-@ȧ-$ b [he Kp-l|CApRG'rͭaIENDB`libjpeg-turbo-1.4.2/doc/html/functions_vars.html0000644000076500007650000001414312600050400016646 00000000000000 TurboJPEG: Data Fields - Variables
TurboJPEG  1.4
 
libjpeg-turbo-1.4.2/doc/html/tab_b.png0000644000076500007650000000025112600050400014465 00000000000000PNG  IHDR$[pIDATxM EǻԸu`V0}:t]Ds䮂u|x>1&m8SxLU޲iEOsnxKN~jIENDB`libjpeg-turbo-1.4.2/tjbench.c0000644000076500007650000007460612600050400012777 00000000000000/* * Copyright (C)2009-2015 D. R. Commander. All Rights Reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * - Neither the name of the libjpeg-turbo Project nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS", * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include "./bmp.h" #include "./tjutil.h" #include "./turbojpeg.h" #define _throw(op, err) { \ printf("ERROR in line %d while %s:\n%s\n", __LINE__, op, err); \ retval=-1; goto bailout;} #define _throwunix(m) _throw(m, strerror(errno)) #define _throwtj(m) _throw(m, tjGetErrorStr()) #define _throwbmp(m) _throw(m, bmpgeterr()) int flags=TJFLAG_NOREALLOC, componly=0, decomponly=0, doyuv=0, quiet=0, dotile=0, pf=TJPF_BGR, yuvpad=1, warmup=1; char *ext="ppm"; const char *pixFormatStr[TJ_NUMPF]= { "RGB", "BGR", "RGBX", "BGRX", "XBGR", "XRGB", "GRAY", "", "", "", "", "CMYK" }; const char *subNameLong[TJ_NUMSAMP]= { "4:4:4", "4:2:2", "4:2:0", "GRAY", "4:4:0", "4:1:1" }; const char *csName[TJ_NUMCS]= { "RGB", "YCbCr", "GRAY", "CMYK", "YCCK" }; const char *subName[TJ_NUMSAMP]={"444", "422", "420", "GRAY", "440", "411"}; tjscalingfactor *scalingfactors=NULL, sf={1, 1}; int nsf=0; int xformop=TJXOP_NONE, xformopt=0; int (*customFilter)(short *, tjregion, tjregion, int, int, tjtransform *); double benchtime=5.0; char *formatName(int subsamp, int cs, char *buf) { if(cs==TJCS_YCbCr) return (char *)subNameLong[subsamp]; else if(cs==TJCS_YCCK) { snprintf(buf, 80, "%s %s", csName[cs], subNameLong[subsamp]); return buf; } else return (char *)csName[cs]; } char *sigfig(double val, int figs, char *buf, int len) { char format[80]; int digitsafterdecimal=figs-(int)ceil(log10(fabs(val))); if(digitsafterdecimal<1) snprintf(format, 80, "%%.0f"); else snprintf(format, 80, "%%.%df", digitsafterdecimal); snprintf(buf, len, format, val); return buf; } /* Custom DCT filter which produces a negative of the image */ int dummyDCTFilter(short *coeffs, tjregion arrayRegion, tjregion planeRegion, int componentIndex, int transformIndex, tjtransform *transform) { int i; for(i=0; i0) { snprintf(qualstr, 6, "_Q%d", jpegqual); qualstr[5]=0; } if((handle=tjInitDecompress())==NULL) _throwtj("executing tjInitDecompress()"); if(dstbuf==NULL) { if((dstbuf=(unsigned char *)malloc(pitch*scaledh))==NULL) _throwunix("allocating destination buffer"); dstbufalloc=1; } /* Set the destination buffer to gray so we know whether the decompressor attempted to write to it */ memset(dstbuf, 127, pitch*scaledh); if(doyuv) { int width=dotile? tilew:scaledw; int height=dotile? tileh:scaledh; int yuvsize=tjBufSizeYUV2(width, yuvpad, height, subsamp); if((yuvbuf=(unsigned char *)malloc(yuvsize))==NULL) _throwunix("allocating YUV buffer"); memset(yuvbuf, 127, yuvsize); } /* Benchmark */ iter=-warmup; elapsed=elapsedDecode=0.; while(1) { int tile=0; double start=gettime(); for(row=0, dstptr=dstbuf; row=0) elapsedDecode+=gettime()-startDecode; } else if(tjDecompress2(handle, jpegbuf[tile], jpegsize[tile], dstptr2, width, pitch, height, pf, flags)==-1) _throwtj("executing tjDecompress2()"); } } iter++; if(iter>=1) { elapsed+=gettime()-start; if(elapsed>=benchtime) break; } } if(doyuv) elapsed-=elapsedDecode; if(tjDestroy(handle)==-1) _throwtj("executing tjDestroy()"); handle=NULL; if(quiet) { printf("%-6s%s", sigfig((double)(w*h)/1000000.*(double)iter/elapsed, 4, tempstr, 1024), quiet==2? "\n":" "); if(doyuv) printf("%s\n", sigfig((double)(w*h)/1000000.*(double)iter/elapsedDecode, 4, tempstr, 1024)); else if(quiet!=2) printf("\n"); } else { printf("%s --> Frame rate: %f fps\n", doyuv? "Decomp to YUV":"Decompress ", (double)iter/elapsed); printf(" Throughput: %f Megapixels/sec\n", (double)(w*h)/1000000.*(double)iter/elapsed); if(doyuv) { printf("YUV Decode --> Frame rate:  %f fps\n", (double)iter/elapsedDecode); printf(" Throughput: %f Megapixels/sec\n", (double)(w*h)/1000000.*(double)iter/elapsedDecode); } } if(sf.num!=1 || sf.denom!=1) snprintf(sizestr, 20, "%d_%d", sf.num, sf.denom); else if(tilew!=w || tileh!=h) snprintf(sizestr, 20, "%dx%d", tilew, tileh); else snprintf(sizestr, 20, "full"); if(decomponly) snprintf(tempstr, 1024, "%s_%s.%s", filename, sizestr, ext); else snprintf(tempstr, 1024, "%s_%s%s_%s.%s", filename, subName[subsamp], qualstr, sizestr, ext); if(savebmp(tempstr, dstbuf, scaledw, scaledh, pf, (flags&TJFLAG_BOTTOMUP)!=0)==-1) _throwbmp("saving bitmap"); ptr=strrchr(tempstr, '.'); snprintf(ptr, 1024-(ptr-tempstr), "-err.%s", ext); if(srcbuf && sf.num==1 && sf.denom==1) { if(!quiet) printf("Compression error written to %s.\n", tempstr); if(subsamp==TJ_GRAYSCALE) { int index, index2; for(row=0, index=0; row255) y=255; if(y<0) y=0; dstbuf[rindex]=abs(dstbuf[rindex]-y); dstbuf[gindex]=abs(dstbuf[gindex]-y); dstbuf[bindex]=abs(dstbuf[bindex]-y); } } } else { for(row=0; row>>>> %s (%s) <--> JPEG %s Q%d <<<<<\n", pfStr, (flags&TJFLAG_BOTTOMUP)? "Bottom-up":"Top-down", subNameLong[subsamp], jpegqual); for(tilew=dotile? 8:w, tileh=dotile? 8:h; ; tilew*=2, tileh*=2) { if(tilew>w) tilew=w; if(tileh>h) tileh=h; ntilesw=(w+tilew-1)/tilew; ntilesh=(h+tileh-1)/tileh; if((jpegbuf=(unsigned char **)malloc(sizeof(unsigned char *) *ntilesw*ntilesh))==NULL) _throwunix("allocating JPEG tile array"); memset(jpegbuf, 0, sizeof(unsigned char *)*ntilesw*ntilesh); if((jpegsize=(unsigned long *)malloc(sizeof(unsigned long) *ntilesw*ntilesh))==NULL) _throwunix("allocating JPEG size array"); memset(jpegsize, 0, sizeof(unsigned long)*ntilesw*ntilesh); if((flags&TJFLAG_NOREALLOC)!=0) for(i=0; i=0) elapsedEncode+=gettime()-startEncode; if(tjCompressFromYUV(handle, yuvbuf, width, yuvpad, height, subsamp, &jpegbuf[tile], &jpegsize[tile], jpegqual, flags)==-1) _throwtj("executing tjCompressFromYUV()"); } else { if(tjCompress2(handle, srcptr2, width, pitch, height, pf, &jpegbuf[tile], &jpegsize[tile], subsamp, jpegqual, flags)==-1) _throwtj("executing tjCompress2()"); } totaljpegsize+=jpegsize[tile]; } } iter++; if(iter>=1) { elapsed+=gettime()-start; if(elapsed>=benchtime) break; } } if(doyuv) elapsed-=elapsedEncode; if(tjDestroy(handle)==-1) _throwtj("executing tjDestroy()"); handle=NULL; if(quiet==1) printf("%-5d %-5d ", tilew, tileh); if(quiet) { if(doyuv) printf("%-6s%s", sigfig((double)(w*h)/1000000.*(double)iter/elapsedEncode, 4, tempstr, 1024), quiet==2? "\n":" "); printf("%-6s%s", sigfig((double)(w*h)/1000000.*(double)iter/elapsed, 4, tempstr, 1024), quiet==2? "\n":" "); printf("%-6s%s", sigfig((double)(w*h*ps)/(double)totaljpegsize, 4, tempstr2, 80), quiet==2? "\n":" "); } else { printf("\n%s size: %d x %d\n", dotile? "Tile":"Image", tilew, tileh); if(doyuv) { printf("Encode YUV --> Frame rate: %f fps\n", (double)iter/elapsedEncode); printf(" Output image size: %d bytes\n", yuvsize); printf(" Compression ratio: %f:1\n", (double)(w*h*ps)/(double)yuvsize); printf(" Throughput: %f Megapixels/sec\n", (double)(w*h)/1000000.*(double)iter/elapsedEncode); printf(" Output bit stream: %f Megabits/sec\n", (double)yuvsize*8./1000000.*(double)iter/elapsedEncode); } printf("%s --> Frame rate: %f fps\n", doyuv? "Comp from YUV":"Compress ", (double)iter/elapsed); printf(" Output image size: %d bytes\n", totaljpegsize); printf(" Compression ratio: %f:1\n", (double)(w*h*ps)/(double)totaljpegsize); printf(" Throughput: %f Megapixels/sec\n", (double)(w*h)/1000000.*(double)iter/elapsed); printf(" Output bit stream: %f Megabits/sec\n", (double)totaljpegsize*8./1000000.*(double)iter/elapsed); } if(tilew==w && tileh==h) { snprintf(tempstr, 1024, "%s_%s_Q%d.jpg", filename, subName[subsamp], jpegqual); if((file=fopen(tempstr, "wb"))==NULL) _throwunix("opening reference image"); if(fwrite(jpegbuf[0], jpegsize[0], 1, file)!=1) _throwunix("writing reference image"); fclose(file); file=NULL; if(!quiet) printf("Reference image written to %s\n", tempstr); } /* Decompression test */ if(!componly) { if(decomp(srcbuf, jpegbuf, jpegsize, tmpbuf, w, h, subsamp, jpegqual, filename, tilew, tileh)==-1) goto bailout; } for(i=0; i>>>> JPEG %s --> %s (%s) <<<<<\n", formatName(subsamp, cs, tempstr), pixFormatStr[pf], (flags&TJFLAG_BOTTOMUP)? "Bottom-up":"Top-down"); for(tilew=dotile? 16:w, tileh=dotile? 16:h; ; tilew*=2, tileh*=2) { if(tilew>w) tilew=w; if(tileh>h) tileh=h; ntilesw=(w+tilew-1)/tilew; ntilesh=(h+tileh-1)/tileh; if((jpegbuf=(unsigned char **)malloc(sizeof(unsigned char *) *ntilesw*ntilesh))==NULL) _throwunix("allocating JPEG tile array"); memset(jpegbuf, 0, sizeof(unsigned char *)*ntilesw*ntilesh); if((jpegsize=(unsigned long *)malloc(sizeof(unsigned long) *ntilesw*ntilesh))==NULL) _throwunix("allocating JPEG size array"); memset(jpegsize, 0, sizeof(unsigned long)*ntilesw*ntilesh); if((flags&TJFLAG_NOREALLOC)!=0 || !dotile) for(i=0; i %d x %d", TJSCALED(_w, sf), TJSCALED(_h, sf)); printf("\n"); } else if(quiet==1) { printf("%-4s (%s) %-5s %-5s ", pixFormatStr[pf], (flags&TJFLAG_BOTTOMUP)? "BU":"TD", csName[cs], subNameLong[subsamp]); printf("%-5d %-5d ", tilew, tileh); } _subsamp=subsamp; if(dotile || xformop!=TJXOP_NONE || xformopt!=0 || customFilter) { if((t=(tjtransform *)malloc(sizeof(tjtransform)*ntilesw*ntilesh)) ==NULL) _throwunix("allocating image transform array"); if(xformop==TJXOP_TRANSPOSE || xformop==TJXOP_TRANSVERSE || xformop==TJXOP_ROT90 || xformop==TJXOP_ROT270) { _w=h; _h=w; _tilew=tileh; _tileh=tilew; } if(xformopt&TJXOPT_GRAY) _subsamp=TJ_GRAYSCALE; if(xformop==TJXOP_HFLIP || xformop==TJXOP_ROT180) _w=_w-(_w%tjMCUWidth[_subsamp]); if(xformop==TJXOP_VFLIP || xformop==TJXOP_ROT180) _h=_h-(_h%tjMCUHeight[_subsamp]); if(xformop==TJXOP_TRANSVERSE || xformop==TJXOP_ROT90) _w=_w-(_w%tjMCUHeight[_subsamp]); if(xformop==TJXOP_TRANSVERSE || xformop==TJXOP_ROT270) _h=_h-(_h%tjMCUWidth[_subsamp]); _ntilesw=(_w+_tilew-1)/_tilew; _ntilesh=(_h+_tileh-1)/_tileh; if(xformop==TJXOP_TRANSPOSE || xformop==TJXOP_TRANSVERSE || xformop==TJXOP_ROT90 || xformop==TJXOP_ROT270) { if(_subsamp==TJSAMP_422) _subsamp=TJSAMP_440; else if(_subsamp==TJSAMP_440) _subsamp=TJSAMP_422; } for(row=0, tile=0; row<_ntilesh; row++) { for(col=0; col<_ntilesw; col++, tile++) { t[tile].r.w=min(_tilew, _w-col*_tilew); t[tile].r.h=min(_tileh, _h-row*_tileh); t[tile].r.x=col*_tilew; t[tile].r.y=row*_tileh; t[tile].op=xformop; t[tile].options=xformopt|TJXOPT_TRIM; t[tile].customFilter=customFilter; if(t[tile].options&TJXOPT_NOOUTPUT && jpegbuf[tile]) { tjFree(jpegbuf[tile]); jpegbuf[tile]=NULL; } } } iter=-warmup; elapsed=0.; while(1) { start=gettime(); if(tjTransform(handle, srcbuf, srcsize, _ntilesw*_ntilesh, jpegbuf, jpegsize, t, flags)==-1) _throwtj("executing tjTransform()"); iter++; if(iter>=1) { elapsed+=gettime()-start; if(elapsed>=benchtime) break; } } free(t); t=NULL; for(tile=0, totaljpegsize=0; tile<_ntilesw*_ntilesh; tile++) totaljpegsize+=jpegsize[tile]; if(quiet) { printf("%-6s%s%-6s%s", sigfig((double)(w*h)/1000000./elapsed, 4, tempstr, 80), quiet==2? "\n":" ", sigfig((double)(w*h*ps)/(double)totaljpegsize, 4, tempstr2, 80), quiet==2? "\n":" "); } else if(!quiet) { printf("Transform --> Frame rate: %f fps\n", 1.0/elapsed); printf(" Output image size: %lu bytes\n", totaljpegsize); printf(" Compression ratio: %f:1\n", (double)(w*h*ps)/(double)totaljpegsize); printf(" Throughput: %f Megapixels/sec\n", (double)(w*h)/1000000./elapsed); printf(" Output bit stream: %f Megabits/sec\n", (double)totaljpegsize*8./1000000./elapsed); } } else { if(quiet==1) printf("N/A N/A "); jpegsize[0]=srcsize; memcpy(jpegbuf[0], srcbuf, srcsize); } if(w==tilew) _tilew=_w; if(h==tileh) _tileh=_h; if(!(xformopt&TJXOPT_NOOUTPUT)) { if(decomp(NULL, jpegbuf, jpegsize, NULL, _w, _h, _subsamp, 0, filename, _tilew, _tileh)==-1) goto bailout; } else if(quiet==1) printf("N/A\n"); for(i=0; i [options]\n\n"); printf(" %s\n", progname); printf(" [options]\n\n"); printf("Options:\n\n"); printf("-alloc = Dynamically allocate JPEG image buffers\n"); printf("-bmp = Generate output images in Windows Bitmap format (default = PPM)\n"); printf("-bottomup = Test bottom-up compression/decompression\n"); printf("-tile = Test performance of the codec when the image is encoded as separate\n"); printf(" tiles of varying sizes.\n"); printf("-rgb, -bgr, -rgbx, -bgrx, -xbgr, -xrgb =\n"); printf(" Test the specified color conversion path in the codec (default = BGR)\n"); printf("-cmyk = Indirectly test YCCK JPEG compression/decompression (the source\n"); printf(" and destination bitmaps are still RGB. The conversion is done\n"); printf(" internally prior to compression or after decompression.)\n"); printf("-fastupsample = Use the fastest chrominance upsampling algorithm available in\n"); printf(" the underlying codec\n"); printf("-fastdct = Use the fastest DCT/IDCT algorithms available in the underlying\n"); printf(" codec\n"); printf("-accuratedct = Use the most accurate DCT/IDCT algorithms available in the\n"); printf(" underlying codec\n"); printf("-subsamp = When testing JPEG compression, this option specifies the level\n"); printf(" of chrominance subsampling to use ( = 444, 422, 440, 420, 411, or\n"); printf(" GRAY). The default is to test Grayscale, 4:2:0, 4:2:2, and 4:4:4 in\n"); printf(" sequence.\n"); printf("-quiet = Output results in tabular rather than verbose format\n"); printf("-yuv = Test YUV encoding/decoding functions\n"); printf("-yuvpad

= If testing YUV encoding/decoding, this specifies the number of\n"); printf(" bytes to which each row of each plane in the intermediate YUV image is\n"); printf(" padded (default = 1)\n"); printf("-scale M/N = Scale down the width/height of the decompressed JPEG image by a\n"); printf(" factor of M/N (M/N = "); for(i=0; i2) { if(i!=nsf-1) printf(", "); if(i==nsf-2) printf("or "); } if(i%8==0 && i!=0) printf("\n "); } printf(")\n"); printf("-hflip, -vflip, -transpose, -transverse, -rot90, -rot180, -rot270 =\n"); printf(" Perform the corresponding lossless transform prior to\n"); printf(" decompression (these options are mutually exclusive)\n"); printf("-grayscale = Perform lossless grayscale conversion prior to decompression\n"); printf(" test (can be combined with the other transforms above)\n"); printf("-benchtime = Run each benchmark for at least seconds (default = 5.0)\n"); printf("-warmup = Execute each benchmark times to prime the cache before\n"); printf(" taking performance measurements (default = 1)\n"); printf("-componly = Stop after running compression tests. Do not test decompression.\n\n"); printf("NOTE: If the quality is specified as a range (e.g. 90-100), a separate\n"); printf("test will be performed for all quality values in the range.\n\n"); exit(1); } int main(int argc, char *argv[]) { unsigned char *srcbuf=NULL; int w=0, h=0, i, j; int minqual=-1, maxqual=-1; char *temp; int minarg=2, retval=0, subsamp=-1; if((scalingfactors=tjGetScalingFactors(&nsf))==NULL || nsf==0) _throwtj("executing tjGetScalingFactors()"); if(argc100) { puts("ERROR: Quality must be between 1 and 100."); exit(1); } if((temp=strchr(argv[2], '-'))!=NULL && strlen(temp)>1 && sscanf(&temp[1], "%d", &maxqual)==1 && maxqual>minqual && maxqual>=1 && maxqual<=100) {} else maxqual=minqual; } if(argc>minarg) { for(i=minarg; i0.0) benchtime=temp; else usage(argv[0]); } if(!strcasecmp(argv[i], "-warmup") && i=0) { warmup=temp; printf("Warmup runs = %d\n\n", warmup); } else usage(argv[0]); } if(!strcmp(argv[i], "-?")) usage(argv[0]); if(!strcasecmp(argv[i], "-alloc")) flags&=(~TJFLAG_NOREALLOC); if(!strcasecmp(argv[i], "-bmp")) ext="bmp"; if(!strcasecmp(argv[i], "-yuv")) { printf("Testing YUV planar encoding/decoding\n\n"); doyuv=1; } if(!strcasecmp(argv[i], "-yuvpad") && i=1) yuvpad=temp; } if(!strcasecmp(argv[i], "-subsamp") && i=0 && subsamp=minqual; i--) fullTest(srcbuf, w, h, subsamp, i, argv[1]); printf("\n"); } else { if(pf!=TJPF_CMYK) { for(i=maxqual; i>=minqual; i--) fullTest(srcbuf, w, h, TJSAMP_GRAY, i, argv[1]); printf("\n"); } for(i=maxqual; i>=minqual; i--) fullTest(srcbuf, w, h, TJSAMP_420, i, argv[1]); printf("\n"); for(i=maxqual; i>=minqual; i--) fullTest(srcbuf, w, h, TJSAMP_422, i, argv[1]); printf("\n"); for(i=maxqual; i>=minqual; i--) fullTest(srcbuf, w, h, TJSAMP_444, i, argv[1]); printf("\n"); } bailout: if(srcbuf) free(srcbuf); return retval; } libjpeg-turbo-1.4.2/ltmain.sh0000644000076500007650000117077112600050405013044 00000000000000#! /bin/sh ## DO NOT EDIT - This file generated from ./build-aux/ltmain.in ## by inline-source v2014-01-03.01 # libtool (GNU libtool) 2.4.6 # Provide generalized library-building support services. # Written by Gordon Matzigkeit , 1996 # Copyright (C) 1996-2015 Free Software Foundation, Inc. # This is free software; see the source for copying conditions. There is NO # warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # GNU Libtool is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # As a special exception to the GNU General Public License, # if you distribute this file as part of a program or library that # is built using GNU Libtool, you may include this file under the # same distribution terms that you use for the rest of that program. # # GNU Libtool is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see . PROGRAM=libtool PACKAGE=libtool VERSION=2.4.6 package_revision=2.4.6 ## ------ ## ## Usage. ## ## ------ ## # Run './libtool --help' for help with using this script from the # command line. ## ------------------------------- ## ## User overridable command paths. ## ## ------------------------------- ## # After configure completes, it has a better idea of some of the # shell tools we need than the defaults used by the functions shared # with bootstrap, so set those here where they can still be over- # ridden by the user, but otherwise take precedence. : ${AUTOCONF="autoconf"} : ${AUTOMAKE="automake"} ## -------------------------- ## ## Source external libraries. ## ## -------------------------- ## # Much of our low-level functionality needs to be sourced from external # libraries, which are installed to $pkgauxdir. # Set a version string for this script. scriptversion=2015-01-20.17; # UTC # General shell script boiler plate, and helper functions. # Written by Gary V. Vaughan, 2004 # Copyright (C) 2004-2015 Free Software Foundation, Inc. # This is free software; see the source for copying conditions. There is NO # warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3 of the License, or # (at your option) any later version. # As a special exception to the GNU General Public License, if you distribute # this file as part of a program or library that is built using GNU Libtool, # you may include this file under the same distribution terms that you use # for the rest of that program. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNES FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # You should have received a copy of the GNU General Public License # along with this program. If not, see . # Please report bugs or propose patches to gary@gnu.org. ## ------ ## ## Usage. ## ## ------ ## # Evaluate this file near the top of your script to gain access to # the functions and variables defined here: # # . `echo "$0" | ${SED-sed} 's|[^/]*$||'`/build-aux/funclib.sh # # If you need to override any of the default environment variable # settings, do that before evaluating this file. ## -------------------- ## ## Shell normalisation. ## ## -------------------- ## # Some shells need a little help to be as Bourne compatible as possible. # Before doing anything else, make sure all that help has been provided! DUALCASE=1; export DUALCASE # for MKS sh if test -n "${ZSH_VERSION+set}" && (emulate sh) >/dev/null 2>&1; then : emulate sh NULLCMD=: # Pre-4.2 versions of Zsh do word splitting on ${1+"$@"}, which # is contrary to our usage. Disable this feature. alias -g '${1+"$@"}'='"$@"' setopt NO_GLOB_SUBST else case `(set -o) 2>/dev/null` in *posix*) set -o posix ;; esac fi # NLS nuisances: We save the old values in case they are required later. _G_user_locale= _G_safe_locale= for _G_var in LANG LANGUAGE LC_ALL LC_CTYPE LC_COLLATE LC_MESSAGES do eval "if test set = \"\${$_G_var+set}\"; then save_$_G_var=\$$_G_var $_G_var=C export $_G_var _G_user_locale=\"$_G_var=\\\$save_\$_G_var; \$_G_user_locale\" _G_safe_locale=\"$_G_var=C; \$_G_safe_locale\" fi" done # CDPATH. (unset CDPATH) >/dev/null 2>&1 && unset CDPATH # Make sure IFS has a sensible default sp=' ' nl=' ' IFS="$sp $nl" # There are apparently some retarded systems that use ';' as a PATH separator! if test "${PATH_SEPARATOR+set}" != set; then PATH_SEPARATOR=: (PATH='/bin;/bin'; FPATH=$PATH; sh -c :) >/dev/null 2>&1 && { (PATH='/bin:/bin'; FPATH=$PATH; sh -c :) >/dev/null 2>&1 || PATH_SEPARATOR=';' } fi ## ------------------------- ## ## Locate command utilities. ## ## ------------------------- ## # func_executable_p FILE # ---------------------- # Check that FILE is an executable regular file. func_executable_p () { test -f "$1" && test -x "$1" } # func_path_progs PROGS_LIST CHECK_FUNC [PATH] # -------------------------------------------- # Search for either a program that responds to --version with output # containing "GNU", or else returned by CHECK_FUNC otherwise, by # trying all the directories in PATH with each of the elements of # PROGS_LIST. # # CHECK_FUNC should accept the path to a candidate program, and # set $func_check_prog_result if it truncates its output less than # $_G_path_prog_max characters. func_path_progs () { _G_progs_list=$1 _G_check_func=$2 _G_PATH=${3-"$PATH"} _G_path_prog_max=0 _G_path_prog_found=false _G_save_IFS=$IFS; IFS=${PATH_SEPARATOR-:} for _G_dir in $_G_PATH; do IFS=$_G_save_IFS test -z "$_G_dir" && _G_dir=. for _G_prog_name in $_G_progs_list; do for _exeext in '' .EXE; do _G_path_prog=$_G_dir/$_G_prog_name$_exeext func_executable_p "$_G_path_prog" || continue case `"$_G_path_prog" --version 2>&1` in *GNU*) func_path_progs_result=$_G_path_prog _G_path_prog_found=: ;; *) $_G_check_func $_G_path_prog func_path_progs_result=$func_check_prog_result ;; esac $_G_path_prog_found && break 3 done done done IFS=$_G_save_IFS test -z "$func_path_progs_result" && { echo "no acceptable sed could be found in \$PATH" >&2 exit 1 } } # We want to be able to use the functions in this file before configure # has figured out where the best binaries are kept, which means we have # to search for them ourselves - except when the results are already set # where we skip the searches. # Unless the user overrides by setting SED, search the path for either GNU # sed, or the sed that truncates its output the least. test -z "$SED" && { _G_sed_script=s/aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa/bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb/ for _G_i in 1 2 3 4 5 6 7; do _G_sed_script=$_G_sed_script$nl$_G_sed_script done echo "$_G_sed_script" 2>/dev/null | sed 99q >conftest.sed _G_sed_script= func_check_prog_sed () { _G_path_prog=$1 _G_count=0 printf 0123456789 >conftest.in while : do cat conftest.in conftest.in >conftest.tmp mv conftest.tmp conftest.in cp conftest.in conftest.nl echo '' >> conftest.nl "$_G_path_prog" -f conftest.sed conftest.out 2>/dev/null || break diff conftest.out conftest.nl >/dev/null 2>&1 || break _G_count=`expr $_G_count + 1` if test "$_G_count" -gt "$_G_path_prog_max"; then # Best one so far, save it but keep looking for a better one func_check_prog_result=$_G_path_prog _G_path_prog_max=$_G_count fi # 10*(2^10) chars as input seems more than enough test 10 -lt "$_G_count" && break done rm -f conftest.in conftest.tmp conftest.nl conftest.out } func_path_progs "sed gsed" func_check_prog_sed $PATH:/usr/xpg4/bin rm -f conftest.sed SED=$func_path_progs_result } # Unless the user overrides by setting GREP, search the path for either GNU # grep, or the grep that truncates its output the least. test -z "$GREP" && { func_check_prog_grep () { _G_path_prog=$1 _G_count=0 _G_path_prog_max=0 printf 0123456789 >conftest.in while : do cat conftest.in conftest.in >conftest.tmp mv conftest.tmp conftest.in cp conftest.in conftest.nl echo 'GREP' >> conftest.nl "$_G_path_prog" -e 'GREP$' -e '-(cannot match)-' conftest.out 2>/dev/null || break diff conftest.out conftest.nl >/dev/null 2>&1 || break _G_count=`expr $_G_count + 1` if test "$_G_count" -gt "$_G_path_prog_max"; then # Best one so far, save it but keep looking for a better one func_check_prog_result=$_G_path_prog _G_path_prog_max=$_G_count fi # 10*(2^10) chars as input seems more than enough test 10 -lt "$_G_count" && break done rm -f conftest.in conftest.tmp conftest.nl conftest.out } func_path_progs "grep ggrep" func_check_prog_grep $PATH:/usr/xpg4/bin GREP=$func_path_progs_result } ## ------------------------------- ## ## User overridable command paths. ## ## ------------------------------- ## # All uppercase variable names are used for environment variables. These # variables can be overridden by the user before calling a script that # uses them if a suitable command of that name is not already available # in the command search PATH. : ${CP="cp -f"} : ${ECHO="printf %s\n"} : ${EGREP="$GREP -E"} : ${FGREP="$GREP -F"} : ${LN_S="ln -s"} : ${MAKE="make"} : ${MKDIR="mkdir"} : ${MV="mv -f"} : ${RM="rm -f"} : ${SHELL="${CONFIG_SHELL-/bin/sh}"} ## -------------------- ## ## Useful sed snippets. ## ## -------------------- ## sed_dirname='s|/[^/]*$||' sed_basename='s|^.*/||' # Sed substitution that helps us do robust quoting. It backslashifies # metacharacters that are still active within double-quoted strings. sed_quote_subst='s|\([`"$\\]\)|\\\1|g' # Same as above, but do not quote variable references. sed_double_quote_subst='s/\(["`\\]\)/\\\1/g' # Sed substitution that turns a string into a regex matching for the # string literally. sed_make_literal_regex='s|[].[^$\\*\/]|\\&|g' # Sed substitution that converts a w32 file name or path # that contains forward slashes, into one that contains # (escaped) backslashes. A very naive implementation. sed_naive_backslashify='s|\\\\*|\\|g;s|/|\\|g;s|\\|\\\\|g' # Re-'\' parameter expansions in output of sed_double_quote_subst that # were '\'-ed in input to the same. If an odd number of '\' preceded a # '$' in input to sed_double_quote_subst, that '$' was protected from # expansion. Since each input '\' is now two '\'s, look for any number # of runs of four '\'s followed by two '\'s and then a '$'. '\' that '$'. _G_bs='\\' _G_bs2='\\\\' _G_bs4='\\\\\\\\' _G_dollar='\$' sed_double_backslash="\ s/$_G_bs4/&\\ /g s/^$_G_bs2$_G_dollar/$_G_bs&/ s/\\([^$_G_bs]\\)$_G_bs2$_G_dollar/\\1$_G_bs2$_G_bs$_G_dollar/g s/\n//g" ## ----------------- ## ## Global variables. ## ## ----------------- ## # Except for the global variables explicitly listed below, the following # functions in the '^func_' namespace, and the '^require_' namespace # variables initialised in the 'Resource management' section, sourcing # this file will not pollute your global namespace with anything # else. There's no portable way to scope variables in Bourne shell # though, so actually running these functions will sometimes place # results into a variable named after the function, and often use # temporary variables in the '^_G_' namespace. If you are careful to # avoid using those namespaces casually in your sourcing script, things # should continue to work as you expect. And, of course, you can freely # overwrite any of the functions or variables defined here before # calling anything to customize them. EXIT_SUCCESS=0 EXIT_FAILURE=1 EXIT_MISMATCH=63 # $? = 63 is used to indicate version mismatch to missing. EXIT_SKIP=77 # $? = 77 is used to indicate a skipped test to automake. # Allow overriding, eg assuming that you follow the convention of # putting '$debug_cmd' at the start of all your functions, you can get # bash to show function call trace with: # # debug_cmd='eval echo "${FUNCNAME[0]} $*" >&2' bash your-script-name debug_cmd=${debug_cmd-":"} exit_cmd=: # By convention, finish your script with: # # exit $exit_status # # so that you can set exit_status to non-zero if you want to indicate # something went wrong during execution without actually bailing out at # the point of failure. exit_status=$EXIT_SUCCESS # Work around backward compatibility issue on IRIX 6.5. On IRIX 6.4+, sh # is ksh but when the shell is invoked as "sh" and the current value of # the _XPG environment variable is not equal to 1 (one), the special # positional parameter $0, within a function call, is the name of the # function. progpath=$0 # The name of this program. progname=`$ECHO "$progpath" |$SED "$sed_basename"` # Make sure we have an absolute progpath for reexecution: case $progpath in [\\/]*|[A-Za-z]:\\*) ;; *[\\/]*) progdir=`$ECHO "$progpath" |$SED "$sed_dirname"` progdir=`cd "$progdir" && pwd` progpath=$progdir/$progname ;; *) _G_IFS=$IFS IFS=${PATH_SEPARATOR-:} for progdir in $PATH; do IFS=$_G_IFS test -x "$progdir/$progname" && break done IFS=$_G_IFS test -n "$progdir" || progdir=`pwd` progpath=$progdir/$progname ;; esac ## ----------------- ## ## Standard options. ## ## ----------------- ## # The following options affect the operation of the functions defined # below, and should be set appropriately depending on run-time para- # meters passed on the command line. opt_dry_run=false opt_quiet=false opt_verbose=false # Categories 'all' and 'none' are always available. Append any others # you will pass as the first argument to func_warning from your own # code. warning_categories= # By default, display warnings according to 'opt_warning_types'. Set # 'warning_func' to ':' to elide all warnings, or func_fatal_error to # treat the next displayed warning as a fatal error. warning_func=func_warn_and_continue # Set to 'all' to display all warnings, 'none' to suppress all # warnings, or a space delimited list of some subset of # 'warning_categories' to display only the listed warnings. opt_warning_types=all ## -------------------- ## ## Resource management. ## ## -------------------- ## # This section contains definitions for functions that each ensure a # particular resource (a file, or a non-empty configuration variable for # example) is available, and if appropriate to extract default values # from pertinent package files. Call them using their associated # 'require_*' variable to ensure that they are executed, at most, once. # # It's entirely deliberate that calling these functions can set # variables that don't obey the namespace limitations obeyed by the rest # of this file, in order that that they be as useful as possible to # callers. # require_term_colors # ------------------- # Allow display of bold text on terminals that support it. require_term_colors=func_require_term_colors func_require_term_colors () { $debug_cmd test -t 1 && { # COLORTERM and USE_ANSI_COLORS environment variables take # precedence, because most terminfo databases neglect to describe # whether color sequences are supported. test -n "${COLORTERM+set}" && : ${USE_ANSI_COLORS="1"} if test 1 = "$USE_ANSI_COLORS"; then # Standard ANSI escape sequences tc_reset='' tc_bold=''; tc_standout='' tc_red=''; tc_green='' tc_blue=''; tc_cyan='' else # Otherwise trust the terminfo database after all. test -n "`tput sgr0 2>/dev/null`" && { tc_reset=`tput sgr0` test -n "`tput bold 2>/dev/null`" && tc_bold=`tput bold` tc_standout=$tc_bold test -n "`tput smso 2>/dev/null`" && tc_standout=`tput smso` test -n "`tput setaf 1 2>/dev/null`" && tc_red=`tput setaf 1` test -n "`tput setaf 2 2>/dev/null`" && tc_green=`tput setaf 2` test -n "`tput setaf 4 2>/dev/null`" && tc_blue=`tput setaf 4` test -n "`tput setaf 5 2>/dev/null`" && tc_cyan=`tput setaf 5` } fi } require_term_colors=: } ## ----------------- ## ## Function library. ## ## ----------------- ## # This section contains a variety of useful functions to call in your # scripts. Take note of the portable wrappers for features provided by # some modern shells, which will fall back to slower equivalents on # less featureful shells. # func_append VAR VALUE # --------------------- # Append VALUE onto the existing contents of VAR. # We should try to minimise forks, especially on Windows where they are # unreasonably slow, so skip the feature probes when bash or zsh are # being used: if test set = "${BASH_VERSION+set}${ZSH_VERSION+set}"; then : ${_G_HAVE_ARITH_OP="yes"} : ${_G_HAVE_XSI_OPS="yes"} # The += operator was introduced in bash 3.1 case $BASH_VERSION in [12].* | 3.0 | 3.0*) ;; *) : ${_G_HAVE_PLUSEQ_OP="yes"} ;; esac fi # _G_HAVE_PLUSEQ_OP # Can be empty, in which case the shell is probed, "yes" if += is # useable or anything else if it does not work. test -z "$_G_HAVE_PLUSEQ_OP" \ && (eval 'x=a; x+=" b"; test "a b" = "$x"') 2>/dev/null \ && _G_HAVE_PLUSEQ_OP=yes if test yes = "$_G_HAVE_PLUSEQ_OP" then # This is an XSI compatible shell, allowing a faster implementation... eval 'func_append () { $debug_cmd eval "$1+=\$2" }' else # ...otherwise fall back to using expr, which is often a shell builtin. func_append () { $debug_cmd eval "$1=\$$1\$2" } fi # func_append_quoted VAR VALUE # ---------------------------- # Quote VALUE and append to the end of shell variable VAR, separated # by a space. if test yes = "$_G_HAVE_PLUSEQ_OP"; then eval 'func_append_quoted () { $debug_cmd func_quote_for_eval "$2" eval "$1+=\\ \$func_quote_for_eval_result" }' else func_append_quoted () { $debug_cmd func_quote_for_eval "$2" eval "$1=\$$1\\ \$func_quote_for_eval_result" } fi # func_append_uniq VAR VALUE # -------------------------- # Append unique VALUE onto the existing contents of VAR, assuming # entries are delimited by the first character of VALUE. For example: # # func_append_uniq options " --another-option option-argument" # # will only append to $options if " --another-option option-argument " # is not already present somewhere in $options already (note spaces at # each end implied by leading space in second argument). func_append_uniq () { $debug_cmd eval _G_current_value='`$ECHO $'$1'`' _G_delim=`expr "$2" : '\(.\)'` case $_G_delim$_G_current_value$_G_delim in *"$2$_G_delim"*) ;; *) func_append "$@" ;; esac } # func_arith TERM... # ------------------ # Set func_arith_result to the result of evaluating TERMs. test -z "$_G_HAVE_ARITH_OP" \ && (eval 'test 2 = $(( 1 + 1 ))') 2>/dev/null \ && _G_HAVE_ARITH_OP=yes if test yes = "$_G_HAVE_ARITH_OP"; then eval 'func_arith () { $debug_cmd func_arith_result=$(( $* )) }' else func_arith () { $debug_cmd func_arith_result=`expr "$@"` } fi # func_basename FILE # ------------------ # Set func_basename_result to FILE with everything up to and including # the last / stripped. if test yes = "$_G_HAVE_XSI_OPS"; then # If this shell supports suffix pattern removal, then use it to avoid # forking. Hide the definitions single quotes in case the shell chokes # on unsupported syntax... _b='func_basename_result=${1##*/}' _d='case $1 in */*) func_dirname_result=${1%/*}$2 ;; * ) func_dirname_result=$3 ;; esac' else # ...otherwise fall back to using sed. _b='func_basename_result=`$ECHO "$1" |$SED "$sed_basename"`' _d='func_dirname_result=`$ECHO "$1" |$SED "$sed_dirname"` if test "X$func_dirname_result" = "X$1"; then func_dirname_result=$3 else func_append func_dirname_result "$2" fi' fi eval 'func_basename () { $debug_cmd '"$_b"' }' # func_dirname FILE APPEND NONDIR_REPLACEMENT # ------------------------------------------- # Compute the dirname of FILE. If nonempty, add APPEND to the result, # otherwise set result to NONDIR_REPLACEMENT. eval 'func_dirname () { $debug_cmd '"$_d"' }' # func_dirname_and_basename FILE APPEND NONDIR_REPLACEMENT # -------------------------------------------------------- # Perform func_basename and func_dirname in a single function # call: # dirname: Compute the dirname of FILE. If nonempty, # add APPEND to the result, otherwise set result # to NONDIR_REPLACEMENT. # value returned in "$func_dirname_result" # basename: Compute filename of FILE. # value retuned in "$func_basename_result" # For efficiency, we do not delegate to the functions above but instead # duplicate the functionality here. eval 'func_dirname_and_basename () { $debug_cmd '"$_b"' '"$_d"' }' # func_echo ARG... # ---------------- # Echo program name prefixed message. func_echo () { $debug_cmd _G_message=$* func_echo_IFS=$IFS IFS=$nl for _G_line in $_G_message; do IFS=$func_echo_IFS $ECHO "$progname: $_G_line" done IFS=$func_echo_IFS } # func_echo_all ARG... # -------------------- # Invoke $ECHO with all args, space-separated. func_echo_all () { $ECHO "$*" } # func_echo_infix_1 INFIX ARG... # ------------------------------ # Echo program name, followed by INFIX on the first line, with any # additional lines not showing INFIX. func_echo_infix_1 () { $debug_cmd $require_term_colors _G_infix=$1; shift _G_indent=$_G_infix _G_prefix="$progname: $_G_infix: " _G_message=$* # Strip color escape sequences before counting printable length for _G_tc in "$tc_reset" "$tc_bold" "$tc_standout" "$tc_red" "$tc_green" "$tc_blue" "$tc_cyan" do test -n "$_G_tc" && { _G_esc_tc=`$ECHO "$_G_tc" | $SED "$sed_make_literal_regex"` _G_indent=`$ECHO "$_G_indent" | $SED "s|$_G_esc_tc||g"` } done _G_indent="$progname: "`echo "$_G_indent" | $SED 's|.| |g'`" " ## exclude from sc_prohibit_nested_quotes func_echo_infix_1_IFS=$IFS IFS=$nl for _G_line in $_G_message; do IFS=$func_echo_infix_1_IFS $ECHO "$_G_prefix$tc_bold$_G_line$tc_reset" >&2 _G_prefix=$_G_indent done IFS=$func_echo_infix_1_IFS } # func_error ARG... # ----------------- # Echo program name prefixed message to standard error. func_error () { $debug_cmd $require_term_colors func_echo_infix_1 " $tc_standout${tc_red}error$tc_reset" "$*" >&2 } # func_fatal_error ARG... # ----------------------- # Echo program name prefixed message to standard error, and exit. func_fatal_error () { $debug_cmd func_error "$*" exit $EXIT_FAILURE } # func_grep EXPRESSION FILENAME # ----------------------------- # Check whether EXPRESSION matches any line of FILENAME, without output. func_grep () { $debug_cmd $GREP "$1" "$2" >/dev/null 2>&1 } # func_len STRING # --------------- # Set func_len_result to the length of STRING. STRING may not # start with a hyphen. test -z "$_G_HAVE_XSI_OPS" \ && (eval 'x=a/b/c; test 5aa/bb/cc = "${#x}${x%%/*}${x%/*}${x#*/}${x##*/}"') 2>/dev/null \ && _G_HAVE_XSI_OPS=yes if test yes = "$_G_HAVE_XSI_OPS"; then eval 'func_len () { $debug_cmd func_len_result=${#1} }' else func_len () { $debug_cmd func_len_result=`expr "$1" : ".*" 2>/dev/null || echo $max_cmd_len` } fi # func_mkdir_p DIRECTORY-PATH # --------------------------- # Make sure the entire path to DIRECTORY-PATH is available. func_mkdir_p () { $debug_cmd _G_directory_path=$1 _G_dir_list= if test -n "$_G_directory_path" && test : != "$opt_dry_run"; then # Protect directory names starting with '-' case $_G_directory_path in -*) _G_directory_path=./$_G_directory_path ;; esac # While some portion of DIR does not yet exist... while test ! -d "$_G_directory_path"; do # ...make a list in topmost first order. Use a colon delimited # list incase some portion of path contains whitespace. _G_dir_list=$_G_directory_path:$_G_dir_list # If the last portion added has no slash in it, the list is done case $_G_directory_path in */*) ;; *) break ;; esac # ...otherwise throw away the child directory and loop _G_directory_path=`$ECHO "$_G_directory_path" | $SED -e "$sed_dirname"` done _G_dir_list=`$ECHO "$_G_dir_list" | $SED 's|:*$||'` func_mkdir_p_IFS=$IFS; IFS=: for _G_dir in $_G_dir_list; do IFS=$func_mkdir_p_IFS # mkdir can fail with a 'File exist' error if two processes # try to create one of the directories concurrently. Don't # stop in that case! $MKDIR "$_G_dir" 2>/dev/null || : done IFS=$func_mkdir_p_IFS # Bail out if we (or some other process) failed to create a directory. test -d "$_G_directory_path" || \ func_fatal_error "Failed to create '$1'" fi } # func_mktempdir [BASENAME] # ------------------------- # Make a temporary directory that won't clash with other running # libtool processes, and avoids race conditions if possible. If # given, BASENAME is the basename for that directory. func_mktempdir () { $debug_cmd _G_template=${TMPDIR-/tmp}/${1-$progname} if test : = "$opt_dry_run"; then # Return a directory name, but don't create it in dry-run mode _G_tmpdir=$_G_template-$$ else # If mktemp works, use that first and foremost _G_tmpdir=`mktemp -d "$_G_template-XXXXXXXX" 2>/dev/null` if test ! -d "$_G_tmpdir"; then # Failing that, at least try and use $RANDOM to avoid a race _G_tmpdir=$_G_template-${RANDOM-0}$$ func_mktempdir_umask=`umask` umask 0077 $MKDIR "$_G_tmpdir" umask $func_mktempdir_umask fi # If we're not in dry-run mode, bomb out on failure test -d "$_G_tmpdir" || \ func_fatal_error "cannot create temporary directory '$_G_tmpdir'" fi $ECHO "$_G_tmpdir" } # func_normal_abspath PATH # ------------------------ # Remove doubled-up and trailing slashes, "." path components, # and cancel out any ".." path components in PATH after making # it an absolute path. func_normal_abspath () { $debug_cmd # These SED scripts presuppose an absolute path with a trailing slash. _G_pathcar='s|^/\([^/]*\).*$|\1|' _G_pathcdr='s|^/[^/]*||' _G_removedotparts=':dotsl s|/\./|/|g t dotsl s|/\.$|/|' _G_collapseslashes='s|/\{1,\}|/|g' _G_finalslash='s|/*$|/|' # Start from root dir and reassemble the path. func_normal_abspath_result= func_normal_abspath_tpath=$1 func_normal_abspath_altnamespace= case $func_normal_abspath_tpath in "") # Empty path, that just means $cwd. func_stripname '' '/' "`pwd`" func_normal_abspath_result=$func_stripname_result return ;; # The next three entries are used to spot a run of precisely # two leading slashes without using negated character classes; # we take advantage of case's first-match behaviour. ///*) # Unusual form of absolute path, do nothing. ;; //*) # Not necessarily an ordinary path; POSIX reserves leading '//' # and for example Cygwin uses it to access remote file shares # over CIFS/SMB, so we conserve a leading double slash if found. func_normal_abspath_altnamespace=/ ;; /*) # Absolute path, do nothing. ;; *) # Relative path, prepend $cwd. func_normal_abspath_tpath=`pwd`/$func_normal_abspath_tpath ;; esac # Cancel out all the simple stuff to save iterations. We also want # the path to end with a slash for ease of parsing, so make sure # there is one (and only one) here. func_normal_abspath_tpath=`$ECHO "$func_normal_abspath_tpath" | $SED \ -e "$_G_removedotparts" -e "$_G_collapseslashes" -e "$_G_finalslash"` while :; do # Processed it all yet? if test / = "$func_normal_abspath_tpath"; then # If we ascended to the root using ".." the result may be empty now. if test -z "$func_normal_abspath_result"; then func_normal_abspath_result=/ fi break fi func_normal_abspath_tcomponent=`$ECHO "$func_normal_abspath_tpath" | $SED \ -e "$_G_pathcar"` func_normal_abspath_tpath=`$ECHO "$func_normal_abspath_tpath" | $SED \ -e "$_G_pathcdr"` # Figure out what to do with it case $func_normal_abspath_tcomponent in "") # Trailing empty path component, ignore it. ;; ..) # Parent dir; strip last assembled component from result. func_dirname "$func_normal_abspath_result" func_normal_abspath_result=$func_dirname_result ;; *) # Actual path component, append it. func_append func_normal_abspath_result "/$func_normal_abspath_tcomponent" ;; esac done # Restore leading double-slash if one was found on entry. func_normal_abspath_result=$func_normal_abspath_altnamespace$func_normal_abspath_result } # func_notquiet ARG... # -------------------- # Echo program name prefixed message only when not in quiet mode. func_notquiet () { $debug_cmd $opt_quiet || func_echo ${1+"$@"} # A bug in bash halts the script if the last line of a function # fails when set -e is in force, so we need another command to # work around that: : } # func_relative_path SRCDIR DSTDIR # -------------------------------- # Set func_relative_path_result to the relative path from SRCDIR to DSTDIR. func_relative_path () { $debug_cmd func_relative_path_result= func_normal_abspath "$1" func_relative_path_tlibdir=$func_normal_abspath_result func_normal_abspath "$2" func_relative_path_tbindir=$func_normal_abspath_result # Ascend the tree starting from libdir while :; do # check if we have found a prefix of bindir case $func_relative_path_tbindir in $func_relative_path_tlibdir) # found an exact match func_relative_path_tcancelled= break ;; $func_relative_path_tlibdir*) # found a matching prefix func_stripname "$func_relative_path_tlibdir" '' "$func_relative_path_tbindir" func_relative_path_tcancelled=$func_stripname_result if test -z "$func_relative_path_result"; then func_relative_path_result=. fi break ;; *) func_dirname $func_relative_path_tlibdir func_relative_path_tlibdir=$func_dirname_result if test -z "$func_relative_path_tlibdir"; then # Have to descend all the way to the root! func_relative_path_result=../$func_relative_path_result func_relative_path_tcancelled=$func_relative_path_tbindir break fi func_relative_path_result=../$func_relative_path_result ;; esac done # Now calculate path; take care to avoid doubling-up slashes. func_stripname '' '/' "$func_relative_path_result" func_relative_path_result=$func_stripname_result func_stripname '/' '/' "$func_relative_path_tcancelled" if test -n "$func_stripname_result"; then func_append func_relative_path_result "/$func_stripname_result" fi # Normalisation. If bindir is libdir, return '.' else relative path. if test -n "$func_relative_path_result"; then func_stripname './' '' "$func_relative_path_result" func_relative_path_result=$func_stripname_result fi test -n "$func_relative_path_result" || func_relative_path_result=. : } # func_quote_for_eval ARG... # -------------------------- # Aesthetically quote ARGs to be evaled later. # This function returns two values: # i) func_quote_for_eval_result # double-quoted, suitable for a subsequent eval # ii) func_quote_for_eval_unquoted_result # has all characters that are still active within double # quotes backslashified. func_quote_for_eval () { $debug_cmd func_quote_for_eval_unquoted_result= func_quote_for_eval_result= while test 0 -lt $#; do case $1 in *[\\\`\"\$]*) _G_unquoted_arg=`printf '%s\n' "$1" |$SED "$sed_quote_subst"` ;; *) _G_unquoted_arg=$1 ;; esac if test -n "$func_quote_for_eval_unquoted_result"; then func_append func_quote_for_eval_unquoted_result " $_G_unquoted_arg" else func_append func_quote_for_eval_unquoted_result "$_G_unquoted_arg" fi case $_G_unquoted_arg in # Double-quote args containing shell metacharacters to delay # word splitting, command substitution and variable expansion # for a subsequent eval. # Many Bourne shells cannot handle close brackets correctly # in scan sets, so we specify it separately. *[\[\~\#\^\&\*\(\)\{\}\|\;\<\>\?\'\ \ ]*|*]*|"") _G_quoted_arg=\"$_G_unquoted_arg\" ;; *) _G_quoted_arg=$_G_unquoted_arg ;; esac if test -n "$func_quote_for_eval_result"; then func_append func_quote_for_eval_result " $_G_quoted_arg" else func_append func_quote_for_eval_result "$_G_quoted_arg" fi shift done } # func_quote_for_expand ARG # ------------------------- # Aesthetically quote ARG to be evaled later; same as above, # but do not quote variable references. func_quote_for_expand () { $debug_cmd case $1 in *[\\\`\"]*) _G_arg=`$ECHO "$1" | $SED \ -e "$sed_double_quote_subst" -e "$sed_double_backslash"` ;; *) _G_arg=$1 ;; esac case $_G_arg in # Double-quote args containing shell metacharacters to delay # word splitting and command substitution for a subsequent eval. # Many Bourne shells cannot handle close brackets correctly # in scan sets, so we specify it separately. *[\[\~\#\^\&\*\(\)\{\}\|\;\<\>\?\'\ \ ]*|*]*|"") _G_arg=\"$_G_arg\" ;; esac func_quote_for_expand_result=$_G_arg } # func_stripname PREFIX SUFFIX NAME # --------------------------------- # strip PREFIX and SUFFIX from NAME, and store in func_stripname_result. # PREFIX and SUFFIX must not contain globbing or regex special # characters, hashes, percent signs, but SUFFIX may contain a leading # dot (in which case that matches only a dot). if test yes = "$_G_HAVE_XSI_OPS"; then eval 'func_stripname () { $debug_cmd # pdksh 5.2.14 does not do ${X%$Y} correctly if both X and Y are # positional parameters, so assign one to ordinary variable first. func_stripname_result=$3 func_stripname_result=${func_stripname_result#"$1"} func_stripname_result=${func_stripname_result%"$2"} }' else func_stripname () { $debug_cmd case $2 in .*) func_stripname_result=`$ECHO "$3" | $SED -e "s%^$1%%" -e "s%\\\\$2\$%%"`;; *) func_stripname_result=`$ECHO "$3" | $SED -e "s%^$1%%" -e "s%$2\$%%"`;; esac } fi # func_show_eval CMD [FAIL_EXP] # ----------------------------- # Unless opt_quiet is true, then output CMD. Then, if opt_dryrun is # not true, evaluate CMD. If the evaluation of CMD fails, and FAIL_EXP # is given, then evaluate it. func_show_eval () { $debug_cmd _G_cmd=$1 _G_fail_exp=${2-':'} func_quote_for_expand "$_G_cmd" eval "func_notquiet $func_quote_for_expand_result" $opt_dry_run || { eval "$_G_cmd" _G_status=$? if test 0 -ne "$_G_status"; then eval "(exit $_G_status); $_G_fail_exp" fi } } # func_show_eval_locale CMD [FAIL_EXP] # ------------------------------------ # Unless opt_quiet is true, then output CMD. Then, if opt_dryrun is # not true, evaluate CMD. If the evaluation of CMD fails, and FAIL_EXP # is given, then evaluate it. Use the saved locale for evaluation. func_show_eval_locale () { $debug_cmd _G_cmd=$1 _G_fail_exp=${2-':'} $opt_quiet || { func_quote_for_expand "$_G_cmd" eval "func_echo $func_quote_for_expand_result" } $opt_dry_run || { eval "$_G_user_locale $_G_cmd" _G_status=$? eval "$_G_safe_locale" if test 0 -ne "$_G_status"; then eval "(exit $_G_status); $_G_fail_exp" fi } } # func_tr_sh # ---------- # Turn $1 into a string suitable for a shell variable name. # Result is stored in $func_tr_sh_result. All characters # not in the set a-zA-Z0-9_ are replaced with '_'. Further, # if $1 begins with a digit, a '_' is prepended as well. func_tr_sh () { $debug_cmd case $1 in [0-9]* | *[!a-zA-Z0-9_]*) func_tr_sh_result=`$ECHO "$1" | $SED -e 's/^\([0-9]\)/_\1/' -e 's/[^a-zA-Z0-9_]/_/g'` ;; * ) func_tr_sh_result=$1 ;; esac } # func_verbose ARG... # ------------------- # Echo program name prefixed message in verbose mode only. func_verbose () { $debug_cmd $opt_verbose && func_echo "$*" : } # func_warn_and_continue ARG... # ----------------------------- # Echo program name prefixed warning message to standard error. func_warn_and_continue () { $debug_cmd $require_term_colors func_echo_infix_1 "${tc_red}warning$tc_reset" "$*" >&2 } # func_warning CATEGORY ARG... # ---------------------------- # Echo program name prefixed warning message to standard error. Warning # messages can be filtered according to CATEGORY, where this function # elides messages where CATEGORY is not listed in the global variable # 'opt_warning_types'. func_warning () { $debug_cmd # CATEGORY must be in the warning_categories list! case " $warning_categories " in *" $1 "*) ;; *) func_internal_error "invalid warning category '$1'" ;; esac _G_category=$1 shift case " $opt_warning_types " in *" $_G_category "*) $warning_func ${1+"$@"} ;; esac } # func_sort_ver VER1 VER2 # ----------------------- # 'sort -V' is not generally available. # Note this deviates from the version comparison in automake # in that it treats 1.5 < 1.5.0, and treats 1.4.4a < 1.4-p3a # but this should suffice as we won't be specifying old # version formats or redundant trailing .0 in bootstrap.conf. # If we did want full compatibility then we should probably # use m4_version_compare from autoconf. func_sort_ver () { $debug_cmd printf '%s\n%s\n' "$1" "$2" \ | sort -t. -k 1,1n -k 2,2n -k 3,3n -k 4,4n -k 5,5n -k 6,6n -k 7,7n -k 8,8n -k 9,9n } # func_lt_ver PREV CURR # --------------------- # Return true if PREV and CURR are in the correct order according to # func_sort_ver, otherwise false. Use it like this: # # func_lt_ver "$prev_ver" "$proposed_ver" || func_fatal_error "..." func_lt_ver () { $debug_cmd test "x$1" = x`func_sort_ver "$1" "$2" | $SED 1q` } # Local variables: # mode: shell-script # sh-indentation: 2 # eval: (add-hook 'before-save-hook 'time-stamp) # time-stamp-pattern: "10/scriptversion=%:y-%02m-%02d.%02H; # UTC" # time-stamp-time-zone: "UTC" # End: #! /bin/sh # Set a version string for this script. scriptversion=2014-01-07.03; # UTC # A portable, pluggable option parser for Bourne shell. # Written by Gary V. Vaughan, 2010 # Copyright (C) 2010-2015 Free Software Foundation, Inc. # This is free software; see the source for copying conditions. There is NO # warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # You should have received a copy of the GNU General Public License # along with this program. If not, see . # Please report bugs or propose patches to gary@gnu.org. ## ------ ## ## Usage. ## ## ------ ## # This file is a library for parsing options in your shell scripts along # with assorted other useful supporting features that you can make use # of too. # # For the simplest scripts you might need only: # # #!/bin/sh # . relative/path/to/funclib.sh # . relative/path/to/options-parser # scriptversion=1.0 # func_options ${1+"$@"} # eval set dummy "$func_options_result"; shift # ...rest of your script... # # In order for the '--version' option to work, you will need to have a # suitably formatted comment like the one at the top of this file # starting with '# Written by ' and ending with '# warranty; '. # # For '-h' and '--help' to work, you will also need a one line # description of your script's purpose in a comment directly above the # '# Written by ' line, like the one at the top of this file. # # The default options also support '--debug', which will turn on shell # execution tracing (see the comment above debug_cmd below for another # use), and '--verbose' and the func_verbose function to allow your script # to display verbose messages only when your user has specified # '--verbose'. # # After sourcing this file, you can plug processing for additional # options by amending the variables from the 'Configuration' section # below, and following the instructions in the 'Option parsing' # section further down. ## -------------- ## ## Configuration. ## ## -------------- ## # You should override these variables in your script after sourcing this # file so that they reflect the customisations you have added to the # option parser. # The usage line for option parsing errors and the start of '-h' and # '--help' output messages. You can embed shell variables for delayed # expansion at the time the message is displayed, but you will need to # quote other shell meta-characters carefully to prevent them being # expanded when the contents are evaled. usage='$progpath [OPTION]...' # Short help message in response to '-h' and '--help'. Add to this or # override it after sourcing this library to reflect the full set of # options your script accepts. usage_message="\ --debug enable verbose shell tracing -W, --warnings=CATEGORY report the warnings falling in CATEGORY [all] -v, --verbose verbosely report processing --version print version information and exit -h, --help print short or long help message and exit " # Additional text appended to 'usage_message' in response to '--help'. long_help_message=" Warning categories include: 'all' show all warnings 'none' turn off all the warnings 'error' warnings are treated as fatal errors" # Help message printed before fatal option parsing errors. fatal_help="Try '\$progname --help' for more information." ## ------------------------- ## ## Hook function management. ## ## ------------------------- ## # This section contains functions for adding, removing, and running hooks # to the main code. A hook is just a named list of of function, that can # be run in order later on. # func_hookable FUNC_NAME # ----------------------- # Declare that FUNC_NAME will run hooks added with # 'func_add_hook FUNC_NAME ...'. func_hookable () { $debug_cmd func_append hookable_fns " $1" } # func_add_hook FUNC_NAME HOOK_FUNC # --------------------------------- # Request that FUNC_NAME call HOOK_FUNC before it returns. FUNC_NAME must # first have been declared "hookable" by a call to 'func_hookable'. func_add_hook () { $debug_cmd case " $hookable_fns " in *" $1 "*) ;; *) func_fatal_error "'$1' does not accept hook functions." ;; esac eval func_append ${1}_hooks '" $2"' } # func_remove_hook FUNC_NAME HOOK_FUNC # ------------------------------------ # Remove HOOK_FUNC from the list of functions called by FUNC_NAME. func_remove_hook () { $debug_cmd eval ${1}_hooks='`$ECHO "\$'$1'_hooks" |$SED "s| '$2'||"`' } # func_run_hooks FUNC_NAME [ARG]... # --------------------------------- # Run all hook functions registered to FUNC_NAME. # It is assumed that the list of hook functions contains nothing more # than a whitespace-delimited list of legal shell function names, and # no effort is wasted trying to catch shell meta-characters or preserve # whitespace. func_run_hooks () { $debug_cmd case " $hookable_fns " in *" $1 "*) ;; *) func_fatal_error "'$1' does not support hook funcions.n" ;; esac eval _G_hook_fns=\$$1_hooks; shift for _G_hook in $_G_hook_fns; do eval $_G_hook '"$@"' # store returned options list back into positional # parameters for next 'cmd' execution. eval _G_hook_result=\$${_G_hook}_result eval set dummy "$_G_hook_result"; shift done func_quote_for_eval ${1+"$@"} func_run_hooks_result=$func_quote_for_eval_result } ## --------------- ## ## Option parsing. ## ## --------------- ## # In order to add your own option parsing hooks, you must accept the # full positional parameter list in your hook function, remove any # options that you action, and then pass back the remaining unprocessed # options in '_result', escaped suitably for # 'eval'. Like this: # # my_options_prep () # { # $debug_cmd # # # Extend the existing usage message. # usage_message=$usage_message' # -s, --silent don'\''t print informational messages # ' # # func_quote_for_eval ${1+"$@"} # my_options_prep_result=$func_quote_for_eval_result # } # func_add_hook func_options_prep my_options_prep # # # my_silent_option () # { # $debug_cmd # # # Note that for efficiency, we parse as many options as we can # # recognise in a loop before passing the remainder back to the # # caller on the first unrecognised argument we encounter. # while test $# -gt 0; do # opt=$1; shift # case $opt in # --silent|-s) opt_silent=: ;; # # Separate non-argument short options: # -s*) func_split_short_opt "$_G_opt" # set dummy "$func_split_short_opt_name" \ # "-$func_split_short_opt_arg" ${1+"$@"} # shift # ;; # *) set dummy "$_G_opt" "$*"; shift; break ;; # esac # done # # func_quote_for_eval ${1+"$@"} # my_silent_option_result=$func_quote_for_eval_result # } # func_add_hook func_parse_options my_silent_option # # # my_option_validation () # { # $debug_cmd # # $opt_silent && $opt_verbose && func_fatal_help "\ # '--silent' and '--verbose' options are mutually exclusive." # # func_quote_for_eval ${1+"$@"} # my_option_validation_result=$func_quote_for_eval_result # } # func_add_hook func_validate_options my_option_validation # # You'll alse need to manually amend $usage_message to reflect the extra # options you parse. It's preferable to append if you can, so that # multiple option parsing hooks can be added safely. # func_options [ARG]... # --------------------- # All the functions called inside func_options are hookable. See the # individual implementations for details. func_hookable func_options func_options () { $debug_cmd func_options_prep ${1+"$@"} eval func_parse_options \ ${func_options_prep_result+"$func_options_prep_result"} eval func_validate_options \ ${func_parse_options_result+"$func_parse_options_result"} eval func_run_hooks func_options \ ${func_validate_options_result+"$func_validate_options_result"} # save modified positional parameters for caller func_options_result=$func_run_hooks_result } # func_options_prep [ARG]... # -------------------------- # All initialisations required before starting the option parse loop. # Note that when calling hook functions, we pass through the list of # positional parameters. If a hook function modifies that list, and # needs to propogate that back to rest of this script, then the complete # modified list must be put in 'func_run_hooks_result' before # returning. func_hookable func_options_prep func_options_prep () { $debug_cmd # Option defaults: opt_verbose=false opt_warning_types= func_run_hooks func_options_prep ${1+"$@"} # save modified positional parameters for caller func_options_prep_result=$func_run_hooks_result } # func_parse_options [ARG]... # --------------------------- # The main option parsing loop. func_hookable func_parse_options func_parse_options () { $debug_cmd func_parse_options_result= # this just eases exit handling while test $# -gt 0; do # Defer to hook functions for initial option parsing, so they # get priority in the event of reusing an option name. func_run_hooks func_parse_options ${1+"$@"} # Adjust func_parse_options positional parameters to match eval set dummy "$func_run_hooks_result"; shift # Break out of the loop if we already parsed every option. test $# -gt 0 || break _G_opt=$1 shift case $_G_opt in --debug|-x) debug_cmd='set -x' func_echo "enabling shell trace mode" $debug_cmd ;; --no-warnings|--no-warning|--no-warn) set dummy --warnings none ${1+"$@"} shift ;; --warnings|--warning|-W) test $# = 0 && func_missing_arg $_G_opt && break case " $warning_categories $1" in *" $1 "*) # trailing space prevents matching last $1 above func_append_uniq opt_warning_types " $1" ;; *all) opt_warning_types=$warning_categories ;; *none) opt_warning_types=none warning_func=: ;; *error) opt_warning_types=$warning_categories warning_func=func_fatal_error ;; *) func_fatal_error \ "unsupported warning category: '$1'" ;; esac shift ;; --verbose|-v) opt_verbose=: ;; --version) func_version ;; -\?|-h) func_usage ;; --help) func_help ;; # Separate optargs to long options (plugins may need this): --*=*) func_split_equals "$_G_opt" set dummy "$func_split_equals_lhs" \ "$func_split_equals_rhs" ${1+"$@"} shift ;; # Separate optargs to short options: -W*) func_split_short_opt "$_G_opt" set dummy "$func_split_short_opt_name" \ "$func_split_short_opt_arg" ${1+"$@"} shift ;; # Separate non-argument short options: -\?*|-h*|-v*|-x*) func_split_short_opt "$_G_opt" set dummy "$func_split_short_opt_name" \ "-$func_split_short_opt_arg" ${1+"$@"} shift ;; --) break ;; -*) func_fatal_help "unrecognised option: '$_G_opt'" ;; *) set dummy "$_G_opt" ${1+"$@"}; shift; break ;; esac done # save modified positional parameters for caller func_quote_for_eval ${1+"$@"} func_parse_options_result=$func_quote_for_eval_result } # func_validate_options [ARG]... # ------------------------------ # Perform any sanity checks on option settings and/or unconsumed # arguments. func_hookable func_validate_options func_validate_options () { $debug_cmd # Display all warnings if -W was not given. test -n "$opt_warning_types" || opt_warning_types=" $warning_categories" func_run_hooks func_validate_options ${1+"$@"} # Bail if the options were screwed! $exit_cmd $EXIT_FAILURE # save modified positional parameters for caller func_validate_options_result=$func_run_hooks_result } ## ----------------- ## ## Helper functions. ## ## ----------------- ## # This section contains the helper functions used by the rest of the # hookable option parser framework in ascii-betical order. # func_fatal_help ARG... # ---------------------- # Echo program name prefixed message to standard error, followed by # a help hint, and exit. func_fatal_help () { $debug_cmd eval \$ECHO \""Usage: $usage"\" eval \$ECHO \""$fatal_help"\" func_error ${1+"$@"} exit $EXIT_FAILURE } # func_help # --------- # Echo long help message to standard output and exit. func_help () { $debug_cmd func_usage_message $ECHO "$long_help_message" exit 0 } # func_missing_arg ARGNAME # ------------------------ # Echo program name prefixed message to standard error and set global # exit_cmd. func_missing_arg () { $debug_cmd func_error "Missing argument for '$1'." exit_cmd=exit } # func_split_equals STRING # ------------------------ # Set func_split_equals_lhs and func_split_equals_rhs shell variables after # splitting STRING at the '=' sign. test -z "$_G_HAVE_XSI_OPS" \ && (eval 'x=a/b/c; test 5aa/bb/cc = "${#x}${x%%/*}${x%/*}${x#*/}${x##*/}"') 2>/dev/null \ && _G_HAVE_XSI_OPS=yes if test yes = "$_G_HAVE_XSI_OPS" then # This is an XSI compatible shell, allowing a faster implementation... eval 'func_split_equals () { $debug_cmd func_split_equals_lhs=${1%%=*} func_split_equals_rhs=${1#*=} test "x$func_split_equals_lhs" = "x$1" \ && func_split_equals_rhs= }' else # ...otherwise fall back to using expr, which is often a shell builtin. func_split_equals () { $debug_cmd func_split_equals_lhs=`expr "x$1" : 'x\([^=]*\)'` func_split_equals_rhs= test "x$func_split_equals_lhs" = "x$1" \ || func_split_equals_rhs=`expr "x$1" : 'x[^=]*=\(.*\)$'` } fi #func_split_equals # func_split_short_opt SHORTOPT # ----------------------------- # Set func_split_short_opt_name and func_split_short_opt_arg shell # variables after splitting SHORTOPT after the 2nd character. if test yes = "$_G_HAVE_XSI_OPS" then # This is an XSI compatible shell, allowing a faster implementation... eval 'func_split_short_opt () { $debug_cmd func_split_short_opt_arg=${1#??} func_split_short_opt_name=${1%"$func_split_short_opt_arg"} }' else # ...otherwise fall back to using expr, which is often a shell builtin. func_split_short_opt () { $debug_cmd func_split_short_opt_name=`expr "x$1" : 'x-\(.\)'` func_split_short_opt_arg=`expr "x$1" : 'x-.\(.*\)$'` } fi #func_split_short_opt # func_usage # ---------- # Echo short help message to standard output and exit. func_usage () { $debug_cmd func_usage_message $ECHO "Run '$progname --help |${PAGER-more}' for full usage" exit 0 } # func_usage_message # ------------------ # Echo short help message to standard output. func_usage_message () { $debug_cmd eval \$ECHO \""Usage: $usage"\" echo $SED -n 's|^# || /^Written by/{ x;p;x } h /^Written by/q' < "$progpath" echo eval \$ECHO \""$usage_message"\" } # func_version # ------------ # Echo version message to standard output and exit. func_version () { $debug_cmd printf '%s\n' "$progname $scriptversion" $SED -n ' /(C)/!b go :more /\./!{ N s|\n# | | b more } :go /^# Written by /,/# warranty; / { s|^# || s|^# *$|| s|\((C)\)[ 0-9,-]*[ ,-]\([1-9][0-9]* \)|\1 \2| p } /^# Written by / { s|^# || p } /^warranty; /q' < "$progpath" exit $? } # Local variables: # mode: shell-script # sh-indentation: 2 # eval: (add-hook 'before-save-hook 'time-stamp) # time-stamp-pattern: "10/scriptversion=%:y-%02m-%02d.%02H; # UTC" # time-stamp-time-zone: "UTC" # End: # Set a version string. scriptversion='(GNU libtool) 2.4.6' # func_echo ARG... # ---------------- # Libtool also displays the current mode in messages, so override # funclib.sh func_echo with this custom definition. func_echo () { $debug_cmd _G_message=$* func_echo_IFS=$IFS IFS=$nl for _G_line in $_G_message; do IFS=$func_echo_IFS $ECHO "$progname${opt_mode+: $opt_mode}: $_G_line" done IFS=$func_echo_IFS } # func_warning ARG... # ------------------- # Libtool warnings are not categorized, so override funclib.sh # func_warning with this simpler definition. func_warning () { $debug_cmd $warning_func ${1+"$@"} } ## ---------------- ## ## Options parsing. ## ## ---------------- ## # Hook in the functions to make sure our own options are parsed during # the option parsing loop. usage='$progpath [OPTION]... [MODE-ARG]...' # Short help message in response to '-h'. usage_message="Options: --config show all configuration variables --debug enable verbose shell tracing -n, --dry-run display commands without modifying any files --features display basic configuration information and exit --mode=MODE use operation mode MODE --no-warnings equivalent to '-Wnone' --preserve-dup-deps don't remove duplicate dependency libraries --quiet, --silent don't print informational messages --tag=TAG use configuration variables from tag TAG -v, --verbose print more informational messages than default --version print version information -W, --warnings=CATEGORY report the warnings falling in CATEGORY [all] -h, --help, --help-all print short, long, or detailed help message " # Additional text appended to 'usage_message' in response to '--help'. func_help () { $debug_cmd func_usage_message $ECHO "$long_help_message MODE must be one of the following: clean remove files from the build directory compile compile a source file into a libtool object execute automatically set library path, then run a program finish complete the installation of libtool libraries install install libraries or executables link create a library or an executable uninstall remove libraries from an installed directory MODE-ARGS vary depending on the MODE. When passed as first option, '--mode=MODE' may be abbreviated as 'MODE' or a unique abbreviation of that. Try '$progname --help --mode=MODE' for a more detailed description of MODE. When reporting a bug, please describe a test case to reproduce it and include the following information: host-triplet: $host shell: $SHELL compiler: $LTCC compiler flags: $LTCFLAGS linker: $LD (gnu? $with_gnu_ld) version: $progname (GNU libtool) 2.4.6 automake: `($AUTOMAKE --version) 2>/dev/null |$SED 1q` autoconf: `($AUTOCONF --version) 2>/dev/null |$SED 1q` Report bugs to . GNU libtool home page: . General help using GNU software: ." exit 0 } # func_lo2o OBJECT-NAME # --------------------- # Transform OBJECT-NAME from a '.lo' suffix to the platform specific # object suffix. lo2o=s/\\.lo\$/.$objext/ o2lo=s/\\.$objext\$/.lo/ if test yes = "$_G_HAVE_XSI_OPS"; then eval 'func_lo2o () { case $1 in *.lo) func_lo2o_result=${1%.lo}.$objext ;; * ) func_lo2o_result=$1 ;; esac }' # func_xform LIBOBJ-OR-SOURCE # --------------------------- # Transform LIBOBJ-OR-SOURCE from a '.o' or '.c' (or otherwise) # suffix to a '.lo' libtool-object suffix. eval 'func_xform () { func_xform_result=${1%.*}.lo }' else # ...otherwise fall back to using sed. func_lo2o () { func_lo2o_result=`$ECHO "$1" | $SED "$lo2o"` } func_xform () { func_xform_result=`$ECHO "$1" | $SED 's|\.[^.]*$|.lo|'` } fi # func_fatal_configuration ARG... # ------------------------------- # Echo program name prefixed message to standard error, followed by # a configuration failure hint, and exit. func_fatal_configuration () { func__fatal_error ${1+"$@"} \ "See the $PACKAGE documentation for more information." \ "Fatal configuration error." } # func_config # ----------- # Display the configuration for all the tags in this script. func_config () { re_begincf='^# ### BEGIN LIBTOOL' re_endcf='^# ### END LIBTOOL' # Default configuration. $SED "1,/$re_begincf CONFIG/d;/$re_endcf CONFIG/,\$d" < "$progpath" # Now print the configurations for the tags. for tagname in $taglist; do $SED -n "/$re_begincf TAG CONFIG: $tagname\$/,/$re_endcf TAG CONFIG: $tagname\$/p" < "$progpath" done exit $? } # func_features # ------------- # Display the features supported by this script. func_features () { echo "host: $host" if test yes = "$build_libtool_libs"; then echo "enable shared libraries" else echo "disable shared libraries" fi if test yes = "$build_old_libs"; then echo "enable static libraries" else echo "disable static libraries" fi exit $? } # func_enable_tag TAGNAME # ----------------------- # Verify that TAGNAME is valid, and either flag an error and exit, or # enable the TAGNAME tag. We also add TAGNAME to the global $taglist # variable here. func_enable_tag () { # Global variable: tagname=$1 re_begincf="^# ### BEGIN LIBTOOL TAG CONFIG: $tagname\$" re_endcf="^# ### END LIBTOOL TAG CONFIG: $tagname\$" sed_extractcf=/$re_begincf/,/$re_endcf/p # Validate tagname. case $tagname in *[!-_A-Za-z0-9,/]*) func_fatal_error "invalid tag name: $tagname" ;; esac # Don't test for the "default" C tag, as we know it's # there but not specially marked. case $tagname in CC) ;; *) if $GREP "$re_begincf" "$progpath" >/dev/null 2>&1; then taglist="$taglist $tagname" # Evaluate the configuration. Be careful to quote the path # and the sed script, to avoid splitting on whitespace, but # also don't use non-portable quotes within backquotes within # quotes we have to do it in 2 steps: extractedcf=`$SED -n -e "$sed_extractcf" < "$progpath"` eval "$extractedcf" else func_error "ignoring unknown tag $tagname" fi ;; esac } # func_check_version_match # ------------------------ # Ensure that we are using m4 macros, and libtool script from the same # release of libtool. func_check_version_match () { if test "$package_revision" != "$macro_revision"; then if test "$VERSION" != "$macro_version"; then if test -z "$macro_version"; then cat >&2 <<_LT_EOF $progname: Version mismatch error. This is $PACKAGE $VERSION, but the $progname: definition of this LT_INIT comes from an older release. $progname: You should recreate aclocal.m4 with macros from $PACKAGE $VERSION $progname: and run autoconf again. _LT_EOF else cat >&2 <<_LT_EOF $progname: Version mismatch error. This is $PACKAGE $VERSION, but the $progname: definition of this LT_INIT comes from $PACKAGE $macro_version. $progname: You should recreate aclocal.m4 with macros from $PACKAGE $VERSION $progname: and run autoconf again. _LT_EOF fi else cat >&2 <<_LT_EOF $progname: Version mismatch error. This is $PACKAGE $VERSION, revision $package_revision, $progname: but the definition of this LT_INIT comes from revision $macro_revision. $progname: You should recreate aclocal.m4 with macros from revision $package_revision $progname: of $PACKAGE $VERSION and run autoconf again. _LT_EOF fi exit $EXIT_MISMATCH fi } # libtool_options_prep [ARG]... # ----------------------------- # Preparation for options parsed by libtool. libtool_options_prep () { $debug_mode # Option defaults: opt_config=false opt_dlopen= opt_dry_run=false opt_help=false opt_mode= opt_preserve_dup_deps=false opt_quiet=false nonopt= preserve_args= # Shorthand for --mode=foo, only valid as the first argument case $1 in clean|clea|cle|cl) shift; set dummy --mode clean ${1+"$@"}; shift ;; compile|compil|compi|comp|com|co|c) shift; set dummy --mode compile ${1+"$@"}; shift ;; execute|execut|execu|exec|exe|ex|e) shift; set dummy --mode execute ${1+"$@"}; shift ;; finish|finis|fini|fin|fi|f) shift; set dummy --mode finish ${1+"$@"}; shift ;; install|instal|insta|inst|ins|in|i) shift; set dummy --mode install ${1+"$@"}; shift ;; link|lin|li|l) shift; set dummy --mode link ${1+"$@"}; shift ;; uninstall|uninstal|uninsta|uninst|unins|unin|uni|un|u) shift; set dummy --mode uninstall ${1+"$@"}; shift ;; esac # Pass back the list of options. func_quote_for_eval ${1+"$@"} libtool_options_prep_result=$func_quote_for_eval_result } func_add_hook func_options_prep libtool_options_prep # libtool_parse_options [ARG]... # --------------------------------- # Provide handling for libtool specific options. libtool_parse_options () { $debug_cmd # Perform our own loop to consume as many options as possible in # each iteration. while test $# -gt 0; do _G_opt=$1 shift case $_G_opt in --dry-run|--dryrun|-n) opt_dry_run=: ;; --config) func_config ;; --dlopen|-dlopen) opt_dlopen="${opt_dlopen+$opt_dlopen }$1" shift ;; --preserve-dup-deps) opt_preserve_dup_deps=: ;; --features) func_features ;; --finish) set dummy --mode finish ${1+"$@"}; shift ;; --help) opt_help=: ;; --help-all) opt_help=': help-all' ;; --mode) test $# = 0 && func_missing_arg $_G_opt && break opt_mode=$1 case $1 in # Valid mode arguments: clean|compile|execute|finish|install|link|relink|uninstall) ;; # Catch anything else as an error *) func_error "invalid argument for $_G_opt" exit_cmd=exit break ;; esac shift ;; --no-silent|--no-quiet) opt_quiet=false func_append preserve_args " $_G_opt" ;; --no-warnings|--no-warning|--no-warn) opt_warning=false func_append preserve_args " $_G_opt" ;; --no-verbose) opt_verbose=false func_append preserve_args " $_G_opt" ;; --silent|--quiet) opt_quiet=: opt_verbose=false func_append preserve_args " $_G_opt" ;; --tag) test $# = 0 && func_missing_arg $_G_opt && break opt_tag=$1 func_append preserve_args " $_G_opt $1" func_enable_tag "$1" shift ;; --verbose|-v) opt_quiet=false opt_verbose=: func_append preserve_args " $_G_opt" ;; # An option not handled by this hook function: *) set dummy "$_G_opt" ${1+"$@"}; shift; break ;; esac done # save modified positional parameters for caller func_quote_for_eval ${1+"$@"} libtool_parse_options_result=$func_quote_for_eval_result } func_add_hook func_parse_options libtool_parse_options # libtool_validate_options [ARG]... # --------------------------------- # Perform any sanity checks on option settings and/or unconsumed # arguments. libtool_validate_options () { # save first non-option argument if test 0 -lt $#; then nonopt=$1 shift fi # preserve --debug test : = "$debug_cmd" || func_append preserve_args " --debug" case $host in # Solaris2 added to fix http://debbugs.gnu.org/cgi/bugreport.cgi?bug=16452 # see also: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=59788 *cygwin* | *mingw* | *pw32* | *cegcc* | *solaris2* | *os2*) # don't eliminate duplications in $postdeps and $predeps opt_duplicate_compiler_generated_deps=: ;; *) opt_duplicate_compiler_generated_deps=$opt_preserve_dup_deps ;; esac $opt_help || { # Sanity checks first: func_check_version_match test yes != "$build_libtool_libs" \ && test yes != "$build_old_libs" \ && func_fatal_configuration "not configured to build any kind of library" # Darwin sucks eval std_shrext=\"$shrext_cmds\" # Only execute mode is allowed to have -dlopen flags. if test -n "$opt_dlopen" && test execute != "$opt_mode"; then func_error "unrecognized option '-dlopen'" $ECHO "$help" 1>&2 exit $EXIT_FAILURE fi # Change the help message to a mode-specific one. generic_help=$help help="Try '$progname --help --mode=$opt_mode' for more information." } # Pass back the unparsed argument list func_quote_for_eval ${1+"$@"} libtool_validate_options_result=$func_quote_for_eval_result } func_add_hook func_validate_options libtool_validate_options # Process options as early as possible so that --help and --version # can return quickly. func_options ${1+"$@"} eval set dummy "$func_options_result"; shift ## ----------- ## ## Main. ## ## ----------- ## magic='%%%MAGIC variable%%%' magic_exe='%%%MAGIC EXE variable%%%' # Global variables. extracted_archives= extracted_serial=0 # If this variable is set in any of the actions, the command in it # will be execed at the end. This prevents here-documents from being # left over by shells. exec_cmd= # A function that is used when there is no print builtin or printf. func_fallback_echo () { eval 'cat <<_LTECHO_EOF $1 _LTECHO_EOF' } # func_generated_by_libtool # True iff stdin has been generated by Libtool. This function is only # a basic sanity check; it will hardly flush out determined imposters. func_generated_by_libtool_p () { $GREP "^# Generated by .*$PACKAGE" > /dev/null 2>&1 } # func_lalib_p file # True iff FILE is a libtool '.la' library or '.lo' object file. # This function is only a basic sanity check; it will hardly flush out # determined imposters. func_lalib_p () { test -f "$1" && $SED -e 4q "$1" 2>/dev/null | func_generated_by_libtool_p } # func_lalib_unsafe_p file # True iff FILE is a libtool '.la' library or '.lo' object file. # This function implements the same check as func_lalib_p without # resorting to external programs. To this end, it redirects stdin and # closes it afterwards, without saving the original file descriptor. # As a safety measure, use it only where a negative result would be # fatal anyway. Works if 'file' does not exist. func_lalib_unsafe_p () { lalib_p=no if test -f "$1" && test -r "$1" && exec 5<&0 <"$1"; then for lalib_p_l in 1 2 3 4 do read lalib_p_line case $lalib_p_line in \#\ Generated\ by\ *$PACKAGE* ) lalib_p=yes; break;; esac done exec 0<&5 5<&- fi test yes = "$lalib_p" } # func_ltwrapper_script_p file # True iff FILE is a libtool wrapper script # This function is only a basic sanity check; it will hardly flush out # determined imposters. func_ltwrapper_script_p () { test -f "$1" && $lt_truncate_bin < "$1" 2>/dev/null | func_generated_by_libtool_p } # func_ltwrapper_executable_p file # True iff FILE is a libtool wrapper executable # This function is only a basic sanity check; it will hardly flush out # determined imposters. func_ltwrapper_executable_p () { func_ltwrapper_exec_suffix= case $1 in *.exe) ;; *) func_ltwrapper_exec_suffix=.exe ;; esac $GREP "$magic_exe" "$1$func_ltwrapper_exec_suffix" >/dev/null 2>&1 } # func_ltwrapper_scriptname file # Assumes file is an ltwrapper_executable # uses $file to determine the appropriate filename for a # temporary ltwrapper_script. func_ltwrapper_scriptname () { func_dirname_and_basename "$1" "" "." func_stripname '' '.exe' "$func_basename_result" func_ltwrapper_scriptname_result=$func_dirname_result/$objdir/${func_stripname_result}_ltshwrapper } # func_ltwrapper_p file # True iff FILE is a libtool wrapper script or wrapper executable # This function is only a basic sanity check; it will hardly flush out # determined imposters. func_ltwrapper_p () { func_ltwrapper_script_p "$1" || func_ltwrapper_executable_p "$1" } # func_execute_cmds commands fail_cmd # Execute tilde-delimited COMMANDS. # If FAIL_CMD is given, eval that upon failure. # FAIL_CMD may read-access the current command in variable CMD! func_execute_cmds () { $debug_cmd save_ifs=$IFS; IFS='~' for cmd in $1; do IFS=$sp$nl eval cmd=\"$cmd\" IFS=$save_ifs func_show_eval "$cmd" "${2-:}" done IFS=$save_ifs } # func_source file # Source FILE, adding directory component if necessary. # Note that it is not necessary on cygwin/mingw to append a dot to # FILE even if both FILE and FILE.exe exist: automatic-append-.exe # behavior happens only for exec(3), not for open(2)! Also, sourcing # 'FILE.' does not work on cygwin managed mounts. func_source () { $debug_cmd case $1 in */* | *\\*) . "$1" ;; *) . "./$1" ;; esac } # func_resolve_sysroot PATH # Replace a leading = in PATH with a sysroot. Store the result into # func_resolve_sysroot_result func_resolve_sysroot () { func_resolve_sysroot_result=$1 case $func_resolve_sysroot_result in =*) func_stripname '=' '' "$func_resolve_sysroot_result" func_resolve_sysroot_result=$lt_sysroot$func_stripname_result ;; esac } # func_replace_sysroot PATH # If PATH begins with the sysroot, replace it with = and # store the result into func_replace_sysroot_result. func_replace_sysroot () { case $lt_sysroot:$1 in ?*:"$lt_sysroot"*) func_stripname "$lt_sysroot" '' "$1" func_replace_sysroot_result='='$func_stripname_result ;; *) # Including no sysroot. func_replace_sysroot_result=$1 ;; esac } # func_infer_tag arg # Infer tagged configuration to use if any are available and # if one wasn't chosen via the "--tag" command line option. # Only attempt this if the compiler in the base compile # command doesn't match the default compiler. # arg is usually of the form 'gcc ...' func_infer_tag () { $debug_cmd if test -n "$available_tags" && test -z "$tagname"; then CC_quoted= for arg in $CC; do func_append_quoted CC_quoted "$arg" done CC_expanded=`func_echo_all $CC` CC_quoted_expanded=`func_echo_all $CC_quoted` case $@ in # Blanks in the command may have been stripped by the calling shell, # but not from the CC environment variable when configure was run. " $CC "* | "$CC "* | " $CC_expanded "* | "$CC_expanded "* | \ " $CC_quoted"* | "$CC_quoted "* | " $CC_quoted_expanded "* | "$CC_quoted_expanded "*) ;; # Blanks at the start of $base_compile will cause this to fail # if we don't check for them as well. *) for z in $available_tags; do if $GREP "^# ### BEGIN LIBTOOL TAG CONFIG: $z$" < "$progpath" > /dev/null; then # Evaluate the configuration. eval "`$SED -n -e '/^# ### BEGIN LIBTOOL TAG CONFIG: '$z'$/,/^# ### END LIBTOOL TAG CONFIG: '$z'$/p' < $progpath`" CC_quoted= for arg in $CC; do # Double-quote args containing other shell metacharacters. func_append_quoted CC_quoted "$arg" done CC_expanded=`func_echo_all $CC` CC_quoted_expanded=`func_echo_all $CC_quoted` case "$@ " in " $CC "* | "$CC "* | " $CC_expanded "* | "$CC_expanded "* | \ " $CC_quoted"* | "$CC_quoted "* | " $CC_quoted_expanded "* | "$CC_quoted_expanded "*) # The compiler in the base compile command matches # the one in the tagged configuration. # Assume this is the tagged configuration we want. tagname=$z break ;; esac fi done # If $tagname still isn't set, then no tagged configuration # was found and let the user know that the "--tag" command # line option must be used. if test -z "$tagname"; then func_echo "unable to infer tagged configuration" func_fatal_error "specify a tag with '--tag'" # else # func_verbose "using $tagname tagged configuration" fi ;; esac fi } # func_write_libtool_object output_name pic_name nonpic_name # Create a libtool object file (analogous to a ".la" file), # but don't create it if we're doing a dry run. func_write_libtool_object () { write_libobj=$1 if test yes = "$build_libtool_libs"; then write_lobj=\'$2\' else write_lobj=none fi if test yes = "$build_old_libs"; then write_oldobj=\'$3\' else write_oldobj=none fi $opt_dry_run || { cat >${write_libobj}T </dev/null` if test "$?" -eq 0 && test -n "$func_convert_core_file_wine_to_w32_tmp"; then func_convert_core_file_wine_to_w32_result=`$ECHO "$func_convert_core_file_wine_to_w32_tmp" | $SED -e "$sed_naive_backslashify"` else func_convert_core_file_wine_to_w32_result= fi fi } # end: func_convert_core_file_wine_to_w32 # func_convert_core_path_wine_to_w32 ARG # Helper function used by path conversion functions when $build is *nix, and # $host is mingw, cygwin, or some other w32 environment. Relies on a correctly # configured wine environment available, with the winepath program in $build's # $PATH. Assumes ARG has no leading or trailing path separator characters. # # ARG is path to be converted from $build format to win32. # Result is available in $func_convert_core_path_wine_to_w32_result. # Unconvertible file (directory) names in ARG are skipped; if no directory names # are convertible, then the result may be empty. func_convert_core_path_wine_to_w32 () { $debug_cmd # unfortunately, winepath doesn't convert paths, only file names func_convert_core_path_wine_to_w32_result= if test -n "$1"; then oldIFS=$IFS IFS=: for func_convert_core_path_wine_to_w32_f in $1; do IFS=$oldIFS func_convert_core_file_wine_to_w32 "$func_convert_core_path_wine_to_w32_f" if test -n "$func_convert_core_file_wine_to_w32_result"; then if test -z "$func_convert_core_path_wine_to_w32_result"; then func_convert_core_path_wine_to_w32_result=$func_convert_core_file_wine_to_w32_result else func_append func_convert_core_path_wine_to_w32_result ";$func_convert_core_file_wine_to_w32_result" fi fi done IFS=$oldIFS fi } # end: func_convert_core_path_wine_to_w32 # func_cygpath ARGS... # Wrapper around calling the cygpath program via LT_CYGPATH. This is used when # when (1) $build is *nix and Cygwin is hosted via a wine environment; or (2) # $build is MSYS and $host is Cygwin, or (3) $build is Cygwin. In case (1) or # (2), returns the Cygwin file name or path in func_cygpath_result (input # file name or path is assumed to be in w32 format, as previously converted # from $build's *nix or MSYS format). In case (3), returns the w32 file name # or path in func_cygpath_result (input file name or path is assumed to be in # Cygwin format). Returns an empty string on error. # # ARGS are passed to cygpath, with the last one being the file name or path to # be converted. # # Specify the absolute *nix (or w32) name to cygpath in the LT_CYGPATH # environment variable; do not put it in $PATH. func_cygpath () { $debug_cmd if test -n "$LT_CYGPATH" && test -f "$LT_CYGPATH"; then func_cygpath_result=`$LT_CYGPATH "$@" 2>/dev/null` if test "$?" -ne 0; then # on failure, ensure result is empty func_cygpath_result= fi else func_cygpath_result= func_error "LT_CYGPATH is empty or specifies non-existent file: '$LT_CYGPATH'" fi } #end: func_cygpath # func_convert_core_msys_to_w32 ARG # Convert file name or path ARG from MSYS format to w32 format. Return # result in func_convert_core_msys_to_w32_result. func_convert_core_msys_to_w32 () { $debug_cmd # awkward: cmd appends spaces to result func_convert_core_msys_to_w32_result=`( cmd //c echo "$1" ) 2>/dev/null | $SED -e 's/[ ]*$//' -e "$sed_naive_backslashify"` } #end: func_convert_core_msys_to_w32 # func_convert_file_check ARG1 ARG2 # Verify that ARG1 (a file name in $build format) was converted to $host # format in ARG2. Otherwise, emit an error message, but continue (resetting # func_to_host_file_result to ARG1). func_convert_file_check () { $debug_cmd if test -z "$2" && test -n "$1"; then func_error "Could not determine host file name corresponding to" func_error " '$1'" func_error "Continuing, but uninstalled executables may not work." # Fallback: func_to_host_file_result=$1 fi } # end func_convert_file_check # func_convert_path_check FROM_PATHSEP TO_PATHSEP FROM_PATH TO_PATH # Verify that FROM_PATH (a path in $build format) was converted to $host # format in TO_PATH. Otherwise, emit an error message, but continue, resetting # func_to_host_file_result to a simplistic fallback value (see below). func_convert_path_check () { $debug_cmd if test -z "$4" && test -n "$3"; then func_error "Could not determine the host path corresponding to" func_error " '$3'" func_error "Continuing, but uninstalled executables may not work." # Fallback. This is a deliberately simplistic "conversion" and # should not be "improved". See libtool.info. if test "x$1" != "x$2"; then lt_replace_pathsep_chars="s|$1|$2|g" func_to_host_path_result=`echo "$3" | $SED -e "$lt_replace_pathsep_chars"` else func_to_host_path_result=$3 fi fi } # end func_convert_path_check # func_convert_path_front_back_pathsep FRONTPAT BACKPAT REPL ORIG # Modifies func_to_host_path_result by prepending REPL if ORIG matches FRONTPAT # and appending REPL if ORIG matches BACKPAT. func_convert_path_front_back_pathsep () { $debug_cmd case $4 in $1 ) func_to_host_path_result=$3$func_to_host_path_result ;; esac case $4 in $2 ) func_append func_to_host_path_result "$3" ;; esac } # end func_convert_path_front_back_pathsep ################################################## # $build to $host FILE NAME CONVERSION FUNCTIONS # ################################################## # invoked via '$to_host_file_cmd ARG' # # In each case, ARG is the path to be converted from $build to $host format. # Result will be available in $func_to_host_file_result. # func_to_host_file ARG # Converts the file name ARG from $build format to $host format. Return result # in func_to_host_file_result. func_to_host_file () { $debug_cmd $to_host_file_cmd "$1" } # end func_to_host_file # func_to_tool_file ARG LAZY # converts the file name ARG from $build format to toolchain format. Return # result in func_to_tool_file_result. If the conversion in use is listed # in (the comma separated) LAZY, no conversion takes place. func_to_tool_file () { $debug_cmd case ,$2, in *,"$to_tool_file_cmd",*) func_to_tool_file_result=$1 ;; *) $to_tool_file_cmd "$1" func_to_tool_file_result=$func_to_host_file_result ;; esac } # end func_to_tool_file # func_convert_file_noop ARG # Copy ARG to func_to_host_file_result. func_convert_file_noop () { func_to_host_file_result=$1 } # end func_convert_file_noop # func_convert_file_msys_to_w32 ARG # Convert file name ARG from (mingw) MSYS to (mingw) w32 format; automatic # conversion to w32 is not available inside the cwrapper. Returns result in # func_to_host_file_result. func_convert_file_msys_to_w32 () { $debug_cmd func_to_host_file_result=$1 if test -n "$1"; then func_convert_core_msys_to_w32 "$1" func_to_host_file_result=$func_convert_core_msys_to_w32_result fi func_convert_file_check "$1" "$func_to_host_file_result" } # end func_convert_file_msys_to_w32 # func_convert_file_cygwin_to_w32 ARG # Convert file name ARG from Cygwin to w32 format. Returns result in # func_to_host_file_result. func_convert_file_cygwin_to_w32 () { $debug_cmd func_to_host_file_result=$1 if test -n "$1"; then # because $build is cygwin, we call "the" cygpath in $PATH; no need to use # LT_CYGPATH in this case. func_to_host_file_result=`cygpath -m "$1"` fi func_convert_file_check "$1" "$func_to_host_file_result" } # end func_convert_file_cygwin_to_w32 # func_convert_file_nix_to_w32 ARG # Convert file name ARG from *nix to w32 format. Requires a wine environment # and a working winepath. Returns result in func_to_host_file_result. func_convert_file_nix_to_w32 () { $debug_cmd func_to_host_file_result=$1 if test -n "$1"; then func_convert_core_file_wine_to_w32 "$1" func_to_host_file_result=$func_convert_core_file_wine_to_w32_result fi func_convert_file_check "$1" "$func_to_host_file_result" } # end func_convert_file_nix_to_w32 # func_convert_file_msys_to_cygwin ARG # Convert file name ARG from MSYS to Cygwin format. Requires LT_CYGPATH set. # Returns result in func_to_host_file_result. func_convert_file_msys_to_cygwin () { $debug_cmd func_to_host_file_result=$1 if test -n "$1"; then func_convert_core_msys_to_w32 "$1" func_cygpath -u "$func_convert_core_msys_to_w32_result" func_to_host_file_result=$func_cygpath_result fi func_convert_file_check "$1" "$func_to_host_file_result" } # end func_convert_file_msys_to_cygwin # func_convert_file_nix_to_cygwin ARG # Convert file name ARG from *nix to Cygwin format. Requires Cygwin installed # in a wine environment, working winepath, and LT_CYGPATH set. Returns result # in func_to_host_file_result. func_convert_file_nix_to_cygwin () { $debug_cmd func_to_host_file_result=$1 if test -n "$1"; then # convert from *nix to w32, then use cygpath to convert from w32 to cygwin. func_convert_core_file_wine_to_w32 "$1" func_cygpath -u "$func_convert_core_file_wine_to_w32_result" func_to_host_file_result=$func_cygpath_result fi func_convert_file_check "$1" "$func_to_host_file_result" } # end func_convert_file_nix_to_cygwin ############################################# # $build to $host PATH CONVERSION FUNCTIONS # ############################################# # invoked via '$to_host_path_cmd ARG' # # In each case, ARG is the path to be converted from $build to $host format. # The result will be available in $func_to_host_path_result. # # Path separators are also converted from $build format to $host format. If # ARG begins or ends with a path separator character, it is preserved (but # converted to $host format) on output. # # All path conversion functions are named using the following convention: # file name conversion function : func_convert_file_X_to_Y () # path conversion function : func_convert_path_X_to_Y () # where, for any given $build/$host combination the 'X_to_Y' value is the # same. If conversion functions are added for new $build/$host combinations, # the two new functions must follow this pattern, or func_init_to_host_path_cmd # will break. # func_init_to_host_path_cmd # Ensures that function "pointer" variable $to_host_path_cmd is set to the # appropriate value, based on the value of $to_host_file_cmd. to_host_path_cmd= func_init_to_host_path_cmd () { $debug_cmd if test -z "$to_host_path_cmd"; then func_stripname 'func_convert_file_' '' "$to_host_file_cmd" to_host_path_cmd=func_convert_path_$func_stripname_result fi } # func_to_host_path ARG # Converts the path ARG from $build format to $host format. Return result # in func_to_host_path_result. func_to_host_path () { $debug_cmd func_init_to_host_path_cmd $to_host_path_cmd "$1" } # end func_to_host_path # func_convert_path_noop ARG # Copy ARG to func_to_host_path_result. func_convert_path_noop () { func_to_host_path_result=$1 } # end func_convert_path_noop # func_convert_path_msys_to_w32 ARG # Convert path ARG from (mingw) MSYS to (mingw) w32 format; automatic # conversion to w32 is not available inside the cwrapper. Returns result in # func_to_host_path_result. func_convert_path_msys_to_w32 () { $debug_cmd func_to_host_path_result=$1 if test -n "$1"; then # Remove leading and trailing path separator characters from ARG. MSYS # behavior is inconsistent here; cygpath turns them into '.;' and ';.'; # and winepath ignores them completely. func_stripname : : "$1" func_to_host_path_tmp1=$func_stripname_result func_convert_core_msys_to_w32 "$func_to_host_path_tmp1" func_to_host_path_result=$func_convert_core_msys_to_w32_result func_convert_path_check : ";" \ "$func_to_host_path_tmp1" "$func_to_host_path_result" func_convert_path_front_back_pathsep ":*" "*:" ";" "$1" fi } # end func_convert_path_msys_to_w32 # func_convert_path_cygwin_to_w32 ARG # Convert path ARG from Cygwin to w32 format. Returns result in # func_to_host_file_result. func_convert_path_cygwin_to_w32 () { $debug_cmd func_to_host_path_result=$1 if test -n "$1"; then # See func_convert_path_msys_to_w32: func_stripname : : "$1" func_to_host_path_tmp1=$func_stripname_result func_to_host_path_result=`cygpath -m -p "$func_to_host_path_tmp1"` func_convert_path_check : ";" \ "$func_to_host_path_tmp1" "$func_to_host_path_result" func_convert_path_front_back_pathsep ":*" "*:" ";" "$1" fi } # end func_convert_path_cygwin_to_w32 # func_convert_path_nix_to_w32 ARG # Convert path ARG from *nix to w32 format. Requires a wine environment and # a working winepath. Returns result in func_to_host_file_result. func_convert_path_nix_to_w32 () { $debug_cmd func_to_host_path_result=$1 if test -n "$1"; then # See func_convert_path_msys_to_w32: func_stripname : : "$1" func_to_host_path_tmp1=$func_stripname_result func_convert_core_path_wine_to_w32 "$func_to_host_path_tmp1" func_to_host_path_result=$func_convert_core_path_wine_to_w32_result func_convert_path_check : ";" \ "$func_to_host_path_tmp1" "$func_to_host_path_result" func_convert_path_front_back_pathsep ":*" "*:" ";" "$1" fi } # end func_convert_path_nix_to_w32 # func_convert_path_msys_to_cygwin ARG # Convert path ARG from MSYS to Cygwin format. Requires LT_CYGPATH set. # Returns result in func_to_host_file_result. func_convert_path_msys_to_cygwin () { $debug_cmd func_to_host_path_result=$1 if test -n "$1"; then # See func_convert_path_msys_to_w32: func_stripname : : "$1" func_to_host_path_tmp1=$func_stripname_result func_convert_core_msys_to_w32 "$func_to_host_path_tmp1" func_cygpath -u -p "$func_convert_core_msys_to_w32_result" func_to_host_path_result=$func_cygpath_result func_convert_path_check : : \ "$func_to_host_path_tmp1" "$func_to_host_path_result" func_convert_path_front_back_pathsep ":*" "*:" : "$1" fi } # end func_convert_path_msys_to_cygwin # func_convert_path_nix_to_cygwin ARG # Convert path ARG from *nix to Cygwin format. Requires Cygwin installed in a # a wine environment, working winepath, and LT_CYGPATH set. Returns result in # func_to_host_file_result. func_convert_path_nix_to_cygwin () { $debug_cmd func_to_host_path_result=$1 if test -n "$1"; then # Remove leading and trailing path separator characters from # ARG. msys behavior is inconsistent here, cygpath turns them # into '.;' and ';.', and winepath ignores them completely. func_stripname : : "$1" func_to_host_path_tmp1=$func_stripname_result func_convert_core_path_wine_to_w32 "$func_to_host_path_tmp1" func_cygpath -u -p "$func_convert_core_path_wine_to_w32_result" func_to_host_path_result=$func_cygpath_result func_convert_path_check : : \ "$func_to_host_path_tmp1" "$func_to_host_path_result" func_convert_path_front_back_pathsep ":*" "*:" : "$1" fi } # end func_convert_path_nix_to_cygwin # func_dll_def_p FILE # True iff FILE is a Windows DLL '.def' file. # Keep in sync with _LT_DLL_DEF_P in libtool.m4 func_dll_def_p () { $debug_cmd func_dll_def_p_tmp=`$SED -n \ -e 's/^[ ]*//' \ -e '/^\(;.*\)*$/d' \ -e 's/^\(EXPORTS\|LIBRARY\)\([ ].*\)*$/DEF/p' \ -e q \ "$1"` test DEF = "$func_dll_def_p_tmp" } # func_mode_compile arg... func_mode_compile () { $debug_cmd # Get the compilation command and the source file. base_compile= srcfile=$nonopt # always keep a non-empty value in "srcfile" suppress_opt=yes suppress_output= arg_mode=normal libobj= later= pie_flag= for arg do case $arg_mode in arg ) # do not "continue". Instead, add this to base_compile lastarg=$arg arg_mode=normal ;; target ) libobj=$arg arg_mode=normal continue ;; normal ) # Accept any command-line options. case $arg in -o) test -n "$libobj" && \ func_fatal_error "you cannot specify '-o' more than once" arg_mode=target continue ;; -pie | -fpie | -fPIE) func_append pie_flag " $arg" continue ;; -shared | -static | -prefer-pic | -prefer-non-pic) func_append later " $arg" continue ;; -no-suppress) suppress_opt=no continue ;; -Xcompiler) arg_mode=arg # the next one goes into the "base_compile" arg list continue # The current "srcfile" will either be retained or ;; # replaced later. I would guess that would be a bug. -Wc,*) func_stripname '-Wc,' '' "$arg" args=$func_stripname_result lastarg= save_ifs=$IFS; IFS=, for arg in $args; do IFS=$save_ifs func_append_quoted lastarg "$arg" done IFS=$save_ifs func_stripname ' ' '' "$lastarg" lastarg=$func_stripname_result # Add the arguments to base_compile. func_append base_compile " $lastarg" continue ;; *) # Accept the current argument as the source file. # The previous "srcfile" becomes the current argument. # lastarg=$srcfile srcfile=$arg ;; esac # case $arg ;; esac # case $arg_mode # Aesthetically quote the previous argument. func_append_quoted base_compile "$lastarg" done # for arg case $arg_mode in arg) func_fatal_error "you must specify an argument for -Xcompile" ;; target) func_fatal_error "you must specify a target with '-o'" ;; *) # Get the name of the library object. test -z "$libobj" && { func_basename "$srcfile" libobj=$func_basename_result } ;; esac # Recognize several different file suffixes. # If the user specifies -o file.o, it is replaced with file.lo case $libobj in *.[cCFSifmso] | \ *.ada | *.adb | *.ads | *.asm | \ *.c++ | *.cc | *.ii | *.class | *.cpp | *.cxx | \ *.[fF][09]? | *.for | *.java | *.go | *.obj | *.sx | *.cu | *.cup) func_xform "$libobj" libobj=$func_xform_result ;; esac case $libobj in *.lo) func_lo2o "$libobj"; obj=$func_lo2o_result ;; *) func_fatal_error "cannot determine name of library object from '$libobj'" ;; esac func_infer_tag $base_compile for arg in $later; do case $arg in -shared) test yes = "$build_libtool_libs" \ || func_fatal_configuration "cannot build a shared library" build_old_libs=no continue ;; -static) build_libtool_libs=no build_old_libs=yes continue ;; -prefer-pic) pic_mode=yes continue ;; -prefer-non-pic) pic_mode=no continue ;; esac done func_quote_for_eval "$libobj" test "X$libobj" != "X$func_quote_for_eval_result" \ && $ECHO "X$libobj" | $GREP '[]~#^*{};<>?"'"'"' &()|`$[]' \ && func_warning "libobj name '$libobj' may not contain shell special characters." func_dirname_and_basename "$obj" "/" "" objname=$func_basename_result xdir=$func_dirname_result lobj=$xdir$objdir/$objname test -z "$base_compile" && \ func_fatal_help "you must specify a compilation command" # Delete any leftover library objects. if test yes = "$build_old_libs"; then removelist="$obj $lobj $libobj ${libobj}T" else removelist="$lobj $libobj ${libobj}T" fi # On Cygwin there's no "real" PIC flag so we must build both object types case $host_os in cygwin* | mingw* | pw32* | os2* | cegcc*) pic_mode=default ;; esac if test no = "$pic_mode" && test pass_all != "$deplibs_check_method"; then # non-PIC code in shared libraries is not supported pic_mode=default fi # Calculate the filename of the output object if compiler does # not support -o with -c if test no = "$compiler_c_o"; then output_obj=`$ECHO "$srcfile" | $SED 's%^.*/%%; s%\.[^.]*$%%'`.$objext lockfile=$output_obj.lock else output_obj= need_locks=no lockfile= fi # Lock this critical section if it is needed # We use this script file to make the link, it avoids creating a new file if test yes = "$need_locks"; then until $opt_dry_run || ln "$progpath" "$lockfile" 2>/dev/null; do func_echo "Waiting for $lockfile to be removed" sleep 2 done elif test warn = "$need_locks"; then if test -f "$lockfile"; then $ECHO "\ *** ERROR, $lockfile exists and contains: `cat $lockfile 2>/dev/null` This indicates that another process is trying to use the same temporary object file, and libtool could not work around it because your compiler does not support '-c' and '-o' together. If you repeat this compilation, it may succeed, by chance, but you had better avoid parallel builds (make -j) in this platform, or get a better compiler." $opt_dry_run || $RM $removelist exit $EXIT_FAILURE fi func_append removelist " $output_obj" $ECHO "$srcfile" > "$lockfile" fi $opt_dry_run || $RM $removelist func_append removelist " $lockfile" trap '$opt_dry_run || $RM $removelist; exit $EXIT_FAILURE' 1 2 15 func_to_tool_file "$srcfile" func_convert_file_msys_to_w32 srcfile=$func_to_tool_file_result func_quote_for_eval "$srcfile" qsrcfile=$func_quote_for_eval_result # Only build a PIC object if we are building libtool libraries. if test yes = "$build_libtool_libs"; then # Without this assignment, base_compile gets emptied. fbsd_hideous_sh_bug=$base_compile if test no != "$pic_mode"; then command="$base_compile $qsrcfile $pic_flag" else # Don't build PIC code command="$base_compile $qsrcfile" fi func_mkdir_p "$xdir$objdir" if test -z "$output_obj"; then # Place PIC objects in $objdir func_append command " -o $lobj" fi func_show_eval_locale "$command" \ 'test -n "$output_obj" && $RM $removelist; exit $EXIT_FAILURE' if test warn = "$need_locks" && test "X`cat $lockfile 2>/dev/null`" != "X$srcfile"; then $ECHO "\ *** ERROR, $lockfile contains: `cat $lockfile 2>/dev/null` but it should contain: $srcfile This indicates that another process is trying to use the same temporary object file, and libtool could not work around it because your compiler does not support '-c' and '-o' together. If you repeat this compilation, it may succeed, by chance, but you had better avoid parallel builds (make -j) in this platform, or get a better compiler." $opt_dry_run || $RM $removelist exit $EXIT_FAILURE fi # Just move the object if needed, then go on to compile the next one if test -n "$output_obj" && test "X$output_obj" != "X$lobj"; then func_show_eval '$MV "$output_obj" "$lobj"' \ 'error=$?; $opt_dry_run || $RM $removelist; exit $error' fi # Allow error messages only from the first compilation. if test yes = "$suppress_opt"; then suppress_output=' >/dev/null 2>&1' fi fi # Only build a position-dependent object if we build old libraries. if test yes = "$build_old_libs"; then if test yes != "$pic_mode"; then # Don't build PIC code command="$base_compile $qsrcfile$pie_flag" else command="$base_compile $qsrcfile $pic_flag" fi if test yes = "$compiler_c_o"; then func_append command " -o $obj" fi # Suppress compiler output if we already did a PIC compilation. func_append command "$suppress_output" func_show_eval_locale "$command" \ '$opt_dry_run || $RM $removelist; exit $EXIT_FAILURE' if test warn = "$need_locks" && test "X`cat $lockfile 2>/dev/null`" != "X$srcfile"; then $ECHO "\ *** ERROR, $lockfile contains: `cat $lockfile 2>/dev/null` but it should contain: $srcfile This indicates that another process is trying to use the same temporary object file, and libtool could not work around it because your compiler does not support '-c' and '-o' together. If you repeat this compilation, it may succeed, by chance, but you had better avoid parallel builds (make -j) in this platform, or get a better compiler." $opt_dry_run || $RM $removelist exit $EXIT_FAILURE fi # Just move the object if needed if test -n "$output_obj" && test "X$output_obj" != "X$obj"; then func_show_eval '$MV "$output_obj" "$obj"' \ 'error=$?; $opt_dry_run || $RM $removelist; exit $error' fi fi $opt_dry_run || { func_write_libtool_object "$libobj" "$objdir/$objname" "$objname" # Unlock the critical section if it was locked if test no != "$need_locks"; then removelist=$lockfile $RM "$lockfile" fi } exit $EXIT_SUCCESS } $opt_help || { test compile = "$opt_mode" && func_mode_compile ${1+"$@"} } func_mode_help () { # We need to display help for each of the modes. case $opt_mode in "") # Generic help is extracted from the usage comments # at the start of this file. func_help ;; clean) $ECHO \ "Usage: $progname [OPTION]... --mode=clean RM [RM-OPTION]... FILE... Remove files from the build directory. RM is the name of the program to use to delete files associated with each FILE (typically '/bin/rm'). RM-OPTIONS are options (such as '-f') to be passed to RM. If FILE is a libtool library, object or program, all the files associated with it are deleted. Otherwise, only FILE itself is deleted using RM." ;; compile) $ECHO \ "Usage: $progname [OPTION]... --mode=compile COMPILE-COMMAND... SOURCEFILE Compile a source file into a libtool library object. This mode accepts the following additional options: -o OUTPUT-FILE set the output file name to OUTPUT-FILE -no-suppress do not suppress compiler output for multiple passes -prefer-pic try to build PIC objects only -prefer-non-pic try to build non-PIC objects only -shared do not build a '.o' file suitable for static linking -static only build a '.o' file suitable for static linking -Wc,FLAG pass FLAG directly to the compiler COMPILE-COMMAND is a command to be used in creating a 'standard' object file from the given SOURCEFILE. The output file name is determined by removing the directory component from SOURCEFILE, then substituting the C source code suffix '.c' with the library object suffix, '.lo'." ;; execute) $ECHO \ "Usage: $progname [OPTION]... --mode=execute COMMAND [ARGS]... Automatically set library path, then run a program. This mode accepts the following additional options: -dlopen FILE add the directory containing FILE to the library path This mode sets the library path environment variable according to '-dlopen' flags. If any of the ARGS are libtool executable wrappers, then they are translated into their corresponding uninstalled binary, and any of their required library directories are added to the library path. Then, COMMAND is executed, with ARGS as arguments." ;; finish) $ECHO \ "Usage: $progname [OPTION]... --mode=finish [LIBDIR]... Complete the installation of libtool libraries. Each LIBDIR is a directory that contains libtool libraries. The commands that this mode executes may require superuser privileges. Use the '--dry-run' option if you just want to see what would be executed." ;; install) $ECHO \ "Usage: $progname [OPTION]... --mode=install INSTALL-COMMAND... Install executables or libraries. INSTALL-COMMAND is the installation command. The first component should be either the 'install' or 'cp' program. The following components of INSTALL-COMMAND are treated specially: -inst-prefix-dir PREFIX-DIR Use PREFIX-DIR as a staging area for installation The rest of the components are interpreted as arguments to that command (only BSD-compatible install options are recognized)." ;; link) $ECHO \ "Usage: $progname [OPTION]... --mode=link LINK-COMMAND... Link object files or libraries together to form another library, or to create an executable program. LINK-COMMAND is a command using the C compiler that you would use to create a program from several object files. The following components of LINK-COMMAND are treated specially: -all-static do not do any dynamic linking at all -avoid-version do not add a version suffix if possible -bindir BINDIR specify path to binaries directory (for systems where libraries must be found in the PATH setting at runtime) -dlopen FILE '-dlpreopen' FILE if it cannot be dlopened at runtime -dlpreopen FILE link in FILE and add its symbols to lt_preloaded_symbols -export-dynamic allow symbols from OUTPUT-FILE to be resolved with dlsym(3) -export-symbols SYMFILE try to export only the symbols listed in SYMFILE -export-symbols-regex REGEX try to export only the symbols matching REGEX -LLIBDIR search LIBDIR for required installed libraries -lNAME OUTPUT-FILE requires the installed library libNAME -module build a library that can dlopened -no-fast-install disable the fast-install mode -no-install link a not-installable executable -no-undefined declare that a library does not refer to external symbols -o OUTPUT-FILE create OUTPUT-FILE from the specified objects -objectlist FILE use a list of object files found in FILE to specify objects -os2dllname NAME force a short DLL name on OS/2 (no effect on other OSes) -precious-files-regex REGEX don't remove output files matching REGEX -release RELEASE specify package release information -rpath LIBDIR the created library will eventually be installed in LIBDIR -R[ ]LIBDIR add LIBDIR to the runtime path of programs and libraries -shared only do dynamic linking of libtool libraries -shrext SUFFIX override the standard shared library file extension -static do not do any dynamic linking of uninstalled libtool libraries -static-libtool-libs do not do any dynamic linking of libtool libraries -version-info CURRENT[:REVISION[:AGE]] specify library version info [each variable defaults to 0] -weak LIBNAME declare that the target provides the LIBNAME interface -Wc,FLAG -Xcompiler FLAG pass linker-specific FLAG directly to the compiler -Wl,FLAG -Xlinker FLAG pass linker-specific FLAG directly to the linker -XCClinker FLAG pass link-specific FLAG to the compiler driver (CC) All other options (arguments beginning with '-') are ignored. Every other argument is treated as a filename. Files ending in '.la' are treated as uninstalled libtool libraries, other files are standard or library object files. If the OUTPUT-FILE ends in '.la', then a libtool library is created, only library objects ('.lo' files) may be specified, and '-rpath' is required, except when creating a convenience library. If OUTPUT-FILE ends in '.a' or '.lib', then a standard library is created using 'ar' and 'ranlib', or on Windows using 'lib'. If OUTPUT-FILE ends in '.lo' or '.$objext', then a reloadable object file is created, otherwise an executable program is created." ;; uninstall) $ECHO \ "Usage: $progname [OPTION]... --mode=uninstall RM [RM-OPTION]... FILE... Remove libraries from an installation directory. RM is the name of the program to use to delete files associated with each FILE (typically '/bin/rm'). RM-OPTIONS are options (such as '-f') to be passed to RM. If FILE is a libtool library, all the files associated with it are deleted. Otherwise, only FILE itself is deleted using RM." ;; *) func_fatal_help "invalid operation mode '$opt_mode'" ;; esac echo $ECHO "Try '$progname --help' for more information about other modes." } # Now that we've collected a possible --mode arg, show help if necessary if $opt_help; then if test : = "$opt_help"; then func_mode_help else { func_help noexit for opt_mode in compile link execute install finish uninstall clean; do func_mode_help done } | $SED -n '1p; 2,$s/^Usage:/ or: /p' { func_help noexit for opt_mode in compile link execute install finish uninstall clean; do echo func_mode_help done } | $SED '1d /^When reporting/,/^Report/{ H d } $x /information about other modes/d /more detailed .*MODE/d s/^Usage:.*--mode=\([^ ]*\) .*/Description of \1 mode:/' fi exit $? fi # func_mode_execute arg... func_mode_execute () { $debug_cmd # The first argument is the command name. cmd=$nonopt test -z "$cmd" && \ func_fatal_help "you must specify a COMMAND" # Handle -dlopen flags immediately. for file in $opt_dlopen; do test -f "$file" \ || func_fatal_help "'$file' is not a file" dir= case $file in *.la) func_resolve_sysroot "$file" file=$func_resolve_sysroot_result # Check to see that this really is a libtool archive. func_lalib_unsafe_p "$file" \ || func_fatal_help "'$lib' is not a valid libtool archive" # Read the libtool library. dlname= library_names= func_source "$file" # Skip this library if it cannot be dlopened. if test -z "$dlname"; then # Warn if it was a shared library. test -n "$library_names" && \ func_warning "'$file' was not linked with '-export-dynamic'" continue fi func_dirname "$file" "" "." dir=$func_dirname_result if test -f "$dir/$objdir/$dlname"; then func_append dir "/$objdir" else if test ! -f "$dir/$dlname"; then func_fatal_error "cannot find '$dlname' in '$dir' or '$dir/$objdir'" fi fi ;; *.lo) # Just add the directory containing the .lo file. func_dirname "$file" "" "." dir=$func_dirname_result ;; *) func_warning "'-dlopen' is ignored for non-libtool libraries and objects" continue ;; esac # Get the absolute pathname. absdir=`cd "$dir" && pwd` test -n "$absdir" && dir=$absdir # Now add the directory to shlibpath_var. if eval "test -z \"\$$shlibpath_var\""; then eval "$shlibpath_var=\"\$dir\"" else eval "$shlibpath_var=\"\$dir:\$$shlibpath_var\"" fi done # This variable tells wrapper scripts just to set shlibpath_var # rather than running their programs. libtool_execute_magic=$magic # Check if any of the arguments is a wrapper script. args= for file do case $file in -* | *.la | *.lo ) ;; *) # Do a test to see if this is really a libtool program. if func_ltwrapper_script_p "$file"; then func_source "$file" # Transform arg to wrapped name. file=$progdir/$program elif func_ltwrapper_executable_p "$file"; then func_ltwrapper_scriptname "$file" func_source "$func_ltwrapper_scriptname_result" # Transform arg to wrapped name. file=$progdir/$program fi ;; esac # Quote arguments (to preserve shell metacharacters). func_append_quoted args "$file" done if $opt_dry_run; then # Display what would be done. if test -n "$shlibpath_var"; then eval "\$ECHO \"\$shlibpath_var=\$$shlibpath_var\"" echo "export $shlibpath_var" fi $ECHO "$cmd$args" exit $EXIT_SUCCESS else if test -n "$shlibpath_var"; then # Export the shlibpath_var. eval "export $shlibpath_var" fi # Restore saved environment variables for lt_var in LANG LANGUAGE LC_ALL LC_CTYPE LC_COLLATE LC_MESSAGES do eval "if test \"\${save_$lt_var+set}\" = set; then $lt_var=\$save_$lt_var; export $lt_var else $lt_unset $lt_var fi" done # Now prepare to actually exec the command. exec_cmd=\$cmd$args fi } test execute = "$opt_mode" && func_mode_execute ${1+"$@"} # func_mode_finish arg... func_mode_finish () { $debug_cmd libs= libdirs= admincmds= for opt in "$nonopt" ${1+"$@"} do if test -d "$opt"; then func_append libdirs " $opt" elif test -f "$opt"; then if func_lalib_unsafe_p "$opt"; then func_append libs " $opt" else func_warning "'$opt' is not a valid libtool archive" fi else func_fatal_error "invalid argument '$opt'" fi done if test -n "$libs"; then if test -n "$lt_sysroot"; then sysroot_regex=`$ECHO "$lt_sysroot" | $SED "$sed_make_literal_regex"` sysroot_cmd="s/\([ ']\)$sysroot_regex/\1/g;" else sysroot_cmd= fi # Remove sysroot references if $opt_dry_run; then for lib in $libs; do echo "removing references to $lt_sysroot and '=' prefixes from $lib" done else tmpdir=`func_mktempdir` for lib in $libs; do $SED -e "$sysroot_cmd s/\([ ']-[LR]\)=/\1/g; s/\([ ']\)=/\1/g" $lib \ > $tmpdir/tmp-la mv -f $tmpdir/tmp-la $lib done ${RM}r "$tmpdir" fi fi if test -n "$finish_cmds$finish_eval" && test -n "$libdirs"; then for libdir in $libdirs; do if test -n "$finish_cmds"; then # Do each command in the finish commands. func_execute_cmds "$finish_cmds" 'admincmds="$admincmds '"$cmd"'"' fi if test -n "$finish_eval"; then # Do the single finish_eval. eval cmds=\"$finish_eval\" $opt_dry_run || eval "$cmds" || func_append admincmds " $cmds" fi done fi # Exit here if they wanted silent mode. $opt_quiet && exit $EXIT_SUCCESS if test -n "$finish_cmds$finish_eval" && test -n "$libdirs"; then echo "----------------------------------------------------------------------" echo "Libraries have been installed in:" for libdir in $libdirs; do $ECHO " $libdir" done echo echo "If you ever happen to want to link against installed libraries" echo "in a given directory, LIBDIR, you must either use libtool, and" echo "specify the full pathname of the library, or use the '-LLIBDIR'" echo "flag during linking and do at least one of the following:" if test -n "$shlibpath_var"; then echo " - add LIBDIR to the '$shlibpath_var' environment variable" echo " during execution" fi if test -n "$runpath_var"; then echo " - add LIBDIR to the '$runpath_var' environment variable" echo " during linking" fi if test -n "$hardcode_libdir_flag_spec"; then libdir=LIBDIR eval flag=\"$hardcode_libdir_flag_spec\" $ECHO " - use the '$flag' linker flag" fi if test -n "$admincmds"; then $ECHO " - have your system administrator run these commands:$admincmds" fi if test -f /etc/ld.so.conf; then echo " - have your system administrator add LIBDIR to '/etc/ld.so.conf'" fi echo echo "See any operating system documentation about shared libraries for" case $host in solaris2.[6789]|solaris2.1[0-9]) echo "more information, such as the ld(1), crle(1) and ld.so(8) manual" echo "pages." ;; *) echo "more information, such as the ld(1) and ld.so(8) manual pages." ;; esac echo "----------------------------------------------------------------------" fi exit $EXIT_SUCCESS } test finish = "$opt_mode" && func_mode_finish ${1+"$@"} # func_mode_install arg... func_mode_install () { $debug_cmd # There may be an optional sh(1) argument at the beginning of # install_prog (especially on Windows NT). if test "$SHELL" = "$nonopt" || test /bin/sh = "$nonopt" || # Allow the use of GNU shtool's install command. case $nonopt in *shtool*) :;; *) false;; esac then # Aesthetically quote it. func_quote_for_eval "$nonopt" install_prog="$func_quote_for_eval_result " arg=$1 shift else install_prog= arg=$nonopt fi # The real first argument should be the name of the installation program. # Aesthetically quote it. func_quote_for_eval "$arg" func_append install_prog "$func_quote_for_eval_result" install_shared_prog=$install_prog case " $install_prog " in *[\\\ /]cp\ *) install_cp=: ;; *) install_cp=false ;; esac # We need to accept at least all the BSD install flags. dest= files= opts= prev= install_type= isdir=false stripme= no_mode=: for arg do arg2= if test -n "$dest"; then func_append files " $dest" dest=$arg continue fi case $arg in -d) isdir=: ;; -f) if $install_cp; then :; else prev=$arg fi ;; -g | -m | -o) prev=$arg ;; -s) stripme=" -s" continue ;; -*) ;; *) # If the previous option needed an argument, then skip it. if test -n "$prev"; then if test X-m = "X$prev" && test -n "$install_override_mode"; then arg2=$install_override_mode no_mode=false fi prev= else dest=$arg continue fi ;; esac # Aesthetically quote the argument. func_quote_for_eval "$arg" func_append install_prog " $func_quote_for_eval_result" if test -n "$arg2"; then func_quote_for_eval "$arg2" fi func_append install_shared_prog " $func_quote_for_eval_result" done test -z "$install_prog" && \ func_fatal_help "you must specify an install program" test -n "$prev" && \ func_fatal_help "the '$prev' option requires an argument" if test -n "$install_override_mode" && $no_mode; then if $install_cp; then :; else func_quote_for_eval "$install_override_mode" func_append install_shared_prog " -m $func_quote_for_eval_result" fi fi if test -z "$files"; then if test -z "$dest"; then func_fatal_help "no file or destination specified" else func_fatal_help "you must specify a destination" fi fi # Strip any trailing slash from the destination. func_stripname '' '/' "$dest" dest=$func_stripname_result # Check to see that the destination is a directory. test -d "$dest" && isdir=: if $isdir; then destdir=$dest destname= else func_dirname_and_basename "$dest" "" "." destdir=$func_dirname_result destname=$func_basename_result # Not a directory, so check to see that there is only one file specified. set dummy $files; shift test "$#" -gt 1 && \ func_fatal_help "'$dest' is not a directory" fi case $destdir in [\\/]* | [A-Za-z]:[\\/]*) ;; *) for file in $files; do case $file in *.lo) ;; *) func_fatal_help "'$destdir' must be an absolute directory name" ;; esac done ;; esac # This variable tells wrapper scripts just to set variables rather # than running their programs. libtool_install_magic=$magic staticlibs= future_libdirs= current_libdirs= for file in $files; do # Do each installation. case $file in *.$libext) # Do the static libraries later. func_append staticlibs " $file" ;; *.la) func_resolve_sysroot "$file" file=$func_resolve_sysroot_result # Check to see that this really is a libtool archive. func_lalib_unsafe_p "$file" \ || func_fatal_help "'$file' is not a valid libtool archive" library_names= old_library= relink_command= func_source "$file" # Add the libdir to current_libdirs if it is the destination. if test "X$destdir" = "X$libdir"; then case "$current_libdirs " in *" $libdir "*) ;; *) func_append current_libdirs " $libdir" ;; esac else # Note the libdir as a future libdir. case "$future_libdirs " in *" $libdir "*) ;; *) func_append future_libdirs " $libdir" ;; esac fi func_dirname "$file" "/" "" dir=$func_dirname_result func_append dir "$objdir" if test -n "$relink_command"; then # Determine the prefix the user has applied to our future dir. inst_prefix_dir=`$ECHO "$destdir" | $SED -e "s%$libdir\$%%"` # Don't allow the user to place us outside of our expected # location b/c this prevents finding dependent libraries that # are installed to the same prefix. # At present, this check doesn't affect windows .dll's that # are installed into $libdir/../bin (currently, that works fine) # but it's something to keep an eye on. test "$inst_prefix_dir" = "$destdir" && \ func_fatal_error "error: cannot install '$file' to a directory not ending in $libdir" if test -n "$inst_prefix_dir"; then # Stick the inst_prefix_dir data into the link command. relink_command=`$ECHO "$relink_command" | $SED "s%@inst_prefix_dir@%-inst-prefix-dir $inst_prefix_dir%"` else relink_command=`$ECHO "$relink_command" | $SED "s%@inst_prefix_dir@%%"` fi func_warning "relinking '$file'" func_show_eval "$relink_command" \ 'func_fatal_error "error: relink '\''$file'\'' with the above command before installing it"' fi # See the names of the shared library. set dummy $library_names; shift if test -n "$1"; then realname=$1 shift srcname=$realname test -n "$relink_command" && srcname=${realname}T # Install the shared library and build the symlinks. func_show_eval "$install_shared_prog $dir/$srcname $destdir/$realname" \ 'exit $?' tstripme=$stripme case $host_os in cygwin* | mingw* | pw32* | cegcc*) case $realname in *.dll.a) tstripme= ;; esac ;; os2*) case $realname in *_dll.a) tstripme= ;; esac ;; esac if test -n "$tstripme" && test -n "$striplib"; then func_show_eval "$striplib $destdir/$realname" 'exit $?' fi if test "$#" -gt 0; then # Delete the old symlinks, and create new ones. # Try 'ln -sf' first, because the 'ln' binary might depend on # the symlink we replace! Solaris /bin/ln does not understand -f, # so we also need to try rm && ln -s. for linkname do test "$linkname" != "$realname" \ && func_show_eval "(cd $destdir && { $LN_S -f $realname $linkname || { $RM $linkname && $LN_S $realname $linkname; }; })" done fi # Do each command in the postinstall commands. lib=$destdir/$realname func_execute_cmds "$postinstall_cmds" 'exit $?' fi # Install the pseudo-library for information purposes. func_basename "$file" name=$func_basename_result instname=$dir/${name}i func_show_eval "$install_prog $instname $destdir/$name" 'exit $?' # Maybe install the static library, too. test -n "$old_library" && func_append staticlibs " $dir/$old_library" ;; *.lo) # Install (i.e. copy) a libtool object. # Figure out destination file name, if it wasn't already specified. if test -n "$destname"; then destfile=$destdir/$destname else func_basename "$file" destfile=$func_basename_result destfile=$destdir/$destfile fi # Deduce the name of the destination old-style object file. case $destfile in *.lo) func_lo2o "$destfile" staticdest=$func_lo2o_result ;; *.$objext) staticdest=$destfile destfile= ;; *) func_fatal_help "cannot copy a libtool object to '$destfile'" ;; esac # Install the libtool object if requested. test -n "$destfile" && \ func_show_eval "$install_prog $file $destfile" 'exit $?' # Install the old object if enabled. if test yes = "$build_old_libs"; then # Deduce the name of the old-style object file. func_lo2o "$file" staticobj=$func_lo2o_result func_show_eval "$install_prog \$staticobj \$staticdest" 'exit $?' fi exit $EXIT_SUCCESS ;; *) # Figure out destination file name, if it wasn't already specified. if test -n "$destname"; then destfile=$destdir/$destname else func_basename "$file" destfile=$func_basename_result destfile=$destdir/$destfile fi # If the file is missing, and there is a .exe on the end, strip it # because it is most likely a libtool script we actually want to # install stripped_ext= case $file in *.exe) if test ! -f "$file"; then func_stripname '' '.exe' "$file" file=$func_stripname_result stripped_ext=.exe fi ;; esac # Do a test to see if this is really a libtool program. case $host in *cygwin* | *mingw*) if func_ltwrapper_executable_p "$file"; then func_ltwrapper_scriptname "$file" wrapper=$func_ltwrapper_scriptname_result else func_stripname '' '.exe' "$file" wrapper=$func_stripname_result fi ;; *) wrapper=$file ;; esac if func_ltwrapper_script_p "$wrapper"; then notinst_deplibs= relink_command= func_source "$wrapper" # Check the variables that should have been set. test -z "$generated_by_libtool_version" && \ func_fatal_error "invalid libtool wrapper script '$wrapper'" finalize=: for lib in $notinst_deplibs; do # Check to see that each library is installed. libdir= if test -f "$lib"; then func_source "$lib" fi libfile=$libdir/`$ECHO "$lib" | $SED 's%^.*/%%g'` if test -n "$libdir" && test ! -f "$libfile"; then func_warning "'$lib' has not been installed in '$libdir'" finalize=false fi done relink_command= func_source "$wrapper" outputname= if test no = "$fast_install" && test -n "$relink_command"; then $opt_dry_run || { if $finalize; then tmpdir=`func_mktempdir` func_basename "$file$stripped_ext" file=$func_basename_result outputname=$tmpdir/$file # Replace the output file specification. relink_command=`$ECHO "$relink_command" | $SED 's%@OUTPUT@%'"$outputname"'%g'` $opt_quiet || { func_quote_for_expand "$relink_command" eval "func_echo $func_quote_for_expand_result" } if eval "$relink_command"; then : else func_error "error: relink '$file' with the above command before installing it" $opt_dry_run || ${RM}r "$tmpdir" continue fi file=$outputname else func_warning "cannot relink '$file'" fi } else # Install the binary that we compiled earlier. file=`$ECHO "$file$stripped_ext" | $SED "s%\([^/]*\)$%$objdir/\1%"` fi fi # remove .exe since cygwin /usr/bin/install will append another # one anyway case $install_prog,$host in */usr/bin/install*,*cygwin*) case $file:$destfile in *.exe:*.exe) # this is ok ;; *.exe:*) destfile=$destfile.exe ;; *:*.exe) func_stripname '' '.exe' "$destfile" destfile=$func_stripname_result ;; esac ;; esac func_show_eval "$install_prog\$stripme \$file \$destfile" 'exit $?' $opt_dry_run || if test -n "$outputname"; then ${RM}r "$tmpdir" fi ;; esac done for file in $staticlibs; do func_basename "$file" name=$func_basename_result # Set up the ranlib parameters. oldlib=$destdir/$name func_to_tool_file "$oldlib" func_convert_file_msys_to_w32 tool_oldlib=$func_to_tool_file_result func_show_eval "$install_prog \$file \$oldlib" 'exit $?' if test -n "$stripme" && test -n "$old_striplib"; then func_show_eval "$old_striplib $tool_oldlib" 'exit $?' fi # Do each command in the postinstall commands. func_execute_cmds "$old_postinstall_cmds" 'exit $?' done test -n "$future_libdirs" && \ func_warning "remember to run '$progname --finish$future_libdirs'" if test -n "$current_libdirs"; then # Maybe just do a dry run. $opt_dry_run && current_libdirs=" -n$current_libdirs" exec_cmd='$SHELL "$progpath" $preserve_args --finish$current_libdirs' else exit $EXIT_SUCCESS fi } test install = "$opt_mode" && func_mode_install ${1+"$@"} # func_generate_dlsyms outputname originator pic_p # Extract symbols from dlprefiles and create ${outputname}S.o with # a dlpreopen symbol table. func_generate_dlsyms () { $debug_cmd my_outputname=$1 my_originator=$2 my_pic_p=${3-false} my_prefix=`$ECHO "$my_originator" | $SED 's%[^a-zA-Z0-9]%_%g'` my_dlsyms= if test -n "$dlfiles$dlprefiles" || test no != "$dlself"; then if test -n "$NM" && test -n "$global_symbol_pipe"; then my_dlsyms=${my_outputname}S.c else func_error "not configured to extract global symbols from dlpreopened files" fi fi if test -n "$my_dlsyms"; then case $my_dlsyms in "") ;; *.c) # Discover the nlist of each of the dlfiles. nlist=$output_objdir/$my_outputname.nm func_show_eval "$RM $nlist ${nlist}S ${nlist}T" # Parse the name list into a source file. func_verbose "creating $output_objdir/$my_dlsyms" $opt_dry_run || $ECHO > "$output_objdir/$my_dlsyms" "\ /* $my_dlsyms - symbol resolution table for '$my_outputname' dlsym emulation. */ /* Generated by $PROGRAM (GNU $PACKAGE) $VERSION */ #ifdef __cplusplus extern \"C\" { #endif #if defined __GNUC__ && (((__GNUC__ == 4) && (__GNUC_MINOR__ >= 4)) || (__GNUC__ > 4)) #pragma GCC diagnostic ignored \"-Wstrict-prototypes\" #endif /* Keep this code in sync between libtool.m4, ltmain, lt_system.h, and tests. */ #if defined _WIN32 || defined __CYGWIN__ || defined _WIN32_WCE /* DATA imports from DLLs on WIN32 can't be const, because runtime relocations are performed -- see ld's documentation on pseudo-relocs. */ # define LT_DLSYM_CONST #elif defined __osf__ /* This system does not cope well with relocations in const data. */ # define LT_DLSYM_CONST #else # define LT_DLSYM_CONST const #endif #define STREQ(s1, s2) (strcmp ((s1), (s2)) == 0) /* External symbol declarations for the compiler. */\ " if test yes = "$dlself"; then func_verbose "generating symbol list for '$output'" $opt_dry_run || echo ': @PROGRAM@ ' > "$nlist" # Add our own program objects to the symbol list. progfiles=`$ECHO "$objs$old_deplibs" | $SP2NL | $SED "$lo2o" | $NL2SP` for progfile in $progfiles; do func_to_tool_file "$progfile" func_convert_file_msys_to_w32 func_verbose "extracting global C symbols from '$func_to_tool_file_result'" $opt_dry_run || eval "$NM $func_to_tool_file_result | $global_symbol_pipe >> '$nlist'" done if test -n "$exclude_expsyms"; then $opt_dry_run || { eval '$EGREP -v " ($exclude_expsyms)$" "$nlist" > "$nlist"T' eval '$MV "$nlist"T "$nlist"' } fi if test -n "$export_symbols_regex"; then $opt_dry_run || { eval '$EGREP -e "$export_symbols_regex" "$nlist" > "$nlist"T' eval '$MV "$nlist"T "$nlist"' } fi # Prepare the list of exported symbols if test -z "$export_symbols"; then export_symbols=$output_objdir/$outputname.exp $opt_dry_run || { $RM $export_symbols eval "$SED -n -e '/^: @PROGRAM@ $/d' -e 's/^.* \(.*\)$/\1/p' "'< "$nlist" > "$export_symbols"' case $host in *cygwin* | *mingw* | *cegcc* ) eval "echo EXPORTS "'> "$output_objdir/$outputname.def"' eval 'cat "$export_symbols" >> "$output_objdir/$outputname.def"' ;; esac } else $opt_dry_run || { eval "$SED -e 's/\([].[*^$]\)/\\\\\1/g' -e 's/^/ /' -e 's/$/$/'"' < "$export_symbols" > "$output_objdir/$outputname.exp"' eval '$GREP -f "$output_objdir/$outputname.exp" < "$nlist" > "$nlist"T' eval '$MV "$nlist"T "$nlist"' case $host in *cygwin* | *mingw* | *cegcc* ) eval "echo EXPORTS "'> "$output_objdir/$outputname.def"' eval 'cat "$nlist" >> "$output_objdir/$outputname.def"' ;; esac } fi fi for dlprefile in $dlprefiles; do func_verbose "extracting global C symbols from '$dlprefile'" func_basename "$dlprefile" name=$func_basename_result case $host in *cygwin* | *mingw* | *cegcc* ) # if an import library, we need to obtain dlname if func_win32_import_lib_p "$dlprefile"; then func_tr_sh "$dlprefile" eval "curr_lafile=\$libfile_$func_tr_sh_result" dlprefile_dlbasename= if test -n "$curr_lafile" && func_lalib_p "$curr_lafile"; then # Use subshell, to avoid clobbering current variable values dlprefile_dlname=`source "$curr_lafile" && echo "$dlname"` if test -n "$dlprefile_dlname"; then func_basename "$dlprefile_dlname" dlprefile_dlbasename=$func_basename_result else # no lafile. user explicitly requested -dlpreopen . $sharedlib_from_linklib_cmd "$dlprefile" dlprefile_dlbasename=$sharedlib_from_linklib_result fi fi $opt_dry_run || { if test -n "$dlprefile_dlbasename"; then eval '$ECHO ": $dlprefile_dlbasename" >> "$nlist"' else func_warning "Could not compute DLL name from $name" eval '$ECHO ": $name " >> "$nlist"' fi func_to_tool_file "$dlprefile" func_convert_file_msys_to_w32 eval "$NM \"$func_to_tool_file_result\" 2>/dev/null | $global_symbol_pipe | $SED -e '/I __imp/d' -e 's/I __nm_/D /;s/_nm__//' >> '$nlist'" } else # not an import lib $opt_dry_run || { eval '$ECHO ": $name " >> "$nlist"' func_to_tool_file "$dlprefile" func_convert_file_msys_to_w32 eval "$NM \"$func_to_tool_file_result\" 2>/dev/null | $global_symbol_pipe >> '$nlist'" } fi ;; *) $opt_dry_run || { eval '$ECHO ": $name " >> "$nlist"' func_to_tool_file "$dlprefile" func_convert_file_msys_to_w32 eval "$NM \"$func_to_tool_file_result\" 2>/dev/null | $global_symbol_pipe >> '$nlist'" } ;; esac done $opt_dry_run || { # Make sure we have at least an empty file. test -f "$nlist" || : > "$nlist" if test -n "$exclude_expsyms"; then $EGREP -v " ($exclude_expsyms)$" "$nlist" > "$nlist"T $MV "$nlist"T "$nlist" fi # Try sorting and uniquifying the output. if $GREP -v "^: " < "$nlist" | if sort -k 3 /dev/null 2>&1; then sort -k 3 else sort +2 fi | uniq > "$nlist"S; then : else $GREP -v "^: " < "$nlist" > "$nlist"S fi if test -f "$nlist"S; then eval "$global_symbol_to_cdecl"' < "$nlist"S >> "$output_objdir/$my_dlsyms"' else echo '/* NONE */' >> "$output_objdir/$my_dlsyms" fi func_show_eval '$RM "${nlist}I"' if test -n "$global_symbol_to_import"; then eval "$global_symbol_to_import"' < "$nlist"S > "$nlist"I' fi echo >> "$output_objdir/$my_dlsyms" "\ /* The mapping between symbol names and symbols. */ typedef struct { const char *name; void *address; } lt_dlsymlist; extern LT_DLSYM_CONST lt_dlsymlist lt_${my_prefix}_LTX_preloaded_symbols[];\ " if test -s "$nlist"I; then echo >> "$output_objdir/$my_dlsyms" "\ static void lt_syminit(void) { LT_DLSYM_CONST lt_dlsymlist *symbol = lt_${my_prefix}_LTX_preloaded_symbols; for (; symbol->name; ++symbol) {" $SED 's/.*/ if (STREQ (symbol->name, \"&\")) symbol->address = (void *) \&&;/' < "$nlist"I >> "$output_objdir/$my_dlsyms" echo >> "$output_objdir/$my_dlsyms" "\ } }" fi echo >> "$output_objdir/$my_dlsyms" "\ LT_DLSYM_CONST lt_dlsymlist lt_${my_prefix}_LTX_preloaded_symbols[] = { {\"$my_originator\", (void *) 0}," if test -s "$nlist"I; then echo >> "$output_objdir/$my_dlsyms" "\ {\"@INIT@\", (void *) <_syminit}," fi case $need_lib_prefix in no) eval "$global_symbol_to_c_name_address" < "$nlist" >> "$output_objdir/$my_dlsyms" ;; *) eval "$global_symbol_to_c_name_address_lib_prefix" < "$nlist" >> "$output_objdir/$my_dlsyms" ;; esac echo >> "$output_objdir/$my_dlsyms" "\ {0, (void *) 0} }; /* This works around a problem in FreeBSD linker */ #ifdef FREEBSD_WORKAROUND static const void *lt_preloaded_setup() { return lt_${my_prefix}_LTX_preloaded_symbols; } #endif #ifdef __cplusplus } #endif\ " } # !$opt_dry_run pic_flag_for_symtable= case "$compile_command " in *" -static "*) ;; *) case $host in # compiling the symbol table file with pic_flag works around # a FreeBSD bug that causes programs to crash when -lm is # linked before any other PIC object. But we must not use # pic_flag when linking with -static. The problem exists in # FreeBSD 2.2.6 and is fixed in FreeBSD 3.1. *-*-freebsd2.*|*-*-freebsd3.0*|*-*-freebsdelf3.0*) pic_flag_for_symtable=" $pic_flag -DFREEBSD_WORKAROUND" ;; *-*-hpux*) pic_flag_for_symtable=" $pic_flag" ;; *) $my_pic_p && pic_flag_for_symtable=" $pic_flag" ;; esac ;; esac symtab_cflags= for arg in $LTCFLAGS; do case $arg in -pie | -fpie | -fPIE) ;; *) func_append symtab_cflags " $arg" ;; esac done # Now compile the dynamic symbol file. func_show_eval '(cd $output_objdir && $LTCC$symtab_cflags -c$no_builtin_flag$pic_flag_for_symtable "$my_dlsyms")' 'exit $?' # Clean up the generated files. func_show_eval '$RM "$output_objdir/$my_dlsyms" "$nlist" "${nlist}S" "${nlist}T" "${nlist}I"' # Transform the symbol file into the correct name. symfileobj=$output_objdir/${my_outputname}S.$objext case $host in *cygwin* | *mingw* | *cegcc* ) if test -f "$output_objdir/$my_outputname.def"; then compile_command=`$ECHO "$compile_command" | $SED "s%@SYMFILE@%$output_objdir/$my_outputname.def $symfileobj%"` finalize_command=`$ECHO "$finalize_command" | $SED "s%@SYMFILE@%$output_objdir/$my_outputname.def $symfileobj%"` else compile_command=`$ECHO "$compile_command" | $SED "s%@SYMFILE@%$symfileobj%"` finalize_command=`$ECHO "$finalize_command" | $SED "s%@SYMFILE@%$symfileobj%"` fi ;; *) compile_command=`$ECHO "$compile_command" | $SED "s%@SYMFILE@%$symfileobj%"` finalize_command=`$ECHO "$finalize_command" | $SED "s%@SYMFILE@%$symfileobj%"` ;; esac ;; *) func_fatal_error "unknown suffix for '$my_dlsyms'" ;; esac else # We keep going just in case the user didn't refer to # lt_preloaded_symbols. The linker will fail if global_symbol_pipe # really was required. # Nullify the symbol file. compile_command=`$ECHO "$compile_command" | $SED "s% @SYMFILE@%%"` finalize_command=`$ECHO "$finalize_command" | $SED "s% @SYMFILE@%%"` fi } # func_cygming_gnu_implib_p ARG # This predicate returns with zero status (TRUE) if # ARG is a GNU/binutils-style import library. Returns # with nonzero status (FALSE) otherwise. func_cygming_gnu_implib_p () { $debug_cmd func_to_tool_file "$1" func_convert_file_msys_to_w32 func_cygming_gnu_implib_tmp=`$NM "$func_to_tool_file_result" | eval "$global_symbol_pipe" | $EGREP ' (_head_[A-Za-z0-9_]+_[ad]l*|[A-Za-z0-9_]+_[ad]l*_iname)$'` test -n "$func_cygming_gnu_implib_tmp" } # func_cygming_ms_implib_p ARG # This predicate returns with zero status (TRUE) if # ARG is an MS-style import library. Returns # with nonzero status (FALSE) otherwise. func_cygming_ms_implib_p () { $debug_cmd func_to_tool_file "$1" func_convert_file_msys_to_w32 func_cygming_ms_implib_tmp=`$NM "$func_to_tool_file_result" | eval "$global_symbol_pipe" | $GREP '_NULL_IMPORT_DESCRIPTOR'` test -n "$func_cygming_ms_implib_tmp" } # func_win32_libid arg # return the library type of file 'arg' # # Need a lot of goo to handle *both* DLLs and import libs # Has to be a shell function in order to 'eat' the argument # that is supplied when $file_magic_command is called. # Despite the name, also deal with 64 bit binaries. func_win32_libid () { $debug_cmd win32_libid_type=unknown win32_fileres=`file -L $1 2>/dev/null` case $win32_fileres in *ar\ archive\ import\ library*) # definitely import win32_libid_type="x86 archive import" ;; *ar\ archive*) # could be an import, or static # Keep the egrep pattern in sync with the one in _LT_CHECK_MAGIC_METHOD. if eval $OBJDUMP -f $1 | $SED -e '10q' 2>/dev/null | $EGREP 'file format (pei*-i386(.*architecture: i386)?|pe-arm-wince|pe-x86-64)' >/dev/null; then case $nm_interface in "MS dumpbin") if func_cygming_ms_implib_p "$1" || func_cygming_gnu_implib_p "$1" then win32_nmres=import else win32_nmres= fi ;; *) func_to_tool_file "$1" func_convert_file_msys_to_w32 win32_nmres=`eval $NM -f posix -A \"$func_to_tool_file_result\" | $SED -n -e ' 1,100{ / I /{ s|.*|import| p q } }'` ;; esac case $win32_nmres in import*) win32_libid_type="x86 archive import";; *) win32_libid_type="x86 archive static";; esac fi ;; *DLL*) win32_libid_type="x86 DLL" ;; *executable*) # but shell scripts are "executable" too... case $win32_fileres in *MS\ Windows\ PE\ Intel*) win32_libid_type="x86 DLL" ;; esac ;; esac $ECHO "$win32_libid_type" } # func_cygming_dll_for_implib ARG # # Platform-specific function to extract the # name of the DLL associated with the specified # import library ARG. # Invoked by eval'ing the libtool variable # $sharedlib_from_linklib_cmd # Result is available in the variable # $sharedlib_from_linklib_result func_cygming_dll_for_implib () { $debug_cmd sharedlib_from_linklib_result=`$DLLTOOL --identify-strict --identify "$1"` } # func_cygming_dll_for_implib_fallback_core SECTION_NAME LIBNAMEs # # The is the core of a fallback implementation of a # platform-specific function to extract the name of the # DLL associated with the specified import library LIBNAME. # # SECTION_NAME is either .idata$6 or .idata$7, depending # on the platform and compiler that created the implib. # # Echos the name of the DLL associated with the # specified import library. func_cygming_dll_for_implib_fallback_core () { $debug_cmd match_literal=`$ECHO "$1" | $SED "$sed_make_literal_regex"` $OBJDUMP -s --section "$1" "$2" 2>/dev/null | $SED '/^Contents of section '"$match_literal"':/{ # Place marker at beginning of archive member dllname section s/.*/====MARK====/ p d } # These lines can sometimes be longer than 43 characters, but # are always uninteresting /:[ ]*file format pe[i]\{,1\}-/d /^In archive [^:]*:/d # Ensure marker is printed /^====MARK====/p # Remove all lines with less than 43 characters /^.\{43\}/!d # From remaining lines, remove first 43 characters s/^.\{43\}//' | $SED -n ' # Join marker and all lines until next marker into a single line /^====MARK====/ b para H $ b para b :para x s/\n//g # Remove the marker s/^====MARK====// # Remove trailing dots and whitespace s/[\. \t]*$// # Print /./p' | # we now have a list, one entry per line, of the stringified # contents of the appropriate section of all members of the # archive that possess that section. Heuristic: eliminate # all those that have a first or second character that is # a '.' (that is, objdump's representation of an unprintable # character.) This should work for all archives with less than # 0x302f exports -- but will fail for DLLs whose name actually # begins with a literal '.' or a single character followed by # a '.'. # # Of those that remain, print the first one. $SED -e '/^\./d;/^.\./d;q' } # func_cygming_dll_for_implib_fallback ARG # Platform-specific function to extract the # name of the DLL associated with the specified # import library ARG. # # This fallback implementation is for use when $DLLTOOL # does not support the --identify-strict option. # Invoked by eval'ing the libtool variable # $sharedlib_from_linklib_cmd # Result is available in the variable # $sharedlib_from_linklib_result func_cygming_dll_for_implib_fallback () { $debug_cmd if func_cygming_gnu_implib_p "$1"; then # binutils import library sharedlib_from_linklib_result=`func_cygming_dll_for_implib_fallback_core '.idata$7' "$1"` elif func_cygming_ms_implib_p "$1"; then # ms-generated import library sharedlib_from_linklib_result=`func_cygming_dll_for_implib_fallback_core '.idata$6' "$1"` else # unknown sharedlib_from_linklib_result= fi } # func_extract_an_archive dir oldlib func_extract_an_archive () { $debug_cmd f_ex_an_ar_dir=$1; shift f_ex_an_ar_oldlib=$1 if test yes = "$lock_old_archive_extraction"; then lockfile=$f_ex_an_ar_oldlib.lock until $opt_dry_run || ln "$progpath" "$lockfile" 2>/dev/null; do func_echo "Waiting for $lockfile to be removed" sleep 2 done fi func_show_eval "(cd \$f_ex_an_ar_dir && $AR x \"\$f_ex_an_ar_oldlib\")" \ 'stat=$?; rm -f "$lockfile"; exit $stat' if test yes = "$lock_old_archive_extraction"; then $opt_dry_run || rm -f "$lockfile" fi if ($AR t "$f_ex_an_ar_oldlib" | sort | sort -uc >/dev/null 2>&1); then : else func_fatal_error "object name conflicts in archive: $f_ex_an_ar_dir/$f_ex_an_ar_oldlib" fi } # func_extract_archives gentop oldlib ... func_extract_archives () { $debug_cmd my_gentop=$1; shift my_oldlibs=${1+"$@"} my_oldobjs= my_xlib= my_xabs= my_xdir= for my_xlib in $my_oldlibs; do # Extract the objects. case $my_xlib in [\\/]* | [A-Za-z]:[\\/]*) my_xabs=$my_xlib ;; *) my_xabs=`pwd`"/$my_xlib" ;; esac func_basename "$my_xlib" my_xlib=$func_basename_result my_xlib_u=$my_xlib while :; do case " $extracted_archives " in *" $my_xlib_u "*) func_arith $extracted_serial + 1 extracted_serial=$func_arith_result my_xlib_u=lt$extracted_serial-$my_xlib ;; *) break ;; esac done extracted_archives="$extracted_archives $my_xlib_u" my_xdir=$my_gentop/$my_xlib_u func_mkdir_p "$my_xdir" case $host in *-darwin*) func_verbose "Extracting $my_xabs" # Do not bother doing anything if just a dry run $opt_dry_run || { darwin_orig_dir=`pwd` cd $my_xdir || exit $? darwin_archive=$my_xabs darwin_curdir=`pwd` func_basename "$darwin_archive" darwin_base_archive=$func_basename_result darwin_arches=`$LIPO -info "$darwin_archive" 2>/dev/null | $GREP Architectures 2>/dev/null || true` if test -n "$darwin_arches"; then darwin_arches=`$ECHO "$darwin_arches" | $SED -e 's/.*are://'` darwin_arch= func_verbose "$darwin_base_archive has multiple architectures $darwin_arches" for darwin_arch in $darwin_arches; do func_mkdir_p "unfat-$$/$darwin_base_archive-$darwin_arch" $LIPO -thin $darwin_arch -output "unfat-$$/$darwin_base_archive-$darwin_arch/$darwin_base_archive" "$darwin_archive" cd "unfat-$$/$darwin_base_archive-$darwin_arch" func_extract_an_archive "`pwd`" "$darwin_base_archive" cd "$darwin_curdir" $RM "unfat-$$/$darwin_base_archive-$darwin_arch/$darwin_base_archive" done # $darwin_arches ## Okay now we've a bunch of thin objects, gotta fatten them up :) darwin_filelist=`find unfat-$$ -type f -name \*.o -print -o -name \*.lo -print | $SED -e "$sed_basename" | sort -u` darwin_file= darwin_files= for darwin_file in $darwin_filelist; do darwin_files=`find unfat-$$ -name $darwin_file -print | sort | $NL2SP` $LIPO -create -output "$darwin_file" $darwin_files done # $darwin_filelist $RM -rf unfat-$$ cd "$darwin_orig_dir" else cd $darwin_orig_dir func_extract_an_archive "$my_xdir" "$my_xabs" fi # $darwin_arches } # !$opt_dry_run ;; *) func_extract_an_archive "$my_xdir" "$my_xabs" ;; esac my_oldobjs="$my_oldobjs "`find $my_xdir -name \*.$objext -print -o -name \*.lo -print | sort | $NL2SP` done func_extract_archives_result=$my_oldobjs } # func_emit_wrapper [arg=no] # # Emit a libtool wrapper script on stdout. # Don't directly open a file because we may want to # incorporate the script contents within a cygwin/mingw # wrapper executable. Must ONLY be called from within # func_mode_link because it depends on a number of variables # set therein. # # ARG is the value that the WRAPPER_SCRIPT_BELONGS_IN_OBJDIR # variable will take. If 'yes', then the emitted script # will assume that the directory where it is stored is # the $objdir directory. This is a cygwin/mingw-specific # behavior. func_emit_wrapper () { func_emit_wrapper_arg1=${1-no} $ECHO "\ #! $SHELL # $output - temporary wrapper script for $objdir/$outputname # Generated by $PROGRAM (GNU $PACKAGE) $VERSION # # The $output program cannot be directly executed until all the libtool # libraries that it depends on are installed. # # This wrapper script should never be moved out of the build directory. # If it is, it will not operate correctly. # Sed substitution that helps us do robust quoting. It backslashifies # metacharacters that are still active within double-quoted strings. sed_quote_subst='$sed_quote_subst' # Be Bourne compatible if test -n \"\${ZSH_VERSION+set}\" && (emulate sh) >/dev/null 2>&1; then emulate sh NULLCMD=: # Zsh 3.x and 4.x performs word splitting on \${1+\"\$@\"}, which # is contrary to our usage. Disable this feature. alias -g '\${1+\"\$@\"}'='\"\$@\"' setopt NO_GLOB_SUBST else case \`(set -o) 2>/dev/null\` in *posix*) set -o posix;; esac fi BIN_SH=xpg4; export BIN_SH # for Tru64 DUALCASE=1; export DUALCASE # for MKS sh # The HP-UX ksh and POSIX shell print the target directory to stdout # if CDPATH is set. (unset CDPATH) >/dev/null 2>&1 && unset CDPATH relink_command=\"$relink_command\" # This environment variable determines our operation mode. if test \"\$libtool_install_magic\" = \"$magic\"; then # install mode needs the following variables: generated_by_libtool_version='$macro_version' notinst_deplibs='$notinst_deplibs' else # When we are sourced in execute mode, \$file and \$ECHO are already set. if test \"\$libtool_execute_magic\" != \"$magic\"; then file=\"\$0\"" qECHO=`$ECHO "$ECHO" | $SED "$sed_quote_subst"` $ECHO "\ # A function that is used when there is no print builtin or printf. func_fallback_echo () { eval 'cat <<_LTECHO_EOF \$1 _LTECHO_EOF' } ECHO=\"$qECHO\" fi # Very basic option parsing. These options are (a) specific to # the libtool wrapper, (b) are identical between the wrapper # /script/ and the wrapper /executable/ that is used only on # windows platforms, and (c) all begin with the string "--lt-" # (application programs are unlikely to have options that match # this pattern). # # There are only two supported options: --lt-debug and # --lt-dump-script. There is, deliberately, no --lt-help. # # The first argument to this parsing function should be the # script's $0 value, followed by "$@". lt_option_debug= func_parse_lt_options () { lt_script_arg0=\$0 shift for lt_opt do case \"\$lt_opt\" in --lt-debug) lt_option_debug=1 ;; --lt-dump-script) lt_dump_D=\`\$ECHO \"X\$lt_script_arg0\" | $SED -e 's/^X//' -e 's%/[^/]*$%%'\` test \"X\$lt_dump_D\" = \"X\$lt_script_arg0\" && lt_dump_D=. lt_dump_F=\`\$ECHO \"X\$lt_script_arg0\" | $SED -e 's/^X//' -e 's%^.*/%%'\` cat \"\$lt_dump_D/\$lt_dump_F\" exit 0 ;; --lt-*) \$ECHO \"Unrecognized --lt- option: '\$lt_opt'\" 1>&2 exit 1 ;; esac done # Print the debug banner immediately: if test -n \"\$lt_option_debug\"; then echo \"$outputname:$output:\$LINENO: libtool wrapper (GNU $PACKAGE) $VERSION\" 1>&2 fi } # Used when --lt-debug. Prints its arguments to stdout # (redirection is the responsibility of the caller) func_lt_dump_args () { lt_dump_args_N=1; for lt_arg do \$ECHO \"$outputname:$output:\$LINENO: newargv[\$lt_dump_args_N]: \$lt_arg\" lt_dump_args_N=\`expr \$lt_dump_args_N + 1\` done } # Core function for launching the target application func_exec_program_core () { " case $host in # Backslashes separate directories on plain windows *-*-mingw | *-*-os2* | *-cegcc*) $ECHO "\ if test -n \"\$lt_option_debug\"; then \$ECHO \"$outputname:$output:\$LINENO: newargv[0]: \$progdir\\\\\$program\" 1>&2 func_lt_dump_args \${1+\"\$@\"} 1>&2 fi exec \"\$progdir\\\\\$program\" \${1+\"\$@\"} " ;; *) $ECHO "\ if test -n \"\$lt_option_debug\"; then \$ECHO \"$outputname:$output:\$LINENO: newargv[0]: \$progdir/\$program\" 1>&2 func_lt_dump_args \${1+\"\$@\"} 1>&2 fi exec \"\$progdir/\$program\" \${1+\"\$@\"} " ;; esac $ECHO "\ \$ECHO \"\$0: cannot exec \$program \$*\" 1>&2 exit 1 } # A function to encapsulate launching the target application # Strips options in the --lt-* namespace from \$@ and # launches target application with the remaining arguments. func_exec_program () { case \" \$* \" in *\\ --lt-*) for lt_wr_arg do case \$lt_wr_arg in --lt-*) ;; *) set x \"\$@\" \"\$lt_wr_arg\"; shift;; esac shift done ;; esac func_exec_program_core \${1+\"\$@\"} } # Parse options func_parse_lt_options \"\$0\" \${1+\"\$@\"} # Find the directory that this script lives in. thisdir=\`\$ECHO \"\$file\" | $SED 's%/[^/]*$%%'\` test \"x\$thisdir\" = \"x\$file\" && thisdir=. # Follow symbolic links until we get to the real thisdir. file=\`ls -ld \"\$file\" | $SED -n 's/.*-> //p'\` while test -n \"\$file\"; do destdir=\`\$ECHO \"\$file\" | $SED 's%/[^/]*\$%%'\` # If there was a directory component, then change thisdir. if test \"x\$destdir\" != \"x\$file\"; then case \"\$destdir\" in [\\\\/]* | [A-Za-z]:[\\\\/]*) thisdir=\"\$destdir\" ;; *) thisdir=\"\$thisdir/\$destdir\" ;; esac fi file=\`\$ECHO \"\$file\" | $SED 's%^.*/%%'\` file=\`ls -ld \"\$thisdir/\$file\" | $SED -n 's/.*-> //p'\` done # Usually 'no', except on cygwin/mingw when embedded into # the cwrapper. WRAPPER_SCRIPT_BELONGS_IN_OBJDIR=$func_emit_wrapper_arg1 if test \"\$WRAPPER_SCRIPT_BELONGS_IN_OBJDIR\" = \"yes\"; then # special case for '.' if test \"\$thisdir\" = \".\"; then thisdir=\`pwd\` fi # remove .libs from thisdir case \"\$thisdir\" in *[\\\\/]$objdir ) thisdir=\`\$ECHO \"\$thisdir\" | $SED 's%[\\\\/][^\\\\/]*$%%'\` ;; $objdir ) thisdir=. ;; esac fi # Try to get the absolute directory name. absdir=\`cd \"\$thisdir\" && pwd\` test -n \"\$absdir\" && thisdir=\"\$absdir\" " if test yes = "$fast_install"; then $ECHO "\ program=lt-'$outputname'$exeext progdir=\"\$thisdir/$objdir\" if test ! -f \"\$progdir/\$program\" || { file=\`ls -1dt \"\$progdir/\$program\" \"\$progdir/../\$program\" 2>/dev/null | $SED 1q\`; \\ test \"X\$file\" != \"X\$progdir/\$program\"; }; then file=\"\$\$-\$program\" if test ! -d \"\$progdir\"; then $MKDIR \"\$progdir\" else $RM \"\$progdir/\$file\" fi" $ECHO "\ # relink executable if necessary if test -n \"\$relink_command\"; then if relink_command_output=\`eval \$relink_command 2>&1\`; then : else \$ECHO \"\$relink_command_output\" >&2 $RM \"\$progdir/\$file\" exit 1 fi fi $MV \"\$progdir/\$file\" \"\$progdir/\$program\" 2>/dev/null || { $RM \"\$progdir/\$program\"; $MV \"\$progdir/\$file\" \"\$progdir/\$program\"; } $RM \"\$progdir/\$file\" fi" else $ECHO "\ program='$outputname' progdir=\"\$thisdir/$objdir\" " fi $ECHO "\ if test -f \"\$progdir/\$program\"; then" # fixup the dll searchpath if we need to. # # Fix the DLL searchpath if we need to. Do this before prepending # to shlibpath, because on Windows, both are PATH and uninstalled # libraries must come first. if test -n "$dllsearchpath"; then $ECHO "\ # Add the dll search path components to the executable PATH PATH=$dllsearchpath:\$PATH " fi # Export our shlibpath_var if we have one. if test yes = "$shlibpath_overrides_runpath" && test -n "$shlibpath_var" && test -n "$temp_rpath"; then $ECHO "\ # Add our own library path to $shlibpath_var $shlibpath_var=\"$temp_rpath\$$shlibpath_var\" # Some systems cannot cope with colon-terminated $shlibpath_var # The second colon is a workaround for a bug in BeOS R4 sed $shlibpath_var=\`\$ECHO \"\$$shlibpath_var\" | $SED 's/::*\$//'\` export $shlibpath_var " fi $ECHO "\ if test \"\$libtool_execute_magic\" != \"$magic\"; then # Run the actual program with our arguments. func_exec_program \${1+\"\$@\"} fi else # The program doesn't exist. \$ECHO \"\$0: error: '\$progdir/\$program' does not exist\" 1>&2 \$ECHO \"This script is just a wrapper for \$program.\" 1>&2 \$ECHO \"See the $PACKAGE documentation for more information.\" 1>&2 exit 1 fi fi\ " } # func_emit_cwrapperexe_src # emit the source code for a wrapper executable on stdout # Must ONLY be called from within func_mode_link because # it depends on a number of variable set therein. func_emit_cwrapperexe_src () { cat < #include #ifdef _MSC_VER # include # include # include #else # include # include # ifdef __CYGWIN__ # include # endif #endif #include #include #include #include #include #include #include #include #define STREQ(s1, s2) (strcmp ((s1), (s2)) == 0) /* declarations of non-ANSI functions */ #if defined __MINGW32__ # ifdef __STRICT_ANSI__ int _putenv (const char *); # endif #elif defined __CYGWIN__ # ifdef __STRICT_ANSI__ char *realpath (const char *, char *); int putenv (char *); int setenv (const char *, const char *, int); # endif /* #elif defined other_platform || defined ... */ #endif /* portability defines, excluding path handling macros */ #if defined _MSC_VER # define setmode _setmode # define stat _stat # define chmod _chmod # define getcwd _getcwd # define putenv _putenv # define S_IXUSR _S_IEXEC #elif defined __MINGW32__ # define setmode _setmode # define stat _stat # define chmod _chmod # define getcwd _getcwd # define putenv _putenv #elif defined __CYGWIN__ # define HAVE_SETENV # define FOPEN_WB "wb" /* #elif defined other platforms ... */ #endif #if defined PATH_MAX # define LT_PATHMAX PATH_MAX #elif defined MAXPATHLEN # define LT_PATHMAX MAXPATHLEN #else # define LT_PATHMAX 1024 #endif #ifndef S_IXOTH # define S_IXOTH 0 #endif #ifndef S_IXGRP # define S_IXGRP 0 #endif /* path handling portability macros */ #ifndef DIR_SEPARATOR # define DIR_SEPARATOR '/' # define PATH_SEPARATOR ':' #endif #if defined _WIN32 || defined __MSDOS__ || defined __DJGPP__ || \ defined __OS2__ # define HAVE_DOS_BASED_FILE_SYSTEM # define FOPEN_WB "wb" # ifndef DIR_SEPARATOR_2 # define DIR_SEPARATOR_2 '\\' # endif # ifndef PATH_SEPARATOR_2 # define PATH_SEPARATOR_2 ';' # endif #endif #ifndef DIR_SEPARATOR_2 # define IS_DIR_SEPARATOR(ch) ((ch) == DIR_SEPARATOR) #else /* DIR_SEPARATOR_2 */ # define IS_DIR_SEPARATOR(ch) \ (((ch) == DIR_SEPARATOR) || ((ch) == DIR_SEPARATOR_2)) #endif /* DIR_SEPARATOR_2 */ #ifndef PATH_SEPARATOR_2 # define IS_PATH_SEPARATOR(ch) ((ch) == PATH_SEPARATOR) #else /* PATH_SEPARATOR_2 */ # define IS_PATH_SEPARATOR(ch) ((ch) == PATH_SEPARATOR_2) #endif /* PATH_SEPARATOR_2 */ #ifndef FOPEN_WB # define FOPEN_WB "w" #endif #ifndef _O_BINARY # define _O_BINARY 0 #endif #define XMALLOC(type, num) ((type *) xmalloc ((num) * sizeof(type))) #define XFREE(stale) do { \ if (stale) { free (stale); stale = 0; } \ } while (0) #if defined LT_DEBUGWRAPPER static int lt_debug = 1; #else static int lt_debug = 0; #endif const char *program_name = "libtool-wrapper"; /* in case xstrdup fails */ void *xmalloc (size_t num); char *xstrdup (const char *string); const char *base_name (const char *name); char *find_executable (const char *wrapper); char *chase_symlinks (const char *pathspec); int make_executable (const char *path); int check_executable (const char *path); char *strendzap (char *str, const char *pat); void lt_debugprintf (const char *file, int line, const char *fmt, ...); void lt_fatal (const char *file, int line, const char *message, ...); static const char *nonnull (const char *s); static const char *nonempty (const char *s); void lt_setenv (const char *name, const char *value); char *lt_extend_str (const char *orig_value, const char *add, int to_end); void lt_update_exe_path (const char *name, const char *value); void lt_update_lib_path (const char *name, const char *value); char **prepare_spawn (char **argv); void lt_dump_script (FILE *f); EOF cat <= 0) && (st.st_mode & (S_IXUSR | S_IXGRP | S_IXOTH))) return 1; else return 0; } int make_executable (const char *path) { int rval = 0; struct stat st; lt_debugprintf (__FILE__, __LINE__, "(make_executable): %s\n", nonempty (path)); if ((!path) || (!*path)) return 0; if (stat (path, &st) >= 0) { rval = chmod (path, st.st_mode | S_IXOTH | S_IXGRP | S_IXUSR); } return rval; } /* Searches for the full path of the wrapper. Returns newly allocated full path name if found, NULL otherwise Does not chase symlinks, even on platforms that support them. */ char * find_executable (const char *wrapper) { int has_slash = 0; const char *p; const char *p_next; /* static buffer for getcwd */ char tmp[LT_PATHMAX + 1]; size_t tmp_len; char *concat_name; lt_debugprintf (__FILE__, __LINE__, "(find_executable): %s\n", nonempty (wrapper)); if ((wrapper == NULL) || (*wrapper == '\0')) return NULL; /* Absolute path? */ #if defined HAVE_DOS_BASED_FILE_SYSTEM if (isalpha ((unsigned char) wrapper[0]) && wrapper[1] == ':') { concat_name = xstrdup (wrapper); if (check_executable (concat_name)) return concat_name; XFREE (concat_name); } else { #endif if (IS_DIR_SEPARATOR (wrapper[0])) { concat_name = xstrdup (wrapper); if (check_executable (concat_name)) return concat_name; XFREE (concat_name); } #if defined HAVE_DOS_BASED_FILE_SYSTEM } #endif for (p = wrapper; *p; p++) if (*p == '/') { has_slash = 1; break; } if (!has_slash) { /* no slashes; search PATH */ const char *path = getenv ("PATH"); if (path != NULL) { for (p = path; *p; p = p_next) { const char *q; size_t p_len; for (q = p; *q; q++) if (IS_PATH_SEPARATOR (*q)) break; p_len = (size_t) (q - p); p_next = (*q == '\0' ? q : q + 1); if (p_len == 0) { /* empty path: current directory */ if (getcwd (tmp, LT_PATHMAX) == NULL) lt_fatal (__FILE__, __LINE__, "getcwd failed: %s", nonnull (strerror (errno))); tmp_len = strlen (tmp); concat_name = XMALLOC (char, tmp_len + 1 + strlen (wrapper) + 1); memcpy (concat_name, tmp, tmp_len); concat_name[tmp_len] = '/'; strcpy (concat_name + tmp_len + 1, wrapper); } else { concat_name = XMALLOC (char, p_len + 1 + strlen (wrapper) + 1); memcpy (concat_name, p, p_len); concat_name[p_len] = '/'; strcpy (concat_name + p_len + 1, wrapper); } if (check_executable (concat_name)) return concat_name; XFREE (concat_name); } } /* not found in PATH; assume curdir */ } /* Relative path | not found in path: prepend cwd */ if (getcwd (tmp, LT_PATHMAX) == NULL) lt_fatal (__FILE__, __LINE__, "getcwd failed: %s", nonnull (strerror (errno))); tmp_len = strlen (tmp); concat_name = XMALLOC (char, tmp_len + 1 + strlen (wrapper) + 1); memcpy (concat_name, tmp, tmp_len); concat_name[tmp_len] = '/'; strcpy (concat_name + tmp_len + 1, wrapper); if (check_executable (concat_name)) return concat_name; XFREE (concat_name); return NULL; } char * chase_symlinks (const char *pathspec) { #ifndef S_ISLNK return xstrdup (pathspec); #else char buf[LT_PATHMAX]; struct stat s; char *tmp_pathspec = xstrdup (pathspec); char *p; int has_symlinks = 0; while (strlen (tmp_pathspec) && !has_symlinks) { lt_debugprintf (__FILE__, __LINE__, "checking path component for symlinks: %s\n", tmp_pathspec); if (lstat (tmp_pathspec, &s) == 0) { if (S_ISLNK (s.st_mode) != 0) { has_symlinks = 1; break; } /* search backwards for last DIR_SEPARATOR */ p = tmp_pathspec + strlen (tmp_pathspec) - 1; while ((p > tmp_pathspec) && (!IS_DIR_SEPARATOR (*p))) p--; if ((p == tmp_pathspec) && (!IS_DIR_SEPARATOR (*p))) { /* no more DIR_SEPARATORS left */ break; } *p = '\0'; } else { lt_fatal (__FILE__, __LINE__, "error accessing file \"%s\": %s", tmp_pathspec, nonnull (strerror (errno))); } } XFREE (tmp_pathspec); if (!has_symlinks) { return xstrdup (pathspec); } tmp_pathspec = realpath (pathspec, buf); if (tmp_pathspec == 0) { lt_fatal (__FILE__, __LINE__, "could not follow symlinks for %s", pathspec); } return xstrdup (tmp_pathspec); #endif } char * strendzap (char *str, const char *pat) { size_t len, patlen; assert (str != NULL); assert (pat != NULL); len = strlen (str); patlen = strlen (pat); if (patlen <= len) { str += len - patlen; if (STREQ (str, pat)) *str = '\0'; } return str; } void lt_debugprintf (const char *file, int line, const char *fmt, ...) { va_list args; if (lt_debug) { (void) fprintf (stderr, "%s:%s:%d: ", program_name, file, line); va_start (args, fmt); (void) vfprintf (stderr, fmt, args); va_end (args); } } static void lt_error_core (int exit_status, const char *file, int line, const char *mode, const char *message, va_list ap) { fprintf (stderr, "%s:%s:%d: %s: ", program_name, file, line, mode); vfprintf (stderr, message, ap); fprintf (stderr, ".\n"); if (exit_status >= 0) exit (exit_status); } void lt_fatal (const char *file, int line, const char *message, ...) { va_list ap; va_start (ap, message); lt_error_core (EXIT_FAILURE, file, line, "FATAL", message, ap); va_end (ap); } static const char * nonnull (const char *s) { return s ? s : "(null)"; } static const char * nonempty (const char *s) { return (s && !*s) ? "(empty)" : nonnull (s); } void lt_setenv (const char *name, const char *value) { lt_debugprintf (__FILE__, __LINE__, "(lt_setenv) setting '%s' to '%s'\n", nonnull (name), nonnull (value)); { #ifdef HAVE_SETENV /* always make a copy, for consistency with !HAVE_SETENV */ char *str = xstrdup (value); setenv (name, str, 1); #else size_t len = strlen (name) + 1 + strlen (value) + 1; char *str = XMALLOC (char, len); sprintf (str, "%s=%s", name, value); if (putenv (str) != EXIT_SUCCESS) { XFREE (str); } #endif } } char * lt_extend_str (const char *orig_value, const char *add, int to_end) { char *new_value; if (orig_value && *orig_value) { size_t orig_value_len = strlen (orig_value); size_t add_len = strlen (add); new_value = XMALLOC (char, add_len + orig_value_len + 1); if (to_end) { strcpy (new_value, orig_value); strcpy (new_value + orig_value_len, add); } else { strcpy (new_value, add); strcpy (new_value + add_len, orig_value); } } else { new_value = xstrdup (add); } return new_value; } void lt_update_exe_path (const char *name, const char *value) { lt_debugprintf (__FILE__, __LINE__, "(lt_update_exe_path) modifying '%s' by prepending '%s'\n", nonnull (name), nonnull (value)); if (name && *name && value && *value) { char *new_value = lt_extend_str (getenv (name), value, 0); /* some systems can't cope with a ':'-terminated path #' */ size_t len = strlen (new_value); while ((len > 0) && IS_PATH_SEPARATOR (new_value[len-1])) { new_value[--len] = '\0'; } lt_setenv (name, new_value); XFREE (new_value); } } void lt_update_lib_path (const char *name, const char *value) { lt_debugprintf (__FILE__, __LINE__, "(lt_update_lib_path) modifying '%s' by prepending '%s'\n", nonnull (name), nonnull (value)); if (name && *name && value && *value) { char *new_value = lt_extend_str (getenv (name), value, 0); lt_setenv (name, new_value); XFREE (new_value); } } EOF case $host_os in mingw*) cat <<"EOF" /* Prepares an argument vector before calling spawn(). Note that spawn() does not by itself call the command interpreter (getenv ("COMSPEC") != NULL ? getenv ("COMSPEC") : ({ OSVERSIONINFO v; v.dwOSVersionInfoSize = sizeof(OSVERSIONINFO); GetVersionEx(&v); v.dwPlatformId == VER_PLATFORM_WIN32_NT; }) ? "cmd.exe" : "command.com"). Instead it simply concatenates the arguments, separated by ' ', and calls CreateProcess(). We must quote the arguments since Win32 CreateProcess() interprets characters like ' ', '\t', '\\', '"' (but not '<' and '>') in a special way: - Space and tab are interpreted as delimiters. They are not treated as delimiters if they are surrounded by double quotes: "...". - Unescaped double quotes are removed from the input. Their only effect is that within double quotes, space and tab are treated like normal characters. - Backslashes not followed by double quotes are not special. - But 2*n+1 backslashes followed by a double quote become n backslashes followed by a double quote (n >= 0): \" -> " \\\" -> \" \\\\\" -> \\" */ #define SHELL_SPECIAL_CHARS "\"\\ \001\002\003\004\005\006\007\010\011\012\013\014\015\016\017\020\021\022\023\024\025\026\027\030\031\032\033\034\035\036\037" #define SHELL_SPACE_CHARS " \001\002\003\004\005\006\007\010\011\012\013\014\015\016\017\020\021\022\023\024\025\026\027\030\031\032\033\034\035\036\037" char ** prepare_spawn (char **argv) { size_t argc; char **new_argv; size_t i; /* Count number of arguments. */ for (argc = 0; argv[argc] != NULL; argc++) ; /* Allocate new argument vector. */ new_argv = XMALLOC (char *, argc + 1); /* Put quoted arguments into the new argument vector. */ for (i = 0; i < argc; i++) { const char *string = argv[i]; if (string[0] == '\0') new_argv[i] = xstrdup ("\"\""); else if (strpbrk (string, SHELL_SPECIAL_CHARS) != NULL) { int quote_around = (strpbrk (string, SHELL_SPACE_CHARS) != NULL); size_t length; unsigned int backslashes; const char *s; char *quoted_string; char *p; length = 0; backslashes = 0; if (quote_around) length++; for (s = string; *s != '\0'; s++) { char c = *s; if (c == '"') length += backslashes + 1; length++; if (c == '\\') backslashes++; else backslashes = 0; } if (quote_around) length += backslashes + 1; quoted_string = XMALLOC (char, length + 1); p = quoted_string; backslashes = 0; if (quote_around) *p++ = '"'; for (s = string; *s != '\0'; s++) { char c = *s; if (c == '"') { unsigned int j; for (j = backslashes + 1; j > 0; j--) *p++ = '\\'; } *p++ = c; if (c == '\\') backslashes++; else backslashes = 0; } if (quote_around) { unsigned int j; for (j = backslashes; j > 0; j--) *p++ = '\\'; *p++ = '"'; } *p = '\0'; new_argv[i] = quoted_string; } else new_argv[i] = (char *) string; } new_argv[argc] = NULL; return new_argv; } EOF ;; esac cat <<"EOF" void lt_dump_script (FILE* f) { EOF func_emit_wrapper yes | $SED -n -e ' s/^\(.\{79\}\)\(..*\)/\1\ \2/ h s/\([\\"]\)/\\\1/g s/$/\\n/ s/\([^\n]*\).*/ fputs ("\1", f);/p g D' cat <<"EOF" } EOF } # end: func_emit_cwrapperexe_src # func_win32_import_lib_p ARG # True if ARG is an import lib, as indicated by $file_magic_cmd func_win32_import_lib_p () { $debug_cmd case `eval $file_magic_cmd \"\$1\" 2>/dev/null | $SED -e 10q` in *import*) : ;; *) false ;; esac } # func_suncc_cstd_abi # !!ONLY CALL THIS FOR SUN CC AFTER $compile_command IS FULLY EXPANDED!! # Several compiler flags select an ABI that is incompatible with the # Cstd library. Avoid specifying it if any are in CXXFLAGS. func_suncc_cstd_abi () { $debug_cmd case " $compile_command " in *" -compat=g "*|*\ -std=c++[0-9][0-9]\ *|*" -library=stdcxx4 "*|*" -library=stlport4 "*) suncc_use_cstd_abi=no ;; *) suncc_use_cstd_abi=yes ;; esac } # func_mode_link arg... func_mode_link () { $debug_cmd case $host in *-*-cygwin* | *-*-mingw* | *-*-pw32* | *-*-os2* | *-cegcc*) # It is impossible to link a dll without this setting, and # we shouldn't force the makefile maintainer to figure out # what system we are compiling for in order to pass an extra # flag for every libtool invocation. # allow_undefined=no # FIXME: Unfortunately, there are problems with the above when trying # to make a dll that has undefined symbols, in which case not # even a static library is built. For now, we need to specify # -no-undefined on the libtool link line when we can be certain # that all symbols are satisfied, otherwise we get a static library. allow_undefined=yes ;; *) allow_undefined=yes ;; esac libtool_args=$nonopt base_compile="$nonopt $@" compile_command=$nonopt finalize_command=$nonopt compile_rpath= finalize_rpath= compile_shlibpath= finalize_shlibpath= convenience= old_convenience= deplibs= old_deplibs= compiler_flags= linker_flags= dllsearchpath= lib_search_path=`pwd` inst_prefix_dir= new_inherited_linker_flags= avoid_version=no bindir= dlfiles= dlprefiles= dlself=no export_dynamic=no export_symbols= export_symbols_regex= generated= libobjs= ltlibs= module=no no_install=no objs= os2dllname= non_pic_objects= precious_files_regex= prefer_static_libs=no preload=false prev= prevarg= release= rpath= xrpath= perm_rpath= temp_rpath= thread_safe=no vinfo= vinfo_number=no weak_libs= single_module=$wl-single_module func_infer_tag $base_compile # We need to know -static, to get the right output filenames. for arg do case $arg in -shared) test yes != "$build_libtool_libs" \ && func_fatal_configuration "cannot build a shared library" build_old_libs=no break ;; -all-static | -static | -static-libtool-libs) case $arg in -all-static) if test yes = "$build_libtool_libs" && test -z "$link_static_flag"; then func_warning "complete static linking is impossible in this configuration" fi if test -n "$link_static_flag"; then dlopen_self=$dlopen_self_static fi prefer_static_libs=yes ;; -static) if test -z "$pic_flag" && test -n "$link_static_flag"; then dlopen_self=$dlopen_self_static fi prefer_static_libs=built ;; -static-libtool-libs) if test -z "$pic_flag" && test -n "$link_static_flag"; then dlopen_self=$dlopen_self_static fi prefer_static_libs=yes ;; esac build_libtool_libs=no build_old_libs=yes break ;; esac done # See if our shared archives depend on static archives. test -n "$old_archive_from_new_cmds" && build_old_libs=yes # Go through the arguments, transforming them on the way. while test "$#" -gt 0; do arg=$1 shift func_quote_for_eval "$arg" qarg=$func_quote_for_eval_unquoted_result func_append libtool_args " $func_quote_for_eval_result" # If the previous option needs an argument, assign it. if test -n "$prev"; then case $prev in output) func_append compile_command " @OUTPUT@" func_append finalize_command " @OUTPUT@" ;; esac case $prev in bindir) bindir=$arg prev= continue ;; dlfiles|dlprefiles) $preload || { # Add the symbol object into the linking commands. func_append compile_command " @SYMFILE@" func_append finalize_command " @SYMFILE@" preload=: } case $arg in *.la | *.lo) ;; # We handle these cases below. force) if test no = "$dlself"; then dlself=needless export_dynamic=yes fi prev= continue ;; self) if test dlprefiles = "$prev"; then dlself=yes elif test dlfiles = "$prev" && test yes != "$dlopen_self"; then dlself=yes else dlself=needless export_dynamic=yes fi prev= continue ;; *) if test dlfiles = "$prev"; then func_append dlfiles " $arg" else func_append dlprefiles " $arg" fi prev= continue ;; esac ;; expsyms) export_symbols=$arg test -f "$arg" \ || func_fatal_error "symbol file '$arg' does not exist" prev= continue ;; expsyms_regex) export_symbols_regex=$arg prev= continue ;; framework) case $host in *-*-darwin*) case "$deplibs " in *" $qarg.ltframework "*) ;; *) func_append deplibs " $qarg.ltframework" # this is fixed later ;; esac ;; esac prev= continue ;; inst_prefix) inst_prefix_dir=$arg prev= continue ;; mllvm) # Clang does not use LLVM to link, so we can simply discard any # '-mllvm $arg' options when doing the link step. prev= continue ;; objectlist) if test -f "$arg"; then save_arg=$arg moreargs= for fil in `cat "$save_arg"` do # func_append moreargs " $fil" arg=$fil # A libtool-controlled object. # Check to see that this really is a libtool object. if func_lalib_unsafe_p "$arg"; then pic_object= non_pic_object= # Read the .lo file func_source "$arg" if test -z "$pic_object" || test -z "$non_pic_object" || test none = "$pic_object" && test none = "$non_pic_object"; then func_fatal_error "cannot find name of object for '$arg'" fi # Extract subdirectory from the argument. func_dirname "$arg" "/" "" xdir=$func_dirname_result if test none != "$pic_object"; then # Prepend the subdirectory the object is found in. pic_object=$xdir$pic_object if test dlfiles = "$prev"; then if test yes = "$build_libtool_libs" && test yes = "$dlopen_support"; then func_append dlfiles " $pic_object" prev= continue else # If libtool objects are unsupported, then we need to preload. prev=dlprefiles fi fi # CHECK ME: I think I busted this. -Ossama if test dlprefiles = "$prev"; then # Preload the old-style object. func_append dlprefiles " $pic_object" prev= fi # A PIC object. func_append libobjs " $pic_object" arg=$pic_object fi # Non-PIC object. if test none != "$non_pic_object"; then # Prepend the subdirectory the object is found in. non_pic_object=$xdir$non_pic_object # A standard non-PIC object func_append non_pic_objects " $non_pic_object" if test -z "$pic_object" || test none = "$pic_object"; then arg=$non_pic_object fi else # If the PIC object exists, use it instead. # $xdir was prepended to $pic_object above. non_pic_object=$pic_object func_append non_pic_objects " $non_pic_object" fi else # Only an error if not doing a dry-run. if $opt_dry_run; then # Extract subdirectory from the argument. func_dirname "$arg" "/" "" xdir=$func_dirname_result func_lo2o "$arg" pic_object=$xdir$objdir/$func_lo2o_result non_pic_object=$xdir$func_lo2o_result func_append libobjs " $pic_object" func_append non_pic_objects " $non_pic_object" else func_fatal_error "'$arg' is not a valid libtool object" fi fi done else func_fatal_error "link input file '$arg' does not exist" fi arg=$save_arg prev= continue ;; os2dllname) os2dllname=$arg prev= continue ;; precious_regex) precious_files_regex=$arg prev= continue ;; release) release=-$arg prev= continue ;; rpath | xrpath) # We need an absolute path. case $arg in [\\/]* | [A-Za-z]:[\\/]*) ;; *) func_fatal_error "only absolute run-paths are allowed" ;; esac if test rpath = "$prev"; then case "$rpath " in *" $arg "*) ;; *) func_append rpath " $arg" ;; esac else case "$xrpath " in *" $arg "*) ;; *) func_append xrpath " $arg" ;; esac fi prev= continue ;; shrext) shrext_cmds=$arg prev= continue ;; weak) func_append weak_libs " $arg" prev= continue ;; xcclinker) func_append linker_flags " $qarg" func_append compiler_flags " $qarg" prev= func_append compile_command " $qarg" func_append finalize_command " $qarg" continue ;; xcompiler) func_append compiler_flags " $qarg" prev= func_append compile_command " $qarg" func_append finalize_command " $qarg" continue ;; xlinker) func_append linker_flags " $qarg" func_append compiler_flags " $wl$qarg" prev= func_append compile_command " $wl$qarg" func_append finalize_command " $wl$qarg" continue ;; *) eval "$prev=\"\$arg\"" prev= continue ;; esac fi # test -n "$prev" prevarg=$arg case $arg in -all-static) if test -n "$link_static_flag"; then # See comment for -static flag below, for more details. func_append compile_command " $link_static_flag" func_append finalize_command " $link_static_flag" fi continue ;; -allow-undefined) # FIXME: remove this flag sometime in the future. func_fatal_error "'-allow-undefined' must not be used because it is the default" ;; -avoid-version) avoid_version=yes continue ;; -bindir) prev=bindir continue ;; -dlopen) prev=dlfiles continue ;; -dlpreopen) prev=dlprefiles continue ;; -export-dynamic) export_dynamic=yes continue ;; -export-symbols | -export-symbols-regex) if test -n "$export_symbols" || test -n "$export_symbols_regex"; then func_fatal_error "more than one -exported-symbols argument is not allowed" fi if test X-export-symbols = "X$arg"; then prev=expsyms else prev=expsyms_regex fi continue ;; -framework) prev=framework continue ;; -inst-prefix-dir) prev=inst_prefix continue ;; # The native IRIX linker understands -LANG:*, -LIST:* and -LNO:* # so, if we see these flags be careful not to treat them like -L -L[A-Z][A-Z]*:*) case $with_gcc/$host in no/*-*-irix* | /*-*-irix*) func_append compile_command " $arg" func_append finalize_command " $arg" ;; esac continue ;; -L*) func_stripname "-L" '' "$arg" if test -z "$func_stripname_result"; then if test "$#" -gt 0; then func_fatal_error "require no space between '-L' and '$1'" else func_fatal_error "need path for '-L' option" fi fi func_resolve_sysroot "$func_stripname_result" dir=$func_resolve_sysroot_result # We need an absolute path. case $dir in [\\/]* | [A-Za-z]:[\\/]*) ;; *) absdir=`cd "$dir" && pwd` test -z "$absdir" && \ func_fatal_error "cannot determine absolute directory name of '$dir'" dir=$absdir ;; esac case "$deplibs " in *" -L$dir "* | *" $arg "*) # Will only happen for absolute or sysroot arguments ;; *) # Preserve sysroot, but never include relative directories case $dir in [\\/]* | [A-Za-z]:[\\/]* | =*) func_append deplibs " $arg" ;; *) func_append deplibs " -L$dir" ;; esac func_append lib_search_path " $dir" ;; esac case $host in *-*-cygwin* | *-*-mingw* | *-*-pw32* | *-*-os2* | *-cegcc*) testbindir=`$ECHO "$dir" | $SED 's*/lib$*/bin*'` case :$dllsearchpath: in *":$dir:"*) ;; ::) dllsearchpath=$dir;; *) func_append dllsearchpath ":$dir";; esac case :$dllsearchpath: in *":$testbindir:"*) ;; ::) dllsearchpath=$testbindir;; *) func_append dllsearchpath ":$testbindir";; esac ;; esac continue ;; -l*) if test X-lc = "X$arg" || test X-lm = "X$arg"; then case $host in *-*-cygwin* | *-*-mingw* | *-*-pw32* | *-*-beos* | *-cegcc* | *-*-haiku*) # These systems don't actually have a C or math library (as such) continue ;; *-*-os2*) # These systems don't actually have a C library (as such) test X-lc = "X$arg" && continue ;; *-*-openbsd* | *-*-freebsd* | *-*-dragonfly* | *-*-bitrig*) # Do not include libc due to us having libc/libc_r. test X-lc = "X$arg" && continue ;; *-*-rhapsody* | *-*-darwin1.[012]) # Rhapsody C and math libraries are in the System framework func_append deplibs " System.ltframework" continue ;; *-*-sco3.2v5* | *-*-sco5v6*) # Causes problems with __ctype test X-lc = "X$arg" && continue ;; *-*-sysv4.2uw2* | *-*-sysv5* | *-*-unixware* | *-*-OpenUNIX*) # Compiler inserts libc in the correct place for threads to work test X-lc = "X$arg" && continue ;; esac elif test X-lc_r = "X$arg"; then case $host in *-*-openbsd* | *-*-freebsd* | *-*-dragonfly* | *-*-bitrig*) # Do not include libc_r directly, use -pthread flag. continue ;; esac fi func_append deplibs " $arg" continue ;; -mllvm) prev=mllvm continue ;; -module) module=yes continue ;; # Tru64 UNIX uses -model [arg] to determine the layout of C++ # classes, name mangling, and exception handling. # Darwin uses the -arch flag to determine output architecture. -model|-arch|-isysroot|--sysroot) func_append compiler_flags " $arg" func_append compile_command " $arg" func_append finalize_command " $arg" prev=xcompiler continue ;; -mt|-mthreads|-kthread|-Kthread|-pthread|-pthreads|--thread-safe \ |-threads|-fopenmp|-openmp|-mp|-xopenmp|-omp|-qsmp=*) func_append compiler_flags " $arg" func_append compile_command " $arg" func_append finalize_command " $arg" case "$new_inherited_linker_flags " in *" $arg "*) ;; * ) func_append new_inherited_linker_flags " $arg" ;; esac continue ;; -multi_module) single_module=$wl-multi_module continue ;; -no-fast-install) fast_install=no continue ;; -no-install) case $host in *-*-cygwin* | *-*-mingw* | *-*-pw32* | *-*-os2* | *-*-darwin* | *-cegcc*) # The PATH hackery in wrapper scripts is required on Windows # and Darwin in order for the loader to find any dlls it needs. func_warning "'-no-install' is ignored for $host" func_warning "assuming '-no-fast-install' instead" fast_install=no ;; *) no_install=yes ;; esac continue ;; -no-undefined) allow_undefined=no continue ;; -objectlist) prev=objectlist continue ;; -os2dllname) prev=os2dllname continue ;; -o) prev=output ;; -precious-files-regex) prev=precious_regex continue ;; -release) prev=release continue ;; -rpath) prev=rpath continue ;; -R) prev=xrpath continue ;; -R*) func_stripname '-R' '' "$arg" dir=$func_stripname_result # We need an absolute path. case $dir in [\\/]* | [A-Za-z]:[\\/]*) ;; =*) func_stripname '=' '' "$dir" dir=$lt_sysroot$func_stripname_result ;; *) func_fatal_error "only absolute run-paths are allowed" ;; esac case "$xrpath " in *" $dir "*) ;; *) func_append xrpath " $dir" ;; esac continue ;; -shared) # The effects of -shared are defined in a previous loop. continue ;; -shrext) prev=shrext continue ;; -static | -static-libtool-libs) # The effects of -static are defined in a previous loop. # We used to do the same as -all-static on platforms that # didn't have a PIC flag, but the assumption that the effects # would be equivalent was wrong. It would break on at least # Digital Unix and AIX. continue ;; -thread-safe) thread_safe=yes continue ;; -version-info) prev=vinfo continue ;; -version-number) prev=vinfo vinfo_number=yes continue ;; -weak) prev=weak continue ;; -Wc,*) func_stripname '-Wc,' '' "$arg" args=$func_stripname_result arg= save_ifs=$IFS; IFS=, for flag in $args; do IFS=$save_ifs func_quote_for_eval "$flag" func_append arg " $func_quote_for_eval_result" func_append compiler_flags " $func_quote_for_eval_result" done IFS=$save_ifs func_stripname ' ' '' "$arg" arg=$func_stripname_result ;; -Wl,*) func_stripname '-Wl,' '' "$arg" args=$func_stripname_result arg= save_ifs=$IFS; IFS=, for flag in $args; do IFS=$save_ifs func_quote_for_eval "$flag" func_append arg " $wl$func_quote_for_eval_result" func_append compiler_flags " $wl$func_quote_for_eval_result" func_append linker_flags " $func_quote_for_eval_result" done IFS=$save_ifs func_stripname ' ' '' "$arg" arg=$func_stripname_result ;; -Xcompiler) prev=xcompiler continue ;; -Xlinker) prev=xlinker continue ;; -XCClinker) prev=xcclinker continue ;; # -msg_* for osf cc -msg_*) func_quote_for_eval "$arg" arg=$func_quote_for_eval_result ;; # Flags to be passed through unchanged, with rationale: # -64, -mips[0-9] enable 64-bit mode for the SGI compiler # -r[0-9][0-9]* specify processor for the SGI compiler # -xarch=*, -xtarget=* enable 64-bit mode for the Sun compiler # +DA*, +DD* enable 64-bit mode for the HP compiler # -q* compiler args for the IBM compiler # -m*, -t[45]*, -txscale* architecture-specific flags for GCC # -F/path path to uninstalled frameworks, gcc on darwin # -p, -pg, --coverage, -fprofile-* profiling flags for GCC # -fstack-protector* stack protector flags for GCC # @file GCC response files # -tp=* Portland pgcc target processor selection # --sysroot=* for sysroot support # -O*, -g*, -flto*, -fwhopr*, -fuse-linker-plugin GCC link-time optimization # -stdlib=* select c++ std lib with clang -64|-mips[0-9]|-r[0-9][0-9]*|-xarch=*|-xtarget=*|+DA*|+DD*|-q*|-m*| \ -t[45]*|-txscale*|-p|-pg|--coverage|-fprofile-*|-F*|@*|-tp=*|--sysroot=*| \ -O*|-g*|-flto*|-fwhopr*|-fuse-linker-plugin|-fstack-protector*|-stdlib=*) func_quote_for_eval "$arg" arg=$func_quote_for_eval_result func_append compile_command " $arg" func_append finalize_command " $arg" func_append compiler_flags " $arg" continue ;; -Z*) if test os2 = "`expr $host : '.*\(os2\)'`"; then # OS/2 uses -Zxxx to specify OS/2-specific options compiler_flags="$compiler_flags $arg" func_append compile_command " $arg" func_append finalize_command " $arg" case $arg in -Zlinker | -Zstack) prev=xcompiler ;; esac continue else # Otherwise treat like 'Some other compiler flag' below func_quote_for_eval "$arg" arg=$func_quote_for_eval_result fi ;; # Some other compiler flag. -* | +*) func_quote_for_eval "$arg" arg=$func_quote_for_eval_result ;; *.$objext) # A standard object. func_append objs " $arg" ;; *.lo) # A libtool-controlled object. # Check to see that this really is a libtool object. if func_lalib_unsafe_p "$arg"; then pic_object= non_pic_object= # Read the .lo file func_source "$arg" if test -z "$pic_object" || test -z "$non_pic_object" || test none = "$pic_object" && test none = "$non_pic_object"; then func_fatal_error "cannot find name of object for '$arg'" fi # Extract subdirectory from the argument. func_dirname "$arg" "/" "" xdir=$func_dirname_result test none = "$pic_object" || { # Prepend the subdirectory the object is found in. pic_object=$xdir$pic_object if test dlfiles = "$prev"; then if test yes = "$build_libtool_libs" && test yes = "$dlopen_support"; then func_append dlfiles " $pic_object" prev= continue else # If libtool objects are unsupported, then we need to preload. prev=dlprefiles fi fi # CHECK ME: I think I busted this. -Ossama if test dlprefiles = "$prev"; then # Preload the old-style object. func_append dlprefiles " $pic_object" prev= fi # A PIC object. func_append libobjs " $pic_object" arg=$pic_object } # Non-PIC object. if test none != "$non_pic_object"; then # Prepend the subdirectory the object is found in. non_pic_object=$xdir$non_pic_object # A standard non-PIC object func_append non_pic_objects " $non_pic_object" if test -z "$pic_object" || test none = "$pic_object"; then arg=$non_pic_object fi else # If the PIC object exists, use it instead. # $xdir was prepended to $pic_object above. non_pic_object=$pic_object func_append non_pic_objects " $non_pic_object" fi else # Only an error if not doing a dry-run. if $opt_dry_run; then # Extract subdirectory from the argument. func_dirname "$arg" "/" "" xdir=$func_dirname_result func_lo2o "$arg" pic_object=$xdir$objdir/$func_lo2o_result non_pic_object=$xdir$func_lo2o_result func_append libobjs " $pic_object" func_append non_pic_objects " $non_pic_object" else func_fatal_error "'$arg' is not a valid libtool object" fi fi ;; *.$libext) # An archive. func_append deplibs " $arg" func_append old_deplibs " $arg" continue ;; *.la) # A libtool-controlled library. func_resolve_sysroot "$arg" if test dlfiles = "$prev"; then # This library was specified with -dlopen. func_append dlfiles " $func_resolve_sysroot_result" prev= elif test dlprefiles = "$prev"; then # The library was specified with -dlpreopen. func_append dlprefiles " $func_resolve_sysroot_result" prev= else func_append deplibs " $func_resolve_sysroot_result" fi continue ;; # Some other compiler argument. *) # Unknown arguments in both finalize_command and compile_command need # to be aesthetically quoted because they are evaled later. func_quote_for_eval "$arg" arg=$func_quote_for_eval_result ;; esac # arg # Now actually substitute the argument into the commands. if test -n "$arg"; then func_append compile_command " $arg" func_append finalize_command " $arg" fi done # argument parsing loop test -n "$prev" && \ func_fatal_help "the '$prevarg' option requires an argument" if test yes = "$export_dynamic" && test -n "$export_dynamic_flag_spec"; then eval arg=\"$export_dynamic_flag_spec\" func_append compile_command " $arg" func_append finalize_command " $arg" fi oldlibs= # calculate the name of the file, without its directory func_basename "$output" outputname=$func_basename_result libobjs_save=$libobjs if test -n "$shlibpath_var"; then # get the directories listed in $shlibpath_var eval shlib_search_path=\`\$ECHO \"\$$shlibpath_var\" \| \$SED \'s/:/ /g\'\` else shlib_search_path= fi eval sys_lib_search_path=\"$sys_lib_search_path_spec\" eval sys_lib_dlsearch_path=\"$sys_lib_dlsearch_path_spec\" # Definition is injected by LT_CONFIG during libtool generation. func_munge_path_list sys_lib_dlsearch_path "$LT_SYS_LIBRARY_PATH" func_dirname "$output" "/" "" output_objdir=$func_dirname_result$objdir func_to_tool_file "$output_objdir/" tool_output_objdir=$func_to_tool_file_result # Create the object directory. func_mkdir_p "$output_objdir" # Determine the type of output case $output in "") func_fatal_help "you must specify an output file" ;; *.$libext) linkmode=oldlib ;; *.lo | *.$objext) linkmode=obj ;; *.la) linkmode=lib ;; *) linkmode=prog ;; # Anything else should be a program. esac specialdeplibs= libs= # Find all interdependent deplibs by searching for libraries # that are linked more than once (e.g. -la -lb -la) for deplib in $deplibs; do if $opt_preserve_dup_deps; then case "$libs " in *" $deplib "*) func_append specialdeplibs " $deplib" ;; esac fi func_append libs " $deplib" done if test lib = "$linkmode"; then libs="$predeps $libs $compiler_lib_search_path $postdeps" # Compute libraries that are listed more than once in $predeps # $postdeps and mark them as special (i.e., whose duplicates are # not to be eliminated). pre_post_deps= if $opt_duplicate_compiler_generated_deps; then for pre_post_dep in $predeps $postdeps; do case "$pre_post_deps " in *" $pre_post_dep "*) func_append specialdeplibs " $pre_post_deps" ;; esac func_append pre_post_deps " $pre_post_dep" done fi pre_post_deps= fi deplibs= newdependency_libs= newlib_search_path= need_relink=no # whether we're linking any uninstalled libtool libraries notinst_deplibs= # not-installed libtool libraries notinst_path= # paths that contain not-installed libtool libraries case $linkmode in lib) passes="conv dlpreopen link" for file in $dlfiles $dlprefiles; do case $file in *.la) ;; *) func_fatal_help "libraries can '-dlopen' only libtool libraries: $file" ;; esac done ;; prog) compile_deplibs= finalize_deplibs= alldeplibs=false newdlfiles= newdlprefiles= passes="conv scan dlopen dlpreopen link" ;; *) passes="conv" ;; esac for pass in $passes; do # The preopen pass in lib mode reverses $deplibs; put it back here # so that -L comes before libs that need it for instance... if test lib,link = "$linkmode,$pass"; then ## FIXME: Find the place where the list is rebuilt in the wrong ## order, and fix it there properly tmp_deplibs= for deplib in $deplibs; do tmp_deplibs="$deplib $tmp_deplibs" done deplibs=$tmp_deplibs fi if test lib,link = "$linkmode,$pass" || test prog,scan = "$linkmode,$pass"; then libs=$deplibs deplibs= fi if test prog = "$linkmode"; then case $pass in dlopen) libs=$dlfiles ;; dlpreopen) libs=$dlprefiles ;; link) libs="$deplibs %DEPLIBS% $dependency_libs" ;; esac fi if test lib,dlpreopen = "$linkmode,$pass"; then # Collect and forward deplibs of preopened libtool libs for lib in $dlprefiles; do # Ignore non-libtool-libs dependency_libs= func_resolve_sysroot "$lib" case $lib in *.la) func_source "$func_resolve_sysroot_result" ;; esac # Collect preopened libtool deplibs, except any this library # has declared as weak libs for deplib in $dependency_libs; do func_basename "$deplib" deplib_base=$func_basename_result case " $weak_libs " in *" $deplib_base "*) ;; *) func_append deplibs " $deplib" ;; esac done done libs=$dlprefiles fi if test dlopen = "$pass"; then # Collect dlpreopened libraries save_deplibs=$deplibs deplibs= fi for deplib in $libs; do lib= found=false case $deplib in -mt|-mthreads|-kthread|-Kthread|-pthread|-pthreads|--thread-safe \ |-threads|-fopenmp|-openmp|-mp|-xopenmp|-omp|-qsmp=*) if test prog,link = "$linkmode,$pass"; then compile_deplibs="$deplib $compile_deplibs" finalize_deplibs="$deplib $finalize_deplibs" else func_append compiler_flags " $deplib" if test lib = "$linkmode"; then case "$new_inherited_linker_flags " in *" $deplib "*) ;; * ) func_append new_inherited_linker_flags " $deplib" ;; esac fi fi continue ;; -l*) if test lib != "$linkmode" && test prog != "$linkmode"; then func_warning "'-l' is ignored for archives/objects" continue fi func_stripname '-l' '' "$deplib" name=$func_stripname_result if test lib = "$linkmode"; then searchdirs="$newlib_search_path $lib_search_path $compiler_lib_search_dirs $sys_lib_search_path $shlib_search_path" else searchdirs="$newlib_search_path $lib_search_path $sys_lib_search_path $shlib_search_path" fi for searchdir in $searchdirs; do for search_ext in .la $std_shrext .so .a; do # Search the libtool library lib=$searchdir/lib$name$search_ext if test -f "$lib"; then if test .la = "$search_ext"; then found=: else found=false fi break 2 fi done done if $found; then # deplib is a libtool library # If $allow_libtool_libs_with_static_runtimes && $deplib is a stdlib, # We need to do some special things here, and not later. if test yes = "$allow_libtool_libs_with_static_runtimes"; then case " $predeps $postdeps " in *" $deplib "*) if func_lalib_p "$lib"; then library_names= old_library= func_source "$lib" for l in $old_library $library_names; do ll=$l done if test "X$ll" = "X$old_library"; then # only static version available found=false func_dirname "$lib" "" "." ladir=$func_dirname_result lib=$ladir/$old_library if test prog,link = "$linkmode,$pass"; then compile_deplibs="$deplib $compile_deplibs" finalize_deplibs="$deplib $finalize_deplibs" else deplibs="$deplib $deplibs" test lib = "$linkmode" && newdependency_libs="$deplib $newdependency_libs" fi continue fi fi ;; *) ;; esac fi else # deplib doesn't seem to be a libtool library if test prog,link = "$linkmode,$pass"; then compile_deplibs="$deplib $compile_deplibs" finalize_deplibs="$deplib $finalize_deplibs" else deplibs="$deplib $deplibs" test lib = "$linkmode" && newdependency_libs="$deplib $newdependency_libs" fi continue fi ;; # -l *.ltframework) if test prog,link = "$linkmode,$pass"; then compile_deplibs="$deplib $compile_deplibs" finalize_deplibs="$deplib $finalize_deplibs" else deplibs="$deplib $deplibs" if test lib = "$linkmode"; then case "$new_inherited_linker_flags " in *" $deplib "*) ;; * ) func_append new_inherited_linker_flags " $deplib" ;; esac fi fi continue ;; -L*) case $linkmode in lib) deplibs="$deplib $deplibs" test conv = "$pass" && continue newdependency_libs="$deplib $newdependency_libs" func_stripname '-L' '' "$deplib" func_resolve_sysroot "$func_stripname_result" func_append newlib_search_path " $func_resolve_sysroot_result" ;; prog) if test conv = "$pass"; then deplibs="$deplib $deplibs" continue fi if test scan = "$pass"; then deplibs="$deplib $deplibs" else compile_deplibs="$deplib $compile_deplibs" finalize_deplibs="$deplib $finalize_deplibs" fi func_stripname '-L' '' "$deplib" func_resolve_sysroot "$func_stripname_result" func_append newlib_search_path " $func_resolve_sysroot_result" ;; *) func_warning "'-L' is ignored for archives/objects" ;; esac # linkmode continue ;; # -L -R*) if test link = "$pass"; then func_stripname '-R' '' "$deplib" func_resolve_sysroot "$func_stripname_result" dir=$func_resolve_sysroot_result # Make sure the xrpath contains only unique directories. case "$xrpath " in *" $dir "*) ;; *) func_append xrpath " $dir" ;; esac fi deplibs="$deplib $deplibs" continue ;; *.la) func_resolve_sysroot "$deplib" lib=$func_resolve_sysroot_result ;; *.$libext) if test conv = "$pass"; then deplibs="$deplib $deplibs" continue fi case $linkmode in lib) # Linking convenience modules into shared libraries is allowed, # but linking other static libraries is non-portable. case " $dlpreconveniencelibs " in *" $deplib "*) ;; *) valid_a_lib=false case $deplibs_check_method in match_pattern*) set dummy $deplibs_check_method; shift match_pattern_regex=`expr "$deplibs_check_method" : "$1 \(.*\)"` if eval "\$ECHO \"$deplib\"" 2>/dev/null | $SED 10q \ | $EGREP "$match_pattern_regex" > /dev/null; then valid_a_lib=: fi ;; pass_all) valid_a_lib=: ;; esac if $valid_a_lib; then echo $ECHO "*** Warning: Linking the shared library $output against the" $ECHO "*** static library $deplib is not portable!" deplibs="$deplib $deplibs" else echo $ECHO "*** Warning: Trying to link with static lib archive $deplib." echo "*** I have the capability to make that library automatically link in when" echo "*** you link to this library. But I can only do this if you have a" echo "*** shared version of the library, which you do not appear to have" echo "*** because the file extensions .$libext of this argument makes me believe" echo "*** that it is just a static archive that I should not use here." fi ;; esac continue ;; prog) if test link != "$pass"; then deplibs="$deplib $deplibs" else compile_deplibs="$deplib $compile_deplibs" finalize_deplibs="$deplib $finalize_deplibs" fi continue ;; esac # linkmode ;; # *.$libext *.lo | *.$objext) if test conv = "$pass"; then deplibs="$deplib $deplibs" elif test prog = "$linkmode"; then if test dlpreopen = "$pass" || test yes != "$dlopen_support" || test no = "$build_libtool_libs"; then # If there is no dlopen support or we're linking statically, # we need to preload. func_append newdlprefiles " $deplib" compile_deplibs="$deplib $compile_deplibs" finalize_deplibs="$deplib $finalize_deplibs" else func_append newdlfiles " $deplib" fi fi continue ;; %DEPLIBS%) alldeplibs=: continue ;; esac # case $deplib $found || test -f "$lib" \ || func_fatal_error "cannot find the library '$lib' or unhandled argument '$deplib'" # Check to see that this really is a libtool archive. func_lalib_unsafe_p "$lib" \ || func_fatal_error "'$lib' is not a valid libtool archive" func_dirname "$lib" "" "." ladir=$func_dirname_result dlname= dlopen= dlpreopen= libdir= library_names= old_library= inherited_linker_flags= # If the library was installed with an old release of libtool, # it will not redefine variables installed, or shouldnotlink installed=yes shouldnotlink=no avoidtemprpath= # Read the .la file func_source "$lib" # Convert "-framework foo" to "foo.ltframework" if test -n "$inherited_linker_flags"; then tmp_inherited_linker_flags=`$ECHO "$inherited_linker_flags" | $SED 's/-framework \([^ $]*\)/\1.ltframework/g'` for tmp_inherited_linker_flag in $tmp_inherited_linker_flags; do case " $new_inherited_linker_flags " in *" $tmp_inherited_linker_flag "*) ;; *) func_append new_inherited_linker_flags " $tmp_inherited_linker_flag";; esac done fi dependency_libs=`$ECHO " $dependency_libs" | $SED 's% \([^ $]*\).ltframework% -framework \1%g'` if test lib,link = "$linkmode,$pass" || test prog,scan = "$linkmode,$pass" || { test prog != "$linkmode" && test lib != "$linkmode"; }; then test -n "$dlopen" && func_append dlfiles " $dlopen" test -n "$dlpreopen" && func_append dlprefiles " $dlpreopen" fi if test conv = "$pass"; then # Only check for convenience libraries deplibs="$lib $deplibs" if test -z "$libdir"; then if test -z "$old_library"; then func_fatal_error "cannot find name of link library for '$lib'" fi # It is a libtool convenience library, so add in its objects. func_append convenience " $ladir/$objdir/$old_library" func_append old_convenience " $ladir/$objdir/$old_library" elif test prog != "$linkmode" && test lib != "$linkmode"; then func_fatal_error "'$lib' is not a convenience library" fi tmp_libs= for deplib in $dependency_libs; do deplibs="$deplib $deplibs" if $opt_preserve_dup_deps; then case "$tmp_libs " in *" $deplib "*) func_append specialdeplibs " $deplib" ;; esac fi func_append tmp_libs " $deplib" done continue fi # $pass = conv # Get the name of the library we link against. linklib= if test -n "$old_library" && { test yes = "$prefer_static_libs" || test built,no = "$prefer_static_libs,$installed"; }; then linklib=$old_library else for l in $old_library $library_names; do linklib=$l done fi if test -z "$linklib"; then func_fatal_error "cannot find name of link library for '$lib'" fi # This library was specified with -dlopen. if test dlopen = "$pass"; then test -z "$libdir" \ && func_fatal_error "cannot -dlopen a convenience library: '$lib'" if test -z "$dlname" || test yes != "$dlopen_support" || test no = "$build_libtool_libs" then # If there is no dlname, no dlopen support or we're linking # statically, we need to preload. We also need to preload any # dependent libraries so libltdl's deplib preloader doesn't # bomb out in the load deplibs phase. func_append dlprefiles " $lib $dependency_libs" else func_append newdlfiles " $lib" fi continue fi # $pass = dlopen # We need an absolute path. case $ladir in [\\/]* | [A-Za-z]:[\\/]*) abs_ladir=$ladir ;; *) abs_ladir=`cd "$ladir" && pwd` if test -z "$abs_ladir"; then func_warning "cannot determine absolute directory name of '$ladir'" func_warning "passing it literally to the linker, although it might fail" abs_ladir=$ladir fi ;; esac func_basename "$lib" laname=$func_basename_result # Find the relevant object directory and library name. if test yes = "$installed"; then if test ! -f "$lt_sysroot$libdir/$linklib" && test -f "$abs_ladir/$linklib"; then func_warning "library '$lib' was moved." dir=$ladir absdir=$abs_ladir libdir=$abs_ladir else dir=$lt_sysroot$libdir absdir=$lt_sysroot$libdir fi test yes = "$hardcode_automatic" && avoidtemprpath=yes else if test ! -f "$ladir/$objdir/$linklib" && test -f "$abs_ladir/$linklib"; then dir=$ladir absdir=$abs_ladir # Remove this search path later func_append notinst_path " $abs_ladir" else dir=$ladir/$objdir absdir=$abs_ladir/$objdir # Remove this search path later func_append notinst_path " $abs_ladir" fi fi # $installed = yes func_stripname 'lib' '.la' "$laname" name=$func_stripname_result # This library was specified with -dlpreopen. if test dlpreopen = "$pass"; then if test -z "$libdir" && test prog = "$linkmode"; then func_fatal_error "only libraries may -dlpreopen a convenience library: '$lib'" fi case $host in # special handling for platforms with PE-DLLs. *cygwin* | *mingw* | *cegcc* ) # Linker will automatically link against shared library if both # static and shared are present. Therefore, ensure we extract # symbols from the import library if a shared library is present # (otherwise, the dlopen module name will be incorrect). We do # this by putting the import library name into $newdlprefiles. # We recover the dlopen module name by 'saving' the la file # name in a special purpose variable, and (later) extracting the # dlname from the la file. if test -n "$dlname"; then func_tr_sh "$dir/$linklib" eval "libfile_$func_tr_sh_result=\$abs_ladir/\$laname" func_append newdlprefiles " $dir/$linklib" else func_append newdlprefiles " $dir/$old_library" # Keep a list of preopened convenience libraries to check # that they are being used correctly in the link pass. test -z "$libdir" && \ func_append dlpreconveniencelibs " $dir/$old_library" fi ;; * ) # Prefer using a static library (so that no silly _DYNAMIC symbols # are required to link). if test -n "$old_library"; then func_append newdlprefiles " $dir/$old_library" # Keep a list of preopened convenience libraries to check # that they are being used correctly in the link pass. test -z "$libdir" && \ func_append dlpreconveniencelibs " $dir/$old_library" # Otherwise, use the dlname, so that lt_dlopen finds it. elif test -n "$dlname"; then func_append newdlprefiles " $dir/$dlname" else func_append newdlprefiles " $dir/$linklib" fi ;; esac fi # $pass = dlpreopen if test -z "$libdir"; then # Link the convenience library if test lib = "$linkmode"; then deplibs="$dir/$old_library $deplibs" elif test prog,link = "$linkmode,$pass"; then compile_deplibs="$dir/$old_library $compile_deplibs" finalize_deplibs="$dir/$old_library $finalize_deplibs" else deplibs="$lib $deplibs" # used for prog,scan pass fi continue fi if test prog = "$linkmode" && test link != "$pass"; then func_append newlib_search_path " $ladir" deplibs="$lib $deplibs" linkalldeplibs=false if test no != "$link_all_deplibs" || test -z "$library_names" || test no = "$build_libtool_libs"; then linkalldeplibs=: fi tmp_libs= for deplib in $dependency_libs; do case $deplib in -L*) func_stripname '-L' '' "$deplib" func_resolve_sysroot "$func_stripname_result" func_append newlib_search_path " $func_resolve_sysroot_result" ;; esac # Need to link against all dependency_libs? if $linkalldeplibs; then deplibs="$deplib $deplibs" else # Need to hardcode shared library paths # or/and link against static libraries newdependency_libs="$deplib $newdependency_libs" fi if $opt_preserve_dup_deps; then case "$tmp_libs " in *" $deplib "*) func_append specialdeplibs " $deplib" ;; esac fi func_append tmp_libs " $deplib" done # for deplib continue fi # $linkmode = prog... if test prog,link = "$linkmode,$pass"; then if test -n "$library_names" && { { test no = "$prefer_static_libs" || test built,yes = "$prefer_static_libs,$installed"; } || test -z "$old_library"; }; then # We need to hardcode the library path if test -n "$shlibpath_var" && test -z "$avoidtemprpath"; then # Make sure the rpath contains only unique directories. case $temp_rpath: in *"$absdir:"*) ;; *) func_append temp_rpath "$absdir:" ;; esac fi # Hardcode the library path. # Skip directories that are in the system default run-time # search path. case " $sys_lib_dlsearch_path " in *" $absdir "*) ;; *) case "$compile_rpath " in *" $absdir "*) ;; *) func_append compile_rpath " $absdir" ;; esac ;; esac case " $sys_lib_dlsearch_path " in *" $libdir "*) ;; *) case "$finalize_rpath " in *" $libdir "*) ;; *) func_append finalize_rpath " $libdir" ;; esac ;; esac fi # $linkmode,$pass = prog,link... if $alldeplibs && { test pass_all = "$deplibs_check_method" || { test yes = "$build_libtool_libs" && test -n "$library_names"; }; }; then # We only need to search for static libraries continue fi fi link_static=no # Whether the deplib will be linked statically use_static_libs=$prefer_static_libs if test built = "$use_static_libs" && test yes = "$installed"; then use_static_libs=no fi if test -n "$library_names" && { test no = "$use_static_libs" || test -z "$old_library"; }; then case $host in *cygwin* | *mingw* | *cegcc* | *os2*) # No point in relinking DLLs because paths are not encoded func_append notinst_deplibs " $lib" need_relink=no ;; *) if test no = "$installed"; then func_append notinst_deplibs " $lib" need_relink=yes fi ;; esac # This is a shared library # Warn about portability, can't link against -module's on some # systems (darwin). Don't bleat about dlopened modules though! dlopenmodule= for dlpremoduletest in $dlprefiles; do if test "X$dlpremoduletest" = "X$lib"; then dlopenmodule=$dlpremoduletest break fi done if test -z "$dlopenmodule" && test yes = "$shouldnotlink" && test link = "$pass"; then echo if test prog = "$linkmode"; then $ECHO "*** Warning: Linking the executable $output against the loadable module" else $ECHO "*** Warning: Linking the shared library $output against the loadable module" fi $ECHO "*** $linklib is not portable!" fi if test lib = "$linkmode" && test yes = "$hardcode_into_libs"; then # Hardcode the library path. # Skip directories that are in the system default run-time # search path. case " $sys_lib_dlsearch_path " in *" $absdir "*) ;; *) case "$compile_rpath " in *" $absdir "*) ;; *) func_append compile_rpath " $absdir" ;; esac ;; esac case " $sys_lib_dlsearch_path " in *" $libdir "*) ;; *) case "$finalize_rpath " in *" $libdir "*) ;; *) func_append finalize_rpath " $libdir" ;; esac ;; esac fi if test -n "$old_archive_from_expsyms_cmds"; then # figure out the soname set dummy $library_names shift realname=$1 shift libname=`eval "\\$ECHO \"$libname_spec\""` # use dlname if we got it. it's perfectly good, no? if test -n "$dlname"; then soname=$dlname elif test -n "$soname_spec"; then # bleh windows case $host in *cygwin* | mingw* | *cegcc* | *os2*) func_arith $current - $age major=$func_arith_result versuffix=-$major ;; esac eval soname=\"$soname_spec\" else soname=$realname fi # Make a new name for the extract_expsyms_cmds to use soroot=$soname func_basename "$soroot" soname=$func_basename_result func_stripname 'lib' '.dll' "$soname" newlib=libimp-$func_stripname_result.a # If the library has no export list, then create one now if test -f "$output_objdir/$soname-def"; then : else func_verbose "extracting exported symbol list from '$soname'" func_execute_cmds "$extract_expsyms_cmds" 'exit $?' fi # Create $newlib if test -f "$output_objdir/$newlib"; then :; else func_verbose "generating import library for '$soname'" func_execute_cmds "$old_archive_from_expsyms_cmds" 'exit $?' fi # make sure the library variables are pointing to the new library dir=$output_objdir linklib=$newlib fi # test -n "$old_archive_from_expsyms_cmds" if test prog = "$linkmode" || test relink != "$opt_mode"; then add_shlibpath= add_dir= add= lib_linked=yes case $hardcode_action in immediate | unsupported) if test no = "$hardcode_direct"; then add=$dir/$linklib case $host in *-*-sco3.2v5.0.[024]*) add_dir=-L$dir ;; *-*-sysv4*uw2*) add_dir=-L$dir ;; *-*-sysv5OpenUNIX* | *-*-sysv5UnixWare7.[01].[10]* | \ *-*-unixware7*) add_dir=-L$dir ;; *-*-darwin* ) # if the lib is a (non-dlopened) module then we cannot # link against it, someone is ignoring the earlier warnings if /usr/bin/file -L $add 2> /dev/null | $GREP ": [^:]* bundle" >/dev/null; then if test "X$dlopenmodule" != "X$lib"; then $ECHO "*** Warning: lib $linklib is a module, not a shared library" if test -z "$old_library"; then echo echo "*** And there doesn't seem to be a static archive available" echo "*** The link will probably fail, sorry" else add=$dir/$old_library fi elif test -n "$old_library"; then add=$dir/$old_library fi fi esac elif test no = "$hardcode_minus_L"; then case $host in *-*-sunos*) add_shlibpath=$dir ;; esac add_dir=-L$dir add=-l$name elif test no = "$hardcode_shlibpath_var"; then add_shlibpath=$dir add=-l$name else lib_linked=no fi ;; relink) if test yes = "$hardcode_direct" && test no = "$hardcode_direct_absolute"; then add=$dir/$linklib elif test yes = "$hardcode_minus_L"; then add_dir=-L$absdir # Try looking first in the location we're being installed to. if test -n "$inst_prefix_dir"; then case $libdir in [\\/]*) func_append add_dir " -L$inst_prefix_dir$libdir" ;; esac fi add=-l$name elif test yes = "$hardcode_shlibpath_var"; then add_shlibpath=$dir add=-l$name else lib_linked=no fi ;; *) lib_linked=no ;; esac if test yes != "$lib_linked"; then func_fatal_configuration "unsupported hardcode properties" fi if test -n "$add_shlibpath"; then case :$compile_shlibpath: in *":$add_shlibpath:"*) ;; *) func_append compile_shlibpath "$add_shlibpath:" ;; esac fi if test prog = "$linkmode"; then test -n "$add_dir" && compile_deplibs="$add_dir $compile_deplibs" test -n "$add" && compile_deplibs="$add $compile_deplibs" else test -n "$add_dir" && deplibs="$add_dir $deplibs" test -n "$add" && deplibs="$add $deplibs" if test yes != "$hardcode_direct" && test yes != "$hardcode_minus_L" && test yes = "$hardcode_shlibpath_var"; then case :$finalize_shlibpath: in *":$libdir:"*) ;; *) func_append finalize_shlibpath "$libdir:" ;; esac fi fi fi if test prog = "$linkmode" || test relink = "$opt_mode"; then add_shlibpath= add_dir= add= # Finalize command for both is simple: just hardcode it. if test yes = "$hardcode_direct" && test no = "$hardcode_direct_absolute"; then add=$libdir/$linklib elif test yes = "$hardcode_minus_L"; then add_dir=-L$libdir add=-l$name elif test yes = "$hardcode_shlibpath_var"; then case :$finalize_shlibpath: in *":$libdir:"*) ;; *) func_append finalize_shlibpath "$libdir:" ;; esac add=-l$name elif test yes = "$hardcode_automatic"; then if test -n "$inst_prefix_dir" && test -f "$inst_prefix_dir$libdir/$linklib"; then add=$inst_prefix_dir$libdir/$linklib else add=$libdir/$linklib fi else # We cannot seem to hardcode it, guess we'll fake it. add_dir=-L$libdir # Try looking first in the location we're being installed to. if test -n "$inst_prefix_dir"; then case $libdir in [\\/]*) func_append add_dir " -L$inst_prefix_dir$libdir" ;; esac fi add=-l$name fi if test prog = "$linkmode"; then test -n "$add_dir" && finalize_deplibs="$add_dir $finalize_deplibs" test -n "$add" && finalize_deplibs="$add $finalize_deplibs" else test -n "$add_dir" && deplibs="$add_dir $deplibs" test -n "$add" && deplibs="$add $deplibs" fi fi elif test prog = "$linkmode"; then # Here we assume that one of hardcode_direct or hardcode_minus_L # is not unsupported. This is valid on all known static and # shared platforms. if test unsupported != "$hardcode_direct"; then test -n "$old_library" && linklib=$old_library compile_deplibs="$dir/$linklib $compile_deplibs" finalize_deplibs="$dir/$linklib $finalize_deplibs" else compile_deplibs="-l$name -L$dir $compile_deplibs" finalize_deplibs="-l$name -L$dir $finalize_deplibs" fi elif test yes = "$build_libtool_libs"; then # Not a shared library if test pass_all != "$deplibs_check_method"; then # We're trying link a shared library against a static one # but the system doesn't support it. # Just print a warning and add the library to dependency_libs so # that the program can be linked against the static library. echo $ECHO "*** Warning: This system cannot link to static lib archive $lib." echo "*** I have the capability to make that library automatically link in when" echo "*** you link to this library. But I can only do this if you have a" echo "*** shared version of the library, which you do not appear to have." if test yes = "$module"; then echo "*** But as you try to build a module library, libtool will still create " echo "*** a static module, that should work as long as the dlopening application" echo "*** is linked with the -dlopen flag to resolve symbols at runtime." if test -z "$global_symbol_pipe"; then echo echo "*** However, this would only work if libtool was able to extract symbol" echo "*** lists from a program, using 'nm' or equivalent, but libtool could" echo "*** not find such a program. So, this module is probably useless." echo "*** 'nm' from GNU binutils and a full rebuild may help." fi if test no = "$build_old_libs"; then build_libtool_libs=module build_old_libs=yes else build_libtool_libs=no fi fi else deplibs="$dir/$old_library $deplibs" link_static=yes fi fi # link shared/static library? if test lib = "$linkmode"; then if test -n "$dependency_libs" && { test yes != "$hardcode_into_libs" || test yes = "$build_old_libs" || test yes = "$link_static"; }; then # Extract -R from dependency_libs temp_deplibs= for libdir in $dependency_libs; do case $libdir in -R*) func_stripname '-R' '' "$libdir" temp_xrpath=$func_stripname_result case " $xrpath " in *" $temp_xrpath "*) ;; *) func_append xrpath " $temp_xrpath";; esac;; *) func_append temp_deplibs " $libdir";; esac done dependency_libs=$temp_deplibs fi func_append newlib_search_path " $absdir" # Link against this library test no = "$link_static" && newdependency_libs="$abs_ladir/$laname $newdependency_libs" # ... and its dependency_libs tmp_libs= for deplib in $dependency_libs; do newdependency_libs="$deplib $newdependency_libs" case $deplib in -L*) func_stripname '-L' '' "$deplib" func_resolve_sysroot "$func_stripname_result";; *) func_resolve_sysroot "$deplib" ;; esac if $opt_preserve_dup_deps; then case "$tmp_libs " in *" $func_resolve_sysroot_result "*) func_append specialdeplibs " $func_resolve_sysroot_result" ;; esac fi func_append tmp_libs " $func_resolve_sysroot_result" done if test no != "$link_all_deplibs"; then # Add the search paths of all dependency libraries for deplib in $dependency_libs; do path= case $deplib in -L*) path=$deplib ;; *.la) func_resolve_sysroot "$deplib" deplib=$func_resolve_sysroot_result func_dirname "$deplib" "" "." dir=$func_dirname_result # We need an absolute path. case $dir in [\\/]* | [A-Za-z]:[\\/]*) absdir=$dir ;; *) absdir=`cd "$dir" && pwd` if test -z "$absdir"; then func_warning "cannot determine absolute directory name of '$dir'" absdir=$dir fi ;; esac if $GREP "^installed=no" $deplib > /dev/null; then case $host in *-*-darwin*) depdepl= eval deplibrary_names=`$SED -n -e 's/^library_names=\(.*\)$/\1/p' $deplib` if test -n "$deplibrary_names"; then for tmp in $deplibrary_names; do depdepl=$tmp done if test -f "$absdir/$objdir/$depdepl"; then depdepl=$absdir/$objdir/$depdepl darwin_install_name=`$OTOOL -L $depdepl | awk '{if (NR == 2) {print $1;exit}}'` if test -z "$darwin_install_name"; then darwin_install_name=`$OTOOL64 -L $depdepl | awk '{if (NR == 2) {print $1;exit}}'` fi func_append compiler_flags " $wl-dylib_file $wl$darwin_install_name:$depdepl" func_append linker_flags " -dylib_file $darwin_install_name:$depdepl" path= fi fi ;; *) path=-L$absdir/$objdir ;; esac else eval libdir=`$SED -n -e 's/^libdir=\(.*\)$/\1/p' $deplib` test -z "$libdir" && \ func_fatal_error "'$deplib' is not a valid libtool archive" test "$absdir" != "$libdir" && \ func_warning "'$deplib' seems to be moved" path=-L$absdir fi ;; esac case " $deplibs " in *" $path "*) ;; *) deplibs="$path $deplibs" ;; esac done fi # link_all_deplibs != no fi # linkmode = lib done # for deplib in $libs if test link = "$pass"; then if test prog = "$linkmode"; then compile_deplibs="$new_inherited_linker_flags $compile_deplibs" finalize_deplibs="$new_inherited_linker_flags $finalize_deplibs" else compiler_flags="$compiler_flags "`$ECHO " $new_inherited_linker_flags" | $SED 's% \([^ $]*\).ltframework% -framework \1%g'` fi fi dependency_libs=$newdependency_libs if test dlpreopen = "$pass"; then # Link the dlpreopened libraries before other libraries for deplib in $save_deplibs; do deplibs="$deplib $deplibs" done fi if test dlopen != "$pass"; then test conv = "$pass" || { # Make sure lib_search_path contains only unique directories. lib_search_path= for dir in $newlib_search_path; do case "$lib_search_path " in *" $dir "*) ;; *) func_append lib_search_path " $dir" ;; esac done newlib_search_path= } if test prog,link = "$linkmode,$pass"; then vars="compile_deplibs finalize_deplibs" else vars=deplibs fi for var in $vars dependency_libs; do # Add libraries to $var in reverse order eval tmp_libs=\"\$$var\" new_libs= for deplib in $tmp_libs; do # FIXME: Pedantically, this is the right thing to do, so # that some nasty dependency loop isn't accidentally # broken: #new_libs="$deplib $new_libs" # Pragmatically, this seems to cause very few problems in # practice: case $deplib in -L*) new_libs="$deplib $new_libs" ;; -R*) ;; *) # And here is the reason: when a library appears more # than once as an explicit dependence of a library, or # is implicitly linked in more than once by the # compiler, it is considered special, and multiple # occurrences thereof are not removed. Compare this # with having the same library being listed as a # dependency of multiple other libraries: in this case, # we know (pedantically, we assume) the library does not # need to be listed more than once, so we keep only the # last copy. This is not always right, but it is rare # enough that we require users that really mean to play # such unportable linking tricks to link the library # using -Wl,-lname, so that libtool does not consider it # for duplicate removal. case " $specialdeplibs " in *" $deplib "*) new_libs="$deplib $new_libs" ;; *) case " $new_libs " in *" $deplib "*) ;; *) new_libs="$deplib $new_libs" ;; esac ;; esac ;; esac done tmp_libs= for deplib in $new_libs; do case $deplib in -L*) case " $tmp_libs " in *" $deplib "*) ;; *) func_append tmp_libs " $deplib" ;; esac ;; *) func_append tmp_libs " $deplib" ;; esac done eval $var=\"$tmp_libs\" done # for var fi # Add Sun CC postdeps if required: test CXX = "$tagname" && { case $host_os in linux*) case `$CC -V 2>&1 | sed 5q` in *Sun\ C*) # Sun C++ 5.9 func_suncc_cstd_abi if test no != "$suncc_use_cstd_abi"; then func_append postdeps ' -library=Cstd -library=Crun' fi ;; esac ;; solaris*) func_cc_basename "$CC" case $func_cc_basename_result in CC* | sunCC*) func_suncc_cstd_abi if test no != "$suncc_use_cstd_abi"; then func_append postdeps ' -library=Cstd -library=Crun' fi ;; esac ;; esac } # Last step: remove runtime libs from dependency_libs # (they stay in deplibs) tmp_libs= for i in $dependency_libs; do case " $predeps $postdeps $compiler_lib_search_path " in *" $i "*) i= ;; esac if test -n "$i"; then func_append tmp_libs " $i" fi done dependency_libs=$tmp_libs done # for pass if test prog = "$linkmode"; then dlfiles=$newdlfiles fi if test prog = "$linkmode" || test lib = "$linkmode"; then dlprefiles=$newdlprefiles fi case $linkmode in oldlib) if test -n "$dlfiles$dlprefiles" || test no != "$dlself"; then func_warning "'-dlopen' is ignored for archives" fi case " $deplibs" in *\ -l* | *\ -L*) func_warning "'-l' and '-L' are ignored for archives" ;; esac test -n "$rpath" && \ func_warning "'-rpath' is ignored for archives" test -n "$xrpath" && \ func_warning "'-R' is ignored for archives" test -n "$vinfo" && \ func_warning "'-version-info/-version-number' is ignored for archives" test -n "$release" && \ func_warning "'-release' is ignored for archives" test -n "$export_symbols$export_symbols_regex" && \ func_warning "'-export-symbols' is ignored for archives" # Now set the variables for building old libraries. build_libtool_libs=no oldlibs=$output func_append objs "$old_deplibs" ;; lib) # Make sure we only generate libraries of the form 'libNAME.la'. case $outputname in lib*) func_stripname 'lib' '.la' "$outputname" name=$func_stripname_result eval shared_ext=\"$shrext_cmds\" eval libname=\"$libname_spec\" ;; *) test no = "$module" \ && func_fatal_help "libtool library '$output' must begin with 'lib'" if test no != "$need_lib_prefix"; then # Add the "lib" prefix for modules if required func_stripname '' '.la' "$outputname" name=$func_stripname_result eval shared_ext=\"$shrext_cmds\" eval libname=\"$libname_spec\" else func_stripname '' '.la' "$outputname" libname=$func_stripname_result fi ;; esac if test -n "$objs"; then if test pass_all != "$deplibs_check_method"; then func_fatal_error "cannot build libtool library '$output' from non-libtool objects on this host:$objs" else echo $ECHO "*** Warning: Linking the shared library $output against the non-libtool" $ECHO "*** objects $objs is not portable!" func_append libobjs " $objs" fi fi test no = "$dlself" \ || func_warning "'-dlopen self' is ignored for libtool libraries" set dummy $rpath shift test 1 -lt "$#" \ && func_warning "ignoring multiple '-rpath's for a libtool library" install_libdir=$1 oldlibs= if test -z "$rpath"; then if test yes = "$build_libtool_libs"; then # Building a libtool convenience library. # Some compilers have problems with a '.al' extension so # convenience libraries should have the same extension an # archive normally would. oldlibs="$output_objdir/$libname.$libext $oldlibs" build_libtool_libs=convenience build_old_libs=yes fi test -n "$vinfo" && \ func_warning "'-version-info/-version-number' is ignored for convenience libraries" test -n "$release" && \ func_warning "'-release' is ignored for convenience libraries" else # Parse the version information argument. save_ifs=$IFS; IFS=: set dummy $vinfo 0 0 0 shift IFS=$save_ifs test -n "$7" && \ func_fatal_help "too many parameters to '-version-info'" # convert absolute version numbers to libtool ages # this retains compatibility with .la files and attempts # to make the code below a bit more comprehensible case $vinfo_number in yes) number_major=$1 number_minor=$2 number_revision=$3 # # There are really only two kinds -- those that # use the current revision as the major version # and those that subtract age and use age as # a minor version. But, then there is irix # that has an extra 1 added just for fun # case $version_type in # correct linux to gnu/linux during the next big refactor darwin|freebsd-elf|linux|osf|windows|none) func_arith $number_major + $number_minor current=$func_arith_result age=$number_minor revision=$number_revision ;; freebsd-aout|qnx|sunos) current=$number_major revision=$number_minor age=0 ;; irix|nonstopux) func_arith $number_major + $number_minor current=$func_arith_result age=$number_minor revision=$number_minor lt_irix_increment=no ;; esac ;; no) current=$1 revision=$2 age=$3 ;; esac # Check that each of the things are valid numbers. case $current in 0|[1-9]|[1-9][0-9]|[1-9][0-9][0-9]|[1-9][0-9][0-9][0-9]|[1-9][0-9][0-9][0-9][0-9]) ;; *) func_error "CURRENT '$current' must be a nonnegative integer" func_fatal_error "'$vinfo' is not valid version information" ;; esac case $revision in 0|[1-9]|[1-9][0-9]|[1-9][0-9][0-9]|[1-9][0-9][0-9][0-9]|[1-9][0-9][0-9][0-9][0-9]) ;; *) func_error "REVISION '$revision' must be a nonnegative integer" func_fatal_error "'$vinfo' is not valid version information" ;; esac case $age in 0|[1-9]|[1-9][0-9]|[1-9][0-9][0-9]|[1-9][0-9][0-9][0-9]|[1-9][0-9][0-9][0-9][0-9]) ;; *) func_error "AGE '$age' must be a nonnegative integer" func_fatal_error "'$vinfo' is not valid version information" ;; esac if test "$age" -gt "$current"; then func_error "AGE '$age' is greater than the current interface number '$current'" func_fatal_error "'$vinfo' is not valid version information" fi # Calculate the version variables. major= versuffix= verstring= case $version_type in none) ;; darwin) # Like Linux, but with the current version available in # verstring for coding it into the library header func_arith $current - $age major=.$func_arith_result versuffix=$major.$age.$revision # Darwin ld doesn't like 0 for these options... func_arith $current + 1 minor_current=$func_arith_result xlcverstring="$wl-compatibility_version $wl$minor_current $wl-current_version $wl$minor_current.$revision" verstring="-compatibility_version $minor_current -current_version $minor_current.$revision" # On Darwin other compilers case $CC in nagfor*) verstring="$wl-compatibility_version $wl$minor_current $wl-current_version $wl$minor_current.$revision" ;; *) verstring="-compatibility_version $minor_current -current_version $minor_current.$revision" ;; esac ;; freebsd-aout) major=.$current versuffix=.$current.$revision ;; freebsd-elf) func_arith $current - $age major=.$func_arith_result versuffix=$major.$age.$revision ;; irix | nonstopux) if test no = "$lt_irix_increment"; then func_arith $current - $age else func_arith $current - $age + 1 fi major=$func_arith_result case $version_type in nonstopux) verstring_prefix=nonstopux ;; *) verstring_prefix=sgi ;; esac verstring=$verstring_prefix$major.$revision # Add in all the interfaces that we are compatible with. loop=$revision while test 0 -ne "$loop"; do func_arith $revision - $loop iface=$func_arith_result func_arith $loop - 1 loop=$func_arith_result verstring=$verstring_prefix$major.$iface:$verstring done # Before this point, $major must not contain '.'. major=.$major versuffix=$major.$revision ;; linux) # correct to gnu/linux during the next big refactor func_arith $current - $age major=.$func_arith_result versuffix=$major.$age.$revision ;; osf) func_arith $current - $age major=.$func_arith_result versuffix=.$current.$age.$revision verstring=$current.$age.$revision # Add in all the interfaces that we are compatible with. loop=$age while test 0 -ne "$loop"; do func_arith $current - $loop iface=$func_arith_result func_arith $loop - 1 loop=$func_arith_result verstring=$verstring:$iface.0 done # Make executables depend on our current version. func_append verstring ":$current.0" ;; qnx) major=.$current versuffix=.$current ;; sco) major=.$current versuffix=.$current ;; sunos) major=.$current versuffix=.$current.$revision ;; windows) # Use '-' rather than '.', since we only want one # extension on DOS 8.3 file systems. func_arith $current - $age major=$func_arith_result versuffix=-$major ;; *) func_fatal_configuration "unknown library version type '$version_type'" ;; esac # Clear the version info if we defaulted, and they specified a release. if test -z "$vinfo" && test -n "$release"; then major= case $version_type in darwin) # we can't check for "0.0" in archive_cmds due to quoting # problems, so we reset it completely verstring= ;; *) verstring=0.0 ;; esac if test no = "$need_version"; then versuffix= else versuffix=.0.0 fi fi # Remove version info from name if versioning should be avoided if test yes,no = "$avoid_version,$need_version"; then major= versuffix= verstring= fi # Check to see if the archive will have undefined symbols. if test yes = "$allow_undefined"; then if test unsupported = "$allow_undefined_flag"; then if test yes = "$build_old_libs"; then func_warning "undefined symbols not allowed in $host shared libraries; building static only" build_libtool_libs=no else func_fatal_error "can't build $host shared library unless -no-undefined is specified" fi fi else # Don't allow undefined symbols. allow_undefined_flag=$no_undefined_flag fi fi func_generate_dlsyms "$libname" "$libname" : func_append libobjs " $symfileobj" test " " = "$libobjs" && libobjs= if test relink != "$opt_mode"; then # Remove our outputs, but don't remove object files since they # may have been created when compiling PIC objects. removelist= tempremovelist=`$ECHO "$output_objdir/*"` for p in $tempremovelist; do case $p in *.$objext | *.gcno) ;; $output_objdir/$outputname | $output_objdir/$libname.* | $output_objdir/$libname$release.*) if test -n "$precious_files_regex"; then if $ECHO "$p" | $EGREP -e "$precious_files_regex" >/dev/null 2>&1 then continue fi fi func_append removelist " $p" ;; *) ;; esac done test -n "$removelist" && \ func_show_eval "${RM}r \$removelist" fi # Now set the variables for building old libraries. if test yes = "$build_old_libs" && test convenience != "$build_libtool_libs"; then func_append oldlibs " $output_objdir/$libname.$libext" # Transform .lo files to .o files. oldobjs="$objs "`$ECHO "$libobjs" | $SP2NL | $SED "/\.$libext$/d; $lo2o" | $NL2SP` fi # Eliminate all temporary directories. #for path in $notinst_path; do # lib_search_path=`$ECHO "$lib_search_path " | $SED "s% $path % %g"` # deplibs=`$ECHO "$deplibs " | $SED "s% -L$path % %g"` # dependency_libs=`$ECHO "$dependency_libs " | $SED "s% -L$path % %g"` #done if test -n "$xrpath"; then # If the user specified any rpath flags, then add them. temp_xrpath= for libdir in $xrpath; do func_replace_sysroot "$libdir" func_append temp_xrpath " -R$func_replace_sysroot_result" case "$finalize_rpath " in *" $libdir "*) ;; *) func_append finalize_rpath " $libdir" ;; esac done if test yes != "$hardcode_into_libs" || test yes = "$build_old_libs"; then dependency_libs="$temp_xrpath $dependency_libs" fi fi # Make sure dlfiles contains only unique files that won't be dlpreopened old_dlfiles=$dlfiles dlfiles= for lib in $old_dlfiles; do case " $dlprefiles $dlfiles " in *" $lib "*) ;; *) func_append dlfiles " $lib" ;; esac done # Make sure dlprefiles contains only unique files old_dlprefiles=$dlprefiles dlprefiles= for lib in $old_dlprefiles; do case "$dlprefiles " in *" $lib "*) ;; *) func_append dlprefiles " $lib" ;; esac done if test yes = "$build_libtool_libs"; then if test -n "$rpath"; then case $host in *-*-cygwin* | *-*-mingw* | *-*-pw32* | *-*-os2* | *-*-beos* | *-cegcc* | *-*-haiku*) # these systems don't actually have a c library (as such)! ;; *-*-rhapsody* | *-*-darwin1.[012]) # Rhapsody C library is in the System framework func_append deplibs " System.ltframework" ;; *-*-netbsd*) # Don't link with libc until the a.out ld.so is fixed. ;; *-*-openbsd* | *-*-freebsd* | *-*-dragonfly*) # Do not include libc due to us having libc/libc_r. ;; *-*-sco3.2v5* | *-*-sco5v6*) # Causes problems with __ctype ;; *-*-sysv4.2uw2* | *-*-sysv5* | *-*-unixware* | *-*-OpenUNIX*) # Compiler inserts libc in the correct place for threads to work ;; *) # Add libc to deplibs on all other systems if necessary. if test yes = "$build_libtool_need_lc"; then func_append deplibs " -lc" fi ;; esac fi # Transform deplibs into only deplibs that can be linked in shared. name_save=$name libname_save=$libname release_save=$release versuffix_save=$versuffix major_save=$major # I'm not sure if I'm treating the release correctly. I think # release should show up in the -l (ie -lgmp5) so we don't want to # add it in twice. Is that correct? release= versuffix= major= newdeplibs= droppeddeps=no case $deplibs_check_method in pass_all) # Don't check for shared/static. Everything works. # This might be a little naive. We might want to check # whether the library exists or not. But this is on # osf3 & osf4 and I'm not really sure... Just # implementing what was already the behavior. newdeplibs=$deplibs ;; test_compile) # This code stresses the "libraries are programs" paradigm to its # limits. Maybe even breaks it. We compile a program, linking it # against the deplibs as a proxy for the library. Then we can check # whether they linked in statically or dynamically with ldd. $opt_dry_run || $RM conftest.c cat > conftest.c </dev/null` $nocaseglob else potential_libs=`ls $i/$libnameglob[.-]* 2>/dev/null` fi for potent_lib in $potential_libs; do # Follow soft links. if ls -lLd "$potent_lib" 2>/dev/null | $GREP " -> " >/dev/null; then continue fi # The statement above tries to avoid entering an # endless loop below, in case of cyclic links. # We might still enter an endless loop, since a link # loop can be closed while we follow links, # but so what? potlib=$potent_lib while test -h "$potlib" 2>/dev/null; do potliblink=`ls -ld $potlib | $SED 's/.* -> //'` case $potliblink in [\\/]* | [A-Za-z]:[\\/]*) potlib=$potliblink;; *) potlib=`$ECHO "$potlib" | $SED 's|[^/]*$||'`"$potliblink";; esac done if eval $file_magic_cmd \"\$potlib\" 2>/dev/null | $SED -e 10q | $EGREP "$file_magic_regex" > /dev/null; then func_append newdeplibs " $a_deplib" a_deplib= break 2 fi done done fi if test -n "$a_deplib"; then droppeddeps=yes echo $ECHO "*** Warning: linker path does not have real file for library $a_deplib." echo "*** I have the capability to make that library automatically link in when" echo "*** you link to this library. But I can only do this if you have a" echo "*** shared version of the library, which you do not appear to have" echo "*** because I did check the linker path looking for a file starting" if test -z "$potlib"; then $ECHO "*** with $libname but no candidates were found. (...for file magic test)" else $ECHO "*** with $libname and none of the candidates passed a file format test" $ECHO "*** using a file magic. Last file checked: $potlib" fi fi ;; *) # Add a -L argument. func_append newdeplibs " $a_deplib" ;; esac done # Gone through all deplibs. ;; match_pattern*) set dummy $deplibs_check_method; shift match_pattern_regex=`expr "$deplibs_check_method" : "$1 \(.*\)"` for a_deplib in $deplibs; do case $a_deplib in -l*) func_stripname -l '' "$a_deplib" name=$func_stripname_result if test yes = "$allow_libtool_libs_with_static_runtimes"; then case " $predeps $postdeps " in *" $a_deplib "*) func_append newdeplibs " $a_deplib" a_deplib= ;; esac fi if test -n "$a_deplib"; then libname=`eval "\\$ECHO \"$libname_spec\""` for i in $lib_search_path $sys_lib_search_path $shlib_search_path; do potential_libs=`ls $i/$libname[.-]* 2>/dev/null` for potent_lib in $potential_libs; do potlib=$potent_lib # see symlink-check above in file_magic test if eval "\$ECHO \"$potent_lib\"" 2>/dev/null | $SED 10q | \ $EGREP "$match_pattern_regex" > /dev/null; then func_append newdeplibs " $a_deplib" a_deplib= break 2 fi done done fi if test -n "$a_deplib"; then droppeddeps=yes echo $ECHO "*** Warning: linker path does not have real file for library $a_deplib." echo "*** I have the capability to make that library automatically link in when" echo "*** you link to this library. But I can only do this if you have a" echo "*** shared version of the library, which you do not appear to have" echo "*** because I did check the linker path looking for a file starting" if test -z "$potlib"; then $ECHO "*** with $libname but no candidates were found. (...for regex pattern test)" else $ECHO "*** with $libname and none of the candidates passed a file format test" $ECHO "*** using a regex pattern. Last file checked: $potlib" fi fi ;; *) # Add a -L argument. func_append newdeplibs " $a_deplib" ;; esac done # Gone through all deplibs. ;; none | unknown | *) newdeplibs= tmp_deplibs=`$ECHO " $deplibs" | $SED 's/ -lc$//; s/ -[LR][^ ]*//g'` if test yes = "$allow_libtool_libs_with_static_runtimes"; then for i in $predeps $postdeps; do # can't use Xsed below, because $i might contain '/' tmp_deplibs=`$ECHO " $tmp_deplibs" | $SED "s|$i||"` done fi case $tmp_deplibs in *[!\ \ ]*) echo if test none = "$deplibs_check_method"; then echo "*** Warning: inter-library dependencies are not supported in this platform." else echo "*** Warning: inter-library dependencies are not known to be supported." fi echo "*** All declared inter-library dependencies are being dropped." droppeddeps=yes ;; esac ;; esac versuffix=$versuffix_save major=$major_save release=$release_save libname=$libname_save name=$name_save case $host in *-*-rhapsody* | *-*-darwin1.[012]) # On Rhapsody replace the C library with the System framework newdeplibs=`$ECHO " $newdeplibs" | $SED 's/ -lc / System.ltframework /'` ;; esac if test yes = "$droppeddeps"; then if test yes = "$module"; then echo echo "*** Warning: libtool could not satisfy all declared inter-library" $ECHO "*** dependencies of module $libname. Therefore, libtool will create" echo "*** a static module, that should work as long as the dlopening" echo "*** application is linked with the -dlopen flag." if test -z "$global_symbol_pipe"; then echo echo "*** However, this would only work if libtool was able to extract symbol" echo "*** lists from a program, using 'nm' or equivalent, but libtool could" echo "*** not find such a program. So, this module is probably useless." echo "*** 'nm' from GNU binutils and a full rebuild may help." fi if test no = "$build_old_libs"; then oldlibs=$output_objdir/$libname.$libext build_libtool_libs=module build_old_libs=yes else build_libtool_libs=no fi else echo "*** The inter-library dependencies that have been dropped here will be" echo "*** automatically added whenever a program is linked with this library" echo "*** or is declared to -dlopen it." if test no = "$allow_undefined"; then echo echo "*** Since this library must not contain undefined symbols," echo "*** because either the platform does not support them or" echo "*** it was explicitly requested with -no-undefined," echo "*** libtool will only create a static version of it." if test no = "$build_old_libs"; then oldlibs=$output_objdir/$libname.$libext build_libtool_libs=module build_old_libs=yes else build_libtool_libs=no fi fi fi fi # Done checking deplibs! deplibs=$newdeplibs fi # Time to change all our "foo.ltframework" stuff back to "-framework foo" case $host in *-*-darwin*) newdeplibs=`$ECHO " $newdeplibs" | $SED 's% \([^ $]*\).ltframework% -framework \1%g'` new_inherited_linker_flags=`$ECHO " $new_inherited_linker_flags" | $SED 's% \([^ $]*\).ltframework% -framework \1%g'` deplibs=`$ECHO " $deplibs" | $SED 's% \([^ $]*\).ltframework% -framework \1%g'` ;; esac # move library search paths that coincide with paths to not yet # installed libraries to the beginning of the library search list new_libs= for path in $notinst_path; do case " $new_libs " in *" -L$path/$objdir "*) ;; *) case " $deplibs " in *" -L$path/$objdir "*) func_append new_libs " -L$path/$objdir" ;; esac ;; esac done for deplib in $deplibs; do case $deplib in -L*) case " $new_libs " in *" $deplib "*) ;; *) func_append new_libs " $deplib" ;; esac ;; *) func_append new_libs " $deplib" ;; esac done deplibs=$new_libs # All the library-specific variables (install_libdir is set above). library_names= old_library= dlname= # Test again, we may have decided not to build it any more if test yes = "$build_libtool_libs"; then # Remove $wl instances when linking with ld. # FIXME: should test the right _cmds variable. case $archive_cmds in *\$LD\ *) wl= ;; esac if test yes = "$hardcode_into_libs"; then # Hardcode the library paths hardcode_libdirs= dep_rpath= rpath=$finalize_rpath test relink = "$opt_mode" || rpath=$compile_rpath$rpath for libdir in $rpath; do if test -n "$hardcode_libdir_flag_spec"; then if test -n "$hardcode_libdir_separator"; then func_replace_sysroot "$libdir" libdir=$func_replace_sysroot_result if test -z "$hardcode_libdirs"; then hardcode_libdirs=$libdir else # Just accumulate the unique libdirs. case $hardcode_libdir_separator$hardcode_libdirs$hardcode_libdir_separator in *"$hardcode_libdir_separator$libdir$hardcode_libdir_separator"*) ;; *) func_append hardcode_libdirs "$hardcode_libdir_separator$libdir" ;; esac fi else eval flag=\"$hardcode_libdir_flag_spec\" func_append dep_rpath " $flag" fi elif test -n "$runpath_var"; then case "$perm_rpath " in *" $libdir "*) ;; *) func_append perm_rpath " $libdir" ;; esac fi done # Substitute the hardcoded libdirs into the rpath. if test -n "$hardcode_libdir_separator" && test -n "$hardcode_libdirs"; then libdir=$hardcode_libdirs eval "dep_rpath=\"$hardcode_libdir_flag_spec\"" fi if test -n "$runpath_var" && test -n "$perm_rpath"; then # We should set the runpath_var. rpath= for dir in $perm_rpath; do func_append rpath "$dir:" done eval "$runpath_var='$rpath\$$runpath_var'; export $runpath_var" fi test -n "$dep_rpath" && deplibs="$dep_rpath $deplibs" fi shlibpath=$finalize_shlibpath test relink = "$opt_mode" || shlibpath=$compile_shlibpath$shlibpath if test -n "$shlibpath"; then eval "$shlibpath_var='$shlibpath\$$shlibpath_var'; export $shlibpath_var" fi # Get the real and link names of the library. eval shared_ext=\"$shrext_cmds\" eval library_names=\"$library_names_spec\" set dummy $library_names shift realname=$1 shift if test -n "$soname_spec"; then eval soname=\"$soname_spec\" else soname=$realname fi if test -z "$dlname"; then dlname=$soname fi lib=$output_objdir/$realname linknames= for link do func_append linknames " $link" done # Use standard objects if they are pic test -z "$pic_flag" && libobjs=`$ECHO "$libobjs" | $SP2NL | $SED "$lo2o" | $NL2SP` test "X$libobjs" = "X " && libobjs= delfiles= if test -n "$export_symbols" && test -n "$include_expsyms"; then $opt_dry_run || cp "$export_symbols" "$output_objdir/$libname.uexp" export_symbols=$output_objdir/$libname.uexp func_append delfiles " $export_symbols" fi orig_export_symbols= case $host_os in cygwin* | mingw* | cegcc*) if test -n "$export_symbols" && test -z "$export_symbols_regex"; then # exporting using user supplied symfile func_dll_def_p "$export_symbols" || { # and it's NOT already a .def file. Must figure out # which of the given symbols are data symbols and tag # them as such. So, trigger use of export_symbols_cmds. # export_symbols gets reassigned inside the "prepare # the list of exported symbols" if statement, so the # include_expsyms logic still works. orig_export_symbols=$export_symbols export_symbols= always_export_symbols=yes } fi ;; esac # Prepare the list of exported symbols if test -z "$export_symbols"; then if test yes = "$always_export_symbols" || test -n "$export_symbols_regex"; then func_verbose "generating symbol list for '$libname.la'" export_symbols=$output_objdir/$libname.exp $opt_dry_run || $RM $export_symbols cmds=$export_symbols_cmds save_ifs=$IFS; IFS='~' for cmd1 in $cmds; do IFS=$save_ifs # Take the normal branch if the nm_file_list_spec branch # doesn't work or if tool conversion is not needed. case $nm_file_list_spec~$to_tool_file_cmd in *~func_convert_file_noop | *~func_convert_file_msys_to_w32 | ~*) try_normal_branch=yes eval cmd=\"$cmd1\" func_len " $cmd" len=$func_len_result ;; *) try_normal_branch=no ;; esac if test yes = "$try_normal_branch" \ && { test "$len" -lt "$max_cmd_len" \ || test "$max_cmd_len" -le -1; } then func_show_eval "$cmd" 'exit $?' skipped_export=false elif test -n "$nm_file_list_spec"; then func_basename "$output" output_la=$func_basename_result save_libobjs=$libobjs save_output=$output output=$output_objdir/$output_la.nm func_to_tool_file "$output" libobjs=$nm_file_list_spec$func_to_tool_file_result func_append delfiles " $output" func_verbose "creating $NM input file list: $output" for obj in $save_libobjs; do func_to_tool_file "$obj" $ECHO "$func_to_tool_file_result" done > "$output" eval cmd=\"$cmd1\" func_show_eval "$cmd" 'exit $?' output=$save_output libobjs=$save_libobjs skipped_export=false else # The command line is too long to execute in one step. func_verbose "using reloadable object file for export list..." skipped_export=: # Break out early, otherwise skipped_export may be # set to false by a later but shorter cmd. break fi done IFS=$save_ifs if test -n "$export_symbols_regex" && test : != "$skipped_export"; then func_show_eval '$EGREP -e "$export_symbols_regex" "$export_symbols" > "${export_symbols}T"' func_show_eval '$MV "${export_symbols}T" "$export_symbols"' fi fi fi if test -n "$export_symbols" && test -n "$include_expsyms"; then tmp_export_symbols=$export_symbols test -n "$orig_export_symbols" && tmp_export_symbols=$orig_export_symbols $opt_dry_run || eval '$ECHO "$include_expsyms" | $SP2NL >> "$tmp_export_symbols"' fi if test : != "$skipped_export" && test -n "$orig_export_symbols"; then # The given exports_symbols file has to be filtered, so filter it. func_verbose "filter symbol list for '$libname.la' to tag DATA exports" # FIXME: $output_objdir/$libname.filter potentially contains lots of # 's' commands, which not all seds can handle. GNU sed should be fine # though. Also, the filter scales superlinearly with the number of # global variables. join(1) would be nice here, but unfortunately # isn't a blessed tool. $opt_dry_run || $SED -e '/[ ,]DATA/!d;s,\(.*\)\([ \,].*\),s|^\1$|\1\2|,' < $export_symbols > $output_objdir/$libname.filter func_append delfiles " $export_symbols $output_objdir/$libname.filter" export_symbols=$output_objdir/$libname.def $opt_dry_run || $SED -f $output_objdir/$libname.filter < $orig_export_symbols > $export_symbols fi tmp_deplibs= for test_deplib in $deplibs; do case " $convenience " in *" $test_deplib "*) ;; *) func_append tmp_deplibs " $test_deplib" ;; esac done deplibs=$tmp_deplibs if test -n "$convenience"; then if test -n "$whole_archive_flag_spec" && test yes = "$compiler_needs_object" && test -z "$libobjs"; then # extract the archives, so we have objects to list. # TODO: could optimize this to just extract one archive. whole_archive_flag_spec= fi if test -n "$whole_archive_flag_spec"; then save_libobjs=$libobjs eval libobjs=\"\$libobjs $whole_archive_flag_spec\" test "X$libobjs" = "X " && libobjs= else gentop=$output_objdir/${outputname}x func_append generated " $gentop" func_extract_archives $gentop $convenience func_append libobjs " $func_extract_archives_result" test "X$libobjs" = "X " && libobjs= fi fi if test yes = "$thread_safe" && test -n "$thread_safe_flag_spec"; then eval flag=\"$thread_safe_flag_spec\" func_append linker_flags " $flag" fi # Make a backup of the uninstalled library when relinking if test relink = "$opt_mode"; then $opt_dry_run || eval '(cd $output_objdir && $RM ${realname}U && $MV $realname ${realname}U)' || exit $? fi # Do each of the archive commands. if test yes = "$module" && test -n "$module_cmds"; then if test -n "$export_symbols" && test -n "$module_expsym_cmds"; then eval test_cmds=\"$module_expsym_cmds\" cmds=$module_expsym_cmds else eval test_cmds=\"$module_cmds\" cmds=$module_cmds fi else if test -n "$export_symbols" && test -n "$archive_expsym_cmds"; then eval test_cmds=\"$archive_expsym_cmds\" cmds=$archive_expsym_cmds else eval test_cmds=\"$archive_cmds\" cmds=$archive_cmds fi fi if test : != "$skipped_export" && func_len " $test_cmds" && len=$func_len_result && test "$len" -lt "$max_cmd_len" || test "$max_cmd_len" -le -1; then : else # The command line is too long to link in one step, link piecewise # or, if using GNU ld and skipped_export is not :, use a linker # script. # Save the value of $output and $libobjs because we want to # use them later. If we have whole_archive_flag_spec, we # want to use save_libobjs as it was before # whole_archive_flag_spec was expanded, because we can't # assume the linker understands whole_archive_flag_spec. # This may have to be revisited, in case too many # convenience libraries get linked in and end up exceeding # the spec. if test -z "$convenience" || test -z "$whole_archive_flag_spec"; then save_libobjs=$libobjs fi save_output=$output func_basename "$output" output_la=$func_basename_result # Clear the reloadable object creation command queue and # initialize k to one. test_cmds= concat_cmds= objlist= last_robj= k=1 if test -n "$save_libobjs" && test : != "$skipped_export" && test yes = "$with_gnu_ld"; then output=$output_objdir/$output_la.lnkscript func_verbose "creating GNU ld script: $output" echo 'INPUT (' > $output for obj in $save_libobjs do func_to_tool_file "$obj" $ECHO "$func_to_tool_file_result" >> $output done echo ')' >> $output func_append delfiles " $output" func_to_tool_file "$output" output=$func_to_tool_file_result elif test -n "$save_libobjs" && test : != "$skipped_export" && test -n "$file_list_spec"; then output=$output_objdir/$output_la.lnk func_verbose "creating linker input file list: $output" : > $output set x $save_libobjs shift firstobj= if test yes = "$compiler_needs_object"; then firstobj="$1 " shift fi for obj do func_to_tool_file "$obj" $ECHO "$func_to_tool_file_result" >> $output done func_append delfiles " $output" func_to_tool_file "$output" output=$firstobj\"$file_list_spec$func_to_tool_file_result\" else if test -n "$save_libobjs"; then func_verbose "creating reloadable object files..." output=$output_objdir/$output_la-$k.$objext eval test_cmds=\"$reload_cmds\" func_len " $test_cmds" len0=$func_len_result len=$len0 # Loop over the list of objects to be linked. for obj in $save_libobjs do func_len " $obj" func_arith $len + $func_len_result len=$func_arith_result if test -z "$objlist" || test "$len" -lt "$max_cmd_len"; then func_append objlist " $obj" else # The command $test_cmds is almost too long, add a # command to the queue. if test 1 -eq "$k"; then # The first file doesn't have a previous command to add. reload_objs=$objlist eval concat_cmds=\"$reload_cmds\" else # All subsequent reloadable object files will link in # the last one created. reload_objs="$objlist $last_robj" eval concat_cmds=\"\$concat_cmds~$reload_cmds~\$RM $last_robj\" fi last_robj=$output_objdir/$output_la-$k.$objext func_arith $k + 1 k=$func_arith_result output=$output_objdir/$output_la-$k.$objext objlist=" $obj" func_len " $last_robj" func_arith $len0 + $func_len_result len=$func_arith_result fi done # Handle the remaining objects by creating one last # reloadable object file. All subsequent reloadable object # files will link in the last one created. test -z "$concat_cmds" || concat_cmds=$concat_cmds~ reload_objs="$objlist $last_robj" eval concat_cmds=\"\$concat_cmds$reload_cmds\" if test -n "$last_robj"; then eval concat_cmds=\"\$concat_cmds~\$RM $last_robj\" fi func_append delfiles " $output" else output= fi ${skipped_export-false} && { func_verbose "generating symbol list for '$libname.la'" export_symbols=$output_objdir/$libname.exp $opt_dry_run || $RM $export_symbols libobjs=$output # Append the command to create the export file. test -z "$concat_cmds" || concat_cmds=$concat_cmds~ eval concat_cmds=\"\$concat_cmds$export_symbols_cmds\" if test -n "$last_robj"; then eval concat_cmds=\"\$concat_cmds~\$RM $last_robj\" fi } test -n "$save_libobjs" && func_verbose "creating a temporary reloadable object file: $output" # Loop through the commands generated above and execute them. save_ifs=$IFS; IFS='~' for cmd in $concat_cmds; do IFS=$save_ifs $opt_quiet || { func_quote_for_expand "$cmd" eval "func_echo $func_quote_for_expand_result" } $opt_dry_run || eval "$cmd" || { lt_exit=$? # Restore the uninstalled library and exit if test relink = "$opt_mode"; then ( cd "$output_objdir" && \ $RM "${realname}T" && \ $MV "${realname}U" "$realname" ) fi exit $lt_exit } done IFS=$save_ifs if test -n "$export_symbols_regex" && ${skipped_export-false}; then func_show_eval '$EGREP -e "$export_symbols_regex" "$export_symbols" > "${export_symbols}T"' func_show_eval '$MV "${export_symbols}T" "$export_symbols"' fi fi ${skipped_export-false} && { if test -n "$export_symbols" && test -n "$include_expsyms"; then tmp_export_symbols=$export_symbols test -n "$orig_export_symbols" && tmp_export_symbols=$orig_export_symbols $opt_dry_run || eval '$ECHO "$include_expsyms" | $SP2NL >> "$tmp_export_symbols"' fi if test -n "$orig_export_symbols"; then # The given exports_symbols file has to be filtered, so filter it. func_verbose "filter symbol list for '$libname.la' to tag DATA exports" # FIXME: $output_objdir/$libname.filter potentially contains lots of # 's' commands, which not all seds can handle. GNU sed should be fine # though. Also, the filter scales superlinearly with the number of # global variables. join(1) would be nice here, but unfortunately # isn't a blessed tool. $opt_dry_run || $SED -e '/[ ,]DATA/!d;s,\(.*\)\([ \,].*\),s|^\1$|\1\2|,' < $export_symbols > $output_objdir/$libname.filter func_append delfiles " $export_symbols $output_objdir/$libname.filter" export_symbols=$output_objdir/$libname.def $opt_dry_run || $SED -f $output_objdir/$libname.filter < $orig_export_symbols > $export_symbols fi } libobjs=$output # Restore the value of output. output=$save_output if test -n "$convenience" && test -n "$whole_archive_flag_spec"; then eval libobjs=\"\$libobjs $whole_archive_flag_spec\" test "X$libobjs" = "X " && libobjs= fi # Expand the library linking commands again to reset the # value of $libobjs for piecewise linking. # Do each of the archive commands. if test yes = "$module" && test -n "$module_cmds"; then if test -n "$export_symbols" && test -n "$module_expsym_cmds"; then cmds=$module_expsym_cmds else cmds=$module_cmds fi else if test -n "$export_symbols" && test -n "$archive_expsym_cmds"; then cmds=$archive_expsym_cmds else cmds=$archive_cmds fi fi fi if test -n "$delfiles"; then # Append the command to remove temporary files to $cmds. eval cmds=\"\$cmds~\$RM $delfiles\" fi # Add any objects from preloaded convenience libraries if test -n "$dlprefiles"; then gentop=$output_objdir/${outputname}x func_append generated " $gentop" func_extract_archives $gentop $dlprefiles func_append libobjs " $func_extract_archives_result" test "X$libobjs" = "X " && libobjs= fi save_ifs=$IFS; IFS='~' for cmd in $cmds; do IFS=$sp$nl eval cmd=\"$cmd\" IFS=$save_ifs $opt_quiet || { func_quote_for_expand "$cmd" eval "func_echo $func_quote_for_expand_result" } $opt_dry_run || eval "$cmd" || { lt_exit=$? # Restore the uninstalled library and exit if test relink = "$opt_mode"; then ( cd "$output_objdir" && \ $RM "${realname}T" && \ $MV "${realname}U" "$realname" ) fi exit $lt_exit } done IFS=$save_ifs # Restore the uninstalled library and exit if test relink = "$opt_mode"; then $opt_dry_run || eval '(cd $output_objdir && $RM ${realname}T && $MV $realname ${realname}T && $MV ${realname}U $realname)' || exit $? if test -n "$convenience"; then if test -z "$whole_archive_flag_spec"; then func_show_eval '${RM}r "$gentop"' fi fi exit $EXIT_SUCCESS fi # Create links to the real library. for linkname in $linknames; do if test "$realname" != "$linkname"; then func_show_eval '(cd "$output_objdir" && $RM "$linkname" && $LN_S "$realname" "$linkname")' 'exit $?' fi done # If -module or -export-dynamic was specified, set the dlname. if test yes = "$module" || test yes = "$export_dynamic"; then # On all known operating systems, these are identical. dlname=$soname fi fi ;; obj) if test -n "$dlfiles$dlprefiles" || test no != "$dlself"; then func_warning "'-dlopen' is ignored for objects" fi case " $deplibs" in *\ -l* | *\ -L*) func_warning "'-l' and '-L' are ignored for objects" ;; esac test -n "$rpath" && \ func_warning "'-rpath' is ignored for objects" test -n "$xrpath" && \ func_warning "'-R' is ignored for objects" test -n "$vinfo" && \ func_warning "'-version-info' is ignored for objects" test -n "$release" && \ func_warning "'-release' is ignored for objects" case $output in *.lo) test -n "$objs$old_deplibs" && \ func_fatal_error "cannot build library object '$output' from non-libtool objects" libobj=$output func_lo2o "$libobj" obj=$func_lo2o_result ;; *) libobj= obj=$output ;; esac # Delete the old objects. $opt_dry_run || $RM $obj $libobj # Objects from convenience libraries. This assumes # single-version convenience libraries. Whenever we create # different ones for PIC/non-PIC, this we'll have to duplicate # the extraction. reload_conv_objs= gentop= # if reload_cmds runs $LD directly, get rid of -Wl from # whole_archive_flag_spec and hope we can get by with turning comma # into space. case $reload_cmds in *\$LD[\ \$]*) wl= ;; esac if test -n "$convenience"; then if test -n "$whole_archive_flag_spec"; then eval tmp_whole_archive_flags=\"$whole_archive_flag_spec\" test -n "$wl" || tmp_whole_archive_flags=`$ECHO "$tmp_whole_archive_flags" | $SED 's|,| |g'` reload_conv_objs=$reload_objs\ $tmp_whole_archive_flags else gentop=$output_objdir/${obj}x func_append generated " $gentop" func_extract_archives $gentop $convenience reload_conv_objs="$reload_objs $func_extract_archives_result" fi fi # If we're not building shared, we need to use non_pic_objs test yes = "$build_libtool_libs" || libobjs=$non_pic_objects # Create the old-style object. reload_objs=$objs$old_deplibs' '`$ECHO "$libobjs" | $SP2NL | $SED "/\.$libext$/d; /\.lib$/d; $lo2o" | $NL2SP`' '$reload_conv_objs output=$obj func_execute_cmds "$reload_cmds" 'exit $?' # Exit if we aren't doing a library object file. if test -z "$libobj"; then if test -n "$gentop"; then func_show_eval '${RM}r "$gentop"' fi exit $EXIT_SUCCESS fi test yes = "$build_libtool_libs" || { if test -n "$gentop"; then func_show_eval '${RM}r "$gentop"' fi # Create an invalid libtool object if no PIC, so that we don't # accidentally link it into a program. # $show "echo timestamp > $libobj" # $opt_dry_run || eval "echo timestamp > $libobj" || exit $? exit $EXIT_SUCCESS } if test -n "$pic_flag" || test default != "$pic_mode"; then # Only do commands if we really have different PIC objects. reload_objs="$libobjs $reload_conv_objs" output=$libobj func_execute_cmds "$reload_cmds" 'exit $?' fi if test -n "$gentop"; then func_show_eval '${RM}r "$gentop"' fi exit $EXIT_SUCCESS ;; prog) case $host in *cygwin*) func_stripname '' '.exe' "$output" output=$func_stripname_result.exe;; esac test -n "$vinfo" && \ func_warning "'-version-info' is ignored for programs" test -n "$release" && \ func_warning "'-release' is ignored for programs" $preload \ && test unknown,unknown,unknown = "$dlopen_support,$dlopen_self,$dlopen_self_static" \ && func_warning "'LT_INIT([dlopen])' not used. Assuming no dlopen support." case $host in *-*-rhapsody* | *-*-darwin1.[012]) # On Rhapsody replace the C library is the System framework compile_deplibs=`$ECHO " $compile_deplibs" | $SED 's/ -lc / System.ltframework /'` finalize_deplibs=`$ECHO " $finalize_deplibs" | $SED 's/ -lc / System.ltframework /'` ;; esac case $host in *-*-darwin*) # Don't allow lazy linking, it breaks C++ global constructors # But is supposedly fixed on 10.4 or later (yay!). if test CXX = "$tagname"; then case ${MACOSX_DEPLOYMENT_TARGET-10.0} in 10.[0123]) func_append compile_command " $wl-bind_at_load" func_append finalize_command " $wl-bind_at_load" ;; esac fi # Time to change all our "foo.ltframework" stuff back to "-framework foo" compile_deplibs=`$ECHO " $compile_deplibs" | $SED 's% \([^ $]*\).ltframework% -framework \1%g'` finalize_deplibs=`$ECHO " $finalize_deplibs" | $SED 's% \([^ $]*\).ltframework% -framework \1%g'` ;; esac # move library search paths that coincide with paths to not yet # installed libraries to the beginning of the library search list new_libs= for path in $notinst_path; do case " $new_libs " in *" -L$path/$objdir "*) ;; *) case " $compile_deplibs " in *" -L$path/$objdir "*) func_append new_libs " -L$path/$objdir" ;; esac ;; esac done for deplib in $compile_deplibs; do case $deplib in -L*) case " $new_libs " in *" $deplib "*) ;; *) func_append new_libs " $deplib" ;; esac ;; *) func_append new_libs " $deplib" ;; esac done compile_deplibs=$new_libs func_append compile_command " $compile_deplibs" func_append finalize_command " $finalize_deplibs" if test -n "$rpath$xrpath"; then # If the user specified any rpath flags, then add them. for libdir in $rpath $xrpath; do # This is the magic to use -rpath. case "$finalize_rpath " in *" $libdir "*) ;; *) func_append finalize_rpath " $libdir" ;; esac done fi # Now hardcode the library paths rpath= hardcode_libdirs= for libdir in $compile_rpath $finalize_rpath; do if test -n "$hardcode_libdir_flag_spec"; then if test -n "$hardcode_libdir_separator"; then if test -z "$hardcode_libdirs"; then hardcode_libdirs=$libdir else # Just accumulate the unique libdirs. case $hardcode_libdir_separator$hardcode_libdirs$hardcode_libdir_separator in *"$hardcode_libdir_separator$libdir$hardcode_libdir_separator"*) ;; *) func_append hardcode_libdirs "$hardcode_libdir_separator$libdir" ;; esac fi else eval flag=\"$hardcode_libdir_flag_spec\" func_append rpath " $flag" fi elif test -n "$runpath_var"; then case "$perm_rpath " in *" $libdir "*) ;; *) func_append perm_rpath " $libdir" ;; esac fi case $host in *-*-cygwin* | *-*-mingw* | *-*-pw32* | *-*-os2* | *-cegcc*) testbindir=`$ECHO "$libdir" | $SED -e 's*/lib$*/bin*'` case :$dllsearchpath: in *":$libdir:"*) ;; ::) dllsearchpath=$libdir;; *) func_append dllsearchpath ":$libdir";; esac case :$dllsearchpath: in *":$testbindir:"*) ;; ::) dllsearchpath=$testbindir;; *) func_append dllsearchpath ":$testbindir";; esac ;; esac done # Substitute the hardcoded libdirs into the rpath. if test -n "$hardcode_libdir_separator" && test -n "$hardcode_libdirs"; then libdir=$hardcode_libdirs eval rpath=\" $hardcode_libdir_flag_spec\" fi compile_rpath=$rpath rpath= hardcode_libdirs= for libdir in $finalize_rpath; do if test -n "$hardcode_libdir_flag_spec"; then if test -n "$hardcode_libdir_separator"; then if test -z "$hardcode_libdirs"; then hardcode_libdirs=$libdir else # Just accumulate the unique libdirs. case $hardcode_libdir_separator$hardcode_libdirs$hardcode_libdir_separator in *"$hardcode_libdir_separator$libdir$hardcode_libdir_separator"*) ;; *) func_append hardcode_libdirs "$hardcode_libdir_separator$libdir" ;; esac fi else eval flag=\"$hardcode_libdir_flag_spec\" func_append rpath " $flag" fi elif test -n "$runpath_var"; then case "$finalize_perm_rpath " in *" $libdir "*) ;; *) func_append finalize_perm_rpath " $libdir" ;; esac fi done # Substitute the hardcoded libdirs into the rpath. if test -n "$hardcode_libdir_separator" && test -n "$hardcode_libdirs"; then libdir=$hardcode_libdirs eval rpath=\" $hardcode_libdir_flag_spec\" fi finalize_rpath=$rpath if test -n "$libobjs" && test yes = "$build_old_libs"; then # Transform all the library objects into standard objects. compile_command=`$ECHO "$compile_command" | $SP2NL | $SED "$lo2o" | $NL2SP` finalize_command=`$ECHO "$finalize_command" | $SP2NL | $SED "$lo2o" | $NL2SP` fi func_generate_dlsyms "$outputname" "@PROGRAM@" false # template prelinking step if test -n "$prelink_cmds"; then func_execute_cmds "$prelink_cmds" 'exit $?' fi wrappers_required=: case $host in *cegcc* | *mingw32ce*) # Disable wrappers for cegcc and mingw32ce hosts, we are cross compiling anyway. wrappers_required=false ;; *cygwin* | *mingw* ) test yes = "$build_libtool_libs" || wrappers_required=false ;; *) if test no = "$need_relink" || test yes != "$build_libtool_libs"; then wrappers_required=false fi ;; esac $wrappers_required || { # Replace the output file specification. compile_command=`$ECHO "$compile_command" | $SED 's%@OUTPUT@%'"$output"'%g'` link_command=$compile_command$compile_rpath # We have no uninstalled library dependencies, so finalize right now. exit_status=0 func_show_eval "$link_command" 'exit_status=$?' if test -n "$postlink_cmds"; then func_to_tool_file "$output" postlink_cmds=`func_echo_all "$postlink_cmds" | $SED -e 's%@OUTPUT@%'"$output"'%g' -e 's%@TOOL_OUTPUT@%'"$func_to_tool_file_result"'%g'` func_execute_cmds "$postlink_cmds" 'exit $?' fi # Delete the generated files. if test -f "$output_objdir/${outputname}S.$objext"; then func_show_eval '$RM "$output_objdir/${outputname}S.$objext"' fi exit $exit_status } if test -n "$compile_shlibpath$finalize_shlibpath"; then compile_command="$shlibpath_var=\"$compile_shlibpath$finalize_shlibpath\$$shlibpath_var\" $compile_command" fi if test -n "$finalize_shlibpath"; then finalize_command="$shlibpath_var=\"$finalize_shlibpath\$$shlibpath_var\" $finalize_command" fi compile_var= finalize_var= if test -n "$runpath_var"; then if test -n "$perm_rpath"; then # We should set the runpath_var. rpath= for dir in $perm_rpath; do func_append rpath "$dir:" done compile_var="$runpath_var=\"$rpath\$$runpath_var\" " fi if test -n "$finalize_perm_rpath"; then # We should set the runpath_var. rpath= for dir in $finalize_perm_rpath; do func_append rpath "$dir:" done finalize_var="$runpath_var=\"$rpath\$$runpath_var\" " fi fi if test yes = "$no_install"; then # We don't need to create a wrapper script. link_command=$compile_var$compile_command$compile_rpath # Replace the output file specification. link_command=`$ECHO "$link_command" | $SED 's%@OUTPUT@%'"$output"'%g'` # Delete the old output file. $opt_dry_run || $RM $output # Link the executable and exit func_show_eval "$link_command" 'exit $?' if test -n "$postlink_cmds"; then func_to_tool_file "$output" postlink_cmds=`func_echo_all "$postlink_cmds" | $SED -e 's%@OUTPUT@%'"$output"'%g' -e 's%@TOOL_OUTPUT@%'"$func_to_tool_file_result"'%g'` func_execute_cmds "$postlink_cmds" 'exit $?' fi exit $EXIT_SUCCESS fi case $hardcode_action,$fast_install in relink,*) # Fast installation is not supported link_command=$compile_var$compile_command$compile_rpath relink_command=$finalize_var$finalize_command$finalize_rpath func_warning "this platform does not like uninstalled shared libraries" func_warning "'$output' will be relinked during installation" ;; *,yes) link_command=$finalize_var$compile_command$finalize_rpath relink_command=`$ECHO "$compile_var$compile_command$compile_rpath" | $SED 's%@OUTPUT@%\$progdir/\$file%g'` ;; *,no) link_command=$compile_var$compile_command$compile_rpath relink_command=$finalize_var$finalize_command$finalize_rpath ;; *,needless) link_command=$finalize_var$compile_command$finalize_rpath relink_command= ;; esac # Replace the output file specification. link_command=`$ECHO "$link_command" | $SED 's%@OUTPUT@%'"$output_objdir/$outputname"'%g'` # Delete the old output files. $opt_dry_run || $RM $output $output_objdir/$outputname $output_objdir/lt-$outputname func_show_eval "$link_command" 'exit $?' if test -n "$postlink_cmds"; then func_to_tool_file "$output_objdir/$outputname" postlink_cmds=`func_echo_all "$postlink_cmds" | $SED -e 's%@OUTPUT@%'"$output_objdir/$outputname"'%g' -e 's%@TOOL_OUTPUT@%'"$func_to_tool_file_result"'%g'` func_execute_cmds "$postlink_cmds" 'exit $?' fi # Now create the wrapper script. func_verbose "creating $output" # Quote the relink command for shipping. if test -n "$relink_command"; then # Preserve any variables that may affect compiler behavior for var in $variables_saved_for_relink; do if eval test -z \"\${$var+set}\"; then relink_command="{ test -z \"\${$var+set}\" || $lt_unset $var || { $var=; export $var; }; }; $relink_command" elif eval var_value=\$$var; test -z "$var_value"; then relink_command="$var=; export $var; $relink_command" else func_quote_for_eval "$var_value" relink_command="$var=$func_quote_for_eval_result; export $var; $relink_command" fi done relink_command="(cd `pwd`; $relink_command)" relink_command=`$ECHO "$relink_command" | $SED "$sed_quote_subst"` fi # Only actually do things if not in dry run mode. $opt_dry_run || { # win32 will think the script is a binary if it has # a .exe suffix, so we strip it off here. case $output in *.exe) func_stripname '' '.exe' "$output" output=$func_stripname_result ;; esac # test for cygwin because mv fails w/o .exe extensions case $host in *cygwin*) exeext=.exe func_stripname '' '.exe' "$outputname" outputname=$func_stripname_result ;; *) exeext= ;; esac case $host in *cygwin* | *mingw* ) func_dirname_and_basename "$output" "" "." output_name=$func_basename_result output_path=$func_dirname_result cwrappersource=$output_path/$objdir/lt-$output_name.c cwrapper=$output_path/$output_name.exe $RM $cwrappersource $cwrapper trap "$RM $cwrappersource $cwrapper; exit $EXIT_FAILURE" 1 2 15 func_emit_cwrapperexe_src > $cwrappersource # The wrapper executable is built using the $host compiler, # because it contains $host paths and files. If cross- # compiling, it, like the target executable, must be # executed on the $host or under an emulation environment. $opt_dry_run || { $LTCC $LTCFLAGS -o $cwrapper $cwrappersource $STRIP $cwrapper } # Now, create the wrapper script for func_source use: func_ltwrapper_scriptname $cwrapper $RM $func_ltwrapper_scriptname_result trap "$RM $func_ltwrapper_scriptname_result; exit $EXIT_FAILURE" 1 2 15 $opt_dry_run || { # note: this script will not be executed, so do not chmod. if test "x$build" = "x$host"; then $cwrapper --lt-dump-script > $func_ltwrapper_scriptname_result else func_emit_wrapper no > $func_ltwrapper_scriptname_result fi } ;; * ) $RM $output trap "$RM $output; exit $EXIT_FAILURE" 1 2 15 func_emit_wrapper no > $output chmod +x $output ;; esac } exit $EXIT_SUCCESS ;; esac # See if we need to build an old-fashioned archive. for oldlib in $oldlibs; do case $build_libtool_libs in convenience) oldobjs="$libobjs_save $symfileobj" addlibs=$convenience build_libtool_libs=no ;; module) oldobjs=$libobjs_save addlibs=$old_convenience build_libtool_libs=no ;; *) oldobjs="$old_deplibs $non_pic_objects" $preload && test -f "$symfileobj" \ && func_append oldobjs " $symfileobj" addlibs=$old_convenience ;; esac if test -n "$addlibs"; then gentop=$output_objdir/${outputname}x func_append generated " $gentop" func_extract_archives $gentop $addlibs func_append oldobjs " $func_extract_archives_result" fi # Do each command in the archive commands. if test -n "$old_archive_from_new_cmds" && test yes = "$build_libtool_libs"; then cmds=$old_archive_from_new_cmds else # Add any objects from preloaded convenience libraries if test -n "$dlprefiles"; then gentop=$output_objdir/${outputname}x func_append generated " $gentop" func_extract_archives $gentop $dlprefiles func_append oldobjs " $func_extract_archives_result" fi # POSIX demands no paths to be encoded in archives. We have # to avoid creating archives with duplicate basenames if we # might have to extract them afterwards, e.g., when creating a # static archive out of a convenience library, or when linking # the entirety of a libtool archive into another (currently # not supported by libtool). if (for obj in $oldobjs do func_basename "$obj" $ECHO "$func_basename_result" done | sort | sort -uc >/dev/null 2>&1); then : else echo "copying selected object files to avoid basename conflicts..." gentop=$output_objdir/${outputname}x func_append generated " $gentop" func_mkdir_p "$gentop" save_oldobjs=$oldobjs oldobjs= counter=1 for obj in $save_oldobjs do func_basename "$obj" objbase=$func_basename_result case " $oldobjs " in " ") oldobjs=$obj ;; *[\ /]"$objbase "*) while :; do # Make sure we don't pick an alternate name that also # overlaps. newobj=lt$counter-$objbase func_arith $counter + 1 counter=$func_arith_result case " $oldobjs " in *[\ /]"$newobj "*) ;; *) if test ! -f "$gentop/$newobj"; then break; fi ;; esac done func_show_eval "ln $obj $gentop/$newobj || cp $obj $gentop/$newobj" func_append oldobjs " $gentop/$newobj" ;; *) func_append oldobjs " $obj" ;; esac done fi func_to_tool_file "$oldlib" func_convert_file_msys_to_w32 tool_oldlib=$func_to_tool_file_result eval cmds=\"$old_archive_cmds\" func_len " $cmds" len=$func_len_result if test "$len" -lt "$max_cmd_len" || test "$max_cmd_len" -le -1; then cmds=$old_archive_cmds elif test -n "$archiver_list_spec"; then func_verbose "using command file archive linking..." for obj in $oldobjs do func_to_tool_file "$obj" $ECHO "$func_to_tool_file_result" done > $output_objdir/$libname.libcmd func_to_tool_file "$output_objdir/$libname.libcmd" oldobjs=" $archiver_list_spec$func_to_tool_file_result" cmds=$old_archive_cmds else # the command line is too long to link in one step, link in parts func_verbose "using piecewise archive linking..." save_RANLIB=$RANLIB RANLIB=: objlist= concat_cmds= save_oldobjs=$oldobjs oldobjs= # Is there a better way of finding the last object in the list? for obj in $save_oldobjs do last_oldobj=$obj done eval test_cmds=\"$old_archive_cmds\" func_len " $test_cmds" len0=$func_len_result len=$len0 for obj in $save_oldobjs do func_len " $obj" func_arith $len + $func_len_result len=$func_arith_result func_append objlist " $obj" if test "$len" -lt "$max_cmd_len"; then : else # the above command should be used before it gets too long oldobjs=$objlist if test "$obj" = "$last_oldobj"; then RANLIB=$save_RANLIB fi test -z "$concat_cmds" || concat_cmds=$concat_cmds~ eval concat_cmds=\"\$concat_cmds$old_archive_cmds\" objlist= len=$len0 fi done RANLIB=$save_RANLIB oldobjs=$objlist if test -z "$oldobjs"; then eval cmds=\"\$concat_cmds\" else eval cmds=\"\$concat_cmds~\$old_archive_cmds\" fi fi fi func_execute_cmds "$cmds" 'exit $?' done test -n "$generated" && \ func_show_eval "${RM}r$generated" # Now create the libtool archive. case $output in *.la) old_library= test yes = "$build_old_libs" && old_library=$libname.$libext func_verbose "creating $output" # Preserve any variables that may affect compiler behavior for var in $variables_saved_for_relink; do if eval test -z \"\${$var+set}\"; then relink_command="{ test -z \"\${$var+set}\" || $lt_unset $var || { $var=; export $var; }; }; $relink_command" elif eval var_value=\$$var; test -z "$var_value"; then relink_command="$var=; export $var; $relink_command" else func_quote_for_eval "$var_value" relink_command="$var=$func_quote_for_eval_result; export $var; $relink_command" fi done # Quote the link command for shipping. relink_command="(cd `pwd`; $SHELL \"$progpath\" $preserve_args --mode=relink $libtool_args @inst_prefix_dir@)" relink_command=`$ECHO "$relink_command" | $SED "$sed_quote_subst"` if test yes = "$hardcode_automatic"; then relink_command= fi # Only create the output if not a dry run. $opt_dry_run || { for installed in no yes; do if test yes = "$installed"; then if test -z "$install_libdir"; then break fi output=$output_objdir/${outputname}i # Replace all uninstalled libtool libraries with the installed ones newdependency_libs= for deplib in $dependency_libs; do case $deplib in *.la) func_basename "$deplib" name=$func_basename_result func_resolve_sysroot "$deplib" eval libdir=`$SED -n -e 's/^libdir=\(.*\)$/\1/p' $func_resolve_sysroot_result` test -z "$libdir" && \ func_fatal_error "'$deplib' is not a valid libtool archive" func_append newdependency_libs " ${lt_sysroot:+=}$libdir/$name" ;; -L*) func_stripname -L '' "$deplib" func_replace_sysroot "$func_stripname_result" func_append newdependency_libs " -L$func_replace_sysroot_result" ;; -R*) func_stripname -R '' "$deplib" func_replace_sysroot "$func_stripname_result" func_append newdependency_libs " -R$func_replace_sysroot_result" ;; *) func_append newdependency_libs " $deplib" ;; esac done dependency_libs=$newdependency_libs newdlfiles= for lib in $dlfiles; do case $lib in *.la) func_basename "$lib" name=$func_basename_result eval libdir=`$SED -n -e 's/^libdir=\(.*\)$/\1/p' $lib` test -z "$libdir" && \ func_fatal_error "'$lib' is not a valid libtool archive" func_append newdlfiles " ${lt_sysroot:+=}$libdir/$name" ;; *) func_append newdlfiles " $lib" ;; esac done dlfiles=$newdlfiles newdlprefiles= for lib in $dlprefiles; do case $lib in *.la) # Only pass preopened files to the pseudo-archive (for # eventual linking with the app. that links it) if we # didn't already link the preopened objects directly into # the library: func_basename "$lib" name=$func_basename_result eval libdir=`$SED -n -e 's/^libdir=\(.*\)$/\1/p' $lib` test -z "$libdir" && \ func_fatal_error "'$lib' is not a valid libtool archive" func_append newdlprefiles " ${lt_sysroot:+=}$libdir/$name" ;; esac done dlprefiles=$newdlprefiles else newdlfiles= for lib in $dlfiles; do case $lib in [\\/]* | [A-Za-z]:[\\/]*) abs=$lib ;; *) abs=`pwd`"/$lib" ;; esac func_append newdlfiles " $abs" done dlfiles=$newdlfiles newdlprefiles= for lib in $dlprefiles; do case $lib in [\\/]* | [A-Za-z]:[\\/]*) abs=$lib ;; *) abs=`pwd`"/$lib" ;; esac func_append newdlprefiles " $abs" done dlprefiles=$newdlprefiles fi $RM $output # place dlname in correct position for cygwin # In fact, it would be nice if we could use this code for all target # systems that can't hard-code library paths into their executables # and that have no shared library path variable independent of PATH, # but it turns out we can't easily determine that from inspecting # libtool variables, so we have to hard-code the OSs to which it # applies here; at the moment, that means platforms that use the PE # object format with DLL files. See the long comment at the top of # tests/bindir.at for full details. tdlname=$dlname case $host,$output,$installed,$module,$dlname in *cygwin*,*lai,yes,no,*.dll | *mingw*,*lai,yes,no,*.dll | *cegcc*,*lai,yes,no,*.dll) # If a -bindir argument was supplied, place the dll there. if test -n "$bindir"; then func_relative_path "$install_libdir" "$bindir" tdlname=$func_relative_path_result/$dlname else # Otherwise fall back on heuristic. tdlname=../bin/$dlname fi ;; esac $ECHO > $output "\ # $outputname - a libtool library file # Generated by $PROGRAM (GNU $PACKAGE) $VERSION # # Please DO NOT delete this file! # It is necessary for linking the library. # The name that we can dlopen(3). dlname='$tdlname' # Names of this library. library_names='$library_names' # The name of the static archive. old_library='$old_library' # Linker flags that cannot go in dependency_libs. inherited_linker_flags='$new_inherited_linker_flags' # Libraries that this one depends upon. dependency_libs='$dependency_libs' # Names of additional weak libraries provided by this library weak_library_names='$weak_libs' # Version information for $libname. current=$current age=$age revision=$revision # Is this an already installed library? installed=$installed # Should we warn about portability when linking against -modules? shouldnotlink=$module # Files to dlopen/dlpreopen dlopen='$dlfiles' dlpreopen='$dlprefiles' # Directory that this library needs to be installed in: libdir='$install_libdir'" if test no,yes = "$installed,$need_relink"; then $ECHO >> $output "\ relink_command=\"$relink_command\"" fi done } # Do a symbolic link so that the libtool archive can be found in # LD_LIBRARY_PATH before the program is installed. func_show_eval '( cd "$output_objdir" && $RM "$outputname" && $LN_S "../$outputname" "$outputname" )' 'exit $?' ;; esac exit $EXIT_SUCCESS } if test link = "$opt_mode" || test relink = "$opt_mode"; then func_mode_link ${1+"$@"} fi # func_mode_uninstall arg... func_mode_uninstall () { $debug_cmd RM=$nonopt files= rmforce=false exit_status=0 # This variable tells wrapper scripts just to set variables rather # than running their programs. libtool_install_magic=$magic for arg do case $arg in -f) func_append RM " $arg"; rmforce=: ;; -*) func_append RM " $arg" ;; *) func_append files " $arg" ;; esac done test -z "$RM" && \ func_fatal_help "you must specify an RM program" rmdirs= for file in $files; do func_dirname "$file" "" "." dir=$func_dirname_result if test . = "$dir"; then odir=$objdir else odir=$dir/$objdir fi func_basename "$file" name=$func_basename_result test uninstall = "$opt_mode" && odir=$dir # Remember odir for removal later, being careful to avoid duplicates if test clean = "$opt_mode"; then case " $rmdirs " in *" $odir "*) ;; *) func_append rmdirs " $odir" ;; esac fi # Don't error if the file doesn't exist and rm -f was used. if { test -L "$file"; } >/dev/null 2>&1 || { test -h "$file"; } >/dev/null 2>&1 || test -f "$file"; then : elif test -d "$file"; then exit_status=1 continue elif $rmforce; then continue fi rmfiles=$file case $name in *.la) # Possibly a libtool archive, so verify it. if func_lalib_p "$file"; then func_source $dir/$name # Delete the libtool libraries and symlinks. for n in $library_names; do func_append rmfiles " $odir/$n" done test -n "$old_library" && func_append rmfiles " $odir/$old_library" case $opt_mode in clean) case " $library_names " in *" $dlname "*) ;; *) test -n "$dlname" && func_append rmfiles " $odir/$dlname" ;; esac test -n "$libdir" && func_append rmfiles " $odir/$name $odir/${name}i" ;; uninstall) if test -n "$library_names"; then # Do each command in the postuninstall commands. func_execute_cmds "$postuninstall_cmds" '$rmforce || exit_status=1' fi if test -n "$old_library"; then # Do each command in the old_postuninstall commands. func_execute_cmds "$old_postuninstall_cmds" '$rmforce || exit_status=1' fi # FIXME: should reinstall the best remaining shared library. ;; esac fi ;; *.lo) # Possibly a libtool object, so verify it. if func_lalib_p "$file"; then # Read the .lo file func_source $dir/$name # Add PIC object to the list of files to remove. if test -n "$pic_object" && test none != "$pic_object"; then func_append rmfiles " $dir/$pic_object" fi # Add non-PIC object to the list of files to remove. if test -n "$non_pic_object" && test none != "$non_pic_object"; then func_append rmfiles " $dir/$non_pic_object" fi fi ;; *) if test clean = "$opt_mode"; then noexename=$name case $file in *.exe) func_stripname '' '.exe' "$file" file=$func_stripname_result func_stripname '' '.exe' "$name" noexename=$func_stripname_result # $file with .exe has already been added to rmfiles, # add $file without .exe func_append rmfiles " $file" ;; esac # Do a test to see if this is a libtool program. if func_ltwrapper_p "$file"; then if func_ltwrapper_executable_p "$file"; then func_ltwrapper_scriptname "$file" relink_command= func_source $func_ltwrapper_scriptname_result func_append rmfiles " $func_ltwrapper_scriptname_result" else relink_command= func_source $dir/$noexename fi # note $name still contains .exe if it was in $file originally # as does the version of $file that was added into $rmfiles func_append rmfiles " $odir/$name $odir/${name}S.$objext" if test yes = "$fast_install" && test -n "$relink_command"; then func_append rmfiles " $odir/lt-$name" fi if test "X$noexename" != "X$name"; then func_append rmfiles " $odir/lt-$noexename.c" fi fi fi ;; esac func_show_eval "$RM $rmfiles" 'exit_status=1' done # Try to remove the $objdir's in the directories where we deleted files for dir in $rmdirs; do if test -d "$dir"; then func_show_eval "rmdir $dir >/dev/null 2>&1" fi done exit $exit_status } if test uninstall = "$opt_mode" || test clean = "$opt_mode"; then func_mode_uninstall ${1+"$@"} fi test -z "$opt_mode" && { help=$generic_help func_fatal_help "you must specify a MODE" } test -z "$exec_cmd" && \ func_fatal_help "invalid operation mode '$opt_mode'" if test -n "$exec_cmd"; then eval exec "$exec_cmd" exit $EXIT_FAILURE fi exit $exit_status # The TAGs below are defined such that we never get into a situation # where we disable both kinds of libraries. Given conflicting # choices, we go for a static library, that is the most portable, # since we can't tell whether shared libraries were disabled because # the user asked for that or because the platform doesn't support # them. This is particularly important on AIX, because we don't # support having both static and shared libraries enabled at the same # time on that platform, so we default to a shared-only configuration. # If a disable-shared tag is given, we'll fallback to a static-only # configuration. But we'll never go from static-only to shared-only. # ### BEGIN LIBTOOL TAG CONFIG: disable-shared build_libtool_libs=no build_old_libs=yes # ### END LIBTOOL TAG CONFIG: disable-shared # ### BEGIN LIBTOOL TAG CONFIG: disable-static build_old_libs=`case $build_libtool_libs in yes) echo no;; *) echo yes;; esac` # ### END LIBTOOL TAG CONFIG: disable-static # Local Variables: # mode:shell-script # sh-indentation:2 # End: libjpeg-turbo-1.4.2/coderules.txt0000644000076500007650000000660712600050400013740 00000000000000IJG JPEG LIBRARY: CODING RULES This file was part of the Independent JPEG Group's software: Copyright (C) 1991-1996, Thomas G. Lane. It was modified by The libjpeg-turbo Project to include only information relevant to libjpeg-turbo. For conditions of distribution and use, see the accompanying README file. Since numerous people will be contributing code and bug fixes, it's important to establish a common coding style. The goal of using similar coding styles is much more important than the details of just what that style is. In general we follow the recommendations of "Recommended C Style and Coding Standards" revision 6.1 (Cannon et al. as modified by Spencer, Keppel and Brader). This document is available in the IJG FTP archive (see jpeg/doc/cstyle.ms.tbl.Z, or cstyle.txt.Z for those without nroff/tbl). Block comments should be laid out thusly: /* * Block comments in this style. */ We indent statements in K&R style, e.g., if (test) { then-part; } else { else-part; } with two spaces per indentation level. (This indentation convention is handled automatically by GNU Emacs and many other text editors.) Multi-word names should be written in lower case with underscores, e.g., multi_word_name (not multiWordName). Preprocessor symbols and enum constants are similar but upper case (MULTI_WORD_NAME). Names should be unique within the first fifteen characters. Note that each function definition must begin with GLOBAL(type), LOCAL(type), or METHODDEF(type). These macros expand to "static type" or just "type" as appropriate. They provide a readable indication of the routine's usage and can readily be changed for special needs. (For instance, special linkage keywords can be inserted for use in Windows DLLs.) A similar solution is used for external function declarations (see the EXTERN macro.) The JPEG library is intended to be used within larger programs. Furthermore, we want it to be reentrant so that it can be used by applications that process multiple images concurrently. The following rules support these requirements: 1. Avoid direct use of file I/O, "malloc", error report printouts, etc; pass these through the common routines provided. 2. Minimize global namespace pollution. Functions should be declared static wherever possible. (Note that our method-based calling conventions help this a lot: in many modules only the initialization function will ever need to be called directly, so only that function need be externally visible.) All global function names should begin with "jpeg_". 3. Don't use global variables; anything that must be used in another module should be in the common data structures. 4. Don't use static variables except for read-only constant tables. Variables that should be private to a module can be placed into private structures (see the system architecture document, structure.txt). 5. Source file names should begin with "j" for files that are part of the library proper; source files that are not part of the library, such as cjpeg.c and djpeg.c, do not begin with "j". Keep compression and decompression code in separate source files --- some applications may want only one half of the library. Note: these rules (particularly #4) are not followed religiously in the modules that are used in cjpeg/djpeg but are not part of the JPEG library proper. Those modules are not really intended to be used in other applications. libjpeg-turbo-1.4.2/jddctmgr.c0000644000076500007650000002623112600050400013147 00000000000000/* * jddctmgr.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1994-1996, Thomas G. Lane. * Modified 2002-2010 by Guido Vollbeding. * libjpeg-turbo Modifications: * Copyright 2009 Pierre Ossman for Cendio AB * Copyright (C) 2010, D. R. Commander. * Copyright (C) 2013, MIPS Technologies, Inc., California * For conditions of distribution and use, see the accompanying README file. * * This file contains the inverse-DCT management logic. * This code selects a particular IDCT implementation to be used, * and it performs related housekeeping chores. No code in this file * is executed per IDCT step, only during output pass setup. * * Note that the IDCT routines are responsible for performing coefficient * dequantization as well as the IDCT proper. This module sets up the * dequantization multiplier table needed by the IDCT routine. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" #include "jdct.h" /* Private declarations for DCT subsystem */ #include "jsimddct.h" #include "jpegcomp.h" /* * The decompressor input side (jdinput.c) saves away the appropriate * quantization table for each component at the start of the first scan * involving that component. (This is necessary in order to correctly * decode files that reuse Q-table slots.) * When we are ready to make an output pass, the saved Q-table is converted * to a multiplier table that will actually be used by the IDCT routine. * The multiplier table contents are IDCT-method-dependent. To support * application changes in IDCT method between scans, we can remake the * multiplier tables if necessary. * In buffered-image mode, the first output pass may occur before any data * has been seen for some components, and thus before their Q-tables have * been saved away. To handle this case, multiplier tables are preset * to zeroes; the result of the IDCT will be a neutral gray level. */ /* Private subobject for this module */ typedef struct { struct jpeg_inverse_dct pub; /* public fields */ /* This array contains the IDCT method code that each multiplier table * is currently set up for, or -1 if it's not yet set up. * The actual multiplier tables are pointed to by dct_table in the * per-component comp_info structures. */ int cur_method[MAX_COMPONENTS]; } my_idct_controller; typedef my_idct_controller * my_idct_ptr; /* Allocated multiplier tables: big enough for any supported variant */ typedef union { ISLOW_MULT_TYPE islow_array[DCTSIZE2]; #ifdef DCT_IFAST_SUPPORTED IFAST_MULT_TYPE ifast_array[DCTSIZE2]; #endif #ifdef DCT_FLOAT_SUPPORTED FLOAT_MULT_TYPE float_array[DCTSIZE2]; #endif } multiplier_table; /* The current scaled-IDCT routines require ISLOW-style multiplier tables, * so be sure to compile that code if either ISLOW or SCALING is requested. */ #ifdef DCT_ISLOW_SUPPORTED #define PROVIDE_ISLOW_TABLES #else #ifdef IDCT_SCALING_SUPPORTED #define PROVIDE_ISLOW_TABLES #endif #endif /* * Prepare for an output pass. * Here we select the proper IDCT routine for each component and build * a matching multiplier table. */ METHODDEF(void) start_pass (j_decompress_ptr cinfo) { my_idct_ptr idct = (my_idct_ptr) cinfo->idct; int ci, i; jpeg_component_info *compptr; int method = 0; inverse_DCT_method_ptr method_ptr = NULL; JQUANT_TBL * qtbl; for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { /* Select the proper IDCT routine for this component's scaling */ switch (compptr->_DCT_scaled_size) { #ifdef IDCT_SCALING_SUPPORTED case 1: method_ptr = jpeg_idct_1x1; method = JDCT_ISLOW; /* jidctred uses islow-style table */ break; case 2: if (jsimd_can_idct_2x2()) method_ptr = jsimd_idct_2x2; else method_ptr = jpeg_idct_2x2; method = JDCT_ISLOW; /* jidctred uses islow-style table */ break; case 3: method_ptr = jpeg_idct_3x3; method = JDCT_ISLOW; /* jidctint uses islow-style table */ break; case 4: if (jsimd_can_idct_4x4()) method_ptr = jsimd_idct_4x4; else method_ptr = jpeg_idct_4x4; method = JDCT_ISLOW; /* jidctred uses islow-style table */ break; case 5: method_ptr = jpeg_idct_5x5; method = JDCT_ISLOW; /* jidctint uses islow-style table */ break; case 6: #if defined(__mips__) if (jsimd_can_idct_6x6()) method_ptr = jsimd_idct_6x6; else #endif method_ptr = jpeg_idct_6x6; method = JDCT_ISLOW; /* jidctint uses islow-style table */ break; case 7: method_ptr = jpeg_idct_7x7; method = JDCT_ISLOW; /* jidctint uses islow-style table */ break; #endif case DCTSIZE: switch (cinfo->dct_method) { #ifdef DCT_ISLOW_SUPPORTED case JDCT_ISLOW: if (jsimd_can_idct_islow()) method_ptr = jsimd_idct_islow; else method_ptr = jpeg_idct_islow; method = JDCT_ISLOW; break; #endif #ifdef DCT_IFAST_SUPPORTED case JDCT_IFAST: if (jsimd_can_idct_ifast()) method_ptr = jsimd_idct_ifast; else method_ptr = jpeg_idct_ifast; method = JDCT_IFAST; break; #endif #ifdef DCT_FLOAT_SUPPORTED case JDCT_FLOAT: if (jsimd_can_idct_float()) method_ptr = jsimd_idct_float; else method_ptr = jpeg_idct_float; method = JDCT_FLOAT; break; #endif default: ERREXIT(cinfo, JERR_NOT_COMPILED); break; } break; #ifdef IDCT_SCALING_SUPPORTED case 9: method_ptr = jpeg_idct_9x9; method = JDCT_ISLOW; /* jidctint uses islow-style table */ break; case 10: method_ptr = jpeg_idct_10x10; method = JDCT_ISLOW; /* jidctint uses islow-style table */ break; case 11: method_ptr = jpeg_idct_11x11; method = JDCT_ISLOW; /* jidctint uses islow-style table */ break; case 12: #if defined(__mips__) if (jsimd_can_idct_12x12()) method_ptr = jsimd_idct_12x12; else #endif method_ptr = jpeg_idct_12x12; method = JDCT_ISLOW; /* jidctint uses islow-style table */ break; case 13: method_ptr = jpeg_idct_13x13; method = JDCT_ISLOW; /* jidctint uses islow-style table */ break; case 14: method_ptr = jpeg_idct_14x14; method = JDCT_ISLOW; /* jidctint uses islow-style table */ break; case 15: method_ptr = jpeg_idct_15x15; method = JDCT_ISLOW; /* jidctint uses islow-style table */ break; case 16: method_ptr = jpeg_idct_16x16; method = JDCT_ISLOW; /* jidctint uses islow-style table */ break; #endif default: ERREXIT1(cinfo, JERR_BAD_DCTSIZE, compptr->_DCT_scaled_size); break; } idct->pub.inverse_DCT[ci] = method_ptr; /* Create multiplier table from quant table. * However, we can skip this if the component is uninteresting * or if we already built the table. Also, if no quant table * has yet been saved for the component, we leave the * multiplier table all-zero; we'll be reading zeroes from the * coefficient controller's buffer anyway. */ if (! compptr->component_needed || idct->cur_method[ci] == method) continue; qtbl = compptr->quant_table; if (qtbl == NULL) /* happens if no data yet for component */ continue; idct->cur_method[ci] = method; switch (method) { #ifdef PROVIDE_ISLOW_TABLES case JDCT_ISLOW: { /* For LL&M IDCT method, multipliers are equal to raw quantization * coefficients, but are stored as ints to ensure access efficiency. */ ISLOW_MULT_TYPE * ismtbl = (ISLOW_MULT_TYPE *) compptr->dct_table; for (i = 0; i < DCTSIZE2; i++) { ismtbl[i] = (ISLOW_MULT_TYPE) qtbl->quantval[i]; } } break; #endif #ifdef DCT_IFAST_SUPPORTED case JDCT_IFAST: { /* For AA&N IDCT method, multipliers are equal to quantization * coefficients scaled by scalefactor[row]*scalefactor[col], where * scalefactor[0] = 1 * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 * For integer operation, the multiplier table is to be scaled by * IFAST_SCALE_BITS. */ IFAST_MULT_TYPE * ifmtbl = (IFAST_MULT_TYPE *) compptr->dct_table; #define CONST_BITS 14 static const INT16 aanscales[DCTSIZE2] = { /* precomputed values scaled up by 14 bits */ 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, 22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270, 21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906, 19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315, 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, 12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552, 8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446, 4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247 }; SHIFT_TEMPS for (i = 0; i < DCTSIZE2; i++) { ifmtbl[i] = (IFAST_MULT_TYPE) DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i], (INT32) aanscales[i]), CONST_BITS-IFAST_SCALE_BITS); } } break; #endif #ifdef DCT_FLOAT_SUPPORTED case JDCT_FLOAT: { /* For float AA&N IDCT method, multipliers are equal to quantization * coefficients scaled by scalefactor[row]*scalefactor[col], where * scalefactor[0] = 1 * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 */ FLOAT_MULT_TYPE * fmtbl = (FLOAT_MULT_TYPE *) compptr->dct_table; int row, col; static const double aanscalefactor[DCTSIZE] = { 1.0, 1.387039845, 1.306562965, 1.175875602, 1.0, 0.785694958, 0.541196100, 0.275899379 }; i = 0; for (row = 0; row < DCTSIZE; row++) { for (col = 0; col < DCTSIZE; col++) { fmtbl[i] = (FLOAT_MULT_TYPE) ((double) qtbl->quantval[i] * aanscalefactor[row] * aanscalefactor[col]); i++; } } } break; #endif default: ERREXIT(cinfo, JERR_NOT_COMPILED); break; } } } /* * Initialize IDCT manager. */ GLOBAL(void) jinit_inverse_dct (j_decompress_ptr cinfo) { my_idct_ptr idct; int ci; jpeg_component_info *compptr; idct = (my_idct_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, sizeof(my_idct_controller)); cinfo->idct = (struct jpeg_inverse_dct *) idct; idct->pub.start_pass = start_pass; for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { /* Allocate and pre-zero a multiplier table for each component */ compptr->dct_table = (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, sizeof(multiplier_table)); MEMZERO(compptr->dct_table, sizeof(multiplier_table)); /* Mark multiplier table not yet set up for any method */ idct->cur_method[ci] = -1; } } libjpeg-turbo-1.4.2/jversion.h0000644000076500007650000000226712600050400013220 00000000000000/* * jversion.h * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1991-2012, Thomas G. Lane, Guido Vollbeding. * libjpeg-turbo Modifications: * Copyright (C) 2010, 2012-2015, D. R. Commander. * For conditions of distribution and use, see the accompanying README file. * * This file contains software version identification. */ #if JPEG_LIB_VERSION >= 80 #define JVERSION "8d 15-Jan-2012" #elif JPEG_LIB_VERSION >= 70 #define JVERSION "7 27-Jun-2009" #else #define JVERSION "6b 27-Mar-1998" #endif #define JCOPYRIGHT "Copyright (C) 1991-2012 Thomas G. Lane, Guido Vollbeding\n" \ "Copyright (C) 1999-2006 MIYASAKA Masaru\n" \ "Copyright (C) 2009 Pierre Ossman for Cendio AB\n" \ "Copyright (C) 2009-2015 D. R. Commander\n" \ "Copyright (C) 2009-2011 Nokia Corporation and/or its subsidiary(-ies)\n" \ "Copyright (C) 2013-2014 MIPS Technologies, Inc.\n" \ "Copyright (C) 2013 Linaro Limited" #define JCOPYRIGHT_SHORT "Copyright (C) 1991-2015 The libjpeg-turbo Project and many others" libjpeg-turbo-1.4.2/jconfig.txt0000644000076500007650000001143312600050400013363 00000000000000/* * jconfig.txt * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1991-1994, Thomas G. Lane. * It was modified by The libjpeg-turbo Project to include only code relevant * to libjpeg-turbo. * For conditions of distribution and use, see the accompanying README file. * * This file documents the configuration options that are required to * customize the JPEG software for a particular system. * * The actual configuration options for a particular installation are stored * in jconfig.h. On many machines, jconfig.h can be generated automatically * or copied from one of the "canned" jconfig files that we supply. But if * you need to generate a jconfig.h file by hand, this file tells you how. * * DO NOT EDIT THIS FILE --- IT WON'T ACCOMPLISH ANYTHING. * EDIT A COPY NAMED JCONFIG.H. */ /* * These symbols indicate the properties of your machine or compiler. * #define the symbol if yes, #undef it if no. */ /* Does your compiler support the declaration "unsigned char" ? * How about "unsigned short" ? */ #define HAVE_UNSIGNED_CHAR #define HAVE_UNSIGNED_SHORT /* Define "void" as "char" if your compiler doesn't know about type void. * NOTE: be sure to define void such that "void *" represents the most general * pointer type, e.g., that returned by malloc(). */ /* #define void char */ /* Define "const" as empty if your compiler doesn't know the "const" keyword. */ /* #define const */ /* Define this if an ordinary "char" type is unsigned. * If you're not sure, leaving it undefined will work at some cost in speed. * If you defined HAVE_UNSIGNED_CHAR then the speed difference is minimal. */ #undef __CHAR_UNSIGNED__ /* Define this if your system has an ANSI-conforming file. */ #define HAVE_STDDEF_H /* Define this if your system has an ANSI-conforming file. */ #define HAVE_STDLIB_H /* Define this if your system does not have an ANSI/SysV , * but does have a BSD-style . */ #undef NEED_BSD_STRINGS /* Define this if your system does not provide typedef size_t in any of the * ANSI-standard places (stddef.h, stdlib.h, or stdio.h), but places it in * instead. */ #undef NEED_SYS_TYPES_H /* Although a real ANSI C compiler can deal perfectly well with pointers to * unspecified structures (see "incomplete types" in the spec), a few pre-ANSI * and pseudo-ANSI compilers get confused. To keep one of these bozos happy, * define INCOMPLETE_TYPES_BROKEN. This is not recommended unless you * actually get "missing structure definition" warnings or errors while * compiling the JPEG code. */ #undef INCOMPLETE_TYPES_BROKEN /* Define "boolean" as unsigned char, not int, on Windows systems. */ #ifdef _WIN32 #ifndef __RPCNDR_H__ /* don't conflict if rpcndr.h already read */ typedef unsigned char boolean; #endif #define HAVE_BOOLEAN /* prevent jmorecfg.h from redefining it */ #endif /* * The following options affect code selection within the JPEG library, * but they don't need to be visible to applications using the library. * To minimize application namespace pollution, the symbols won't be * defined unless JPEG_INTERNALS has been defined. */ #ifdef JPEG_INTERNALS /* Define this if your compiler implements ">>" on signed values as a logical * (unsigned) shift; leave it undefined if ">>" is a signed (arithmetic) shift, * which is the normal and rational definition. */ #undef RIGHT_SHIFT_IS_UNSIGNED #endif /* JPEG_INTERNALS */ /* * The remaining options do not affect the JPEG library proper, * but only the sample applications cjpeg/djpeg (see cjpeg.c, djpeg.c). * Other applications can ignore these. */ #ifdef JPEG_CJPEG_DJPEG /* These defines indicate which image (non-JPEG) file formats are allowed. */ #define BMP_SUPPORTED /* BMP image file format */ #define GIF_SUPPORTED /* GIF image file format */ #define PPM_SUPPORTED /* PBMPLUS PPM/PGM image file format */ #undef RLE_SUPPORTED /* Utah RLE image file format */ #define TARGA_SUPPORTED /* Targa image file format */ /* Define this if you want to name both input and output files on the command * line, rather than using stdout and optionally stdin. You MUST do this if * your system can't cope with binary I/O to stdin/stdout. See comments at * head of cjpeg.c or djpeg.c. */ #undef TWO_FILE_COMMANDLINE /* By default, we open image files with fopen(...,"rb") or fopen(...,"wb"). * This is necessary on systems that distinguish text files from binary files, * and is harmless on most systems that don't. If you have one of the rare * systems that complains about the "b" spec, define this symbol. */ #undef DONT_USE_B_MODE /* Define this if you want percent-done progress reports from cjpeg/djpeg. */ #undef PROGRESS_REPORT #endif /* JPEG_CJPEG_DJPEG */ libjpeg-turbo-1.4.2/jcstest.c0000644000076500007650000000742512600050400013034 00000000000000/* * Copyright (C)2011 D. R. Commander. All Rights Reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * - Neither the name of the libjpeg-turbo Project nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS", * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* This program demonstrates how to check for the colorspace extension capabilities of libjpeg-turbo at both compile time and run time. */ #include #include #include #include #ifndef JCS_EXTENSIONS #define JCS_EXT_RGB 6 #endif #if !defined(JCS_EXTENSIONS) || !defined(JCS_ALPHA_EXTENSIONS) #define JCS_EXT_RGBA 12 #endif static char lasterror[JMSG_LENGTH_MAX] = "No error"; typedef struct _error_mgr { struct jpeg_error_mgr pub; jmp_buf jb; } error_mgr; static void my_error_exit(j_common_ptr cinfo) { error_mgr *myerr = (error_mgr *)cinfo->err; (*cinfo->err->output_message)(cinfo); longjmp(myerr->jb, 1); } static void my_output_message(j_common_ptr cinfo) { (*cinfo->err->format_message)(cinfo, lasterror); } int main(void) { int jcs_valid = -1, jcs_alpha_valid = -1; struct jpeg_compress_struct cinfo; error_mgr jerr; printf("libjpeg-turbo colorspace extensions:\n"); #if JCS_EXTENSIONS printf(" Present at compile time\n"); #else printf(" Not present at compile time\n"); #endif cinfo.err = jpeg_std_error(&jerr.pub); jerr.pub.error_exit = my_error_exit; jerr.pub.output_message = my_output_message; if(setjmp(jerr.jb)) { /* this will execute if libjpeg has an error */ jcs_valid = 0; goto done; } jpeg_create_compress(&cinfo); cinfo.input_components = 3; jpeg_set_defaults(&cinfo); cinfo.in_color_space = JCS_EXT_RGB; jpeg_default_colorspace(&cinfo); jcs_valid = 1; done: if (jcs_valid) printf(" Working properly\n"); else printf(" Not working properly. Error returned was:\n %s\n", lasterror); printf("libjpeg-turbo alpha colorspace extensions:\n"); #if JCS_ALPHA_EXTENSIONS printf(" Present at compile time\n"); #else printf(" Not present at compile time\n"); #endif if(setjmp(jerr.jb)) { /* this will execute if libjpeg has an error */ jcs_alpha_valid = 0; goto done2; } cinfo.in_color_space = JCS_EXT_RGBA; jpeg_default_colorspace(&cinfo); jcs_alpha_valid = 1; done2: if (jcs_alpha_valid) printf(" Working properly\n"); else printf(" Not working properly. Error returned was:\n %s\n", lasterror); jpeg_destroy_compress(&cinfo); return 0; } libjpeg-turbo-1.4.2/tjbenchtest.java.in0000755000076500007650000002317012600050400014774 00000000000000#!/bin/bash set -u set -e trap onexit INT trap onexit TERM trap onexit EXIT onexit() { if [ -d $OUTDIR ]; then rm -rf $OUTDIR fi } runme() { echo \*\*\* $* $* } IMAGES="vgl_5674_0098.bmp vgl_6434_0018a.bmp vgl_6548_0026a.bmp nightshot_iso_100.bmp" IMGDIR=@srcdir@/testimages OUTDIR=`mktemp -d /tmp/__tjbenchtest_java_output.XXXXXX` EXEDIR=. JAVA="@JAVA@ -cp java/turbojpeg.jar -Djava.library.path=.libs" BMPARG= NSARG= YUVARG= if [ -d $OUTDIR ]; then rm -rf $OUTDIR fi mkdir -p $OUTDIR exec >$EXEDIR/tjbenchtest-java.log if [ $# -gt 0 ]; then if [ "$1" = "-yuv" ]; then NSARG=-nosmooth YUVARG=-yuv # NOTE: The combination of tjEncodeYUV*() and tjCompressFromYUV*() does not # always produce bitwise-identical results to tjCompress*() if subsampling is # enabled. In both cases, if the image width or height are not evenly # divisible by the MCU width/height, then the bottom and/or right edge are # expanded. However, the libjpeg code performs this expansion prior to # downsampling, and TurboJPEG performs it in tjCompressFromYUV*(), which is # after downsampling. Thus, the two will agree only if the width/height along # each downsampled dimension is an odd number or is evenly divisible by the MCU # width/height. This disagreement basically amounts to a round-off error, but # there is no easy way around it, so for now, we just test the only image that # works. (NOTE: nightshot_iso_100 does not suffer from the above issue, but # it suffers from an unrelated problem whereby the combination of # tjDecompressToYUV*() and tjDecodeYUV*() do not produce bitwise-identical # results to tjDecompress*() if decompression scaling is enabled. This latter # phenomenon is not yet fully understood but is also believed to be some sort # of round-off error.) IMAGES="vgl_6548_0026a.bmp" fi fi # Standard tests for image in $IMAGES; do cp $IMGDIR/$image $OUTDIR basename=`basename $image .bmp` runme $EXEDIR/cjpeg -quality 95 -dct fast -grayscale -outfile $OUTDIR/${basename}_GRAY_fast_cjpeg.jpg $IMGDIR/${basename}.bmp runme $EXEDIR/cjpeg -quality 95 -dct fast -sample 2x2 -outfile $OUTDIR/${basename}_420_fast_cjpeg.jpg $IMGDIR/${basename}.bmp runme $EXEDIR/cjpeg -quality 95 -dct fast -sample 2x1 -outfile $OUTDIR/${basename}_422_fast_cjpeg.jpg $IMGDIR/${basename}.bmp runme $EXEDIR/cjpeg -quality 95 -dct fast -sample 1x1 -outfile $OUTDIR/${basename}_444_fast_cjpeg.jpg $IMGDIR/${basename}.bmp runme $EXEDIR/cjpeg -quality 95 -dct int -grayscale -outfile $OUTDIR/${basename}_GRAY_accurate_cjpeg.jpg $IMGDIR/${basename}.bmp runme $EXEDIR/cjpeg -quality 95 -dct int -sample 2x2 -outfile $OUTDIR/${basename}_420_accurate_cjpeg.jpg $IMGDIR/${basename}.bmp runme $EXEDIR/cjpeg -quality 95 -dct int -sample 2x1 -outfile $OUTDIR/${basename}_422_accurate_cjpeg.jpg $IMGDIR/${basename}.bmp runme $EXEDIR/cjpeg -quality 95 -dct int -sample 1x1 -outfile $OUTDIR/${basename}_444_accurate_cjpeg.jpg $IMGDIR/${basename}.bmp for samp in GRAY 420 422 444; do runme $EXEDIR/djpeg -rgb -bmp -outfile $OUTDIR/${basename}_${samp}_default_djpeg.bmp $OUTDIR/${basename}_${samp}_fast_cjpeg.jpg runme $EXEDIR/djpeg -dct fast -rgb -bmp -outfile $OUTDIR/${basename}_${samp}_fast_djpeg.bmp $OUTDIR/${basename}_${samp}_fast_cjpeg.jpg runme $EXEDIR/djpeg -dct int -rgb -bmp -outfile $OUTDIR/${basename}_${samp}_accurate_djpeg.bmp $OUTDIR/${basename}_${samp}_accurate_cjpeg.jpg done for samp in 420 422; do runme $EXEDIR/djpeg -nosmooth -bmp -outfile $OUTDIR/${basename}_${samp}_default_nosmooth_djpeg.bmp $OUTDIR/${basename}_${samp}_fast_cjpeg.jpg runme $EXEDIR/djpeg -dct fast -nosmooth -bmp -outfile $OUTDIR/${basename}_${samp}_fast_nosmooth_djpeg.bmp $OUTDIR/${basename}_${samp}_fast_cjpeg.jpg runme $EXEDIR/djpeg -dct int -nosmooth -bmp -outfile $OUTDIR/${basename}_${samp}_accurate_nosmooth_djpeg.bmp $OUTDIR/${basename}_${samp}_accurate_cjpeg.jpg done # Compression for dct in accurate fast; do runme $JAVA TJBench $OUTDIR/$image 95 -rgb -quiet -benchtime 0.01 -warmup 0 -${dct}dct $YUVARG for samp in GRAY 420 422 444; do runme cmp $OUTDIR/${basename}_${samp}_Q95.jpg $OUTDIR/${basename}_${samp}_${dct}_cjpeg.jpg done done for dct in fast accurate default; do dctarg=-${dct}dct if [ "${dct}" = "default" ]; then dctarg= fi # Tiled compression & decompression runme $JAVA TJBench $OUTDIR/$image 95 -rgb -tile -quiet -benchtime 0.01 -warmup 0 ${dctarg} $YUVARG for samp in GRAY 444; do for i in $OUTDIR/${basename}_${samp}_Q95_[0-9]*[0-9]x[0-9]*[0-9].bmp \ $OUTDIR/${basename}_${samp}_Q95_full.bmp; do runme cmp -i 54:54 $i $OUTDIR/${basename}_${samp}_${dct}_djpeg.bmp rm $i done done runme $JAVA TJBench $OUTDIR/$image 95 -rgb -tile -quiet -benchtime 0.01 -warmup 0 -fastupsample ${dctarg} $YUVARG for samp in 420 422; do for i in $OUTDIR/${basename}_${samp}_Q95_[0-9]*[0-9]x[0-9]*[0-9].bmp \ $OUTDIR/${basename}_${samp}_Q95_full.bmp; do runme cmp -i 54:54 $i $OUTDIR/${basename}_${samp}_${dct}_nosmooth_djpeg.bmp rm $i done done # Tiled decompression for samp in GRAY 444; do runme $JAVA TJBench $OUTDIR/${basename}_${samp}_Q95.jpg -tile -quiet -benchtime 0.01 -warmup 0 ${dctarg} $YUVARG for i in $OUTDIR/${basename}_${samp}_Q95_[0-9]*[0-9]x[0-9]*[0-9].bmp \ $OUTDIR/${basename}_${samp}_Q95_full.bmp; do runme cmp -i 54:54 $i $OUTDIR/${basename}_${samp}_${dct}_djpeg.bmp rm $i done done for samp in 420 422; do runme $JAVA TJBench $OUTDIR/${basename}_${samp}_Q95.jpg -tile -quiet -benchtime 0.01 -warmup 0 -fastupsample ${dctarg} $YUVARG for i in $OUTDIR/${basename}_${samp}_Q95_[0-9]*[0-9]x[0-9]*[0-9].bmp \ $OUTDIR/${basename}_${samp}_Q95_full.bmp; do runme cmp $i -i 54:54 $OUTDIR/${basename}_${samp}_${dct}_nosmooth_djpeg.bmp rm $i done done done # Scaled decompression for scale in 2_1 15_8 7_4 13_8 3_2 11_8 5_4 9_8 7_8 3_4 5_8 1_2 3_8 1_4 1_8; do scalearg=`echo $scale | sed s@_@/@g` for samp in GRAY 420 422 444; do runme $EXEDIR/djpeg -rgb -scale ${scalearg} $NSARG -bmp -outfile $OUTDIR/${basename}_${samp}_${scale}_djpeg.bmp $OUTDIR/${basename}_${samp}_fast_cjpeg.jpg runme $JAVA TJBench $OUTDIR/${basename}_${samp}_Q95.jpg -scale ${scalearg} -quiet -benchtime 0.01 -warmup 0 $YUVARG runme cmp -i 54:54 $OUTDIR/${basename}_${samp}_Q95_${scale}.bmp $OUTDIR/${basename}_${samp}_${scale}_djpeg.bmp rm $OUTDIR/${basename}_${samp}_Q95_${scale}.bmp done done # Transforms for samp in GRAY 420 422 444; do runme $EXEDIR/jpegtran -flip horizontal -trim -outfile $OUTDIR/${basename}_${samp}_hflip_jpegtran.jpg $OUTDIR/${basename}_${samp}_Q95.jpg runme $EXEDIR/jpegtran -flip vertical -trim -outfile $OUTDIR/${basename}_${samp}_vflip_jpegtran.jpg $OUTDIR/${basename}_${samp}_Q95.jpg runme $EXEDIR/jpegtran -transpose -trim -outfile $OUTDIR/${basename}_${samp}_transpose_jpegtran.jpg $OUTDIR/${basename}_${samp}_Q95.jpg runme $EXEDIR/jpegtran -transverse -trim -outfile $OUTDIR/${basename}_${samp}_transverse_jpegtran.jpg $OUTDIR/${basename}_${samp}_Q95.jpg runme $EXEDIR/jpegtran -rotate 90 -trim -outfile $OUTDIR/${basename}_${samp}_rot90_jpegtran.jpg $OUTDIR/${basename}_${samp}_Q95.jpg runme $EXEDIR/jpegtran -rotate 180 -trim -outfile $OUTDIR/${basename}_${samp}_rot180_jpegtran.jpg $OUTDIR/${basename}_${samp}_Q95.jpg runme $EXEDIR/jpegtran -rotate 270 -trim -outfile $OUTDIR/${basename}_${samp}_rot270_jpegtran.jpg $OUTDIR/${basename}_${samp}_Q95.jpg done for xform in hflip vflip transpose transverse rot90 rot180 rot270; do for samp in GRAY 444; do runme $EXEDIR/djpeg -rgb -bmp -outfile $OUTDIR/${basename}_${samp}_${xform}_jpegtran.bmp $OUTDIR/${basename}_${samp}_${xform}_jpegtran.jpg runme $JAVA TJBench $OUTDIR/${basename}_${samp}_Q95.jpg -$xform -tile -quiet -benchtime 0.01 -warmup 0 $YUVARG for i in $OUTDIR/${basename}_${samp}_Q95_[0-9]*[0-9]x[0-9]*[0-9].bmp \ $OUTDIR/${basename}_${samp}_Q95_full.bmp; do runme cmp -i 54:54 $i $OUTDIR/${basename}_${samp}_${xform}_jpegtran.bmp rm $i done done for samp in 420 422; do runme $EXEDIR/djpeg -nosmooth -rgb -bmp -outfile $OUTDIR/${basename}_${samp}_${xform}_jpegtran.bmp $OUTDIR/${basename}_${samp}_${xform}_jpegtran.jpg runme $JAVA TJBench $OUTDIR/${basename}_${samp}_Q95.jpg -$xform -tile -quiet -benchtime 0.01 -warmup 0 -fastupsample $YUVARG for i in $OUTDIR/${basename}_${samp}_Q95_[0-9]*[0-9]x[0-9]*[0-9].bmp \ $OUTDIR/${basename}_${samp}_Q95_full.bmp; do runme cmp -i 54:54 $i $OUTDIR/${basename}_${samp}_${xform}_jpegtran.bmp rm $i done done done # Grayscale transform for xform in hflip vflip transpose transverse rot90 rot180 rot270; do for samp in GRAY 444 422 420; do runme $JAVA TJBench $OUTDIR/${basename}_${samp}_Q95.jpg -$xform -tile -quiet -benchtime 0.01 -warmup 0 -grayscale $YUVARG for i in $OUTDIR/${basename}_${samp}_Q95_[0-9]*[0-9]x[0-9]*[0-9].bmp \ $OUTDIR/${basename}_${samp}_Q95_full.bmp; do runme cmp -i 54:54 $i $OUTDIR/${basename}_GRAY_${xform}_jpegtran.bmp rm $i done done done # Transforms with scaling for xform in hflip vflip transpose transverse rot90 rot180 rot270; do for samp in GRAY 444 422 420; do for scale in 2_1 15_8 7_4 13_8 3_2 11_8 5_4 9_8 7_8 3_4 5_8 1_2 3_8 1_4 1_8; do scalearg=`echo $scale | sed s@_@/@g` runme $EXEDIR/djpeg -rgb -scale ${scalearg} $NSARG -bmp -outfile $OUTDIR/${basename}_${samp}_${xform}_${scale}_jpegtran.bmp $OUTDIR/${basename}_${samp}_${xform}_jpegtran.jpg runme $JAVA TJBench $OUTDIR/${basename}_${samp}_Q95.jpg -$xform -scale ${scalearg} -quiet -benchtime 0.01 -warmup 0 $YUVARG runme cmp -i 54:54 $OUTDIR/${basename}_${samp}_Q95_${scale}.bmp $OUTDIR/${basename}_${samp}_${xform}_${scale}_jpegtran.bmp rm $OUTDIR/${basename}_${samp}_Q95_${scale}.bmp done done done done echo SUCCESS! libjpeg-turbo-1.4.2/jerror.h0000644000076500007650000003535112600050400012664 00000000000000/* * jerror.h * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1994-1997, Thomas G. Lane. * Modified 1997-2009 by Guido Vollbeding. * libjpeg-turbo Modifications: * Copyright (C) 2014, D. R. Commander. * For conditions of distribution and use, see the accompanying README file. * * This file defines the error and message codes for the JPEG library. * Edit this file to add new codes, or to translate the message strings to * some other language. * A set of error-reporting macros are defined too. Some applications using * the JPEG library may wish to include this file to get the error codes * and/or the macros. */ /* * To define the enum list of message codes, include this file without * defining macro JMESSAGE. To create a message string table, include it * again with a suitable JMESSAGE definition (see jerror.c for an example). */ #ifndef JMESSAGE #ifndef JERROR_H /* First time through, define the enum list */ #define JMAKE_ENUM_LIST #else /* Repeated inclusions of this file are no-ops unless JMESSAGE is defined */ #define JMESSAGE(code,string) #endif /* JERROR_H */ #endif /* JMESSAGE */ #ifdef JMAKE_ENUM_LIST typedef enum { #define JMESSAGE(code,string) code , #endif /* JMAKE_ENUM_LIST */ JMESSAGE(JMSG_NOMESSAGE, "Bogus message code %d") /* Must be first entry! */ /* For maintenance convenience, list is alphabetical by message code name */ #if JPEG_LIB_VERSION < 70 JMESSAGE(JERR_ARITH_NOTIMPL, "Sorry, arithmetic coding is not implemented") #endif JMESSAGE(JERR_BAD_ALIGN_TYPE, "ALIGN_TYPE is wrong, please fix") JMESSAGE(JERR_BAD_ALLOC_CHUNK, "MAX_ALLOC_CHUNK is wrong, please fix") JMESSAGE(JERR_BAD_BUFFER_MODE, "Bogus buffer control mode") JMESSAGE(JERR_BAD_COMPONENT_ID, "Invalid component ID %d in SOS") #if JPEG_LIB_VERSION >= 70 JMESSAGE(JERR_BAD_CROP_SPEC, "Invalid crop request") #endif JMESSAGE(JERR_BAD_DCT_COEF, "DCT coefficient out of range") JMESSAGE(JERR_BAD_DCTSIZE, "IDCT output block size %d not supported") #if JPEG_LIB_VERSION >= 70 JMESSAGE(JERR_BAD_DROP_SAMPLING, "Component index %d: mismatching sampling ratio %d:%d, %d:%d, %c") #endif JMESSAGE(JERR_BAD_HUFF_TABLE, "Bogus Huffman table definition") JMESSAGE(JERR_BAD_IN_COLORSPACE, "Bogus input colorspace") JMESSAGE(JERR_BAD_J_COLORSPACE, "Bogus JPEG colorspace") JMESSAGE(JERR_BAD_LENGTH, "Bogus marker length") JMESSAGE(JERR_BAD_LIB_VERSION, "Wrong JPEG library version: library is %d, caller expects %d") JMESSAGE(JERR_BAD_MCU_SIZE, "Sampling factors too large for interleaved scan") JMESSAGE(JERR_BAD_POOL_ID, "Invalid memory pool code %d") JMESSAGE(JERR_BAD_PRECISION, "Unsupported JPEG data precision %d") JMESSAGE(JERR_BAD_PROGRESSION, "Invalid progressive parameters Ss=%d Se=%d Ah=%d Al=%d") JMESSAGE(JERR_BAD_PROG_SCRIPT, "Invalid progressive parameters at scan script entry %d") JMESSAGE(JERR_BAD_SAMPLING, "Bogus sampling factors") JMESSAGE(JERR_BAD_SCAN_SCRIPT, "Invalid scan script at entry %d") JMESSAGE(JERR_BAD_STATE, "Improper call to JPEG library in state %d") JMESSAGE(JERR_BAD_STRUCT_SIZE, "JPEG parameter struct mismatch: library thinks size is %u, caller expects %u") JMESSAGE(JERR_BAD_VIRTUAL_ACCESS, "Bogus virtual array access") JMESSAGE(JERR_BUFFER_SIZE, "Buffer passed to JPEG library is too small") JMESSAGE(JERR_CANT_SUSPEND, "Suspension not allowed here") JMESSAGE(JERR_CCIR601_NOTIMPL, "CCIR601 sampling not implemented yet") JMESSAGE(JERR_COMPONENT_COUNT, "Too many color components: %d, max %d") JMESSAGE(JERR_CONVERSION_NOTIMPL, "Unsupported color conversion request") JMESSAGE(JERR_DAC_INDEX, "Bogus DAC index %d") JMESSAGE(JERR_DAC_VALUE, "Bogus DAC value 0x%x") JMESSAGE(JERR_DHT_INDEX, "Bogus DHT index %d") JMESSAGE(JERR_DQT_INDEX, "Bogus DQT index %d") JMESSAGE(JERR_EMPTY_IMAGE, "Empty JPEG image (DNL not supported)") JMESSAGE(JERR_EMS_READ, "Read from EMS failed") JMESSAGE(JERR_EMS_WRITE, "Write to EMS failed") JMESSAGE(JERR_EOI_EXPECTED, "Didn't expect more than one scan") JMESSAGE(JERR_FILE_READ, "Input file read error") JMESSAGE(JERR_FILE_WRITE, "Output file write error --- out of disk space?") JMESSAGE(JERR_FRACT_SAMPLE_NOTIMPL, "Fractional sampling not implemented yet") JMESSAGE(JERR_HUFF_CLEN_OVERFLOW, "Huffman code size table overflow") JMESSAGE(JERR_HUFF_MISSING_CODE, "Missing Huffman code table entry") JMESSAGE(JERR_IMAGE_TOO_BIG, "Maximum supported image dimension is %u pixels") JMESSAGE(JERR_INPUT_EMPTY, "Empty input file") JMESSAGE(JERR_INPUT_EOF, "Premature end of input file") JMESSAGE(JERR_MISMATCHED_QUANT_TABLE, "Cannot transcode due to multiple use of quantization table %d") JMESSAGE(JERR_MISSING_DATA, "Scan script does not transmit all data") JMESSAGE(JERR_MODE_CHANGE, "Invalid color quantization mode change") JMESSAGE(JERR_NOTIMPL, "Not implemented yet") JMESSAGE(JERR_NOT_COMPILED, "Requested feature was omitted at compile time") #if JPEG_LIB_VERSION >= 70 JMESSAGE(JERR_NO_ARITH_TABLE, "Arithmetic table 0x%02x was not defined") #endif JMESSAGE(JERR_NO_BACKING_STORE, "Backing store not supported") JMESSAGE(JERR_NO_HUFF_TABLE, "Huffman table 0x%02x was not defined") JMESSAGE(JERR_NO_IMAGE, "JPEG datastream contains no image") JMESSAGE(JERR_NO_QUANT_TABLE, "Quantization table 0x%02x was not defined") JMESSAGE(JERR_NO_SOI, "Not a JPEG file: starts with 0x%02x 0x%02x") JMESSAGE(JERR_OUT_OF_MEMORY, "Insufficient memory (case %d)") JMESSAGE(JERR_QUANT_COMPONENTS, "Cannot quantize more than %d color components") JMESSAGE(JERR_QUANT_FEW_COLORS, "Cannot quantize to fewer than %d colors") JMESSAGE(JERR_QUANT_MANY_COLORS, "Cannot quantize to more than %d colors") JMESSAGE(JERR_SOF_DUPLICATE, "Invalid JPEG file structure: two SOF markers") JMESSAGE(JERR_SOF_NO_SOS, "Invalid JPEG file structure: missing SOS marker") JMESSAGE(JERR_SOF_UNSUPPORTED, "Unsupported JPEG process: SOF type 0x%02x") JMESSAGE(JERR_SOI_DUPLICATE, "Invalid JPEG file structure: two SOI markers") JMESSAGE(JERR_SOS_NO_SOF, "Invalid JPEG file structure: SOS before SOF") JMESSAGE(JERR_TFILE_CREATE, "Failed to create temporary file %s") JMESSAGE(JERR_TFILE_READ, "Read failed on temporary file") JMESSAGE(JERR_TFILE_SEEK, "Seek failed on temporary file") JMESSAGE(JERR_TFILE_WRITE, "Write failed on temporary file --- out of disk space?") JMESSAGE(JERR_TOO_LITTLE_DATA, "Application transferred too few scanlines") JMESSAGE(JERR_UNKNOWN_MARKER, "Unsupported marker type 0x%02x") JMESSAGE(JERR_VIRTUAL_BUG, "Virtual array controller messed up") JMESSAGE(JERR_WIDTH_OVERFLOW, "Image too wide for this implementation") JMESSAGE(JERR_XMS_READ, "Read from XMS failed") JMESSAGE(JERR_XMS_WRITE, "Write to XMS failed") JMESSAGE(JMSG_COPYRIGHT, JCOPYRIGHT_SHORT) JMESSAGE(JMSG_VERSION, JVERSION) JMESSAGE(JTRC_16BIT_TABLES, "Caution: quantization tables are too coarse for baseline JPEG") JMESSAGE(JTRC_ADOBE, "Adobe APP14 marker: version %d, flags 0x%04x 0x%04x, transform %d") JMESSAGE(JTRC_APP0, "Unknown APP0 marker (not JFIF), length %u") JMESSAGE(JTRC_APP14, "Unknown APP14 marker (not Adobe), length %u") JMESSAGE(JTRC_DAC, "Define Arithmetic Table 0x%02x: 0x%02x") JMESSAGE(JTRC_DHT, "Define Huffman Table 0x%02x") JMESSAGE(JTRC_DQT, "Define Quantization Table %d precision %d") JMESSAGE(JTRC_DRI, "Define Restart Interval %u") JMESSAGE(JTRC_EMS_CLOSE, "Freed EMS handle %u") JMESSAGE(JTRC_EMS_OPEN, "Obtained EMS handle %u") JMESSAGE(JTRC_EOI, "End Of Image") JMESSAGE(JTRC_HUFFBITS, " %3d %3d %3d %3d %3d %3d %3d %3d") JMESSAGE(JTRC_JFIF, "JFIF APP0 marker: version %d.%02d, density %dx%d %d") JMESSAGE(JTRC_JFIF_BADTHUMBNAILSIZE, "Warning: thumbnail image size does not match data length %u") JMESSAGE(JTRC_JFIF_EXTENSION, "JFIF extension marker: type 0x%02x, length %u") JMESSAGE(JTRC_JFIF_THUMBNAIL, " with %d x %d thumbnail image") JMESSAGE(JTRC_MISC_MARKER, "Miscellaneous marker 0x%02x, length %u") JMESSAGE(JTRC_PARMLESS_MARKER, "Unexpected marker 0x%02x") JMESSAGE(JTRC_QUANTVALS, " %4u %4u %4u %4u %4u %4u %4u %4u") JMESSAGE(JTRC_QUANT_3_NCOLORS, "Quantizing to %d = %d*%d*%d colors") JMESSAGE(JTRC_QUANT_NCOLORS, "Quantizing to %d colors") JMESSAGE(JTRC_QUANT_SELECTED, "Selected %d colors for quantization") JMESSAGE(JTRC_RECOVERY_ACTION, "At marker 0x%02x, recovery action %d") JMESSAGE(JTRC_RST, "RST%d") JMESSAGE(JTRC_SMOOTH_NOTIMPL, "Smoothing not supported with nonstandard sampling ratios") JMESSAGE(JTRC_SOF, "Start Of Frame 0x%02x: width=%u, height=%u, components=%d") JMESSAGE(JTRC_SOF_COMPONENT, " Component %d: %dhx%dv q=%d") JMESSAGE(JTRC_SOI, "Start of Image") JMESSAGE(JTRC_SOS, "Start Of Scan: %d components") JMESSAGE(JTRC_SOS_COMPONENT, " Component %d: dc=%d ac=%d") JMESSAGE(JTRC_SOS_PARAMS, " Ss=%d, Se=%d, Ah=%d, Al=%d") JMESSAGE(JTRC_TFILE_CLOSE, "Closed temporary file %s") JMESSAGE(JTRC_TFILE_OPEN, "Opened temporary file %s") JMESSAGE(JTRC_THUMB_JPEG, "JFIF extension marker: JPEG-compressed thumbnail image, length %u") JMESSAGE(JTRC_THUMB_PALETTE, "JFIF extension marker: palette thumbnail image, length %u") JMESSAGE(JTRC_THUMB_RGB, "JFIF extension marker: RGB thumbnail image, length %u") JMESSAGE(JTRC_UNKNOWN_IDS, "Unrecognized component IDs %d %d %d, assuming YCbCr") JMESSAGE(JTRC_XMS_CLOSE, "Freed XMS handle %u") JMESSAGE(JTRC_XMS_OPEN, "Obtained XMS handle %u") JMESSAGE(JWRN_ADOBE_XFORM, "Unknown Adobe color transform code %d") #if JPEG_LIB_VERSION >= 70 JMESSAGE(JWRN_ARITH_BAD_CODE, "Corrupt JPEG data: bad arithmetic code") #endif JMESSAGE(JWRN_BOGUS_PROGRESSION, "Inconsistent progression sequence for component %d coefficient %d") JMESSAGE(JWRN_EXTRANEOUS_DATA, "Corrupt JPEG data: %u extraneous bytes before marker 0x%02x") JMESSAGE(JWRN_HIT_MARKER, "Corrupt JPEG data: premature end of data segment") JMESSAGE(JWRN_HUFF_BAD_CODE, "Corrupt JPEG data: bad Huffman code") JMESSAGE(JWRN_JFIF_MAJOR, "Warning: unknown JFIF revision number %d.%02d") JMESSAGE(JWRN_JPEG_EOF, "Premature end of JPEG file") JMESSAGE(JWRN_MUST_RESYNC, "Corrupt JPEG data: found marker 0x%02x instead of RST%d") JMESSAGE(JWRN_NOT_SEQUENTIAL, "Invalid SOS parameters for sequential JPEG") JMESSAGE(JWRN_TOO_MUCH_DATA, "Application transferred too many scanlines") #if JPEG_LIB_VERSION < 70 JMESSAGE(JERR_BAD_CROP_SPEC, "Invalid crop request") #if defined(C_ARITH_CODING_SUPPORTED) || defined(D_ARITH_CODING_SUPPORTED) JMESSAGE(JERR_NO_ARITH_TABLE, "Arithmetic table 0x%02x was not defined") JMESSAGE(JWRN_ARITH_BAD_CODE, "Corrupt JPEG data: bad arithmetic code") #endif #endif #ifdef JMAKE_ENUM_LIST JMSG_LASTMSGCODE } J_MESSAGE_CODE; #undef JMAKE_ENUM_LIST #endif /* JMAKE_ENUM_LIST */ /* Zap JMESSAGE macro so that future re-inclusions do nothing by default */ #undef JMESSAGE #ifndef JERROR_H #define JERROR_H /* Macros to simplify using the error and trace message stuff */ /* The first parameter is either type of cinfo pointer */ /* Fatal errors (print message and exit) */ #define ERREXIT(cinfo,code) \ ((cinfo)->err->msg_code = (code), \ (*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo))) #define ERREXIT1(cinfo,code,p1) \ ((cinfo)->err->msg_code = (code), \ (cinfo)->err->msg_parm.i[0] = (p1), \ (*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo))) #define ERREXIT2(cinfo,code,p1,p2) \ ((cinfo)->err->msg_code = (code), \ (cinfo)->err->msg_parm.i[0] = (p1), \ (cinfo)->err->msg_parm.i[1] = (p2), \ (*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo))) #define ERREXIT3(cinfo,code,p1,p2,p3) \ ((cinfo)->err->msg_code = (code), \ (cinfo)->err->msg_parm.i[0] = (p1), \ (cinfo)->err->msg_parm.i[1] = (p2), \ (cinfo)->err->msg_parm.i[2] = (p3), \ (*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo))) #define ERREXIT4(cinfo,code,p1,p2,p3,p4) \ ((cinfo)->err->msg_code = (code), \ (cinfo)->err->msg_parm.i[0] = (p1), \ (cinfo)->err->msg_parm.i[1] = (p2), \ (cinfo)->err->msg_parm.i[2] = (p3), \ (cinfo)->err->msg_parm.i[3] = (p4), \ (*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo))) #define ERREXITS(cinfo,code,str) \ ((cinfo)->err->msg_code = (code), \ strncpy((cinfo)->err->msg_parm.s, (str), JMSG_STR_PARM_MAX), \ (*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo))) #define MAKESTMT(stuff) do { stuff } while (0) /* Nonfatal errors (we can keep going, but the data is probably corrupt) */ #define WARNMS(cinfo,code) \ ((cinfo)->err->msg_code = (code), \ (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), -1)) #define WARNMS1(cinfo,code,p1) \ ((cinfo)->err->msg_code = (code), \ (cinfo)->err->msg_parm.i[0] = (p1), \ (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), -1)) #define WARNMS2(cinfo,code,p1,p2) \ ((cinfo)->err->msg_code = (code), \ (cinfo)->err->msg_parm.i[0] = (p1), \ (cinfo)->err->msg_parm.i[1] = (p2), \ (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), -1)) /* Informational/debugging messages */ #define TRACEMS(cinfo,lvl,code) \ ((cinfo)->err->msg_code = (code), \ (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl))) #define TRACEMS1(cinfo,lvl,code,p1) \ ((cinfo)->err->msg_code = (code), \ (cinfo)->err->msg_parm.i[0] = (p1), \ (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl))) #define TRACEMS2(cinfo,lvl,code,p1,p2) \ ((cinfo)->err->msg_code = (code), \ (cinfo)->err->msg_parm.i[0] = (p1), \ (cinfo)->err->msg_parm.i[1] = (p2), \ (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl))) #define TRACEMS3(cinfo,lvl,code,p1,p2,p3) \ MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \ _mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); \ (cinfo)->err->msg_code = (code); \ (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); ) #define TRACEMS4(cinfo,lvl,code,p1,p2,p3,p4) \ MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \ _mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); _mp[3] = (p4); \ (cinfo)->err->msg_code = (code); \ (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); ) #define TRACEMS5(cinfo,lvl,code,p1,p2,p3,p4,p5) \ MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \ _mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); _mp[3] = (p4); \ _mp[4] = (p5); \ (cinfo)->err->msg_code = (code); \ (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); ) #define TRACEMS8(cinfo,lvl,code,p1,p2,p3,p4,p5,p6,p7,p8) \ MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \ _mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); _mp[3] = (p4); \ _mp[4] = (p5); _mp[5] = (p6); _mp[6] = (p7); _mp[7] = (p8); \ (cinfo)->err->msg_code = (code); \ (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); ) #define TRACEMSS(cinfo,lvl,code,str) \ ((cinfo)->err->msg_code = (code), \ strncpy((cinfo)->err->msg_parm.s, (str), JMSG_STR_PARM_MAX), \ (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl))) #endif /* JERROR_H */ libjpeg-turbo-1.4.2/cdjpeg.c0000644000076500007650000000764112600050400012611 00000000000000/* * cdjpeg.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1991-1997, Thomas G. Lane. * It was modified by The libjpeg-turbo Project to include only code relevant * to libjpeg-turbo. * For conditions of distribution and use, see the accompanying README file. * * This file contains common support routines used by the IJG application * programs (cjpeg, djpeg, jpegtran). */ #include "cdjpeg.h" /* Common decls for cjpeg/djpeg applications */ #include /* to declare isupper(), tolower() */ #ifdef USE_SETMODE #include /* to declare setmode()'s parameter macros */ /* If you have setmode() but not , just delete this line: */ #include /* to declare setmode() */ #endif /* * Optional progress monitor: display a percent-done figure on stderr. */ #ifdef PROGRESS_REPORT METHODDEF(void) progress_monitor (j_common_ptr cinfo) { cd_progress_ptr prog = (cd_progress_ptr) cinfo->progress; int total_passes = prog->pub.total_passes + prog->total_extra_passes; int percent_done = (int) (prog->pub.pass_counter*100L/prog->pub.pass_limit); if (percent_done != prog->percent_done) { prog->percent_done = percent_done; if (total_passes > 1) { fprintf(stderr, "\rPass %d/%d: %3d%% ", prog->pub.completed_passes + prog->completed_extra_passes + 1, total_passes, percent_done); } else { fprintf(stderr, "\r %3d%% ", percent_done); } fflush(stderr); } } GLOBAL(void) start_progress_monitor (j_common_ptr cinfo, cd_progress_ptr progress) { /* Enable progress display, unless trace output is on */ if (cinfo->err->trace_level == 0) { progress->pub.progress_monitor = progress_monitor; progress->completed_extra_passes = 0; progress->total_extra_passes = 0; progress->percent_done = -1; cinfo->progress = &progress->pub; } } GLOBAL(void) end_progress_monitor (j_common_ptr cinfo) { /* Clear away progress display */ if (cinfo->err->trace_level == 0) { fprintf(stderr, "\r \r"); fflush(stderr); } } #endif /* * Case-insensitive matching of possibly-abbreviated keyword switches. * keyword is the constant keyword (must be lower case already), * minchars is length of minimum legal abbreviation. */ GLOBAL(boolean) keymatch (char * arg, const char * keyword, int minchars) { register int ca, ck; register int nmatched = 0; while ((ca = *arg++) != '\0') { if ((ck = *keyword++) == '\0') return FALSE; /* arg longer than keyword, no good */ if (isupper(ca)) /* force arg to lcase (assume ck is already) */ ca = tolower(ca); if (ca != ck) return FALSE; /* no good */ nmatched++; /* count matched characters */ } /* reached end of argument; fail if it's too short for unique abbrev */ if (nmatched < minchars) return FALSE; return TRUE; /* A-OK */ } /* * Routines to establish binary I/O mode for stdin and stdout. * Non-Unix systems often require some hacking to get out of text mode. */ GLOBAL(FILE *) read_stdin (void) { FILE * input_file = stdin; #ifdef USE_SETMODE /* need to hack file mode? */ setmode(fileno(stdin), O_BINARY); #endif #ifdef USE_FDOPEN /* need to re-open in binary mode? */ if ((input_file = fdopen(fileno(stdin), READ_BINARY)) == NULL) { fprintf(stderr, "Cannot reopen stdin\n"); exit(EXIT_FAILURE); } #endif return input_file; } GLOBAL(FILE *) write_stdout (void) { FILE * output_file = stdout; #ifdef USE_SETMODE /* need to hack file mode? */ setmode(fileno(stdout), O_BINARY); #endif #ifdef USE_FDOPEN /* need to re-open in binary mode? */ if ((output_file = fdopen(fileno(stdout), WRITE_BINARY)) == NULL) { fprintf(stderr, "Cannot reopen stdout\n"); exit(EXIT_FAILURE); } #endif return output_file; } libjpeg-turbo-1.4.2/turbojpeg-mapfile0000755000076500007650000000143212600050400014543 00000000000000TURBOJPEG_1.0 { global: tjInitCompress; tjCompress; TJBUFSIZE; tjInitDecompress; tjDecompressHeader; tjDecompress; tjDestroy; tjGetErrorStr; local: *; }; TURBOJPEG_1.1 { global: TJBUFSIZEYUV; tjDecompressHeader2; tjDecompressToYUV; tjEncodeYUV; } TURBOJPEG_1.0; TURBOJPEG_1.2 { global: tjAlloc; tjBufSize; tjBufSizeYUV; tjCompress2; tjDecompress2; tjEncodeYUV2; tjFree; tjGetScalingFactors; tjInitTransform; tjTransform; } TURBOJPEG_1.1; TURBOJPEG_1.4 { global: tjBufSizeYUV2; tjCompressFromYUV; tjCompressFromYUVPlanes; tjDecodeYUV; tjDecodeYUVPlanes; tjDecompressHeader3; tjDecompressToYUV2; tjDecompressToYUVPlanes; tjEncodeYUV3; tjEncodeYUVPlanes; tjPlaneHeight; tjPlaneSizeYUV; tjPlaneWidth; } TURBOJPEG_1.2; libjpeg-turbo-1.4.2/jutils.c0000644000076500007650000000732012600050400012661 00000000000000/* * jutils.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1991-1996, Thomas G. Lane. * It was modified by The libjpeg-turbo Project to include only code * relevant to libjpeg-turbo. * For conditions of distribution and use, see the accompanying README file. * * This file contains tables and miscellaneous utility routines needed * for both compression and decompression. * Note we prefix all global names with "j" to minimize conflicts with * a surrounding application. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" /* * jpeg_zigzag_order[i] is the zigzag-order position of the i'th element * of a DCT block read in natural order (left to right, top to bottom). */ #if 0 /* This table is not actually needed in v6a */ const int jpeg_zigzag_order[DCTSIZE2] = { 0, 1, 5, 6, 14, 15, 27, 28, 2, 4, 7, 13, 16, 26, 29, 42, 3, 8, 12, 17, 25, 30, 41, 43, 9, 11, 18, 24, 31, 40, 44, 53, 10, 19, 23, 32, 39, 45, 52, 54, 20, 22, 33, 38, 46, 51, 55, 60, 21, 34, 37, 47, 50, 56, 59, 61, 35, 36, 48, 49, 57, 58, 62, 63 }; #endif /* * jpeg_natural_order[i] is the natural-order position of the i'th element * of zigzag order. * * When reading corrupted data, the Huffman decoders could attempt * to reference an entry beyond the end of this array (if the decoded * zero run length reaches past the end of the block). To prevent * wild stores without adding an inner-loop test, we put some extra * "63"s after the real entries. This will cause the extra coefficient * to be stored in location 63 of the block, not somewhere random. * The worst case would be a run-length of 15, which means we need 16 * fake entries. */ const int jpeg_natural_order[DCTSIZE2+16] = { 0, 1, 8, 16, 9, 2, 3, 10, 17, 24, 32, 25, 18, 11, 4, 5, 12, 19, 26, 33, 40, 48, 41, 34, 27, 20, 13, 6, 7, 14, 21, 28, 35, 42, 49, 56, 57, 50, 43, 36, 29, 22, 15, 23, 30, 37, 44, 51, 58, 59, 52, 45, 38, 31, 39, 46, 53, 60, 61, 54, 47, 55, 62, 63, 63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */ 63, 63, 63, 63, 63, 63, 63, 63 }; /* * Arithmetic utilities */ GLOBAL(long) jdiv_round_up (long a, long b) /* Compute a/b rounded up to next integer, ie, ceil(a/b) */ /* Assumes a >= 0, b > 0 */ { return (a + b - 1L) / b; } GLOBAL(long) jround_up (long a, long b) /* Compute a rounded up to next multiple of b, ie, ceil(a/b)*b */ /* Assumes a >= 0, b > 0 */ { a += b - 1L; return a - (a % b); } GLOBAL(void) jcopy_sample_rows (JSAMPARRAY input_array, int source_row, JSAMPARRAY output_array, int dest_row, int num_rows, JDIMENSION num_cols) /* Copy some rows of samples from one place to another. * num_rows rows are copied from input_array[source_row++] * to output_array[dest_row++]; these areas may overlap for duplication. * The source and destination arrays must be at least as wide as num_cols. */ { register JSAMPROW inptr, outptr; register size_t count = (size_t) (num_cols * sizeof(JSAMPLE)); register int row; input_array += source_row; output_array += dest_row; for (row = num_rows; row > 0; row--) { inptr = *input_array++; outptr = *output_array++; MEMCOPY(outptr, inptr, count); } } GLOBAL(void) jcopy_block_row (JBLOCKROW input_row, JBLOCKROW output_row, JDIMENSION num_blocks) /* Copy a row of coefficient blocks from one place to another. */ { MEMCOPY(output_row, input_row, num_blocks * (DCTSIZE2 * sizeof(JCOEF))); } GLOBAL(void) jzero_far (void * target, size_t bytestozero) /* Zero out a chunk of memory. */ /* This might be sample-array data, block-array data, or alloc_large data. */ { MEMZERO(target, bytestozero); } libjpeg-turbo-1.4.2/BUILDING.txt0000644000076500007650000007744312600050400013156 00000000000000******************************************************************************* ** Building on Un*x Platforms (including Cygwin and OS X) ******************************************************************************* ================== Build Requirements ================== -- autoconf 2.56 or later -- automake 1.7 or later -- libtool 1.4 or later * If using Xcode 4.3 or later on OS X, autoconf and automake are no longer provided. The easiest way to obtain them is from MacPorts (http://www.macports.org/). -- NASM or YASM (if building x86 or x86-64 SIMD extensions) * NASM 0.98, or 2.01 or later is required for an x86 build (0.99 and 2.00 do not work properly with libjpeg-turbo's x86 SIMD code.) * NASM 2.00 or later is required for an x86-64 build. * NASM 2.07, or 2.11.09 or later is required for an x86-64 Mac build (2.11.08 does not work properly with libjpeg-turbo's x86-64 SIMD code when building macho64 objects.) NASM or YASM can be obtained from MacPorts (http://www.macports.org/). The binary RPMs released by the NASM project do not work on older Linux systems, such as Red Hat Enterprise Linux 4. On such systems, you can easily build and install NASM from a source RPM by downloading one of the SRPMs from http://www.nasm.us/pub/nasm/releasebuilds and executing the following as root: ARCH=`uname -m` rpmbuild --rebuild nasm-{version}.src.rpm rpm -Uvh /usr/src/redhat/RPMS/$ARCH/nasm-{version}.$ARCH.rpm NOTE: the NASM build will fail if texinfo is not installed. -- GCC v4.1 or later recommended for best performance * Beginning with Xcode 4, Apple stopped distributing GCC and switched to the LLVM compiler. Xcode v4.0 through v4.6 provides a GCC front end called LLVM-GCC. Unfortunately, as of this writing, neither LLVM-GCC nor the LLVM (clang) compiler produces optimal performance with libjpeg-turbo. Building libjpeg-turbo with LLVM-GCC v4.2 results in a 10% performance degradation when compressing using 64-bit code, relative to building libjpeg-turbo with GCC v4.2. Building libjpeg-turbo with LLVM (clang) results in a 20% performance degradation when compressing using 64-bit code, relative to building libjpeg-turbo with GCC v4.2. If you are running Snow Leopard or earlier, it is suggested that you continue to use Xcode v3.2.6, which provides GCC v4.2. If you are using Lion or later, it is suggested that you install Apple GCC v4.2 or GCC v5 through MacPorts. -- If building the TurboJPEG Java wrapper, JDK or OpenJDK 1.5 or later is required. Some systems, such as Solaris 10 and later and Red Hat Enterprise Linux 5 and later, have this pre-installed. On OS X 10.5 and later, it will be necessary to install the Java Developer Package, which can be downloaded from http://developer.apple.com/downloads (Apple ID required.) For systems that do not have a JDK installed, you can obtain the Oracle Java Development Kit from http://www.java.com. ================== Out-of-Tree Builds ================== Binary objects, libraries, and executables are generated in the same directory from which configure was executed (the "binary directory"), and this directory need not necessarily be the same as the libjpeg-turbo source directory. You can create multiple independent binary directories, in which different versions of libjpeg-turbo can be built from the same source tree using different compilers or settings. In the sections below, {build_directory} refers to the binary directory, whereas {source_directory} refers to the libjpeg-turbo source directory. For in-tree builds, these directories are the same. ====================== Building libjpeg-turbo ====================== The following procedure will build libjpeg-turbo on Linux, FreeBSD, Cygwin, and Solaris/x86 systems (on Solaris, this generates a 32-bit library. See below for 64-bit build instructions.) cd {source_directory} autoreconf -fiv cd {build_directory} sh {source_directory}/configure [additional configure flags] make NOTE: Running autoreconf in the source directory is usually only necessary if building libjpeg-turbo from the SVN repository. This will generate the following files under .libs/ libjpeg.a Static link library for the libjpeg API libjpeg.so.{version} (Linux, Unix) libjpeg.{version}.dylib (OS X) cygjpeg-{version}.dll (Cygwin) Shared library for the libjpeg API By default, {version} is 62.1.0, 7.1.0, or 8.0.2, depending on whether libjpeg v6b (default), v7, or v8 emulation is enabled. If using Cygwin, {version} is 62, 7, or 8. libjpeg.so (Linux, Unix) libjpeg.dylib (OS X) Development symlink for the libjpeg API libjpeg.dll.a (Cygwin) Import library for the libjpeg API libturbojpeg.a Static link library for the TurboJPEG API libturbojpeg.so.0.1.0 (Linux, Unix) libturbojpeg.0.1.0.dylib (OS X) cygturbojpeg-0.dll (Cygwin) Shared library for the TurboJPEG API libturbojpeg.so (Linux, Unix) libturbojpeg.dylib (OS X) Development symlink for the TurboJPEG API libturbojpeg.dll.a (Cygwin) Import library for the TurboJPEG API libjpeg v7 or v8 API/ABI Emulation ---------------------------------- Add --with-jpeg7 to the configure command line to build a version of libjpeg-turbo that is API/ABI-compatible with libjpeg v7. Add --with-jpeg8 to the configure command to build a version of libjpeg-turbo that is API/ABI-compatible with libjpeg v8. See README-turbo.txt for more information on libjpeg v7 and v8 emulation. In-Memory Source/Destination Managers ------------------------------------- When using libjpeg v6b or v7 API/ABI emulation, add --without-mem-srcdst to the configure command line to build a version of libjpeg-turbo that lacks the jpeg_mem_src() and jpeg_mem_dest() functions. These functions were not part of the original libjpeg v6b and v7 APIs, so removing them ensures strict conformance with those APIs. See README-turbo.txt for more information. Arithmetic Coding Support ------------------------- Since the patent on arithmetic coding has expired, this functionality has been included in this release of libjpeg-turbo. libjpeg-turbo's implementation is based on the implementation in libjpeg v8, but it works when emulating libjpeg v7 or v6b as well. The default is to enable both arithmetic encoding and decoding, but those who have philosophical objections to arithmetic coding can add --without-arith-enc or --without-arith-dec to the configure command line to disable encoding or decoding (respectively.) TurboJPEG Java Wrapper ---------------------- Add --with-java to the configure command line to incorporate an optional Java Native Interface wrapper into the TurboJPEG shared library and build the Java front-end classes to support it. This allows the TurboJPEG shared library to be used directly from Java applications. See java/README for more details. You can set the JAVAC, JAR, and JAVA configure variables to specify alternate commands for javac, jar, and java (respectively.) You can also set the JAVACFLAGS configure variable to specify arguments that should be passed to the Java compiler when building the front-end classes, and JNI_CFLAGS to specify arguments that should be passed to the C compiler when building the JNI wrapper. Run 'configure --help' for more details. ======================== Installing libjpeg-turbo ======================== If you intend to install these libraries and the associated header files, then replace 'make' in the instructions above with make install prefix={base dir} libdir={library directory} For example, make install prefix=/usr/local libdir=/usr/local/lib64 will install the header files in /usr/local/include and the library files in /usr/local/lib64. If 'prefix' and 'libdir' are not specified, then the default is to install the header files in /opt/libjpeg-turbo/include and the library files in /opt/libjpeg-turbo/lib32 (32-bit) or /opt/libjpeg-turbo/lib64 (64-bit.) NOTE: You can specify a prefix of /usr and a libdir of, for instance, /usr/lib64 to overwrite the system's version of libjpeg. If you do this, however, then be sure to BACK UP YOUR SYSTEM'S INSTALLATION OF LIBJPEG before overwriting it. It is recommended that you instead install libjpeg-turbo into a non-system directory and manipulate the LD_LIBRARY_PATH or create symlinks to force applications to use libjpeg-turbo instead of libjpeg. See README-turbo.txt for more information. ============= Build Recipes ============= 32-bit Build on 64-bit Linux ---------------------------- Add --host i686-pc-linux-gnu CFLAGS='-O3 -m32' LDFLAGS=-m32 to the configure command line. 64-bit Build on 64-bit OS X --------------------------- Add --host x86_64-apple-darwin NASM=/opt/local/bin/nasm to the configure command line. NASM 2.07 or later from MacPorts must be installed. 32-bit Build on 64-bit OS X --------------------------- Add --host i686-apple-darwin CFLAGS='-O3 -m32' LDFLAGS=-m32 to the configure command line. 64-bit Backward-Compatible Build on 64-bit OS X ----------------------------------------------- Add --host x86_64-apple-darwin NASM=/opt/local/bin/nasm \ CFLAGS='-isysroot /Developer/SDKs/MacOSX10.5.sdk \ -mmacosx-version-min=10.5 -O3' \ LDFLAGS='-isysroot /Developer/SDKs/MacOSX10.5.sdk \ -mmacosx-version-min=10.5' to the configure command line. The OS X 10.5 SDK, and NASM 2.07 or later from MacPorts, must be installed. 32-bit Backward-Compatible Build on OS X ---------------------------------------- Add --host i686-apple-darwin \ CFLAGS='-isysroot /Developer/SDKs/MacOSX10.5.sdk \ -mmacosx-version-min=10.5 -O3 -m32' \ LDFLAGS='-isysroot /Developer/SDKs/MacOSX10.5.sdk \ -mmacosx-version-min=10.5 -m32' to the configure command line. The OS X 10.5 SDK must be installed. 64-bit Library Build on 64-bit Solaris -------------------------------------- Add --host x86_64-pc-solaris CFLAGS='-O3 -m64' LDFLAGS=-m64 to the configure command line. 32-bit Build on 64-bit FreeBSD ------------------------------ Add --host i386-unknown-freebsd CC='gcc -B /usr/lib32' CFLAGS='-O3 -m32' \ LDFLAGS='-B/usr/lib32' to the configure command line. NASM 2.07 or later from FreeBSD ports must be installed. Oracle Solaris Studio --------------------- Add CC=cc to the configure command line. libjpeg-turbo will automatically be built with the maximum optimization level (-xO5) unless you override CFLAGS. To build a 64-bit version of libjpeg-turbo using Oracle Solaris Studio, add --host x86_64-pc-solaris CC=cc CFLAGS='-xO5 -m64' LDFLAGS=-m64 to the configure command line. MinGW Build on Cygwin --------------------- Use CMake (see recipes below) =========== ARM Support =========== This release of libjpeg-turbo can use ARM NEON SIMD instructions to accelerate JPEG compression/decompression by approximately 2-4x on ARMv7 and later platforms. If libjpeg-turbo is configured on an ARM Linux platform, then the build system will automatically include the NEON SIMD routines, if they are supported. Build instructions for other ARM-based platforms follow. Building libjpeg-turbo for iOS ------------------------------ iOS platforms, such as the iPhone and iPad, use ARM processors, some of which support NEON instructions. Additional steps are required in order to build libjpeg-turbo for these platforms. Additional build requirements: gas-preprocessor.pl (https://raw.githubusercontent.com/libjpeg-turbo/gas-preprocessor/master/gas-preprocessor.pl) should be installed in your PATH. ARM 32-bit Build (Xcode 4.6.x and earlier, LLVM-GCC): Set the following shell variables for simplicity: Xcode 4.2 and earlier: IOS_PLATFORMDIR=/Developer/Platforms/iPhoneOS.platform Xcode 4.3 and later: IOS_PLATFORMDIR=/Applications/Xcode.app/Contents/Developer/Platforms/iPhoneOS.platform IOS_SYSROOT=$IOS_PLATFORMDIR/Developer/SDKs/iPhoneOS*.sdk IOS_GCC=$IOS_PLATFORMDIR/Developer/usr/bin/arm-apple-darwin10-llvm-gcc-4.2 ARMv6 (code will run on all iOS devices, not SIMD-accelerated): [NOTE: Requires Xcode 4.4.x or earlier] IOS_CFLAGS="-march=armv6 -mcpu=arm1176jzf-s -mfpu=vfp" ARMv7 (code will run on iPhone 3GS-4S/iPad 1st-3rd Generation and newer): IOS_CFLAGS="-march=armv7 -mcpu=cortex-a8 -mtune=cortex-a8 -mfpu=neon" ARMv7s (code will run on iPhone 5/iPad 4th Generation and newer): [NOTE: Requires Xcode 4.5 or later] IOS_CFLAGS="-march=armv7s -mcpu=swift -mtune=swift -mfpu=neon" Follow the procedure under "Building libjpeg-turbo" above, adding --host arm-apple-darwin10 \ CC="$IOS_GCC" LD="$IOS_GCC" \ CFLAGS="-mfloat-abi=softfp -isysroot $IOS_SYSROOT -O3 $IOS_CFLAGS" \ LDFLAGS="-mfloat-abi=softfp -isysroot $IOS_SYSROOT $IOS_CFLAGS" to the configure command line. ARM 32-bit Build (Xcode 5.0.x and later, Clang): Set the following shell variables for simplicity: IOS_PLATFORMDIR=/Applications/Xcode.app/Contents/Developer/Platforms/iPhoneOS.platform IOS_SYSROOT=$IOS_PLATFORMDIR/Developer/SDKs/iPhoneOS*.sdk IOS_GCC=/Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/bin/clang ARMv7 (code will run on iPhone 3GS-4S/iPad 1st-3rd Generation and newer): IOS_CFLAGS="-arch armv7" ARMv7s (code will run on iPhone 5/iPad 4th Generation and newer): IOS_CFLAGS="-arch armv7s" Follow the procedure under "Building libjpeg-turbo" above, adding --host arm-apple-darwin10 \ CC="$IOS_GCC" LD="$IOS_GCC" \ CFLAGS="-mfloat-abi=softfp -isysroot $IOS_SYSROOT -O3 $IOS_CFLAGS" \ LDFLAGS="-mfloat-abi=softfp -isysroot $IOS_SYSROOT $IOS_CFLAGS" \ CCASFLAGS="-no-integrated-as $IOS_CFLAGS" to the configure command line. ARMv8 64-bit Build (Xcode 5.0.x and later, Clang): Code will run on iPhone 5S/iPad Mini 2/iPad Air and newer. Set the following shell variables for simplicity: IOS_PLATFORMDIR=/Applications/Xcode.app/Contents/Developer/Platforms/iPhoneOS.platform IOS_SYSROOT=$IOS_PLATFORMDIR/Developer/SDKs/iPhoneOS*.sdk IOS_GCC=/Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/bin/clang IOS_CFLAGS="-arch arm64" Follow the procedure under "Building libjpeg-turbo" above, adding --host aarch64-apple-darwin \ CC="$IOS_GCC" LD="$IOS_GCC" \ CFLAGS="-isysroot $IOS_SYSROOT -O3 $IOS_CFLAGS" \ LDFLAGS="-isysroot $IOS_SYSROOT $IOS_CFLAGS" to the configure command line. NOTE: You can also add -miphoneos-version-min={version} to $IOS_CFLAGS above in order to support older versions of iOS than the default version supported by the SDK. Once built, lipo can be used to combine the ARMv6, v7, v7s, and/or v8 variants into a universal library. NOTE: If you are building libjpeg-turbo from the "official" project tarball, then it is highly likely that you will need to run 'autoreconf -fiv' in the source tree prior to building ARMv7, v7s, or v8 iOS binaries using the techniques described above. Otherwise, you may get a libtool error such as "unable to infer tagged configuration." Building libjpeg-turbo for Android ---------------------------------- Building libjpeg-turbo for Android platforms requires the Android NDK (https://developer.android.com/tools/sdk/ndk) and autotools. The following is a general recipe script that can be modified for your specific needs. # Set these variables to suit your needs NDK_PATH={full path to the "ndk" directory-- for example, /opt/android/ndk} BUILD_PLATFORM={the platform name for the NDK package you installed-- for example, "windows-x86" or "linux-x86_64"} TOOLCHAIN_VERSION={"4.6", "4.8", etc. This corresponds to a toolchain directory under ${NDK_PATH}/toolchains/.} ANDROID_VERSION={The minimum version of Android to support-- for example, "9", "19", etc.} HOST=arm-linux-androideabi TOOLCHAIN=${NDK_PATH}/toolchains/${HOST}-${TOOLCHAIN_VERSION}/prebuilt/${BUILD_PLATFORM} SYSROOT=${NDK_PATH}/platforms/android-${ANDROID_VERSION}/arch-arm ANDROID_INCLUDES="-I${SYSROOT}/usr/include -I${TOOLCHAIN}/include" ANDROID_CFLAGS="-march=armv7-a -mfloat-abi=softfp -fprefetch-loop-arrays \ -fstrict-aliasing --sysroot=${SYSROOT}" export CPP=${TOOLCHAIN}/bin/${HOST}-cpp export AR=${TOOLCHAIN}/bin/${HOST}-ar export AS=${TOOLCHAIN}/bin/${HOST}-as export NM=${TOOLCHAIN}/bin/${HOST}-nm export CC=${TOOLCHAIN}/bin/${HOST}-gcc export LD=${TOOLCHAIN}/bin/${HOST}-ld export RANLIB=${TOOLCHAIN}/bin/${HOST}-ranlib export OBJDUMP=${TOOLCHAIN}/bin/${HOST}-objdump export STRIP=${TOOLCHAIN}/bin/${HOST}-strip cd {build_directory} sh {source_directory}/configure --host=${HOST} \ CFLAGS="${ANDROID_INCLUDES} ${ANDROID_CFLAGS} -O3" \ CPPFLAGS="${ANDROID_INCLUDES} ${ANDROID_CFLAGS}" \ LDFLAGS="${ANDROID_CFLAGS}" --with-simd ${1+"$@"} make ******************************************************************************* ** Building on Windows (Visual C++ or MinGW) ******************************************************************************* ================== Build Requirements ================== -- CMake (http://www.cmake.org) v2.8.8 or later -- Microsoft Visual C++ 2005 or later If you don't already have Visual C++, then the easiest way to get it is by installing the Windows SDK: http://msdn.microsoft.com/en-us/windows/bb980924.aspx The Windows SDK includes both 32-bit and 64-bit Visual C++ compilers and everything necessary to build libjpeg-turbo. * You can also use Microsoft Visual Studio Express Edition, which is a free download. (NOTE: versions prior to 2012 can only be used to build 32-bit code.) * If you intend to build libjpeg-turbo from the command line, then add the appropriate compiler and SDK directories to the INCLUDE, LIB, and PATH environment variables. This is generally accomplished by executing vcvars32.bat or vcvars64.bat and SetEnv.cmd. vcvars32.bat and vcvars64.bat are part of Visual C++ and are located in the same directory as the compiler. SetEnv.cmd is part of the Windows SDK. You can pass optional arguments to SetEnv.cmd to specify a 32-bit or 64-bit build environment. ... OR ... -- MinGW MinGW-builds (http://sourceforge.net/projects/mingwbuilds/) or tdm-gcc (http://tdm-gcc.tdragon.net/) recommended if building on a Windows machine. Both distributions install a Start Menu link that can be used to launch a command prompt with the appropriate compiler paths automatically set. -- NASM (http://www.nasm.us/) 0.98 or later (NASM 2.05 or later is required for a 64-bit build) -- If building the TurboJPEG Java wrapper, JDK 1.5 or later is required. This can be downloaded from http://www.java.com. ================== Out-of-Tree Builds ================== Binary objects, libraries, and executables are generated in the same directory from which cmake was executed (the "binary directory"), and this directory need not necessarily be the same as the libjpeg-turbo source directory. You can create multiple independent binary directories, in which different versions of libjpeg-turbo can be built from the same source tree using different compilers or settings. In the sections below, {build_directory} refers to the binary directory, whereas {source_directory} refers to the libjpeg-turbo source directory. For in-tree builds, these directories are the same. ====================== Building libjpeg-turbo ====================== Visual C++ (Command Line) ------------------------- cd {build_directory} cmake -G "NMake Makefiles" -DCMAKE_BUILD_TYPE=Release {source_directory} nmake This will build either a 32-bit or a 64-bit version of libjpeg-turbo, depending on which version of cl.exe is in the PATH. The following files will be generated under {build_directory}: jpeg-static.lib Static link library for the libjpeg API sharedlib/jpeg{version}.dll DLL for the libjpeg API sharedlib/jpeg.lib Import library for the libjpeg API turbojpeg-static.lib Static link library for the TurboJPEG API turbojpeg.dll DLL for the TurboJPEG API turbojpeg.lib Import library for the TurboJPEG API {version} is 62, 7, or 8, depending on whether libjpeg v6b (default), v7, or v8 emulation is enabled. Visual C++ (IDE) ---------------- Choose the appropriate CMake generator option for your version of Visual Studio (run "cmake" with no arguments for a list of available generators.) For instance: cd {build_directory} cmake -G "Visual Studio 10" {source_directory} NOTE: Add "Win64" to the generator name (for example, "Visual Studio 10 Win64") to build a 64-bit version of libjpeg-turbo. Recent versions of CMake no longer document that. A separate build directory must be used for 32-bit and 64-bit builds. You can then open ALL_BUILD.vcproj in Visual Studio and build one of the configurations in that project ("Debug", "Release", etc.) to generate a full build of libjpeg-turbo. This will generate the following files under {build_directory}: {configuration}/jpeg-static.lib Static link library for the libjpeg API sharedlib/{configuration}/jpeg{version}.dll DLL for the libjpeg API sharedlib/{configuration}/jpeg.lib Import library for the libjpeg API {configuration}/turbojpeg-static.lib Static link library for the TurboJPEG API {configuration}/turbojpeg.dll DLL for the TurboJPEG API {configuration}/turbojpeg.lib Import library for the TurboJPEG API {configuration} is Debug, Release, RelWithDebInfo, or MinSizeRel, depending on the configuration you built in the IDE, and {version} is 62, 7, or 8, depending on whether libjpeg v6b (default), v7, or v8 emulation is enabled. MinGW ----- NOTE: This assumes that you are building on a Windows machine. If you are cross-compiling on a Linux/Unix machine, then see "Build Recipes" below. cd {build_directory} cmake -G "MinGW Makefiles" {source_directory} mingw32-make This will generate the following files under {build_directory} libjpeg.a Static link library for the libjpeg API sharedlib/libjpeg-{version}.dll DLL for the libjpeg API sharedlib/libjpeg.dll.a Import library for the libjpeg API libturbojpeg.a Static link library for the TurboJPEG API libturbojpeg.dll DLL for the TurboJPEG API libturbojpeg.dll.a Import library for the TurboJPEG API {version} is 62, 7, or 8, depending on whether libjpeg v6b (default), v7, or v8 emulation is enabled. Debug Build ----------- Add "-DCMAKE_BUILD_TYPE=Debug" to the cmake command line. Or, if building with NMake, remove "-DCMAKE_BUILD_TYPE=Release" (Debug builds are the default with NMake.) libjpeg v7 or v8 API/ABI Emulation ----------------------------------- Add "-DWITH_JPEG7=1" to the cmake command line to build a version of libjpeg-turbo that is API/ABI-compatible with libjpeg v7. Add "-DWITH_JPEG8=1" to the cmake command to build a version of libjpeg-turbo that is API/ABI-compatible with libjpeg v8. See README-turbo.txt for more information on libjpeg v7 and v8 emulation. In-Memory Source/Destination Managers ------------------------------------- When using libjpeg v6b or v7 API/ABI emulation, add -DWITH_MEM_SRCDST=0 to the CMake command line to build a version of libjpeg-turbo that lacks the jpeg_mem_src() and jpeg_mem_dest() functions. These functions were not part of the original libjpeg v6b and v7 APIs, so removing them ensures strict conformance with those APIs. See README-turbo.txt for more information. Arithmetic Coding Support ------------------------- Since the patent on arithmetic coding has expired, this functionality has been included in this release of libjpeg-turbo. libjpeg-turbo's implementation is based on the implementation in libjpeg v8, but it works when emulating libjpeg v7 or v6b as well. The default is to enable both arithmetic encoding and decoding, but those who have philosophical objections to arithmetic coding can add "-DWITH_ARITH_ENC=0" or "-DWITH_ARITH_DEC=0" to the cmake command line to disable encoding or decoding (respectively.) TurboJPEG Java Wrapper ---------------------- Add "-DWITH_JAVA=1" to the cmake command line to incorporate an optional Java Native Interface wrapper into the TurboJPEG shared library and build the Java front-end classes to support it. This allows the TurboJPEG shared library to be used directly from Java applications. See java/README for more details. If you are using CMake 2.8, you can set the Java_JAVAC_EXECUTABLE, Java_JAVA_EXECUTABLE, and Java_JAR_EXECUTABLE CMake variables to specify alternate commands or locations for javac, jar, and java (respectively.) If you are using CMake 2.6, set JAVA_COMPILE, JAVA_RUNTIME, and JAVA_ARCHIVE instead. You can also set the JAVACFLAGS CMake variable to specify arguments that should be passed to the Java compiler when building the front-end classes. ======================== Installing libjpeg-turbo ======================== You can use the build system to install libjpeg-turbo into a directory of your choosing (as opposed to creating an installer.) To do this, add: -DCMAKE_INSTALL_PREFIX={install_directory} to the cmake command line. For example, cmake -G "NMake Makefiles" -DCMAKE_BUILD_TYPE=Release \ -DCMAKE_INSTALL_PREFIX=c:\libjpeg-turbo {source_directory} nmake install will install the header files in c:\libjpeg-turbo\include, the library files in c:\libjpeg-turbo\lib, the DLL's in c:\libjpeg-turbo\bin, and the documentation in c:\libjpeg-turbo\doc. ============= Build Recipes ============= 64-bit MinGW Build on Cygwin ---------------------------- cd {build_directory} CC=/usr/bin/x86_64-w64-mingw32-gcc \ cmake -G "Unix Makefiles" -DCMAKE_SYSTEM_NAME=Windows \ -DCMAKE_RC_COMPILER=/usr/bin/x86_64-w64-mingw32-windres.exe \ {source_directory} make This produces a 64-bit build of libjpeg-turbo that does not depend on cygwin1.dll or other Cygwin DLL's. The mingw64-x86_64-gcc-core and mingw64-x86_64-gcc-g++ packages (and their dependencies) must be installed. 32-bit MinGW Build on Cygwin ---------------------------- cd {build_directory} CC=/usr/bin/i686-w64-mingw32-gcc \ cmake -G "Unix Makefiles" -DCMAKE_SYSTEM_NAME=Windows \ -DCMAKE_RC_COMPILER=/usr/bin/i686-w64-mingw32-windres.exe \ {source_directory} make This produces a 32-bit build of libjpeg-turbo that does not depend on cygwin1.dll or other Cygwin DLL's. The mingw64-i686-gcc-core and mingw64-i686-gcc-g++ packages (and their dependencies) must be installed. MinGW Build on Linux -------------------- cd {build_directory} CC={mingw_binary_path}/i386-mingw32-gcc \ cmake -G "Unix Makefiles" -DCMAKE_SYSTEM_NAME=Windows \ -DCMAKE_AR={mingw_binary_path}/i386-mingw32-ar \ -DCMAKE_RANLIB={mingw_binary_path}/i386-mingw32-ranlib \ {source_directory} make ******************************************************************************* ** Creating Release Packages ******************************************************************************* The following commands can be used to create various types of release packages: Unix/Linux ---------- make rpm Create Red Hat-style binary RPM package. Requires RPM v4 or later. make srpm This runs 'make dist' to create a pristine source tarball, then creates a Red Hat-style source RPM package from the tarball. Requires RPM v4 or later. make deb Create Debian-style binary package. Requires dpkg. make dmg Create Macintosh package/disk image. This requires pkgbuild and productbuild, which are installed by default on OS X 10.7 and later and which can be obtained by installing Xcode 3.2.6 (with the "Unix Development" option) on OS X 10.6. Packages built in this manner can be installed on OS X 10.5 and later, but they must be built on OS X 10.6 or later. make udmg [BUILDDIR32={32-bit build directory}] On 64-bit OS X systems, this creates a Macintosh package and disk image that contains universal i386/x86-64 binaries. You should first configure a 32-bit out-of-tree build of libjpeg-turbo, then configure a 64-bit out-of-tree build, then run 'make udmg' from the 64-bit build directory. The build system will look for the 32-bit build under {source_directory}/osxx86 by default, but you can override this by setting the BUILDDIR32 variable on the make command line as shown above. make iosdmg [BUILDDIR32={32-bit build directory}] \ [BUILDDIRARMV6={ARMv6 build directory}] \ [BUILDDIRARMV7={ARMv7 build directory}] \ [BUILDDIRARMV7S={ARMv7s build directory}] \ [BUILDDIRARMV8={ARMv8 build directory}] On OS X systems, this creates a Macintosh package and disk image in which the libjpeg-turbo static libraries contain ARM architectures necessary to build iOS applications. If building on an x86-64 system, the binaries will also contain the i386 architecture, as with 'make udmg' above. You should first configure ARMv6, ARMv7, ARMv7s, and/or ARMv8 out-of-tree builds of libjpeg-turbo (see "Building libjpeg-turbo for iOS" above.) If you are building an x86-64 version of libjpeg-turbo, you should configure a 32-bit out-of-tree build as well. Next, build libjpeg-turbo as you would normally, using an out-of-tree build. When it is built, run 'make iosdmg' from the build directory. The build system will look for the ARMv6 build under {source_directory}/iosarmv6 by default, the ARMv7 build under {source_directory}/iosarmv7 by default, the ARMv7s build under {source_directory}/iosarmv7s by default, the ARMv8 build under {source_directory}/iosarmv8 by default, and (if applicable) the 32-bit build under {source_directory}/osxx86 by default, but you can override this by setting the BUILDDIR32, BUILDDIRARMV6, BUILDDIRARMV7, BUILDDIRARMV7S, and/or BUILDDIRARMV8 variables on the make command line as shown above. NOTE: If including an ARMv8 build in the package, then you may need to use Xcode's version of lipo instead of the operating system's. To do this, pass an argument of LIPO="xcrun lipo" on the make command line. make cygwinpkg Build a Cygwin binary package. Windows ------- If using NMake: cd {build_directory} nmake installer If using MinGW: cd {build_directory} make installer If using the Visual Studio IDE, build the "installer" project. The installer package (libjpeg-turbo[-gcc][64].exe) will be located under {build_directory}. If building using the Visual Studio IDE, then the installer package will be located in a subdirectory with the same name as the configuration you built (such as {build_directory}\Debug\ or {build_directory}\Release\). Building a Windows installer requires the Nullsoft Install System (http://nsis.sourceforge.net/.) makensis.exe should be in your PATH. ******************************************************************************* ** Regression testing ******************************************************************************* The most common way to test libjpeg-turbo is by invoking 'make test' on Unix/Linux platforms or 'ctest' on Windows platforms, once the build has completed. This runs a series of tests to ensure that mathematical compatibility has been maintained between libjpeg-turbo and libjpeg v6b. This also invokes the TurboJPEG unit tests, which ensure that the colorspace extensions, YUV encoding, decompression scaling, and other features of the TurboJPEG C and Java APIs are working properly (and, by extension, that the equivalent features of the underlying libjpeg API are also working.) Invoking 'make testclean' or 'nmake testclean' (if using NMake) or building the 'testclean' target (if using the Visual Studio IDE) will clean up the output images generated by 'make test'. On Unix/Linux platforms, more extensive tests of the TurboJPEG C and Java wrappers can be run by invoking 'make tjtest'. These extended TurboJPEG tests essentially iterate through all of the available features of the TurboJPEG APIs that are not covered by the TurboJPEG unit tests (this includes the lossless transform options) and compare the images generated by each feature to images generated using the equivalent feature in the libjpeg API. The extended TurboJPEG tests are meant to test for regressions in the TurboJPEG wrappers, not in the underlying libjpeg API library. libjpeg-turbo-1.4.2/md5/0000755000076500007650000000000012600050447011761 500000000000000libjpeg-turbo-1.4.2/md5/Makefile.am0000644000076500007650000000014412600050400013721 00000000000000noinst_PROGRAMS = md5cmp md5cmp_SOURCES = md5cmp.c md5.c md5hl.c md5.h md5cmp_CFLAGS = -I$(srcdir) libjpeg-turbo-1.4.2/md5/Makefile.in0000644000076500007650000005557012600050415013755 00000000000000# Makefile.in generated by automake 1.15 from Makefile.am. # @configure_input@ # Copyright (C) 1994-2014 Free Software Foundation, Inc. # This Makefile.in is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY, to the extent permitted by law; without # even the implied warranty of MERCHANTABILITY or FITNESS FOR A # PARTICULAR PURPOSE. @SET_MAKE@ VPATH = @srcdir@ am__is_gnu_make = { \ if test -z '$(MAKELEVEL)'; then \ false; \ elif test -n '$(MAKE_HOST)'; then \ true; \ elif test -n '$(MAKE_VERSION)' && test -n '$(CURDIR)'; then \ true; \ else \ false; \ fi; \ } am__make_running_with_option = \ case $${target_option-} in \ ?) ;; \ *) echo "am__make_running_with_option: internal error: invalid" \ "target option '$${target_option-}' specified" >&2; \ exit 1;; \ esac; \ has_opt=no; \ sane_makeflags=$$MAKEFLAGS; \ if $(am__is_gnu_make); then \ sane_makeflags=$$MFLAGS; \ else \ case $$MAKEFLAGS in \ *\\[\ \ ]*) \ bs=\\; \ sane_makeflags=`printf '%s\n' "$$MAKEFLAGS" \ | sed "s/$$bs$$bs[$$bs $$bs ]*//g"`;; \ esac; \ fi; \ skip_next=no; \ strip_trailopt () \ { \ flg=`printf '%s\n' "$$flg" | sed "s/$$1.*$$//"`; \ }; \ for flg in $$sane_makeflags; do \ test $$skip_next = yes && { skip_next=no; continue; }; \ case $$flg in \ *=*|--*) continue;; \ -*I) strip_trailopt 'I'; skip_next=yes;; \ -*I?*) strip_trailopt 'I';; \ -*O) strip_trailopt 'O'; skip_next=yes;; \ -*O?*) strip_trailopt 'O';; \ -*l) strip_trailopt 'l'; skip_next=yes;; \ -*l?*) strip_trailopt 'l';; \ -[dEDm]) skip_next=yes;; \ -[JT]) skip_next=yes;; \ esac; \ case $$flg in \ *$$target_option*) has_opt=yes; break;; \ esac; \ done; \ test $$has_opt = yes am__make_dryrun = (target_option=n; $(am__make_running_with_option)) am__make_keepgoing = (target_option=k; $(am__make_running_with_option)) pkgdatadir = $(datadir)/@PACKAGE@ pkgincludedir = $(includedir)/@PACKAGE@ pkglibdir = $(libdir)/@PACKAGE@ pkglibexecdir = $(libexecdir)/@PACKAGE@ am__cd = CDPATH="$${ZSH_VERSION+.}$(PATH_SEPARATOR)" && cd install_sh_DATA = $(install_sh) -c -m 644 install_sh_PROGRAM = $(install_sh) -c install_sh_SCRIPT = $(install_sh) -c INSTALL_HEADER = $(INSTALL_DATA) transform = $(program_transform_name) NORMAL_INSTALL = : PRE_INSTALL = : POST_INSTALL = : NORMAL_UNINSTALL = : PRE_UNINSTALL = : POST_UNINSTALL = : build_triplet = @build@ host_triplet = @host@ noinst_PROGRAMS = md5cmp$(EXEEXT) subdir = md5 ACLOCAL_M4 = $(top_srcdir)/aclocal.m4 am__aclocal_m4_deps = $(top_srcdir)/acinclude.m4 \ $(top_srcdir)/configure.ac am__configure_deps = $(am__aclocal_m4_deps) $(CONFIGURE_DEPENDENCIES) \ $(ACLOCAL_M4) DIST_COMMON = $(srcdir)/Makefile.am $(am__DIST_COMMON) mkinstalldirs = $(install_sh) -d CONFIG_HEADER = $(top_builddir)/config.h $(top_builddir)/jconfig.h \ $(top_builddir)/jconfigint.h CONFIG_CLEAN_FILES = CONFIG_CLEAN_VPATH_FILES = PROGRAMS = $(noinst_PROGRAMS) am_md5cmp_OBJECTS = md5cmp-md5cmp.$(OBJEXT) md5cmp-md5.$(OBJEXT) \ md5cmp-md5hl.$(OBJEXT) md5cmp_OBJECTS = $(am_md5cmp_OBJECTS) md5cmp_LDADD = $(LDADD) AM_V_lt = $(am__v_lt_@AM_V@) am__v_lt_ = $(am__v_lt_@AM_DEFAULT_V@) am__v_lt_0 = --silent am__v_lt_1 = md5cmp_LINK = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=link $(CCLD) $(md5cmp_CFLAGS) $(CFLAGS) \ $(AM_LDFLAGS) $(LDFLAGS) -o $@ AM_V_P = $(am__v_P_@AM_V@) am__v_P_ = $(am__v_P_@AM_DEFAULT_V@) am__v_P_0 = false am__v_P_1 = : AM_V_GEN = $(am__v_GEN_@AM_V@) am__v_GEN_ = $(am__v_GEN_@AM_DEFAULT_V@) am__v_GEN_0 = @echo " GEN " $@; am__v_GEN_1 = AM_V_at = $(am__v_at_@AM_V@) am__v_at_ = $(am__v_at_@AM_DEFAULT_V@) am__v_at_0 = @ am__v_at_1 = DEFAULT_INCLUDES = -I.@am__isrc@ -I$(top_builddir) depcomp = $(SHELL) $(top_srcdir)/depcomp am__depfiles_maybe = depfiles am__mv = mv -f COMPILE = $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) \ $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) LTCOMPILE = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) \ $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) \ $(AM_CFLAGS) $(CFLAGS) AM_V_CC = $(am__v_CC_@AM_V@) am__v_CC_ = $(am__v_CC_@AM_DEFAULT_V@) am__v_CC_0 = @echo " CC " $@; am__v_CC_1 = CCLD = $(CC) LINK = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=link $(CCLD) $(AM_CFLAGS) $(CFLAGS) \ $(AM_LDFLAGS) $(LDFLAGS) -o $@ AM_V_CCLD = $(am__v_CCLD_@AM_V@) am__v_CCLD_ = $(am__v_CCLD_@AM_DEFAULT_V@) am__v_CCLD_0 = @echo " CCLD " $@; am__v_CCLD_1 = SOURCES = $(md5cmp_SOURCES) DIST_SOURCES = $(md5cmp_SOURCES) am__can_run_installinfo = \ case $$AM_UPDATE_INFO_DIR in \ n|no|NO) false;; \ *) (install-info --version) >/dev/null 2>&1;; \ esac am__tagged_files = $(HEADERS) $(SOURCES) $(TAGS_FILES) $(LISP) # Read a list of newline-separated strings from the standard input, # and print each of them once, without duplicates. Input order is # *not* preserved. am__uniquify_input = $(AWK) '\ BEGIN { nonempty = 0; } \ { items[$$0] = 1; nonempty = 1; } \ END { if (nonempty) { for (i in items) print i; }; } \ ' # Make sure the list of sources is unique. This is necessary because, # e.g., the same source file might be shared among _SOURCES variables # for different programs/libraries. am__define_uniq_tagged_files = \ list='$(am__tagged_files)'; \ unique=`for i in $$list; do \ if test -f "$$i"; then echo $$i; else echo $(srcdir)/$$i; fi; \ done | $(am__uniquify_input)` ETAGS = etags CTAGS = ctags am__DIST_COMMON = $(srcdir)/Makefile.in $(top_srcdir)/depcomp DISTFILES = $(DIST_COMMON) $(DIST_SOURCES) $(TEXINFOS) $(EXTRA_DIST) ACLOCAL = @ACLOCAL@ AMTAR = @AMTAR@ AM_DEFAULT_VERBOSITY = @AM_DEFAULT_VERBOSITY@ AR = @AR@ AUTOCONF = @AUTOCONF@ AUTOHEADER = @AUTOHEADER@ AUTOMAKE = @AUTOMAKE@ AWK = @AWK@ BUILD = @BUILD@ CC = @CC@ CCAS = @CCAS@ CCASDEPMODE = @CCASDEPMODE@ CCASFLAGS = @CCASFLAGS@ CCDEPMODE = @CCDEPMODE@ CFLAGS = @CFLAGS@ CPP = @CPP@ CPPFLAGS = @CPPFLAGS@ CYGPATH_W = @CYGPATH_W@ DEBARCH = @DEBARCH@ DEFS = @DEFS@ DEPDIR = @DEPDIR@ DLLTOOL = @DLLTOOL@ DSYMUTIL = @DSYMUTIL@ DUMPBIN = @DUMPBIN@ ECHO_C = @ECHO_C@ ECHO_N = @ECHO_N@ ECHO_T = @ECHO_T@ EGREP = @EGREP@ EXEEXT = @EXEEXT@ FGREP = @FGREP@ GREP = @GREP@ INSTALL = @INSTALL@ INSTALL_DATA = @INSTALL_DATA@ INSTALL_PROGRAM = @INSTALL_PROGRAM@ INSTALL_SCRIPT = @INSTALL_SCRIPT@ INSTALL_STRIP_PROGRAM = @INSTALL_STRIP_PROGRAM@ JAR = @JAR@ JAVA = @JAVA@ JAVAC = @JAVAC@ JAVACFLAGS = @JAVACFLAGS@ JAVA_RPM_CONTENTS_1 = @JAVA_RPM_CONTENTS_1@ JAVA_RPM_CONTENTS_2 = @JAVA_RPM_CONTENTS_2@ JNI_CFLAGS = @JNI_CFLAGS@ JPEG_LIB_VERSION = @JPEG_LIB_VERSION@ JPEG_LIB_VERSION_DECIMAL = @JPEG_LIB_VERSION_DECIMAL@ LD = @LD@ LDFLAGS = @LDFLAGS@ LIBOBJS = @LIBOBJS@ LIBS = @LIBS@ LIBTOOL = @LIBTOOL@ LIBTOOL_CURRENT = @LIBTOOL_CURRENT@ LIPO = @LIPO@ LN_S = @LN_S@ LTLIBOBJS = @LTLIBOBJS@ LT_SYS_LIBRARY_PATH = @LT_SYS_LIBRARY_PATH@ MAKEINFO = @MAKEINFO@ MANIFEST_TOOL = @MANIFEST_TOOL@ MEM_SRCDST_FUNCTIONS = @MEM_SRCDST_FUNCTIONS@ MKDIR_P = @MKDIR_P@ NAFLAGS = @NAFLAGS@ NASM = @NASM@ NM = @NM@ NMEDIT = @NMEDIT@ OBJDUMP = @OBJDUMP@ OBJEXT = @OBJEXT@ OTOOL = @OTOOL@ OTOOL64 = @OTOOL64@ PACKAGE = @PACKAGE@ PACKAGE_BUGREPORT = @PACKAGE_BUGREPORT@ PACKAGE_NAME = @PACKAGE_NAME@ PACKAGE_STRING = @PACKAGE_STRING@ PACKAGE_TARNAME = @PACKAGE_TARNAME@ PACKAGE_URL = @PACKAGE_URL@ PACKAGE_VERSION = @PACKAGE_VERSION@ PATH_SEPARATOR = @PATH_SEPARATOR@ PKGNAME = @PKGNAME@ RANLIB = @RANLIB@ RPMARCH = @RPMARCH@ RPM_CONFIG_ARGS = @RPM_CONFIG_ARGS@ SED = @SED@ SET_MAKE = @SET_MAKE@ SHELL = @SHELL@ SO_AGE = @SO_AGE@ SO_MAJOR_VERSION = @SO_MAJOR_VERSION@ SO_MINOR_VERSION = @SO_MINOR_VERSION@ STRIP = @STRIP@ VERSION = @VERSION@ VERSION_SCRIPT_FLAG = @VERSION_SCRIPT_FLAG@ WITH_JAVA = @WITH_JAVA@ abs_builddir = @abs_builddir@ abs_srcdir = @abs_srcdir@ abs_top_builddir = @abs_top_builddir@ abs_top_srcdir = @abs_top_srcdir@ ac_ct_AR = @ac_ct_AR@ ac_ct_CC = @ac_ct_CC@ ac_ct_DUMPBIN = @ac_ct_DUMPBIN@ am__include = @am__include@ am__leading_dot = @am__leading_dot@ am__quote = @am__quote@ am__tar = @am__tar@ am__untar = @am__untar@ bindir = @bindir@ build = @build@ build_alias = @build_alias@ build_cpu = @build_cpu@ build_os = @build_os@ build_vendor = @build_vendor@ builddir = @builddir@ datadir = @datadir@ datarootdir = @datarootdir@ docdir = @docdir@ dvidir = @dvidir@ exec_prefix = @exec_prefix@ host = @host@ host_alias = @host_alias@ host_cpu = @host_cpu@ host_os = @host_os@ host_vendor = @host_vendor@ htmldir = @htmldir@ includedir = @includedir@ infodir = @infodir@ install_sh = @install_sh@ libdir = @libdir@ libexecdir = @libexecdir@ localedir = @localedir@ localstatedir = @localstatedir@ mandir = @mandir@ mkdir_p = @mkdir_p@ oldincludedir = @oldincludedir@ pdfdir = @pdfdir@ prefix = @prefix@ program_transform_name = @program_transform_name@ psdir = @psdir@ sbindir = @sbindir@ sharedstatedir = @sharedstatedir@ srcdir = @srcdir@ sysconfdir = @sysconfdir@ target_alias = @target_alias@ top_build_prefix = @top_build_prefix@ top_builddir = @top_builddir@ top_srcdir = @top_srcdir@ md5cmp_SOURCES = md5cmp.c md5.c md5hl.c md5.h md5cmp_CFLAGS = -I$(srcdir) all: all-am .SUFFIXES: .SUFFIXES: .c .lo .o .obj $(srcdir)/Makefile.in: $(srcdir)/Makefile.am $(am__configure_deps) @for dep in $?; do \ case '$(am__configure_deps)' in \ *$$dep*) \ ( cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh ) \ && { if test -f $@; then exit 0; else break; fi; }; \ exit 1;; \ esac; \ done; \ echo ' cd $(top_srcdir) && $(AUTOMAKE) --foreign md5/Makefile'; \ $(am__cd) $(top_srcdir) && \ $(AUTOMAKE) --foreign md5/Makefile Makefile: $(srcdir)/Makefile.in $(top_builddir)/config.status @case '$?' in \ *config.status*) \ cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh;; \ *) \ echo ' cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe)'; \ cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe);; \ esac; $(top_builddir)/config.status: $(top_srcdir)/configure $(CONFIG_STATUS_DEPENDENCIES) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(top_srcdir)/configure: $(am__configure_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(ACLOCAL_M4): $(am__aclocal_m4_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(am__aclocal_m4_deps): clean-noinstPROGRAMS: @list='$(noinst_PROGRAMS)'; test -n "$$list" || exit 0; \ echo " rm -f" $$list; \ rm -f $$list || exit $$?; \ test -n "$(EXEEXT)" || exit 0; \ list=`for p in $$list; do echo "$$p"; done | sed 's/$(EXEEXT)$$//'`; \ echo " rm -f" $$list; \ rm -f $$list md5cmp$(EXEEXT): $(md5cmp_OBJECTS) $(md5cmp_DEPENDENCIES) $(EXTRA_md5cmp_DEPENDENCIES) @rm -f md5cmp$(EXEEXT) $(AM_V_CCLD)$(md5cmp_LINK) $(md5cmp_OBJECTS) $(md5cmp_LDADD) $(LIBS) mostlyclean-compile: -rm -f *.$(OBJEXT) distclean-compile: -rm -f *.tab.c @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/md5cmp-md5.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/md5cmp-md5cmp.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/md5cmp-md5hl.Po@am__quote@ .c.o: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c -o $@ $< .c.obj: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ `$(CYGPATH_W) '$<'` @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c -o $@ `$(CYGPATH_W) '$<'` .c.lo: @am__fastdepCC_TRUE@ $(AM_V_CC)$(LTCOMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LTCOMPILE) -c -o $@ $< md5cmp-md5cmp.o: md5cmp.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(md5cmp_CFLAGS) $(CFLAGS) -MT md5cmp-md5cmp.o -MD -MP -MF $(DEPDIR)/md5cmp-md5cmp.Tpo -c -o md5cmp-md5cmp.o `test -f 'md5cmp.c' || echo '$(srcdir)/'`md5cmp.c @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/md5cmp-md5cmp.Tpo $(DEPDIR)/md5cmp-md5cmp.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='md5cmp.c' object='md5cmp-md5cmp.o' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(md5cmp_CFLAGS) $(CFLAGS) -c -o md5cmp-md5cmp.o `test -f 'md5cmp.c' || echo '$(srcdir)/'`md5cmp.c md5cmp-md5cmp.obj: md5cmp.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(md5cmp_CFLAGS) $(CFLAGS) -MT md5cmp-md5cmp.obj -MD -MP -MF $(DEPDIR)/md5cmp-md5cmp.Tpo -c -o md5cmp-md5cmp.obj `if test -f 'md5cmp.c'; then $(CYGPATH_W) 'md5cmp.c'; else $(CYGPATH_W) '$(srcdir)/md5cmp.c'; fi` @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/md5cmp-md5cmp.Tpo $(DEPDIR)/md5cmp-md5cmp.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='md5cmp.c' object='md5cmp-md5cmp.obj' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(md5cmp_CFLAGS) $(CFLAGS) -c -o md5cmp-md5cmp.obj `if test -f 'md5cmp.c'; then $(CYGPATH_W) 'md5cmp.c'; else $(CYGPATH_W) '$(srcdir)/md5cmp.c'; fi` md5cmp-md5.o: md5.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(md5cmp_CFLAGS) $(CFLAGS) -MT md5cmp-md5.o -MD -MP -MF $(DEPDIR)/md5cmp-md5.Tpo -c -o md5cmp-md5.o `test -f 'md5.c' || echo '$(srcdir)/'`md5.c @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/md5cmp-md5.Tpo $(DEPDIR)/md5cmp-md5.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='md5.c' object='md5cmp-md5.o' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(md5cmp_CFLAGS) $(CFLAGS) -c -o md5cmp-md5.o `test -f 'md5.c' || echo '$(srcdir)/'`md5.c md5cmp-md5.obj: md5.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(md5cmp_CFLAGS) $(CFLAGS) -MT md5cmp-md5.obj -MD -MP -MF $(DEPDIR)/md5cmp-md5.Tpo -c -o md5cmp-md5.obj `if test -f 'md5.c'; then $(CYGPATH_W) 'md5.c'; else $(CYGPATH_W) '$(srcdir)/md5.c'; fi` @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/md5cmp-md5.Tpo $(DEPDIR)/md5cmp-md5.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='md5.c' object='md5cmp-md5.obj' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(md5cmp_CFLAGS) $(CFLAGS) -c -o md5cmp-md5.obj `if test -f 'md5.c'; then $(CYGPATH_W) 'md5.c'; else $(CYGPATH_W) '$(srcdir)/md5.c'; fi` md5cmp-md5hl.o: md5hl.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(md5cmp_CFLAGS) $(CFLAGS) -MT md5cmp-md5hl.o -MD -MP -MF $(DEPDIR)/md5cmp-md5hl.Tpo -c -o md5cmp-md5hl.o `test -f 'md5hl.c' || echo '$(srcdir)/'`md5hl.c @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/md5cmp-md5hl.Tpo $(DEPDIR)/md5cmp-md5hl.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='md5hl.c' object='md5cmp-md5hl.o' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(md5cmp_CFLAGS) $(CFLAGS) -c -o md5cmp-md5hl.o `test -f 'md5hl.c' || echo '$(srcdir)/'`md5hl.c md5cmp-md5hl.obj: md5hl.c @am__fastdepCC_TRUE@ $(AM_V_CC)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(md5cmp_CFLAGS) $(CFLAGS) -MT md5cmp-md5hl.obj -MD -MP -MF $(DEPDIR)/md5cmp-md5hl.Tpo -c -o md5cmp-md5hl.obj `if test -f 'md5hl.c'; then $(CYGPATH_W) 'md5hl.c'; else $(CYGPATH_W) '$(srcdir)/md5hl.c'; fi` @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/md5cmp-md5hl.Tpo $(DEPDIR)/md5cmp-md5hl.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='md5hl.c' object='md5cmp-md5hl.obj' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(md5cmp_CFLAGS) $(CFLAGS) -c -o md5cmp-md5hl.obj `if test -f 'md5hl.c'; then $(CYGPATH_W) 'md5hl.c'; else $(CYGPATH_W) '$(srcdir)/md5hl.c'; fi` mostlyclean-libtool: -rm -f *.lo clean-libtool: -rm -rf .libs _libs ID: $(am__tagged_files) $(am__define_uniq_tagged_files); mkid -fID $$unique tags: tags-am TAGS: tags tags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) set x; \ here=`pwd`; \ $(am__define_uniq_tagged_files); \ shift; \ if test -z "$(ETAGS_ARGS)$$*$$unique"; then :; else \ test -n "$$unique" || unique=$$empty_fix; \ if test $$# -gt 0; then \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ "$$@" $$unique; \ else \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ $$unique; \ fi; \ fi ctags: ctags-am CTAGS: ctags ctags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) $(am__define_uniq_tagged_files); \ test -z "$(CTAGS_ARGS)$$unique" \ || $(CTAGS) $(CTAGSFLAGS) $(AM_CTAGSFLAGS) $(CTAGS_ARGS) \ $$unique GTAGS: here=`$(am__cd) $(top_builddir) && pwd` \ && $(am__cd) $(top_srcdir) \ && gtags -i $(GTAGS_ARGS) "$$here" cscopelist: cscopelist-am cscopelist-am: $(am__tagged_files) list='$(am__tagged_files)'; \ case "$(srcdir)" in \ [\\/]* | ?:[\\/]*) sdir="$(srcdir)" ;; \ *) sdir=$(subdir)/$(srcdir) ;; \ esac; \ for i in $$list; do \ if test -f "$$i"; then \ echo "$(subdir)/$$i"; \ else \ echo "$$sdir/$$i"; \ fi; \ done >> $(top_builddir)/cscope.files distclean-tags: -rm -f TAGS ID GTAGS GRTAGS GSYMS GPATH tags distdir: $(DISTFILES) @srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ topsrcdirstrip=`echo "$(top_srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ list='$(DISTFILES)'; \ dist_files=`for file in $$list; do echo $$file; done | \ sed -e "s|^$$srcdirstrip/||;t" \ -e "s|^$$topsrcdirstrip/|$(top_builddir)/|;t"`; \ case $$dist_files in \ */*) $(MKDIR_P) `echo "$$dist_files" | \ sed '/\//!d;s|^|$(distdir)/|;s,/[^/]*$$,,' | \ sort -u` ;; \ esac; \ for file in $$dist_files; do \ if test -f $$file || test -d $$file; then d=.; else d=$(srcdir); fi; \ if test -d $$d/$$file; then \ dir=`echo "/$$file" | sed -e 's,/[^/]*$$,,'`; \ if test -d "$(distdir)/$$file"; then \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ if test -d $(srcdir)/$$file && test $$d != $(srcdir); then \ cp -fpR $(srcdir)/$$file "$(distdir)$$dir" || exit 1; \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ cp -fpR $$d/$$file "$(distdir)$$dir" || exit 1; \ else \ test -f "$(distdir)/$$file" \ || cp -p $$d/$$file "$(distdir)/$$file" \ || exit 1; \ fi; \ done check-am: all-am check: check-am all-am: Makefile $(PROGRAMS) installdirs: install: install-am install-exec: install-exec-am install-data: install-data-am uninstall: uninstall-am install-am: all-am @$(MAKE) $(AM_MAKEFLAGS) install-exec-am install-data-am installcheck: installcheck-am install-strip: if test -z '$(STRIP)'; then \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ install; \ else \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ "INSTALL_PROGRAM_ENV=STRIPPROG='$(STRIP)'" install; \ fi mostlyclean-generic: clean-generic: distclean-generic: -test -z "$(CONFIG_CLEAN_FILES)" || rm -f $(CONFIG_CLEAN_FILES) -test . = "$(srcdir)" || test -z "$(CONFIG_CLEAN_VPATH_FILES)" || rm -f $(CONFIG_CLEAN_VPATH_FILES) maintainer-clean-generic: @echo "This command is intended for maintainers to use" @echo "it deletes files that may require special tools to rebuild." clean: clean-am clean-am: clean-generic clean-libtool clean-noinstPROGRAMS \ mostlyclean-am distclean: distclean-am -rm -rf ./$(DEPDIR) -rm -f Makefile distclean-am: clean-am distclean-compile distclean-generic \ distclean-tags dvi: dvi-am dvi-am: html: html-am html-am: info: info-am info-am: install-data-am: install-dvi: install-dvi-am install-dvi-am: install-exec-am: install-html: install-html-am install-html-am: install-info: install-info-am install-info-am: install-man: install-pdf: install-pdf-am install-pdf-am: install-ps: install-ps-am install-ps-am: installcheck-am: maintainer-clean: maintainer-clean-am -rm -rf ./$(DEPDIR) -rm -f Makefile maintainer-clean-am: distclean-am maintainer-clean-generic mostlyclean: mostlyclean-am mostlyclean-am: mostlyclean-compile mostlyclean-generic \ mostlyclean-libtool pdf: pdf-am pdf-am: ps: ps-am ps-am: uninstall-am: .MAKE: install-am install-strip .PHONY: CTAGS GTAGS TAGS all all-am check check-am clean clean-generic \ clean-libtool clean-noinstPROGRAMS cscopelist-am ctags \ ctags-am distclean distclean-compile distclean-generic \ distclean-libtool distclean-tags distdir dvi dvi-am html \ html-am info info-am install install-am install-data \ install-data-am install-dvi install-dvi-am install-exec \ install-exec-am install-html install-html-am install-info \ install-info-am install-man install-pdf install-pdf-am \ install-ps install-ps-am install-strip installcheck \ installcheck-am installdirs maintainer-clean \ maintainer-clean-generic mostlyclean mostlyclean-compile \ mostlyclean-generic mostlyclean-libtool pdf pdf-am ps ps-am \ tags tags-am uninstall uninstall-am .PRECIOUS: Makefile # Tell versions [3.59,3.63) of GNU make to not export all variables. # Otherwise a system limit (for SysV at least) may be exceeded. .NOEXPORT: libjpeg-turbo-1.4.2/md5/md5cmp.c0000644000076500007650000000423612600050400013224 00000000000000/* * Copyright (C)2013 D. R. Commander. All Rights Reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * - Neither the name of the libjpeg-turbo Project nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS", * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include "./md5.h" int main(int argc, char *argv[]) { char *md5sum = NULL, buf[65]; if (argc < 3) { fprintf(stderr, "USAGE: %s \n", argv[0]); return -1; } if (strlen(argv[1]) != 32) fprintf(stderr, "WARNING: MD5 hash size is wrong.\n"); md5sum = MD5File(argv[2], buf); if (!md5sum) { perror("Could not obtain MD5 sum"); return -1; } if (!strcasecmp(md5sum, argv[1])) { fprintf(stderr, "%s: OK\n", argv[2]); return 0; } else { fprintf(stderr, "%s: FAILED. Checksum is %s\n", argv[2], md5sum); return -1; } } libjpeg-turbo-1.4.2/md5/md5.h0000644000076500007650000000316712600050400012533 00000000000000/* MD5.H - header file for MD5C.C * $FreeBSD$ */ /*- Copyright (C) 1991-2, RSA Data Security, Inc. Created 1991. All rights reserved. License to copy and use this software is granted provided that it is identified as the "RSA Data Security, Inc. MD5 Message-Digest Algorithm" in all material mentioning or referencing this software or this function. License is also granted to make and use derivative works provided that such works are identified as "derived from the RSA Data Security, Inc. MD5 Message-Digest Algorithm" in all material mentioning or referencing the derived work. RSA Data Security, Inc. makes no representations concerning either the merchantability of this software or the suitability of this software for any particular purpose. It is provided "as is" without express or implied warranty of any kind. These notices must be retained in any copies of any part of this documentation and/or software. */ #ifndef _SYS_MD5_H_ #define _SYS_MD5_H_ #define MD5_BLOCK_LENGTH 64 #define MD5_DIGEST_LENGTH 16 #define MD5_DIGEST_STRING_LENGTH (MD5_DIGEST_LENGTH * 2 + 1) /* MD5 context. */ typedef struct MD5Context { unsigned int state[4]; /* state (ABCD) */ unsigned int count[2]; /* number of bits, modulo 2^64 (lsb first) */ unsigned char buffer[64]; /* input buffer */ } MD5_CTX; void MD5Init (MD5_CTX *); void MD5Update (MD5_CTX *, const void *, unsigned int); void MD5Final (unsigned char [16], MD5_CTX *); char * MD5End(MD5_CTX *, char *); char * MD5File(const char *, char *); char * MD5FileChunk(const char *, char *, off_t, off_t); char * MD5Data(const void *, unsigned int, char *); #endif /* _SYS_MD5_H_ */ libjpeg-turbo-1.4.2/md5/md5hl.c0000644000076500007650000000370312600050400013046 00000000000000/* mdXhl.c * ---------------------------------------------------------------------------- * "THE BEER-WARE LICENSE" (Revision 42): * wrote this file. As long as you retain this notice you * can do whatever you want with this stuff. If we meet some day, and you think * this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp * ---------------------------------------------------------------------------- */ #include #include #include #include #include #include #include #define LENGTH 16 #include "./md5.h" char * MD5End(MD5_CTX *ctx, char *buf) { int i; unsigned char digest[LENGTH]; static const char hex[]="0123456789abcdef"; if (!buf) buf = malloc(2*LENGTH + 1); if (!buf) return 0; MD5Final(digest, ctx); for (i = 0; i < LENGTH; i++) { buf[i+i] = hex[digest[i] >> 4]; buf[i+i+1] = hex[digest[i] & 0x0f]; } buf[i+i] = '\0'; return buf; } char * MD5File(const char *filename, char *buf) { return (MD5FileChunk(filename, buf, 0, 0)); } char * MD5FileChunk(const char *filename, char *buf, off_t ofs, off_t len) { unsigned char buffer[BUFSIZ]; MD5_CTX ctx; struct stat stbuf; int f, i, e; off_t n; MD5Init(&ctx); f = open(filename, O_RDONLY); if (f < 0) return 0; if (fstat(f, &stbuf) < 0) return 0; if (ofs > stbuf.st_size) ofs = stbuf.st_size; if ((len == 0) || (len > stbuf.st_size - ofs)) len = stbuf.st_size - ofs; if (lseek(f, ofs, SEEK_SET) < 0) return 0; n = len; i = 0; while (n > 0) { if (n > sizeof(buffer)) i = read(f, buffer, sizeof(buffer)); else i = read(f, buffer, n); if (i < 0) break; MD5Update(&ctx, buffer, i); n -= i; } e = errno; close(f); errno = e; if (i < 0) return 0; return (MD5End(&ctx, buf)); } char * MD5Data (const void *data, unsigned int len, char *buf) { MD5_CTX ctx; MD5Init(&ctx); MD5Update(&ctx,data,len); return (MD5End(&ctx, buf)); } libjpeg-turbo-1.4.2/md5/md5.c0000644000076500007650000002277212600050400012531 00000000000000/* * MD5C.C - RSA Data Security, Inc., MD5 message-digest algorithm * * Copyright (C) 1991-2, RSA Data Security, Inc. Created 1991. All * rights reserved. * * License to copy and use this software is granted provided that it * is identified as the "RSA Data Security, Inc. MD5 Message-Digest * Algorithm" in all material mentioning or referencing this software * or this function. * * License is also granted to make and use derivative works provided * that such works are identified as "derived from the RSA Data * Security, Inc. MD5 Message-Digest Algorithm" in all material * mentioning or referencing the derived work. * * RSA Data Security, Inc. makes no representations concerning either * the merchantability of this software or the suitability of this * software for any particular purpose. It is provided "as is" * without express or implied warranty of any kind. * * These notices must be retained in any copies of any part of this * documentation and/or software. * * This code is the same as the code published by RSA Inc. It has been * edited for clarity and style only. */ #include #include #include "./md5.h" static void MD5Transform(unsigned int [4], const unsigned char [64]); #if (BYTE_ORDER == LITTLE_ENDIAN) #define Encode memcpy #define Decode memcpy #else /* * OS X doesn't have le32toh() or htole32() */ #ifdef __APPLE__ #include #define le32toh(x) OSSwapLittleToHostInt32(x) #define htole32(x) OSSwapHostToLittleInt32(x) #endif /* * Encodes input (unsigned int) into output (unsigned char). Assumes len is * a multiple of 4. */ static void Encode (unsigned char *output, unsigned int *input, unsigned int len) { unsigned int i; unsigned int *op = (unsigned int *)output; for (i = 0; i < len / 4; i++) op[i] = htole32(input[i]); } /* * Decodes input (unsigned char) into output (unsigned int). Assumes len is * a multiple of 4. */ static void Decode (unsigned int *output, const unsigned char *input, unsigned int len) { unsigned int i; const unsigned int *ip = (const unsigned int *)input; for (i = 0; i < len / 4; i++) output[i] = le32toh(ip[i]); } #endif static unsigned char PADDING[64] = { 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; /* F, G, H and I are basic MD5 functions. */ #define F(x, y, z) (((x) & (y)) | ((~x) & (z))) #define G(x, y, z) (((x) & (z)) | ((y) & (~z))) #define H(x, y, z) ((x) ^ (y) ^ (z)) #define I(x, y, z) ((y) ^ ((x) | (~z))) /* ROTATE_LEFT rotates x left n bits. */ #define ROTATE_LEFT(x, n) (((x) << (n)) | ((x) >> (32-(n)))) /* * FF, GG, HH, and II transformations for rounds 1, 2, 3, and 4. * Rotation is separate from addition to prevent recomputation. */ #define FF(a, b, c, d, x, s, ac) { \ (a) += F ((b), (c), (d)) + (x) + (unsigned int)(ac); \ (a) = ROTATE_LEFT ((a), (s)); \ (a) += (b); \ } #define GG(a, b, c, d, x, s, ac) { \ (a) += G ((b), (c), (d)) + (x) + (unsigned int)(ac); \ (a) = ROTATE_LEFT ((a), (s)); \ (a) += (b); \ } #define HH(a, b, c, d, x, s, ac) { \ (a) += H ((b), (c), (d)) + (x) + (unsigned int)(ac); \ (a) = ROTATE_LEFT ((a), (s)); \ (a) += (b); \ } #define II(a, b, c, d, x, s, ac) { \ (a) += I ((b), (c), (d)) + (x) + (unsigned int)(ac); \ (a) = ROTATE_LEFT ((a), (s)); \ (a) += (b); \ } /* MD5 initialization. Begins an MD5 operation, writing a new context. */ void MD5Init (context) MD5_CTX *context; { context->count[0] = context->count[1] = 0; /* Load magic initialization constants. */ context->state[0] = 0x67452301; context->state[1] = 0xefcdab89; context->state[2] = 0x98badcfe; context->state[3] = 0x10325476; } /* * MD5 block update operation. Continues an MD5 message-digest * operation, processing another message block, and updating the * context. */ void MD5Update (context, in, inputLen) MD5_CTX *context; const void *in; unsigned int inputLen; { unsigned int i, idx, partLen; const unsigned char *input = in; /* Compute number of bytes mod 64 */ idx = (unsigned int)((context->count[0] >> 3) & 0x3F); /* Update number of bits */ if ((context->count[0] += ((unsigned int)inputLen << 3)) < ((unsigned int)inputLen << 3)) context->count[1]++; context->count[1] += ((unsigned int)inputLen >> 29); partLen = 64 - idx; /* Transform as many times as possible. */ if (inputLen >= partLen) { memcpy((void *)&context->buffer[idx], (const void *)input, partLen); MD5Transform (context->state, context->buffer); for (i = partLen; i + 63 < inputLen; i += 64) MD5Transform (context->state, &input[i]); idx = 0; } else i = 0; /* Buffer remaining input */ memcpy ((void *)&context->buffer[idx], (const void *)&input[i], inputLen-i); } /* * MD5 padding. Adds padding followed by original length. */ void MD5Pad (context) MD5_CTX *context; { unsigned char bits[8]; unsigned int idx, padLen; /* Save number of bits */ Encode (bits, context->count, 8); /* Pad out to 56 mod 64. */ idx = (unsigned int)((context->count[0] >> 3) & 0x3f); padLen = (idx < 56) ? (56 - idx) : (120 - idx); MD5Update (context, PADDING, padLen); /* Append length (before padding) */ MD5Update (context, bits, 8); } /* * MD5 finalization. Ends an MD5 message-digest operation, writing the * the message digest and zeroizing the context. */ void MD5Final (digest, context) unsigned char digest[16]; MD5_CTX *context; { /* Do padding. */ MD5Pad (context); /* Store state in digest */ Encode (digest, context->state, 16); /* Zeroize sensitive information. */ memset ((void *)context, 0, sizeof (*context)); } /* MD5 basic transformation. Transforms state based on block. */ static void MD5Transform (state, block) unsigned int state[4]; const unsigned char block[64]; { unsigned int a = state[0], b = state[1], c = state[2], d = state[3], x[16]; Decode (x, block, 64); /* Round 1 */ #define S11 7 #define S12 12 #define S13 17 #define S14 22 FF (a, b, c, d, x[ 0], S11, 0xd76aa478); /* 1 */ FF (d, a, b, c, x[ 1], S12, 0xe8c7b756); /* 2 */ FF (c, d, a, b, x[ 2], S13, 0x242070db); /* 3 */ FF (b, c, d, a, x[ 3], S14, 0xc1bdceee); /* 4 */ FF (a, b, c, d, x[ 4], S11, 0xf57c0faf); /* 5 */ FF (d, a, b, c, x[ 5], S12, 0x4787c62a); /* 6 */ FF (c, d, a, b, x[ 6], S13, 0xa8304613); /* 7 */ FF (b, c, d, a, x[ 7], S14, 0xfd469501); /* 8 */ FF (a, b, c, d, x[ 8], S11, 0x698098d8); /* 9 */ FF (d, a, b, c, x[ 9], S12, 0x8b44f7af); /* 10 */ FF (c, d, a, b, x[10], S13, 0xffff5bb1); /* 11 */ FF (b, c, d, a, x[11], S14, 0x895cd7be); /* 12 */ FF (a, b, c, d, x[12], S11, 0x6b901122); /* 13 */ FF (d, a, b, c, x[13], S12, 0xfd987193); /* 14 */ FF (c, d, a, b, x[14], S13, 0xa679438e); /* 15 */ FF (b, c, d, a, x[15], S14, 0x49b40821); /* 16 */ /* Round 2 */ #define S21 5 #define S22 9 #define S23 14 #define S24 20 GG (a, b, c, d, x[ 1], S21, 0xf61e2562); /* 17 */ GG (d, a, b, c, x[ 6], S22, 0xc040b340); /* 18 */ GG (c, d, a, b, x[11], S23, 0x265e5a51); /* 19 */ GG (b, c, d, a, x[ 0], S24, 0xe9b6c7aa); /* 20 */ GG (a, b, c, d, x[ 5], S21, 0xd62f105d); /* 21 */ GG (d, a, b, c, x[10], S22, 0x2441453); /* 22 */ GG (c, d, a, b, x[15], S23, 0xd8a1e681); /* 23 */ GG (b, c, d, a, x[ 4], S24, 0xe7d3fbc8); /* 24 */ GG (a, b, c, d, x[ 9], S21, 0x21e1cde6); /* 25 */ GG (d, a, b, c, x[14], S22, 0xc33707d6); /* 26 */ GG (c, d, a, b, x[ 3], S23, 0xf4d50d87); /* 27 */ GG (b, c, d, a, x[ 8], S24, 0x455a14ed); /* 28 */ GG (a, b, c, d, x[13], S21, 0xa9e3e905); /* 29 */ GG (d, a, b, c, x[ 2], S22, 0xfcefa3f8); /* 30 */ GG (c, d, a, b, x[ 7], S23, 0x676f02d9); /* 31 */ GG (b, c, d, a, x[12], S24, 0x8d2a4c8a); /* 32 */ /* Round 3 */ #define S31 4 #define S32 11 #define S33 16 #define S34 23 HH (a, b, c, d, x[ 5], S31, 0xfffa3942); /* 33 */ HH (d, a, b, c, x[ 8], S32, 0x8771f681); /* 34 */ HH (c, d, a, b, x[11], S33, 0x6d9d6122); /* 35 */ HH (b, c, d, a, x[14], S34, 0xfde5380c); /* 36 */ HH (a, b, c, d, x[ 1], S31, 0xa4beea44); /* 37 */ HH (d, a, b, c, x[ 4], S32, 0x4bdecfa9); /* 38 */ HH (c, d, a, b, x[ 7], S33, 0xf6bb4b60); /* 39 */ HH (b, c, d, a, x[10], S34, 0xbebfbc70); /* 40 */ HH (a, b, c, d, x[13], S31, 0x289b7ec6); /* 41 */ HH (d, a, b, c, x[ 0], S32, 0xeaa127fa); /* 42 */ HH (c, d, a, b, x[ 3], S33, 0xd4ef3085); /* 43 */ HH (b, c, d, a, x[ 6], S34, 0x4881d05); /* 44 */ HH (a, b, c, d, x[ 9], S31, 0xd9d4d039); /* 45 */ HH (d, a, b, c, x[12], S32, 0xe6db99e5); /* 46 */ HH (c, d, a, b, x[15], S33, 0x1fa27cf8); /* 47 */ HH (b, c, d, a, x[ 2], S34, 0xc4ac5665); /* 48 */ /* Round 4 */ #define S41 6 #define S42 10 #define S43 15 #define S44 21 II (a, b, c, d, x[ 0], S41, 0xf4292244); /* 49 */ II (d, a, b, c, x[ 7], S42, 0x432aff97); /* 50 */ II (c, d, a, b, x[14], S43, 0xab9423a7); /* 51 */ II (b, c, d, a, x[ 5], S44, 0xfc93a039); /* 52 */ II (a, b, c, d, x[12], S41, 0x655b59c3); /* 53 */ II (d, a, b, c, x[ 3], S42, 0x8f0ccc92); /* 54 */ II (c, d, a, b, x[10], S43, 0xffeff47d); /* 55 */ II (b, c, d, a, x[ 1], S44, 0x85845dd1); /* 56 */ II (a, b, c, d, x[ 8], S41, 0x6fa87e4f); /* 57 */ II (d, a, b, c, x[15], S42, 0xfe2ce6e0); /* 58 */ II (c, d, a, b, x[ 6], S43, 0xa3014314); /* 59 */ II (b, c, d, a, x[13], S44, 0x4e0811a1); /* 60 */ II (a, b, c, d, x[ 4], S41, 0xf7537e82); /* 61 */ II (d, a, b, c, x[11], S42, 0xbd3af235); /* 62 */ II (c, d, a, b, x[ 2], S43, 0x2ad7d2bb); /* 63 */ II (b, c, d, a, x[ 9], S44, 0xeb86d391); /* 64 */ state[0] += a; state[1] += b; state[2] += c; state[3] += d; /* Zeroize sensitive information. */ memset ((void *)x, 0, sizeof (x)); } libjpeg-turbo-1.4.2/LICENSE.txt0000644000076500007650000000544712600050400013036 00000000000000libjpeg-turbo Licenses ---------------------- libjpeg-turbo is covered by three compatible BSD-style open source licenses: -- The IJG (Independent JPEG Group) License, which is listed in README This license applies to the libjpeg API library and associated programs (any code inherited from libjpeg, and any modifications to that code.) -- The Modified (3-clause) BSD License, which is listed in turbojpeg.c This license covers the TurboJPEG API library and associated programs. -- The zlib License, which is listed in simd/jsimdext.inc This license is a subset of the other two, and it covers the libjpeg-turbo SIMD extensions. Complying with the libjpeg-turbo Licenses ----------------------------------------- This section provides a roll-up of the libjpeg-turbo licensing terms, to the best of our understanding. 1. If you are distributing a modified version of the libjpeg-turbo source, then: a. You cannot alter or remove any existing copyright or license notices from the source. Origin: Clause 1 of the IJG License Clause 1 of the Modified BSD License Clauses 1 and 3 of the zlib License b. You must add your own copyright notice to the header of each source file you modified, so others can tell that you modified that file (if there is not an existing copyright header in that file, then you can simply add a notice stating that you modified the file.) Origin: Clause 1 of the IJG License Clause 2 of the zlib License c. You must include the IJG README file, and you must not alter any of the copyright or license text in that file. Origin: Clause 1 of the IJG License 2. If you are distributing only libjpeg-turbo binaries without the source, or if you are distributing an application that statically links with libjpeg-turbo, then: a. Your product documentation must include a message stating: This software is based in part on the work of the Independent JPEG Group. Origin: Clause 2 of the IJG license b. If your binary distribution includes or uses the TurboJPEG API, then your product documentation must include the text of the Modified BSD License. Origin: Clause 2 of the Modified BSD License 3. You cannot use the name of the IJG or The libjpeg-turbo Project or the contributors thereof in advertising, publicity, etc. Origin: IJG License Clause 3 of the Modified BSD License 4. The IJG and The libjpeg-turbo Project do not warrant libjpeg-turbo to be free of defects, nor do we accept any liability for undesirable consequences resulting from your use of the software. Origin: IJG License Modified BSD License zlib License libjpeg-turbo-1.4.2/djpeg.10000644000076500007650000002125512600050400012361 00000000000000.TH DJPEG 1 "21 November 2014" .SH NAME djpeg \- decompress a JPEG file to an image file .SH SYNOPSIS .B djpeg [ .I options ] [ .I filename ] .LP .SH DESCRIPTION .LP .B djpeg decompresses the named JPEG file, or the standard input if no file is named, and produces an image file on the standard output. PBMPLUS (PPM/PGM), BMP, GIF, Targa, or RLE (Utah Raster Toolkit) output format can be selected. (RLE is supported only if the URT library is available.) .SH OPTIONS All switch names may be abbreviated; for example, .B \-grayscale may be written .B \-gray or .BR \-gr . Most of the "basic" switches can be abbreviated to as little as one letter. Upper and lower case are equivalent (thus .B \-BMP is the same as .BR \-bmp ). British spellings are also accepted (e.g., .BR \-greyscale ), though for brevity these are not mentioned below. .PP The basic switches are: .TP .BI \-colors " N" Reduce image to at most N colors. This reduces the number of colors used in the output image, so that it can be displayed on a colormapped display or stored in a colormapped file format. For example, if you have an 8-bit display, you'd need to reduce to 256 or fewer colors. .TP .BI \-quantize " N" Same as .BR \-colors . .B \-colors is the recommended name, .B \-quantize is provided only for backwards compatibility. .TP .B \-fast Select recommended processing options for fast, low quality output. (The default options are chosen for highest quality output.) Currently, this is equivalent to \fB\-dct fast \-nosmooth \-onepass \-dither ordered\fR. .TP .B \-grayscale Force grayscale output even if JPEG file is color. Useful for viewing on monochrome displays; also, .B djpeg runs noticeably faster in this mode. .TP .B \-rgb Force RGB output even if JPEG file is grayscale. .TP .BI \-scale " M/N" Scale the output image by a factor M/N. Currently the scale factor must be M/8, where M is an integer between 1 and 16 inclusive, or any reduced fraction thereof (such as 1/2, 3/4, etc.) Scaling is handy if the image is larger than your screen; also, .B djpeg runs much faster when scaling down the output. .TP .B \-bmp Select BMP output format (Windows flavor). 8-bit colormapped format is emitted if .B \-colors or .B \-grayscale is specified, or if the JPEG file is grayscale; otherwise, 24-bit full-color format is emitted. .TP .B \-gif Select GIF output format. Since GIF does not support more than 256 colors, .B \-colors 256 is assumed (unless you specify a smaller number of colors). .TP .B \-os2 Select BMP output format (OS/2 1.x flavor). 8-bit colormapped format is emitted if .B \-colors or .B \-grayscale is specified, or if the JPEG file is grayscale; otherwise, 24-bit full-color format is emitted. .TP .B \-pnm Select PBMPLUS (PPM/PGM) output format (this is the default format). PGM is emitted if the JPEG file is grayscale or if .B \-grayscale is specified; otherwise PPM is emitted. .TP .B \-rle Select RLE output format. (Requires URT library.) .TP .B \-targa Select Targa output format. Grayscale format is emitted if the JPEG file is grayscale or if .B \-grayscale is specified; otherwise, colormapped format is emitted if .B \-colors is specified; otherwise, 24-bit full-color format is emitted. .PP Switches for advanced users: .TP .B \-dct int Use integer DCT method (default). .TP .B \-dct fast Use fast integer DCT (less accurate). In libjpeg-turbo, the fast method is generally about 5-15% faster than the int method when using the x86/x86-64 SIMD extensions (results may vary with other SIMD implementations, or when using libjpeg-turbo without SIMD extensions.) If the JPEG image was compressed using a quality level of 85 or below, then there should be little or no perceptible difference between the two algorithms. When decompressing images that were compressed using quality levels above 85, however, the difference between the fast and int methods becomes more pronounced. With images compressed using quality=97, for instance, the fast method incurs generally about a 4-6 dB loss (in PSNR) relative to the int method, but this can be larger for some images. If you can avoid it, do not use the fast method when decompressing images that were compressed using quality levels above 97. The algorithm often degenerates for such images and can actually produce a more lossy output image than if the JPEG image had been compressed using lower quality levels. .TP .B \-dct float Use floating-point DCT method. The float method is mainly a legacy feature. It does not produce significantly more accurate results than the int method, and it is much slower. The float method may also give different results on different machines due to varying roundoff behavior, whereas the integer methods should give the same results on all machines. .TP .B \-dither fs Use Floyd-Steinberg dithering in color quantization. .TP .B \-dither ordered Use ordered dithering in color quantization. .TP .B \-dither none Do not use dithering in color quantization. By default, Floyd-Steinberg dithering is applied when quantizing colors; this is slow but usually produces the best results. Ordered dither is a compromise between speed and quality; no dithering is fast but usually looks awful. Note that these switches have no effect unless color quantization is being done. Ordered dither is only available in .B \-onepass mode. .TP .BI \-map " file" Quantize to the colors used in the specified image file. This is useful for producing multiple files with identical color maps, or for forcing a predefined set of colors to be used. The .I file must be a GIF or PPM file. This option overrides .B \-colors and .BR \-onepass . .TP .B \-nosmooth Use a faster, lower-quality upsampling routine. .TP .B \-onepass Use one-pass instead of two-pass color quantization. The one-pass method is faster and needs less memory, but it produces a lower-quality image. .B \-onepass is ignored unless you also say .B \-colors .IR N . Also, the one-pass method is always used for grayscale output (the two-pass method is no improvement then). .TP .BI \-maxmemory " N" Set limit for amount of memory to use in processing large images. Value is in thousands of bytes, or millions of bytes if "M" is attached to the number. For example, .B \-max 4m selects 4000000 bytes. If more space is needed, temporary files will be used. .TP .BI \-outfile " name" Send output image to the named file, not to standard output. .TP .BI \-memsrc Load input file into memory before decompressing. This feature was implemented mainly as a way of testing the in-memory source manager (jpeg_mem_src().) .TP .B \-verbose Enable debug printout. More .BR \-v 's give more output. Also, version information is printed at startup. .TP .B \-debug Same as .BR \-verbose . .TP .B \-version Print version information and exit. .SH EXAMPLES .LP This example decompresses the JPEG file foo.jpg, quantizes it to 256 colors, and saves the output in 8-bit BMP format in foo.bmp: .IP .B djpeg \-colors 256 \-bmp .I foo.jpg .B > .I foo.bmp .SH HINTS To get a quick preview of an image, use the .B \-grayscale and/or .B \-scale switches. .B \-grayscale \-scale 1/8 is the fastest case. .PP Several options are available that trade off image quality to gain speed. .B \-fast turns on the recommended settings. .PP .B \-dct fast and/or .B \-nosmooth gain speed at a small sacrifice in quality. When producing a color-quantized image, .B \-onepass \-dither ordered is fast but much lower quality than the default behavior. .B \-dither none may give acceptable results in two-pass mode, but is seldom tolerable in one-pass mode. .PP If you are fortunate enough to have very fast floating point hardware, \fB\-dct float\fR may be even faster than \fB\-dct fast\fR. But on most machines \fB\-dct float\fR is slower than \fB\-dct int\fR; in this case it is not worth using, because its theoretical accuracy advantage is too small to be significant in practice. .SH ENVIRONMENT .TP .B JPEGMEM If this environment variable is set, its value is the default memory limit. The value is specified as described for the .B \-maxmemory switch. .B JPEGMEM overrides the default value specified when the program was compiled, and itself is overridden by an explicit .BR \-maxmemory . .SH SEE ALSO .BR cjpeg (1), .BR jpegtran (1), .BR rdjpgcom (1), .BR wrjpgcom (1) .br .BR ppm (5), .BR pgm (5) .br Wallace, Gregory K. "The JPEG Still Picture Compression Standard", Communications of the ACM, April 1991 (vol. 34, no. 4), pp. 30-44. .SH AUTHOR Independent JPEG Group .PP This file was modified by The libjpeg-turbo Project to include only information relevant to libjpeg-turbo, to wordsmith certain sections, and to describe features not present in libjpeg. .SH BUGS To avoid the Unisys LZW patent, .B djpeg produces uncompressed GIF files. These are larger than they should be, but are readable by standard GIF decoders. libjpeg-turbo-1.4.2/jstdhuff.c0000644000076500007650000001223412600050400013164 00000000000000/* * jstdhuff.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1991-1998, Thomas G. Lane. * libjpeg-turbo Modifications: * Copyright (C) 2013, D. R. Commander. * For conditions of distribution and use, see the accompanying README file. * * This file contains routines to set the default Huffman tables, if they are * not already set. */ /* * Huffman table setup routines */ LOCAL(void) add_huff_table (j_common_ptr cinfo, JHUFF_TBL **htblptr, const UINT8 *bits, const UINT8 *val) /* Define a Huffman table */ { int nsymbols, len; if (*htblptr == NULL) *htblptr = jpeg_alloc_huff_table(cinfo); else return; /* Copy the number-of-symbols-of-each-code-length counts */ MEMCOPY((*htblptr)->bits, bits, sizeof((*htblptr)->bits)); /* Validate the counts. We do this here mainly so we can copy the right * number of symbols from the val[] array, without risking marching off * the end of memory. jchuff.c will do a more thorough test later. */ nsymbols = 0; for (len = 1; len <= 16; len++) nsymbols += bits[len]; if (nsymbols < 1 || nsymbols > 256) ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); MEMCOPY((*htblptr)->huffval, val, nsymbols * sizeof(UINT8)); /* Initialize sent_table FALSE so table will be written to JPEG file. */ (*htblptr)->sent_table = FALSE; } LOCAL(void) std_huff_tables (j_common_ptr cinfo) /* Set up the standard Huffman tables (cf. JPEG standard section K.3) */ /* IMPORTANT: these are only valid for 8-bit data precision! */ { JHUFF_TBL **dc_huff_tbl_ptrs, **ac_huff_tbl_ptrs; static const UINT8 bits_dc_luminance[17] = { /* 0-base */ 0, 0, 1, 5, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0 }; static const UINT8 val_dc_luminance[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 }; static const UINT8 bits_dc_chrominance[17] = { /* 0-base */ 0, 0, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0 }; static const UINT8 val_dc_chrominance[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 }; static const UINT8 bits_ac_luminance[17] = { /* 0-base */ 0, 0, 2, 1, 3, 3, 2, 4, 3, 5, 5, 4, 4, 0, 0, 1, 0x7d }; static const UINT8 val_ac_luminance[] = { 0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12, 0x21, 0x31, 0x41, 0x06, 0x13, 0x51, 0x61, 0x07, 0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xa1, 0x08, 0x23, 0x42, 0xb1, 0xc1, 0x15, 0x52, 0xd1, 0xf0, 0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0a, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2a, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7a, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe1, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, 0xf9, 0xfa }; static const UINT8 bits_ac_chrominance[17] = { /* 0-base */ 0, 0, 2, 1, 2, 4, 4, 3, 4, 7, 5, 4, 4, 0, 1, 2, 0x77 }; static const UINT8 val_ac_chrominance[] = { 0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21, 0x31, 0x06, 0x12, 0x41, 0x51, 0x07, 0x61, 0x71, 0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91, 0xa1, 0xb1, 0xc1, 0x09, 0x23, 0x33, 0x52, 0xf0, 0x15, 0x62, 0x72, 0xd1, 0x0a, 0x16, 0x24, 0x34, 0xe1, 0x25, 0xf1, 0x17, 0x18, 0x19, 0x1a, 0x26, 0x27, 0x28, 0x29, 0x2a, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7a, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, 0xf9, 0xfa }; if (cinfo->is_decompressor) { dc_huff_tbl_ptrs = ((j_decompress_ptr)cinfo)->dc_huff_tbl_ptrs; ac_huff_tbl_ptrs = ((j_decompress_ptr)cinfo)->ac_huff_tbl_ptrs; } else { dc_huff_tbl_ptrs = ((j_compress_ptr)cinfo)->dc_huff_tbl_ptrs; ac_huff_tbl_ptrs = ((j_compress_ptr)cinfo)->ac_huff_tbl_ptrs; } add_huff_table(cinfo, &dc_huff_tbl_ptrs[0], bits_dc_luminance, val_dc_luminance); add_huff_table(cinfo, &ac_huff_tbl_ptrs[0], bits_ac_luminance, val_ac_luminance); add_huff_table(cinfo, &dc_huff_tbl_ptrs[1], bits_dc_chrominance, val_dc_chrominance); add_huff_table(cinfo, &ac_huff_tbl_ptrs[1], bits_ac_chrominance, val_ac_chrominance); } libjpeg-turbo-1.4.2/turbojpeg.c0000644000076500007650000017041712600050400013360 00000000000000/* * Copyright (C)2009-2015 D. R. Commander. All Rights Reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * - Neither the name of the libjpeg-turbo Project nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS", * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* TurboJPEG/LJT: this implements the TurboJPEG API using libjpeg or libjpeg-turbo */ #include #include #include #include #define JPEG_INTERNALS #include #include #include #include "./turbojpeg.h" #include "./tjutil.h" #include "transupp.h" #include "./jpegcomp.h" extern void jpeg_mem_dest_tj(j_compress_ptr, unsigned char **, unsigned long *, boolean); extern void jpeg_mem_src_tj(j_decompress_ptr, unsigned char *, unsigned long); #define PAD(v, p) ((v+(p)-1)&(~((p)-1))) #define isPow2(x) (((x)&(x-1))==0) /* Error handling (based on example in example.c) */ static char errStr[JMSG_LENGTH_MAX]="No error"; struct my_error_mgr { struct jpeg_error_mgr pub; jmp_buf setjmp_buffer; void (*emit_message)(j_common_ptr, int); boolean warning; }; typedef struct my_error_mgr *my_error_ptr; static void my_error_exit(j_common_ptr cinfo) { my_error_ptr myerr=(my_error_ptr)cinfo->err; (*cinfo->err->output_message)(cinfo); longjmp(myerr->setjmp_buffer, 1); } /* Based on output_message() in jerror.c */ static void my_output_message(j_common_ptr cinfo) { (*cinfo->err->format_message)(cinfo, errStr); } static void my_emit_message(j_common_ptr cinfo, int msg_level) { my_error_ptr myerr=(my_error_ptr)cinfo->err; myerr->emit_message(cinfo, msg_level); if(msg_level<0) myerr->warning=TRUE; } /* Global structures, macros, etc. */ enum {COMPRESS=1, DECOMPRESS=2}; typedef struct _tjinstance { struct jpeg_compress_struct cinfo; struct jpeg_decompress_struct dinfo; struct my_error_mgr jerr; int init, headerRead; } tjinstance; static const int pixelsize[TJ_NUMSAMP]={3, 3, 3, 1, 3, 3}; static const JXFORM_CODE xformtypes[TJ_NUMXOP]= { JXFORM_NONE, JXFORM_FLIP_H, JXFORM_FLIP_V, JXFORM_TRANSPOSE, JXFORM_TRANSVERSE, JXFORM_ROT_90, JXFORM_ROT_180, JXFORM_ROT_270 }; #define NUMSF 16 static const tjscalingfactor sf[NUMSF]={ {2, 1}, {15, 8}, {7, 4}, {13, 8}, {3, 2}, {11, 8}, {5, 4}, {9, 8}, {1, 1}, {7, 8}, {3, 4}, {5, 8}, {1, 2}, {3, 8}, {1, 4}, {1, 8} }; #define _throw(m) {snprintf(errStr, JMSG_LENGTH_MAX, "%s", m); \ retval=-1; goto bailout;} #define getinstance(handle) tjinstance *this=(tjinstance *)handle; \ j_compress_ptr cinfo=NULL; j_decompress_ptr dinfo=NULL; \ if(!this) {snprintf(errStr, JMSG_LENGTH_MAX, "Invalid handle"); \ return -1;} \ cinfo=&this->cinfo; dinfo=&this->dinfo; \ this->jerr.warning=FALSE; #define getcinstance(handle) tjinstance *this=(tjinstance *)handle; \ j_compress_ptr cinfo=NULL; \ if(!this) {snprintf(errStr, JMSG_LENGTH_MAX, "Invalid handle"); \ return -1;} \ cinfo=&this->cinfo; \ this->jerr.warning=FALSE; #define getdinstance(handle) tjinstance *this=(tjinstance *)handle; \ j_decompress_ptr dinfo=NULL; \ if(!this) {snprintf(errStr, JMSG_LENGTH_MAX, "Invalid handle"); \ return -1;} \ dinfo=&this->dinfo; \ this->jerr.warning=FALSE; static int getPixelFormat(int pixelSize, int flags) { if(pixelSize==1) return TJPF_GRAY; if(pixelSize==3) { if(flags&TJ_BGR) return TJPF_BGR; else return TJPF_RGB; } if(pixelSize==4) { if(flags&TJ_ALPHAFIRST) { if(flags&TJ_BGR) return TJPF_XBGR; else return TJPF_XRGB; } else { if(flags&TJ_BGR) return TJPF_BGRX; else return TJPF_RGBX; } } return -1; } static int setCompDefaults(struct jpeg_compress_struct *cinfo, int pixelFormat, int subsamp, int jpegQual, int flags) { int retval=0; char *env=NULL; switch(pixelFormat) { case TJPF_GRAY: cinfo->in_color_space=JCS_GRAYSCALE; break; #if JCS_EXTENSIONS==1 case TJPF_RGB: cinfo->in_color_space=JCS_EXT_RGB; break; case TJPF_BGR: cinfo->in_color_space=JCS_EXT_BGR; break; case TJPF_RGBX: case TJPF_RGBA: cinfo->in_color_space=JCS_EXT_RGBX; break; case TJPF_BGRX: case TJPF_BGRA: cinfo->in_color_space=JCS_EXT_BGRX; break; case TJPF_XRGB: case TJPF_ARGB: cinfo->in_color_space=JCS_EXT_XRGB; break; case TJPF_XBGR: case TJPF_ABGR: cinfo->in_color_space=JCS_EXT_XBGR; break; #else case TJPF_RGB: case TJPF_BGR: case TJPF_RGBX: case TJPF_BGRX: case TJPF_XRGB: case TJPF_XBGR: case TJPF_RGBA: case TJPF_BGRA: case TJPF_ARGB: case TJPF_ABGR: cinfo->in_color_space=JCS_RGB; pixelFormat=TJPF_RGB; break; #endif case TJPF_CMYK: cinfo->in_color_space=JCS_CMYK; break; } cinfo->input_components=tjPixelSize[pixelFormat]; jpeg_set_defaults(cinfo); #ifndef NO_GETENV if((env=getenv("TJ_OPTIMIZE"))!=NULL && strlen(env)>0 && !strcmp(env, "1")) cinfo->optimize_coding=TRUE; if((env=getenv("TJ_ARITHMETIC"))!=NULL && strlen(env)>0 && !strcmp(env, "1")) cinfo->arith_code=TRUE; if((env=getenv("TJ_RESTART"))!=NULL && strlen(env)>0) { int temp=-1; char tempc=0; if(sscanf(env, "%d%c", &temp, &tempc)>=1 && temp>=0 && temp<=65535) { if(toupper(tempc)=='B') { cinfo->restart_interval=temp; cinfo->restart_in_rows=0; } else cinfo->restart_in_rows=temp; } } #endif if(jpegQual>=0) { jpeg_set_quality(cinfo, jpegQual, TRUE); if(jpegQual>=96 || flags&TJFLAG_ACCURATEDCT) cinfo->dct_method=JDCT_ISLOW; else cinfo->dct_method=JDCT_FASTEST; } if(subsamp==TJSAMP_GRAY) jpeg_set_colorspace(cinfo, JCS_GRAYSCALE); else if(pixelFormat==TJPF_CMYK) jpeg_set_colorspace(cinfo, JCS_YCCK); else jpeg_set_colorspace(cinfo, JCS_YCbCr); #ifndef NO_GETENV if((env=getenv("TJ_PROGRESSIVE"))!=NULL && strlen(env)>0 && !strcmp(env, "1")) jpeg_simple_progression(cinfo); #endif cinfo->comp_info[0].h_samp_factor=tjMCUWidth[subsamp]/8; cinfo->comp_info[1].h_samp_factor=1; cinfo->comp_info[2].h_samp_factor=1; if(cinfo->num_components>3) cinfo->comp_info[3].h_samp_factor=tjMCUWidth[subsamp]/8; cinfo->comp_info[0].v_samp_factor=tjMCUHeight[subsamp]/8; cinfo->comp_info[1].v_samp_factor=1; cinfo->comp_info[2].v_samp_factor=1; if(cinfo->num_components>3) cinfo->comp_info[3].v_samp_factor=tjMCUHeight[subsamp]/8; return retval; } static int setDecompDefaults(struct jpeg_decompress_struct *dinfo, int pixelFormat, int flags) { int retval=0; switch(pixelFormat) { case TJPF_GRAY: dinfo->out_color_space=JCS_GRAYSCALE; break; #if JCS_EXTENSIONS==1 case TJPF_RGB: dinfo->out_color_space=JCS_EXT_RGB; break; case TJPF_BGR: dinfo->out_color_space=JCS_EXT_BGR; break; case TJPF_RGBX: dinfo->out_color_space=JCS_EXT_RGBX; break; case TJPF_BGRX: dinfo->out_color_space=JCS_EXT_BGRX; break; case TJPF_XRGB: dinfo->out_color_space=JCS_EXT_XRGB; break; case TJPF_XBGR: dinfo->out_color_space=JCS_EXT_XBGR; break; #if JCS_ALPHA_EXTENSIONS==1 case TJPF_RGBA: dinfo->out_color_space=JCS_EXT_RGBA; break; case TJPF_BGRA: dinfo->out_color_space=JCS_EXT_BGRA; break; case TJPF_ARGB: dinfo->out_color_space=JCS_EXT_ARGB; break; case TJPF_ABGR: dinfo->out_color_space=JCS_EXT_ABGR; break; #endif #else case TJPF_RGB: case TJPF_BGR: case TJPF_RGBX: case TJPF_BGRX: case TJPF_XRGB: case TJPF_XBGR: case TJPF_RGBA: case TJPF_BGRA: case TJPF_ARGB: case TJPF_ABGR: dinfo->out_color_space=JCS_RGB; break; #endif case TJPF_CMYK: dinfo->out_color_space=JCS_CMYK; break; default: _throw("Unsupported pixel format"); } if(flags&TJFLAG_FASTDCT) dinfo->dct_method=JDCT_FASTEST; bailout: return retval; } static int getSubsamp(j_decompress_ptr dinfo) { int retval=-1, i, k; /* The sampling factors actually have no meaning with grayscale JPEG files, and in fact it's possible to generate grayscale JPEGs with sampling factors > 1 (even though those sampling factors are ignored by the decompressor.) Thus, we need to treat grayscale as a special case. */ if(dinfo->num_components==1 && dinfo->jpeg_color_space==JCS_GRAYSCALE) return TJSAMP_GRAY; for(i=0; inum_components==pixelsize[i] || ((dinfo->jpeg_color_space==JCS_YCCK || dinfo->jpeg_color_space==JCS_CMYK) && pixelsize[i]==3 && dinfo->num_components==4)) { if(dinfo->comp_info[0].h_samp_factor==tjMCUWidth[i]/8 && dinfo->comp_info[0].v_samp_factor==tjMCUHeight[i]/8) { int match=0; for(k=1; knum_components; k++) { int href=1, vref=1; if(dinfo->jpeg_color_space==JCS_YCCK && k==3) { href=tjMCUWidth[i]/8; vref=tjMCUHeight[i]/8; } if(dinfo->comp_info[k].h_samp_factor==href && dinfo->comp_info[k].v_samp_factor==vref) match++; } if(match==dinfo->num_components-1) { retval=i; break; } } } } return retval; } #ifndef JCS_EXTENSIONS /* Conversion functions to emulate the colorspace extensions. This allows the TurboJPEG wrapper to be used with libjpeg */ #define TORGB(PS, ROFFSET, GOFFSET, BOFFSET) { \ int rowPad=pitch-width*PS; \ while(height--) \ { \ unsigned char *endOfRow=src+width*PS; \ while(srcjerr.setjmp_buffer)) return -1; if(this->init&COMPRESS) jpeg_destroy_compress(cinfo); if(this->init&DECOMPRESS) jpeg_destroy_decompress(dinfo); free(this); return 0; } /* These are exposed mainly because Windows can't malloc() and free() across DLL boundaries except when the CRT DLL is used, and we don't use the CRT DLL with turbojpeg.dll for compatibility reasons. However, these functions can potentially be used for other purposes by different implementations. */ DLLEXPORT void DLLCALL tjFree(unsigned char *buf) { if(buf) free(buf); } DLLEXPORT unsigned char *DLLCALL tjAlloc(int bytes) { return (unsigned char *)malloc(bytes); } /* Compressor */ static tjhandle _tjInitCompress(tjinstance *this) { unsigned char buffer[1], *buf=buffer; unsigned long size=1; /* This is also straight out of example.c */ this->cinfo.err=jpeg_std_error(&this->jerr.pub); this->jerr.pub.error_exit=my_error_exit; this->jerr.pub.output_message=my_output_message; this->jerr.emit_message=this->jerr.pub.emit_message; this->jerr.pub.emit_message=my_emit_message; if(setjmp(this->jerr.setjmp_buffer)) { /* If we get here, the JPEG code has signaled an error. */ if(this) free(this); return NULL; } jpeg_create_compress(&this->cinfo); /* Make an initial call so it will create the destination manager */ jpeg_mem_dest_tj(&this->cinfo, &buf, &size, 0); this->init|=COMPRESS; return (tjhandle)this; } DLLEXPORT tjhandle DLLCALL tjInitCompress(void) { tjinstance *this=NULL; if((this=(tjinstance *)malloc(sizeof(tjinstance)))==NULL) { snprintf(errStr, JMSG_LENGTH_MAX, "tjInitCompress(): Memory allocation failure"); return NULL; } MEMZERO(this, sizeof(tjinstance)); return _tjInitCompress(this); } DLLEXPORT unsigned long DLLCALL tjBufSize(int width, int height, int jpegSubsamp) { unsigned long retval=0; int mcuw, mcuh, chromasf; if(width<1 || height<1 || jpegSubsamp<0 || jpegSubsamp>=NUMSUBOPT) _throw("tjBufSize(): Invalid argument"); /* This allows for rare corner cases in which a JPEG image can actually be larger than the uncompressed input (we wouldn't mention it if it hadn't happened before.) */ mcuw=tjMCUWidth[jpegSubsamp]; mcuh=tjMCUHeight[jpegSubsamp]; chromasf=jpegSubsamp==TJSAMP_GRAY? 0: 4*64/(mcuw*mcuh); retval=PAD(width, mcuw) * PAD(height, mcuh) * (2 + chromasf) + 2048; bailout: return retval; } DLLEXPORT unsigned long DLLCALL TJBUFSIZE(int width, int height) { unsigned long retval=0; if(width<1 || height<1) _throw("TJBUFSIZE(): Invalid argument"); /* This allows for rare corner cases in which a JPEG image can actually be larger than the uncompressed input (we wouldn't mention it if it hadn't happened before.) */ retval=PAD(width, 16) * PAD(height, 16) * 6 + 2048; bailout: return retval; } DLLEXPORT unsigned long DLLCALL tjBufSizeYUV2(int width, int pad, int height, int subsamp) { int retval=0, nc, i; if(subsamp<0 || subsamp>=NUMSUBOPT) _throw("tjBufSizeYUV2(): Invalid argument"); nc=(subsamp==TJSAMP_GRAY? 1:3); for(i=0; i=TJ_NUMSAMP) _throw("tjPlaneWidth(): Invalid argument"); nc=(subsamp==TJSAMP_GRAY? 1:3); if(componentID<0 || componentID>=nc) _throw("tjPlaneWidth(): Invalid argument"); pw=PAD(width, tjMCUWidth[subsamp]/8); if(componentID==0) retval=pw; else retval=pw*8/tjMCUWidth[subsamp]; bailout: return retval; } DLLEXPORT int tjPlaneHeight(int componentID, int height, int subsamp) { int ph, nc, retval=0; if(height<1 || subsamp<0 || subsamp>=TJ_NUMSAMP) _throw("tjPlaneHeight(): Invalid argument"); nc=(subsamp==TJSAMP_GRAY? 1:3); if(componentID<0 || componentID>=nc) _throw("tjPlaneHeight(): Invalid argument"); ph=PAD(height, tjMCUHeight[subsamp]/8); if(componentID==0) retval=ph; else retval=ph*8/tjMCUHeight[subsamp]; bailout: return retval; } DLLEXPORT unsigned long DLLCALL tjPlaneSizeYUV(int componentID, int width, int stride, int height, int subsamp) { unsigned long retval=0; int pw, ph; if(width<1 || height<1 || subsamp<0 || subsamp>=NUMSUBOPT) _throw("tjPlaneSizeYUV(): Invalid argument"); pw=tjPlaneWidth(componentID, width, subsamp); ph=tjPlaneHeight(componentID, height, subsamp); if(pw<0 || ph<0) return -1; if(stride==0) stride=pw; else stride=abs(stride); retval=stride*(ph-1)+pw; bailout: return retval; } DLLEXPORT int DLLCALL tjCompress2(tjhandle handle, unsigned char *srcBuf, int width, int pitch, int height, int pixelFormat, unsigned char **jpegBuf, unsigned long *jpegSize, int jpegSubsamp, int jpegQual, int flags) { int i, retval=0, alloc=1; JSAMPROW *row_pointer=NULL; #ifndef JCS_EXTENSIONS unsigned char *rgbBuf=NULL; #endif getcinstance(handle) if((this->init&COMPRESS)==0) _throw("tjCompress2(): Instance has not been initialized for compression"); if(srcBuf==NULL || width<=0 || pitch<0 || height<=0 || pixelFormat<0 || pixelFormat>=TJ_NUMPF || jpegBuf==NULL || jpegSize==NULL || jpegSubsamp<0 || jpegSubsamp>=NUMSUBOPT || jpegQual<0 || jpegQual>100) _throw("tjCompress2(): Invalid argument"); if(setjmp(this->jerr.setjmp_buffer)) { /* If we get here, the JPEG code has signaled an error. */ retval=-1; goto bailout; } if(pitch==0) pitch=width*tjPixelSize[pixelFormat]; #ifndef JCS_EXTENSIONS if(pixelFormat!=TJPF_GRAY && pixelFormat!=TJPF_CMYK) { rgbBuf=(unsigned char *)malloc(width*height*RGB_PIXELSIZE); if(!rgbBuf) _throw("tjCompress2(): Memory allocation failure"); srcBuf=toRGB(srcBuf, width, pitch, height, pixelFormat, rgbBuf); pitch=width*RGB_PIXELSIZE; } #endif cinfo->image_width=width; cinfo->image_height=height; if(flags&TJFLAG_FORCEMMX) putenv("JSIMD_FORCEMMX=1"); else if(flags&TJFLAG_FORCESSE) putenv("JSIMD_FORCESSE=1"); else if(flags&TJFLAG_FORCESSE2) putenv("JSIMD_FORCESSE2=1"); if(flags&TJFLAG_NOREALLOC) { alloc=0; *jpegSize=tjBufSize(width, height, jpegSubsamp); } jpeg_mem_dest_tj(cinfo, jpegBuf, jpegSize, alloc); if(setCompDefaults(cinfo, pixelFormat, jpegSubsamp, jpegQual, flags)==-1) return -1; jpeg_start_compress(cinfo, TRUE); if((row_pointer=(JSAMPROW *)malloc(sizeof(JSAMPROW)*height))==NULL) _throw("tjCompress2(): Memory allocation failure"); for(i=0; inext_scanlineimage_height) { jpeg_write_scanlines(cinfo, &row_pointer[cinfo->next_scanline], cinfo->image_height-cinfo->next_scanline); } jpeg_finish_compress(cinfo); bailout: if(cinfo->global_state>CSTATE_START) jpeg_abort_compress(cinfo); #ifndef JCS_EXTENSIONS if(rgbBuf) free(rgbBuf); #endif if(row_pointer) free(row_pointer); if(this->jerr.warning) retval=-1; return retval; } DLLEXPORT int DLLCALL tjCompress(tjhandle handle, unsigned char *srcBuf, int width, int pitch, int height, int pixelSize, unsigned char *jpegBuf, unsigned long *jpegSize, int jpegSubsamp, int jpegQual, int flags) { int retval=0; unsigned long size; if(flags&TJ_YUV) { size=tjBufSizeYUV(width, height, jpegSubsamp); retval=tjEncodeYUV2(handle, srcBuf, width, pitch, height, getPixelFormat(pixelSize, flags), jpegBuf, jpegSubsamp, flags); } else { retval=tjCompress2(handle, srcBuf, width, pitch, height, getPixelFormat(pixelSize, flags), &jpegBuf, &size, jpegSubsamp, jpegQual, flags|TJFLAG_NOREALLOC); } *jpegSize=size; return retval; } DLLEXPORT int DLLCALL tjEncodeYUVPlanes(tjhandle handle, unsigned char *srcBuf, int width, int pitch, int height, int pixelFormat, unsigned char **dstPlanes, int *strides, int subsamp, int flags) { int i, retval=0; JSAMPROW *row_pointer=NULL; JSAMPLE *_tmpbuf[MAX_COMPONENTS], *_tmpbuf2[MAX_COMPONENTS]; JSAMPROW *tmpbuf[MAX_COMPONENTS], *tmpbuf2[MAX_COMPONENTS]; JSAMPROW *outbuf[MAX_COMPONENTS]; int row, pw0, ph0, pw[MAX_COMPONENTS], ph[MAX_COMPONENTS]; JSAMPLE *ptr; jpeg_component_info *compptr; #ifndef JCS_EXTENSIONS unsigned char *rgbBuf=NULL; #endif getcinstance(handle); for(i=0; iinit&COMPRESS)==0) _throw("tjEncodeYUVPlanes(): Instance has not been initialized for compression"); if(srcBuf==NULL || width<=0 || pitch<0 || height<=0 || pixelFormat<0 || pixelFormat>=TJ_NUMPF || !dstPlanes || !dstPlanes[0] || subsamp<0 || subsamp>=NUMSUBOPT) _throw("tjEncodeYUVPlanes(): Invalid argument"); if(subsamp!=TJSAMP_GRAY && (!dstPlanes[1] || !dstPlanes[2])) _throw("tjEncodeYUVPlanes(): Invalid argument"); if(setjmp(this->jerr.setjmp_buffer)) { /* If we get here, the JPEG code has signaled an error. */ retval=-1; goto bailout; } if(pixelFormat==TJPF_CMYK) _throw("tjEncodeYUVPlanes(): Cannot generate YUV images from CMYK pixels"); if(pitch==0) pitch=width*tjPixelSize[pixelFormat]; #ifndef JCS_EXTENSIONS if(pixelFormat!=TJPF_GRAY && pixelFormat!=TJPF_CMYK) { rgbBuf=(unsigned char *)malloc(width*height*RGB_PIXELSIZE); if(!rgbBuf) _throw("tjEncodeYUVPlanes(): Memory allocation failure"); srcBuf=toRGB(srcBuf, width, pitch, height, pixelFormat, rgbBuf); pitch=width*RGB_PIXELSIZE; } #endif cinfo->image_width=width; cinfo->image_height=height; if(flags&TJFLAG_FORCEMMX) putenv("JSIMD_FORCEMMX=1"); else if(flags&TJFLAG_FORCESSE) putenv("JSIMD_FORCESSE=1"); else if(flags&TJFLAG_FORCESSE2) putenv("JSIMD_FORCESSE2=1"); if(setCompDefaults(cinfo, pixelFormat, subsamp, -1, flags)==-1) return -1; /* Execute only the parts of jpeg_start_compress() that we need. If we were to call the whole jpeg_start_compress() function, then it would try to write the file headers, which could overflow the output buffer if the YUV image were very small. */ if(cinfo->global_state!=CSTATE_START) _throw("tjEncodeYUVPlanes(): libjpeg API is in the wrong state"); (*cinfo->err->reset_error_mgr)((j_common_ptr)cinfo); jinit_c_master_control(cinfo, FALSE); jinit_color_converter(cinfo); jinit_downsampler(cinfo); (*cinfo->cconvert->start_pass)(cinfo); pw0=PAD(width, cinfo->max_h_samp_factor); ph0=PAD(height, cinfo->max_v_samp_factor); if((row_pointer=(JSAMPROW *)malloc(sizeof(JSAMPROW)*ph0))==NULL) _throw("tjEncodeYUVPlanes(): Memory allocation failure"); for(i=0; inum_components; i++) { compptr=&cinfo->comp_info[i]; _tmpbuf[i]=(JSAMPLE *)malloc( PAD((compptr->width_in_blocks*cinfo->max_h_samp_factor*DCTSIZE) /compptr->h_samp_factor, 16) * cinfo->max_v_samp_factor + 16); if(!_tmpbuf[i]) _throw("tjEncodeYUVPlanes(): Memory allocation failure"); tmpbuf[i]=(JSAMPROW *)malloc(sizeof(JSAMPROW)*cinfo->max_v_samp_factor); if(!tmpbuf[i]) _throw("tjEncodeYUVPlanes(): Memory allocation failure"); for(row=0; rowmax_v_samp_factor; row++) { unsigned char *_tmpbuf_aligned= (unsigned char *)PAD((size_t)_tmpbuf[i], 16); tmpbuf[i][row]=&_tmpbuf_aligned[ PAD((compptr->width_in_blocks*cinfo->max_h_samp_factor*DCTSIZE) /compptr->h_samp_factor, 16) * row]; } _tmpbuf2[i]=(JSAMPLE *)malloc(PAD(compptr->width_in_blocks*DCTSIZE, 16) * compptr->v_samp_factor + 16); if(!_tmpbuf2[i]) _throw("tjEncodeYUVPlanes(): Memory allocation failure"); tmpbuf2[i]=(JSAMPROW *)malloc(sizeof(JSAMPROW)*compptr->v_samp_factor); if(!tmpbuf2[i]) _throw("tjEncodeYUVPlanes(): Memory allocation failure"); for(row=0; rowv_samp_factor; row++) { unsigned char *_tmpbuf2_aligned= (unsigned char *)PAD((size_t)_tmpbuf2[i], 16); tmpbuf2[i][row]=&_tmpbuf2_aligned[ PAD(compptr->width_in_blocks*DCTSIZE, 16) * row]; } pw[i]=pw0*compptr->h_samp_factor/cinfo->max_h_samp_factor; ph[i]=ph0*compptr->v_samp_factor/cinfo->max_v_samp_factor; outbuf[i]=(JSAMPROW *)malloc(sizeof(JSAMPROW)*ph[i]); if(!outbuf[i]) _throw("tjEncodeYUVPlanes(): Memory allocation failure"); ptr=dstPlanes[i]; for(row=0; rowmax_v_samp_factor) { (*cinfo->cconvert->color_convert)(cinfo, &row_pointer[row], tmpbuf, 0, cinfo->max_v_samp_factor); (cinfo->downsample->downsample)(cinfo, tmpbuf, 0, tmpbuf2, 0); for(i=0, compptr=cinfo->comp_info; inum_components; i++, compptr++) jcopy_sample_rows(tmpbuf2[i], 0, outbuf[i], row*compptr->v_samp_factor/cinfo->max_v_samp_factor, compptr->v_samp_factor, pw[i]); } cinfo->next_scanline+=height; jpeg_abort_compress(cinfo); bailout: if(cinfo->global_state>CSTATE_START) jpeg_abort_compress(cinfo); #ifndef JCS_EXTENSIONS if(rgbBuf) free(rgbBuf); #endif if(row_pointer) free(row_pointer); for(i=0; ijerr.warning) retval=-1; return retval; } DLLEXPORT int DLLCALL tjEncodeYUV3(tjhandle handle, unsigned char *srcBuf, int width, int pitch, int height, int pixelFormat, unsigned char *dstBuf, int pad, int subsamp, int flags) { unsigned char *dstPlanes[3]; int pw0, ph0, strides[3], retval=-1; if(width<=0 || height<=0 || dstBuf==NULL || pad<0 || !isPow2(pad) || subsamp<0 || subsamp>=NUMSUBOPT) _throw("tjEncodeYUV3(): Invalid argument"); pw0=tjPlaneWidth(0, width, subsamp); ph0=tjPlaneHeight(0, height, subsamp); dstPlanes[0]=dstBuf; strides[0]=PAD(pw0, pad); if(subsamp==TJSAMP_GRAY) { strides[1]=strides[2]=0; dstPlanes[1]=dstPlanes[2]=NULL; } else { int pw1=tjPlaneWidth(1, width, subsamp); int ph1=tjPlaneHeight(1, height, subsamp); strides[1]=strides[2]=PAD(pw1, pad); dstPlanes[1]=dstPlanes[0]+strides[0]*ph0; dstPlanes[2]=dstPlanes[1]+strides[1]*ph1; } return tjEncodeYUVPlanes(handle, srcBuf, width, pitch, height, pixelFormat, dstPlanes, strides, subsamp, flags); bailout: return retval; } DLLEXPORT int DLLCALL tjEncodeYUV2(tjhandle handle, unsigned char *srcBuf, int width, int pitch, int height, int pixelFormat, unsigned char *dstBuf, int subsamp, int flags) { return tjEncodeYUV3(handle, srcBuf, width, pitch, height, pixelFormat, dstBuf, 4, subsamp, flags); } DLLEXPORT int DLLCALL tjEncodeYUV(tjhandle handle, unsigned char *srcBuf, int width, int pitch, int height, int pixelSize, unsigned char *dstBuf, int subsamp, int flags) { return tjEncodeYUV2(handle, srcBuf, width, pitch, height, getPixelFormat(pixelSize, flags), dstBuf, subsamp, flags); } DLLEXPORT int DLLCALL tjCompressFromYUVPlanes(tjhandle handle, unsigned char **srcPlanes, int width, int *strides, int height, int subsamp, unsigned char **jpegBuf, unsigned long *jpegSize, int jpegQual, int flags) { int i, row, retval=0, alloc=1; JSAMPROW *inbuf[MAX_COMPONENTS]; int pw[MAX_COMPONENTS], ph[MAX_COMPONENTS], iw[MAX_COMPONENTS], tmpbufsize=0, usetmpbuf=0, th[MAX_COMPONENTS]; JSAMPLE *_tmpbuf=NULL, *ptr; JSAMPROW *tmpbuf[MAX_COMPONENTS]; getcinstance(handle) for(i=0; iinit&COMPRESS)==0) _throw("tjCompressFromYUVPlanes(): Instance has not been initialized for compression"); if(!srcPlanes || !srcPlanes[0] || width<=0 || height<=0 || subsamp<0 || subsamp>=NUMSUBOPT || jpegBuf==NULL || jpegSize==NULL || jpegQual<0 || jpegQual>100) _throw("tjCompressFromYUVPlanes(): Invalid argument"); if(subsamp!=TJSAMP_GRAY && (!srcPlanes[1] || !srcPlanes[2])) _throw("tjCompressFromYUVPlanes(): Invalid argument"); if(setjmp(this->jerr.setjmp_buffer)) { /* If we get here, the JPEG code has signaled an error. */ retval=-1; goto bailout; } cinfo->image_width=width; cinfo->image_height=height; if(flags&TJFLAG_FORCEMMX) putenv("JSIMD_FORCEMMX=1"); else if(flags&TJFLAG_FORCESSE) putenv("JSIMD_FORCESSE=1"); else if(flags&TJFLAG_FORCESSE2) putenv("JSIMD_FORCESSE2=1"); if(flags&TJFLAG_NOREALLOC) { alloc=0; *jpegSize=tjBufSize(width, height, subsamp); } jpeg_mem_dest_tj(cinfo, jpegBuf, jpegSize, alloc); if(setCompDefaults(cinfo, TJPF_RGB, subsamp, jpegQual, flags)==-1) return -1; cinfo->raw_data_in=TRUE; jpeg_start_compress(cinfo, TRUE); for(i=0; inum_components; i++) { jpeg_component_info *compptr=&cinfo->comp_info[i]; int ih; iw[i]=compptr->width_in_blocks*DCTSIZE; ih=compptr->height_in_blocks*DCTSIZE; pw[i]=PAD(cinfo->image_width, cinfo->max_h_samp_factor) *compptr->h_samp_factor/cinfo->max_h_samp_factor; ph[i]=PAD(cinfo->image_height, cinfo->max_v_samp_factor) *compptr->v_samp_factor/cinfo->max_v_samp_factor; if(iw[i]!=pw[i] || ih!=ph[i]) usetmpbuf=1; th[i]=compptr->v_samp_factor*DCTSIZE; tmpbufsize+=iw[i]*th[i]; if((inbuf[i]=(JSAMPROW *)malloc(sizeof(JSAMPROW)*ph[i]))==NULL) _throw("tjCompressFromYUVPlanes(): Memory allocation failure"); ptr=srcPlanes[i]; for(row=0; rownum_components; i++) { if((tmpbuf[i]=(JSAMPROW *)malloc(sizeof(JSAMPROW)*th[i]))==NULL) _throw("tjCompressFromYUVPlanes(): Memory allocation failure"); for(row=0; rowimage_height; row+=cinfo->max_v_samp_factor*DCTSIZE) { JSAMPARRAY yuvptr[MAX_COMPONENTS]; int crow[MAX_COMPONENTS]; for(i=0; inum_components; i++) { jpeg_component_info *compptr=&cinfo->comp_info[i]; crow[i]=row*compptr->v_samp_factor/cinfo->max_v_samp_factor; if(usetmpbuf) { int j, k; for(j=0; jmax_v_samp_factor*DCTSIZE); } jpeg_finish_compress(cinfo); bailout: if(cinfo->global_state>CSTATE_START) jpeg_abort_compress(cinfo); for(i=0; ijerr.warning) retval=-1; return retval; } DLLEXPORT int DLLCALL tjCompressFromYUV(tjhandle handle, unsigned char *srcBuf, int width, int pad, int height, int subsamp, unsigned char **jpegBuf, unsigned long *jpegSize, int jpegQual, int flags) { unsigned char *srcPlanes[3]; int pw0, ph0, strides[3], retval=-1; if(srcBuf==NULL || width<=0 || pad<1 || height<=0 || subsamp<0 || subsamp>=NUMSUBOPT) _throw("tjCompressFromYUV(): Invalid argument"); pw0=tjPlaneWidth(0, width, subsamp); ph0=tjPlaneHeight(0, height, subsamp); srcPlanes[0]=srcBuf; strides[0]=PAD(pw0, pad); if(subsamp==TJSAMP_GRAY) { strides[1]=strides[2]=0; srcPlanes[1]=srcPlanes[2]=NULL; } else { int pw1=tjPlaneWidth(1, width, subsamp); int ph1=tjPlaneHeight(1, height, subsamp); strides[1]=strides[2]=PAD(pw1, pad); srcPlanes[1]=srcPlanes[0]+strides[0]*ph0; srcPlanes[2]=srcPlanes[1]+strides[1]*ph1; } return tjCompressFromYUVPlanes(handle, srcPlanes, width, strides, height, subsamp, jpegBuf, jpegSize, jpegQual, flags); bailout: return retval; } /* Decompressor */ static tjhandle _tjInitDecompress(tjinstance *this) { unsigned char buffer[1]; /* This is also straight out of example.c */ this->dinfo.err=jpeg_std_error(&this->jerr.pub); this->jerr.pub.error_exit=my_error_exit; this->jerr.pub.output_message=my_output_message; this->jerr.emit_message=this->jerr.pub.emit_message; this->jerr.pub.emit_message=my_emit_message; if(setjmp(this->jerr.setjmp_buffer)) { /* If we get here, the JPEG code has signaled an error. */ if(this) free(this); return NULL; } jpeg_create_decompress(&this->dinfo); /* Make an initial call so it will create the source manager */ jpeg_mem_src_tj(&this->dinfo, buffer, 1); this->init|=DECOMPRESS; return (tjhandle)this; } DLLEXPORT tjhandle DLLCALL tjInitDecompress(void) { tjinstance *this; if((this=(tjinstance *)malloc(sizeof(tjinstance)))==NULL) { snprintf(errStr, JMSG_LENGTH_MAX, "tjInitDecompress(): Memory allocation failure"); return NULL; } MEMZERO(this, sizeof(tjinstance)); return _tjInitDecompress(this); } DLLEXPORT int DLLCALL tjDecompressHeader3(tjhandle handle, unsigned char *jpegBuf, unsigned long jpegSize, int *width, int *height, int *jpegSubsamp, int *jpegColorspace) { int retval=0; getdinstance(handle); if((this->init&DECOMPRESS)==0) _throw("tjDecompressHeader3(): Instance has not been initialized for decompression"); if(jpegBuf==NULL || jpegSize<=0 || width==NULL || height==NULL || jpegSubsamp==NULL || jpegColorspace==NULL) _throw("tjDecompressHeader3(): Invalid argument"); if(setjmp(this->jerr.setjmp_buffer)) { /* If we get here, the JPEG code has signaled an error. */ return -1; } jpeg_mem_src_tj(dinfo, jpegBuf, jpegSize); jpeg_read_header(dinfo, TRUE); *width=dinfo->image_width; *height=dinfo->image_height; *jpegSubsamp=getSubsamp(dinfo); switch(dinfo->jpeg_color_space) { case JCS_GRAYSCALE: *jpegColorspace=TJCS_GRAY; break; case JCS_RGB: *jpegColorspace=TJCS_RGB; break; case JCS_YCbCr: *jpegColorspace=TJCS_YCbCr; break; case JCS_CMYK: *jpegColorspace=TJCS_CMYK; break; case JCS_YCCK: *jpegColorspace=TJCS_YCCK; break; default: *jpegColorspace=-1; break; } jpeg_abort_decompress(dinfo); if(*jpegSubsamp<0) _throw("tjDecompressHeader3(): Could not determine subsampling type for JPEG image"); if(*jpegColorspace<0) _throw("tjDecompressHeader3(): Could not determine colorspace of JPEG image"); if(*width<1 || *height<1) _throw("tjDecompressHeader3(): Invalid data returned in header"); bailout: if(this->jerr.warning) retval=-1; return retval; } DLLEXPORT int DLLCALL tjDecompressHeader2(tjhandle handle, unsigned char *jpegBuf, unsigned long jpegSize, int *width, int *height, int *jpegSubsamp) { int jpegColorspace; return tjDecompressHeader3(handle, jpegBuf, jpegSize, width, height, jpegSubsamp, &jpegColorspace); } DLLEXPORT int DLLCALL tjDecompressHeader(tjhandle handle, unsigned char *jpegBuf, unsigned long jpegSize, int *width, int *height) { int jpegSubsamp; return tjDecompressHeader2(handle, jpegBuf, jpegSize, width, height, &jpegSubsamp); } DLLEXPORT tjscalingfactor* DLLCALL tjGetScalingFactors(int *numscalingfactors) { if(numscalingfactors==NULL) { snprintf(errStr, JMSG_LENGTH_MAX, "tjGetScalingFactors(): Invalid argument"); return NULL; } *numscalingfactors=NUMSF; return (tjscalingfactor *)sf; } DLLEXPORT int DLLCALL tjDecompress2(tjhandle handle, unsigned char *jpegBuf, unsigned long jpegSize, unsigned char *dstBuf, int width, int pitch, int height, int pixelFormat, int flags) { int i, retval=0; JSAMPROW *row_pointer=NULL; int jpegwidth, jpegheight, scaledw, scaledh; #ifndef JCS_EXTENSIONS unsigned char *rgbBuf=NULL; unsigned char *_dstBuf=NULL; int _pitch=0; #endif getdinstance(handle); if((this->init&DECOMPRESS)==0) _throw("tjDecompress2(): Instance has not been initialized for decompression"); if(jpegBuf==NULL || jpegSize<=0 || dstBuf==NULL || width<0 || pitch<0 || height<0 || pixelFormat<0 || pixelFormat>=TJ_NUMPF) _throw("tjDecompress2(): Invalid argument"); if(flags&TJFLAG_FORCEMMX) putenv("JSIMD_FORCEMMX=1"); else if(flags&TJFLAG_FORCESSE) putenv("JSIMD_FORCESSE=1"); else if(flags&TJFLAG_FORCESSE2) putenv("JSIMD_FORCESSE2=1"); if(setjmp(this->jerr.setjmp_buffer)) { /* If we get here, the JPEG code has signaled an error. */ retval=-1; goto bailout; } jpeg_mem_src_tj(dinfo, jpegBuf, jpegSize); jpeg_read_header(dinfo, TRUE); if(setDecompDefaults(dinfo, pixelFormat, flags)==-1) { retval=-1; goto bailout; } if(flags&TJFLAG_FASTUPSAMPLE) dinfo->do_fancy_upsampling=FALSE; jpegwidth=dinfo->image_width; jpegheight=dinfo->image_height; if(width==0) width=jpegwidth; if(height==0) height=jpegheight; for(i=0; i=NUMSF) _throw("tjDecompress2(): Could not scale down to desired image dimensions"); width=scaledw; height=scaledh; dinfo->scale_num=sf[i].num; dinfo->scale_denom=sf[i].denom; jpeg_start_decompress(dinfo); if(pitch==0) pitch=dinfo->output_width*tjPixelSize[pixelFormat]; #ifndef JCS_EXTENSIONS if(pixelFormat!=TJPF_GRAY && pixelFormat!=TJPF_CMYK && (RGB_RED!=tjRedOffset[pixelFormat] || RGB_GREEN!=tjGreenOffset[pixelFormat] || RGB_BLUE!=tjBlueOffset[pixelFormat] || RGB_PIXELSIZE!=tjPixelSize[pixelFormat])) { rgbBuf=(unsigned char *)malloc(width*height*3); if(!rgbBuf) _throw("tjDecompress2(): Memory allocation failure"); _pitch=pitch; pitch=width*3; _dstBuf=dstBuf; dstBuf=rgbBuf; } #endif if((row_pointer=(JSAMPROW *)malloc(sizeof(JSAMPROW) *dinfo->output_height))==NULL) _throw("tjDecompress2(): Memory allocation failure"); for(i=0; i<(int)dinfo->output_height; i++) { if(flags&TJFLAG_BOTTOMUP) row_pointer[i]=&dstBuf[(dinfo->output_height-i-1)*pitch]; else row_pointer[i]=&dstBuf[i*pitch]; } while(dinfo->output_scanlineoutput_height) { jpeg_read_scanlines(dinfo, &row_pointer[dinfo->output_scanline], dinfo->output_height-dinfo->output_scanline); } jpeg_finish_decompress(dinfo); #ifndef JCS_EXTENSIONS fromRGB(rgbBuf, _dstBuf, width, _pitch, height, pixelFormat); #endif bailout: if(dinfo->global_state>DSTATE_START) jpeg_abort_decompress(dinfo); #ifndef JCS_EXTENSIONS if(rgbBuf) free(rgbBuf); #endif if(row_pointer) free(row_pointer); if(this->jerr.warning) retval=-1; return retval; } DLLEXPORT int DLLCALL tjDecompress(tjhandle handle, unsigned char *jpegBuf, unsigned long jpegSize, unsigned char *dstBuf, int width, int pitch, int height, int pixelSize, int flags) { if(flags&TJ_YUV) return tjDecompressToYUV(handle, jpegBuf, jpegSize, dstBuf, flags); else return tjDecompress2(handle, jpegBuf, jpegSize, dstBuf, width, pitch, height, getPixelFormat(pixelSize, flags), flags); } static int setDecodeDefaults(struct jpeg_decompress_struct *dinfo, int pixelFormat, int subsamp, int flags) { int i; dinfo->scale_num=dinfo->scale_denom=1; if(subsamp==TJSAMP_GRAY) { dinfo->num_components=dinfo->comps_in_scan=1; dinfo->jpeg_color_space=JCS_GRAYSCALE; } else { dinfo->num_components=dinfo->comps_in_scan=3; dinfo->jpeg_color_space=JCS_YCbCr; } dinfo->comp_info=(jpeg_component_info *) (*dinfo->mem->alloc_small)((j_common_ptr)dinfo, JPOOL_IMAGE, dinfo->num_components*sizeof(jpeg_component_info)); for(i=0; inum_components; i++) { jpeg_component_info *compptr=&dinfo->comp_info[i]; compptr->h_samp_factor=(i==0)? tjMCUWidth[subsamp]/8:1; compptr->v_samp_factor=(i==0)? tjMCUHeight[subsamp]/8:1; compptr->component_index=i; compptr->component_id=i+1; compptr->quant_tbl_no=compptr->dc_tbl_no=compptr->ac_tbl_no= (i==0)? 0:1; dinfo->cur_comp_info[i]=compptr; } dinfo->data_precision=8; for(i=0; i<2; i++) { if(dinfo->quant_tbl_ptrs[i]==NULL) dinfo->quant_tbl_ptrs[i]=jpeg_alloc_quant_table((j_common_ptr)dinfo); } return 0; } int my_read_markers(j_decompress_ptr dinfo) { return JPEG_REACHED_SOS; } void my_reset_marker_reader(j_decompress_ptr dinfo) { } DLLEXPORT int DLLCALL tjDecodeYUVPlanes(tjhandle handle, unsigned char **srcPlanes, int *strides, int subsamp, unsigned char *dstBuf, int width, int pitch, int height, int pixelFormat, int flags) { int i, retval=0; JSAMPROW *row_pointer=NULL; JSAMPLE *_tmpbuf[MAX_COMPONENTS]; JSAMPROW *tmpbuf[MAX_COMPONENTS], *inbuf[MAX_COMPONENTS]; int row, pw0, ph0, pw[MAX_COMPONENTS], ph[MAX_COMPONENTS]; JSAMPLE *ptr; jpeg_component_info *compptr; #ifndef JCS_EXTENSIONS unsigned char *rgbBuf=NULL; unsigned char *_dstBuf=NULL; int _pitch=0; #endif int (*old_read_markers)(j_decompress_ptr); void (*old_reset_marker_reader)(j_decompress_ptr); getdinstance(handle); for(i=0; iinit&DECOMPRESS)==0) _throw("tjDecodeYUVPlanes(): Instance has not been initialized for decompression"); if(!srcPlanes || !srcPlanes[0] || subsamp<0 || subsamp>=NUMSUBOPT || dstBuf==NULL || width<=0 || pitch<0 || height<=0 || pixelFormat<0 || pixelFormat>=TJ_NUMPF) _throw("tjDecodeYUVPlanes(): Invalid argument"); if(subsamp!=TJSAMP_GRAY && (!srcPlanes[1] || !srcPlanes[2])) _throw("tjDecodeYUVPlanes(): Invalid argument"); if(setjmp(this->jerr.setjmp_buffer)) { /* If we get here, the JPEG code has signaled an error. */ retval=-1; goto bailout; } if(pixelFormat==TJPF_CMYK) _throw("tjDecodeYUVPlanes(): Cannot decode YUV images into CMYK pixels."); if(pitch==0) pitch=width*tjPixelSize[pixelFormat]; dinfo->image_width=width; dinfo->image_height=height; if(flags&TJFLAG_FORCEMMX) putenv("JSIMD_FORCEMMX=1"); else if(flags&TJFLAG_FORCESSE) putenv("JSIMD_FORCESSE=1"); else if(flags&TJFLAG_FORCESSE2) putenv("JSIMD_FORCESSE2=1"); if(setDecodeDefaults(dinfo, pixelFormat, subsamp, flags)==-1) { retval=-1; goto bailout; } old_read_markers=dinfo->marker->read_markers; dinfo->marker->read_markers=my_read_markers; old_reset_marker_reader=dinfo->marker->reset_marker_reader; dinfo->marker->reset_marker_reader=my_reset_marker_reader; jpeg_read_header(dinfo, TRUE); dinfo->marker->read_markers=old_read_markers; dinfo->marker->reset_marker_reader=old_reset_marker_reader; if(setDecompDefaults(dinfo, pixelFormat, flags)==-1) { retval=-1; goto bailout; } dinfo->do_fancy_upsampling=FALSE; dinfo->Se=DCTSIZE2-1; jinit_master_decompress(dinfo); (*dinfo->upsample->start_pass)(dinfo); pw0=PAD(width, dinfo->max_h_samp_factor); ph0=PAD(height, dinfo->max_v_samp_factor); if(pitch==0) pitch=dinfo->output_width*tjPixelSize[pixelFormat]; #ifndef JCS_EXTENSIONS if(pixelFormat!=TJPF_GRAY && pixelFormat!=TJPF_CMYK && (RGB_RED!=tjRedOffset[pixelFormat] || RGB_GREEN!=tjGreenOffset[pixelFormat] || RGB_BLUE!=tjBlueOffset[pixelFormat] || RGB_PIXELSIZE!=tjPixelSize[pixelFormat])) { rgbBuf=(unsigned char *)malloc(width*height*3); if(!rgbBuf) _throw("tjDecodeYUVPlanes(): Memory allocation failure"); _pitch=pitch; pitch=width*3; _dstBuf=dstBuf; dstBuf=rgbBuf; } #endif if((row_pointer=(JSAMPROW *)malloc(sizeof(JSAMPROW)*ph0))==NULL) _throw("tjDecodeYUVPlanes(): Memory allocation failure"); for(i=0; inum_components; i++) { compptr=&dinfo->comp_info[i]; _tmpbuf[i]=(JSAMPLE *)malloc(PAD(compptr->width_in_blocks*DCTSIZE, 16) * compptr->v_samp_factor + 16); if(!_tmpbuf[i]) _throw("tjDecodeYUVPlanes(): Memory allocation failure"); tmpbuf[i]=(JSAMPROW *)malloc(sizeof(JSAMPROW)*compptr->v_samp_factor); if(!tmpbuf[i]) _throw("tjDecodeYUVPlanes(): Memory allocation failure"); for(row=0; rowv_samp_factor; row++) { unsigned char *_tmpbuf_aligned= (unsigned char *)PAD((size_t)_tmpbuf[i], 16); tmpbuf[i][row]=&_tmpbuf_aligned[ PAD(compptr->width_in_blocks*DCTSIZE, 16) * row]; } pw[i]=pw0*compptr->h_samp_factor/dinfo->max_h_samp_factor; ph[i]=ph0*compptr->v_samp_factor/dinfo->max_v_samp_factor; inbuf[i]=(JSAMPROW *)malloc(sizeof(JSAMPROW)*ph[i]); if(!inbuf[i]) _throw("tjDecodeYUVPlanes(): Memory allocation failure"); ptr=srcPlanes[i]; for(row=0; rowmax_v_samp_factor) { JDIMENSION inrow=0, outrow=0; for(i=0, compptr=dinfo->comp_info; inum_components; i++, compptr++) jcopy_sample_rows(inbuf[i], row*compptr->v_samp_factor/dinfo->max_v_samp_factor, tmpbuf[i], 0, compptr->v_samp_factor, pw[i]); (dinfo->upsample->upsample)(dinfo, tmpbuf, &inrow, dinfo->max_v_samp_factor, &row_pointer[row], &outrow, dinfo->max_v_samp_factor); } jpeg_abort_decompress(dinfo); #ifndef JCS_EXTENSIONS fromRGB(rgbBuf, _dstBuf, width, _pitch, height, pixelFormat); #endif bailout: if(dinfo->global_state>DSTATE_START) jpeg_abort_decompress(dinfo); #ifndef JCS_EXTENSIONS if(rgbBuf) free(rgbBuf); #endif if(row_pointer) free(row_pointer); for(i=0; ijerr.warning) retval=-1; return retval; } DLLEXPORT int DLLCALL tjDecodeYUV(tjhandle handle, unsigned char *srcBuf, int pad, int subsamp, unsigned char *dstBuf, int width, int pitch, int height, int pixelFormat, int flags) { unsigned char *srcPlanes[3]; int pw0, ph0, strides[3], retval=-1; if(srcBuf==NULL || pad<0 || !isPow2(pad) || subsamp<0 || subsamp>=NUMSUBOPT || width<=0 || height<=0) _throw("tjDecodeYUV(): Invalid argument"); pw0=tjPlaneWidth(0, width, subsamp); ph0=tjPlaneHeight(0, height, subsamp); srcPlanes[0]=srcBuf; strides[0]=PAD(pw0, pad); if(subsamp==TJSAMP_GRAY) { strides[1]=strides[2]=0; srcPlanes[1]=srcPlanes[2]=NULL; } else { int pw1=tjPlaneWidth(1, width, subsamp); int ph1=tjPlaneHeight(1, height, subsamp); strides[1]=strides[2]=PAD(pw1, pad); srcPlanes[1]=srcPlanes[0]+strides[0]*ph0; srcPlanes[2]=srcPlanes[1]+strides[1]*ph1; } return tjDecodeYUVPlanes(handle, srcPlanes, strides, subsamp, dstBuf, width, pitch, height, pixelFormat, flags); bailout: return retval; } DLLEXPORT int DLLCALL tjDecompressToYUVPlanes(tjhandle handle, unsigned char *jpegBuf, unsigned long jpegSize, unsigned char **dstPlanes, int width, int *strides, int height, int flags) { int i, sfi, row, retval=0; JSAMPROW *outbuf[MAX_COMPONENTS]; int jpegwidth, jpegheight, jpegSubsamp, scaledw, scaledh; int pw[MAX_COMPONENTS], ph[MAX_COMPONENTS], iw[MAX_COMPONENTS], tmpbufsize=0, usetmpbuf=0, th[MAX_COMPONENTS]; JSAMPLE *_tmpbuf=NULL, *ptr; JSAMPROW *tmpbuf[MAX_COMPONENTS]; int dctsize; getdinstance(handle); for(i=0; iinit&DECOMPRESS)==0) _throw("tjDecompressToYUVPlanes(): Instance has not been initialized for decompression"); if(jpegBuf==NULL || jpegSize<=0 || !dstPlanes || !dstPlanes[0] || width<0 || height<0) _throw("tjDecompressToYUVPlanes(): Invalid argument"); if(flags&TJFLAG_FORCEMMX) putenv("JSIMD_FORCEMMX=1"); else if(flags&TJFLAG_FORCESSE) putenv("JSIMD_FORCESSE=1"); else if(flags&TJFLAG_FORCESSE2) putenv("JSIMD_FORCESSE2=1"); if(setjmp(this->jerr.setjmp_buffer)) { /* If we get here, the JPEG code has signaled an error. */ retval=-1; goto bailout; } if(!this->headerRead) { jpeg_mem_src_tj(dinfo, jpegBuf, jpegSize); jpeg_read_header(dinfo, TRUE); } this->headerRead=0; jpegSubsamp=getSubsamp(dinfo); if(jpegSubsamp<0) _throw("tjDecompressToYUVPlanes(): Could not determine subsampling type for JPEG image"); if(jpegSubsamp!=TJSAMP_GRAY && (!dstPlanes[1] || !dstPlanes[2])) _throw("tjDecompressToYUVPlanes(): Invalid argument"); jpegwidth=dinfo->image_width; jpegheight=dinfo->image_height; if(width==0) width=jpegwidth; if(height==0) height=jpegheight; for(i=0; i=NUMSF) _throw("tjDecompressToYUVPlanes(): Could not scale down to desired image dimensions"); if(dinfo->num_components>3) _throw("tjDecompressToYUVPlanes(): JPEG image must have 3 or fewer components"); width=scaledw; height=scaledh; dinfo->scale_num=sf[i].num; dinfo->scale_denom=sf[i].denom; sfi=i; jpeg_calc_output_dimensions(dinfo); dctsize=DCTSIZE*sf[sfi].num/sf[sfi].denom; for(i=0; inum_components; i++) { jpeg_component_info *compptr=&dinfo->comp_info[i]; int ih; iw[i]=compptr->width_in_blocks*dctsize; ih=compptr->height_in_blocks*dctsize; pw[i]=PAD(dinfo->output_width, dinfo->max_h_samp_factor) *compptr->h_samp_factor/dinfo->max_h_samp_factor; ph[i]=PAD(dinfo->output_height, dinfo->max_v_samp_factor) *compptr->v_samp_factor/dinfo->max_v_samp_factor; if(iw[i]!=pw[i] || ih!=ph[i]) usetmpbuf=1; th[i]=compptr->v_samp_factor*dctsize; tmpbufsize+=iw[i]*th[i]; if((outbuf[i]=(JSAMPROW *)malloc(sizeof(JSAMPROW)*ph[i]))==NULL) _throw("tjDecompressToYUVPlanes(): Memory allocation failure"); ptr=dstPlanes[i]; for(row=0; rownum_components; i++) { if((tmpbuf[i]=(JSAMPROW *)malloc(sizeof(JSAMPROW)*th[i]))==NULL) _throw("tjDecompressToYUVPlanes(): Memory allocation failure"); for(row=0; rowdo_fancy_upsampling=FALSE; if(flags&TJFLAG_FASTDCT) dinfo->dct_method=JDCT_FASTEST; dinfo->raw_data_out=TRUE; jpeg_start_decompress(dinfo); for(row=0; row<(int)dinfo->output_height; row+=dinfo->max_v_samp_factor*dinfo->_min_DCT_scaled_size) { JSAMPARRAY yuvptr[MAX_COMPONENTS]; int crow[MAX_COMPONENTS]; for(i=0; inum_components; i++) { jpeg_component_info *compptr=&dinfo->comp_info[i]; if(jpegSubsamp==TJ_420) { /* When 4:2:0 subsampling is used with IDCT scaling, libjpeg will try to be clever and use the IDCT to perform upsampling on the U and V planes. For instance, if the output image is to be scaled by 1/2 relative to the JPEG image, then the scaling factor and upsampling effectively cancel each other, so a normal 8x8 IDCT can be used. However, this is not desirable when using the decompress-to-YUV functionality in TurboJPEG, since we want to output the U and V planes in their subsampled form. Thus, we have to override some internal libjpeg parameters to force it to use the "scaled" IDCT functions on the U and V planes. */ compptr->_DCT_scaled_size=dctsize; compptr->MCU_sample_width=tjMCUWidth[jpegSubsamp]* sf[sfi].num/sf[sfi].denom* compptr->v_samp_factor/dinfo->max_v_samp_factor; dinfo->idct->inverse_DCT[i] = dinfo->idct->inverse_DCT[0]; } crow[i]=row*compptr->v_samp_factor/dinfo->max_v_samp_factor; if(usetmpbuf) yuvptr[i]=tmpbuf[i]; else yuvptr[i]=&outbuf[i][crow[i]]; } jpeg_read_raw_data(dinfo, yuvptr, dinfo->max_v_samp_factor*dinfo->_min_DCT_scaled_size); if(usetmpbuf) { int j; for(i=0; inum_components; i++) { for(j=0; jglobal_state>DSTATE_START) jpeg_abort_decompress(dinfo); for(i=0; ijerr.warning) retval=-1; return retval; } DLLEXPORT int DLLCALL tjDecompressToYUV2(tjhandle handle, unsigned char *jpegBuf, unsigned long jpegSize, unsigned char *dstBuf, int width, int pad, int height, int flags) { unsigned char *dstPlanes[3]; int pw0, ph0, strides[3], retval=-1, jpegSubsamp=-1; int i, jpegwidth, jpegheight, scaledw, scaledh; getdinstance(handle); if(jpegBuf==NULL || jpegSize<=0 || dstBuf==NULL || width<0 || pad<1 || !isPow2(pad) || height<0) _throw("tjDecompressToYUV2(): Invalid argument"); jpeg_mem_src_tj(dinfo, jpegBuf, jpegSize); jpeg_read_header(dinfo, TRUE); jpegSubsamp=getSubsamp(dinfo); if(jpegSubsamp<0) _throw("tjDecompressToYUV2(): Could not determine subsampling type for JPEG image"); jpegwidth=dinfo->image_width; jpegheight=dinfo->image_height; if(width==0) width=jpegwidth; if(height==0) height=jpegheight; for(i=0; i=NUMSF) _throw("tjDecompressToYUV2(): Could not scale down to desired image dimensions"); pw0=tjPlaneWidth(0, width, jpegSubsamp); ph0=tjPlaneHeight(0, height, jpegSubsamp); dstPlanes[0]=dstBuf; strides[0]=PAD(pw0, pad); if(jpegSubsamp==TJSAMP_GRAY) { strides[1]=strides[2]=0; dstPlanes[1]=dstPlanes[2]=NULL; } else { int pw1=tjPlaneWidth(1, width, jpegSubsamp); int ph1=tjPlaneHeight(1, height, jpegSubsamp); strides[1]=strides[2]=PAD(pw1, pad); dstPlanes[1]=dstPlanes[0]+strides[0]*ph0; dstPlanes[2]=dstPlanes[1]+strides[1]*ph1; } this->headerRead=1; return tjDecompressToYUVPlanes(handle, jpegBuf, jpegSize, dstPlanes, width, strides, height, flags); bailout: return retval; } DLLEXPORT int DLLCALL tjDecompressToYUV(tjhandle handle, unsigned char *jpegBuf, unsigned long jpegSize, unsigned char *dstBuf, int flags) { return tjDecompressToYUV2(handle, jpegBuf, jpegSize, dstBuf, 0, 4, 0, flags); } /* Transformer */ DLLEXPORT tjhandle DLLCALL tjInitTransform(void) { tjinstance *this=NULL; tjhandle handle=NULL; if((this=(tjinstance *)malloc(sizeof(tjinstance)))==NULL) { snprintf(errStr, JMSG_LENGTH_MAX, "tjInitTransform(): Memory allocation failure"); return NULL; } MEMZERO(this, sizeof(tjinstance)); handle=_tjInitCompress(this); if(!handle) return NULL; handle=_tjInitDecompress(this); return handle; } DLLEXPORT int DLLCALL tjTransform(tjhandle handle, unsigned char *jpegBuf, unsigned long jpegSize, int n, unsigned char **dstBufs, unsigned long *dstSizes, tjtransform *t, int flags) { jpeg_transform_info *xinfo=NULL; jvirt_barray_ptr *srccoefs, *dstcoefs; int retval=0, i, jpegSubsamp; getinstance(handle); if((this->init&COMPRESS)==0 || (this->init&DECOMPRESS)==0) _throw("tjTransform(): Instance has not been initialized for transformation"); if(jpegBuf==NULL || jpegSize<=0 || n<1 || dstBufs==NULL || dstSizes==NULL || t==NULL || flags<0) _throw("tjTransform(): Invalid argument"); if(flags&TJFLAG_FORCEMMX) putenv("JSIMD_FORCEMMX=1"); else if(flags&TJFLAG_FORCESSE) putenv("JSIMD_FORCESSE=1"); else if(flags&TJFLAG_FORCESSE2) putenv("JSIMD_FORCESSE2=1"); if(setjmp(this->jerr.setjmp_buffer)) { /* If we get here, the JPEG code has signaled an error. */ retval=-1; goto bailout; } jpeg_mem_src_tj(dinfo, jpegBuf, jpegSize); if((xinfo=(jpeg_transform_info *)malloc(sizeof(jpeg_transform_info)*n)) ==NULL) _throw("tjTransform(): Memory allocation failure"); MEMZERO(xinfo, sizeof(jpeg_transform_info)*n); for(i=0; iimage_width; h=dinfo->image_height; } else { w=xinfo[i].crop_width; h=xinfo[i].crop_height; } if(flags&TJFLAG_NOREALLOC) { alloc=0; dstSizes[i]=tjBufSize(w, h, jpegSubsamp); } if(!(t[i].options&TJXOPT_NOOUTPUT)) jpeg_mem_dest_tj(cinfo, &dstBufs[i], &dstSizes[i], alloc); jpeg_copy_critical_parameters(dinfo, cinfo); dstcoefs=jtransform_adjust_parameters(dinfo, cinfo, srccoefs, &xinfo[i]); if(!(t[i].options&TJXOPT_NOOUTPUT)) { jpeg_write_coefficients(cinfo, dstcoefs); jcopy_markers_execute(dinfo, cinfo, JCOPYOPT_ALL); } else jinit_c_master_control(cinfo, TRUE); jtransform_execute_transformation(dinfo, cinfo, srccoefs, &xinfo[i]); if(t[i].customFilter) { int ci, y; JDIMENSION by; for(ci=0; cinum_components; ci++) { jpeg_component_info *compptr=&cinfo->comp_info[ci]; tjregion arrayRegion={0, 0, compptr->width_in_blocks*DCTSIZE, DCTSIZE}; tjregion planeRegion={0, 0, compptr->width_in_blocks*DCTSIZE, compptr->height_in_blocks*DCTSIZE}; for(by=0; byheight_in_blocks; by+=compptr->v_samp_factor) { JBLOCKARRAY barray=(dinfo->mem->access_virt_barray) ((j_common_ptr)dinfo, dstcoefs[ci], by, compptr->v_samp_factor, TRUE); for(y=0; yv_samp_factor; y++) { if(t[i].customFilter(barray[y][0], arrayRegion, planeRegion, ci, i, &t[i])==-1) _throw("tjTransform(): Error in custom filter"); arrayRegion.y+=DCTSIZE; } } } } if(!(t[i].options&TJXOPT_NOOUTPUT)) jpeg_finish_compress(cinfo); } jpeg_finish_decompress(dinfo); bailout: if(cinfo->global_state>CSTATE_START) jpeg_abort_compress(cinfo); if(dinfo->global_state>DSTATE_START) jpeg_abort_decompress(dinfo); if(xinfo) free(xinfo); if(this->jerr.warning) retval=-1; return retval; } libjpeg-turbo-1.4.2/jidctred.c0000644000076500007650000003370412600050400013144 00000000000000/* * jidctred.c * * This file was part of the Independent JPEG Group's software. * Copyright (C) 1994-1998, Thomas G. Lane. * libjpeg-turbo Modifications: * Copyright (C) 2015, D. R. Commander * For conditions of distribution and use, see the accompanying README file. * * This file contains inverse-DCT routines that produce reduced-size output: * either 4x4, 2x2, or 1x1 pixels from an 8x8 DCT block. * * The implementation is based on the Loeffler, Ligtenberg and Moschytz (LL&M) * algorithm used in jidctint.c. We simply replace each 8-to-8 1-D IDCT step * with an 8-to-4 step that produces the four averages of two adjacent outputs * (or an 8-to-2 step producing two averages of four outputs, for 2x2 output). * These steps were derived by computing the corresponding values at the end * of the normal LL&M code, then simplifying as much as possible. * * 1x1 is trivial: just take the DC coefficient divided by 8. * * See jidctint.c for additional comments. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" #include "jdct.h" /* Private declarations for DCT subsystem */ #ifdef IDCT_SCALING_SUPPORTED /* * This module is specialized to the case DCTSIZE = 8. */ #if DCTSIZE != 8 Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ #endif /* Scaling is the same as in jidctint.c. */ #if BITS_IN_JSAMPLE == 8 #define CONST_BITS 13 #define PASS1_BITS 2 #else #define CONST_BITS 13 #define PASS1_BITS 1 /* lose a little precision to avoid overflow */ #endif /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus * causing a lot of useless floating-point operations at run time. * To get around this we use the following pre-calculated constants. * If you change CONST_BITS you may want to add appropriate values. * (With a reasonable C compiler, you can just rely on the FIX() macro...) */ #if CONST_BITS == 13 #define FIX_0_211164243 ((INT32) 1730) /* FIX(0.211164243) */ #define FIX_0_509795579 ((INT32) 4176) /* FIX(0.509795579) */ #define FIX_0_601344887 ((INT32) 4926) /* FIX(0.601344887) */ #define FIX_0_720959822 ((INT32) 5906) /* FIX(0.720959822) */ #define FIX_0_765366865 ((INT32) 6270) /* FIX(0.765366865) */ #define FIX_0_850430095 ((INT32) 6967) /* FIX(0.850430095) */ #define FIX_0_899976223 ((INT32) 7373) /* FIX(0.899976223) */ #define FIX_1_061594337 ((INT32) 8697) /* FIX(1.061594337) */ #define FIX_1_272758580 ((INT32) 10426) /* FIX(1.272758580) */ #define FIX_1_451774981 ((INT32) 11893) /* FIX(1.451774981) */ #define FIX_1_847759065 ((INT32) 15137) /* FIX(1.847759065) */ #define FIX_2_172734803 ((INT32) 17799) /* FIX(2.172734803) */ #define FIX_2_562915447 ((INT32) 20995) /* FIX(2.562915447) */ #define FIX_3_624509785 ((INT32) 29692) /* FIX(3.624509785) */ #else #define FIX_0_211164243 FIX(0.211164243) #define FIX_0_509795579 FIX(0.509795579) #define FIX_0_601344887 FIX(0.601344887) #define FIX_0_720959822 FIX(0.720959822) #define FIX_0_765366865 FIX(0.765366865) #define FIX_0_850430095 FIX(0.850430095) #define FIX_0_899976223 FIX(0.899976223) #define FIX_1_061594337 FIX(1.061594337) #define FIX_1_272758580 FIX(1.272758580) #define FIX_1_451774981 FIX(1.451774981) #define FIX_1_847759065 FIX(1.847759065) #define FIX_2_172734803 FIX(2.172734803) #define FIX_2_562915447 FIX(2.562915447) #define FIX_3_624509785 FIX(3.624509785) #endif /* Multiply an INT32 variable by an INT32 constant to yield an INT32 result. * For 8-bit samples with the recommended scaling, all the variable * and constant values involved are no more than 16 bits wide, so a * 16x16->32 bit multiply can be used instead of a full 32x32 multiply. * For 12-bit samples, a full 32-bit multiplication will be needed. */ #if BITS_IN_JSAMPLE == 8 #define MULTIPLY(var,const) MULTIPLY16C16(var,const) #else #define MULTIPLY(var,const) ((var) * (const)) #endif /* Dequantize a coefficient by multiplying it by the multiplier-table * entry; produce an int result. In this module, both inputs and result * are 16 bits or less, so either int or short multiply will work. */ #define DEQUANTIZE(coef,quantval) (((ISLOW_MULT_TYPE) (coef)) * (quantval)) /* * Perform dequantization and inverse DCT on one block of coefficients, * producing a reduced-size 4x4 output block. */ GLOBAL(void) jpeg_idct_4x4 (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { INT32 tmp0, tmp2, tmp10, tmp12; INT32 z1, z2, z3, z4; JCOEFPTR inptr; ISLOW_MULT_TYPE * quantptr; int * wsptr; JSAMPROW outptr; JSAMPLE *range_limit = IDCT_range_limit(cinfo); int ctr; int workspace[DCTSIZE*4]; /* buffers data between passes */ SHIFT_TEMPS /* Pass 1: process columns from input, store into work array. */ inptr = coef_block; quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; wsptr = workspace; for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) { /* Don't bother to process column 4, because second pass won't use it */ if (ctr == DCTSIZE-4) continue; if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 && inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 && inptr[DCTSIZE*7] == 0) { /* AC terms all zero; we need not examine term 4 for 4x4 output */ int dcval = LEFT_SHIFT(DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]), PASS1_BITS); wsptr[DCTSIZE*0] = dcval; wsptr[DCTSIZE*1] = dcval; wsptr[DCTSIZE*2] = dcval; wsptr[DCTSIZE*3] = dcval; continue; } /* Even part */ tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); tmp0 = LEFT_SHIFT(tmp0, CONST_BITS+1); z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); tmp2 = MULTIPLY(z2, FIX_1_847759065) + MULTIPLY(z3, - FIX_0_765366865); tmp10 = tmp0 + tmp2; tmp12 = tmp0 - tmp2; /* Odd part */ z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); z2 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); z3 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); z4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */ + MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */ + MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */ + MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */ tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */ + MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */ + MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */ + MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */ /* Final output stage */ wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp2, CONST_BITS-PASS1_BITS+1); wsptr[DCTSIZE*3] = (int) DESCALE(tmp10 - tmp2, CONST_BITS-PASS1_BITS+1); wsptr[DCTSIZE*1] = (int) DESCALE(tmp12 + tmp0, CONST_BITS-PASS1_BITS+1); wsptr[DCTSIZE*2] = (int) DESCALE(tmp12 - tmp0, CONST_BITS-PASS1_BITS+1); } /* Pass 2: process 4 rows from work array, store into output array. */ wsptr = workspace; for (ctr = 0; ctr < 4; ctr++) { outptr = output_buf[ctr] + output_col; /* It's not clear whether a zero row test is worthwhile here ... */ #ifndef NO_ZERO_ROW_TEST if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) { /* AC terms all zero */ JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3) & RANGE_MASK]; outptr[0] = dcval; outptr[1] = dcval; outptr[2] = dcval; outptr[3] = dcval; wsptr += DCTSIZE; /* advance pointer to next row */ continue; } #endif /* Even part */ tmp0 = LEFT_SHIFT((INT32) wsptr[0], CONST_BITS+1); tmp2 = MULTIPLY((INT32) wsptr[2], FIX_1_847759065) + MULTIPLY((INT32) wsptr[6], - FIX_0_765366865); tmp10 = tmp0 + tmp2; tmp12 = tmp0 - tmp2; /* Odd part */ z1 = (INT32) wsptr[7]; z2 = (INT32) wsptr[5]; z3 = (INT32) wsptr[3]; z4 = (INT32) wsptr[1]; tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */ + MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */ + MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */ + MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */ tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */ + MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */ + MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */ + MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */ /* Final output stage */ outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp2, CONST_BITS+PASS1_BITS+3+1) & RANGE_MASK]; outptr[3] = range_limit[(int) DESCALE(tmp10 - tmp2, CONST_BITS+PASS1_BITS+3+1) & RANGE_MASK]; outptr[1] = range_limit[(int) DESCALE(tmp12 + tmp0, CONST_BITS+PASS1_BITS+3+1) & RANGE_MASK]; outptr[2] = range_limit[(int) DESCALE(tmp12 - tmp0, CONST_BITS+PASS1_BITS+3+1) & RANGE_MASK]; wsptr += DCTSIZE; /* advance pointer to next row */ } } /* * Perform dequantization and inverse DCT on one block of coefficients, * producing a reduced-size 2x2 output block. */ GLOBAL(void) jpeg_idct_2x2 (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { INT32 tmp0, tmp10, z1; JCOEFPTR inptr; ISLOW_MULT_TYPE * quantptr; int * wsptr; JSAMPROW outptr; JSAMPLE *range_limit = IDCT_range_limit(cinfo); int ctr; int workspace[DCTSIZE*2]; /* buffers data between passes */ SHIFT_TEMPS /* Pass 1: process columns from input, store into work array. */ inptr = coef_block; quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; wsptr = workspace; for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) { /* Don't bother to process columns 2,4,6 */ if (ctr == DCTSIZE-2 || ctr == DCTSIZE-4 || ctr == DCTSIZE-6) continue; if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*7] == 0) { /* AC terms all zero; we need not examine terms 2,4,6 for 2x2 output */ int dcval = LEFT_SHIFT(DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]), PASS1_BITS); wsptr[DCTSIZE*0] = dcval; wsptr[DCTSIZE*1] = dcval; continue; } /* Even part */ z1 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); tmp10 = LEFT_SHIFT(z1, CONST_BITS+2); /* Odd part */ z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); tmp0 = MULTIPLY(z1, - FIX_0_720959822); /* sqrt(2) * (c7-c5+c3-c1) */ z1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); tmp0 += MULTIPLY(z1, FIX_0_850430095); /* sqrt(2) * (-c1+c3+c5+c7) */ z1 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); tmp0 += MULTIPLY(z1, - FIX_1_272758580); /* sqrt(2) * (-c1+c3-c5-c7) */ z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); tmp0 += MULTIPLY(z1, FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */ /* Final output stage */ wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp0, CONST_BITS-PASS1_BITS+2); wsptr[DCTSIZE*1] = (int) DESCALE(tmp10 - tmp0, CONST_BITS-PASS1_BITS+2); } /* Pass 2: process 2 rows from work array, store into output array. */ wsptr = workspace; for (ctr = 0; ctr < 2; ctr++) { outptr = output_buf[ctr] + output_col; /* It's not clear whether a zero row test is worthwhile here ... */ #ifndef NO_ZERO_ROW_TEST if (wsptr[1] == 0 && wsptr[3] == 0 && wsptr[5] == 0 && wsptr[7] == 0) { /* AC terms all zero */ JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3) & RANGE_MASK]; outptr[0] = dcval; outptr[1] = dcval; wsptr += DCTSIZE; /* advance pointer to next row */ continue; } #endif /* Even part */ tmp10 = LEFT_SHIFT((INT32) wsptr[0], CONST_BITS+2); /* Odd part */ tmp0 = MULTIPLY((INT32) wsptr[7], - FIX_0_720959822) /* sqrt(2) * (c7-c5+c3-c1) */ + MULTIPLY((INT32) wsptr[5], FIX_0_850430095) /* sqrt(2) * (-c1+c3+c5+c7) */ + MULTIPLY((INT32) wsptr[3], - FIX_1_272758580) /* sqrt(2) * (-c1+c3-c5-c7) */ + MULTIPLY((INT32) wsptr[1], FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */ /* Final output stage */ outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp0, CONST_BITS+PASS1_BITS+3+2) & RANGE_MASK]; outptr[1] = range_limit[(int) DESCALE(tmp10 - tmp0, CONST_BITS+PASS1_BITS+3+2) & RANGE_MASK]; wsptr += DCTSIZE; /* advance pointer to next row */ } } /* * Perform dequantization and inverse DCT on one block of coefficients, * producing a reduced-size 1x1 output block. */ GLOBAL(void) jpeg_idct_1x1 (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { int dcval; ISLOW_MULT_TYPE * quantptr; JSAMPLE *range_limit = IDCT_range_limit(cinfo); SHIFT_TEMPS /* We hardly need an inverse DCT routine for this: just take the * average pixel value, which is one-eighth of the DC coefficient. */ quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; dcval = DEQUANTIZE(coef_block[0], quantptr[0]); dcval = (int) DESCALE((INT32) dcval, 3); output_buf[0][output_col] = range_limit[dcval & RANGE_MASK]; } #endif /* IDCT_SCALING_SUPPORTED */ libjpeg-turbo-1.4.2/jccoefct.c0000644000076500007650000004152512600050400013134 00000000000000/* * jccoefct.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1994-1997, Thomas G. Lane. * It was modified by The libjpeg-turbo Project to include only code and * information relevant to libjpeg-turbo. * For conditions of distribution and use, see the accompanying README file. * * This file contains the coefficient buffer controller for compression. * This controller is the top level of the JPEG compressor proper. * The coefficient buffer lies between forward-DCT and entropy encoding steps. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" /* We use a full-image coefficient buffer when doing Huffman optimization, * and also for writing multiple-scan JPEG files. In all cases, the DCT * step is run during the first pass, and subsequent passes need only read * the buffered coefficients. */ #ifdef ENTROPY_OPT_SUPPORTED #define FULL_COEF_BUFFER_SUPPORTED #else #ifdef C_MULTISCAN_FILES_SUPPORTED #define FULL_COEF_BUFFER_SUPPORTED #endif #endif /* Private buffer controller object */ typedef struct { struct jpeg_c_coef_controller pub; /* public fields */ JDIMENSION iMCU_row_num; /* iMCU row # within image */ JDIMENSION mcu_ctr; /* counts MCUs processed in current row */ int MCU_vert_offset; /* counts MCU rows within iMCU row */ int MCU_rows_per_iMCU_row; /* number of such rows needed */ /* For single-pass compression, it's sufficient to buffer just one MCU * (although this may prove a bit slow in practice). We allocate a * workspace of C_MAX_BLOCKS_IN_MCU coefficient blocks, and reuse it for each * MCU constructed and sent. In multi-pass modes, this array points to the * current MCU's blocks within the virtual arrays. */ JBLOCKROW MCU_buffer[C_MAX_BLOCKS_IN_MCU]; /* In multi-pass modes, we need a virtual block array for each component. */ jvirt_barray_ptr whole_image[MAX_COMPONENTS]; } my_coef_controller; typedef my_coef_controller * my_coef_ptr; /* Forward declarations */ METHODDEF(boolean) compress_data (j_compress_ptr cinfo, JSAMPIMAGE input_buf); #ifdef FULL_COEF_BUFFER_SUPPORTED METHODDEF(boolean) compress_first_pass (j_compress_ptr cinfo, JSAMPIMAGE input_buf); METHODDEF(boolean) compress_output (j_compress_ptr cinfo, JSAMPIMAGE input_buf); #endif LOCAL(void) start_iMCU_row (j_compress_ptr cinfo) /* Reset within-iMCU-row counters for a new row */ { my_coef_ptr coef = (my_coef_ptr) cinfo->coef; /* In an interleaved scan, an MCU row is the same as an iMCU row. * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows. * But at the bottom of the image, process only what's left. */ if (cinfo->comps_in_scan > 1) { coef->MCU_rows_per_iMCU_row = 1; } else { if (coef->iMCU_row_num < (cinfo->total_iMCU_rows-1)) coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor; else coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height; } coef->mcu_ctr = 0; coef->MCU_vert_offset = 0; } /* * Initialize for a processing pass. */ METHODDEF(void) start_pass_coef (j_compress_ptr cinfo, J_BUF_MODE pass_mode) { my_coef_ptr coef = (my_coef_ptr) cinfo->coef; coef->iMCU_row_num = 0; start_iMCU_row(cinfo); switch (pass_mode) { case JBUF_PASS_THRU: if (coef->whole_image[0] != NULL) ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); coef->pub.compress_data = compress_data; break; #ifdef FULL_COEF_BUFFER_SUPPORTED case JBUF_SAVE_AND_PASS: if (coef->whole_image[0] == NULL) ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); coef->pub.compress_data = compress_first_pass; break; case JBUF_CRANK_DEST: if (coef->whole_image[0] == NULL) ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); coef->pub.compress_data = compress_output; break; #endif default: ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); break; } } /* * Process some data in the single-pass case. * We process the equivalent of one fully interleaved MCU row ("iMCU" row) * per call, ie, v_samp_factor block rows for each component in the image. * Returns TRUE if the iMCU row is completed, FALSE if suspended. * * NB: input_buf contains a plane for each component in image, * which we index according to the component's SOF position. */ METHODDEF(boolean) compress_data (j_compress_ptr cinfo, JSAMPIMAGE input_buf) { my_coef_ptr coef = (my_coef_ptr) cinfo->coef; JDIMENSION MCU_col_num; /* index of current MCU within row */ JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1; JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; int blkn, bi, ci, yindex, yoffset, blockcnt; JDIMENSION ypos, xpos; jpeg_component_info *compptr; /* Loop to write as much as one whole iMCU row */ for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; yoffset++) { for (MCU_col_num = coef->mcu_ctr; MCU_col_num <= last_MCU_col; MCU_col_num++) { /* Determine where data comes from in input_buf and do the DCT thing. * Each call on forward_DCT processes a horizontal row of DCT blocks * as wide as an MCU; we rely on having allocated the MCU_buffer[] blocks * sequentially. Dummy blocks at the right or bottom edge are filled in * specially. The data in them does not matter for image reconstruction, * so we fill them with values that will encode to the smallest amount of * data, viz: all zeroes in the AC entries, DC entries equal to previous * block's DC value. (Thanks to Thomas Kinsman for this idea.) */ blkn = 0; for (ci = 0; ci < cinfo->comps_in_scan; ci++) { compptr = cinfo->cur_comp_info[ci]; blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width : compptr->last_col_width; xpos = MCU_col_num * compptr->MCU_sample_width; ypos = yoffset * DCTSIZE; /* ypos == (yoffset+yindex) * DCTSIZE */ for (yindex = 0; yindex < compptr->MCU_height; yindex++) { if (coef->iMCU_row_num < last_iMCU_row || yoffset+yindex < compptr->last_row_height) { (*cinfo->fdct->forward_DCT) (cinfo, compptr, input_buf[compptr->component_index], coef->MCU_buffer[blkn], ypos, xpos, (JDIMENSION) blockcnt); if (blockcnt < compptr->MCU_width) { /* Create some dummy blocks at the right edge of the image. */ jzero_far((void *) coef->MCU_buffer[blkn + blockcnt], (compptr->MCU_width - blockcnt) * sizeof(JBLOCK)); for (bi = blockcnt; bi < compptr->MCU_width; bi++) { coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn+bi-1][0][0]; } } } else { /* Create a row of dummy blocks at the bottom of the image. */ jzero_far((void *) coef->MCU_buffer[blkn], compptr->MCU_width * sizeof(JBLOCK)); for (bi = 0; bi < compptr->MCU_width; bi++) { coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn-1][0][0]; } } blkn += compptr->MCU_width; ypos += DCTSIZE; } } /* Try to write the MCU. In event of a suspension failure, we will * re-DCT the MCU on restart (a bit inefficient, could be fixed...) */ if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) { /* Suspension forced; update state counters and exit */ coef->MCU_vert_offset = yoffset; coef->mcu_ctr = MCU_col_num; return FALSE; } } /* Completed an MCU row, but perhaps not an iMCU row */ coef->mcu_ctr = 0; } /* Completed the iMCU row, advance counters for next one */ coef->iMCU_row_num++; start_iMCU_row(cinfo); return TRUE; } #ifdef FULL_COEF_BUFFER_SUPPORTED /* * Process some data in the first pass of a multi-pass case. * We process the equivalent of one fully interleaved MCU row ("iMCU" row) * per call, ie, v_samp_factor block rows for each component in the image. * This amount of data is read from the source buffer, DCT'd and quantized, * and saved into the virtual arrays. We also generate suitable dummy blocks * as needed at the right and lower edges. (The dummy blocks are constructed * in the virtual arrays, which have been padded appropriately.) This makes * it possible for subsequent passes not to worry about real vs. dummy blocks. * * We must also emit the data to the entropy encoder. This is conveniently * done by calling compress_output() after we've loaded the current strip * of the virtual arrays. * * NB: input_buf contains a plane for each component in image. All * components are DCT'd and loaded into the virtual arrays in this pass. * However, it may be that only a subset of the components are emitted to * the entropy encoder during this first pass; be careful about looking * at the scan-dependent variables (MCU dimensions, etc). */ METHODDEF(boolean) compress_first_pass (j_compress_ptr cinfo, JSAMPIMAGE input_buf) { my_coef_ptr coef = (my_coef_ptr) cinfo->coef; JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; JDIMENSION blocks_across, MCUs_across, MCUindex; int bi, ci, h_samp_factor, block_row, block_rows, ndummy; JCOEF lastDC; jpeg_component_info *compptr; JBLOCKARRAY buffer; JBLOCKROW thisblockrow, lastblockrow; for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { /* Align the virtual buffer for this component. */ buffer = (*cinfo->mem->access_virt_barray) ((j_common_ptr) cinfo, coef->whole_image[ci], coef->iMCU_row_num * compptr->v_samp_factor, (JDIMENSION) compptr->v_samp_factor, TRUE); /* Count non-dummy DCT block rows in this iMCU row. */ if (coef->iMCU_row_num < last_iMCU_row) block_rows = compptr->v_samp_factor; else { /* NB: can't use last_row_height here, since may not be set! */ block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor); if (block_rows == 0) block_rows = compptr->v_samp_factor; } blocks_across = compptr->width_in_blocks; h_samp_factor = compptr->h_samp_factor; /* Count number of dummy blocks to be added at the right margin. */ ndummy = (int) (blocks_across % h_samp_factor); if (ndummy > 0) ndummy = h_samp_factor - ndummy; /* Perform DCT for all non-dummy blocks in this iMCU row. Each call * on forward_DCT processes a complete horizontal row of DCT blocks. */ for (block_row = 0; block_row < block_rows; block_row++) { thisblockrow = buffer[block_row]; (*cinfo->fdct->forward_DCT) (cinfo, compptr, input_buf[ci], thisblockrow, (JDIMENSION) (block_row * DCTSIZE), (JDIMENSION) 0, blocks_across); if (ndummy > 0) { /* Create dummy blocks at the right edge of the image. */ thisblockrow += blocks_across; /* => first dummy block */ jzero_far((void *) thisblockrow, ndummy * sizeof(JBLOCK)); lastDC = thisblockrow[-1][0]; for (bi = 0; bi < ndummy; bi++) { thisblockrow[bi][0] = lastDC; } } } /* If at end of image, create dummy block rows as needed. * The tricky part here is that within each MCU, we want the DC values * of the dummy blocks to match the last real block's DC value. * This squeezes a few more bytes out of the resulting file... */ if (coef->iMCU_row_num == last_iMCU_row) { blocks_across += ndummy; /* include lower right corner */ MCUs_across = blocks_across / h_samp_factor; for (block_row = block_rows; block_row < compptr->v_samp_factor; block_row++) { thisblockrow = buffer[block_row]; lastblockrow = buffer[block_row-1]; jzero_far((void *) thisblockrow, (size_t) (blocks_across * sizeof(JBLOCK))); for (MCUindex = 0; MCUindex < MCUs_across; MCUindex++) { lastDC = lastblockrow[h_samp_factor-1][0]; for (bi = 0; bi < h_samp_factor; bi++) { thisblockrow[bi][0] = lastDC; } thisblockrow += h_samp_factor; /* advance to next MCU in row */ lastblockrow += h_samp_factor; } } } } /* NB: compress_output will increment iMCU_row_num if successful. * A suspension return will result in redoing all the work above next time. */ /* Emit data to the entropy encoder, sharing code with subsequent passes */ return compress_output(cinfo, input_buf); } /* * Process some data in subsequent passes of a multi-pass case. * We process the equivalent of one fully interleaved MCU row ("iMCU" row) * per call, ie, v_samp_factor block rows for each component in the scan. * The data is obtained from the virtual arrays and fed to the entropy coder. * Returns TRUE if the iMCU row is completed, FALSE if suspended. * * NB: input_buf is ignored; it is likely to be a NULL pointer. */ METHODDEF(boolean) compress_output (j_compress_ptr cinfo, JSAMPIMAGE input_buf) { my_coef_ptr coef = (my_coef_ptr) cinfo->coef; JDIMENSION MCU_col_num; /* index of current MCU within row */ int blkn, ci, xindex, yindex, yoffset; JDIMENSION start_col; JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN]; JBLOCKROW buffer_ptr; jpeg_component_info *compptr; /* Align the virtual buffers for the components used in this scan. * NB: during first pass, this is safe only because the buffers will * already be aligned properly, so jmemmgr.c won't need to do any I/O. */ for (ci = 0; ci < cinfo->comps_in_scan; ci++) { compptr = cinfo->cur_comp_info[ci]; buffer[ci] = (*cinfo->mem->access_virt_barray) ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index], coef->iMCU_row_num * compptr->v_samp_factor, (JDIMENSION) compptr->v_samp_factor, FALSE); } /* Loop to process one whole iMCU row */ for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; yoffset++) { for (MCU_col_num = coef->mcu_ctr; MCU_col_num < cinfo->MCUs_per_row; MCU_col_num++) { /* Construct list of pointers to DCT blocks belonging to this MCU */ blkn = 0; /* index of current DCT block within MCU */ for (ci = 0; ci < cinfo->comps_in_scan; ci++) { compptr = cinfo->cur_comp_info[ci]; start_col = MCU_col_num * compptr->MCU_width; for (yindex = 0; yindex < compptr->MCU_height; yindex++) { buffer_ptr = buffer[ci][yindex+yoffset] + start_col; for (xindex = 0; xindex < compptr->MCU_width; xindex++) { coef->MCU_buffer[blkn++] = buffer_ptr++; } } } /* Try to write the MCU. */ if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) { /* Suspension forced; update state counters and exit */ coef->MCU_vert_offset = yoffset; coef->mcu_ctr = MCU_col_num; return FALSE; } } /* Completed an MCU row, but perhaps not an iMCU row */ coef->mcu_ctr = 0; } /* Completed the iMCU row, advance counters for next one */ coef->iMCU_row_num++; start_iMCU_row(cinfo); return TRUE; } #endif /* FULL_COEF_BUFFER_SUPPORTED */ /* * Initialize coefficient buffer controller. */ GLOBAL(void) jinit_c_coef_controller (j_compress_ptr cinfo, boolean need_full_buffer) { my_coef_ptr coef; coef = (my_coef_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, sizeof(my_coef_controller)); cinfo->coef = (struct jpeg_c_coef_controller *) coef; coef->pub.start_pass = start_pass_coef; /* Create the coefficient buffer. */ if (need_full_buffer) { #ifdef FULL_COEF_BUFFER_SUPPORTED /* Allocate a full-image virtual array for each component, */ /* padded to a multiple of samp_factor DCT blocks in each direction. */ int ci; jpeg_component_info *compptr; for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { coef->whole_image[ci] = (*cinfo->mem->request_virt_barray) ((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE, (JDIMENSION) jround_up((long) compptr->width_in_blocks, (long) compptr->h_samp_factor), (JDIMENSION) jround_up((long) compptr->height_in_blocks, (long) compptr->v_samp_factor), (JDIMENSION) compptr->v_samp_factor); } #else ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); #endif } else { /* We only need a single-MCU buffer. */ JBLOCKROW buffer; int i; buffer = (JBLOCKROW) (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE, C_MAX_BLOCKS_IN_MCU * sizeof(JBLOCK)); for (i = 0; i < C_MAX_BLOCKS_IN_MCU; i++) { coef->MCU_buffer[i] = buffer + i; } coef->whole_image[0] = NULL; /* flag for no virtual arrays */ } } libjpeg-turbo-1.4.2/rdbmp.c0000644000076500007650000003606312600050400012461 00000000000000/* * rdbmp.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1994-1996, Thomas G. Lane. * Modified 2009-2010 by Guido Vollbeding. * libjpeg-turbo Modifications: * Modified 2011 by Siarhei Siamashka. * Copyright (C) 2015, D. R. Commander. * For conditions of distribution and use, see the accompanying README file. * * This file contains routines to read input images in Microsoft "BMP" * format (MS Windows 3.x, OS/2 1.x, and OS/2 2.x flavors). * Currently, only 8-bit and 24-bit images are supported, not 1-bit or * 4-bit (feeding such low-depth images into JPEG would be silly anyway). * Also, we don't support RLE-compressed files. * * These routines may need modification for non-Unix environments or * specialized applications. As they stand, they assume input from * an ordinary stdio stream. They further assume that reading begins * at the start of the file; start_input may need work if the * user interface has already read some data (e.g., to determine that * the file is indeed BMP format). * * This code contributed by James Arthur Boucher. */ #include "cdjpeg.h" /* Common decls for cjpeg/djpeg applications */ #ifdef BMP_SUPPORTED /* Macros to deal with unsigned chars as efficiently as compiler allows */ #ifdef HAVE_UNSIGNED_CHAR typedef unsigned char U_CHAR; #define UCH(x) ((int) (x)) #else /* !HAVE_UNSIGNED_CHAR */ #ifdef __CHAR_UNSIGNED__ typedef char U_CHAR; #define UCH(x) ((int) (x)) #else typedef char U_CHAR; #define UCH(x) ((int) (x) & 0xFF) #endif #endif /* HAVE_UNSIGNED_CHAR */ #define ReadOK(file,buffer,len) (JFREAD(file,buffer,len) == ((size_t) (len))) /* Private version of data source object */ typedef struct _bmp_source_struct * bmp_source_ptr; typedef struct _bmp_source_struct { struct cjpeg_source_struct pub; /* public fields */ j_compress_ptr cinfo; /* back link saves passing separate parm */ JSAMPARRAY colormap; /* BMP colormap (converted to my format) */ jvirt_sarray_ptr whole_image; /* Needed to reverse row order */ JDIMENSION source_row; /* Current source row number */ JDIMENSION row_width; /* Physical width of scanlines in file */ int bits_per_pixel; /* remembers 8- or 24-bit format */ } bmp_source_struct; LOCAL(int) read_byte (bmp_source_ptr sinfo) /* Read next byte from BMP file */ { register FILE *infile = sinfo->pub.input_file; register int c; if ((c = getc(infile)) == EOF) ERREXIT(sinfo->cinfo, JERR_INPUT_EOF); return c; } LOCAL(void) read_colormap (bmp_source_ptr sinfo, int cmaplen, int mapentrysize) /* Read the colormap from a BMP file */ { int i; switch (mapentrysize) { case 3: /* BGR format (occurs in OS/2 files) */ for (i = 0; i < cmaplen; i++) { sinfo->colormap[2][i] = (JSAMPLE) read_byte(sinfo); sinfo->colormap[1][i] = (JSAMPLE) read_byte(sinfo); sinfo->colormap[0][i] = (JSAMPLE) read_byte(sinfo); } break; case 4: /* BGR0 format (occurs in MS Windows files) */ for (i = 0; i < cmaplen; i++) { sinfo->colormap[2][i] = (JSAMPLE) read_byte(sinfo); sinfo->colormap[1][i] = (JSAMPLE) read_byte(sinfo); sinfo->colormap[0][i] = (JSAMPLE) read_byte(sinfo); (void) read_byte(sinfo); } break; default: ERREXIT(sinfo->cinfo, JERR_BMP_BADCMAP); break; } } /* * Read one row of pixels. * The image has been read into the whole_image array, but is otherwise * unprocessed. We must read it out in top-to-bottom row order, and if * it is an 8-bit image, we must expand colormapped pixels to 24bit format. */ METHODDEF(JDIMENSION) get_8bit_row (j_compress_ptr cinfo, cjpeg_source_ptr sinfo) /* This version is for reading 8-bit colormap indexes */ { bmp_source_ptr source = (bmp_source_ptr) sinfo; register JSAMPARRAY colormap = source->colormap; JSAMPARRAY image_ptr; register int t; register JSAMPROW inptr, outptr; register JDIMENSION col; /* Fetch next row from virtual array */ source->source_row--; image_ptr = (*cinfo->mem->access_virt_sarray) ((j_common_ptr) cinfo, source->whole_image, source->source_row, (JDIMENSION) 1, FALSE); /* Expand the colormap indexes to real data */ inptr = image_ptr[0]; outptr = source->pub.buffer[0]; for (col = cinfo->image_width; col > 0; col--) { t = GETJSAMPLE(*inptr++); *outptr++ = colormap[0][t]; /* can omit GETJSAMPLE() safely */ *outptr++ = colormap[1][t]; *outptr++ = colormap[2][t]; } return 1; } METHODDEF(JDIMENSION) get_24bit_row (j_compress_ptr cinfo, cjpeg_source_ptr sinfo) /* This version is for reading 24-bit pixels */ { bmp_source_ptr source = (bmp_source_ptr) sinfo; JSAMPARRAY image_ptr; register JSAMPROW inptr, outptr; register JDIMENSION col; /* Fetch next row from virtual array */ source->source_row--; image_ptr = (*cinfo->mem->access_virt_sarray) ((j_common_ptr) cinfo, source->whole_image, source->source_row, (JDIMENSION) 1, FALSE); /* Transfer data. Note source values are in BGR order * (even though Microsoft's own documents say the opposite). */ inptr = image_ptr[0]; outptr = source->pub.buffer[0]; for (col = cinfo->image_width; col > 0; col--) { outptr[2] = *inptr++; /* can omit GETJSAMPLE() safely */ outptr[1] = *inptr++; outptr[0] = *inptr++; outptr += 3; } return 1; } METHODDEF(JDIMENSION) get_32bit_row (j_compress_ptr cinfo, cjpeg_source_ptr sinfo) /* This version is for reading 32-bit pixels */ { bmp_source_ptr source = (bmp_source_ptr) sinfo; JSAMPARRAY image_ptr; register JSAMPROW inptr, outptr; register JDIMENSION col; /* Fetch next row from virtual array */ source->source_row--; image_ptr = (*cinfo->mem->access_virt_sarray) ((j_common_ptr) cinfo, source->whole_image, source->source_row, (JDIMENSION) 1, FALSE); /* Transfer data. Note source values are in BGR order * (even though Microsoft's own documents say the opposite). */ inptr = image_ptr[0]; outptr = source->pub.buffer[0]; for (col = cinfo->image_width; col > 0; col--) { outptr[2] = *inptr++; /* can omit GETJSAMPLE() safely */ outptr[1] = *inptr++; outptr[0] = *inptr++; inptr++; /* skip the 4th byte (Alpha channel) */ outptr += 3; } return 1; } /* * This method loads the image into whole_image during the first call on * get_pixel_rows. The get_pixel_rows pointer is then adjusted to call * get_8bit_row, get_24bit_row, or get_32bit_row on subsequent calls. */ METHODDEF(JDIMENSION) preload_image (j_compress_ptr cinfo, cjpeg_source_ptr sinfo) { bmp_source_ptr source = (bmp_source_ptr) sinfo; register FILE *infile = source->pub.input_file; register JSAMPROW out_ptr; JSAMPARRAY image_ptr; JDIMENSION row; cd_progress_ptr progress = (cd_progress_ptr) cinfo->progress; /* Read the data into a virtual array in input-file row order. */ for (row = 0; row < cinfo->image_height; row++) { if (progress != NULL) { progress->pub.pass_counter = (long) row; progress->pub.pass_limit = (long) cinfo->image_height; (*progress->pub.progress_monitor) ((j_common_ptr) cinfo); } image_ptr = (*cinfo->mem->access_virt_sarray) ((j_common_ptr) cinfo, source->whole_image, row, (JDIMENSION) 1, TRUE); out_ptr = image_ptr[0]; if (fread(out_ptr, 1, source->row_width, infile) != source->row_width) { if (feof(infile)) ERREXIT(cinfo, JERR_INPUT_EOF); else ERREXIT(cinfo, JERR_FILE_READ); } } if (progress != NULL) progress->completed_extra_passes++; /* Set up to read from the virtual array in top-to-bottom order */ switch (source->bits_per_pixel) { case 8: source->pub.get_pixel_rows = get_8bit_row; break; case 24: source->pub.get_pixel_rows = get_24bit_row; break; case 32: source->pub.get_pixel_rows = get_32bit_row; break; default: ERREXIT(cinfo, JERR_BMP_BADDEPTH); } source->source_row = cinfo->image_height; /* And read the first row */ return (*source->pub.get_pixel_rows) (cinfo, sinfo); } /* * Read the file header; return image size and component count. */ METHODDEF(void) start_input_bmp (j_compress_ptr cinfo, cjpeg_source_ptr sinfo) { bmp_source_ptr source = (bmp_source_ptr) sinfo; U_CHAR bmpfileheader[14]; U_CHAR bmpinfoheader[64]; #define GET_2B(array,offset) ((unsigned short) UCH(array[offset]) + \ (((unsigned short) UCH(array[offset+1])) << 8)) #define GET_4B(array,offset) ((unsigned int) UCH(array[offset]) + \ (((unsigned int) UCH(array[offset+1])) << 8) + \ (((unsigned int) UCH(array[offset+2])) << 16) + \ (((unsigned int) UCH(array[offset+3])) << 24)) unsigned int bfOffBits; unsigned int headerSize; int biWidth; int biHeight; unsigned short biPlanes; unsigned int biCompression; int biXPelsPerMeter,biYPelsPerMeter; unsigned int biClrUsed = 0; int mapentrysize = 0; /* 0 indicates no colormap */ int bPad; JDIMENSION row_width; /* Read and verify the bitmap file header */ if (! ReadOK(source->pub.input_file, bmpfileheader, 14)) ERREXIT(cinfo, JERR_INPUT_EOF); if (GET_2B(bmpfileheader,0) != 0x4D42) /* 'BM' */ ERREXIT(cinfo, JERR_BMP_NOT); bfOffBits = GET_4B(bmpfileheader,10); /* We ignore the remaining fileheader fields */ /* The infoheader might be 12 bytes (OS/2 1.x), 40 bytes (Windows), * or 64 bytes (OS/2 2.x). Check the first 4 bytes to find out which. */ if (! ReadOK(source->pub.input_file, bmpinfoheader, 4)) ERREXIT(cinfo, JERR_INPUT_EOF); headerSize = GET_4B(bmpinfoheader,0); if (headerSize < 12 || headerSize > 64) ERREXIT(cinfo, JERR_BMP_BADHEADER); if (! ReadOK(source->pub.input_file, bmpinfoheader+4, headerSize-4)) ERREXIT(cinfo, JERR_INPUT_EOF); switch (headerSize) { case 12: /* Decode OS/2 1.x header (Microsoft calls this a BITMAPCOREHEADER) */ biWidth = (int) GET_2B(bmpinfoheader,4); biHeight = (int) GET_2B(bmpinfoheader,6); biPlanes = GET_2B(bmpinfoheader,8); source->bits_per_pixel = (int) GET_2B(bmpinfoheader,10); switch (source->bits_per_pixel) { case 8: /* colormapped image */ mapentrysize = 3; /* OS/2 uses RGBTRIPLE colormap */ TRACEMS2(cinfo, 1, JTRC_BMP_OS2_MAPPED, biWidth, biHeight); break; case 24: /* RGB image */ TRACEMS2(cinfo, 1, JTRC_BMP_OS2, biWidth, biHeight); break; default: ERREXIT(cinfo, JERR_BMP_BADDEPTH); break; } break; case 40: case 64: /* Decode Windows 3.x header (Microsoft calls this a BITMAPINFOHEADER) */ /* or OS/2 2.x header, which has additional fields that we ignore */ biWidth = (int) GET_4B(bmpinfoheader,4); biHeight = (int) GET_4B(bmpinfoheader,8); biPlanes = GET_2B(bmpinfoheader,12); source->bits_per_pixel = (int) GET_2B(bmpinfoheader,14); biCompression = GET_4B(bmpinfoheader,16); biXPelsPerMeter = (int) GET_4B(bmpinfoheader,24); biYPelsPerMeter = (int) GET_4B(bmpinfoheader,28); biClrUsed = GET_4B(bmpinfoheader,32); /* biSizeImage, biClrImportant fields are ignored */ switch (source->bits_per_pixel) { case 8: /* colormapped image */ mapentrysize = 4; /* Windows uses RGBQUAD colormap */ TRACEMS2(cinfo, 1, JTRC_BMP_MAPPED, biWidth, biHeight); break; case 24: /* RGB image */ TRACEMS2(cinfo, 1, JTRC_BMP, biWidth, biHeight); break; case 32: /* RGB image + Alpha channel */ TRACEMS2(cinfo, 1, JTRC_BMP, biWidth, biHeight); break; default: ERREXIT(cinfo, JERR_BMP_BADDEPTH); break; } if (biCompression != 0) ERREXIT(cinfo, JERR_BMP_COMPRESSED); if (biXPelsPerMeter > 0 && biYPelsPerMeter > 0) { /* Set JFIF density parameters from the BMP data */ cinfo->X_density = (UINT16) (biXPelsPerMeter/100); /* 100 cm per meter */ cinfo->Y_density = (UINT16) (biYPelsPerMeter/100); cinfo->density_unit = 2; /* dots/cm */ } break; default: ERREXIT(cinfo, JERR_BMP_BADHEADER); return; } if (biWidth <= 0 || biHeight <= 0) ERREXIT(cinfo, JERR_BMP_EMPTY); if (biPlanes != 1) ERREXIT(cinfo, JERR_BMP_BADPLANES); /* Compute distance to bitmap data --- will adjust for colormap below */ bPad = bfOffBits - (headerSize + 14); /* Read the colormap, if any */ if (mapentrysize > 0) { if (biClrUsed <= 0) biClrUsed = 256; /* assume it's 256 */ else if (biClrUsed > 256) ERREXIT(cinfo, JERR_BMP_BADCMAP); /* Allocate space to store the colormap */ source->colormap = (*cinfo->mem->alloc_sarray) ((j_common_ptr) cinfo, JPOOL_IMAGE, (JDIMENSION) biClrUsed, (JDIMENSION) 3); /* and read it from the file */ read_colormap(source, (int) biClrUsed, mapentrysize); /* account for size of colormap */ bPad -= biClrUsed * mapentrysize; } /* Skip any remaining pad bytes */ if (bPad < 0) /* incorrect bfOffBits value? */ ERREXIT(cinfo, JERR_BMP_BADHEADER); while (--bPad >= 0) { (void) read_byte(source); } /* Compute row width in file, including padding to 4-byte boundary */ if (source->bits_per_pixel == 24) row_width = (JDIMENSION) (biWidth * 3); else if (source->bits_per_pixel == 32) row_width = (JDIMENSION) (biWidth * 4); else row_width = (JDIMENSION) biWidth; while ((row_width & 3) != 0) row_width++; source->row_width = row_width; /* Allocate space for inversion array, prepare for preload pass */ source->whole_image = (*cinfo->mem->request_virt_sarray) ((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE, row_width, (JDIMENSION) biHeight, (JDIMENSION) 1); source->pub.get_pixel_rows = preload_image; if (cinfo->progress != NULL) { cd_progress_ptr progress = (cd_progress_ptr) cinfo->progress; progress->total_extra_passes++; /* count file input as separate pass */ } /* Allocate one-row buffer for returned data */ source->pub.buffer = (*cinfo->mem->alloc_sarray) ((j_common_ptr) cinfo, JPOOL_IMAGE, (JDIMENSION) (biWidth * 3), (JDIMENSION) 1); source->pub.buffer_height = 1; cinfo->in_color_space = JCS_RGB; cinfo->input_components = 3; cinfo->data_precision = 8; cinfo->image_width = (JDIMENSION) biWidth; cinfo->image_height = (JDIMENSION) biHeight; } /* * Finish up at the end of the file. */ METHODDEF(void) finish_input_bmp (j_compress_ptr cinfo, cjpeg_source_ptr sinfo) { /* no work */ } /* * The module selection routine for BMP format input. */ GLOBAL(cjpeg_source_ptr) jinit_read_bmp (j_compress_ptr cinfo) { bmp_source_ptr source; /* Create module interface object */ source = (bmp_source_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, sizeof(bmp_source_struct)); source->cinfo = cinfo; /* make back link for subroutines */ /* Fill in method ptrs, except get_pixel_rows which start_input sets */ source->pub.start_input = start_input_bmp; source->pub.finish_input = finish_input_bmp; return (cjpeg_source_ptr) source; } #endif /* BMP_SUPPORTED */ libjpeg-turbo-1.4.2/jsimd.h0000644000076500007650000000650212600050400012463 00000000000000/* * jsimd.h * * Copyright 2009 Pierre Ossman for Cendio AB * Copyright 2011, 2014 D. R. Commander * * Based on the x86 SIMD extension for IJG JPEG library, * Copyright (C) 1999-2006, MIYASAKA Masaru. * For conditions of distribution and use, see copyright notice in jsimdext.inc * */ EXTERN(int) jsimd_can_rgb_ycc (void); EXTERN(int) jsimd_can_rgb_gray (void); EXTERN(int) jsimd_can_ycc_rgb (void); EXTERN(int) jsimd_can_ycc_rgb565 (void); EXTERN(int) jsimd_c_can_null_convert (void); EXTERN(void) jsimd_rgb_ycc_convert (j_compress_ptr cinfo, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_rgb_gray_convert (j_compress_ptr cinfo, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_ycc_rgb_convert (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows); EXTERN(void) jsimd_ycc_rgb565_convert (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows); EXTERN(void) jsimd_c_null_convert (j_compress_ptr cinfo, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(int) jsimd_can_h2v2_downsample (void); EXTERN(int) jsimd_can_h2v1_downsample (void); EXTERN(void) jsimd_h2v2_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, JSAMPARRAY input_data, JSAMPARRAY output_data); EXTERN(int) jsimd_can_h2v2_smooth_downsample (void); EXTERN(void) jsimd_h2v2_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, JSAMPARRAY input_data, JSAMPARRAY output_data); EXTERN(void) jsimd_h2v1_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, JSAMPARRAY input_data, JSAMPARRAY output_data); EXTERN(int) jsimd_can_h2v2_upsample (void); EXTERN(int) jsimd_can_h2v1_upsample (void); EXTERN(int) jsimd_can_int_upsample (void); EXTERN(void) jsimd_h2v2_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr); EXTERN(void) jsimd_h2v1_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr); EXTERN(void) jsimd_int_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr); EXTERN(int) jsimd_can_h2v2_fancy_upsample (void); EXTERN(int) jsimd_can_h2v1_fancy_upsample (void); EXTERN(void) jsimd_h2v2_fancy_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr); EXTERN(void) jsimd_h2v1_fancy_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr); EXTERN(int) jsimd_can_h2v2_merged_upsample (void); EXTERN(int) jsimd_can_h2v1_merged_upsample (void); EXTERN(void) jsimd_h2v2_merged_upsample (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v1_merged_upsample (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); libjpeg-turbo-1.4.2/jsimd_none.c0000644000076500007650000001604612600050400013501 00000000000000/* * jsimd_none.c * * Copyright 2009 Pierre Ossman for Cendio AB * Copyright 2009-2011, 2014 D. R. Commander * * Based on the x86 SIMD extension for IJG JPEG library, * Copyright (C) 1999-2006, MIYASAKA Masaru. * For conditions of distribution and use, see copyright notice in jsimdext.inc * * This file contains stubs for when there is no SIMD support available. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" #include "jsimd.h" #include "jdct.h" #include "jsimddct.h" GLOBAL(int) jsimd_can_rgb_ycc (void) { return 0; } GLOBAL(int) jsimd_can_rgb_gray (void) { return 0; } GLOBAL(int) jsimd_can_ycc_rgb (void) { return 0; } GLOBAL(int) jsimd_can_ycc_rgb565 (void) { return 0; } GLOBAL(int) jsimd_c_can_null_convert (void) { return 0; } GLOBAL(void) jsimd_rgb_ycc_convert (j_compress_ptr cinfo, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows) { } GLOBAL(void) jsimd_rgb_gray_convert (j_compress_ptr cinfo, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows) { } GLOBAL(void) jsimd_ycc_rgb_convert (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) { } GLOBAL(void) jsimd_ycc_rgb565_convert (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) { } GLOBAL(void) jsimd_c_null_convert (j_compress_ptr cinfo, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows) { } GLOBAL(int) jsimd_can_h2v2_downsample (void) { return 0; } GLOBAL(int) jsimd_can_h2v1_downsample (void) { return 0; } GLOBAL(int) jsimd_can_h2v2_smooth_downsample (void) { return 0; } GLOBAL(void) jsimd_h2v2_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, JSAMPARRAY input_data, JSAMPARRAY output_data) { } GLOBAL(void) jsimd_h2v2_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, JSAMPARRAY input_data, JSAMPARRAY output_data) { } GLOBAL(void) jsimd_h2v1_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, JSAMPARRAY input_data, JSAMPARRAY output_data) { } GLOBAL(int) jsimd_can_h2v2_upsample (void) { return 0; } GLOBAL(int) jsimd_can_h2v1_upsample (void) { return 0; } GLOBAL(int) jsimd_can_int_upsample (void) { return 0; } GLOBAL(void) jsimd_int_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) { } GLOBAL(void) jsimd_h2v2_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) { } GLOBAL(void) jsimd_h2v1_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) { } GLOBAL(int) jsimd_can_h2v2_fancy_upsample (void) { return 0; } GLOBAL(int) jsimd_can_h2v1_fancy_upsample (void) { return 0; } GLOBAL(void) jsimd_h2v2_fancy_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) { } GLOBAL(void) jsimd_h2v1_fancy_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) { } GLOBAL(int) jsimd_can_h2v2_merged_upsample (void) { return 0; } GLOBAL(int) jsimd_can_h2v1_merged_upsample (void) { return 0; } GLOBAL(void) jsimd_h2v2_merged_upsample (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf) { } GLOBAL(void) jsimd_h2v1_merged_upsample (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf) { } GLOBAL(int) jsimd_can_convsamp (void) { return 0; } GLOBAL(int) jsimd_can_convsamp_float (void) { return 0; } GLOBAL(void) jsimd_convsamp (JSAMPARRAY sample_data, JDIMENSION start_col, DCTELEM * workspace) { } GLOBAL(void) jsimd_convsamp_float (JSAMPARRAY sample_data, JDIMENSION start_col, FAST_FLOAT * workspace) { } GLOBAL(int) jsimd_can_fdct_islow (void) { return 0; } GLOBAL(int) jsimd_can_fdct_ifast (void) { return 0; } GLOBAL(int) jsimd_can_fdct_float (void) { return 0; } GLOBAL(void) jsimd_fdct_islow (DCTELEM * data) { } GLOBAL(void) jsimd_fdct_ifast (DCTELEM * data) { } GLOBAL(void) jsimd_fdct_float (FAST_FLOAT * data) { } GLOBAL(int) jsimd_can_quantize (void) { return 0; } GLOBAL(int) jsimd_can_quantize_float (void) { return 0; } GLOBAL(void) jsimd_quantize (JCOEFPTR coef_block, DCTELEM * divisors, DCTELEM * workspace) { } GLOBAL(void) jsimd_quantize_float (JCOEFPTR coef_block, FAST_FLOAT * divisors, FAST_FLOAT * workspace) { } GLOBAL(int) jsimd_can_idct_2x2 (void) { return 0; } GLOBAL(int) jsimd_can_idct_4x4 (void) { return 0; } GLOBAL(int) jsimd_can_idct_6x6 (void) { return 0; } GLOBAL(int) jsimd_can_idct_12x12 (void) { return 0; } GLOBAL(void) jsimd_idct_2x2 (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { } GLOBAL(void) jsimd_idct_4x4 (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { } GLOBAL(void) jsimd_idct_6x6 (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { } GLOBAL(void) jsimd_idct_12x12 (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { } GLOBAL(int) jsimd_can_idct_islow (void) { return 0; } GLOBAL(int) jsimd_can_idct_ifast (void) { return 0; } GLOBAL(int) jsimd_can_idct_float (void) { return 0; } GLOBAL(void) jsimd_idct_islow (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { } GLOBAL(void) jsimd_idct_ifast (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { } GLOBAL(void) jsimd_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { } libjpeg-turbo-1.4.2/djpeg.c0000644000076500007650000005376212600050400012453 00000000000000/* * djpeg.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1991-1997, Thomas G. Lane. * libjpeg-turbo Modifications: * Copyright (C) 2010-2011, 2013-2014, D. R. Commander. * For conditions of distribution and use, see the accompanying README file. * * This file contains a command-line user interface for the JPEG decompressor. * It should work on any system with Unix- or MS-DOS-style command lines. * * Two different command line styles are permitted, depending on the * compile-time switch TWO_FILE_COMMANDLINE: * djpeg [options] inputfile outputfile * djpeg [options] [inputfile] * In the second style, output is always to standard output, which you'd * normally redirect to a file or pipe to some other program. Input is * either from a named file or from standard input (typically redirected). * The second style is convenient on Unix but is unhelpful on systems that * don't support pipes. Also, you MUST use the first style if your system * doesn't do binary I/O to stdin/stdout. * To simplify script writing, the "-outfile" switch is provided. The syntax * djpeg [options] -outfile outputfile inputfile * works regardless of which command line style is used. */ #include "cdjpeg.h" /* Common decls for cjpeg/djpeg applications */ #include "jversion.h" /* for version message */ #include "jconfigint.h" #include /* to declare isprint() */ #ifdef USE_CCOMMAND /* command-line reader for Macintosh */ #ifdef __MWERKS__ #include /* Metrowerks needs this */ #include /* ... and this */ #endif #ifdef THINK_C #include /* Think declares it here */ #endif #endif /* Create the add-on message string table. */ #define JMESSAGE(code,string) string , static const char * const cdjpeg_message_table[] = { #include "cderror.h" NULL }; /* * This list defines the known output image formats * (not all of which need be supported by a given version). * You can change the default output format by defining DEFAULT_FMT; * indeed, you had better do so if you undefine PPM_SUPPORTED. */ typedef enum { FMT_BMP, /* BMP format (Windows flavor) */ FMT_GIF, /* GIF format */ FMT_OS2, /* BMP format (OS/2 flavor) */ FMT_PPM, /* PPM/PGM (PBMPLUS formats) */ FMT_RLE, /* RLE format */ FMT_TARGA, /* Targa format */ FMT_TIFF /* TIFF format */ } IMAGE_FORMATS; #ifndef DEFAULT_FMT /* so can override from CFLAGS in Makefile */ #define DEFAULT_FMT FMT_PPM #endif static IMAGE_FORMATS requested_fmt; /* * Argument-parsing code. * The switch parser is designed to be useful with DOS-style command line * syntax, ie, intermixed switches and file names, where only the switches * to the left of a given file name affect processing of that file. * The main program in this file doesn't actually use this capability... */ static const char * progname; /* program name for error messages */ static char * outfilename; /* for -outfile switch */ boolean memsrc; /* for -memsrc switch */ #define INPUT_BUF_SIZE 4096 LOCAL(void) usage (void) /* complain about bad command line */ { fprintf(stderr, "usage: %s [switches] ", progname); #ifdef TWO_FILE_COMMANDLINE fprintf(stderr, "inputfile outputfile\n"); #else fprintf(stderr, "[inputfile]\n"); #endif fprintf(stderr, "Switches (names may be abbreviated):\n"); fprintf(stderr, " -colors N Reduce image to no more than N colors\n"); fprintf(stderr, " -fast Fast, low-quality processing\n"); fprintf(stderr, " -grayscale Force grayscale output\n"); fprintf(stderr, " -rgb Force RGB output\n"); fprintf(stderr, " -rgb565 Force RGB565 output\n"); #ifdef IDCT_SCALING_SUPPORTED fprintf(stderr, " -scale M/N Scale output image by fraction M/N, eg, 1/8\n"); #endif #ifdef BMP_SUPPORTED fprintf(stderr, " -bmp Select BMP output format (Windows style)%s\n", (DEFAULT_FMT == FMT_BMP ? " (default)" : "")); #endif #ifdef GIF_SUPPORTED fprintf(stderr, " -gif Select GIF output format%s\n", (DEFAULT_FMT == FMT_GIF ? " (default)" : "")); #endif #ifdef BMP_SUPPORTED fprintf(stderr, " -os2 Select BMP output format (OS/2 style)%s\n", (DEFAULT_FMT == FMT_OS2 ? " (default)" : "")); #endif #ifdef PPM_SUPPORTED fprintf(stderr, " -pnm Select PBMPLUS (PPM/PGM) output format%s\n", (DEFAULT_FMT == FMT_PPM ? " (default)" : "")); #endif #ifdef RLE_SUPPORTED fprintf(stderr, " -rle Select Utah RLE output format%s\n", (DEFAULT_FMT == FMT_RLE ? " (default)" : "")); #endif #ifdef TARGA_SUPPORTED fprintf(stderr, " -targa Select Targa output format%s\n", (DEFAULT_FMT == FMT_TARGA ? " (default)" : "")); #endif fprintf(stderr, "Switches for advanced users:\n"); #ifdef DCT_ISLOW_SUPPORTED fprintf(stderr, " -dct int Use integer DCT method%s\n", (JDCT_DEFAULT == JDCT_ISLOW ? " (default)" : "")); #endif #ifdef DCT_IFAST_SUPPORTED fprintf(stderr, " -dct fast Use fast integer DCT (less accurate)%s\n", (JDCT_DEFAULT == JDCT_IFAST ? " (default)" : "")); #endif #ifdef DCT_FLOAT_SUPPORTED fprintf(stderr, " -dct float Use floating-point DCT method%s\n", (JDCT_DEFAULT == JDCT_FLOAT ? " (default)" : "")); #endif fprintf(stderr, " -dither fs Use F-S dithering (default)\n"); fprintf(stderr, " -dither none Don't use dithering in quantization\n"); fprintf(stderr, " -dither ordered Use ordered dither (medium speed, quality)\n"); #ifdef QUANT_2PASS_SUPPORTED fprintf(stderr, " -map FILE Map to colors used in named image file\n"); #endif fprintf(stderr, " -nosmooth Don't use high-quality upsampling\n"); #ifdef QUANT_1PASS_SUPPORTED fprintf(stderr, " -onepass Use 1-pass quantization (fast, low quality)\n"); #endif fprintf(stderr, " -maxmemory N Maximum memory to use (in kbytes)\n"); fprintf(stderr, " -outfile name Specify name for output file\n"); #if JPEG_LIB_VERSION >= 80 || defined(MEM_SRCDST_SUPPORTED) fprintf(stderr, " -memsrc Load input file into memory before decompressing\n"); #endif fprintf(stderr, " -verbose or -debug Emit debug output\n"); fprintf(stderr, " -version Print version information and exit\n"); exit(EXIT_FAILURE); } LOCAL(int) parse_switches (j_decompress_ptr cinfo, int argc, char **argv, int last_file_arg_seen, boolean for_real) /* Parse optional switches. * Returns argv[] index of first file-name argument (== argc if none). * Any file names with indexes <= last_file_arg_seen are ignored; * they have presumably been processed in a previous iteration. * (Pass 0 for last_file_arg_seen on the first or only iteration.) * for_real is FALSE on the first (dummy) pass; we may skip any expensive * processing. */ { int argn; char * arg; /* Set up default JPEG parameters. */ requested_fmt = DEFAULT_FMT; /* set default output file format */ outfilename = NULL; memsrc = FALSE; cinfo->err->trace_level = 0; /* Scan command line options, adjust parameters */ for (argn = 1; argn < argc; argn++) { arg = argv[argn]; if (*arg != '-') { /* Not a switch, must be a file name argument */ if (argn <= last_file_arg_seen) { outfilename = NULL; /* -outfile applies to just one input file */ continue; /* ignore this name if previously processed */ } break; /* else done parsing switches */ } arg++; /* advance past switch marker character */ if (keymatch(arg, "bmp", 1)) { /* BMP output format. */ requested_fmt = FMT_BMP; } else if (keymatch(arg, "colors", 1) || keymatch(arg, "colours", 1) || keymatch(arg, "quantize", 1) || keymatch(arg, "quantise", 1)) { /* Do color quantization. */ int val; if (++argn >= argc) /* advance to next argument */ usage(); if (sscanf(argv[argn], "%d", &val) != 1) usage(); cinfo->desired_number_of_colors = val; cinfo->quantize_colors = TRUE; } else if (keymatch(arg, "dct", 2)) { /* Select IDCT algorithm. */ if (++argn >= argc) /* advance to next argument */ usage(); if (keymatch(argv[argn], "int", 1)) { cinfo->dct_method = JDCT_ISLOW; } else if (keymatch(argv[argn], "fast", 2)) { cinfo->dct_method = JDCT_IFAST; } else if (keymatch(argv[argn], "float", 2)) { cinfo->dct_method = JDCT_FLOAT; } else usage(); } else if (keymatch(arg, "dither", 2)) { /* Select dithering algorithm. */ if (++argn >= argc) /* advance to next argument */ usage(); if (keymatch(argv[argn], "fs", 2)) { cinfo->dither_mode = JDITHER_FS; } else if (keymatch(argv[argn], "none", 2)) { cinfo->dither_mode = JDITHER_NONE; } else if (keymatch(argv[argn], "ordered", 2)) { cinfo->dither_mode = JDITHER_ORDERED; } else usage(); } else if (keymatch(arg, "debug", 1) || keymatch(arg, "verbose", 1)) { /* Enable debug printouts. */ /* On first -d, print version identification */ static boolean printed_version = FALSE; if (! printed_version) { fprintf(stderr, "%s version %s (build %s)\n", PACKAGE_NAME, VERSION, BUILD); fprintf(stderr, "%s\n\n", JCOPYRIGHT); fprintf(stderr, "Emulating The Independent JPEG Group's software, version %s\n\n", JVERSION); printed_version = TRUE; } cinfo->err->trace_level++; } else if (keymatch(arg, "version", 4)) { fprintf(stderr, "%s version %s (build %s)\n", PACKAGE_NAME, VERSION, BUILD); exit(EXIT_SUCCESS); } else if (keymatch(arg, "fast", 1)) { /* Select recommended processing options for quick-and-dirty output. */ cinfo->two_pass_quantize = FALSE; cinfo->dither_mode = JDITHER_ORDERED; if (! cinfo->quantize_colors) /* don't override an earlier -colors */ cinfo->desired_number_of_colors = 216; cinfo->dct_method = JDCT_FASTEST; cinfo->do_fancy_upsampling = FALSE; } else if (keymatch(arg, "gif", 1)) { /* GIF output format. */ requested_fmt = FMT_GIF; } else if (keymatch(arg, "grayscale", 2) || keymatch(arg, "greyscale",2)) { /* Force monochrome output. */ cinfo->out_color_space = JCS_GRAYSCALE; } else if (keymatch(arg, "rgb", 2)) { /* Force RGB output. */ cinfo->out_color_space = JCS_RGB; } else if (keymatch(arg, "rgb565", 2)) { /* Force RGB565 output. */ cinfo->out_color_space = JCS_RGB565; } else if (keymatch(arg, "map", 3)) { /* Quantize to a color map taken from an input file. */ if (++argn >= argc) /* advance to next argument */ usage(); if (for_real) { /* too expensive to do twice! */ #ifdef QUANT_2PASS_SUPPORTED /* otherwise can't quantize to supplied map */ FILE * mapfile; if ((mapfile = fopen(argv[argn], READ_BINARY)) == NULL) { fprintf(stderr, "%s: can't open %s\n", progname, argv[argn]); exit(EXIT_FAILURE); } read_color_map(cinfo, mapfile); fclose(mapfile); cinfo->quantize_colors = TRUE; #else ERREXIT(cinfo, JERR_NOT_COMPILED); #endif } } else if (keymatch(arg, "maxmemory", 3)) { /* Maximum memory in Kb (or Mb with 'm'). */ long lval; char ch = 'x'; if (++argn >= argc) /* advance to next argument */ usage(); if (sscanf(argv[argn], "%ld%c", &lval, &ch) < 1) usage(); if (ch == 'm' || ch == 'M') lval *= 1000L; cinfo->mem->max_memory_to_use = lval * 1000L; } else if (keymatch(arg, "nosmooth", 3)) { /* Suppress fancy upsampling */ cinfo->do_fancy_upsampling = FALSE; } else if (keymatch(arg, "onepass", 3)) { /* Use fast one-pass quantization. */ cinfo->two_pass_quantize = FALSE; } else if (keymatch(arg, "os2", 3)) { /* BMP output format (OS/2 flavor). */ requested_fmt = FMT_OS2; } else if (keymatch(arg, "outfile", 4)) { /* Set output file name. */ if (++argn >= argc) /* advance to next argument */ usage(); outfilename = argv[argn]; /* save it away for later use */ } else if (keymatch(arg, "memsrc", 2)) { /* Use in-memory source manager */ #if JPEG_LIB_VERSION >= 80 || defined(MEM_SRCDST_SUPPORTED) memsrc = TRUE; #else fprintf(stderr, "%s: sorry, in-memory source manager was not compiled in\n", progname); exit(EXIT_FAILURE); #endif } else if (keymatch(arg, "pnm", 1) || keymatch(arg, "ppm", 1)) { /* PPM/PGM output format. */ requested_fmt = FMT_PPM; } else if (keymatch(arg, "rle", 1)) { /* RLE output format. */ requested_fmt = FMT_RLE; } else if (keymatch(arg, "scale", 1)) { /* Scale the output image by a fraction M/N. */ if (++argn >= argc) /* advance to next argument */ usage(); if (sscanf(argv[argn], "%d/%d", &cinfo->scale_num, &cinfo->scale_denom) != 2) usage(); } else if (keymatch(arg, "targa", 1)) { /* Targa output format. */ requested_fmt = FMT_TARGA; } else { usage(); /* bogus switch */ } } return argn; /* return index of next arg (file name) */ } /* * Marker processor for COM and interesting APPn markers. * This replaces the library's built-in processor, which just skips the marker. * We want to print out the marker as text, to the extent possible. * Note this code relies on a non-suspending data source. */ LOCAL(unsigned int) jpeg_getc (j_decompress_ptr cinfo) /* Read next byte */ { struct jpeg_source_mgr * datasrc = cinfo->src; if (datasrc->bytes_in_buffer == 0) { if (! (*datasrc->fill_input_buffer) (cinfo)) ERREXIT(cinfo, JERR_CANT_SUSPEND); } datasrc->bytes_in_buffer--; return GETJOCTET(*datasrc->next_input_byte++); } METHODDEF(boolean) print_text_marker (j_decompress_ptr cinfo) { boolean traceit = (cinfo->err->trace_level >= 1); INT32 length; unsigned int ch; unsigned int lastch = 0; length = jpeg_getc(cinfo) << 8; length += jpeg_getc(cinfo); length -= 2; /* discount the length word itself */ if (traceit) { if (cinfo->unread_marker == JPEG_COM) fprintf(stderr, "Comment, length %ld:\n", (long) length); else /* assume it is an APPn otherwise */ fprintf(stderr, "APP%d, length %ld:\n", cinfo->unread_marker - JPEG_APP0, (long) length); } while (--length >= 0) { ch = jpeg_getc(cinfo); if (traceit) { /* Emit the character in a readable form. * Nonprintables are converted to \nnn form, * while \ is converted to \\. * Newlines in CR, CR/LF, or LF form will be printed as one newline. */ if (ch == '\r') { fprintf(stderr, "\n"); } else if (ch == '\n') { if (lastch != '\r') fprintf(stderr, "\n"); } else if (ch == '\\') { fprintf(stderr, "\\\\"); } else if (isprint(ch)) { putc(ch, stderr); } else { fprintf(stderr, "\\%03o", ch); } lastch = ch; } } if (traceit) fprintf(stderr, "\n"); return TRUE; } /* * The main program. */ int main (int argc, char **argv) { struct jpeg_decompress_struct cinfo; struct jpeg_error_mgr jerr; #ifdef PROGRESS_REPORT struct cdjpeg_progress_mgr progress; #endif int file_index; djpeg_dest_ptr dest_mgr = NULL; FILE * input_file; FILE * output_file; unsigned char *inbuffer = NULL; unsigned long insize = 0; JDIMENSION num_scanlines; /* On Mac, fetch a command line. */ #ifdef USE_CCOMMAND argc = ccommand(&argv); #endif progname = argv[0]; if (progname == NULL || progname[0] == 0) progname = "djpeg"; /* in case C library doesn't provide it */ /* Initialize the JPEG decompression object with default error handling. */ cinfo.err = jpeg_std_error(&jerr); jpeg_create_decompress(&cinfo); /* Add some application-specific error messages (from cderror.h) */ jerr.addon_message_table = cdjpeg_message_table; jerr.first_addon_message = JMSG_FIRSTADDONCODE; jerr.last_addon_message = JMSG_LASTADDONCODE; /* Insert custom marker processor for COM and APP12. * APP12 is used by some digital camera makers for textual info, * so we provide the ability to display it as text. * If you like, additional APPn marker types can be selected for display, * but don't try to override APP0 or APP14 this way (see libjpeg.txt). */ jpeg_set_marker_processor(&cinfo, JPEG_COM, print_text_marker); jpeg_set_marker_processor(&cinfo, JPEG_APP0+12, print_text_marker); /* Scan command line to find file names. */ /* It is convenient to use just one switch-parsing routine, but the switch * values read here are ignored; we will rescan the switches after opening * the input file. * (Exception: tracing level set here controls verbosity for COM markers * found during jpeg_read_header...) */ file_index = parse_switches(&cinfo, argc, argv, 0, FALSE); #ifdef TWO_FILE_COMMANDLINE /* Must have either -outfile switch or explicit output file name */ if (outfilename == NULL) { if (file_index != argc-2) { fprintf(stderr, "%s: must name one input and one output file\n", progname); usage(); } outfilename = argv[file_index+1]; } else { if (file_index != argc-1) { fprintf(stderr, "%s: must name one input and one output file\n", progname); usage(); } } #else /* Unix style: expect zero or one file name */ if (file_index < argc-1) { fprintf(stderr, "%s: only one input file\n", progname); usage(); } #endif /* TWO_FILE_COMMANDLINE */ /* Open the input file. */ if (file_index < argc) { if ((input_file = fopen(argv[file_index], READ_BINARY)) == NULL) { fprintf(stderr, "%s: can't open %s\n", progname, argv[file_index]); exit(EXIT_FAILURE); } } else { /* default input file is stdin */ input_file = read_stdin(); } /* Open the output file. */ if (outfilename != NULL) { if ((output_file = fopen(outfilename, WRITE_BINARY)) == NULL) { fprintf(stderr, "%s: can't open %s\n", progname, outfilename); exit(EXIT_FAILURE); } } else { /* default output file is stdout */ output_file = write_stdout(); } #ifdef PROGRESS_REPORT start_progress_monitor((j_common_ptr) &cinfo, &progress); #endif /* Specify data source for decompression */ #if JPEG_LIB_VERSION >= 80 || defined(MEM_SRCDST_SUPPORTED) if (memsrc) { size_t nbytes; do { inbuffer = (unsigned char *)realloc(inbuffer, insize + INPUT_BUF_SIZE); if (inbuffer == NULL) { fprintf(stderr, "%s: memory allocation failure\n", progname); exit(EXIT_FAILURE); } nbytes = JFREAD(input_file, &inbuffer[insize], INPUT_BUF_SIZE); if (nbytes < INPUT_BUF_SIZE && ferror(input_file)) { if (file_index < argc) fprintf(stderr, "%s: can't read from %s\n", progname, argv[file_index]); else fprintf(stderr, "%s: can't read from stdin\n", progname); } insize += (unsigned long)nbytes; } while (nbytes == INPUT_BUF_SIZE); fprintf(stderr, "Compressed size: %lu bytes\n", insize); jpeg_mem_src(&cinfo, inbuffer, insize); } else #endif jpeg_stdio_src(&cinfo, input_file); /* Read file header, set default decompression parameters */ (void) jpeg_read_header(&cinfo, TRUE); /* Adjust default decompression parameters by re-parsing the options */ file_index = parse_switches(&cinfo, argc, argv, 0, TRUE); /* Initialize the output module now to let it override any crucial * option settings (for instance, GIF wants to force color quantization). */ switch (requested_fmt) { #ifdef BMP_SUPPORTED case FMT_BMP: dest_mgr = jinit_write_bmp(&cinfo, FALSE); break; case FMT_OS2: dest_mgr = jinit_write_bmp(&cinfo, TRUE); break; #endif #ifdef GIF_SUPPORTED case FMT_GIF: dest_mgr = jinit_write_gif(&cinfo); break; #endif #ifdef PPM_SUPPORTED case FMT_PPM: dest_mgr = jinit_write_ppm(&cinfo); break; #endif #ifdef RLE_SUPPORTED case FMT_RLE: dest_mgr = jinit_write_rle(&cinfo); break; #endif #ifdef TARGA_SUPPORTED case FMT_TARGA: dest_mgr = jinit_write_targa(&cinfo); break; #endif default: ERREXIT(&cinfo, JERR_UNSUPPORTED_FORMAT); break; } dest_mgr->output_file = output_file; /* Start decompressor */ (void) jpeg_start_decompress(&cinfo); /* Write output file header */ (*dest_mgr->start_output) (&cinfo, dest_mgr); /* Process data */ while (cinfo.output_scanline < cinfo.output_height) { num_scanlines = jpeg_read_scanlines(&cinfo, dest_mgr->buffer, dest_mgr->buffer_height); (*dest_mgr->put_pixel_rows) (&cinfo, dest_mgr, num_scanlines); } #ifdef PROGRESS_REPORT /* Hack: count final pass as done in case finish_output does an extra pass. * The library won't have updated completed_passes. */ progress.pub.completed_passes = progress.pub.total_passes; #endif /* Finish decompression and release memory. * I must do it in this order because output module has allocated memory * of lifespan JPOOL_IMAGE; it needs to finish before releasing memory. */ (*dest_mgr->finish_output) (&cinfo, dest_mgr); (void) jpeg_finish_decompress(&cinfo); jpeg_destroy_decompress(&cinfo); /* Close files, if we opened them */ if (input_file != stdin) fclose(input_file); if (output_file != stdout) fclose(output_file); #ifdef PROGRESS_REPORT end_progress_monitor((j_common_ptr) &cinfo); #endif if (memsrc && inbuffer != NULL) free(inbuffer); /* All done. */ exit(jerr.num_warnings ? EXIT_WARNING : EXIT_SUCCESS); return 0; /* suppress no-return-value warnings */ } libjpeg-turbo-1.4.2/jcmarker.c0000644000076500007650000004224012600050400013145 00000000000000/* * jcmarker.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1991-1998, Thomas G. Lane. * Modified 2003-2010 by Guido Vollbeding. * libjpeg-turbo Modifications: * Copyright (C) 2010, D. R. Commander. * For conditions of distribution and use, see the accompanying README file. * * This file contains routines to write JPEG datastream markers. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" #include "jpegcomp.h" typedef enum { /* JPEG marker codes */ M_SOF0 = 0xc0, M_SOF1 = 0xc1, M_SOF2 = 0xc2, M_SOF3 = 0xc3, M_SOF5 = 0xc5, M_SOF6 = 0xc6, M_SOF7 = 0xc7, M_JPG = 0xc8, M_SOF9 = 0xc9, M_SOF10 = 0xca, M_SOF11 = 0xcb, M_SOF13 = 0xcd, M_SOF14 = 0xce, M_SOF15 = 0xcf, M_DHT = 0xc4, M_DAC = 0xcc, M_RST0 = 0xd0, M_RST1 = 0xd1, M_RST2 = 0xd2, M_RST3 = 0xd3, M_RST4 = 0xd4, M_RST5 = 0xd5, M_RST6 = 0xd6, M_RST7 = 0xd7, M_SOI = 0xd8, M_EOI = 0xd9, M_SOS = 0xda, M_DQT = 0xdb, M_DNL = 0xdc, M_DRI = 0xdd, M_DHP = 0xde, M_EXP = 0xdf, M_APP0 = 0xe0, M_APP1 = 0xe1, M_APP2 = 0xe2, M_APP3 = 0xe3, M_APP4 = 0xe4, M_APP5 = 0xe5, M_APP6 = 0xe6, M_APP7 = 0xe7, M_APP8 = 0xe8, M_APP9 = 0xe9, M_APP10 = 0xea, M_APP11 = 0xeb, M_APP12 = 0xec, M_APP13 = 0xed, M_APP14 = 0xee, M_APP15 = 0xef, M_JPG0 = 0xf0, M_JPG13 = 0xfd, M_COM = 0xfe, M_TEM = 0x01, M_ERROR = 0x100 } JPEG_MARKER; /* Private state */ typedef struct { struct jpeg_marker_writer pub; /* public fields */ unsigned int last_restart_interval; /* last DRI value emitted; 0 after SOI */ } my_marker_writer; typedef my_marker_writer * my_marker_ptr; /* * Basic output routines. * * Note that we do not support suspension while writing a marker. * Therefore, an application using suspension must ensure that there is * enough buffer space for the initial markers (typ. 600-700 bytes) before * calling jpeg_start_compress, and enough space to write the trailing EOI * (a few bytes) before calling jpeg_finish_compress. Multipass compression * modes are not supported at all with suspension, so those two are the only * points where markers will be written. */ LOCAL(void) emit_byte (j_compress_ptr cinfo, int val) /* Emit a byte */ { struct jpeg_destination_mgr * dest = cinfo->dest; *(dest->next_output_byte)++ = (JOCTET) val; if (--dest->free_in_buffer == 0) { if (! (*dest->empty_output_buffer) (cinfo)) ERREXIT(cinfo, JERR_CANT_SUSPEND); } } LOCAL(void) emit_marker (j_compress_ptr cinfo, JPEG_MARKER mark) /* Emit a marker code */ { emit_byte(cinfo, 0xFF); emit_byte(cinfo, (int) mark); } LOCAL(void) emit_2bytes (j_compress_ptr cinfo, int value) /* Emit a 2-byte integer; these are always MSB first in JPEG files */ { emit_byte(cinfo, (value >> 8) & 0xFF); emit_byte(cinfo, value & 0xFF); } /* * Routines to write specific marker types. */ LOCAL(int) emit_dqt (j_compress_ptr cinfo, int index) /* Emit a DQT marker */ /* Returns the precision used (0 = 8bits, 1 = 16bits) for baseline checking */ { JQUANT_TBL * qtbl = cinfo->quant_tbl_ptrs[index]; int prec; int i; if (qtbl == NULL) ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, index); prec = 0; for (i = 0; i < DCTSIZE2; i++) { if (qtbl->quantval[i] > 255) prec = 1; } if (! qtbl->sent_table) { emit_marker(cinfo, M_DQT); emit_2bytes(cinfo, prec ? DCTSIZE2*2 + 1 + 2 : DCTSIZE2 + 1 + 2); emit_byte(cinfo, index + (prec<<4)); for (i = 0; i < DCTSIZE2; i++) { /* The table entries must be emitted in zigzag order. */ unsigned int qval = qtbl->quantval[jpeg_natural_order[i]]; if (prec) emit_byte(cinfo, (int) (qval >> 8)); emit_byte(cinfo, (int) (qval & 0xFF)); } qtbl->sent_table = TRUE; } return prec; } LOCAL(void) emit_dht (j_compress_ptr cinfo, int index, boolean is_ac) /* Emit a DHT marker */ { JHUFF_TBL * htbl; int length, i; if (is_ac) { htbl = cinfo->ac_huff_tbl_ptrs[index]; index += 0x10; /* output index has AC bit set */ } else { htbl = cinfo->dc_huff_tbl_ptrs[index]; } if (htbl == NULL) ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, index); if (! htbl->sent_table) { emit_marker(cinfo, M_DHT); length = 0; for (i = 1; i <= 16; i++) length += htbl->bits[i]; emit_2bytes(cinfo, length + 2 + 1 + 16); emit_byte(cinfo, index); for (i = 1; i <= 16; i++) emit_byte(cinfo, htbl->bits[i]); for (i = 0; i < length; i++) emit_byte(cinfo, htbl->huffval[i]); htbl->sent_table = TRUE; } } LOCAL(void) emit_dac (j_compress_ptr cinfo) /* Emit a DAC marker */ /* Since the useful info is so small, we want to emit all the tables in */ /* one DAC marker. Therefore this routine does its own scan of the table. */ { #ifdef C_ARITH_CODING_SUPPORTED char dc_in_use[NUM_ARITH_TBLS]; char ac_in_use[NUM_ARITH_TBLS]; int length, i; jpeg_component_info *compptr; for (i = 0; i < NUM_ARITH_TBLS; i++) dc_in_use[i] = ac_in_use[i] = 0; for (i = 0; i < cinfo->comps_in_scan; i++) { compptr = cinfo->cur_comp_info[i]; /* DC needs no table for refinement scan */ if (cinfo->Ss == 0 && cinfo->Ah == 0) dc_in_use[compptr->dc_tbl_no] = 1; /* AC needs no table when not present */ if (cinfo->Se) ac_in_use[compptr->ac_tbl_no] = 1; } length = 0; for (i = 0; i < NUM_ARITH_TBLS; i++) length += dc_in_use[i] + ac_in_use[i]; if (length) { emit_marker(cinfo, M_DAC); emit_2bytes(cinfo, length*2 + 2); for (i = 0; i < NUM_ARITH_TBLS; i++) { if (dc_in_use[i]) { emit_byte(cinfo, i); emit_byte(cinfo, cinfo->arith_dc_L[i] + (cinfo->arith_dc_U[i]<<4)); } if (ac_in_use[i]) { emit_byte(cinfo, i + 0x10); emit_byte(cinfo, cinfo->arith_ac_K[i]); } } } #endif /* C_ARITH_CODING_SUPPORTED */ } LOCAL(void) emit_dri (j_compress_ptr cinfo) /* Emit a DRI marker */ { emit_marker(cinfo, M_DRI); emit_2bytes(cinfo, 4); /* fixed length */ emit_2bytes(cinfo, (int) cinfo->restart_interval); } LOCAL(void) emit_sof (j_compress_ptr cinfo, JPEG_MARKER code) /* Emit a SOF marker */ { int ci; jpeg_component_info *compptr; emit_marker(cinfo, code); emit_2bytes(cinfo, 3 * cinfo->num_components + 2 + 5 + 1); /* length */ /* Make sure image isn't bigger than SOF field can handle */ if ((long) cinfo->_jpeg_height > 65535L || (long) cinfo->_jpeg_width > 65535L) ERREXIT1(cinfo, JERR_IMAGE_TOO_BIG, (unsigned int) 65535); emit_byte(cinfo, cinfo->data_precision); emit_2bytes(cinfo, (int) cinfo->_jpeg_height); emit_2bytes(cinfo, (int) cinfo->_jpeg_width); emit_byte(cinfo, cinfo->num_components); for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { emit_byte(cinfo, compptr->component_id); emit_byte(cinfo, (compptr->h_samp_factor << 4) + compptr->v_samp_factor); emit_byte(cinfo, compptr->quant_tbl_no); } } LOCAL(void) emit_sos (j_compress_ptr cinfo) /* Emit a SOS marker */ { int i, td, ta; jpeg_component_info *compptr; emit_marker(cinfo, M_SOS); emit_2bytes(cinfo, 2 * cinfo->comps_in_scan + 2 + 1 + 3); /* length */ emit_byte(cinfo, cinfo->comps_in_scan); for (i = 0; i < cinfo->comps_in_scan; i++) { compptr = cinfo->cur_comp_info[i]; emit_byte(cinfo, compptr->component_id); /* We emit 0 for unused field(s); this is recommended by the P&M text * but does not seem to be specified in the standard. */ /* DC needs no table for refinement scan */ td = cinfo->Ss == 0 && cinfo->Ah == 0 ? compptr->dc_tbl_no : 0; /* AC needs no table when not present */ ta = cinfo->Se ? compptr->ac_tbl_no : 0; emit_byte(cinfo, (td << 4) + ta); } emit_byte(cinfo, cinfo->Ss); emit_byte(cinfo, cinfo->Se); emit_byte(cinfo, (cinfo->Ah << 4) + cinfo->Al); } LOCAL(void) emit_jfif_app0 (j_compress_ptr cinfo) /* Emit a JFIF-compliant APP0 marker */ { /* * Length of APP0 block (2 bytes) * Block ID (4 bytes - ASCII "JFIF") * Zero byte (1 byte to terminate the ID string) * Version Major, Minor (2 bytes - major first) * Units (1 byte - 0x00 = none, 0x01 = inch, 0x02 = cm) * Xdpu (2 bytes - dots per unit horizontal) * Ydpu (2 bytes - dots per unit vertical) * Thumbnail X size (1 byte) * Thumbnail Y size (1 byte) */ emit_marker(cinfo, M_APP0); emit_2bytes(cinfo, 2 + 4 + 1 + 2 + 1 + 2 + 2 + 1 + 1); /* length */ emit_byte(cinfo, 0x4A); /* Identifier: ASCII "JFIF" */ emit_byte(cinfo, 0x46); emit_byte(cinfo, 0x49); emit_byte(cinfo, 0x46); emit_byte(cinfo, 0); emit_byte(cinfo, cinfo->JFIF_major_version); /* Version fields */ emit_byte(cinfo, cinfo->JFIF_minor_version); emit_byte(cinfo, cinfo->density_unit); /* Pixel size information */ emit_2bytes(cinfo, (int) cinfo->X_density); emit_2bytes(cinfo, (int) cinfo->Y_density); emit_byte(cinfo, 0); /* No thumbnail image */ emit_byte(cinfo, 0); } LOCAL(void) emit_adobe_app14 (j_compress_ptr cinfo) /* Emit an Adobe APP14 marker */ { /* * Length of APP14 block (2 bytes) * Block ID (5 bytes - ASCII "Adobe") * Version Number (2 bytes - currently 100) * Flags0 (2 bytes - currently 0) * Flags1 (2 bytes - currently 0) * Color transform (1 byte) * * Although Adobe TN 5116 mentions Version = 101, all the Adobe files * now in circulation seem to use Version = 100, so that's what we write. * * We write the color transform byte as 1 if the JPEG color space is * YCbCr, 2 if it's YCCK, 0 otherwise. Adobe's definition has to do with * whether the encoder performed a transformation, which is pretty useless. */ emit_marker(cinfo, M_APP14); emit_2bytes(cinfo, 2 + 5 + 2 + 2 + 2 + 1); /* length */ emit_byte(cinfo, 0x41); /* Identifier: ASCII "Adobe" */ emit_byte(cinfo, 0x64); emit_byte(cinfo, 0x6F); emit_byte(cinfo, 0x62); emit_byte(cinfo, 0x65); emit_2bytes(cinfo, 100); /* Version */ emit_2bytes(cinfo, 0); /* Flags0 */ emit_2bytes(cinfo, 0); /* Flags1 */ switch (cinfo->jpeg_color_space) { case JCS_YCbCr: emit_byte(cinfo, 1); /* Color transform = 1 */ break; case JCS_YCCK: emit_byte(cinfo, 2); /* Color transform = 2 */ break; default: emit_byte(cinfo, 0); /* Color transform = 0 */ break; } } /* * These routines allow writing an arbitrary marker with parameters. * The only intended use is to emit COM or APPn markers after calling * write_file_header and before calling write_frame_header. * Other uses are not guaranteed to produce desirable results. * Counting the parameter bytes properly is the caller's responsibility. */ METHODDEF(void) write_marker_header (j_compress_ptr cinfo, int marker, unsigned int datalen) /* Emit an arbitrary marker header */ { if (datalen > (unsigned int) 65533) /* safety check */ ERREXIT(cinfo, JERR_BAD_LENGTH); emit_marker(cinfo, (JPEG_MARKER) marker); emit_2bytes(cinfo, (int) (datalen + 2)); /* total length */ } METHODDEF(void) write_marker_byte (j_compress_ptr cinfo, int val) /* Emit one byte of marker parameters following write_marker_header */ { emit_byte(cinfo, val); } /* * Write datastream header. * This consists of an SOI and optional APPn markers. * We recommend use of the JFIF marker, but not the Adobe marker, * when using YCbCr or grayscale data. The JFIF marker should NOT * be used for any other JPEG colorspace. The Adobe marker is helpful * to distinguish RGB, CMYK, and YCCK colorspaces. * Note that an application can write additional header markers after * jpeg_start_compress returns. */ METHODDEF(void) write_file_header (j_compress_ptr cinfo) { my_marker_ptr marker = (my_marker_ptr) cinfo->marker; emit_marker(cinfo, M_SOI); /* first the SOI */ /* SOI is defined to reset restart interval to 0 */ marker->last_restart_interval = 0; if (cinfo->write_JFIF_header) /* next an optional JFIF APP0 */ emit_jfif_app0(cinfo); if (cinfo->write_Adobe_marker) /* next an optional Adobe APP14 */ emit_adobe_app14(cinfo); } /* * Write frame header. * This consists of DQT and SOFn markers. * Note that we do not emit the SOF until we have emitted the DQT(s). * This avoids compatibility problems with incorrect implementations that * try to error-check the quant table numbers as soon as they see the SOF. */ METHODDEF(void) write_frame_header (j_compress_ptr cinfo) { int ci, prec; boolean is_baseline; jpeg_component_info *compptr; /* Emit DQT for each quantization table. * Note that emit_dqt() suppresses any duplicate tables. */ prec = 0; for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { prec += emit_dqt(cinfo, compptr->quant_tbl_no); } /* now prec is nonzero iff there are any 16-bit quant tables. */ /* Check for a non-baseline specification. * Note we assume that Huffman table numbers won't be changed later. */ if (cinfo->arith_code || cinfo->progressive_mode || cinfo->data_precision != 8) { is_baseline = FALSE; } else { is_baseline = TRUE; for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { if (compptr->dc_tbl_no > 1 || compptr->ac_tbl_no > 1) is_baseline = FALSE; } if (prec && is_baseline) { is_baseline = FALSE; /* If it's baseline except for quantizer size, warn the user */ TRACEMS(cinfo, 0, JTRC_16BIT_TABLES); } } /* Emit the proper SOF marker */ if (cinfo->arith_code) { if (cinfo->progressive_mode) emit_sof(cinfo, M_SOF10); /* SOF code for progressive arithmetic */ else emit_sof(cinfo, M_SOF9); /* SOF code for sequential arithmetic */ } else { if (cinfo->progressive_mode) emit_sof(cinfo, M_SOF2); /* SOF code for progressive Huffman */ else if (is_baseline) emit_sof(cinfo, M_SOF0); /* SOF code for baseline implementation */ else emit_sof(cinfo, M_SOF1); /* SOF code for non-baseline Huffman file */ } } /* * Write scan header. * This consists of DHT or DAC markers, optional DRI, and SOS. * Compressed data will be written following the SOS. */ METHODDEF(void) write_scan_header (j_compress_ptr cinfo) { my_marker_ptr marker = (my_marker_ptr) cinfo->marker; int i; jpeg_component_info *compptr; if (cinfo->arith_code) { /* Emit arith conditioning info. We may have some duplication * if the file has multiple scans, but it's so small it's hardly * worth worrying about. */ emit_dac(cinfo); } else { /* Emit Huffman tables. * Note that emit_dht() suppresses any duplicate tables. */ for (i = 0; i < cinfo->comps_in_scan; i++) { compptr = cinfo->cur_comp_info[i]; /* DC needs no table for refinement scan */ if (cinfo->Ss == 0 && cinfo->Ah == 0) emit_dht(cinfo, compptr->dc_tbl_no, FALSE); /* AC needs no table when not present */ if (cinfo->Se) emit_dht(cinfo, compptr->ac_tbl_no, TRUE); } } /* Emit DRI if required --- note that DRI value could change for each scan. * We avoid wasting space with unnecessary DRIs, however. */ if (cinfo->restart_interval != marker->last_restart_interval) { emit_dri(cinfo); marker->last_restart_interval = cinfo->restart_interval; } emit_sos(cinfo); } /* * Write datastream trailer. */ METHODDEF(void) write_file_trailer (j_compress_ptr cinfo) { emit_marker(cinfo, M_EOI); } /* * Write an abbreviated table-specification datastream. * This consists of SOI, DQT and DHT tables, and EOI. * Any table that is defined and not marked sent_table = TRUE will be * emitted. Note that all tables will be marked sent_table = TRUE at exit. */ METHODDEF(void) write_tables_only (j_compress_ptr cinfo) { int i; emit_marker(cinfo, M_SOI); for (i = 0; i < NUM_QUANT_TBLS; i++) { if (cinfo->quant_tbl_ptrs[i] != NULL) (void) emit_dqt(cinfo, i); } if (! cinfo->arith_code) { for (i = 0; i < NUM_HUFF_TBLS; i++) { if (cinfo->dc_huff_tbl_ptrs[i] != NULL) emit_dht(cinfo, i, FALSE); if (cinfo->ac_huff_tbl_ptrs[i] != NULL) emit_dht(cinfo, i, TRUE); } } emit_marker(cinfo, M_EOI); } /* * Initialize the marker writer module. */ GLOBAL(void) jinit_marker_writer (j_compress_ptr cinfo) { my_marker_ptr marker; /* Create the subobject */ marker = (my_marker_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, sizeof(my_marker_writer)); cinfo->marker = (struct jpeg_marker_writer *) marker; /* Initialize method pointers */ marker->pub.write_file_header = write_file_header; marker->pub.write_frame_header = write_frame_header; marker->pub.write_scan_header = write_scan_header; marker->pub.write_file_trailer = write_file_trailer; marker->pub.write_tables_only = write_tables_only; marker->pub.write_marker_header = write_marker_header; marker->pub.write_marker_byte = write_marker_byte; /* Initialize private state */ marker->last_restart_interval = 0; } libjpeg-turbo-1.4.2/simd/0000755000076500007650000000000012600050447012230 500000000000000libjpeg-turbo-1.4.2/simd/jidctfst-mmx.asm0000644000076500007650000004717612600050400015267 00000000000000; ; jidctfst.asm - fast integer IDCT (MMX) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; ; Based on ; x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; This file contains a fast, not so accurate integer implementation of ; the inverse DCT (Discrete Cosine Transform). The following code is ; based directly on the IJG's original jidctfst.c; see the jidctfst.c ; for more details. ; ; [TAB8] %include "jsimdext.inc" %include "jdct.inc" ; -------------------------------------------------------------------------- %define CONST_BITS 8 ; 14 is also OK. %define PASS1_BITS 2 %if IFAST_SCALE_BITS != PASS1_BITS %error "'IFAST_SCALE_BITS' must be equal to 'PASS1_BITS'." %endif %if CONST_BITS == 8 F_1_082 equ 277 ; FIX(1.082392200) F_1_414 equ 362 ; FIX(1.414213562) F_1_847 equ 473 ; FIX(1.847759065) F_2_613 equ 669 ; FIX(2.613125930) F_1_613 equ (F_2_613 - 256) ; FIX(2.613125930) - FIX(1) %else ; NASM cannot do compile-time arithmetic on floating-point constants. %define DESCALE(x,n) (((x)+(1<<((n)-1)))>>(n)) F_1_082 equ DESCALE(1162209775,30-CONST_BITS) ; FIX(1.082392200) F_1_414 equ DESCALE(1518500249,30-CONST_BITS) ; FIX(1.414213562) F_1_847 equ DESCALE(1984016188,30-CONST_BITS) ; FIX(1.847759065) F_2_613 equ DESCALE(2805822602,30-CONST_BITS) ; FIX(2.613125930) F_1_613 equ (F_2_613 - (1 << CONST_BITS)) ; FIX(2.613125930) - FIX(1) %endif ; -------------------------------------------------------------------------- SECTION SEG_CONST ; PRE_MULTIPLY_SCALE_BITS <= 2 (to avoid overflow) ; CONST_BITS + CONST_SHIFT + PRE_MULTIPLY_SCALE_BITS == 16 (for pmulhw) %define PRE_MULTIPLY_SCALE_BITS 2 %define CONST_SHIFT (16 - PRE_MULTIPLY_SCALE_BITS - CONST_BITS) alignz 16 global EXTN(jconst_idct_ifast_mmx) EXTN(jconst_idct_ifast_mmx): PW_F1414 times 4 dw F_1_414 << CONST_SHIFT PW_F1847 times 4 dw F_1_847 << CONST_SHIFT PW_MF1613 times 4 dw -F_1_613 << CONST_SHIFT PW_F1082 times 4 dw F_1_082 << CONST_SHIFT PB_CENTERJSAMP times 8 db CENTERJSAMPLE alignz 16 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 32 ; ; Perform dequantization and inverse DCT on one block of coefficients. ; ; GLOBAL(void) ; jsimd_idct_ifast_mmx (void * dct_table, JCOEFPTR coef_block, ; JSAMPARRAY output_buf, JDIMENSION output_col) ; %define dct_table(b) (b)+8 ; jpeg_component_info * compptr %define coef_block(b) (b)+12 ; JCOEFPTR coef_block %define output_buf(b) (b)+16 ; JSAMPARRAY output_buf %define output_col(b) (b)+20 ; JDIMENSION output_col %define original_ebp ebp+0 %define wk(i) ebp-(WK_NUM-(i))*SIZEOF_MMWORD ; mmword wk[WK_NUM] %define WK_NUM 2 %define workspace wk(0)-DCTSIZE2*SIZEOF_JCOEF ; JCOEF workspace[DCTSIZE2] align 16 global EXTN(jsimd_idct_ifast_mmx) EXTN(jsimd_idct_ifast_mmx): push ebp mov eax,esp ; eax = original ebp sub esp, byte 4 and esp, byte (-SIZEOF_MMWORD) ; align to 64 bits mov [esp],eax mov ebp,esp ; ebp = aligned ebp lea esp, [workspace] push ebx ; push ecx ; need not be preserved ; push edx ; need not be preserved push esi push edi get_GOT ebx ; get GOT address ; ---- Pass 1: process columns from input, store into work array. ; mov eax, [original_ebp] mov edx, POINTER [dct_table(eax)] ; quantptr mov esi, JCOEFPTR [coef_block(eax)] ; inptr lea edi, [workspace] ; JCOEF * wsptr mov ecx, DCTSIZE/4 ; ctr alignx 16,7 .columnloop: %ifndef NO_ZERO_COLUMN_TEST_IFAST_MMX mov eax, DWORD [DWBLOCK(1,0,esi,SIZEOF_JCOEF)] or eax, DWORD [DWBLOCK(2,0,esi,SIZEOF_JCOEF)] jnz short .columnDCT movq mm0, MMWORD [MMBLOCK(1,0,esi,SIZEOF_JCOEF)] movq mm1, MMWORD [MMBLOCK(2,0,esi,SIZEOF_JCOEF)] por mm0, MMWORD [MMBLOCK(3,0,esi,SIZEOF_JCOEF)] por mm1, MMWORD [MMBLOCK(4,0,esi,SIZEOF_JCOEF)] por mm0, MMWORD [MMBLOCK(5,0,esi,SIZEOF_JCOEF)] por mm1, MMWORD [MMBLOCK(6,0,esi,SIZEOF_JCOEF)] por mm0, MMWORD [MMBLOCK(7,0,esi,SIZEOF_JCOEF)] por mm1,mm0 packsswb mm1,mm1 movd eax,mm1 test eax,eax jnz short .columnDCT ; -- AC terms all zero movq mm0, MMWORD [MMBLOCK(0,0,esi,SIZEOF_JCOEF)] pmullw mm0, MMWORD [MMBLOCK(0,0,edx,SIZEOF_IFAST_MULT_TYPE)] movq mm2,mm0 ; mm0=in0=(00 01 02 03) punpcklwd mm0,mm0 ; mm0=(00 00 01 01) punpckhwd mm2,mm2 ; mm2=(02 02 03 03) movq mm1,mm0 punpckldq mm0,mm0 ; mm0=(00 00 00 00) punpckhdq mm1,mm1 ; mm1=(01 01 01 01) movq mm3,mm2 punpckldq mm2,mm2 ; mm2=(02 02 02 02) punpckhdq mm3,mm3 ; mm3=(03 03 03 03) movq MMWORD [MMBLOCK(0,0,edi,SIZEOF_JCOEF)], mm0 movq MMWORD [MMBLOCK(0,1,edi,SIZEOF_JCOEF)], mm0 movq MMWORD [MMBLOCK(1,0,edi,SIZEOF_JCOEF)], mm1 movq MMWORD [MMBLOCK(1,1,edi,SIZEOF_JCOEF)], mm1 movq MMWORD [MMBLOCK(2,0,edi,SIZEOF_JCOEF)], mm2 movq MMWORD [MMBLOCK(2,1,edi,SIZEOF_JCOEF)], mm2 movq MMWORD [MMBLOCK(3,0,edi,SIZEOF_JCOEF)], mm3 movq MMWORD [MMBLOCK(3,1,edi,SIZEOF_JCOEF)], mm3 jmp near .nextcolumn alignx 16,7 %endif .columnDCT: ; -- Even part movq mm0, MMWORD [MMBLOCK(0,0,esi,SIZEOF_JCOEF)] movq mm1, MMWORD [MMBLOCK(2,0,esi,SIZEOF_JCOEF)] pmullw mm0, MMWORD [MMBLOCK(0,0,edx,SIZEOF_IFAST_MULT_TYPE)] pmullw mm1, MMWORD [MMBLOCK(2,0,edx,SIZEOF_IFAST_MULT_TYPE)] movq mm2, MMWORD [MMBLOCK(4,0,esi,SIZEOF_JCOEF)] movq mm3, MMWORD [MMBLOCK(6,0,esi,SIZEOF_JCOEF)] pmullw mm2, MMWORD [MMBLOCK(4,0,edx,SIZEOF_IFAST_MULT_TYPE)] pmullw mm3, MMWORD [MMBLOCK(6,0,edx,SIZEOF_IFAST_MULT_TYPE)] movq mm4,mm0 movq mm5,mm1 psubw mm0,mm2 ; mm0=tmp11 psubw mm1,mm3 paddw mm4,mm2 ; mm4=tmp10 paddw mm5,mm3 ; mm5=tmp13 psllw mm1,PRE_MULTIPLY_SCALE_BITS pmulhw mm1,[GOTOFF(ebx,PW_F1414)] psubw mm1,mm5 ; mm1=tmp12 movq mm6,mm4 movq mm7,mm0 psubw mm4,mm5 ; mm4=tmp3 psubw mm0,mm1 ; mm0=tmp2 paddw mm6,mm5 ; mm6=tmp0 paddw mm7,mm1 ; mm7=tmp1 movq MMWORD [wk(1)], mm4 ; wk(1)=tmp3 movq MMWORD [wk(0)], mm0 ; wk(0)=tmp2 ; -- Odd part movq mm2, MMWORD [MMBLOCK(1,0,esi,SIZEOF_JCOEF)] movq mm3, MMWORD [MMBLOCK(3,0,esi,SIZEOF_JCOEF)] pmullw mm2, MMWORD [MMBLOCK(1,0,edx,SIZEOF_IFAST_MULT_TYPE)] pmullw mm3, MMWORD [MMBLOCK(3,0,edx,SIZEOF_IFAST_MULT_TYPE)] movq mm5, MMWORD [MMBLOCK(5,0,esi,SIZEOF_JCOEF)] movq mm1, MMWORD [MMBLOCK(7,0,esi,SIZEOF_JCOEF)] pmullw mm5, MMWORD [MMBLOCK(5,0,edx,SIZEOF_IFAST_MULT_TYPE)] pmullw mm1, MMWORD [MMBLOCK(7,0,edx,SIZEOF_IFAST_MULT_TYPE)] movq mm4,mm2 movq mm0,mm5 psubw mm2,mm1 ; mm2=z12 psubw mm5,mm3 ; mm5=z10 paddw mm4,mm1 ; mm4=z11 paddw mm0,mm3 ; mm0=z13 movq mm1,mm5 ; mm1=z10(unscaled) psllw mm2,PRE_MULTIPLY_SCALE_BITS psllw mm5,PRE_MULTIPLY_SCALE_BITS movq mm3,mm4 psubw mm4,mm0 paddw mm3,mm0 ; mm3=tmp7 psllw mm4,PRE_MULTIPLY_SCALE_BITS pmulhw mm4,[GOTOFF(ebx,PW_F1414)] ; mm4=tmp11 ; To avoid overflow... ; ; (Original) ; tmp12 = -2.613125930 * z10 + z5; ; ; (This implementation) ; tmp12 = (-1.613125930 - 1) * z10 + z5; ; = -1.613125930 * z10 - z10 + z5; movq mm0,mm5 paddw mm5,mm2 pmulhw mm5,[GOTOFF(ebx,PW_F1847)] ; mm5=z5 pmulhw mm0,[GOTOFF(ebx,PW_MF1613)] pmulhw mm2,[GOTOFF(ebx,PW_F1082)] psubw mm0,mm1 psubw mm2,mm5 ; mm2=tmp10 paddw mm0,mm5 ; mm0=tmp12 ; -- Final output stage psubw mm0,mm3 ; mm0=tmp6 movq mm1,mm6 movq mm5,mm7 paddw mm6,mm3 ; mm6=data0=(00 01 02 03) paddw mm7,mm0 ; mm7=data1=(10 11 12 13) psubw mm1,mm3 ; mm1=data7=(70 71 72 73) psubw mm5,mm0 ; mm5=data6=(60 61 62 63) psubw mm4,mm0 ; mm4=tmp5 movq mm3,mm6 ; transpose coefficients(phase 1) punpcklwd mm6,mm7 ; mm6=(00 10 01 11) punpckhwd mm3,mm7 ; mm3=(02 12 03 13) movq mm0,mm5 ; transpose coefficients(phase 1) punpcklwd mm5,mm1 ; mm5=(60 70 61 71) punpckhwd mm0,mm1 ; mm0=(62 72 63 73) movq mm7, MMWORD [wk(0)] ; mm7=tmp2 movq mm1, MMWORD [wk(1)] ; mm1=tmp3 movq MMWORD [wk(0)], mm5 ; wk(0)=(60 70 61 71) movq MMWORD [wk(1)], mm0 ; wk(1)=(62 72 63 73) paddw mm2,mm4 ; mm2=tmp4 movq mm5,mm7 movq mm0,mm1 paddw mm7,mm4 ; mm7=data2=(20 21 22 23) paddw mm1,mm2 ; mm1=data4=(40 41 42 43) psubw mm5,mm4 ; mm5=data5=(50 51 52 53) psubw mm0,mm2 ; mm0=data3=(30 31 32 33) movq mm4,mm7 ; transpose coefficients(phase 1) punpcklwd mm7,mm0 ; mm7=(20 30 21 31) punpckhwd mm4,mm0 ; mm4=(22 32 23 33) movq mm2,mm1 ; transpose coefficients(phase 1) punpcklwd mm1,mm5 ; mm1=(40 50 41 51) punpckhwd mm2,mm5 ; mm2=(42 52 43 53) movq mm0,mm6 ; transpose coefficients(phase 2) punpckldq mm6,mm7 ; mm6=(00 10 20 30) punpckhdq mm0,mm7 ; mm0=(01 11 21 31) movq mm5,mm3 ; transpose coefficients(phase 2) punpckldq mm3,mm4 ; mm3=(02 12 22 32) punpckhdq mm5,mm4 ; mm5=(03 13 23 33) movq mm7, MMWORD [wk(0)] ; mm7=(60 70 61 71) movq mm4, MMWORD [wk(1)] ; mm4=(62 72 63 73) movq MMWORD [MMBLOCK(0,0,edi,SIZEOF_JCOEF)], mm6 movq MMWORD [MMBLOCK(1,0,edi,SIZEOF_JCOEF)], mm0 movq MMWORD [MMBLOCK(2,0,edi,SIZEOF_JCOEF)], mm3 movq MMWORD [MMBLOCK(3,0,edi,SIZEOF_JCOEF)], mm5 movq mm6,mm1 ; transpose coefficients(phase 2) punpckldq mm1,mm7 ; mm1=(40 50 60 70) punpckhdq mm6,mm7 ; mm6=(41 51 61 71) movq mm0,mm2 ; transpose coefficients(phase 2) punpckldq mm2,mm4 ; mm2=(42 52 62 72) punpckhdq mm0,mm4 ; mm0=(43 53 63 73) movq MMWORD [MMBLOCK(0,1,edi,SIZEOF_JCOEF)], mm1 movq MMWORD [MMBLOCK(1,1,edi,SIZEOF_JCOEF)], mm6 movq MMWORD [MMBLOCK(2,1,edi,SIZEOF_JCOEF)], mm2 movq MMWORD [MMBLOCK(3,1,edi,SIZEOF_JCOEF)], mm0 .nextcolumn: add esi, byte 4*SIZEOF_JCOEF ; coef_block add edx, byte 4*SIZEOF_IFAST_MULT_TYPE ; quantptr add edi, byte 4*DCTSIZE*SIZEOF_JCOEF ; wsptr dec ecx ; ctr jnz near .columnloop ; ---- Pass 2: process rows from work array, store into output array. mov eax, [original_ebp] lea esi, [workspace] ; JCOEF * wsptr mov edi, JSAMPARRAY [output_buf(eax)] ; (JSAMPROW *) mov eax, JDIMENSION [output_col(eax)] mov ecx, DCTSIZE/4 ; ctr alignx 16,7 .rowloop: ; -- Even part movq mm0, MMWORD [MMBLOCK(0,0,esi,SIZEOF_JCOEF)] movq mm1, MMWORD [MMBLOCK(2,0,esi,SIZEOF_JCOEF)] movq mm2, MMWORD [MMBLOCK(4,0,esi,SIZEOF_JCOEF)] movq mm3, MMWORD [MMBLOCK(6,0,esi,SIZEOF_JCOEF)] movq mm4,mm0 movq mm5,mm1 psubw mm0,mm2 ; mm0=tmp11 psubw mm1,mm3 paddw mm4,mm2 ; mm4=tmp10 paddw mm5,mm3 ; mm5=tmp13 psllw mm1,PRE_MULTIPLY_SCALE_BITS pmulhw mm1,[GOTOFF(ebx,PW_F1414)] psubw mm1,mm5 ; mm1=tmp12 movq mm6,mm4 movq mm7,mm0 psubw mm4,mm5 ; mm4=tmp3 psubw mm0,mm1 ; mm0=tmp2 paddw mm6,mm5 ; mm6=tmp0 paddw mm7,mm1 ; mm7=tmp1 movq MMWORD [wk(1)], mm4 ; wk(1)=tmp3 movq MMWORD [wk(0)], mm0 ; wk(0)=tmp2 ; -- Odd part movq mm2, MMWORD [MMBLOCK(1,0,esi,SIZEOF_JCOEF)] movq mm3, MMWORD [MMBLOCK(3,0,esi,SIZEOF_JCOEF)] movq mm5, MMWORD [MMBLOCK(5,0,esi,SIZEOF_JCOEF)] movq mm1, MMWORD [MMBLOCK(7,0,esi,SIZEOF_JCOEF)] movq mm4,mm2 movq mm0,mm5 psubw mm2,mm1 ; mm2=z12 psubw mm5,mm3 ; mm5=z10 paddw mm4,mm1 ; mm4=z11 paddw mm0,mm3 ; mm0=z13 movq mm1,mm5 ; mm1=z10(unscaled) psllw mm2,PRE_MULTIPLY_SCALE_BITS psllw mm5,PRE_MULTIPLY_SCALE_BITS movq mm3,mm4 psubw mm4,mm0 paddw mm3,mm0 ; mm3=tmp7 psllw mm4,PRE_MULTIPLY_SCALE_BITS pmulhw mm4,[GOTOFF(ebx,PW_F1414)] ; mm4=tmp11 ; To avoid overflow... ; ; (Original) ; tmp12 = -2.613125930 * z10 + z5; ; ; (This implementation) ; tmp12 = (-1.613125930 - 1) * z10 + z5; ; = -1.613125930 * z10 - z10 + z5; movq mm0,mm5 paddw mm5,mm2 pmulhw mm5,[GOTOFF(ebx,PW_F1847)] ; mm5=z5 pmulhw mm0,[GOTOFF(ebx,PW_MF1613)] pmulhw mm2,[GOTOFF(ebx,PW_F1082)] psubw mm0,mm1 psubw mm2,mm5 ; mm2=tmp10 paddw mm0,mm5 ; mm0=tmp12 ; -- Final output stage psubw mm0,mm3 ; mm0=tmp6 movq mm1,mm6 movq mm5,mm7 paddw mm6,mm3 ; mm6=data0=(00 10 20 30) paddw mm7,mm0 ; mm7=data1=(01 11 21 31) psraw mm6,(PASS1_BITS+3) ; descale psraw mm7,(PASS1_BITS+3) ; descale psubw mm1,mm3 ; mm1=data7=(07 17 27 37) psubw mm5,mm0 ; mm5=data6=(06 16 26 36) psraw mm1,(PASS1_BITS+3) ; descale psraw mm5,(PASS1_BITS+3) ; descale psubw mm4,mm0 ; mm4=tmp5 packsswb mm6,mm5 ; mm6=(00 10 20 30 06 16 26 36) packsswb mm7,mm1 ; mm7=(01 11 21 31 07 17 27 37) movq mm3, MMWORD [wk(0)] ; mm3=tmp2 movq mm0, MMWORD [wk(1)] ; mm0=tmp3 paddw mm2,mm4 ; mm2=tmp4 movq mm5,mm3 movq mm1,mm0 paddw mm3,mm4 ; mm3=data2=(02 12 22 32) paddw mm0,mm2 ; mm0=data4=(04 14 24 34) psraw mm3,(PASS1_BITS+3) ; descale psraw mm0,(PASS1_BITS+3) ; descale psubw mm5,mm4 ; mm5=data5=(05 15 25 35) psubw mm1,mm2 ; mm1=data3=(03 13 23 33) psraw mm5,(PASS1_BITS+3) ; descale psraw mm1,(PASS1_BITS+3) ; descale movq mm4,[GOTOFF(ebx,PB_CENTERJSAMP)] ; mm4=[PB_CENTERJSAMP] packsswb mm3,mm0 ; mm3=(02 12 22 32 04 14 24 34) packsswb mm1,mm5 ; mm1=(03 13 23 33 05 15 25 35) paddb mm6,mm4 paddb mm7,mm4 paddb mm3,mm4 paddb mm1,mm4 movq mm2,mm6 ; transpose coefficients(phase 1) punpcklbw mm6,mm7 ; mm6=(00 01 10 11 20 21 30 31) punpckhbw mm2,mm7 ; mm2=(06 07 16 17 26 27 36 37) movq mm0,mm3 ; transpose coefficients(phase 1) punpcklbw mm3,mm1 ; mm3=(02 03 12 13 22 23 32 33) punpckhbw mm0,mm1 ; mm0=(04 05 14 15 24 25 34 35) movq mm5,mm6 ; transpose coefficients(phase 2) punpcklwd mm6,mm3 ; mm6=(00 01 02 03 10 11 12 13) punpckhwd mm5,mm3 ; mm5=(20 21 22 23 30 31 32 33) movq mm4,mm0 ; transpose coefficients(phase 2) punpcklwd mm0,mm2 ; mm0=(04 05 06 07 14 15 16 17) punpckhwd mm4,mm2 ; mm4=(24 25 26 27 34 35 36 37) movq mm7,mm6 ; transpose coefficients(phase 3) punpckldq mm6,mm0 ; mm6=(00 01 02 03 04 05 06 07) punpckhdq mm7,mm0 ; mm7=(10 11 12 13 14 15 16 17) movq mm1,mm5 ; transpose coefficients(phase 3) punpckldq mm5,mm4 ; mm5=(20 21 22 23 24 25 26 27) punpckhdq mm1,mm4 ; mm1=(30 31 32 33 34 35 36 37) pushpic ebx ; save GOT address mov edx, JSAMPROW [edi+0*SIZEOF_JSAMPROW] mov ebx, JSAMPROW [edi+1*SIZEOF_JSAMPROW] movq MMWORD [edx+eax*SIZEOF_JSAMPLE], mm6 movq MMWORD [ebx+eax*SIZEOF_JSAMPLE], mm7 mov edx, JSAMPROW [edi+2*SIZEOF_JSAMPROW] mov ebx, JSAMPROW [edi+3*SIZEOF_JSAMPROW] movq MMWORD [edx+eax*SIZEOF_JSAMPLE], mm5 movq MMWORD [ebx+eax*SIZEOF_JSAMPLE], mm1 poppic ebx ; restore GOT address add esi, byte 4*SIZEOF_JCOEF ; wsptr add edi, byte 4*SIZEOF_JSAMPROW dec ecx ; ctr jnz near .rowloop emms ; empty MMX state pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; need not be preserved pop ebx mov esp,ebp ; esp <- aligned ebp pop esp ; esp <- original ebp pop ebp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 16 libjpeg-turbo-1.4.2/simd/jidctint-sse2.asm0000644000076500007650000010666212600050400015334 00000000000000; ; jidctint.asm - accurate integer IDCT (SSE2) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; ; Based on ; x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; This file contains a slow-but-accurate integer implementation of the ; inverse DCT (Discrete Cosine Transform). The following code is based ; directly on the IJG's original jidctint.c; see the jidctint.c for ; more details. ; ; [TAB8] %include "jsimdext.inc" %include "jdct.inc" ; -------------------------------------------------------------------------- %define CONST_BITS 13 %define PASS1_BITS 2 %define DESCALE_P1 (CONST_BITS-PASS1_BITS) %define DESCALE_P2 (CONST_BITS+PASS1_BITS+3) %if CONST_BITS == 13 F_0_298 equ 2446 ; FIX(0.298631336) F_0_390 equ 3196 ; FIX(0.390180644) F_0_541 equ 4433 ; FIX(0.541196100) F_0_765 equ 6270 ; FIX(0.765366865) F_0_899 equ 7373 ; FIX(0.899976223) F_1_175 equ 9633 ; FIX(1.175875602) F_1_501 equ 12299 ; FIX(1.501321110) F_1_847 equ 15137 ; FIX(1.847759065) F_1_961 equ 16069 ; FIX(1.961570560) F_2_053 equ 16819 ; FIX(2.053119869) F_2_562 equ 20995 ; FIX(2.562915447) F_3_072 equ 25172 ; FIX(3.072711026) %else ; NASM cannot do compile-time arithmetic on floating-point constants. %define DESCALE(x,n) (((x)+(1<<((n)-1)))>>(n)) F_0_298 equ DESCALE( 320652955,30-CONST_BITS) ; FIX(0.298631336) F_0_390 equ DESCALE( 418953276,30-CONST_BITS) ; FIX(0.390180644) F_0_541 equ DESCALE( 581104887,30-CONST_BITS) ; FIX(0.541196100) F_0_765 equ DESCALE( 821806413,30-CONST_BITS) ; FIX(0.765366865) F_0_899 equ DESCALE( 966342111,30-CONST_BITS) ; FIX(0.899976223) F_1_175 equ DESCALE(1262586813,30-CONST_BITS) ; FIX(1.175875602) F_1_501 equ DESCALE(1612031267,30-CONST_BITS) ; FIX(1.501321110) F_1_847 equ DESCALE(1984016188,30-CONST_BITS) ; FIX(1.847759065) F_1_961 equ DESCALE(2106220350,30-CONST_BITS) ; FIX(1.961570560) F_2_053 equ DESCALE(2204520673,30-CONST_BITS) ; FIX(2.053119869) F_2_562 equ DESCALE(2751909506,30-CONST_BITS) ; FIX(2.562915447) F_3_072 equ DESCALE(3299298341,30-CONST_BITS) ; FIX(3.072711026) %endif ; -------------------------------------------------------------------------- SECTION SEG_CONST alignz 16 global EXTN(jconst_idct_islow_sse2) EXTN(jconst_idct_islow_sse2): PW_F130_F054 times 4 dw (F_0_541+F_0_765), F_0_541 PW_F054_MF130 times 4 dw F_0_541, (F_0_541-F_1_847) PW_MF078_F117 times 4 dw (F_1_175-F_1_961), F_1_175 PW_F117_F078 times 4 dw F_1_175, (F_1_175-F_0_390) PW_MF060_MF089 times 4 dw (F_0_298-F_0_899),-F_0_899 PW_MF089_F060 times 4 dw -F_0_899, (F_1_501-F_0_899) PW_MF050_MF256 times 4 dw (F_2_053-F_2_562),-F_2_562 PW_MF256_F050 times 4 dw -F_2_562, (F_3_072-F_2_562) PD_DESCALE_P1 times 4 dd 1 << (DESCALE_P1-1) PD_DESCALE_P2 times 4 dd 1 << (DESCALE_P2-1) PB_CENTERJSAMP times 16 db CENTERJSAMPLE alignz 16 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 32 ; ; Perform dequantization and inverse DCT on one block of coefficients. ; ; GLOBAL(void) ; jsimd_idct_islow_sse2 (void * dct_table, JCOEFPTR coef_block, ; JSAMPARRAY output_buf, JDIMENSION output_col) ; %define dct_table(b) (b)+8 ; jpeg_component_info * compptr %define coef_block(b) (b)+12 ; JCOEFPTR coef_block %define output_buf(b) (b)+16 ; JSAMPARRAY output_buf %define output_col(b) (b)+20 ; JDIMENSION output_col %define original_ebp ebp+0 %define wk(i) ebp-(WK_NUM-(i))*SIZEOF_XMMWORD ; xmmword wk[WK_NUM] %define WK_NUM 12 align 16 global EXTN(jsimd_idct_islow_sse2) EXTN(jsimd_idct_islow_sse2): push ebp mov eax,esp ; eax = original ebp sub esp, byte 4 and esp, byte (-SIZEOF_XMMWORD) ; align to 128 bits mov [esp],eax mov ebp,esp ; ebp = aligned ebp lea esp, [wk(0)] pushpic ebx ; push ecx ; unused ; push edx ; need not be preserved push esi push edi get_GOT ebx ; get GOT address ; ---- Pass 1: process columns from input. ; mov eax, [original_ebp] mov edx, POINTER [dct_table(eax)] ; quantptr mov esi, JCOEFPTR [coef_block(eax)] ; inptr %ifndef NO_ZERO_COLUMN_TEST_ISLOW_SSE2 mov eax, DWORD [DWBLOCK(1,0,esi,SIZEOF_JCOEF)] or eax, DWORD [DWBLOCK(2,0,esi,SIZEOF_JCOEF)] jnz near .columnDCT movdqa xmm0, XMMWORD [XMMBLOCK(1,0,esi,SIZEOF_JCOEF)] movdqa xmm1, XMMWORD [XMMBLOCK(2,0,esi,SIZEOF_JCOEF)] por xmm0, XMMWORD [XMMBLOCK(3,0,esi,SIZEOF_JCOEF)] por xmm1, XMMWORD [XMMBLOCK(4,0,esi,SIZEOF_JCOEF)] por xmm0, XMMWORD [XMMBLOCK(5,0,esi,SIZEOF_JCOEF)] por xmm1, XMMWORD [XMMBLOCK(6,0,esi,SIZEOF_JCOEF)] por xmm0, XMMWORD [XMMBLOCK(7,0,esi,SIZEOF_JCOEF)] por xmm1,xmm0 packsswb xmm1,xmm1 packsswb xmm1,xmm1 movd eax,xmm1 test eax,eax jnz short .columnDCT ; -- AC terms all zero movdqa xmm5, XMMWORD [XMMBLOCK(0,0,esi,SIZEOF_JCOEF)] pmullw xmm5, XMMWORD [XMMBLOCK(0,0,edx,SIZEOF_ISLOW_MULT_TYPE)] psllw xmm5,PASS1_BITS movdqa xmm4,xmm5 ; xmm5=in0=(00 01 02 03 04 05 06 07) punpcklwd xmm5,xmm5 ; xmm5=(00 00 01 01 02 02 03 03) punpckhwd xmm4,xmm4 ; xmm4=(04 04 05 05 06 06 07 07) pshufd xmm7,xmm5,0x00 ; xmm7=col0=(00 00 00 00 00 00 00 00) pshufd xmm6,xmm5,0x55 ; xmm6=col1=(01 01 01 01 01 01 01 01) pshufd xmm1,xmm5,0xAA ; xmm1=col2=(02 02 02 02 02 02 02 02) pshufd xmm5,xmm5,0xFF ; xmm5=col3=(03 03 03 03 03 03 03 03) pshufd xmm0,xmm4,0x00 ; xmm0=col4=(04 04 04 04 04 04 04 04) pshufd xmm3,xmm4,0x55 ; xmm3=col5=(05 05 05 05 05 05 05 05) pshufd xmm2,xmm4,0xAA ; xmm2=col6=(06 06 06 06 06 06 06 06) pshufd xmm4,xmm4,0xFF ; xmm4=col7=(07 07 07 07 07 07 07 07) movdqa XMMWORD [wk(8)], xmm6 ; wk(8)=col1 movdqa XMMWORD [wk(9)], xmm5 ; wk(9)=col3 movdqa XMMWORD [wk(10)], xmm3 ; wk(10)=col5 movdqa XMMWORD [wk(11)], xmm4 ; wk(11)=col7 jmp near .column_end alignx 16,7 %endif .columnDCT: ; -- Even part movdqa xmm0, XMMWORD [XMMBLOCK(0,0,esi,SIZEOF_JCOEF)] movdqa xmm1, XMMWORD [XMMBLOCK(2,0,esi,SIZEOF_JCOEF)] pmullw xmm0, XMMWORD [XMMBLOCK(0,0,edx,SIZEOF_ISLOW_MULT_TYPE)] pmullw xmm1, XMMWORD [XMMBLOCK(2,0,edx,SIZEOF_ISLOW_MULT_TYPE)] movdqa xmm2, XMMWORD [XMMBLOCK(4,0,esi,SIZEOF_JCOEF)] movdqa xmm3, XMMWORD [XMMBLOCK(6,0,esi,SIZEOF_JCOEF)] pmullw xmm2, XMMWORD [XMMBLOCK(4,0,edx,SIZEOF_ISLOW_MULT_TYPE)] pmullw xmm3, XMMWORD [XMMBLOCK(6,0,edx,SIZEOF_ISLOW_MULT_TYPE)] ; (Original) ; z1 = (z2 + z3) * 0.541196100; ; tmp2 = z1 + z3 * -1.847759065; ; tmp3 = z1 + z2 * 0.765366865; ; ; (This implementation) ; tmp2 = z2 * 0.541196100 + z3 * (0.541196100 - 1.847759065); ; tmp3 = z2 * (0.541196100 + 0.765366865) + z3 * 0.541196100; movdqa xmm4,xmm1 ; xmm1=in2=z2 movdqa xmm5,xmm1 punpcklwd xmm4,xmm3 ; xmm3=in6=z3 punpckhwd xmm5,xmm3 movdqa xmm1,xmm4 movdqa xmm3,xmm5 pmaddwd xmm4,[GOTOFF(ebx,PW_F130_F054)] ; xmm4=tmp3L pmaddwd xmm5,[GOTOFF(ebx,PW_F130_F054)] ; xmm5=tmp3H pmaddwd xmm1,[GOTOFF(ebx,PW_F054_MF130)] ; xmm1=tmp2L pmaddwd xmm3,[GOTOFF(ebx,PW_F054_MF130)] ; xmm3=tmp2H movdqa xmm6,xmm0 paddw xmm0,xmm2 ; xmm0=in0+in4 psubw xmm6,xmm2 ; xmm6=in0-in4 pxor xmm7,xmm7 pxor xmm2,xmm2 punpcklwd xmm7,xmm0 ; xmm7=tmp0L punpckhwd xmm2,xmm0 ; xmm2=tmp0H psrad xmm7,(16-CONST_BITS) ; psrad xmm7,16 & pslld xmm7,CONST_BITS psrad xmm2,(16-CONST_BITS) ; psrad xmm2,16 & pslld xmm2,CONST_BITS movdqa xmm0,xmm7 paddd xmm7,xmm4 ; xmm7=tmp10L psubd xmm0,xmm4 ; xmm0=tmp13L movdqa xmm4,xmm2 paddd xmm2,xmm5 ; xmm2=tmp10H psubd xmm4,xmm5 ; xmm4=tmp13H movdqa XMMWORD [wk(0)], xmm7 ; wk(0)=tmp10L movdqa XMMWORD [wk(1)], xmm2 ; wk(1)=tmp10H movdqa XMMWORD [wk(2)], xmm0 ; wk(2)=tmp13L movdqa XMMWORD [wk(3)], xmm4 ; wk(3)=tmp13H pxor xmm5,xmm5 pxor xmm7,xmm7 punpcklwd xmm5,xmm6 ; xmm5=tmp1L punpckhwd xmm7,xmm6 ; xmm7=tmp1H psrad xmm5,(16-CONST_BITS) ; psrad xmm5,16 & pslld xmm5,CONST_BITS psrad xmm7,(16-CONST_BITS) ; psrad xmm7,16 & pslld xmm7,CONST_BITS movdqa xmm2,xmm5 paddd xmm5,xmm1 ; xmm5=tmp11L psubd xmm2,xmm1 ; xmm2=tmp12L movdqa xmm0,xmm7 paddd xmm7,xmm3 ; xmm7=tmp11H psubd xmm0,xmm3 ; xmm0=tmp12H movdqa XMMWORD [wk(4)], xmm5 ; wk(4)=tmp11L movdqa XMMWORD [wk(5)], xmm7 ; wk(5)=tmp11H movdqa XMMWORD [wk(6)], xmm2 ; wk(6)=tmp12L movdqa XMMWORD [wk(7)], xmm0 ; wk(7)=tmp12H ; -- Odd part movdqa xmm4, XMMWORD [XMMBLOCK(1,0,esi,SIZEOF_JCOEF)] movdqa xmm6, XMMWORD [XMMBLOCK(3,0,esi,SIZEOF_JCOEF)] pmullw xmm4, XMMWORD [XMMBLOCK(1,0,edx,SIZEOF_ISLOW_MULT_TYPE)] pmullw xmm6, XMMWORD [XMMBLOCK(3,0,edx,SIZEOF_ISLOW_MULT_TYPE)] movdqa xmm1, XMMWORD [XMMBLOCK(5,0,esi,SIZEOF_JCOEF)] movdqa xmm3, XMMWORD [XMMBLOCK(7,0,esi,SIZEOF_JCOEF)] pmullw xmm1, XMMWORD [XMMBLOCK(5,0,edx,SIZEOF_ISLOW_MULT_TYPE)] pmullw xmm3, XMMWORD [XMMBLOCK(7,0,edx,SIZEOF_ISLOW_MULT_TYPE)] movdqa xmm5,xmm6 movdqa xmm7,xmm4 paddw xmm5,xmm3 ; xmm5=z3 paddw xmm7,xmm1 ; xmm7=z4 ; (Original) ; z5 = (z3 + z4) * 1.175875602; ; z3 = z3 * -1.961570560; z4 = z4 * -0.390180644; ; z3 += z5; z4 += z5; ; ; (This implementation) ; z3 = z3 * (1.175875602 - 1.961570560) + z4 * 1.175875602; ; z4 = z3 * 1.175875602 + z4 * (1.175875602 - 0.390180644); movdqa xmm2,xmm5 movdqa xmm0,xmm5 punpcklwd xmm2,xmm7 punpckhwd xmm0,xmm7 movdqa xmm5,xmm2 movdqa xmm7,xmm0 pmaddwd xmm2,[GOTOFF(ebx,PW_MF078_F117)] ; xmm2=z3L pmaddwd xmm0,[GOTOFF(ebx,PW_MF078_F117)] ; xmm0=z3H pmaddwd xmm5,[GOTOFF(ebx,PW_F117_F078)] ; xmm5=z4L pmaddwd xmm7,[GOTOFF(ebx,PW_F117_F078)] ; xmm7=z4H movdqa XMMWORD [wk(10)], xmm2 ; wk(10)=z3L movdqa XMMWORD [wk(11)], xmm0 ; wk(11)=z3H ; (Original) ; z1 = tmp0 + tmp3; z2 = tmp1 + tmp2; ; tmp0 = tmp0 * 0.298631336; tmp1 = tmp1 * 2.053119869; ; tmp2 = tmp2 * 3.072711026; tmp3 = tmp3 * 1.501321110; ; z1 = z1 * -0.899976223; z2 = z2 * -2.562915447; ; tmp0 += z1 + z3; tmp1 += z2 + z4; ; tmp2 += z2 + z3; tmp3 += z1 + z4; ; ; (This implementation) ; tmp0 = tmp0 * (0.298631336 - 0.899976223) + tmp3 * -0.899976223; ; tmp1 = tmp1 * (2.053119869 - 2.562915447) + tmp2 * -2.562915447; ; tmp2 = tmp1 * -2.562915447 + tmp2 * (3.072711026 - 2.562915447); ; tmp3 = tmp0 * -0.899976223 + tmp3 * (1.501321110 - 0.899976223); ; tmp0 += z3; tmp1 += z4; ; tmp2 += z3; tmp3 += z4; movdqa xmm2,xmm3 movdqa xmm0,xmm3 punpcklwd xmm2,xmm4 punpckhwd xmm0,xmm4 movdqa xmm3,xmm2 movdqa xmm4,xmm0 pmaddwd xmm2,[GOTOFF(ebx,PW_MF060_MF089)] ; xmm2=tmp0L pmaddwd xmm0,[GOTOFF(ebx,PW_MF060_MF089)] ; xmm0=tmp0H pmaddwd xmm3,[GOTOFF(ebx,PW_MF089_F060)] ; xmm3=tmp3L pmaddwd xmm4,[GOTOFF(ebx,PW_MF089_F060)] ; xmm4=tmp3H paddd xmm2, XMMWORD [wk(10)] ; xmm2=tmp0L paddd xmm0, XMMWORD [wk(11)] ; xmm0=tmp0H paddd xmm3,xmm5 ; xmm3=tmp3L paddd xmm4,xmm7 ; xmm4=tmp3H movdqa XMMWORD [wk(8)], xmm2 ; wk(8)=tmp0L movdqa XMMWORD [wk(9)], xmm0 ; wk(9)=tmp0H movdqa xmm2,xmm1 movdqa xmm0,xmm1 punpcklwd xmm2,xmm6 punpckhwd xmm0,xmm6 movdqa xmm1,xmm2 movdqa xmm6,xmm0 pmaddwd xmm2,[GOTOFF(ebx,PW_MF050_MF256)] ; xmm2=tmp1L pmaddwd xmm0,[GOTOFF(ebx,PW_MF050_MF256)] ; xmm0=tmp1H pmaddwd xmm1,[GOTOFF(ebx,PW_MF256_F050)] ; xmm1=tmp2L pmaddwd xmm6,[GOTOFF(ebx,PW_MF256_F050)] ; xmm6=tmp2H paddd xmm2,xmm5 ; xmm2=tmp1L paddd xmm0,xmm7 ; xmm0=tmp1H paddd xmm1, XMMWORD [wk(10)] ; xmm1=tmp2L paddd xmm6, XMMWORD [wk(11)] ; xmm6=tmp2H movdqa XMMWORD [wk(10)], xmm2 ; wk(10)=tmp1L movdqa XMMWORD [wk(11)], xmm0 ; wk(11)=tmp1H ; -- Final output stage movdqa xmm5, XMMWORD [wk(0)] ; xmm5=tmp10L movdqa xmm7, XMMWORD [wk(1)] ; xmm7=tmp10H movdqa xmm2,xmm5 movdqa xmm0,xmm7 paddd xmm5,xmm3 ; xmm5=data0L paddd xmm7,xmm4 ; xmm7=data0H psubd xmm2,xmm3 ; xmm2=data7L psubd xmm0,xmm4 ; xmm0=data7H movdqa xmm3,[GOTOFF(ebx,PD_DESCALE_P1)] ; xmm3=[PD_DESCALE_P1] paddd xmm5,xmm3 paddd xmm7,xmm3 psrad xmm5,DESCALE_P1 psrad xmm7,DESCALE_P1 paddd xmm2,xmm3 paddd xmm0,xmm3 psrad xmm2,DESCALE_P1 psrad xmm0,DESCALE_P1 packssdw xmm5,xmm7 ; xmm5=data0=(00 01 02 03 04 05 06 07) packssdw xmm2,xmm0 ; xmm2=data7=(70 71 72 73 74 75 76 77) movdqa xmm4, XMMWORD [wk(4)] ; xmm4=tmp11L movdqa xmm3, XMMWORD [wk(5)] ; xmm3=tmp11H movdqa xmm7,xmm4 movdqa xmm0,xmm3 paddd xmm4,xmm1 ; xmm4=data1L paddd xmm3,xmm6 ; xmm3=data1H psubd xmm7,xmm1 ; xmm7=data6L psubd xmm0,xmm6 ; xmm0=data6H movdqa xmm1,[GOTOFF(ebx,PD_DESCALE_P1)] ; xmm1=[PD_DESCALE_P1] paddd xmm4,xmm1 paddd xmm3,xmm1 psrad xmm4,DESCALE_P1 psrad xmm3,DESCALE_P1 paddd xmm7,xmm1 paddd xmm0,xmm1 psrad xmm7,DESCALE_P1 psrad xmm0,DESCALE_P1 packssdw xmm4,xmm3 ; xmm4=data1=(10 11 12 13 14 15 16 17) packssdw xmm7,xmm0 ; xmm7=data6=(60 61 62 63 64 65 66 67) movdqa xmm6,xmm5 ; transpose coefficients(phase 1) punpcklwd xmm5,xmm4 ; xmm5=(00 10 01 11 02 12 03 13) punpckhwd xmm6,xmm4 ; xmm6=(04 14 05 15 06 16 07 17) movdqa xmm1,xmm7 ; transpose coefficients(phase 1) punpcklwd xmm7,xmm2 ; xmm7=(60 70 61 71 62 72 63 73) punpckhwd xmm1,xmm2 ; xmm1=(64 74 65 75 66 76 67 77) movdqa xmm3, XMMWORD [wk(6)] ; xmm3=tmp12L movdqa xmm0, XMMWORD [wk(7)] ; xmm0=tmp12H movdqa xmm4, XMMWORD [wk(10)] ; xmm4=tmp1L movdqa xmm2, XMMWORD [wk(11)] ; xmm2=tmp1H movdqa XMMWORD [wk(0)], xmm5 ; wk(0)=(00 10 01 11 02 12 03 13) movdqa XMMWORD [wk(1)], xmm6 ; wk(1)=(04 14 05 15 06 16 07 17) movdqa XMMWORD [wk(4)], xmm7 ; wk(4)=(60 70 61 71 62 72 63 73) movdqa XMMWORD [wk(5)], xmm1 ; wk(5)=(64 74 65 75 66 76 67 77) movdqa xmm5,xmm3 movdqa xmm6,xmm0 paddd xmm3,xmm4 ; xmm3=data2L paddd xmm0,xmm2 ; xmm0=data2H psubd xmm5,xmm4 ; xmm5=data5L psubd xmm6,xmm2 ; xmm6=data5H movdqa xmm7,[GOTOFF(ebx,PD_DESCALE_P1)] ; xmm7=[PD_DESCALE_P1] paddd xmm3,xmm7 paddd xmm0,xmm7 psrad xmm3,DESCALE_P1 psrad xmm0,DESCALE_P1 paddd xmm5,xmm7 paddd xmm6,xmm7 psrad xmm5,DESCALE_P1 psrad xmm6,DESCALE_P1 packssdw xmm3,xmm0 ; xmm3=data2=(20 21 22 23 24 25 26 27) packssdw xmm5,xmm6 ; xmm5=data5=(50 51 52 53 54 55 56 57) movdqa xmm1, XMMWORD [wk(2)] ; xmm1=tmp13L movdqa xmm4, XMMWORD [wk(3)] ; xmm4=tmp13H movdqa xmm2, XMMWORD [wk(8)] ; xmm2=tmp0L movdqa xmm7, XMMWORD [wk(9)] ; xmm7=tmp0H movdqa xmm0,xmm1 movdqa xmm6,xmm4 paddd xmm1,xmm2 ; xmm1=data3L paddd xmm4,xmm7 ; xmm4=data3H psubd xmm0,xmm2 ; xmm0=data4L psubd xmm6,xmm7 ; xmm6=data4H movdqa xmm2,[GOTOFF(ebx,PD_DESCALE_P1)] ; xmm2=[PD_DESCALE_P1] paddd xmm1,xmm2 paddd xmm4,xmm2 psrad xmm1,DESCALE_P1 psrad xmm4,DESCALE_P1 paddd xmm0,xmm2 paddd xmm6,xmm2 psrad xmm0,DESCALE_P1 psrad xmm6,DESCALE_P1 packssdw xmm1,xmm4 ; xmm1=data3=(30 31 32 33 34 35 36 37) packssdw xmm0,xmm6 ; xmm0=data4=(40 41 42 43 44 45 46 47) movdqa xmm7, XMMWORD [wk(0)] ; xmm7=(00 10 01 11 02 12 03 13) movdqa xmm2, XMMWORD [wk(1)] ; xmm2=(04 14 05 15 06 16 07 17) movdqa xmm4,xmm3 ; transpose coefficients(phase 1) punpcklwd xmm3,xmm1 ; xmm3=(20 30 21 31 22 32 23 33) punpckhwd xmm4,xmm1 ; xmm4=(24 34 25 35 26 36 27 37) movdqa xmm6,xmm0 ; transpose coefficients(phase 1) punpcklwd xmm0,xmm5 ; xmm0=(40 50 41 51 42 52 43 53) punpckhwd xmm6,xmm5 ; xmm6=(44 54 45 55 46 56 47 57) movdqa xmm1,xmm7 ; transpose coefficients(phase 2) punpckldq xmm7,xmm3 ; xmm7=(00 10 20 30 01 11 21 31) punpckhdq xmm1,xmm3 ; xmm1=(02 12 22 32 03 13 23 33) movdqa xmm5,xmm2 ; transpose coefficients(phase 2) punpckldq xmm2,xmm4 ; xmm2=(04 14 24 34 05 15 25 35) punpckhdq xmm5,xmm4 ; xmm5=(06 16 26 36 07 17 27 37) movdqa xmm3, XMMWORD [wk(4)] ; xmm3=(60 70 61 71 62 72 63 73) movdqa xmm4, XMMWORD [wk(5)] ; xmm4=(64 74 65 75 66 76 67 77) movdqa XMMWORD [wk(6)], xmm2 ; wk(6)=(04 14 24 34 05 15 25 35) movdqa XMMWORD [wk(7)], xmm5 ; wk(7)=(06 16 26 36 07 17 27 37) movdqa xmm2,xmm0 ; transpose coefficients(phase 2) punpckldq xmm0,xmm3 ; xmm0=(40 50 60 70 41 51 61 71) punpckhdq xmm2,xmm3 ; xmm2=(42 52 62 72 43 53 63 73) movdqa xmm5,xmm6 ; transpose coefficients(phase 2) punpckldq xmm6,xmm4 ; xmm6=(44 54 64 74 45 55 65 75) punpckhdq xmm5,xmm4 ; xmm5=(46 56 66 76 47 57 67 77) movdqa xmm3,xmm7 ; transpose coefficients(phase 3) punpcklqdq xmm7,xmm0 ; xmm7=col0=(00 10 20 30 40 50 60 70) punpckhqdq xmm3,xmm0 ; xmm3=col1=(01 11 21 31 41 51 61 71) movdqa xmm4,xmm1 ; transpose coefficients(phase 3) punpcklqdq xmm1,xmm2 ; xmm1=col2=(02 12 22 32 42 52 62 72) punpckhqdq xmm4,xmm2 ; xmm4=col3=(03 13 23 33 43 53 63 73) movdqa xmm0, XMMWORD [wk(6)] ; xmm0=(04 14 24 34 05 15 25 35) movdqa xmm2, XMMWORD [wk(7)] ; xmm2=(06 16 26 36 07 17 27 37) movdqa XMMWORD [wk(8)], xmm3 ; wk(8)=col1 movdqa XMMWORD [wk(9)], xmm4 ; wk(9)=col3 movdqa xmm3,xmm0 ; transpose coefficients(phase 3) punpcklqdq xmm0,xmm6 ; xmm0=col4=(04 14 24 34 44 54 64 74) punpckhqdq xmm3,xmm6 ; xmm3=col5=(05 15 25 35 45 55 65 75) movdqa xmm4,xmm2 ; transpose coefficients(phase 3) punpcklqdq xmm2,xmm5 ; xmm2=col6=(06 16 26 36 46 56 66 76) punpckhqdq xmm4,xmm5 ; xmm4=col7=(07 17 27 37 47 57 67 77) movdqa XMMWORD [wk(10)], xmm3 ; wk(10)=col5 movdqa XMMWORD [wk(11)], xmm4 ; wk(11)=col7 .column_end: ; -- Prefetch the next coefficient block prefetchnta [esi + DCTSIZE2*SIZEOF_JCOEF + 0*32] prefetchnta [esi + DCTSIZE2*SIZEOF_JCOEF + 1*32] prefetchnta [esi + DCTSIZE2*SIZEOF_JCOEF + 2*32] prefetchnta [esi + DCTSIZE2*SIZEOF_JCOEF + 3*32] ; ---- Pass 2: process rows from work array, store into output array. mov eax, [original_ebp] mov edi, JSAMPARRAY [output_buf(eax)] ; (JSAMPROW *) mov eax, JDIMENSION [output_col(eax)] ; -- Even part ; xmm7=col0, xmm1=col2, xmm0=col4, xmm2=col6 ; (Original) ; z1 = (z2 + z3) * 0.541196100; ; tmp2 = z1 + z3 * -1.847759065; ; tmp3 = z1 + z2 * 0.765366865; ; ; (This implementation) ; tmp2 = z2 * 0.541196100 + z3 * (0.541196100 - 1.847759065); ; tmp3 = z2 * (0.541196100 + 0.765366865) + z3 * 0.541196100; movdqa xmm6,xmm1 ; xmm1=in2=z2 movdqa xmm5,xmm1 punpcklwd xmm6,xmm2 ; xmm2=in6=z3 punpckhwd xmm5,xmm2 movdqa xmm1,xmm6 movdqa xmm2,xmm5 pmaddwd xmm6,[GOTOFF(ebx,PW_F130_F054)] ; xmm6=tmp3L pmaddwd xmm5,[GOTOFF(ebx,PW_F130_F054)] ; xmm5=tmp3H pmaddwd xmm1,[GOTOFF(ebx,PW_F054_MF130)] ; xmm1=tmp2L pmaddwd xmm2,[GOTOFF(ebx,PW_F054_MF130)] ; xmm2=tmp2H movdqa xmm3,xmm7 paddw xmm7,xmm0 ; xmm7=in0+in4 psubw xmm3,xmm0 ; xmm3=in0-in4 pxor xmm4,xmm4 pxor xmm0,xmm0 punpcklwd xmm4,xmm7 ; xmm4=tmp0L punpckhwd xmm0,xmm7 ; xmm0=tmp0H psrad xmm4,(16-CONST_BITS) ; psrad xmm4,16 & pslld xmm4,CONST_BITS psrad xmm0,(16-CONST_BITS) ; psrad xmm0,16 & pslld xmm0,CONST_BITS movdqa xmm7,xmm4 paddd xmm4,xmm6 ; xmm4=tmp10L psubd xmm7,xmm6 ; xmm7=tmp13L movdqa xmm6,xmm0 paddd xmm0,xmm5 ; xmm0=tmp10H psubd xmm6,xmm5 ; xmm6=tmp13H movdqa XMMWORD [wk(0)], xmm4 ; wk(0)=tmp10L movdqa XMMWORD [wk(1)], xmm0 ; wk(1)=tmp10H movdqa XMMWORD [wk(2)], xmm7 ; wk(2)=tmp13L movdqa XMMWORD [wk(3)], xmm6 ; wk(3)=tmp13H pxor xmm5,xmm5 pxor xmm4,xmm4 punpcklwd xmm5,xmm3 ; xmm5=tmp1L punpckhwd xmm4,xmm3 ; xmm4=tmp1H psrad xmm5,(16-CONST_BITS) ; psrad xmm5,16 & pslld xmm5,CONST_BITS psrad xmm4,(16-CONST_BITS) ; psrad xmm4,16 & pslld xmm4,CONST_BITS movdqa xmm0,xmm5 paddd xmm5,xmm1 ; xmm5=tmp11L psubd xmm0,xmm1 ; xmm0=tmp12L movdqa xmm7,xmm4 paddd xmm4,xmm2 ; xmm4=tmp11H psubd xmm7,xmm2 ; xmm7=tmp12H movdqa XMMWORD [wk(4)], xmm5 ; wk(4)=tmp11L movdqa XMMWORD [wk(5)], xmm4 ; wk(5)=tmp11H movdqa XMMWORD [wk(6)], xmm0 ; wk(6)=tmp12L movdqa XMMWORD [wk(7)], xmm7 ; wk(7)=tmp12H ; -- Odd part movdqa xmm6, XMMWORD [wk(9)] ; xmm6=col3 movdqa xmm3, XMMWORD [wk(8)] ; xmm3=col1 movdqa xmm1, XMMWORD [wk(11)] ; xmm1=col7 movdqa xmm2, XMMWORD [wk(10)] ; xmm2=col5 movdqa xmm5,xmm6 movdqa xmm4,xmm3 paddw xmm5,xmm1 ; xmm5=z3 paddw xmm4,xmm2 ; xmm4=z4 ; (Original) ; z5 = (z3 + z4) * 1.175875602; ; z3 = z3 * -1.961570560; z4 = z4 * -0.390180644; ; z3 += z5; z4 += z5; ; ; (This implementation) ; z3 = z3 * (1.175875602 - 1.961570560) + z4 * 1.175875602; ; z4 = z3 * 1.175875602 + z4 * (1.175875602 - 0.390180644); movdqa xmm0,xmm5 movdqa xmm7,xmm5 punpcklwd xmm0,xmm4 punpckhwd xmm7,xmm4 movdqa xmm5,xmm0 movdqa xmm4,xmm7 pmaddwd xmm0,[GOTOFF(ebx,PW_MF078_F117)] ; xmm0=z3L pmaddwd xmm7,[GOTOFF(ebx,PW_MF078_F117)] ; xmm7=z3H pmaddwd xmm5,[GOTOFF(ebx,PW_F117_F078)] ; xmm5=z4L pmaddwd xmm4,[GOTOFF(ebx,PW_F117_F078)] ; xmm4=z4H movdqa XMMWORD [wk(10)], xmm0 ; wk(10)=z3L movdqa XMMWORD [wk(11)], xmm7 ; wk(11)=z3H ; (Original) ; z1 = tmp0 + tmp3; z2 = tmp1 + tmp2; ; tmp0 = tmp0 * 0.298631336; tmp1 = tmp1 * 2.053119869; ; tmp2 = tmp2 * 3.072711026; tmp3 = tmp3 * 1.501321110; ; z1 = z1 * -0.899976223; z2 = z2 * -2.562915447; ; tmp0 += z1 + z3; tmp1 += z2 + z4; ; tmp2 += z2 + z3; tmp3 += z1 + z4; ; ; (This implementation) ; tmp0 = tmp0 * (0.298631336 - 0.899976223) + tmp3 * -0.899976223; ; tmp1 = tmp1 * (2.053119869 - 2.562915447) + tmp2 * -2.562915447; ; tmp2 = tmp1 * -2.562915447 + tmp2 * (3.072711026 - 2.562915447); ; tmp3 = tmp0 * -0.899976223 + tmp3 * (1.501321110 - 0.899976223); ; tmp0 += z3; tmp1 += z4; ; tmp2 += z3; tmp3 += z4; movdqa xmm0,xmm1 movdqa xmm7,xmm1 punpcklwd xmm0,xmm3 punpckhwd xmm7,xmm3 movdqa xmm1,xmm0 movdqa xmm3,xmm7 pmaddwd xmm0,[GOTOFF(ebx,PW_MF060_MF089)] ; xmm0=tmp0L pmaddwd xmm7,[GOTOFF(ebx,PW_MF060_MF089)] ; xmm7=tmp0H pmaddwd xmm1,[GOTOFF(ebx,PW_MF089_F060)] ; xmm1=tmp3L pmaddwd xmm3,[GOTOFF(ebx,PW_MF089_F060)] ; xmm3=tmp3H paddd xmm0, XMMWORD [wk(10)] ; xmm0=tmp0L paddd xmm7, XMMWORD [wk(11)] ; xmm7=tmp0H paddd xmm1,xmm5 ; xmm1=tmp3L paddd xmm3,xmm4 ; xmm3=tmp3H movdqa XMMWORD [wk(8)], xmm0 ; wk(8)=tmp0L movdqa XMMWORD [wk(9)], xmm7 ; wk(9)=tmp0H movdqa xmm0,xmm2 movdqa xmm7,xmm2 punpcklwd xmm0,xmm6 punpckhwd xmm7,xmm6 movdqa xmm2,xmm0 movdqa xmm6,xmm7 pmaddwd xmm0,[GOTOFF(ebx,PW_MF050_MF256)] ; xmm0=tmp1L pmaddwd xmm7,[GOTOFF(ebx,PW_MF050_MF256)] ; xmm7=tmp1H pmaddwd xmm2,[GOTOFF(ebx,PW_MF256_F050)] ; xmm2=tmp2L pmaddwd xmm6,[GOTOFF(ebx,PW_MF256_F050)] ; xmm6=tmp2H paddd xmm0,xmm5 ; xmm0=tmp1L paddd xmm7,xmm4 ; xmm7=tmp1H paddd xmm2, XMMWORD [wk(10)] ; xmm2=tmp2L paddd xmm6, XMMWORD [wk(11)] ; xmm6=tmp2H movdqa XMMWORD [wk(10)], xmm0 ; wk(10)=tmp1L movdqa XMMWORD [wk(11)], xmm7 ; wk(11)=tmp1H ; -- Final output stage movdqa xmm5, XMMWORD [wk(0)] ; xmm5=tmp10L movdqa xmm4, XMMWORD [wk(1)] ; xmm4=tmp10H movdqa xmm0,xmm5 movdqa xmm7,xmm4 paddd xmm5,xmm1 ; xmm5=data0L paddd xmm4,xmm3 ; xmm4=data0H psubd xmm0,xmm1 ; xmm0=data7L psubd xmm7,xmm3 ; xmm7=data7H movdqa xmm1,[GOTOFF(ebx,PD_DESCALE_P2)] ; xmm1=[PD_DESCALE_P2] paddd xmm5,xmm1 paddd xmm4,xmm1 psrad xmm5,DESCALE_P2 psrad xmm4,DESCALE_P2 paddd xmm0,xmm1 paddd xmm7,xmm1 psrad xmm0,DESCALE_P2 psrad xmm7,DESCALE_P2 packssdw xmm5,xmm4 ; xmm5=data0=(00 10 20 30 40 50 60 70) packssdw xmm0,xmm7 ; xmm0=data7=(07 17 27 37 47 57 67 77) movdqa xmm3, XMMWORD [wk(4)] ; xmm3=tmp11L movdqa xmm1, XMMWORD [wk(5)] ; xmm1=tmp11H movdqa xmm4,xmm3 movdqa xmm7,xmm1 paddd xmm3,xmm2 ; xmm3=data1L paddd xmm1,xmm6 ; xmm1=data1H psubd xmm4,xmm2 ; xmm4=data6L psubd xmm7,xmm6 ; xmm7=data6H movdqa xmm2,[GOTOFF(ebx,PD_DESCALE_P2)] ; xmm2=[PD_DESCALE_P2] paddd xmm3,xmm2 paddd xmm1,xmm2 psrad xmm3,DESCALE_P2 psrad xmm1,DESCALE_P2 paddd xmm4,xmm2 paddd xmm7,xmm2 psrad xmm4,DESCALE_P2 psrad xmm7,DESCALE_P2 packssdw xmm3,xmm1 ; xmm3=data1=(01 11 21 31 41 51 61 71) packssdw xmm4,xmm7 ; xmm4=data6=(06 16 26 36 46 56 66 76) packsswb xmm5,xmm4 ; xmm5=(00 10 20 30 40 50 60 70 06 16 26 36 46 56 66 76) packsswb xmm3,xmm0 ; xmm3=(01 11 21 31 41 51 61 71 07 17 27 37 47 57 67 77) movdqa xmm6, XMMWORD [wk(6)] ; xmm6=tmp12L movdqa xmm2, XMMWORD [wk(7)] ; xmm2=tmp12H movdqa xmm1, XMMWORD [wk(10)] ; xmm1=tmp1L movdqa xmm7, XMMWORD [wk(11)] ; xmm7=tmp1H movdqa XMMWORD [wk(0)], xmm5 ; wk(0)=(00 10 20 30 40 50 60 70 06 16 26 36 46 56 66 76) movdqa XMMWORD [wk(1)], xmm3 ; wk(1)=(01 11 21 31 41 51 61 71 07 17 27 37 47 57 67 77) movdqa xmm4,xmm6 movdqa xmm0,xmm2 paddd xmm6,xmm1 ; xmm6=data2L paddd xmm2,xmm7 ; xmm2=data2H psubd xmm4,xmm1 ; xmm4=data5L psubd xmm0,xmm7 ; xmm0=data5H movdqa xmm5,[GOTOFF(ebx,PD_DESCALE_P2)] ; xmm5=[PD_DESCALE_P2] paddd xmm6,xmm5 paddd xmm2,xmm5 psrad xmm6,DESCALE_P2 psrad xmm2,DESCALE_P2 paddd xmm4,xmm5 paddd xmm0,xmm5 psrad xmm4,DESCALE_P2 psrad xmm0,DESCALE_P2 packssdw xmm6,xmm2 ; xmm6=data2=(02 12 22 32 42 52 62 72) packssdw xmm4,xmm0 ; xmm4=data5=(05 15 25 35 45 55 65 75) movdqa xmm3, XMMWORD [wk(2)] ; xmm3=tmp13L movdqa xmm1, XMMWORD [wk(3)] ; xmm1=tmp13H movdqa xmm7, XMMWORD [wk(8)] ; xmm7=tmp0L movdqa xmm5, XMMWORD [wk(9)] ; xmm5=tmp0H movdqa xmm2,xmm3 movdqa xmm0,xmm1 paddd xmm3,xmm7 ; xmm3=data3L paddd xmm1,xmm5 ; xmm1=data3H psubd xmm2,xmm7 ; xmm2=data4L psubd xmm0,xmm5 ; xmm0=data4H movdqa xmm7,[GOTOFF(ebx,PD_DESCALE_P2)] ; xmm7=[PD_DESCALE_P2] paddd xmm3,xmm7 paddd xmm1,xmm7 psrad xmm3,DESCALE_P2 psrad xmm1,DESCALE_P2 paddd xmm2,xmm7 paddd xmm0,xmm7 psrad xmm2,DESCALE_P2 psrad xmm0,DESCALE_P2 movdqa xmm5,[GOTOFF(ebx,PB_CENTERJSAMP)] ; xmm5=[PB_CENTERJSAMP] packssdw xmm3,xmm1 ; xmm3=data3=(03 13 23 33 43 53 63 73) packssdw xmm2,xmm0 ; xmm2=data4=(04 14 24 34 44 54 64 74) movdqa xmm7, XMMWORD [wk(0)] ; xmm7=(00 10 20 30 40 50 60 70 06 16 26 36 46 56 66 76) movdqa xmm1, XMMWORD [wk(1)] ; xmm1=(01 11 21 31 41 51 61 71 07 17 27 37 47 57 67 77) packsswb xmm6,xmm2 ; xmm6=(02 12 22 32 42 52 62 72 04 14 24 34 44 54 64 74) packsswb xmm3,xmm4 ; xmm3=(03 13 23 33 43 53 63 73 05 15 25 35 45 55 65 75) paddb xmm7,xmm5 paddb xmm1,xmm5 paddb xmm6,xmm5 paddb xmm3,xmm5 movdqa xmm0,xmm7 ; transpose coefficients(phase 1) punpcklbw xmm7,xmm1 ; xmm7=(00 01 10 11 20 21 30 31 40 41 50 51 60 61 70 71) punpckhbw xmm0,xmm1 ; xmm0=(06 07 16 17 26 27 36 37 46 47 56 57 66 67 76 77) movdqa xmm2,xmm6 ; transpose coefficients(phase 1) punpcklbw xmm6,xmm3 ; xmm6=(02 03 12 13 22 23 32 33 42 43 52 53 62 63 72 73) punpckhbw xmm2,xmm3 ; xmm2=(04 05 14 15 24 25 34 35 44 45 54 55 64 65 74 75) movdqa xmm4,xmm7 ; transpose coefficients(phase 2) punpcklwd xmm7,xmm6 ; xmm7=(00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 33) punpckhwd xmm4,xmm6 ; xmm4=(40 41 42 43 50 51 52 53 60 61 62 63 70 71 72 73) movdqa xmm5,xmm2 ; transpose coefficients(phase 2) punpcklwd xmm2,xmm0 ; xmm2=(04 05 06 07 14 15 16 17 24 25 26 27 34 35 36 37) punpckhwd xmm5,xmm0 ; xmm5=(44 45 46 47 54 55 56 57 64 65 66 67 74 75 76 77) movdqa xmm1,xmm7 ; transpose coefficients(phase 3) punpckldq xmm7,xmm2 ; xmm7=(00 01 02 03 04 05 06 07 10 11 12 13 14 15 16 17) punpckhdq xmm1,xmm2 ; xmm1=(20 21 22 23 24 25 26 27 30 31 32 33 34 35 36 37) movdqa xmm3,xmm4 ; transpose coefficients(phase 3) punpckldq xmm4,xmm5 ; xmm4=(40 41 42 43 44 45 46 47 50 51 52 53 54 55 56 57) punpckhdq xmm3,xmm5 ; xmm3=(60 61 62 63 64 65 66 67 70 71 72 73 74 75 76 77) pshufd xmm6,xmm7,0x4E ; xmm6=(10 11 12 13 14 15 16 17 00 01 02 03 04 05 06 07) pshufd xmm0,xmm1,0x4E ; xmm0=(30 31 32 33 34 35 36 37 20 21 22 23 24 25 26 27) pshufd xmm2,xmm4,0x4E ; xmm2=(50 51 52 53 54 55 56 57 40 41 42 43 44 45 46 47) pshufd xmm5,xmm3,0x4E ; xmm5=(70 71 72 73 74 75 76 77 60 61 62 63 64 65 66 67) mov edx, JSAMPROW [edi+0*SIZEOF_JSAMPROW] mov esi, JSAMPROW [edi+2*SIZEOF_JSAMPROW] movq XMM_MMWORD [edx+eax*SIZEOF_JSAMPLE], xmm7 movq XMM_MMWORD [esi+eax*SIZEOF_JSAMPLE], xmm1 mov edx, JSAMPROW [edi+4*SIZEOF_JSAMPROW] mov esi, JSAMPROW [edi+6*SIZEOF_JSAMPROW] movq XMM_MMWORD [edx+eax*SIZEOF_JSAMPLE], xmm4 movq XMM_MMWORD [esi+eax*SIZEOF_JSAMPLE], xmm3 mov edx, JSAMPROW [edi+1*SIZEOF_JSAMPROW] mov esi, JSAMPROW [edi+3*SIZEOF_JSAMPROW] movq XMM_MMWORD [edx+eax*SIZEOF_JSAMPLE], xmm6 movq XMM_MMWORD [esi+eax*SIZEOF_JSAMPLE], xmm0 mov edx, JSAMPROW [edi+5*SIZEOF_JSAMPROW] mov esi, JSAMPROW [edi+7*SIZEOF_JSAMPROW] movq XMM_MMWORD [edx+eax*SIZEOF_JSAMPLE], xmm2 movq XMM_MMWORD [esi+eax*SIZEOF_JSAMPLE], xmm5 pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; unused poppic ebx mov esp,ebp ; esp <- aligned ebp pop esp ; esp <- original ebp pop ebp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 16 libjpeg-turbo-1.4.2/simd/jdct.inc0000644000076500007650000000216212600050400013555 00000000000000; ; jdct.inc - private declarations for forward & reverse DCT subsystems ; ; Copyright 2009 Pierre Ossman for Cendio AB ; ; Based on ; x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; [TAB8] ; Each IDCT routine is responsible for range-limiting its results and ; converting them to unsigned form (0..MAXJSAMPLE). The raw outputs could ; be quite far out of range if the input data is corrupt, so a bulletproof ; range-limiting step is required. We use a mask-and-table-lookup method ; to do the combined operations quickly. ; %define RANGE_MASK (MAXJSAMPLE * 4 + 3) ; 2 bits wider than legal samples %define ROW(n,b,s) ((b)+(n)*(s)) %define COL(n,b,s) ((b)+(n)*(s)*DCTSIZE) %define DWBLOCK(m,n,b,s) ((b)+(m)*DCTSIZE*(s)+(n)*SIZEOF_DWORD) %define MMBLOCK(m,n,b,s) ((b)+(m)*DCTSIZE*(s)+(n)*SIZEOF_MMWORD) %define XMMBLOCK(m,n,b,s) ((b)+(m)*DCTSIZE*(s)+(n)*SIZEOF_XMMWORD) ; -------------------------------------------------------------------------- libjpeg-turbo-1.4.2/simd/jsimd_i386.c0000644000076500007650000006733412600050400014175 00000000000000/* * jsimd_i386.c * * Copyright 2009 Pierre Ossman for Cendio AB * Copyright 2009-2011, 2013-2014 D. R. Commander * * Based on the x86 SIMD extension for IJG JPEG library, * Copyright (C) 1999-2006, MIYASAKA Masaru. * For conditions of distribution and use, see copyright notice in jsimdext.inc * * This file contains the interface between the "normal" portions * of the library and the SIMD implementations when running on a * 32-bit x86 architecture. */ #define JPEG_INTERNALS #include "../jinclude.h" #include "../jpeglib.h" #include "../jsimd.h" #include "../jdct.h" #include "../jsimddct.h" #include "jsimd.h" /* * In the PIC cases, we have no guarantee that constants will keep * their alignment. This macro allows us to verify it at runtime. */ #define IS_ALIGNED(ptr, order) (((unsigned)ptr & ((1 << order) - 1)) == 0) #define IS_ALIGNED_SSE(ptr) (IS_ALIGNED(ptr, 4)) /* 16 byte alignment */ static unsigned int simd_support = ~0; /* * Check what SIMD accelerations are supported. * * FIXME: This code is racy under a multi-threaded environment. */ LOCAL(void) init_simd (void) { char *env = NULL; if (simd_support != ~0U) return; simd_support = jpeg_simd_cpu_support(); /* Force different settings through environment variables */ env = getenv("JSIMD_FORCEMMX"); if ((env != NULL) && (strcmp(env, "1") == 0)) simd_support &= JSIMD_MMX; env = getenv("JSIMD_FORCE3DNOW"); if ((env != NULL) && (strcmp(env, "1") == 0)) simd_support &= JSIMD_3DNOW|JSIMD_MMX; env = getenv("JSIMD_FORCESSE"); if ((env != NULL) && (strcmp(env, "1") == 0)) simd_support &= JSIMD_SSE|JSIMD_MMX; env = getenv("JSIMD_FORCESSE2"); if ((env != NULL) && (strcmp(env, "1") == 0)) simd_support &= JSIMD_SSE2; env = getenv("JSIMD_FORCENONE"); if ((env != NULL) && (strcmp(env, "1") == 0)) simd_support = 0; } GLOBAL(int) jsimd_can_rgb_ycc (void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if ((RGB_PIXELSIZE != 3) && (RGB_PIXELSIZE != 4)) return 0; if ((simd_support & JSIMD_SSE2) && IS_ALIGNED_SSE(jconst_rgb_ycc_convert_sse2)) return 1; if (simd_support & JSIMD_MMX) return 1; return 0; } GLOBAL(int) jsimd_can_rgb_gray (void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if ((RGB_PIXELSIZE != 3) && (RGB_PIXELSIZE != 4)) return 0; if ((simd_support & JSIMD_SSE2) && IS_ALIGNED_SSE(jconst_rgb_gray_convert_sse2)) return 1; if (simd_support & JSIMD_MMX) return 1; return 0; } GLOBAL(int) jsimd_can_ycc_rgb (void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if ((RGB_PIXELSIZE != 3) && (RGB_PIXELSIZE != 4)) return 0; if ((simd_support & JSIMD_SSE2) && IS_ALIGNED_SSE(jconst_ycc_rgb_convert_sse2)) return 1; if (simd_support & JSIMD_MMX) return 1; return 0; } GLOBAL(int) jsimd_can_ycc_rgb565 (void) { return 0; } GLOBAL(void) jsimd_rgb_ycc_convert (j_compress_ptr cinfo, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows) { void (*sse2fct)(JDIMENSION, JSAMPARRAY, JSAMPIMAGE, JDIMENSION, int); void (*mmxfct)(JDIMENSION, JSAMPARRAY, JSAMPIMAGE, JDIMENSION, int); switch(cinfo->in_color_space) { case JCS_EXT_RGB: sse2fct=jsimd_extrgb_ycc_convert_sse2; mmxfct=jsimd_extrgb_ycc_convert_mmx; break; case JCS_EXT_RGBX: case JCS_EXT_RGBA: sse2fct=jsimd_extrgbx_ycc_convert_sse2; mmxfct=jsimd_extrgbx_ycc_convert_mmx; break; case JCS_EXT_BGR: sse2fct=jsimd_extbgr_ycc_convert_sse2; mmxfct=jsimd_extbgr_ycc_convert_mmx; break; case JCS_EXT_BGRX: case JCS_EXT_BGRA: sse2fct=jsimd_extbgrx_ycc_convert_sse2; mmxfct=jsimd_extbgrx_ycc_convert_mmx; break; case JCS_EXT_XBGR: case JCS_EXT_ABGR: sse2fct=jsimd_extxbgr_ycc_convert_sse2; mmxfct=jsimd_extxbgr_ycc_convert_mmx; break; case JCS_EXT_XRGB: case JCS_EXT_ARGB: sse2fct=jsimd_extxrgb_ycc_convert_sse2; mmxfct=jsimd_extxrgb_ycc_convert_mmx; break; default: sse2fct=jsimd_rgb_ycc_convert_sse2; mmxfct=jsimd_rgb_ycc_convert_mmx; break; } if ((simd_support & JSIMD_SSE2) && IS_ALIGNED_SSE(jconst_rgb_ycc_convert_sse2)) sse2fct(cinfo->image_width, input_buf, output_buf, output_row, num_rows); else if (simd_support & JSIMD_MMX) mmxfct(cinfo->image_width, input_buf, output_buf, output_row, num_rows); } GLOBAL(void) jsimd_rgb_gray_convert (j_compress_ptr cinfo, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows) { void (*sse2fct)(JDIMENSION, JSAMPARRAY, JSAMPIMAGE, JDIMENSION, int); void (*mmxfct)(JDIMENSION, JSAMPARRAY, JSAMPIMAGE, JDIMENSION, int); switch(cinfo->in_color_space) { case JCS_EXT_RGB: sse2fct=jsimd_extrgb_gray_convert_sse2; mmxfct=jsimd_extrgb_gray_convert_mmx; break; case JCS_EXT_RGBX: case JCS_EXT_RGBA: sse2fct=jsimd_extrgbx_gray_convert_sse2; mmxfct=jsimd_extrgbx_gray_convert_mmx; break; case JCS_EXT_BGR: sse2fct=jsimd_extbgr_gray_convert_sse2; mmxfct=jsimd_extbgr_gray_convert_mmx; break; case JCS_EXT_BGRX: case JCS_EXT_BGRA: sse2fct=jsimd_extbgrx_gray_convert_sse2; mmxfct=jsimd_extbgrx_gray_convert_mmx; break; case JCS_EXT_XBGR: case JCS_EXT_ABGR: sse2fct=jsimd_extxbgr_gray_convert_sse2; mmxfct=jsimd_extxbgr_gray_convert_mmx; break; case JCS_EXT_XRGB: case JCS_EXT_ARGB: sse2fct=jsimd_extxrgb_gray_convert_sse2; mmxfct=jsimd_extxrgb_gray_convert_mmx; break; default: sse2fct=jsimd_rgb_gray_convert_sse2; mmxfct=jsimd_rgb_gray_convert_mmx; break; } if ((simd_support & JSIMD_SSE2) && IS_ALIGNED_SSE(jconst_rgb_gray_convert_sse2)) sse2fct(cinfo->image_width, input_buf, output_buf, output_row, num_rows); else if (simd_support & JSIMD_MMX) mmxfct(cinfo->image_width, input_buf, output_buf, output_row, num_rows); } GLOBAL(void) jsimd_ycc_rgb_convert (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) { void (*sse2fct)(JDIMENSION, JSAMPIMAGE, JDIMENSION, JSAMPARRAY, int); void (*mmxfct)(JDIMENSION, JSAMPIMAGE, JDIMENSION, JSAMPARRAY, int); switch(cinfo->out_color_space) { case JCS_EXT_RGB: sse2fct=jsimd_ycc_extrgb_convert_sse2; mmxfct=jsimd_ycc_extrgb_convert_mmx; break; case JCS_EXT_RGBX: case JCS_EXT_RGBA: sse2fct=jsimd_ycc_extrgbx_convert_sse2; mmxfct=jsimd_ycc_extrgbx_convert_mmx; break; case JCS_EXT_BGR: sse2fct=jsimd_ycc_extbgr_convert_sse2; mmxfct=jsimd_ycc_extbgr_convert_mmx; break; case JCS_EXT_BGRX: case JCS_EXT_BGRA: sse2fct=jsimd_ycc_extbgrx_convert_sse2; mmxfct=jsimd_ycc_extbgrx_convert_mmx; break; case JCS_EXT_XBGR: case JCS_EXT_ABGR: sse2fct=jsimd_ycc_extxbgr_convert_sse2; mmxfct=jsimd_ycc_extxbgr_convert_mmx; break; case JCS_EXT_XRGB: case JCS_EXT_ARGB: sse2fct=jsimd_ycc_extxrgb_convert_sse2; mmxfct=jsimd_ycc_extxrgb_convert_mmx; break; default: sse2fct=jsimd_ycc_rgb_convert_sse2; mmxfct=jsimd_ycc_rgb_convert_mmx; break; } if ((simd_support & JSIMD_SSE2) && IS_ALIGNED_SSE(jconst_ycc_rgb_convert_sse2)) sse2fct(cinfo->output_width, input_buf, input_row, output_buf, num_rows); else if (simd_support & JSIMD_MMX) mmxfct(cinfo->output_width, input_buf, input_row, output_buf, num_rows); } GLOBAL(void) jsimd_ycc_rgb565_convert (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) { } GLOBAL(int) jsimd_can_h2v2_downsample (void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (simd_support & JSIMD_SSE2) return 1; if (simd_support & JSIMD_MMX) return 1; return 0; } GLOBAL(int) jsimd_can_h2v1_downsample (void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (simd_support & JSIMD_SSE2) return 1; if (simd_support & JSIMD_MMX) return 1; return 0; } GLOBAL(void) jsimd_h2v2_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, JSAMPARRAY input_data, JSAMPARRAY output_data) { if (simd_support & JSIMD_SSE2) jsimd_h2v2_downsample_sse2(cinfo->image_width, cinfo->max_v_samp_factor, compptr->v_samp_factor, compptr->width_in_blocks, input_data, output_data); else if (simd_support & JSIMD_MMX) jsimd_h2v2_downsample_mmx(cinfo->image_width, cinfo->max_v_samp_factor, compptr->v_samp_factor, compptr->width_in_blocks, input_data, output_data); } GLOBAL(void) jsimd_h2v1_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, JSAMPARRAY input_data, JSAMPARRAY output_data) { if (simd_support & JSIMD_SSE2) jsimd_h2v1_downsample_sse2(cinfo->image_width, cinfo->max_v_samp_factor, compptr->v_samp_factor, compptr->width_in_blocks, input_data, output_data); else if (simd_support & JSIMD_MMX) jsimd_h2v1_downsample_mmx(cinfo->image_width, cinfo->max_v_samp_factor, compptr->v_samp_factor, compptr->width_in_blocks, input_data, output_data); } GLOBAL(int) jsimd_can_h2v2_upsample (void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (simd_support & JSIMD_SSE2) return 1; if (simd_support & JSIMD_MMX) return 1; return 0; } GLOBAL(int) jsimd_can_h2v1_upsample (void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (simd_support & JSIMD_SSE2) return 1; if (simd_support & JSIMD_MMX) return 1; return 0; } GLOBAL(void) jsimd_h2v2_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) { if (simd_support & JSIMD_SSE2) jsimd_h2v2_upsample_sse2(cinfo->max_v_samp_factor, cinfo->output_width, input_data, output_data_ptr); else if (simd_support & JSIMD_MMX) jsimd_h2v2_upsample_mmx(cinfo->max_v_samp_factor, cinfo->output_width, input_data, output_data_ptr); } GLOBAL(void) jsimd_h2v1_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) { if (simd_support & JSIMD_SSE2) jsimd_h2v1_upsample_sse2(cinfo->max_v_samp_factor, cinfo->output_width, input_data, output_data_ptr); else if (simd_support & JSIMD_MMX) jsimd_h2v1_upsample_mmx(cinfo->max_v_samp_factor, cinfo->output_width, input_data, output_data_ptr); } GLOBAL(int) jsimd_can_h2v2_fancy_upsample (void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if ((simd_support & JSIMD_SSE2) && IS_ALIGNED_SSE(jconst_fancy_upsample_sse2)) return 1; if (simd_support & JSIMD_MMX) return 1; return 0; } GLOBAL(int) jsimd_can_h2v1_fancy_upsample (void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if ((simd_support & JSIMD_SSE2) && IS_ALIGNED_SSE(jconst_fancy_upsample_sse2)) return 1; if (simd_support & JSIMD_MMX) return 1; return 0; } GLOBAL(void) jsimd_h2v2_fancy_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) { if ((simd_support & JSIMD_SSE2) && IS_ALIGNED_SSE(jconst_fancy_upsample_sse2)) jsimd_h2v2_fancy_upsample_sse2(cinfo->max_v_samp_factor, compptr->downsampled_width, input_data, output_data_ptr); else if (simd_support & JSIMD_MMX) jsimd_h2v2_fancy_upsample_mmx(cinfo->max_v_samp_factor, compptr->downsampled_width, input_data, output_data_ptr); } GLOBAL(void) jsimd_h2v1_fancy_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) { if ((simd_support & JSIMD_SSE2) && IS_ALIGNED_SSE(jconst_fancy_upsample_sse2)) jsimd_h2v1_fancy_upsample_sse2(cinfo->max_v_samp_factor, compptr->downsampled_width, input_data, output_data_ptr); else if (simd_support & JSIMD_MMX) jsimd_h2v1_fancy_upsample_mmx(cinfo->max_v_samp_factor, compptr->downsampled_width, input_data, output_data_ptr); } GLOBAL(int) jsimd_can_h2v2_merged_upsample (void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if ((simd_support & JSIMD_SSE2) && IS_ALIGNED_SSE(jconst_merged_upsample_sse2)) return 1; if (simd_support & JSIMD_MMX) return 1; return 0; } GLOBAL(int) jsimd_can_h2v1_merged_upsample (void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if ((simd_support & JSIMD_SSE2) && IS_ALIGNED_SSE(jconst_merged_upsample_sse2)) return 1; if (simd_support & JSIMD_MMX) return 1; return 0; } GLOBAL(void) jsimd_h2v2_merged_upsample (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf) { void (*sse2fct)(JDIMENSION, JSAMPIMAGE, JDIMENSION, JSAMPARRAY); void (*mmxfct)(JDIMENSION, JSAMPIMAGE, JDIMENSION, JSAMPARRAY); switch(cinfo->out_color_space) { case JCS_EXT_RGB: sse2fct=jsimd_h2v2_extrgb_merged_upsample_sse2; mmxfct=jsimd_h2v2_extrgb_merged_upsample_mmx; break; case JCS_EXT_RGBX: case JCS_EXT_RGBA: sse2fct=jsimd_h2v2_extrgbx_merged_upsample_sse2; mmxfct=jsimd_h2v2_extrgbx_merged_upsample_mmx; break; case JCS_EXT_BGR: sse2fct=jsimd_h2v2_extbgr_merged_upsample_sse2; mmxfct=jsimd_h2v2_extbgr_merged_upsample_mmx; break; case JCS_EXT_BGRX: case JCS_EXT_BGRA: sse2fct=jsimd_h2v2_extbgrx_merged_upsample_sse2; mmxfct=jsimd_h2v2_extbgrx_merged_upsample_mmx; break; case JCS_EXT_XBGR: case JCS_EXT_ABGR: sse2fct=jsimd_h2v2_extxbgr_merged_upsample_sse2; mmxfct=jsimd_h2v2_extxbgr_merged_upsample_mmx; break; case JCS_EXT_XRGB: case JCS_EXT_ARGB: sse2fct=jsimd_h2v2_extxrgb_merged_upsample_sse2; mmxfct=jsimd_h2v2_extxrgb_merged_upsample_mmx; break; default: sse2fct=jsimd_h2v2_merged_upsample_sse2; mmxfct=jsimd_h2v2_merged_upsample_mmx; break; } if ((simd_support & JSIMD_SSE2) && IS_ALIGNED_SSE(jconst_merged_upsample_sse2)) sse2fct(cinfo->output_width, input_buf, in_row_group_ctr, output_buf); else if (simd_support & JSIMD_MMX) mmxfct(cinfo->output_width, input_buf, in_row_group_ctr, output_buf); } GLOBAL(void) jsimd_h2v1_merged_upsample (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf) { void (*sse2fct)(JDIMENSION, JSAMPIMAGE, JDIMENSION, JSAMPARRAY); void (*mmxfct)(JDIMENSION, JSAMPIMAGE, JDIMENSION, JSAMPARRAY); switch(cinfo->out_color_space) { case JCS_EXT_RGB: sse2fct=jsimd_h2v1_extrgb_merged_upsample_sse2; mmxfct=jsimd_h2v1_extrgb_merged_upsample_mmx; break; case JCS_EXT_RGBX: case JCS_EXT_RGBA: sse2fct=jsimd_h2v1_extrgbx_merged_upsample_sse2; mmxfct=jsimd_h2v1_extrgbx_merged_upsample_mmx; break; case JCS_EXT_BGR: sse2fct=jsimd_h2v1_extbgr_merged_upsample_sse2; mmxfct=jsimd_h2v1_extbgr_merged_upsample_mmx; break; case JCS_EXT_BGRX: case JCS_EXT_BGRA: sse2fct=jsimd_h2v1_extbgrx_merged_upsample_sse2; mmxfct=jsimd_h2v1_extbgrx_merged_upsample_mmx; break; case JCS_EXT_XBGR: case JCS_EXT_ABGR: sse2fct=jsimd_h2v1_extxbgr_merged_upsample_sse2; mmxfct=jsimd_h2v1_extxbgr_merged_upsample_mmx; break; case JCS_EXT_XRGB: case JCS_EXT_ARGB: sse2fct=jsimd_h2v1_extxrgb_merged_upsample_sse2; mmxfct=jsimd_h2v1_extxrgb_merged_upsample_mmx; break; default: sse2fct=jsimd_h2v1_merged_upsample_sse2; mmxfct=jsimd_h2v1_merged_upsample_mmx; break; } if ((simd_support & JSIMD_SSE2) && IS_ALIGNED_SSE(jconst_merged_upsample_sse2)) sse2fct(cinfo->output_width, input_buf, in_row_group_ctr, output_buf); else if (simd_support & JSIMD_MMX) mmxfct(cinfo->output_width, input_buf, in_row_group_ctr, output_buf); } GLOBAL(int) jsimd_can_convsamp (void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (sizeof(DCTELEM) != 2) return 0; if (simd_support & JSIMD_SSE2) return 1; if (simd_support & JSIMD_MMX) return 1; return 0; } GLOBAL(int) jsimd_can_convsamp_float (void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (sizeof(FAST_FLOAT) != 4) return 0; if (simd_support & JSIMD_SSE2) return 1; if (simd_support & JSIMD_SSE) return 1; if (simd_support & JSIMD_3DNOW) return 1; return 0; } GLOBAL(void) jsimd_convsamp (JSAMPARRAY sample_data, JDIMENSION start_col, DCTELEM * workspace) { if (simd_support & JSIMD_SSE2) jsimd_convsamp_sse2(sample_data, start_col, workspace); else if (simd_support & JSIMD_MMX) jsimd_convsamp_mmx(sample_data, start_col, workspace); } GLOBAL(void) jsimd_convsamp_float (JSAMPARRAY sample_data, JDIMENSION start_col, FAST_FLOAT * workspace) { if (simd_support & JSIMD_SSE2) jsimd_convsamp_float_sse2(sample_data, start_col, workspace); else if (simd_support & JSIMD_SSE) jsimd_convsamp_float_sse(sample_data, start_col, workspace); else if (simd_support & JSIMD_3DNOW) jsimd_convsamp_float_3dnow(sample_data, start_col, workspace); } GLOBAL(int) jsimd_can_fdct_islow (void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (sizeof(DCTELEM) != 2) return 0; if ((simd_support & JSIMD_SSE2) && IS_ALIGNED_SSE(jconst_fdct_islow_sse2)) return 1; if (simd_support & JSIMD_MMX) return 1; return 0; } GLOBAL(int) jsimd_can_fdct_ifast (void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (sizeof(DCTELEM) != 2) return 0; if ((simd_support & JSIMD_SSE2) && IS_ALIGNED_SSE(jconst_fdct_ifast_sse2)) return 1; if (simd_support & JSIMD_MMX) return 1; return 0; } GLOBAL(int) jsimd_can_fdct_float (void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (sizeof(FAST_FLOAT) != 4) return 0; if ((simd_support & JSIMD_SSE) && IS_ALIGNED_SSE(jconst_fdct_float_sse)) return 1; if (simd_support & JSIMD_3DNOW) return 1; return 0; } GLOBAL(void) jsimd_fdct_islow (DCTELEM * data) { if ((simd_support & JSIMD_SSE2) && IS_ALIGNED_SSE(jconst_fdct_islow_sse2)) jsimd_fdct_islow_sse2(data); else if (simd_support & JSIMD_MMX) jsimd_fdct_islow_mmx(data); } GLOBAL(void) jsimd_fdct_ifast (DCTELEM * data) { if ((simd_support & JSIMD_SSE2) && IS_ALIGNED_SSE(jconst_fdct_islow_sse2)) jsimd_fdct_ifast_sse2(data); else if (simd_support & JSIMD_MMX) jsimd_fdct_ifast_mmx(data); } GLOBAL(void) jsimd_fdct_float (FAST_FLOAT * data) { if ((simd_support & JSIMD_SSE) && IS_ALIGNED_SSE(jconst_fdct_float_sse)) jsimd_fdct_float_sse(data); else if (simd_support & JSIMD_3DNOW) jsimd_fdct_float_3dnow(data); } GLOBAL(int) jsimd_can_quantize (void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (sizeof(JCOEF) != 2) return 0; if (sizeof(DCTELEM) != 2) return 0; if (simd_support & JSIMD_SSE2) return 1; if (simd_support & JSIMD_MMX) return 1; return 0; } GLOBAL(int) jsimd_can_quantize_float (void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (sizeof(JCOEF) != 2) return 0; if (sizeof(FAST_FLOAT) != 4) return 0; if (simd_support & JSIMD_SSE2) return 1; if (simd_support & JSIMD_SSE) return 1; if (simd_support & JSIMD_3DNOW) return 1; return 0; } GLOBAL(void) jsimd_quantize (JCOEFPTR coef_block, DCTELEM * divisors, DCTELEM * workspace) { if (simd_support & JSIMD_SSE2) jsimd_quantize_sse2(coef_block, divisors, workspace); else if (simd_support & JSIMD_MMX) jsimd_quantize_mmx(coef_block, divisors, workspace); } GLOBAL(void) jsimd_quantize_float (JCOEFPTR coef_block, FAST_FLOAT * divisors, FAST_FLOAT * workspace) { if (simd_support & JSIMD_SSE2) jsimd_quantize_float_sse2(coef_block, divisors, workspace); else if (simd_support & JSIMD_SSE) jsimd_quantize_float_sse(coef_block, divisors, workspace); else if (simd_support & JSIMD_3DNOW) jsimd_quantize_float_3dnow(coef_block, divisors, workspace); } GLOBAL(int) jsimd_can_idct_2x2 (void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (sizeof(JCOEF) != 2) return 0; if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (sizeof(ISLOW_MULT_TYPE) != 2) return 0; if ((simd_support & JSIMD_SSE2) && IS_ALIGNED_SSE(jconst_idct_red_sse2)) return 1; if (simd_support & JSIMD_MMX) return 1; return 0; } GLOBAL(int) jsimd_can_idct_4x4 (void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (sizeof(JCOEF) != 2) return 0; if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (sizeof(ISLOW_MULT_TYPE) != 2) return 0; if ((simd_support & JSIMD_SSE2) && IS_ALIGNED_SSE(jconst_idct_red_sse2)) return 1; if (simd_support & JSIMD_MMX) return 1; return 0; } GLOBAL(void) jsimd_idct_2x2 (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { if ((simd_support & JSIMD_SSE2) && IS_ALIGNED_SSE(jconst_idct_red_sse2)) jsimd_idct_2x2_sse2(compptr->dct_table, coef_block, output_buf, output_col); else if (simd_support & JSIMD_MMX) jsimd_idct_2x2_mmx(compptr->dct_table, coef_block, output_buf, output_col); } GLOBAL(void) jsimd_idct_4x4 (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { if ((simd_support & JSIMD_SSE2) && IS_ALIGNED_SSE(jconst_idct_red_sse2)) jsimd_idct_4x4_sse2(compptr->dct_table, coef_block, output_buf, output_col); else if (simd_support & JSIMD_MMX) jsimd_idct_4x4_mmx(compptr->dct_table, coef_block, output_buf, output_col); } GLOBAL(int) jsimd_can_idct_islow (void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (sizeof(JCOEF) != 2) return 0; if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (sizeof(ISLOW_MULT_TYPE) != 2) return 0; if ((simd_support & JSIMD_SSE2) && IS_ALIGNED_SSE(jconst_idct_islow_sse2)) return 1; if (simd_support & JSIMD_MMX) return 1; return 0; } GLOBAL(int) jsimd_can_idct_ifast (void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (sizeof(JCOEF) != 2) return 0; if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (sizeof(IFAST_MULT_TYPE) != 2) return 0; if (IFAST_SCALE_BITS != 2) return 0; if ((simd_support & JSIMD_SSE2) && IS_ALIGNED_SSE(jconst_idct_ifast_sse2)) return 1; if (simd_support & JSIMD_MMX) return 1; return 0; } GLOBAL(int) jsimd_can_idct_float (void) { init_simd(); if (DCTSIZE != 8) return 0; if (sizeof(JCOEF) != 2) return 0; if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (sizeof(FAST_FLOAT) != 4) return 0; if (sizeof(FLOAT_MULT_TYPE) != 4) return 0; if ((simd_support & JSIMD_SSE2) && IS_ALIGNED_SSE(jconst_idct_float_sse2)) return 1; if ((simd_support & JSIMD_SSE) && IS_ALIGNED_SSE(jconst_idct_float_sse)) return 1; if (simd_support & JSIMD_3DNOW) return 1; return 0; } GLOBAL(void) jsimd_idct_islow (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { if ((simd_support & JSIMD_SSE2) && IS_ALIGNED_SSE(jconst_idct_islow_sse2)) jsimd_idct_islow_sse2(compptr->dct_table, coef_block, output_buf, output_col); else if (simd_support & JSIMD_MMX) jsimd_idct_islow_mmx(compptr->dct_table, coef_block, output_buf, output_col); } GLOBAL(void) jsimd_idct_ifast (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { if ((simd_support & JSIMD_SSE2) && IS_ALIGNED_SSE(jconst_idct_ifast_sse2)) jsimd_idct_ifast_sse2(compptr->dct_table, coef_block, output_buf, output_col); else if (simd_support & JSIMD_MMX) jsimd_idct_ifast_mmx(compptr->dct_table, coef_block, output_buf, output_col); } GLOBAL(void) jsimd_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { if ((simd_support & JSIMD_SSE2) && IS_ALIGNED_SSE(jconst_idct_float_sse2)) jsimd_idct_float_sse2(compptr->dct_table, coef_block, output_buf, output_col); else if ((simd_support & JSIMD_SSE) && IS_ALIGNED_SSE(jconst_idct_float_sse)) jsimd_idct_float_sse(compptr->dct_table, coef_block, output_buf, output_col); else if (simd_support & JSIMD_3DNOW) jsimd_idct_float_3dnow(compptr->dct_table, coef_block, output_buf, output_col); } libjpeg-turbo-1.4.2/simd/nasm_lt.sh0000755000076500007650000000316012600050400014131 00000000000000#! /bin/sh command="" infile="" o_opt=no pic=no while [ $# -gt 0 ]; do case "$1" in --silent) exec > /dev/null ;; -DPIC|-fPIC|-fpic|-Kpic|-KPIC) if [ "$pic" != "yes" ] ; then command="$command -DPIC" pic=yes fi ;; -f|-fbin|-faout|-faoutb|-fcoff|-felf|-felf64|-fas86| \ -fobj|-fwin32|-fwin64|-frdf|-fieee|-fmacho|-fmacho64) # it's a file format specifier for nasm. command="$command $1" ;; -f*) # maybe a code-generation flag for gcc. ;; -[Ii]*) incdir=`echo "$1" | sed 's/^-[Ii]//'` if [ "x$incdir" = x -a "x$2" != x ] ; then case "$2" in -*) ;; *) incdir="$2"; shift;; esac fi if [ "x$incdir" != x ] ; then # In the case of NASM, the trailing slash is necessary. incdir=`echo "$incdir" | sed 's%/*$%/%'` command="$command -I$incdir" fi ;; -o*) o_opt=yes command="$command $1" ;; *.asm) infile=$1 command="$command $1" ;; *) command="$command $1" ;; esac shift done if [ "$o_opt" != yes ] ; then # By default, NASM creates an output file # in the same directory as the input file. outfile="-o `echo $infile | sed -e 's%^.*/%%' -e 's%\.[^.]*$%%'`.o" command="$command $outfile" fi echo $command exec $command libjpeg-turbo-1.4.2/simd/jsimd_mips_dspr2_asm.h0000644000076500007650000002060212600050400016416 00000000000000/* * MIPS DSPr2 optimizations for libjpeg-turbo * * Copyright (C) 2013, MIPS Technologies, Inc., California. * All rights reserved. * Authors: Teodora Novkovic (teodora.novkovic@imgtec.com) * Darko Laus (darko.laus@imgtec.com) * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ #define zero $0 #define AT $1 #define v0 $2 #define v1 $3 #define a0 $4 #define a1 $5 #define a2 $6 #define a3 $7 #define t0 $8 #define t1 $9 #define t2 $10 #define t3 $11 #define t4 $12 #define t5 $13 #define t6 $14 #define t7 $15 #define s0 $16 #define s1 $17 #define s2 $18 #define s3 $19 #define s4 $20 #define s5 $21 #define s6 $22 #define s7 $23 #define t8 $24 #define t9 $25 #define k0 $26 #define k1 $27 #define gp $28 #define sp $29 #define fp $30 #define s8 $30 #define ra $31 #define f0 $f0 #define f1 $f1 #define f2 $f2 #define f3 $f3 #define f4 $f4 #define f5 $f5 #define f6 $f6 #define f7 $f7 #define f8 $f8 #define f9 $f9 #define f10 $f10 #define f11 $f11 #define f12 $f12 #define f13 $f13 #define f14 $f14 #define f15 $f15 #define f16 $f16 #define f17 $f17 #define f18 $f18 #define f19 $f19 #define f20 $f20 #define f21 $f21 #define f22 $f22 #define f23 $f23 #define f24 $f24 #define f25 $f25 #define f26 $f26 #define f27 $f27 #define f28 $f28 #define f29 $f29 #define f30 $f30 #define f31 $f31 /* * LEAF_MIPS32R2 - declare leaf routine for MIPS32r2 */ #define LEAF_MIPS32R2(symbol) \ .globl symbol; \ .align 2; \ .type symbol, @function; \ .ent symbol, 0; \ symbol: .frame sp, 0, ra; \ .set push; \ .set arch=mips32r2; \ .set noreorder; \ .set noat; /* * LEAF_MIPS_DSPR2 - declare leaf routine for MIPS DSPr2 */ #define LEAF_MIPS_DSPR2(symbol) \ LEAF_MIPS32R2(symbol) \ .set dspr2; /* * END - mark end of function */ #define END(function) \ .set pop; \ .end function; \ .size function,.-function /* * Checks if stack offset is big enough for storing/restoring regs_num * number of register to/from stack. Stack offset must be greater than * or equal to the number of bytes needed for storing registers (regs_num*4). * Since MIPS ABI allows usage of first 16 bytes of stack frame (this is * preserved for input arguments of the functions, already stored in a0-a3), * stack size can be further optimized by utilizing this space. */ .macro CHECK_STACK_OFFSET regs_num, stack_offset .if \stack_offset < \regs_num * 4 - 16 .error "Stack offset too small." .endif .endm /* * Saves set of registers on stack. Maximum number of registers that * can be saved on stack is limitted to 14 (a0-a3, v0-v1 and s0-s7). * Stack offset is number of bytes that are added to stack pointer (sp) * before registers are pushed in order to provide enough space on stack * (offset must be multiple of 4, and must be big enough, as described by * CHECK_STACK_OFFSET macro). This macro is intended to be used in * combination with RESTORE_REGS_FROM_STACK macro. Example: * SAVE_REGS_ON_STACK 4, v0, v1, s0, s1 * RESTORE_REGS_FROM_STACK 4, v0, v1, s0, s1 */ .macro SAVE_REGS_ON_STACK stack_offset = 0, r1, \ r2 = 0, r3 = 0, r4 = 0, \ r5 = 0, r6 = 0, r7 = 0, \ r8 = 0, r9 = 0, r10 = 0, \ r11 = 0, r12 = 0, r13 = 0, \ r14 = 0 .if (\stack_offset < 0) || (\stack_offset - (\stack_offset / 4) * 4) .error "Stack offset must be pozitive and multiple of 4." .endif .if \stack_offset != 0 addiu sp, sp, -\stack_offset .endif sw \r1, 0(sp) .if \r2 != 0 sw \r2, 4(sp) .endif .if \r3 != 0 sw \r3, 8(sp) .endif .if \r4 != 0 sw \r4, 12(sp) .endif .if \r5 != 0 CHECK_STACK_OFFSET 5, \stack_offset sw \r5, 16(sp) .endif .if \r6 != 0 CHECK_STACK_OFFSET 6, \stack_offset sw \r6, 20(sp) .endif .if \r7 != 0 CHECK_STACK_OFFSET 7, \stack_offset sw \r7, 24(sp) .endif .if \r8 != 0 CHECK_STACK_OFFSET 8, \stack_offset sw \r8, 28(sp) .endif .if \r9 != 0 CHECK_STACK_OFFSET 9, \stack_offset sw \r9, 32(sp) .endif .if \r10 != 0 CHECK_STACK_OFFSET 10, \stack_offset sw \r10, 36(sp) .endif .if \r11 != 0 CHECK_STACK_OFFSET 11, \stack_offset sw \r11, 40(sp) .endif .if \r12 != 0 CHECK_STACK_OFFSET 12, \stack_offset sw \r12, 44(sp) .endif .if \r13 != 0 CHECK_STACK_OFFSET 13, \stack_offset sw \r13, 48(sp) .endif .if \r14 != 0 CHECK_STACK_OFFSET 14, \stack_offset sw \r14, 52(sp) .endif .endm /* * Restores set of registers from stack. Maximum number of registers that * can be restored from stack is limitted to 14 (a0-a3, v0-v1 and s0-s7). * Stack offset is number of bytes that are added to stack pointer (sp) * after registers are restored (offset must be multiple of 4, and must * be big enough, as described by CHECK_STACK_OFFSET macro). This macro is * intended to be used in combination with RESTORE_REGS_FROM_STACK macro. * Example: * SAVE_REGS_ON_STACK 4, v0, v1, s0, s1 * RESTORE_REGS_FROM_STACK 4, v0, v1, s0, s1 */ .macro RESTORE_REGS_FROM_STACK stack_offset = 0, r1, \ r2 = 0, r3 = 0, r4 = 0, \ r5 = 0, r6 = 0, r7 = 0, \ r8 = 0, r9 = 0, r10 = 0, \ r11 = 0, r12 = 0, r13 = 0, \ r14 = 0 .if (\stack_offset < 0) || (\stack_offset - (\stack_offset/4)*4) .error "Stack offset must be pozitive and multiple of 4." .endif lw \r1, 0(sp) .if \r2 != 0 lw \r2, 4(sp) .endif .if \r3 != 0 lw \r3, 8(sp) .endif .if \r4 != 0 lw \r4, 12(sp) .endif .if \r5 != 0 CHECK_STACK_OFFSET 5, \stack_offset lw \r5, 16(sp) .endif .if \r6 != 0 CHECK_STACK_OFFSET 6, \stack_offset lw \r6, 20(sp) .endif .if \r7 != 0 CHECK_STACK_OFFSET 7, \stack_offset lw \r7, 24(sp) .endif .if \r8 != 0 CHECK_STACK_OFFSET 8, \stack_offset lw \r8, 28(sp) .endif .if \r9 != 0 CHECK_STACK_OFFSET 9, \stack_offset lw \r9, 32(sp) .endif .if \r10 != 0 CHECK_STACK_OFFSET 10, \stack_offset lw \r10, 36(sp) .endif .if \r11 != 0 CHECK_STACK_OFFSET 11, \stack_offset lw \r11, 40(sp) .endif .if \r12 != 0 CHECK_STACK_OFFSET 12, \stack_offset lw \r12, 44(sp) .endif .if \r13 != 0 CHECK_STACK_OFFSET 13, \stack_offset lw \r13, 48(sp) .endif .if \r14 != 0 CHECK_STACK_OFFSET 14, \stack_offset lw \r14, 52(sp) .endif .if \stack_offset != 0 addiu sp, sp, \stack_offset .endif .endm libjpeg-turbo-1.4.2/simd/jsimd_mips_dspr2.S0000644000076500007650000042253312600050400015542 00000000000000/* * MIPS DSPr2 optimizations for libjpeg-turbo * * Copyright (C) 2013-2014, MIPS Technologies, Inc., California. * All rights reserved. * Authors: Teodora Novkovic (teodora.novkovic@imgtec.com) * Darko Laus (darko.laus@imgtec.com) * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ #include "jsimd_mips_dspr2_asm.h" /*****************************************************************************/ LEAF_MIPS_DSPR2(jsimd_c_null_convert_mips_dspr2) /* * a0 - cinfo->image_width * a1 - input_buf * a2 - output_buf * a3 - output_row * 16(sp) - num_rows * 20(sp) - cinfo->num_components * * Null conversion for compression */ SAVE_REGS_ON_STACK 8, s0, s1 lw t9, 24(sp) // t9 = num_rows lw s0, 28(sp) // s0 = cinfo->num_components andi t0, a0, 3 // t0 = cinfo->image_width & 3 beqz t0, 4f // no residual nop 0: addiu t9, t9, -1 bltz t9, 7f li t1, 0 1: sll t3, t1, 2 lwx t5, t3(a2) // t5 = outptr = output_buf[ci] lw t2, 0(a1) // t2 = inptr = *input_buf sll t4, a3, 2 lwx t5, t4(t5) // t5 = outptr = output_buf[ci][output_row] addu t2, t2, t1 addu s1, t5, a0 addu t6, t5, t0 2: lbu t3, 0(t2) addiu t5, t5, 1 sb t3, -1(t5) bne t6, t5, 2b addu t2, t2, s0 3: lbu t3, 0(t2) addu t4, t2, s0 addu t7, t4, s0 addu t8, t7, s0 addu t2, t8, s0 lbu t4, 0(t4) lbu t7, 0(t7) lbu t8, 0(t8) addiu t5, t5, 4 sb t3, -4(t5) sb t4, -3(t5) sb t7, -2(t5) bne s1, t5, 3b sb t8, -1(t5) addiu t1, t1, 1 bne t1, s0, 1b nop addiu a1, a1, 4 bgez t9, 0b addiu a3, a3, 1 b 7f nop 4: addiu t9, t9, -1 bltz t9, 7f li t1, 0 5: sll t3, t1, 2 lwx t5, t3(a2) // t5 = outptr = output_buf[ci] lw t2, 0(a1) // t2 = inptr = *input_buf sll t4, a3, 2 lwx t5, t4(t5) // t5 = outptr = output_buf[ci][output_row] addu t2, t2, t1 addu s1, t5, a0 addu t6, t5, t0 6: lbu t3, 0(t2) addu t4, t2, s0 addu t7, t4, s0 addu t8, t7, s0 addu t2, t8, s0 lbu t4, 0(t4) lbu t7, 0(t7) lbu t8, 0(t8) addiu t5, t5, 4 sb t3, -4(t5) sb t4, -3(t5) sb t7, -2(t5) bne s1, t5, 6b sb t8, -1(t5) addiu t1, t1, 1 bne t1, s0, 5b nop addiu a1, a1, 4 bgez t9, 4b addiu a3, a3, 1 7: RESTORE_REGS_FROM_STACK 8, s0, s1 j ra nop END(jsimd_c_null_convert_mips_dspr2) /*****************************************************************************/ /* * jsimd_extrgb_ycc_convert_mips_dspr2 * jsimd_extbgr_ycc_convert_mips_dspr2 * jsimd_extrgbx_ycc_convert_mips_dspr2 * jsimd_extbgrx_ycc_convert_mips_dspr2 * jsimd_extxbgr_ycc_convert_mips_dspr2 * jsimd_extxrgb_ycc_convert_mips_dspr2 * * Colorspace conversion RGB -> YCbCr */ .macro GENERATE_JSIMD_RGB_YCC_CONVERT_MIPS_DSPR2 colorid, pixel_size, r_offs, g_offs, b_offs .macro DO_RGB_TO_YCC r, \ g, \ b, \ inptr lbu \r, \r_offs(\inptr) lbu \g, \g_offs(\inptr) lbu \b, \b_offs(\inptr) addiu \inptr, \pixel_size .endm LEAF_MIPS_DSPR2(jsimd_\colorid\()_ycc_convert_mips_dspr2) /* * a0 - cinfo->image_width * a1 - input_buf * a2 - output_buf * a3 - output_row * 16(sp) - num_rows */ SAVE_REGS_ON_STACK 32, s0, s1, s2, s3, s4, s5, s6, s7 lw t7, 48(sp) // t7 = num_rows li s0, 0x4c8b // FIX(0.29900) li s1, 0x9646 // FIX(0.58700) li s2, 0x1d2f // FIX(0.11400) li s3, 0xffffd4cd // -FIX(0.16874) li s4, 0xffffab33 // -FIX(0.33126) li s5, 0x8000 // FIX(0.50000) li s6, 0xffff94d1 // -FIX(0.41869) li s7, 0xffffeb2f // -FIX(0.08131) li t8, 0x807fff // CBCR_OFFSET + ONE_HALF-1 0: addiu t7, -1 // --num_rows lw t6, 0(a1) // t6 = input_buf[0] lw t0, 0(a2) lw t1, 4(a2) lw t2, 8(a2) sll t3, a3, 2 lwx t0, t3(t0) // t0 = output_buf[0][output_row] lwx t1, t3(t1) // t1 = output_buf[1][output_row] lwx t2, t3(t2) // t2 = output_buf[2][output_row] addu t9, t2, a0 // t9 = end address addiu a3, 1 1: DO_RGB_TO_YCC t3, t4, t5, t6 mtlo s5, $ac0 mtlo t8, $ac1 mtlo t8, $ac2 maddu $ac0, s2, t5 maddu $ac1, s5, t5 maddu $ac2, s5, t3 maddu $ac0, s0, t3 maddu $ac1, s3, t3 maddu $ac2, s6, t4 maddu $ac0, s1, t4 maddu $ac1, s4, t4 maddu $ac2, s7, t5 extr.w t3, $ac0, 16 extr.w t4, $ac1, 16 extr.w t5, $ac2, 16 sb t3, 0(t0) sb t4, 0(t1) sb t5, 0(t2) addiu t0, 1 addiu t2, 1 bne t2, t9, 1b addiu t1, 1 bgtz t7, 0b addiu a1, 4 RESTORE_REGS_FROM_STACK 32, s0, s1, s2, s3, s4, s5, s6, s7 j ra nop END(jsimd_\colorid\()_ycc_convert_mips_dspr2) .purgem DO_RGB_TO_YCC .endm /*------------------------------------------id -- pix R G B */ GENERATE_JSIMD_RGB_YCC_CONVERT_MIPS_DSPR2 extrgb, 3, 0, 1, 2 GENERATE_JSIMD_RGB_YCC_CONVERT_MIPS_DSPR2 extbgr, 3, 2, 1, 0 GENERATE_JSIMD_RGB_YCC_CONVERT_MIPS_DSPR2 extrgbx, 4, 0, 1, 2 GENERATE_JSIMD_RGB_YCC_CONVERT_MIPS_DSPR2 extbgrx, 4, 2, 1, 0 GENERATE_JSIMD_RGB_YCC_CONVERT_MIPS_DSPR2 extxbgr, 4, 3, 2, 1 GENERATE_JSIMD_RGB_YCC_CONVERT_MIPS_DSPR2 extxrgb, 4, 1, 2, 3 /*****************************************************************************/ /* * jsimd_ycc_extrgb_convert_mips_dspr2 * jsimd_ycc_extbgr_convert_mips_dspr2 * jsimd_ycc_extrgbx_convert_mips_dspr2 * jsimd_ycc_extbgrx_convert_mips_dspr2 * jsimd_ycc_extxbgr_convert_mips_dspr2 * jsimd_ycc_extxrgb_convert_mips_dspr2 * * Colorspace conversion YCbCr -> RGB */ .macro GENERATE_JSIMD_YCC_RGB_CONVERT_MIPS_DSPR2 colorid, pixel_size, r_offs, g_offs, b_offs, a_offs .macro STORE_YCC_TO_RGB scratch0 \ scratch1 \ scratch2 \ outptr sb \scratch0, \r_offs(\outptr) sb \scratch1, \g_offs(\outptr) sb \scratch2, \b_offs(\outptr) .if (\pixel_size == 4) li t0, 0xFF sb t0, \a_offs(\outptr) .endif addiu \outptr, \pixel_size .endm LEAF_MIPS_DSPR2(jsimd_ycc_\colorid\()_convert_mips_dspr2) /* * a0 - cinfo->image_width * a1 - input_buf * a2 - input_row * a3 - output_buf * 16(sp) - num_rows */ SAVE_REGS_ON_STACK 32, s0, s1, s2, s3, s4, s5, s6, s7 lw s1, 48(sp) li t3, 0x8000 li t4, 0x166e9 // FIX(1.40200) li t5, 0x1c5a2 // FIX(1.77200) li t6, 0xffff492e // -FIX(0.71414) li t7, 0xffffa7e6 // -FIX(0.34414) repl.ph t8, 128 0: lw s0, 0(a3) lw t0, 0(a1) lw t1, 4(a1) lw t2, 8(a1) sll s5, a2, 2 addiu s1, -1 lwx s2, s5(t0) lwx s3, s5(t1) lwx s4, s5(t2) addu t9, s2, a0 addiu a2, 1 1: lbu s7, 0(s4) // cr lbu s6, 0(s3) // cb lbu s5, 0(s2) // y addiu s2, 1 addiu s4, 1 addiu s7, -128 addiu s6, -128 mul t2, t7, s6 mul t0, t6, s7 // Crgtab[cr] sll s7, 15 mulq_rs.w t1, t4, s7 // Crrtab[cr] sll s6, 15 addu t2, t3 // Cbgtab[cb] addu t2, t0 mulq_rs.w t0, t5, s6 // Cbbtab[cb] sra t2, 16 addu t1, s5 addu t2, s5 // add y ins t2, t1, 16, 16 subu.ph t2, t2, t8 addu t0, s5 shll_s.ph t2, t2, 8 subu t0, 128 shra.ph t2, t2, 8 shll_s.w t0, t0, 24 addu.ph t2, t2, t8 // clip & store sra t0, t0, 24 sra t1, t2, 16 addiu t0, 128 STORE_YCC_TO_RGB t1, t2, t0, s0 bne s2, t9, 1b addiu s3, 1 bgtz s1, 0b addiu a3, 4 RESTORE_REGS_FROM_STACK 32, s0, s1, s2, s3, s4, s5, s6, s7 j ra nop END(jsimd_ycc_\colorid\()_convert_mips_dspr2) .purgem STORE_YCC_TO_RGB .endm /*------------------------------------------id -- pix R G B A */ GENERATE_JSIMD_YCC_RGB_CONVERT_MIPS_DSPR2 extrgb, 3, 0, 1, 2, 3 GENERATE_JSIMD_YCC_RGB_CONVERT_MIPS_DSPR2 extbgr, 3, 2, 1, 0, 3 GENERATE_JSIMD_YCC_RGB_CONVERT_MIPS_DSPR2 extrgbx, 4, 0, 1, 2, 3 GENERATE_JSIMD_YCC_RGB_CONVERT_MIPS_DSPR2 extbgrx, 4, 2, 1, 0, 3 GENERATE_JSIMD_YCC_RGB_CONVERT_MIPS_DSPR2 extxbgr, 4, 3, 2, 1, 0 GENERATE_JSIMD_YCC_RGB_CONVERT_MIPS_DSPR2 extxrgb, 4, 1, 2, 3, 0 /*****************************************************************************/ /* * jsimd_extrgb_gray_convert_mips_dspr2 * jsimd_extbgr_gray_convert_mips_dspr2 * jsimd_extrgbx_gray_convert_mips_dspr2 * jsimd_extbgrx_gray_convert_mips_dspr2 * jsimd_extxbgr_gray_convert_mips_dspr2 * jsimd_extxrgb_gray_convert_mips_dspr2 * * Colorspace conversion RGB -> GRAY */ .macro GENERATE_JSIMD_RGB_GRAY_CONVERT_MIPS_DSPR2 colorid, pixel_size, r_offs, g_offs, b_offs .macro DO_RGB_TO_GRAY r, \ g, \ b, \ inptr lbu \r, \r_offs(\inptr) lbu \g, \g_offs(\inptr) lbu \b, \b_offs(\inptr) addiu \inptr, \pixel_size .endm LEAF_MIPS_DSPR2(jsimd_\colorid\()_gray_convert_mips_dspr2) /* * a0 - cinfo->image_width * a1 - input_buf * a2 - output_buf * a3 - output_row * 16(sp) - num_rows */ SAVE_REGS_ON_STACK 32, s0, s1, s2, s3, s4, s5, s6, s7 li s0, 0x4c8b // s0 = FIX(0.29900) li s1, 0x9646 // s1 = FIX(0.58700) li s2, 0x1d2f // s2 = FIX(0.11400) li s7, 0x8000 // s7 = FIX(0.50000) lw s6, 48(sp) andi t7, a0, 3 0: addiu s6, -1 // s6 = num_rows lw t0, 0(a1) lw t1, 0(a2) sll t3, a3, 2 lwx t1, t3(t1) addiu a3, 1 addu t9, t1, a0 subu t8, t9, t7 beq t1, t8, 2f nop 1: DO_RGB_TO_GRAY t3, t4, t5, t0 DO_RGB_TO_GRAY s3, s4, s5, t0 mtlo s7, $ac0 maddu $ac0, s2, t5 maddu $ac0, s1, t4 maddu $ac0, s0, t3 mtlo s7, $ac1 maddu $ac1, s2, s5 maddu $ac1, s1, s4 maddu $ac1, s0, s3 extr.w t6, $ac0, 16 DO_RGB_TO_GRAY t3, t4, t5, t0 DO_RGB_TO_GRAY s3, s4, s5, t0 mtlo s7, $ac0 maddu $ac0, s2, t5 maddu $ac0, s1, t4 extr.w t2, $ac1, 16 maddu $ac0, s0, t3 mtlo s7, $ac1 maddu $ac1, s2, s5 maddu $ac1, s1, s4 maddu $ac1, s0, s3 extr.w t5, $ac0, 16 sb t6, 0(t1) sb t2, 1(t1) extr.w t3, $ac1, 16 addiu t1, 4 sb t5, -2(t1) sb t3, -1(t1) bne t1, t8, 1b nop 2: beqz t7, 4f nop 3: DO_RGB_TO_GRAY t3, t4, t5, t0 mtlo s7, $ac0 maddu $ac0, s2, t5 maddu $ac0, s1, t4 maddu $ac0, s0, t3 extr.w t6, $ac0, 16 sb t6, 0(t1) addiu t1, 1 bne t1, t9, 3b nop 4: bgtz s6, 0b addiu a1, 4 RESTORE_REGS_FROM_STACK 32, s0, s1, s2, s3, s4, s5, s6, s7 j ra nop END(jsimd_\colorid\()_gray_convert_mips_dspr2) .purgem DO_RGB_TO_GRAY .endm /*------------------------------------------id -- pix R G B */ GENERATE_JSIMD_RGB_GRAY_CONVERT_MIPS_DSPR2 extrgb, 3, 0, 1, 2 GENERATE_JSIMD_RGB_GRAY_CONVERT_MIPS_DSPR2 extbgr, 3, 2, 1, 0 GENERATE_JSIMD_RGB_GRAY_CONVERT_MIPS_DSPR2 extrgbx, 4, 0, 1, 2 GENERATE_JSIMD_RGB_GRAY_CONVERT_MIPS_DSPR2 extbgrx, 4, 2, 1, 0 GENERATE_JSIMD_RGB_GRAY_CONVERT_MIPS_DSPR2 extxbgr, 4, 3, 2, 1 GENERATE_JSIMD_RGB_GRAY_CONVERT_MIPS_DSPR2 extxrgb, 4, 1, 2, 3 /*****************************************************************************/ /* * jsimd_h2v2_merged_upsample_mips_dspr2 * jsimd_h2v2_extrgb_merged_upsample_mips_dspr2 * jsimd_h2v2_extrgbx_merged_upsample_mips_dspr2 * jsimd_h2v2_extbgr_merged_upsample_mips_dspr2 * jsimd_h2v2_extbgrx_merged_upsample_mips_dspr2 * jsimd_h2v2_extxbgr_merged_upsample_mips_dspr2 * jsimd_h2v2_extxrgb_merged_upsample_mips_dspr2 * * Merged h2v2 upsample routines */ .macro GENERATE_H2V2_MERGED_UPSAMPLE_MIPS_DSPR2 colorid, \ pixel_size, \ r1_offs, \ g1_offs, \ b1_offs, \ a1_offs, \ r2_offs, \ g2_offs, \ b2_offs, \ a2_offs .macro STORE_H2V2_2_PIXELS scratch0 \ scratch1 \ scratch2 \ scratch3 \ scratch4 \ scratch5 \ outptr sb \scratch0, \r1_offs(\outptr) sb \scratch1, \g1_offs(\outptr) sb \scratch2, \b1_offs(\outptr) sb \scratch3, \r2_offs(\outptr) sb \scratch4, \g2_offs(\outptr) sb \scratch5, \b2_offs(\outptr) .if (\pixel_size == 8) li \scratch0, 0xFF sb \scratch0, \a1_offs(\outptr) sb \scratch0, \a2_offs(\outptr) .endif addiu \outptr, \pixel_size .endm .macro STORE_H2V2_1_PIXEL scratch0 \ scratch1 \ scratch2 \ outptr sb \scratch0, \r1_offs(\outptr) sb \scratch1, \g1_offs(\outptr) sb \scratch2, \b1_offs(\outptr) .if (\pixel_size == 8) li t0, 0xFF sb t0, \a1_offs(\outptr) .endif .endm LEAF_MIPS_DSPR2(jsimd_h2v2_\colorid\()_merged_upsample_mips_dspr2) /* * a0 - cinfo->output_width * a1 - input_buf * a2 - in_row_group_ctr * a3 - output_buf * 16(sp) - cinfo->sample_range_limit */ SAVE_REGS_ON_STACK 40, s0, s1, s2, s3, s4, s5, s6, s7, ra lw t9, 56(sp) // cinfo->sample_range_limit lw v0, 0(a1) lw v1, 4(a1) lw t0, 8(a1) sll t1, a2, 3 addiu t2, t1, 4 sll t3, a2, 2 lw t4, 0(a3) // t4 = output_buf[0] lwx t1, t1(v0) // t1 = input_buf[0][in_row_group_ctr*2] lwx t2, t2(v0) // t2 = input_buf[0][in_row_group_ctr*2 + 1] lwx t5, t3(v1) // t5 = input_buf[1][in_row_group_ctr] lwx t6, t3(t0) // t6 = input_buf[2][in_row_group_ctr] lw t7, 4(a3) // t7 = output_buf[1] li s1, 0xe6ea addiu t8, s1, 0x7fff // t8 = 0x166e9 [FIX(1.40200)] addiu s0, t8, 0x5eb9 // s0 = 0x1c5a2 [FIX(1.77200)] addiu s1, zero, 0xa7e6 // s4 = 0xffffa7e6 [-FIX(0.34414)] xori s2, s1, 0xeec8 // s3 = 0xffff492e [-FIX(0.71414)] srl t3, a0, 1 blez t3, 2f addu t0, t5, t3 // t0 = end address 1: lbu t3, 0(t5) lbu s3, 0(t6) addiu t5, t5, 1 addiu t3, t3, -128 // (cb - 128) addiu s3, s3, -128 // (cr - 128) mult $ac1, s1, t3 madd $ac1, s2, s3 sll s3, s3, 15 sll t3, t3, 15 mulq_rs.w s4, t8, s3 // s4 = (C1 * cr + ONE_HALF)>> SCALEBITS extr_r.w s5, $ac1, 16 mulq_rs.w s6, s0, t3 // s6 = (C2 * cb + ONE_HALF)>> SCALEBITS lbu v0, 0(t1) addiu t6, t6, 1 addiu t1, t1, 2 addu t3, v0, s4 // y+cred addu s3, v0, s5 // y+cgreen addu v1, v0, s6 // y+cblue addu t3, t9, t3 // y+cred addu s3, t9, s3 // y+cgreen addu v1, t9, v1 // y+cblue lbu AT, 0(t3) lbu s7, 0(s3) lbu ra, 0(v1) lbu v0, -1(t1) addu t3, v0, s4 // y+cred addu s3, v0, s5 // y+cgreen addu v1, v0, s6 // y+cblue addu t3, t9, t3 // y+cred addu s3, t9, s3 // y+cgreen addu v1, t9, v1 // y+cblue lbu t3, 0(t3) lbu s3, 0(s3) lbu v1, 0(v1) lbu v0, 0(t2) STORE_H2V2_2_PIXELS AT, s7, ra, t3, s3, v1, t4 addu t3, v0, s4 // y+cred addu s3, v0, s5 // y+cgreen addu v1, v0, s6 // y+cblue addu t3, t9, t3 // y+cred addu s3, t9, s3 // y+cgreen addu v1, t9, v1 // y+cblue lbu AT, 0(t3) lbu s7, 0(s3) lbu ra, 0(v1) lbu v0, 1(t2) addiu t2, t2, 2 addu t3, v0, s4 // y+cred addu s3, v0, s5 // y+cgreen addu v1, v0, s6 // y+cblue addu t3, t9, t3 // y+cred addu s3, t9, s3 // y+cgreen addu v1, t9, v1 // y+cblue lbu t3, 0(t3) lbu s3, 0(s3) lbu v1, 0(v1) STORE_H2V2_2_PIXELS AT, s7, ra, t3, s3, v1, t7 bne t0, t5, 1b nop 2: andi t0, a0, 1 beqz t0, 4f lbu t3, 0(t5) lbu s3, 0(t6) addiu t3, t3, -128 // (cb - 128) addiu s3, s3, -128 // (cr - 128) mult $ac1, s1, t3 madd $ac1, s2, s3 sll s3, s3, 15 sll t3, t3, 15 lbu v0, 0(t1) extr_r.w s5, $ac1, 16 mulq_rs.w s4, t8, s3 // s4 = (C1 * cr + ONE_HALF)>> SCALEBITS mulq_rs.w s6, s0, t3 // s6 = (C2 * cb + ONE_HALF)>> SCALEBITS addu t3, v0, s4 // y+cred addu s3, v0, s5 // y+cgreen addu v1, v0, s6 // y+cblue addu t3, t9, t3 // y+cred addu s3, t9, s3 // y+cgreen addu v1, t9, v1 // y+cblue lbu t3, 0(t3) lbu s3, 0(s3) lbu v1, 0(v1) lbu v0, 0(t2) STORE_H2V2_1_PIXEL t3, s3, v1, t4 addu t3, v0, s4 // y+cred addu s3, v0, s5 // y+cgreen addu v1, v0, s6 // y+cblue addu t3, t9, t3 // y+cred addu s3, t9, s3 // y+cgreen addu v1, t9, v1 // y+cblue lbu t3, 0(t3) lbu s3, 0(s3) lbu v1, 0(v1) STORE_H2V2_1_PIXEL t3, s3, v1, t7 4: RESTORE_REGS_FROM_STACK 40, s0, s1, s2, s3, s4, s5, s6, s7, ra j ra nop END(jsimd_h2v2_\colorid\()_merged_upsample_mips_dspr2) .purgem STORE_H2V2_1_PIXEL .purgem STORE_H2V2_2_PIXELS .endm /*-----------------------------------------id -- pix R1 G1 B1 A1 R2 G2 B2 A2 */ GENERATE_H2V2_MERGED_UPSAMPLE_MIPS_DSPR2 extrgb, 6, 0, 1, 2, 6, 3, 4, 5, 6 GENERATE_H2V2_MERGED_UPSAMPLE_MIPS_DSPR2 extbgr, 6, 2, 1, 0, 3, 5, 4, 3, 6 GENERATE_H2V2_MERGED_UPSAMPLE_MIPS_DSPR2 extrgbx, 8, 0, 1, 2, 3, 4, 5, 6, 7 GENERATE_H2V2_MERGED_UPSAMPLE_MIPS_DSPR2 extbgrx, 8, 2, 1, 0, 3, 6, 5, 4, 7 GENERATE_H2V2_MERGED_UPSAMPLE_MIPS_DSPR2 extxbgr, 8, 3, 2, 1, 0, 7, 6, 5, 4 GENERATE_H2V2_MERGED_UPSAMPLE_MIPS_DSPR2 extxrgb, 8, 1, 2, 3, 0, 5, 6, 7, 4 /*****************************************************************************/ /* * jsimd_h2v1_merged_upsample_mips_dspr2 * jsimd_h2v1_extrgb_merged_upsample_mips_dspr2 * jsimd_h2v1_extrgbx_merged_upsample_mips_dspr2 * jsimd_h2v1_extbgr_merged_upsample_mips_dspr2 * jsimd_h2v1_extbgrx_merged_upsample_mips_dspr2 * jsimd_h2v1_extxbgr_merged_upsample_mips_dspr2 * jsimd_h2v1_extxrgb_merged_upsample_mips_dspr2 * * Merged h2v1 upsample routines */ .macro GENERATE_H2V1_MERGED_UPSAMPLE_MIPS_DSPR2 colorid, \ pixel_size, \ r1_offs, \ g1_offs, \ b1_offs, \ a1_offs, \ r2_offs, \ g2_offs, \ b2_offs, \ a2_offs .macro STORE_H2V1_2_PIXELS scratch0 \ scratch1 \ scratch2 \ scratch3 \ scratch4 \ scratch5 \ outptr sb \scratch0, \r1_offs(\outptr) sb \scratch1, \g1_offs(\outptr) sb \scratch2, \b1_offs(\outptr) sb \scratch3, \r2_offs(\outptr) sb \scratch4, \g2_offs(\outptr) sb \scratch5, \b2_offs(\outptr) .if (\pixel_size == 8) li t0, 0xFF sb t0, \a1_offs(\outptr) sb t0, \a2_offs(\outptr) .endif addiu \outptr, \pixel_size .endm .macro STORE_H2V1_1_PIXEL scratch0 \ scratch1 \ scratch2 \ outptr sb \scratch0, \r1_offs(\outptr) sb \scratch1, \g1_offs(\outptr) sb \scratch2, \b1_offs(\outptr) .if (\pixel_size == 8) li t0, 0xFF sb t0, \a1_offs(\outptr) .endif .endm LEAF_MIPS_DSPR2(jsimd_h2v1_\colorid\()_merged_upsample_mips_dspr2) /* * a0 - cinfo->output_width * a1 - input_buf * a2 - in_row_group_ctr * a3 - output_buf * 16(sp) - range_limit */ SAVE_REGS_ON_STACK 40, s0, s1, s2, s3, s4, s5, s6, s7, ra li t0, 0xe6ea lw t1, 0(a1) // t1 = input_buf[0] lw t2, 4(a1) // t2 = input_buf[1] lw t3, 8(a1) // t3 = input_buf[2] lw t8, 56(sp) // t8 = range_limit addiu s1, t0, 0x7fff // s1 = 0x166e9 [FIX(1.40200)] addiu s2, s1, 0x5eb9 // s2 = 0x1c5a2 [FIX(1.77200)] addiu s0, t0, 0x9916 // s0 = 0x8000 addiu s4, zero, 0xa7e6 // s4 = 0xffffa7e6 [-FIX(0.34414)] xori s3, s4, 0xeec8 // s3 = 0xffff492e [-FIX(0.71414)] srl t0, a0, 1 sll t4, a2, 2 lwx s5, t4(t1) // s5 = inptr0 lwx s6, t4(t2) // s6 = inptr1 lwx s7, t4(t3) // s7 = inptr2 lw t7, 0(a3) // t7 = outptr blez t0, 2f addu t9, s6, t0 // t9 = end address 1: lbu t2, 0(s6) // t2 = cb lbu t0, 0(s7) // t0 = cr lbu t1, 0(s5) // t1 = y addiu t2, t2, -128 // t2 = cb - 128 addiu t0, t0, -128 // t0 = cr - 128 mult $ac1, s4, t2 madd $ac1, s3, t0 sll t0, t0, 15 sll t2, t2, 15 mulq_rs.w t0, s1, t0 // t0 = (C1*cr + ONE_HALF)>> SCALEBITS extr_r.w t5, $ac1, 16 mulq_rs.w t6, s2, t2 // t6 = (C2*cb + ONE_HALF)>> SCALEBITS addiu s7, s7, 1 addiu s6, s6, 1 addu t2, t1, t0 // t2 = y + cred addu t3, t1, t5 // t3 = y + cgreen addu t4, t1, t6 // t4 = y + cblue addu t2, t8, t2 addu t3, t8, t3 addu t4, t8, t4 lbu t1, 1(s5) lbu v0, 0(t2) lbu v1, 0(t3) lbu ra, 0(t4) addu t2, t1, t0 addu t3, t1, t5 addu t4, t1, t6 addu t2, t8, t2 addu t3, t8, t3 addu t4, t8, t4 lbu t2, 0(t2) lbu t3, 0(t3) lbu t4, 0(t4) STORE_H2V1_2_PIXELS v0, v1, ra, t2, t3, t4, t7 bne t9, s6, 1b addiu s5, s5, 2 2: andi t0, a0, 1 beqz t0, 4f nop 3: lbu t2, 0(s6) lbu t0, 0(s7) lbu t1, 0(s5) addiu t2, t2, -128 //(cb - 128) addiu t0, t0, -128 //(cr - 128) mul t3, s4, t2 mul t4, s3, t0 sll t0, t0, 15 sll t2, t2, 15 mulq_rs.w t0, s1, t0 // (C1*cr + ONE_HALF)>> SCALEBITS mulq_rs.w t6, s2, t2 // (C2*cb + ONE_HALF)>> SCALEBITS addu t3, t3, s0 addu t3, t4, t3 sra t5, t3, 16 // (C4*cb + ONE_HALF + C3*cr)>> SCALEBITS addu t2, t1, t0 // y + cred addu t3, t1, t5 // y + cgreen addu t4, t1, t6 // y + cblue addu t2, t8, t2 addu t3, t8, t3 addu t4, t8, t4 lbu t2, 0(t2) lbu t3, 0(t3) lbu t4, 0(t4) STORE_H2V1_1_PIXEL t2, t3, t4, t7 4: RESTORE_REGS_FROM_STACK 40, s0, s1, s2, s3, s4, s5, s6, s7, ra j ra nop END(jsimd_h2v1_\colorid\()_merged_upsample_mips_dspr2) .purgem STORE_H2V1_1_PIXEL .purgem STORE_H2V1_2_PIXELS .endm /*-----------------------------------------id -- pix R1 G1 B1 A1 R2 G2 B2 A2 */ GENERATE_H2V1_MERGED_UPSAMPLE_MIPS_DSPR2 extrgb, 6, 0, 1, 2, 6, 3, 4, 5, 6 GENERATE_H2V1_MERGED_UPSAMPLE_MIPS_DSPR2 extbgr, 6, 2, 1, 0, 3, 5, 4, 3, 6 GENERATE_H2V1_MERGED_UPSAMPLE_MIPS_DSPR2 extrgbx, 8, 0, 1, 2, 3, 4, 5, 6, 7 GENERATE_H2V1_MERGED_UPSAMPLE_MIPS_DSPR2 extbgrx, 8, 2, 1, 0, 3, 6, 5, 4, 7 GENERATE_H2V1_MERGED_UPSAMPLE_MIPS_DSPR2 extxbgr, 8, 3, 2, 1, 0, 7, 6, 5, 4 GENERATE_H2V1_MERGED_UPSAMPLE_MIPS_DSPR2 extxrgb, 8, 1, 2, 3, 0, 5, 6, 7, 4 /*****************************************************************************/ /* * jsimd_h2v2_fancy_upsample_mips_dspr2 * * Fancy processing for the common case of 2:1 horizontal and 2:1 vertical. */ LEAF_MIPS_DSPR2(jsimd_h2v2_fancy_upsample_mips_dspr2) /* * a0 - cinfo->max_v_samp_factor * a1 - downsampled_width * a2 - input_data * a3 - output_data_ptr */ SAVE_REGS_ON_STACK 24, s0, s1, s2, s3, s4, s5 li s4, 0 lw s2, 0(a3) // s2 = *output_data_ptr 0: li t9, 2 lw s1, -4(a2) // s1 = inptr1 1: lw s0, 0(a2) // s0 = inptr0 lwx s3, s4(s2) addiu s5, a1, -2 // s5 = downsampled_width - 2 srl t4, s5, 1 sll t4, t4, 1 lbu t0, 0(s0) lbu t1, 1(s0) lbu t2, 0(s1) lbu t3, 1(s1) addiu s0, 2 addiu s1, 2 addu t8, s0, t4 // t8 = end address andi s5, s5, 1 // s5 = residual sll t4, t0, 1 sll t6, t1, 1 addu t0, t0, t4 // t0 = (*inptr0++) * 3 addu t1, t1, t6 // t1 = (*inptr0++) * 3 addu t7, t0, t2 // t7 = thiscolsum addu t6, t1, t3 // t5 = nextcolsum sll t0, t7, 2 // t0 = thiscolsum * 4 subu t1, t0, t7 // t1 = thiscolsum * 3 shra_r.w t0, t0, 4 addiu t1, 7 addu t1, t1, t6 srl t1, t1, 4 sb t0, 0(s3) sb t1, 1(s3) beq t8, s0, 22f // skip to final iteration if width == 3 addiu s3, 2 2: lh t0, 0(s0) // t0 = A3|A2 lh t2, 0(s1) // t2 = B3|B2 addiu s0, 2 addiu s1, 2 preceu.ph.qbr t0, t0 // t0 = 0|A3|0|A2 preceu.ph.qbr t2, t2 // t2 = 0|B3|0|B2 shll.ph t1, t0, 1 sll t3, t6, 1 addu.ph t0, t1, t0 // t0 = A3*3|A2*3 addu t3, t3, t6 // t3 = this * 3 addu.ph t0, t0, t2 // t0 = next2|next1 addu t1, t3, t7 andi t7, t0, 0xFFFF // t7 = next1 sll t2, t7, 1 addu t2, t7, t2 // t2 = next1*3 addu t4, t2, t6 srl t6, t0, 16 // t6 = next2 shra_r.w t1, t1, 4 // t1 = (this*3 + last + 8) >> 4 addu t0, t3, t7 addiu t0, 7 srl t0, t0, 4 // t0 = (this*3 + next1 + 7) >> 4 shra_r.w t4, t4, 4 // t3 = (next1*3 + this + 8) >> 4 addu t2, t2, t6 addiu t2, 7 srl t2, t2, 4 // t2 = (next1*3 + next2 + 7) >> 4 sb t1, 0(s3) sb t0, 1(s3) sb t4, 2(s3) sb t2, 3(s3) bne t8, s0, 2b addiu s3, 4 22: beqz s5, 4f addu t8, s0, s5 3: lbu t0, 0(s0) lbu t2, 0(s1) addiu s0, 1 addiu s1, 1 sll t3, t6, 1 sll t1, t0, 1 addu t1, t0, t1 // t1 = inptr0 * 3 addu t3, t3, t6 // t3 = thiscolsum * 3 addu t5, t1, t2 addu t1, t3, t7 shra_r.w t1, t1, 4 addu t0, t3, t5 addiu t0, 7 srl t0, t0, 4 sb t1, 0(s3) sb t0, 1(s3) addiu s3, 2 move t7, t6 bne t8, s0, 3b move t6, t5 4: sll t0, t6, 2 // t0 = thiscolsum * 4 subu t1, t0, t6 // t1 = thiscolsum * 3 addu t1, t1, t7 addiu s4, 4 shra_r.w t1, t1, 4 addiu t0, 7 srl t0, t0, 4 sb t1, 0(s3) sb t0, 1(s3) addiu t9, -1 addiu s3, 2 bnez t9, 1b lw s1, 4(a2) srl t0, s4, 2 subu t0, a0, t0 bgtz t0, 0b addiu a2, 4 RESTORE_REGS_FROM_STACK 24, s0, s1, s2, s3, s4, s5 j ra nop END(jsimd_h2v2_fancy_upsample_mips_dspr2) /*****************************************************************************/ LEAF_MIPS_DSPR2(jsimd_h2v1_fancy_upsample_mips_dspr2) /* * a0 - cinfo->max_v_samp_factor * a1 - downsampled_width * a2 - input_data * a3 - output_data_ptr */ SAVE_REGS_ON_STACK 16, s0, s1, s2, s3 .set at beqz a0, 3f sll t0, a0, 2 lw s1, 0(a3) li s3, 0x10001 addu s0, s1, t0 0: addiu t8, a1, -2 srl t9, t8, 2 lw t7, 0(a2) lw s2, 0(s1) lbu t0, 0(t7) lbu t1, 1(t7) // t1 = inptr[1] sll t2, t0, 1 addu t2, t2, t0 // t2 = invalue*3 addu t2, t2, t1 shra_r.w t2, t2, 2 sb t0, 0(s2) sb t2, 1(s2) beqz t9, 11f addiu s2, 2 1: ulw t0, 0(t7) // t0 = |P3|P2|P1|P0| ulw t1, 1(t7) ulh t2, 4(t7) // t2 = |0|0|P5|P4| preceu.ph.qbl t3, t0 // t3 = |0|P3|0|P2| preceu.ph.qbr t0, t0 // t0 = |0|P1|0|P0| preceu.ph.qbr t2, t2 // t2 = |0|P5|0|P4| preceu.ph.qbl t4, t1 // t4 = |0|P4|0|P3| preceu.ph.qbr t1, t1 // t1 = |0|P2|0|P1| shll.ph t5, t4, 1 shll.ph t6, t1, 1 addu.ph t5, t5, t4 // t5 = |P4*3|P3*3| addu.ph t6, t6, t1 // t6 = |P2*3|P1*3| addu.ph t4, t3, s3 addu.ph t0, t0, s3 addu.ph t4, t4, t5 addu.ph t0, t0, t6 shrl.ph t4, t4, 2 // t4 = |0|P3|0|P2| shrl.ph t0, t0, 2 // t0 = |0|P1|0|P0| addu.ph t2, t2, t5 addu.ph t3, t3, t6 shra_r.ph t2, t2, 2 // t2 = |0|P5|0|P4| shra_r.ph t3, t3, 2 // t3 = |0|P3|0|P2| shll.ph t2, t2, 8 shll.ph t3, t3, 8 or t2, t4, t2 or t3, t3, t0 addiu t9, -1 usw t3, 0(s2) usw t2, 4(s2) addiu s2, 8 bgtz t9, 1b addiu t7, 4 11: andi t8, 3 beqz t8, 22f addiu t7, 1 2: lbu t0, 0(t7) addiu t7, 1 sll t1, t0, 1 addu t2, t0, t1 // t2 = invalue lbu t3, -2(t7) lbu t4, 0(t7) addiu t3, 1 addiu t4, 2 addu t3, t3, t2 addu t4, t4, t2 srl t3, 2 srl t4, 2 sb t3, 0(s2) sb t4, 1(s2) addiu t8, -1 bgtz t8, 2b addiu s2, 2 22: lbu t0, 0(t7) lbu t2, -1(t7) sll t1, t0, 1 addu t1, t1, t0 // t1 = invalue * 3 addu t1, t1, t2 addiu t1, 1 srl t1, t1, 2 sb t1, 0(s2) sb t0, 1(s2) addiu s1, 4 bne s1, s0, 0b addiu a2, 4 3: RESTORE_REGS_FROM_STACK 16, s0, s1, s2, s3 j ra nop END(jsimd_h2v1_fancy_upsample_mips_dspr2) /*****************************************************************************/ LEAF_MIPS_DSPR2(jsimd_h2v1_downsample_mips_dspr2) /* * a0 - cinfo->image_width * a1 - cinfo->max_v_samp_factor * a2 - compptr->v_samp_factor * a3 - compptr->width_in_blocks * 16(sp) - input_data * 20(sp) - output_data */ .set at SAVE_REGS_ON_STACK 24, s0, s1, s2, s3, s4 beqz a2, 7f lw s1, 44(sp) // s1 = output_data lw s0, 40(sp) // s0 = input_data srl s2, a0, 2 andi t9, a0, 2 srl t7, t9, 1 addu s2, t7, s2 sll t0, a3, 3 // t0 = width_in_blocks*DCT srl t7, t0, 1 subu s2, t7, s2 0: andi t6, a0, 1 // t6 = temp_index addiu t6, -1 lw t4, 0(s1) // t4 = outptr lw t5, 0(s0) // t5 = inptr0 li s3, 0 // s3 = bias srl t7, a0, 1 // t7 = image_width1 srl s4, t7, 2 andi t8, t7, 3 1: ulhu t0, 0(t5) ulhu t1, 2(t5) ulhu t2, 4(t5) ulhu t3, 6(t5) raddu.w.qb t0, t0 raddu.w.qb t1, t1 raddu.w.qb t2, t2 raddu.w.qb t3, t3 shra.ph t0, t0, 1 shra_r.ph t1, t1, 1 shra.ph t2, t2, 1 shra_r.ph t3, t3, 1 sb t0, 0(t4) sb t1, 1(t4) sb t2, 2(t4) sb t3, 3(t4) addiu s4, -1 addiu t4, 4 bgtz s4, 1b addiu t5, 8 beqz t8, 3f addu s4, t4, t8 2: ulhu t0, 0(t5) raddu.w.qb t0, t0 addqh.w t0, t0, s3 xori s3, s3, 1 sb t0, 0(t4) addiu t4, 1 bne t4, s4, 2b addiu t5, 2 3: lbux t1, t6(t5) sll t1, 1 addqh.w t2, t1, s3 // t2 = pixval1 xori s3, s3, 1 addqh.w t3, t1, s3 // t3 = pixval2 blez s2, 5f append t3, t2, 8 addu t5, t4, s2 // t5 = loop_end2 4: ush t3, 0(t4) addiu s2, -1 bgtz s2, 4b addiu t4, 2 5: beqz t9, 6f nop sb t2, 0(t4) 6: addiu s1, 4 addiu a2, -1 bnez a2, 0b addiu s0, 4 7: RESTORE_REGS_FROM_STACK 24, s0, s1, s2, s3, s4 j ra nop END(jsimd_h2v1_downsample_mips_dspr2) /*****************************************************************************/ LEAF_MIPS_DSPR2(jsimd_h2v2_downsample_mips_dspr2) /* * a0 - cinfo->image_width * a1 - cinfo->max_v_samp_factor * a2 - compptr->v_samp_factor * a3 - compptr->width_in_blocks * 16(sp) - input_data * 20(sp) - output_data */ .set at SAVE_REGS_ON_STACK 32, s0, s1, s2, s3, s4, s5, s6, s7 beqz a2, 8f lw s1, 52(sp) // s1 = output_data lw s0, 48(sp) // s0 = input_data andi t6, a0, 1 // t6 = temp_index addiu t6, -1 srl t7, a0, 1 // t7 = image_width1 srl s4, t7, 2 andi t8, t7, 3 andi t9, a0, 2 srl s2, a0, 2 srl t7, t9, 1 addu s2, t7, s2 sll t0, a3, 3 // s2 = width_in_blocks*DCT srl t7, t0, 1 subu s2, t7, s2 0: lw t4, 0(s1) // t4 = outptr lw t5, 0(s0) // t5 = inptr0 lw s7, 4(s0) // s7 = inptr1 li s6, 1 // s6 = bias 2: ulw t0, 0(t5) // t0 = |P3|P2|P1|P0| ulw t1, 0(s7) // t1 = |Q3|Q2|Q1|Q0| ulw t2, 4(t5) ulw t3, 4(s7) precrq.ph.w t7, t0, t1 // t2 = |P3|P2|Q3|Q2| ins t0, t1, 16, 16 // t0 = |Q1|Q0|P1|P0| raddu.w.qb t1, t7 raddu.w.qb t0, t0 shra_r.w t1, t1, 2 addiu t0, 1 srl t0, 2 precrq.ph.w t7, t2, t3 ins t2, t3, 16, 16 raddu.w.qb t7, t7 raddu.w.qb t2, t2 shra_r.w t7, t7, 2 addiu t2, 1 srl t2, 2 sb t0, 0(t4) sb t1, 1(t4) sb t2, 2(t4) sb t7, 3(t4) addiu t4, 4 addiu t5, 8 addiu s4, s4, -1 bgtz s4, 2b addiu s7, 8 beqz t8, 4f addu t8, t4, t8 3: ulhu t0, 0(t5) ulhu t1, 0(s7) ins t0, t1, 16, 16 raddu.w.qb t0, t0 addu t0, t0, s6 srl t0, 2 xori s6, s6, 3 sb t0, 0(t4) addiu t5, 2 addiu t4, 1 bne t8, t4, 3b addiu s7, 2 4: lbux t1, t6(t5) sll t1, 1 lbux t0, t6(s7) sll t0, 1 addu t1, t1, t0 addu t3, t1, s6 srl t0, t3, 2 // t2 = pixval1 xori s6, s6, 3 addu t2, t1, s6 srl t1, t2, 2 // t3 = pixval2 blez s2, 6f append t1, t0, 8 5: ush t1, 0(t4) addiu s2, -1 bgtz s2, 5b addiu t4, 2 6: beqz t9, 7f nop sb t0, 0(t4) 7: addiu s1, 4 addiu a2, -1 bnez a2, 0b addiu s0, 8 8: RESTORE_REGS_FROM_STACK 32, s0, s1, s2, s3, s4, s5, s6, s7 j ra nop END(jsimd_h2v2_downsample_mips_dspr2) /*****************************************************************************/ LEAF_MIPS_DSPR2(jsimd_h2v2_smooth_downsample_mips_dspr2) /* * a0 - input_data * a1 - output_data * a2 - compptr->v_samp_factor * a3 - cinfo->max_v_samp_factor * 16(sp) - cinfo->smoothing_factor * 20(sp) - compptr->width_in_blocks * 24(sp) - cinfo->image_width */ .set at SAVE_REGS_ON_STACK 32, s0, s1, s2, s3, s4, s5, s6, s7 lw s7, 52(sp) // compptr->width_in_blocks lw s0, 56(sp) // cinfo->image_width lw s6, 48(sp) // cinfo->smoothing_factor sll s7, 3 // output_cols = width_in_blocks * DCTSIZE sll v0, s7, 1 subu v0, v0, s0 blez v0, 2f move v1, zero addiu t0, a3, 2 // t0 = cinfo->max_v_samp_factor + 2 0: addiu t1, a0, -4 sll t2, v1, 2 lwx t1, t2(t1) move t3, v0 addu t1, t1, s0 lbu t2, -1(t1) 1: addiu t3, t3, -1 sb t2, 0(t1) bgtz t3, 1b addiu t1, t1, 1 addiu v1, v1, 1 bne v1, t0, 0b nop 2: li v0, 80 mul v0, s6, v0 li v1, 16384 move t4, zero move t5, zero subu t6, v1, v0 // t6 = 16384 - tmp_smoot_f * 80 sll t7, s6, 4 // t7 = tmp_smoot_f * 16 3: /* Special case for first column: pretend column -1 is same as column 0 */ sll v0, t4, 2 lwx t8, v0(a1) // outptr = output_data[outrow] sll v1, t5, 2 addiu t9, v1, 4 addiu s0, v1, -4 addiu s1, v1, 8 lwx s2, v1(a0) // inptr0 = input_data[inrow] lwx t9, t9(a0) // inptr1 = input_data[inrow+1] lwx s0, s0(a0) // above_ptr = input_data[inrow-1] lwx s1, s1(a0) // below_ptr = input_data[inrow+2] lh v0, 0(s2) lh v1, 0(t9) lh t0, 0(s0) lh t1, 0(s1) ins v0, v1, 16, 16 ins t0, t1, 16, 16 raddu.w.qb t2, v0 raddu.w.qb s3, t0 lbu v0, 0(s2) lbu v1, 2(s2) lbu t0, 0(t9) lbu t1, 2(t9) addu v0, v0, v1 mult $ac1,t2, t6 addu t0, t0, t1 lbu t2, 2(s0) addu t0, t0, v0 lbu t3, 2(s1) addu s3, t0, s3 lbu v0, 0(s0) lbu t0, 0(s1) sll s3, s3, 1 addu v0, v0, t2 addu t0, t0, t3 addu t0, t0, v0 addu s3, t0, s3 madd $ac1,s3, t7 extr_r.w v0, $ac1, 16 addiu t8, t8, 1 addiu s2, s2, 2 addiu t9, t9, 2 addiu s0, s0, 2 addiu s1, s1, 2 sb v0, -1(t8) addiu s4, s7, -2 and s4, s4, 3 addu s5, s4, t8 //end adress 4: lh v0, 0(s2) lh v1, 0(t9) lh t0, 0(s0) lh t1, 0(s1) ins v0, v1, 16, 16 ins t0, t1, 16, 16 raddu.w.qb t2, v0 raddu.w.qb s3, t0 lbu v0, -1(s2) lbu v1, 2(s2) lbu t0, -1(t9) lbu t1, 2(t9) addu v0, v0, v1 mult $ac1, t2, t6 addu t0, t0, t1 lbu t2, 2(s0) addu t0, t0, v0 lbu t3, 2(s1) addu s3, t0, s3 lbu v0, -1(s0) lbu t0, -1(s1) sll s3, s3, 1 addu v0, v0, t2 addu t0, t0, t3 addu t0, t0, v0 addu s3, t0, s3 madd $ac1, s3, t7 extr_r.w t2, $ac1, 16 addiu t8, t8, 1 addiu s2, s2, 2 addiu t9, t9, 2 addiu s0, s0, 2 sb t2, -1(t8) bne s5, t8, 4b addiu s1, s1, 2 addiu s5, s7, -2 subu s5, s5, s4 addu s5, s5, t8 //end adress 5: lh v0, 0(s2) lh v1, 0(t9) lh t0, 0(s0) lh t1, 0(s1) ins v0, v1, 16, 16 ins t0, t1, 16, 16 raddu.w.qb t2, v0 raddu.w.qb s3, t0 lbu v0, -1(s2) lbu v1, 2(s2) lbu t0, -1(t9) lbu t1, 2(t9) addu v0, v0, v1 mult $ac1, t2, t6 addu t0, t0, t1 lbu t2, 2(s0) addu t0, t0, v0 lbu t3, 2(s1) addu s3, t0, s3 lbu v0, -1(s0) lbu t0, -1(s1) sll s3, s3, 1 addu v0, v0, t2 addu t0, t0, t3 lh v1, 2(t9) addu t0, t0, v0 lh v0, 2(s2) addu s3, t0, s3 lh t0, 2(s0) lh t1, 2(s1) madd $ac1, s3, t7 extr_r.w t2, $ac1, 16 ins t0, t1, 16, 16 ins v0, v1, 16, 16 raddu.w.qb s3, t0 lbu v1, 4(s2) lbu t0, 1(t9) lbu t1, 4(t9) sb t2, 0(t8) raddu.w.qb t3, v0 lbu v0, 1(s2) addu t0, t0, t1 mult $ac1, t3, t6 addu v0, v0, v1 lbu t2, 4(s0) addu t0, t0, v0 lbu v0, 1(s0) addu s3, t0, s3 lbu t0, 1(s1) lbu t3, 4(s1) addu v0, v0, t2 sll s3, s3, 1 addu t0, t0, t3 lh v1, 4(t9) addu t0, t0, v0 lh v0, 4(s2) addu s3, t0, s3 lh t0, 4(s0) lh t1, 4(s1) madd $ac1, s3, t7 extr_r.w t2, $ac1, 16 ins t0, t1, 16, 16 ins v0, v1, 16, 16 raddu.w.qb s3, t0 lbu v1, 6(s2) lbu t0, 3(t9) lbu t1, 6(t9) sb t2, 1(t8) raddu.w.qb t3, v0 lbu v0, 3(s2) addu t0, t0,t1 mult $ac1, t3, t6 addu v0, v0, v1 lbu t2, 6(s0) addu t0, t0, v0 lbu v0, 3(s0) addu s3, t0, s3 lbu t0, 3(s1) lbu t3, 6(s1) addu v0, v0, t2 sll s3, s3, 1 addu t0, t0, t3 lh v1, 6(t9) addu t0, t0, v0 lh v0, 6(s2) addu s3, t0, s3 lh t0, 6(s0) lh t1, 6(s1) madd $ac1, s3, t7 extr_r.w t3, $ac1, 16 ins t0, t1, 16, 16 ins v0, v1, 16, 16 raddu.w.qb s3, t0 lbu v1, 8(s2) lbu t0, 5(t9) lbu t1, 8(t9) sb t3, 2(t8) raddu.w.qb t2, v0 lbu v0, 5(s2) addu t0, t0, t1 mult $ac1, t2, t6 addu v0, v0, v1 lbu t2, 8(s0) addu t0, t0, v0 lbu v0, 5(s0) addu s3, t0, s3 lbu t0, 5(s1) lbu t3, 8(s1) addu v0, v0, t2 sll s3, s3, 1 addu t0, t0, t3 addiu t8, t8, 4 addu t0, t0, v0 addiu s2, s2, 8 addu s3, t0, s3 addiu t9, t9, 8 madd $ac1, s3, t7 extr_r.w t1, $ac1, 16 addiu s0, s0, 8 addiu s1, s1, 8 bne s5, t8, 5b sb t1, -1(t8) /* Special case for last column */ lh v0, 0(s2) lh v1, 0(t9) lh t0, 0(s0) lh t1, 0(s1) ins v0, v1, 16, 16 ins t0, t1, 16, 16 raddu.w.qb t2, v0 raddu.w.qb s3, t0 lbu v0, -1(s2) lbu v1, 1(s2) lbu t0, -1(t9) lbu t1, 1(t9) addu v0, v0, v1 mult $ac1, t2, t6 addu t0, t0, t1 lbu t2, 1(s0) addu t0, t0, v0 lbu t3, 1(s1) addu s3, t0, s3 lbu v0, -1(s0) lbu t0, -1(s1) sll s3, s3, 1 addu v0, v0, t2 addu t0, t0, t3 addu t0, t0, v0 addu s3, t0, s3 madd $ac1, s3, t7 extr_r.w t0, $ac1, 16 addiu t5, t5, 2 sb t0, 0(t8) addiu t4, t4, 1 bne t4, a2, 3b addiu t5, t5, 2 RESTORE_REGS_FROM_STACK 32, s0, s1, s2, s3, s4, s5, s6, s7 j ra nop END(jsimd_h2v2_smooth_downsample_mips_dspr2) /*****************************************************************************/ LEAF_MIPS_DSPR2(jsimd_int_upsample_mips_dspr2) /* * a0 - upsample->h_expand[compptr->component_index] * a1 - upsample->v_expand[compptr->component_index] * a2 - input_data * a3 - output_data_ptr * 16(sp) - cinfo->output_width * 20(sp) - cinfo->max_v_samp_factor */ .set at SAVE_REGS_ON_STACK 16, s0, s1, s2, s3 lw s0, 0(a3) // s0 = output_data lw s1, 32(sp) // s1 = cinfo->output_width lw s2, 36(sp) // s2 = cinfo->max_v_samp_factor li t6, 0 // t6 = inrow beqz s2, 10f li s3, 0 // s3 = outrow 0: addu t0, a2, t6 addu t7, s0, s3 lw t3, 0(t0) // t3 = inptr lw t8, 0(t7) // t8 = outptr beqz s1, 4f addu t5, t8, s1 // t5 = outend 1: lb t2, 0(t3) // t2 = invalue = *inptr++ addiu t3, 1 beqz a0, 3f move t0, a0 // t0 = h_expand 2: sb t2, 0(t8) addiu t0, -1 bgtz t0, 2b addiu t8, 1 3: bgt t5, t8, 1b nop 4: addiu t9, a1, -1 // t9 = v_expand - 1 blez t9, 9f nop 5: lw t3, 0(s0) lw t4, 4(s0) subu t0, s1, 0xF blez t0, 7f addu t5, t3, s1 // t5 = end address andi t7, s1, 0xF // t7 = residual subu t8, t5, t7 6: ulw t0, 0(t3) ulw t1, 4(t3) ulw t2, 8(t3) usw t0, 0(t4) ulw t0, 12(t3) usw t1, 4(t4) usw t2, 8(t4) usw t0, 12(t4) addiu t3, 16 bne t3, t8, 6b addiu t4, 16 beqz t7, 8f nop 7: lbu t0, 0(t3) sb t0, 0(t4) addiu t3, 1 bne t3, t5, 7b addiu t4, 1 8: addiu t9, -1 bgtz t9, 5b addiu s0, 8 9: addu s3, s3, a1 bne s3, s2, 0b addiu t6, 1 10: RESTORE_REGS_FROM_STACK 16, s0, s1, s2, s3 j ra nop END(jsimd_int_upsample_mips_dspr2) /*****************************************************************************/ LEAF_MIPS_DSPR2(jsimd_h2v1_upsample_mips_dspr2) /* * a0 - cinfo->max_v_samp_factor * a1 - cinfo->output_width * a2 - input_data * a3 - output_data_ptr */ lw t7, 0(a3) // t7 = output_data andi t8, a1, 0xf // t8 = residual sll t0, a0, 2 blez a0, 4f addu t9, t7, t0 // t9 = output_data end address 0: lw t5, 0(t7) // t5 = outptr lw t6, 0(a2) // t6 = inptr addu t3, t5, a1 // t3 = outptr + output_width (end address) subu t3, t8 // t3 = end address - residual beq t5, t3, 2f move t4, t8 1: ulw t0, 0(t6) // t0 = |P3|P2|P1|P0| ulw t2, 4(t6) // t2 = |P7|P6|P5|P4| srl t1, t0, 16 // t1 = |X|X|P3|P2| ins t0, t0, 16, 16 // t0 = |P1|P0|P1|P0| ins t1, t1, 16, 16 // t1 = |P3|P2|P3|P2| ins t0, t0, 8, 16 // t0 = |P1|P1|P0|P0| ins t1, t1, 8, 16 // t1 = |P3|P3|P2|P2| usw t0, 0(t5) usw t1, 4(t5) srl t0, t2, 16 // t0 = |X|X|P7|P6| ins t2, t2, 16, 16 // t2 = |P5|P4|P5|P4| ins t0, t0, 16, 16 // t0 = |P7|P6|P7|P6| ins t2, t2, 8, 16 // t2 = |P5|P5|P4|P4| ins t0, t0, 8, 16 // t0 = |P7|P7|P6|P6| usw t2, 8(t5) usw t0, 12(t5) addiu t5, 16 bne t5, t3, 1b addiu t6, 8 beqz t8, 3f move t4, t8 2: lbu t1, 0(t6) sb t1, 0(t5) sb t1, 1(t5) addiu t4, -2 addiu t6, 1 bgtz t4, 2b addiu t5, 2 3: addiu t7, 4 bne t9, t7, 0b addiu a2, 4 4: j ra nop END(jsimd_h2v1_upsample_mips_dspr2) /*****************************************************************************/ LEAF_MIPS_DSPR2(jsimd_h2v2_upsample_mips_dspr2) /* * a0 - cinfo->max_v_samp_factor * a1 - cinfo->output_width * a2 - input_data * a3 - output_data_ptr */ lw t7, 0(a3) blez a0, 7f andi t9, a1, 0xf // t9 = residual 0: lw t6, 0(a2) // t6 = inptr lw t5, 0(t7) // t5 = outptr addu t8, t5, a1 // t8 = outptr end address subu t8, t9 // t8 = end address - residual beq t5, t8, 2f move t4, t9 1: ulw t0, 0(t6) srl t1, t0, 16 ins t0, t0, 16, 16 ins t0, t0, 8, 16 ins t1, t1, 16, 16 ins t1, t1, 8, 16 ulw t2, 4(t6) usw t0, 0(t5) usw t1, 4(t5) srl t3, t2, 16 ins t2, t2, 16, 16 ins t2, t2, 8, 16 ins t3, t3, 16, 16 ins t3, t3, 8, 16 usw t2, 8(t5) usw t3, 12(t5) addiu t5, 16 bne t5, t8, 1b addiu t6, 8 beqz t9, 3f move t4, t9 2: lbu t0, 0(t6) sb t0, 0(t5) sb t0, 1(t5) addiu t4, -2 addiu t6, 1 bgtz t4, 2b addiu t5, 2 3: lw t6, 0(t7) // t6 = outptr[0] lw t5, 4(t7) // t5 = outptr[1] addu t4, t6, a1 // t4 = new end address beq a1, t9, 5f subu t8, t4, t9 4: ulw t0, 0(t6) ulw t1, 4(t6) ulw t2, 8(t6) usw t0, 0(t5) ulw t0, 12(t6) usw t1, 4(t5) usw t2, 8(t5) usw t0, 12(t5) addiu t6, 16 bne t6, t8, 4b addiu t5, 16 beqz t9, 6f nop 5: lbu t0, 0(t6) sb t0, 0(t5) addiu t6, 1 bne t6, t4, 5b addiu t5, 1 6: addiu t7, 8 addiu a0, -2 bgtz a0, 0b addiu a2, 4 7: j ra nop END(jsimd_h2v2_upsample_mips_dspr2) /*****************************************************************************/ LEAF_MIPS_DSPR2(jsimd_idct_islow_mips_dspr2) /* * a0 - coef_block * a1 - compptr->dcttable * a2 - output * a3 - range_limit */ SAVE_REGS_ON_STACK 32, s0, s1, s2, s3, s4, s5, s6, s7 addiu sp, sp, -256 move v0, sp addiu v1, zero, 8 // v1 = DCTSIZE = 8 1: lh s4, 32(a0) // s4 = inptr[16] lh s5, 64(a0) // s5 = inptr[32] lh s6, 96(a0) // s6 = inptr[48] lh t1, 112(a0) // t1 = inptr[56] lh t7, 16(a0) // t7 = inptr[8] lh t5, 80(a0) // t5 = inptr[40] lh t3, 48(a0) // t3 = inptr[24] or s4, s4, t1 or s4, s4, t3 or s4, s4, t5 or s4, s4, t7 or s4, s4, s5 or s4, s4, s6 bnez s4, 2f addiu v1, v1, -1 lh s5, 0(a1) // quantptr[DCTSIZE*0] lh s6, 0(a0) // inptr[DCTSIZE*0] mul s5, s5, s6 // DEQUANTIZE(inptr[0], quantptr[0]) sll s5, s5, 2 sw s5, 0(v0) sw s5, 32(v0) sw s5, 64(v0) sw s5, 96(v0) sw s5, 128(v0) sw s5, 160(v0) sw s5, 192(v0) b 3f sw s5, 224(v0) 2: lh t0, 112(a1) lh t2, 48(a1) lh t4, 80(a1) lh t6, 16(a1) mul t0, t0, t1 // DEQUANTIZE(inptr[DCTSIZE*7],quant[DCTSIZE*7]) mul t1, t2, t3 // DEQUANTIZE(inptr[DCTSIZE*3],quant[DCTSIZE*3]) mul t2, t4, t5 // DEQUANTIZE(inptr[DCTSIZE*5],quant[DCTSIZE*5]) mul t3, t6, t7 // DEQUANTIZE(inptr[DCTSIZE*1],quant[DCTSIZE*1]) lh t4, 32(a1) lh t5, 32(a0) lh t6, 96(a1) lh t7, 96(a0) addu s0, t0, t1 // z3 = tmp0 + tmp2 addu s1, t1, t2 // z2 = tmp1 + tmp2 addu s2, t2, t3 // z4 = tmp1 + tmp3 addu s3, s0, s2 // z3 + z4 addiu t9, zero, 9633 // FIX_1_175875602 mul s3, s3, t9 // z5 = MULTIPLY(z3 + z4, FIX_1_175875602) addu t8, t0, t3 // z1 = tmp0 + tmp3 addiu t9, zero, 2446 // FIX_0_298631336 mul t0, t0, t9 // tmp0 = MULTIPLY(tmp0, FIX_0_298631336) addiu t9, zero, 16819 // FIX_2_053119869 mul t2, t2, t9 // tmp1 = MULTIPLY(tmp1, FIX_2_053119869) addiu t9, zero, 25172 // FIX_3_072711026 mul t1, t1, t9 // tmp2 = MULTIPLY(tmp2, FIX_3_072711026) addiu t9, zero, 12299 // FIX_1_501321110 mul t3, t3, t9 // tmp3 = MULTIPLY(tmp3, FIX_1_501321110) addiu t9, zero, 16069 // FIX_1_961570560 mul s0, s0, t9 // -z3 = MULTIPLY(z3, FIX_1_961570560) addiu t9, zero, 3196 // FIX_0_390180644 mul s2, s2, t9 // -z4 = MULTIPLY(z4, FIX_0_390180644) addiu t9, zero, 7373 // FIX_0_899976223 mul t8, t8, t9 // -z1 = MULTIPLY(z1, FIX_0_899976223) addiu t9, zero, 20995 // FIX_2_562915447 mul s1, s1, t9 // -z2 = MULTIPLY(z2, FIX_2_562915447) subu s0, s3, s0 // z3 += z5 addu t0, t0, s0 // tmp0 += z3 addu t1, t1, s0 // tmp2 += z3 subu s2, s3, s2 // z4 += z5 addu t2, t2, s2 // tmp1 += z4 addu t3, t3, s2 // tmp3 += z4 subu t0, t0, t8 // tmp0 += z1 subu t1, t1, s1 // tmp2 += z2 subu t2, t2, s1 // tmp1 += z2 subu t3, t3, t8 // tmp3 += z1 mul s0, t4, t5 // DEQUANTIZE(inptr[DCTSIZE*2],quant[DCTSIZE*2]) addiu t9, zero, 6270 // FIX_0_765366865 mul s1, t6, t7 // DEQUANTIZE(inptr[DCTSIZE*6],quant[DCTSIZE*6]) lh t4, 0(a1) lh t5, 0(a0) lh t6, 64(a1) lh t7, 64(a0) mul s2, t9, s0 // MULTIPLY(z2, FIX_0_765366865) mul t5, t4, t5 // DEQUANTIZE(inptr[DCTSIZE*0],quant[DCTSIZE*0]) mul t6, t6, t7 // DEQUANTIZE(inptr[DCTSIZE*4],quant[DCTSIZE*4]) addiu t9, zero, 4433 // FIX_0_541196100 addu s3, s0, s1 // z2 + z3 mul s3, s3, t9 // z1 = MULTIPLY(z2 + z3, FIX_0_541196100) addiu t9, zero, 15137 // FIX_1_847759065 mul t8, s1, t9 // MULTIPLY(z3, FIX_1_847759065) addu t4, t5, t6 subu t5, t5, t6 sll t4, t4, 13 // tmp0 = (z2 + z3) << CONST_BITS sll t5, t5, 13 // tmp1 = (z2 - z3) << CONST_BITS addu t7, s3, s2 // tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865) subu t6, s3, t8 // tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065) addu s0, t4, t7 subu s1, t4, t7 addu s2, t5, t6 subu s3, t5, t6 addu t4, s0, t3 subu s0, s0, t3 addu t3, s2, t1 subu s2, s2, t1 addu t1, s3, t2 subu s3, s3, t2 addu t2, s1, t0 subu s1, s1, t0 shra_r.w t4, t4, 11 shra_r.w t3, t3, 11 shra_r.w t1, t1, 11 shra_r.w t2, t2, 11 shra_r.w s1, s1, 11 shra_r.w s3, s3, 11 shra_r.w s2, s2, 11 shra_r.w s0, s0, 11 sw t4, 0(v0) sw t3, 32(v0) sw t1, 64(v0) sw t2, 96(v0) sw s1, 128(v0) sw s3, 160(v0) sw s2, 192(v0) sw s0, 224(v0) 3: addiu a1, a1, 2 addiu a0, a0, 2 bgtz v1, 1b addiu v0, v0, 4 move v0, sp addiu v1, zero, 8 4: lw t0, 8(v0) // z2 = (INT32) wsptr[2] lw t1, 24(v0) // z3 = (INT32) wsptr[6] lw t2, 0(v0) // (INT32) wsptr[0] lw t3, 16(v0) // (INT32) wsptr[4] lw s4, 4(v0) // (INT32) wsptr[1] lw s5, 12(v0) // (INT32) wsptr[3] lw s6, 20(v0) // (INT32) wsptr[5] lw s7, 28(v0) // (INT32) wsptr[7] or s4, s4, t0 or s4, s4, t1 or s4, s4, t3 or s4, s4, s7 or s4, s4, s5 or s4, s4, s6 bnez s4, 5f addiu v1, v1, -1 shra_r.w s5, t2, 5 andi s5, s5, 0x3ff lbux s5, s5(a3) lw s1, 0(a2) replv.qb s5, s5 usw s5, 0(s1) usw s5, 4(s1) b 6f nop 5: addu t4, t0, t1 // z2 + z3 addiu t8, zero, 4433 // FIX_0_541196100 mul t5, t4, t8 // z1 = MULTIPLY(z2 + z3, FIX_0_541196100) addiu t8, zero, 15137 // FIX_1_847759065 mul t1, t1, t8 // MULTIPLY(z3, FIX_1_847759065) addiu t8, zero, 6270 // FIX_0_765366865 mul t0, t0, t8 // MULTIPLY(z2, FIX_0_765366865) addu t4, t2, t3 // (INT32) wsptr[0] + (INT32) wsptr[4] subu t2, t2, t3 // (INT32) wsptr[0] - (INT32) wsptr[4] sll t4, t4, 13 // tmp0 = ((wsptr[0] + wsptr[4]) << CONST_BITS sll t2, t2, 13 // tmp1 = ((wsptr[0] - wsptr[4]) << CONST_BITS subu t1, t5, t1 // tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065) subu t3, t2, t1 // tmp12 = tmp1 - tmp2 addu t2, t2, t1 // tmp11 = tmp1 + tmp2 addu t5, t5, t0 // tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865) subu t1, t4, t5 // tmp13 = tmp0 - tmp3 addu t0, t4, t5 // tmp10 = tmp0 + tmp3 lw t4, 28(v0) // tmp0 = (INT32) wsptr[7] lw t6, 12(v0) // tmp2 = (INT32) wsptr[3] lw t5, 20(v0) // tmp1 = (INT32) wsptr[5] lw t7, 4(v0) // tmp3 = (INT32) wsptr[1] addu s0, t4, t6 // z3 = tmp0 + tmp2 addiu t8, zero, 9633 // FIX_1_175875602 addu s1, t5, t7 // z4 = tmp1 + tmp3 addu s2, s0, s1 // z3 + z4 mul s2, s2, t8 // z5 = MULTIPLY(z3 + z4, FIX_1_175875602) addu s3, t4, t7 // z1 = tmp0 + tmp3 addu t9, t5, t6 // z2 = tmp1 + tmp2 addiu t8, zero, 16069 // FIX_1_961570560 mul s0, s0, t8 // -z3 = MULTIPLY(z3, FIX_1_961570560) addiu t8, zero, 3196 // FIX_0_390180644 mul s1, s1, t8 // -z4 = MULTIPLY(z4, FIX_0_390180644) addiu t8, zero, 2446 // FIX_0_298631336 mul t4, t4, t8 // tmp0 = MULTIPLY(tmp0, FIX_0_298631336) addiu t8, zero, 7373 // FIX_0_899976223 mul s3, s3, t8 // -z1 = MULTIPLY(z1, FIX_0_899976223) addiu t8, zero, 16819 // FIX_2_053119869 mul t5, t5, t8 // tmp1 = MULTIPLY(tmp1, FIX_2_053119869) addiu t8, zero, 20995 // FIX_2_562915447 mul t9, t9, t8 // -z2 = MULTIPLY(z2, FIX_2_562915447) addiu t8, zero, 25172 // FIX_3_072711026 mul t6, t6, t8 // tmp2 = MULTIPLY(tmp2, FIX_3_072711026) addiu t8, zero, 12299 // FIX_1_501321110 mul t7, t7, t8 // tmp3 = MULTIPLY(tmp3, FIX_1_501321110) subu s0, s2, s0 // z3 += z5 subu s1, s2, s1 // z4 += z5 addu t4, t4, s0 subu t4, t4, s3 // tmp0 addu t5, t5, s1 subu t5, t5, t9 // tmp1 addu t6, t6, s0 subu t6, t6, t9 // tmp2 addu t7, t7, s1 subu t7, t7, s3 // tmp3 addu s0, t0, t7 subu t0, t0, t7 addu t7, t2, t6 subu t2, t2, t6 addu t6, t3, t5 subu t3, t3, t5 addu t5, t1, t4 subu t1, t1, t4 shra_r.w s0, s0, 18 shra_r.w t7, t7, 18 shra_r.w t6, t6, 18 shra_r.w t5, t5, 18 shra_r.w t1, t1, 18 shra_r.w t3, t3, 18 shra_r.w t2, t2, 18 shra_r.w t0, t0, 18 andi s0, s0, 0x3ff andi t7, t7, 0x3ff andi t6, t6, 0x3ff andi t5, t5, 0x3ff andi t1, t1, 0x3ff andi t3, t3, 0x3ff andi t2, t2, 0x3ff andi t0, t0, 0x3ff lw s1, 0(a2) lbux s0, s0(a3) lbux t7, t7(a3) lbux t6, t6(a3) lbux t5, t5(a3) lbux t1, t1(a3) lbux t3, t3(a3) lbux t2, t2(a3) lbux t0, t0(a3) sb s0, 0(s1) sb t7, 1(s1) sb t6, 2(s1) sb t5, 3(s1) sb t1, 4(s1) sb t3, 5(s1) sb t2, 6(s1) sb t0, 7(s1) 6: addiu v0, v0, 32 bgtz v1, 4b addiu a2, a2, 4 addiu sp, sp, 256 RESTORE_REGS_FROM_STACK 32, s0, s1, s2, s3, s4, s5, s6, s7 j ra nop END(jsimd_idct_islow_mips_dspr2) /*****************************************************************************/ LEAF_MIPS_DSPR2(jsimd_idct_ifast_cols_mips_dspr2) /* * a0 - inptr * a1 - quantptr * a2 - wsptr * a3 - mips_idct_ifast_coefs */ SAVE_REGS_ON_STACK 32, s0, s1, s2, s3, s4, s5, s6, s7 addiu t9, a0, 16 // end address or AT, a3, zero 0: lw s0, 0(a1) // quantptr[DCTSIZE*0] lw t0, 0(a0) // inptr[DCTSIZE*0] lw t1, 16(a0) // inptr[DCTSIZE*1] muleq_s.w.phl v0, t0, s0 // tmp0 ... lw t2, 32(a0) // inptr[DCTSIZE*2] lw t3, 48(a0) // inptr[DCTSIZE*3] lw t4, 64(a0) // inptr[DCTSIZE*4] lw t5, 80(a0) // inptr[DCTSIZE*5] muleq_s.w.phr t0, t0, s0 // ... tmp0 ... lw t6, 96(a0) // inptr[DCTSIZE*6] lw t7, 112(a0) // inptr[DCTSIZE*7] or s4, t1, t2 or s5, t3, t4 bnez s4, 1f ins t0, v0, 16, 16 // ... tmp0 bnez s5, 1f or s6, t5, t6 or s6, s6, t7 bnez s6, 1f sw t0, 0(a2) // wsptr[DCTSIZE*0] sw t0, 16(a2) // wsptr[DCTSIZE*1] sw t0, 32(a2) // wsptr[DCTSIZE*2] sw t0, 48(a2) // wsptr[DCTSIZE*3] sw t0, 64(a2) // wsptr[DCTSIZE*4] sw t0, 80(a2) // wsptr[DCTSIZE*5] sw t0, 96(a2) // wsptr[DCTSIZE*6] sw t0, 112(a2) // wsptr[DCTSIZE*7] addiu a0, a0, 4 b 2f addiu a1, a1, 4 1: lw s1, 32(a1) // quantptr[DCTSIZE*2] lw s2, 64(a1) // quantptr[DCTSIZE*4] muleq_s.w.phl v0, t2, s1 // tmp1 ... muleq_s.w.phr t2, t2, s1 // ... tmp1 ... lw s0, 16(a1) // quantptr[DCTSIZE*1] lw s1, 48(a1) // quantptr[DCTSIZE*3] lw s3, 96(a1) // quantptr[DCTSIZE*6] muleq_s.w.phl v1, t4, s2 // tmp2 ... muleq_s.w.phr t4, t4, s2 // ... tmp2 ... lw s2, 80(a1) // quantptr[DCTSIZE*5] lw t8, 4(AT) // FIX(1.414213562) ins t2, v0, 16, 16 // ... tmp1 muleq_s.w.phl v0, t6, s3 // tmp3 ... muleq_s.w.phr t6, t6, s3 // ... tmp3 ... ins t4, v1, 16, 16 // ... tmp2 addq.ph s4, t0, t4 // tmp10 subq.ph s5, t0, t4 // tmp11 ins t6, v0, 16, 16 // ... tmp3 subq.ph s6, t2, t6 // tmp12 ... addq.ph s7, t2, t6 // tmp13 mulq_s.ph s6, s6, t8 // ... tmp12 ... addq.ph t0, s4, s7 // tmp0 subq.ph t6, s4, s7 // tmp3 muleq_s.w.phl v0, t1, s0 // tmp4 ... muleq_s.w.phr t1, t1, s0 // ... tmp4 ... shll_s.ph s6, s6, 1 // x2 lw s3, 112(a1) // quantptr[DCTSIZE*7] subq.ph s6, s6, s7 // ... tmp12 muleq_s.w.phl v1, t7, s3 // tmp7 ... muleq_s.w.phr t7, t7, s3 // ... tmp7 ... ins t1, v0, 16, 16 // ... tmp4 addq.ph t2, s5, s6 // tmp1 subq.ph t4, s5, s6 // tmp2 muleq_s.w.phl v0, t5, s2 // tmp6 ... muleq_s.w.phr t5, t5, s2 // ... tmp6 ... ins t7, v1, 16, 16 // ... tmp7 addq.ph s5, t1, t7 // z11 subq.ph s6, t1, t7 // z12 muleq_s.w.phl v1, t3, s1 // tmp5 ... muleq_s.w.phr t3, t3, s1 // ... tmp5 ... ins t5, v0, 16, 16 // ... tmp6 ins t3, v1, 16, 16 // ... tmp5 addq.ph s7, t5, t3 // z13 subq.ph v0, t5, t3 // z10 addq.ph t7, s5, s7 // tmp7 subq.ph s5, s5, s7 // tmp11 ... addq.ph v1, v0, s6 // z5 ... mulq_s.ph s5, s5, t8 // ... tmp11 lw t8, 8(AT) // FIX(1.847759065) lw s4, 0(AT) // FIX(1.082392200) addq.ph s0, t0, t7 subq.ph s1, t0, t7 mulq_s.ph v1, v1, t8 // ... z5 shll_s.ph s5, s5, 1 // x2 lw t8, 12(AT) // FIX(-2.613125930) sw s0, 0(a2) // wsptr[DCTSIZE*0] shll_s.ph v0, v0, 1 // x4 mulq_s.ph v0, v0, t8 // tmp12 ... mulq_s.ph s4, s6, s4 // tmp10 ... shll_s.ph v1, v1, 1 // x2 addiu a0, a0, 4 addiu a1, a1, 4 sw s1, 112(a2) // wsptr[DCTSIZE*7] shll_s.ph s6, v0, 1 // x4 shll_s.ph s4, s4, 1 // x2 addq.ph s6, s6, v1 // ... tmp12 subq.ph t5, s6, t7 // tmp6 subq.ph s4, s4, v1 // ... tmp10 subq.ph t3, s5, t5 // tmp5 addq.ph s2, t2, t5 addq.ph t1, s4, t3 // tmp4 subq.ph s3, t2, t5 sw s2, 16(a2) // wsptr[DCTSIZE*1] sw s3, 96(a2) // wsptr[DCTSIZE*6] addq.ph v0, t4, t3 subq.ph v1, t4, t3 sw v0, 32(a2) // wsptr[DCTSIZE*2] sw v1, 80(a2) // wsptr[DCTSIZE*5] addq.ph v0, t6, t1 subq.ph v1, t6, t1 sw v0, 64(a2) // wsptr[DCTSIZE*4] sw v1, 48(a2) // wsptr[DCTSIZE*3] 2: bne a0, t9, 0b addiu a2, a2, 4 RESTORE_REGS_FROM_STACK 32, s0, s1, s2, s3, s4, s5, s6, s7 j ra nop END(jsimd_idct_ifast_cols_mips_dspr2) /*****************************************************************************/ LEAF_MIPS_DSPR2(jsimd_idct_ifast_rows_mips_dspr2) /* * a0 - wsptr * a1 - output_buf * a2 - output_col * a3 - mips_idct_ifast_coefs */ SAVE_REGS_ON_STACK 40, s0, s1, s2, s3, s4, s5, s6, s7, s8, a3 addiu t9, a0, 128 // end address lui s8, 0x8080 ori s8, s8, 0x8080 0: lw AT, 36(sp) // restore $a3 (mips_idct_ifast_coefs) lw t0, 0(a0) // wsptr[DCTSIZE*0+0/1] b a lw s0, 16(a0) // wsptr[DCTSIZE*1+0/1] B A lw t2, 4(a0) // wsptr[DCTSIZE*0+2/3] d c lw s2, 20(a0) // wsptr[DCTSIZE*1+2/3] D C lw t4, 8(a0) // wsptr[DCTSIZE*0+4/5] f e lw s4, 24(a0) // wsptr[DCTSIZE*1+4/5] F E lw t6, 12(a0) // wsptr[DCTSIZE*0+6/7] h g lw s6, 28(a0) // wsptr[DCTSIZE*1+6/7] H G precrq.ph.w t1, s0, t0 // B b ins t0, s0, 16, 16 // A a bnez t1, 1f or s0, t2, s2 bnez s0, 1f or s0, t4, s4 bnez s0, 1f or s0, t6, s6 bnez s0, 1f shll_s.ph s0, t0, 2 // A a lw a3, 0(a1) lw AT, 4(a1) precrq.ph.w t0, s0, s0 // A A ins s0, s0, 16, 16 // a a addu a3, a3, a2 addu AT, AT, a2 precrq.qb.ph t0, t0, t0 // A A A A precrq.qb.ph s0, s0, s0 // a a a a addu.qb s0, s0, s8 addu.qb t0, t0, s8 sw s0, 0(a3) sw s0, 4(a3) sw t0, 0(AT) sw t0, 4(AT) addiu a0, a0, 32 bne a0, t9, 0b addiu a1, a1, 8 b 2f nop 1: precrq.ph.w t3, s2, t2 ins t2, s2, 16, 16 precrq.ph.w t5, s4, t4 ins t4, s4, 16, 16 precrq.ph.w t7, s6, t6 ins t6, s6, 16, 16 lw t8, 4(AT) // FIX(1.414213562) addq.ph s4, t0, t4 // tmp10 subq.ph s5, t0, t4 // tmp11 subq.ph s6, t2, t6 // tmp12 ... addq.ph s7, t2, t6 // tmp13 mulq_s.ph s6, s6, t8 // ... tmp12 ... addq.ph t0, s4, s7 // tmp0 subq.ph t6, s4, s7 // tmp3 shll_s.ph s6, s6, 1 // x2 subq.ph s6, s6, s7 // ... tmp12 addq.ph t2, s5, s6 // tmp1 subq.ph t4, s5, s6 // tmp2 addq.ph s5, t1, t7 // z11 subq.ph s6, t1, t7 // z12 addq.ph s7, t5, t3 // z13 subq.ph v0, t5, t3 // z10 addq.ph t7, s5, s7 // tmp7 subq.ph s5, s5, s7 // tmp11 ... addq.ph v1, v0, s6 // z5 ... mulq_s.ph s5, s5, t8 // ... tmp11 lw t8, 8(AT) // FIX(1.847759065) lw s4, 0(AT) // FIX(1.082392200) addq.ph s0, t0, t7 // tmp0 + tmp7 subq.ph s7, t0, t7 // tmp0 - tmp7 mulq_s.ph v1, v1, t8 // ... z5 lw a3, 0(a1) lw t8, 12(AT) // FIX(-2.613125930) shll_s.ph s5, s5, 1 // x2 addu a3, a3, a2 shll_s.ph v0, v0, 1 // x4 mulq_s.ph v0, v0, t8 // tmp12 ... mulq_s.ph s4, s6, s4 // tmp10 ... shll_s.ph v1, v1, 1 // x2 addiu a0, a0, 32 addiu a1, a1, 8 shll_s.ph s6, v0, 1 // x4 shll_s.ph s4, s4, 1 // x2 addq.ph s6, s6, v1 // ... tmp12 shll_s.ph s0, s0, 2 subq.ph t5, s6, t7 // tmp6 subq.ph s4, s4, v1 // ... tmp10 subq.ph t3, s5, t5 // tmp5 shll_s.ph s7, s7, 2 addq.ph t1, s4, t3 // tmp4 addq.ph s1, t2, t5 // tmp1 + tmp6 subq.ph s6, t2, t5 // tmp1 - tmp6 addq.ph s2, t4, t3 // tmp2 + tmp5 subq.ph s5, t4, t3 // tmp2 - tmp5 addq.ph s4, t6, t1 // tmp3 + tmp4 subq.ph s3, t6, t1 // tmp3 - tmp4 shll_s.ph s1, s1, 2 shll_s.ph s2, s2, 2 shll_s.ph s3, s3, 2 shll_s.ph s4, s4, 2 shll_s.ph s5, s5, 2 shll_s.ph s6, s6, 2 precrq.ph.w t0, s1, s0 // B A ins s0, s1, 16, 16 // b a precrq.ph.w t2, s3, s2 // D C ins s2, s3, 16, 16 // d c precrq.ph.w t4, s5, s4 // F E ins s4, s5, 16, 16 // f e precrq.ph.w t6, s7, s6 // H G ins s6, s7, 16, 16 // h g precrq.qb.ph t0, t2, t0 // D C B A precrq.qb.ph s0, s2, s0 // d c b a precrq.qb.ph t4, t6, t4 // H G F E precrq.qb.ph s4, s6, s4 // h g f e addu.qb s0, s0, s8 addu.qb s4, s4, s8 sw s0, 0(a3) // outptr[0/1/2/3] d c b a sw s4, 4(a3) // outptr[4/5/6/7] h g f e lw a3, -4(a1) addu.qb t0, t0, s8 addu a3, a3, a2 addu.qb t4, t4, s8 sw t0, 0(a3) // outptr[0/1/2/3] D C B A bne a0, t9, 0b sw t4, 4(a3) // outptr[4/5/6/7] H G F E 2: RESTORE_REGS_FROM_STACK 40, s0, s1, s2, s3, s4, s5, s6, s7, s8, a3 j ra nop END(jsimd_idct_ifast_rows_mips_dspr2) /*****************************************************************************/ LEAF_MIPS_DSPR2(jsimd_fdct_islow_mips_dspr2) /* * a0 - data */ SAVE_REGS_ON_STACK 40, s0, s1, s2, s3, s4, s5, s6, s7, s8 lui t0, 6437 ori t0, 2260 lui t1, 9633 ori t1, 11363 lui t2, 0xd39e ori t2, 0xe6dc lui t3, 0xf72d ori t3, 9633 lui t4, 2261 ori t4, 9633 lui t5, 0xd39e ori t5, 6437 lui t6, 9633 ori t6, 0xd39d lui t7, 0xe6dc ori t7, 2260 lui t8, 4433 ori t8, 10703 lui t9, 0xd630 ori t9, 4433 li s8, 8 move a1, a0 1: lw s0, 0(a1) // tmp0 = 1|0 lw s1, 4(a1) // tmp1 = 3|2 lw s2, 8(a1) // tmp2 = 5|4 lw s3, 12(a1) // tmp3 = 7|6 packrl.ph s1, s1, s1 // tmp1 = 2|3 packrl.ph s3, s3, s3 // tmp3 = 6|7 subq.ph s7, s1, s2 // tmp7 = 2-5|3-4 = t5|t4 subq.ph s5, s0, s3 // tmp5 = 1-6|0-7 = t6|t7 mult $0, $0 // ac0 = 0 dpa.w.ph $ac0, s7, t0 // ac0 += t5* 6437 + t4* 2260 dpa.w.ph $ac0, s5, t1 // ac0 += t6* 9633 + t7* 11363 mult $ac1, $0, $0 // ac1 = 0 dpa.w.ph $ac1, s7, t2 // ac1 += t5*-11362 + t4* -6436 dpa.w.ph $ac1, s5, t3 // ac1 += t6* -2259 + t7* 9633 mult $ac2, $0, $0 // ac2 = 0 dpa.w.ph $ac2, s7, t4 // ac2 += t5* 2261 + t4* 9633 dpa.w.ph $ac2, s5, t5 // ac2 += t6*-11362 + t7* 6437 mult $ac3, $0, $0 // ac3 = 0 dpa.w.ph $ac3, s7, t6 // ac3 += t5* 9633 + t4*-11363 dpa.w.ph $ac3, s5, t7 // ac3 += t6* -6436 + t7* 2260 addq.ph s6, s1, s2 // tmp6 = 2+5|3+4 = t2|t3 addq.ph s4, s0, s3 // tmp4 = 1+6|0+7 = t1|t0 extr_r.w s0, $ac0, 11 // tmp0 = (ac0 + 1024) >> 11 extr_r.w s1, $ac1, 11 // tmp1 = (ac1 + 1024) >> 11 extr_r.w s2, $ac2, 11 // tmp2 = (ac2 + 1024) >> 11 extr_r.w s3, $ac3, 11 // tmp3 = (ac3 + 1024) >> 11 addq.ph s5, s4, s6 // tmp5 = t1+t2|t0+t3 = t11|t10 subq.ph s7, s4, s6 // tmp7 = t1-t2|t0-t3 = t12|t13 sh s0, 2(a1) sh s1, 6(a1) sh s2, 10(a1) sh s3, 14(a1) mult $0, $0 // ac0 = 0 dpa.w.ph $ac0, s7, t8 // ac0 += t12* 4433 + t13* 10703 mult $ac1, $0, $0 // ac1 = 0 dpa.w.ph $ac1, s7, t9 // ac1 += t12*-10704 + t13* 4433 sra s4, s5, 16 // tmp4 = t11 addiu a1, a1, 16 addiu s8, s8, -1 extr_r.w s0, $ac0, 11 // tmp0 = (ac0 + 1024) >> 11 extr_r.w s1, $ac1, 11 // tmp1 = (ac1 + 1024) >> 11 addu s2, s5, s4 // tmp2 = t10 + t11 subu s3, s5, s4 // tmp3 = t10 - t11 sll s2, s2, 2 // tmp2 = (t10 + t11) << 2 sll s3, s3, 2 // tmp3 = (t10 - t11) << 2 sh s2, -16(a1) sh s3, -8(a1) sh s0, -12(a1) bgtz s8, 1b sh s1, -4(a1) li t0, 2260 li t1, 11363 li t2, 9633 li t3, 6436 li t4, 6437 li t5, 2261 li t6, 11362 li t7, 2259 li t8, 4433 li t9, 10703 li a1, 10704 li s8, 8 2: lh a2, 0(a0) // 0 lh a3, 16(a0) // 8 lh v0, 32(a0) // 16 lh v1, 48(a0) // 24 lh s4, 64(a0) // 32 lh s5, 80(a0) // 40 lh s6, 96(a0) // 48 lh s7, 112(a0) // 56 addu s2, v0, s5 // tmp2 = 16 + 40 subu s5, v0, s5 // tmp5 = 16 - 40 addu s3, v1, s4 // tmp3 = 24 + 32 subu s4, v1, s4 // tmp4 = 24 - 32 addu s0, a2, s7 // tmp0 = 0 + 56 subu s7, a2, s7 // tmp7 = 0 - 56 addu s1, a3, s6 // tmp1 = 8 + 48 subu s6, a3, s6 // tmp6 = 8 - 48 addu a2, s0, s3 // tmp10 = tmp0 + tmp3 subu v1, s0, s3 // tmp13 = tmp0 - tmp3 addu a3, s1, s2 // tmp11 = tmp1 + tmp2 subu v0, s1, s2 // tmp12 = tmp1 - tmp2 mult s7, t1 // ac0 = tmp7 * c1 madd s4, t0 // ac0 += tmp4 * c0 madd s5, t4 // ac0 += tmp5 * c4 madd s6, t2 // ac0 += tmp6 * c2 mult $ac1, s7, t2 // ac1 = tmp7 * c2 msub $ac1, s4, t3 // ac1 -= tmp4 * c3 msub $ac1, s5, t6 // ac1 -= tmp5 * c6 msub $ac1, s6, t7 // ac1 -= tmp6 * c7 mult $ac2, s7, t4 // ac2 = tmp7 * c4 madd $ac2, s4, t2 // ac2 += tmp4 * c2 madd $ac2, s5, t5 // ac2 += tmp5 * c5 msub $ac2, s6, t6 // ac2 -= tmp6 * c6 mult $ac3, s7, t0 // ac3 = tmp7 * c0 msub $ac3, s4, t1 // ac3 -= tmp4 * c1 madd $ac3, s5, t2 // ac3 += tmp5 * c2 msub $ac3, s6, t3 // ac3 -= tmp6 * c3 extr_r.w s0, $ac0, 15 // tmp0 = (ac0 + 16384) >> 15 extr_r.w s1, $ac1, 15 // tmp1 = (ac1 + 16384) >> 15 extr_r.w s2, $ac2, 15 // tmp2 = (ac2 + 16384) >> 15 extr_r.w s3, $ac3, 15 // tmp3 = (ac3 + 16384) >> 15 addiu s8, s8, -1 addu s4, a2, a3 // tmp4 = tmp10 + tmp11 subu s5, a2, a3 // tmp5 = tmp10 - tmp11 sh s0, 16(a0) sh s1, 48(a0) sh s2, 80(a0) sh s3, 112(a0) mult v0, t8 // ac0 = tmp12 * c8 madd v1, t9 // ac0 += tmp13 * c9 mult $ac1, v1, t8 // ac1 = tmp13 * c8 msub $ac1, v0, a1 // ac1 -= tmp12 * c10 addiu a0, a0, 2 extr_r.w s6, $ac0, 15 // tmp6 = (ac0 + 16384) >> 15 extr_r.w s7, $ac1, 15 // tmp7 = (ac1 + 16384) >> 15 shra_r.w s4, s4, 2 // tmp4 = (tmp4 + 2) >> 2 shra_r.w s5, s5, 2 // tmp5 = (tmp5 + 2) >> 2 sh s4, -2(a0) sh s5, 62(a0) sh s6, 30(a0) bgtz s8, 2b sh s7, 94(a0) RESTORE_REGS_FROM_STACK 40, s0, s1, s2, s3, s4, s5, s6, s7, s8 jr ra nop END(jsimd_fdct_islow_mips_dspr2) /*****************************************************************************/ LEAF_MIPS_DSPR2(jsimd_fdct_ifast_mips_dspr2) /* * a0 - data */ .set at SAVE_REGS_ON_STACK 8, s0, s1 li a1, 0x014e014e // FIX_1_306562965 (334 << 16)|(334 & 0xffff) li a2, 0x008b008b // FIX_0_541196100 (139 << 16)|(139 & 0xffff) li a3, 0x00620062 // FIX_0_382683433 (98 << 16) |(98 & 0xffff) li s1, 0x00b500b5 // FIX_0_707106781 (181 << 16)|(181 & 0xffff) move v0, a0 addiu v1, v0, 128 // end address 0: lw t0, 0(v0) // tmp0 = 1|0 lw t1, 4(v0) // tmp1 = 3|2 lw t2, 8(v0) // tmp2 = 5|4 lw t3, 12(v0) // tmp3 = 7|6 packrl.ph t1, t1, t1 // tmp1 = 2|3 packrl.ph t3, t3, t3 // tmp3 = 6|7 subq.ph t7, t1, t2 // tmp7 = 2-5|3-4 = t5|t4 subq.ph t5, t0, t3 // tmp5 = 1-6|0-7 = t6|t7 addq.ph t6, t1, t2 // tmp6 = 2+5|3+4 = t2|t3 addq.ph t4, t0, t3 // tmp4 = 1+6|0+7 = t1|t0 addq.ph t8, t4, t6 // tmp5 = t1+t2|t0+t3 = t11|t10 subq.ph t9, t4, t6 // tmp7 = t1-t2|t0-t3 = t12|t13 sra t4, t8, 16 // tmp4 = t11 mult $0, $0 // ac0 = 0 dpa.w.ph $ac0, t9, s1 mult $ac1, $0, $0 // ac1 = 0 dpa.w.ph $ac1, t7, a3 // ac1 += t4*98 + t5*98 dpsx.w.ph $ac1, t5, a3 // ac1 += t6*98 + t7*98 mult $ac2, $0, $0 // ac2 = 0 dpa.w.ph $ac2, t7, a2 // ac2 += t4*139 + t5*139 mult $ac3, $0, $0 // ac3 = 0 dpa.w.ph $ac3, t5, a1 // ac3 += t6*334 + t7*334 precrq.ph.w t0, t5, t7 // t0 = t5|t6 addq.ph t2, t8, t4 // tmp2 = t10 + t11 subq.ph t3, t8, t4 // tmp3 = t10 - t11 extr.w t4, $ac0, 8 mult $0, $0 // ac0 = 0 dpa.w.ph $ac0, t0, s1 // ac0 += t5*181 + t6*181 extr.w t0, $ac1, 8 // t0 = z5 extr.w t1, $ac2, 8 // t1 = MULTIPLY(tmp10, 139) extr.w t7, $ac3, 8 // t2 = MULTIPLY(tmp12, 334) extr.w t8, $ac0, 8 // t8 = z3 = MULTIPLY(tmp11, 181) add t6, t1, t0 // t6 = z2 add t7, t7, t0 // t7 = z4 subq.ph t0, t5, t8 // t0 = z13 = tmp7 - z3 addq.ph t8, t5, t8 // t9 = z11 = tmp7 + z3 addq.ph t1, t0, t6 // t1 = z13 + z2 subq.ph t6, t0, t6 // t6 = z13 - z2 addq.ph t0, t8, t7 // t0 = z11 + z4 subq.ph t7, t8, t7 // t7 = z11 - z4 addq.ph t5, t4, t9 subq.ph t4, t9, t4 sh t2, 0(v0) sh t5, 4(v0) sh t3, 8(v0) sh t4, 12(v0) sh t1, 10(v0) sh t6, 6(v0) sh t0, 2(v0) sh t7, 14(v0) addiu v0, 16 bne v1, v0, 0b nop move v0, a0 addiu v1, v0, 16 1: lh t0, 0(v0) // 0 lh t1, 16(v0) // 8 lh t2, 32(v0) // 16 lh t3, 48(v0) // 24 lh t4, 64(v0) // 32 lh t5, 80(v0) // 40 lh t6, 96(v0) // 48 lh t7, 112(v0) // 56 add t8, t0, t7 // t8 = tmp0 sub t7, t0, t7 // t7 = tmp7 add t0, t1, t6 // t0 = tmp1 sub t1, t1, t6 // t1 = tmp6 add t6, t2, t5 // t6 = tmp2 sub t5, t2, t5 // t5 = tmp5 add t2, t3, t4 // t2 = tmp3 sub t3, t3, t4 // t3 = tmp4 add t4, t8, t2 // t4 = tmp10 = tmp0 + tmp3 sub t8, t8, t2 // t8 = tmp13 = tmp0 - tmp3 sub s0, t0, t6 // s0 = tmp12 = tmp1 - tmp2 ins t8, s0, 16, 16 // t8 = tmp12|tmp13 add t2, t0, t6 // t2 = tmp11 = tmp1 + tmp2 mult $0, $0 // ac0 = 0 dpa.w.ph $ac0, t8, s1 // ac0 += t12*181 + t13*181 add s0, t4, t2 // t8 = tmp10+tmp11 sub t4, t4, t2 // t4 = tmp10-tmp11 sh s0, 0(v0) sh t4, 64(v0) extr.w t2, $ac0, 8 // z1 = MULTIPLY(tmp12+tmp13,FIX_0_707106781) addq.ph t4, t8, t2 // t9 = tmp13 + z1 subq.ph t8, t8, t2 // t2 = tmp13 - z1 sh t4, 32(v0) sh t8, 96(v0) add t3, t3, t5 // t3 = tmp10 = tmp4 + tmp5 add t0, t5, t1 // t0 = tmp11 = tmp5 + tmp6 add t1, t1, t7 // t1 = tmp12 = tmp6 + tmp7 andi t4, a1, 0xffff mul s0, t1, t4 sra s0, s0, 8 // s0 = z4 = MULTIPLY(tmp12, FIX_1_306562965) ins t1, t3, 16, 16 // t1 = tmp10|tmp12 mult $0, $0 // ac0 = 0 mulsa.w.ph $ac0, t1, a3 // ac0 += t10*98 - t12*98 extr.w t8, $ac0, 8 // z5 = MULTIPLY(tmp10-tmp12,FIX_0_382683433) add t2, t7, t8 // t2 = tmp7 + z5 sub t7, t7, t8 // t7 = tmp7 - z5 andi t4, a2, 0xffff mul t8, t3, t4 sra t8, t8, 8 // t8 = z2 = MULTIPLY(tmp10, FIX_0_541196100) andi t4, s1, 0xffff mul t6, t0, t4 sra t6, t6, 8 // t6 = z3 = MULTIPLY(tmp11, FIX_0_707106781) add t0, t6, t8 // t0 = z3 + z2 sub t1, t6, t8 // t1 = z3 - z2 add t3, t6, s0 // t3 = z3 + z4 sub t4, t6, s0 // t4 = z3 - z4 sub t5, t2, t1 // t5 = dataptr[5] sub t6, t7, t0 // t6 = dataptr[3] add t3, t2, t3 // t3 = dataptr[1] add t4, t7, t4 // t4 = dataptr[7] sh t5, 80(v0) sh t6, 48(v0) sh t3, 16(v0) sh t4, 112(v0) addiu v0, 2 bne v0, v1, 1b nop RESTORE_REGS_FROM_STACK 8, s0, s1 j ra nop END(jsimd_fdct_ifast_mips_dspr2) /*****************************************************************************/ LEAF_MIPS_DSPR2(jsimd_quantize_mips_dspr2) /* * a0 - coef_block * a1 - divisors * a2 - workspace */ .set at SAVE_REGS_ON_STACK 16, s0, s1, s2 addiu v0, a2, 124 // v0 = workspace_end lh t0, 0(a2) lh t1, 0(a1) lh t2, 128(a1) sra t3, t0, 15 sll t3, t3, 1 addiu t3, t3, 1 mul t0, t0, t3 lh t4, 384(a1) lh t5, 130(a1) lh t6, 2(a2) lh t7, 2(a1) lh t8, 386(a1) 1: andi t1, 0xffff add t9, t0, t2 andi t9, 0xffff mul v1, t9, t1 sra s0, t6, 15 sll s0, s0, 1 addiu s0, s0, 1 addiu t9, t4, 16 srav v1, v1, t9 mul v1, v1, t3 mul t6, t6, s0 andi t7, 0xffff addiu a2, a2, 4 addiu a1, a1, 4 add s1, t6, t5 andi s1, 0xffff sh v1, 0(a0) mul s2, s1, t7 addiu s1, t8, 16 srav s2, s2, s1 mul s2,s2, s0 lh t0, 0(a2) lh t1, 0(a1) sra t3, t0, 15 sll t3, t3, 1 addiu t3, t3, 1 mul t0, t0, t3 lh t2, 128(a1) lh t4, 384(a1) lh t5, 130(a1) lh t8, 386(a1) lh t6, 2(a2) lh t7, 2(a1) sh s2, 2(a0) lh t0, 0(a2) sra t3, t0, 15 sll t3, t3, 1 addiu t3, t3, 1 mul t0, t0,t3 bne a2, v0, 1b addiu a0, a0, 4 andi t1, 0xffff add t9, t0, t2 andi t9, 0xffff mul v1, t9, t1 sra s0, t6, 15 sll s0, s0, 1 addiu s0, s0, 1 addiu t9, t4, 16 srav v1, v1, t9 mul v1, v1, t3 mul t6, t6, s0 andi t7, 0xffff sh v1, 0(a0) add s1, t6, t5 andi s1, 0xffff mul s2, s1, t7 addiu s1, t8, 16 addiu a2, a2, 4 addiu a1, a1, 4 srav s2, s2, s1 mul s2, s2, s0 sh s2, 2(a0) RESTORE_REGS_FROM_STACK 16, s0, s1, s2 j ra nop END(jsimd_quantize_mips_dspr2) /*****************************************************************************/ LEAF_MIPS_DSPR2(jsimd_quantize_float_mips_dspr2) /* * a0 - coef_block * a1 - divisors * a2 - workspace */ .set at li t1, 0x46800100 //integer representation 16384.5 mtc1 t1, f0 li t0, 63 0: lwc1 f1, 0(a2) lwc1 f5, 0(a1) lwc1 f2, 4(a2) lwc1 f6, 4(a1) lwc1 f3, 8(a2) lwc1 f7, 8(a1) lwc1 f4, 12(a2) lwc1 f8, 12(a1) madd.s f1, f0, f1, f5 madd.s f2, f0, f2, f6 madd.s f3, f0, f3, f7 madd.s f4, f0, f4, f8 lwc1 f5, 16(a1) lwc1 f6, 20(a1) trunc.w.s f1, f1 trunc.w.s f2, f2 trunc.w.s f3, f3 trunc.w.s f4, f4 lwc1 f7, 24(a1) lwc1 f8, 28(a1) mfc1 t1, f1 mfc1 t2, f2 mfc1 t3, f3 mfc1 t4, f4 lwc1 f1, 16(a2) lwc1 f2, 20(a2) lwc1 f3, 24(a2) lwc1 f4, 28(a2) madd.s f1, f0, f1, f5 madd.s f2, f0, f2, f6 madd.s f3, f0, f3, f7 madd.s f4, f0, f4, f8 addiu t1, t1, -16384 addiu t2, t2, -16384 addiu t3, t3, -16384 addiu t4, t4, -16384 trunc.w.s f1, f1 trunc.w.s f2, f2 trunc.w.s f3, f3 trunc.w.s f4, f4 sh t1, 0(a0) sh t2, 2(a0) sh t3, 4(a0) sh t4, 6(a0) mfc1 t1, f1 mfc1 t2, f2 mfc1 t3, f3 mfc1 t4, f4 addiu t0, t0, -8 addiu a2, a2, 32 addiu a1, a1, 32 addiu t1, t1, -16384 addiu t2, t2, -16384 addiu t3, t3, -16384 addiu t4, t4, -16384 sh t1, 8(a0) sh t2, 10(a0) sh t3, 12(a0) sh t4, 14(a0) bgez t0, 0b addiu a0, a0, 16 j ra nop END(jsimd_quantize_float_mips_dspr2) /*****************************************************************************/ LEAF_MIPS_DSPR2(jsimd_idct_2x2_mips_dspr2) /* * a0 - compptr->dct_table * a1 - coef_block * a2 - output_buf * a3 - output_col */ .set at SAVE_REGS_ON_STACK 24, s0, s1, s2, s3, s4, s5 addiu sp, sp, -40 move v0, sp addiu s2, zero, 29692 addiu s3, zero, -10426 addiu s4, zero, 6967 addiu s5, zero, -5906 lh t0, 0(a1) // t0 = inptr[DCTSIZE*0] lh t5, 0(a0) // t5 = quantptr[DCTSIZE*0] lh t1, 48(a1) // t1 = inptr[DCTSIZE*3] lh t6, 48(a0) // t6 = quantptr[DCTSIZE*3] mul t4, t5, t0 lh t0, 16(a1) // t0 = inptr[DCTSIZE*1] lh t5, 16(a0) // t5 = quantptr[DCTSIZE*1] mul t6, t6, t1 mul t5, t5, t0 lh t2, 80(a1) // t2 = inptr[DCTSIZE*5] lh t7, 80(a0) // t7 = quantptr[DCTSIZE*5] lh t3, 112(a1) // t3 = inptr[DCTSIZE*7] lh t8, 112(a0) // t8 = quantptr[DCTSIZE*7] mul t7, t7, t2 mult zero, zero mul t8, t8, t3 li s0, 0x73FCD746 // s0 = (29692 << 16) | (-10426 & 0xffff) li s1, 0x1B37E8EE // s1 = (6967 << 16) | (-5906 & 0xffff) ins t6, t5, 16, 16 // t6 = t5|t6 sll t4, t4, 15 dpa.w.ph $ac0, t6, s0 lh t1, 2(a1) lh t6, 2(a0) ins t8, t7, 16, 16 // t8 = t7|t8 dpa.w.ph $ac0, t8, s1 mflo t0, $ac0 mul t5, t6, t1 lh t1, 18(a1) lh t6, 18(a0) lh t2, 50(a1) lh t7, 50(a0) mul t6, t6, t1 subu t8, t4, t0 mul t7, t7, t2 addu t0, t4, t0 shra_r.w t0, t0, 13 lh t1, 82(a1) lh t2, 82(a0) lh t3, 114(a1) lh t4, 114(a0) shra_r.w t8, t8, 13 mul t1, t1, t2 mul t3, t3, t4 sw t0, 0(v0) sw t8, 20(v0) sll t4, t5, 15 ins t7, t6, 16, 16 mult zero, zero dpa.w.ph $ac0, t7, s0 ins t3, t1, 16, 16 lh t1, 6(a1) lh t6, 6(a0) dpa.w.ph $ac0, t3, s1 mflo t0, $ac0 mul t5, t6, t1 lh t1, 22(a1) lh t6, 22(a0) lh t2, 54(a1) lh t7, 54(a0) mul t6, t6, t1 subu t8, t4, t0 mul t7, t7, t2 addu t0, t4, t0 shra_r.w t0, t0, 13 lh t1, 86(a1) lh t2, 86(a0) lh t3, 118(a1) lh t4, 118(a0) shra_r.w t8, t8, 13 mul t1, t1, t2 mul t3, t3, t4 sw t0, 4(v0) sw t8, 24(v0) sll t4, t5, 15 ins t7, t6, 16, 16 mult zero, zero dpa.w.ph $ac0, t7, s0 ins t3, t1, 16, 16 lh t1, 10(a1) lh t6, 10(a0) dpa.w.ph $ac0, t3, s1 mflo t0, $ac0 mul t5, t6, t1 lh t1, 26(a1) lh t6, 26(a0) lh t2, 58(a1) lh t7, 58(a0) mul t6, t6, t1 subu t8, t4, t0 mul t7, t7, t2 addu t0, t4, t0 shra_r.w t0, t0, 13 lh t1, 90(a1) lh t2, 90(a0) lh t3, 122(a1) lh t4, 122(a0) shra_r.w t8, t8, 13 mul t1, t1, t2 mul t3, t3, t4 sw t0, 8(v0) sw t8, 28(v0) sll t4, t5, 15 ins t7, t6, 16, 16 mult zero, zero dpa.w.ph $ac0, t7, s0 ins t3, t1, 16, 16 lh t1, 14(a1) lh t6, 14(a0) dpa.w.ph $ac0, t3, s1 mflo t0, $ac0 mul t5, t6, t1 lh t1, 30(a1) lh t6, 30(a0) lh t2, 62(a1) lh t7, 62(a0) mul t6, t6, t1 subu t8, t4, t0 mul t7, t7, t2 addu t0, t4, t0 shra_r.w t0, t0, 13 lh t1, 94(a1) lh t2, 94(a0) lh t3, 126(a1) lh t4, 126(a0) shra_r.w t8, t8, 13 mul t1, t1, t2 mul t3, t3, t4 sw t0, 12(v0) sw t8, 32(v0) sll t4, t5, 15 ins t7, t6, 16, 16 mult zero, zero dpa.w.ph $ac0, t7, s0 ins t3, t1, 16, 16 dpa.w.ph $ac0, t3, s1 mflo t0, $ac0 lw t9, 0(a2) lw t3, 0(v0) lw t7, 4(v0) lw t1, 8(v0) addu t9, t9, a3 sll t3, t3, 15 subu t8, t4, t0 addu t0, t4, t0 shra_r.w t0, t0, 13 shra_r.w t8, t8, 13 sw t0, 16(v0) sw t8, 36(v0) lw t5, 12(v0) lw t6, 16(v0) mult t7, s2 madd t1, s3 madd t5, s4 madd t6, s5 lw t5, 24(v0) lw t7, 28(v0) mflo t0, $ac0 lw t8, 32(v0) lw t2, 36(v0) mult $ac1, t5, s2 madd $ac1, t7, s3 madd $ac1, t8, s4 madd $ac1, t2, s5 addu t1, t3, t0 subu t6, t3, t0 shra_r.w t1, t1, 20 shra_r.w t6, t6, 20 mflo t4, $ac1 shll_s.w t1, t1, 24 shll_s.w t6, t6, 24 sra t1, t1, 24 sra t6, t6, 24 addiu t1, t1, 128 addiu t6, t6, 128 lw t0, 20(v0) sb t1, 0(t9) sb t6, 1(t9) sll t0, t0, 15 lw t9, 4(a2) addu t1, t0, t4 subu t6, t0, t4 addu t9, t9, a3 shra_r.w t1, t1, 20 shra_r.w t6, t6, 20 shll_s.w t1, t1, 24 shll_s.w t6, t6, 24 sra t1, t1, 24 sra t6, t6, 24 addiu t1, t1, 128 addiu t6, t6, 128 sb t1, 0(t9) sb t6, 1(t9) addiu sp, sp, 40 RESTORE_REGS_FROM_STACK 24, s0, s1, s2, s3, s4, s5 j ra nop END(jsimd_idct_2x2_mips_dspr2) /*****************************************************************************/ LEAF_MIPS_DSPR2(jsimd_idct_4x4_mips_dspr2) /* * a0 - compptr->dct_table * a1 - coef_block * a2 - output_buf * a3 - output_col * 16(sp) - workspace[DCTSIZE*4]; // buffers data between passes */ .set at SAVE_REGS_ON_STACK 32, s0, s1, s2, s3, s4, s5, s6, s7 lw v1, 48(sp) move t0, a1 move t1, v1 li t9, 4 li s0, 0x2e75f93e li s1, 0x21f9ba79 li s2, 0xecc2efb0 li s3, 0x52031ccd 0: lh s6, 32(t0) // inptr[DCTSIZE*2] lh t6, 32(a0) // quantptr[DCTSIZE*2] lh s7, 96(t0) // inptr[DCTSIZE*6] lh t7, 96(a0) // quantptr[DCTSIZE*6] mul t6, s6, t6 // z2 = (inptr[DCTSIZE*2] * quantptr[DCTSIZE*2]) lh s4, 0(t0) // inptr[DCTSIZE*0] mul t7, s7, t7 // z3 = (inptr[DCTSIZE*6] * quantptr[DCTSIZE*6]) lh s5, 0(a0) // quantptr[0] li s6, 15137 li s7, 6270 mul t2, s4, s5 // tmp0 = (inptr[0] * quantptr[0]) mul t6, s6, t6 // z2 = (inptr[DCTSIZE*2] * quantptr[DCTSIZE*2]) lh t5, 112(t0) // inptr[DCTSIZE*7] mul t7, s7, t7 // z3 = (inptr[DCTSIZE*6] * quantptr[DCTSIZE*6]) lh s4, 112(a0) // quantptr[DCTSIZE*7] lh v0, 80(t0) // inptr[DCTSIZE*5] lh s5, 80(a0) // quantptr[DCTSIZE*5] lh s6, 48(a0) // quantptr[DCTSIZE*3] sll t2, t2, 14 // tmp0 <<= (CONST_BITS+1) lh s7, 16(a0) // quantptr[DCTSIZE*1] lh t8, 16(t0) // inptr[DCTSIZE*1] subu t6, t6, t7 // tmp2 = MULTIPLY(z2, t5) - MULTIPLY(z3, t6) lh t7, 48(t0) // inptr[DCTSIZE*3] mul t5, s4, t5 // z1 = (inptr[DCTSIZE*7] * quantptr[DCTSIZE*7]) mul v0, s5, v0 // z2 = (inptr[DCTSIZE*5] * quantptr[DCTSIZE*5]) mul t7, s6, t7 // z3 = (inptr[DCTSIZE*3] * quantptr[DCTSIZE*3]) mul t8, s7, t8 // z4 = (inptr[DCTSIZE*1] * quantptr[DCTSIZE*1]) addu t3, t2, t6 // tmp10 = tmp0 + z2 subu t4, t2, t6 // tmp10 = tmp0 - z2 mult $ac0, zero, zero mult $ac1, zero, zero ins t5, v0, 16, 16 ins t7, t8, 16, 16 addiu t9, t9, -1 dpa.w.ph $ac0, t5, s0 dpa.w.ph $ac0, t7, s1 dpa.w.ph $ac1, t5, s2 dpa.w.ph $ac1, t7, s3 mflo s4, $ac0 mflo s5, $ac1 addiu a0, a0, 2 addiu t1, t1, 4 addiu t0, t0, 2 addu t6, t4, s4 subu t5, t4, s4 addu s6, t3, s5 subu s7, t3, s5 shra_r.w t6, t6, 12 // DESCALE(tmp12 + temp1, 12) shra_r.w t5, t5, 12 // DESCALE(tmp12 - temp1, 12) shra_r.w s6, s6, 12 // DESCALE(tmp10 + temp2, 12) shra_r.w s7, s7, 12 // DESCALE(tmp10 - temp2, 12) sw t6, 28(t1) sw t5, 60(t1) sw s6, -4(t1) bgtz t9, 0b sw s7, 92(t1) // second loop three pass li t9, 3 1: lh s6, 34(t0) // inptr[DCTSIZE*2] lh t6, 34(a0) // quantptr[DCTSIZE*2] lh s7, 98(t0) // inptr[DCTSIZE*6] lh t7, 98(a0) // quantptr[DCTSIZE*6] mul t6, s6, t6 // z2 = (inptr[DCTSIZE*2] * quantptr[DCTSIZE*2]) lh s4, 2(t0) // inptr[DCTSIZE*0] mul t7, s7, t7 // z3 = (inptr[DCTSIZE*6] * quantptr[DCTSIZE*6]) lh s5, 2(a0) // quantptr[DCTSIZE*0] li s6, 15137 li s7, 6270 mul t2, s4, s5 // tmp0 = (inptr[0] * quantptr[0]) mul v0, s6, t6 // z2 = (inptr[DCTSIZE*2] * quantptr[DCTSIZE*2]) lh t5, 114(t0) // inptr[DCTSIZE*7] mul t7, s7, t7 // z3 = (inptr[DCTSIZE*6] * quantptr[DCTSIZE*6]) lh s4, 114(a0) // quantptr[DCTSIZE*7] lh s5, 82(a0) // quantptr[DCTSIZE*5] lh t6, 82(t0) // inptr[DCTSIZE*5] sll t2, t2, 14 // tmp0 <<= (CONST_BITS+1) lh s6, 50(a0) // quantptr[DCTSIZE*3] lh t8, 18(t0) // inptr[DCTSIZE*1] subu v0, v0, t7 // tmp2 = MULTIPLY(z2, t5) - MULTIPLY(z3, t6) lh t7, 50(t0) // inptr[DCTSIZE*3] lh s7, 18(a0) // quantptr[DCTSIZE*1] mul t5, s4, t5 // z1 = (inptr[DCTSIZE*7] * quantptr[DCTSIZE*7]) mul t6, s5, t6 // z2 = (inptr[DCTSIZE*5] * quantptr[DCTSIZE*5]) mul t7, s6, t7 // z3 = (inptr[DCTSIZE*3] * quantptr[DCTSIZE*3]) mul t8, s7, t8 // z4 = (inptr[DCTSIZE*1] * quantptr[DCTSIZE*1]) addu t3, t2, v0 // tmp10 = tmp0 + z2 subu t4, t2, v0 // tmp10 = tmp0 - z2 mult $ac0, zero, zero mult $ac1, zero, zero ins t5, t6, 16, 16 ins t7, t8, 16, 16 dpa.w.ph $ac0, t5, s0 dpa.w.ph $ac0, t7, s1 dpa.w.ph $ac1, t5, s2 dpa.w.ph $ac1, t7, s3 mflo t5, $ac0 mflo t6, $ac1 addiu t9, t9, -1 addiu t0, t0, 2 addiu a0, a0, 2 addiu t1, t1, 4 addu s5, t4, t5 subu s4, t4, t5 addu s6, t3, t6 subu s7, t3, t6 shra_r.w s5, s5, 12 // DESCALE(tmp12 + temp1, 12) shra_r.w s4, s4, 12 // DESCALE(tmp12 - temp1, 12) shra_r.w s6, s6, 12 // DESCALE(tmp10 + temp2, 12) shra_r.w s7, s7, 12 // DESCALE(tmp10 - temp2, 12) sw s5, 32(t1) sw s4, 64(t1) sw s6, 0(t1) bgtz t9, 1b sw s7, 96(t1) move t1, v1 li s4, 15137 lw s6, 8(t1) // wsptr[2] li s5, 6270 lw s7, 24(t1) // wsptr[6] mul s4, s4, s6 // MULTIPLY((INT32) wsptr[2], FIX_1_847759065) lw t2, 0(t1) // wsptr[0] mul s5, s5, s7 // MULTIPLY((INT32) wsptr[6], - FIX_0_765366865) lh t5, 28(t1) // wsptr[7] lh t6, 20(t1) // wsptr[5] lh t7, 12(t1) // wsptr[3] lh t8, 4(t1) // wsptr[1] ins t5, t6, 16, 16 ins t7, t8, 16, 16 mult $ac0, zero, zero dpa.w.ph $ac0, t5, s0 dpa.w.ph $ac0, t7, s1 mult $ac1, zero, zero dpa.w.ph $ac1, t5, s2 dpa.w.ph $ac1, t7, s3 sll t2, t2, 14 // tmp0 = ((INT32) wsptr[0]) << (CONST_BITS+1) mflo s6, $ac0 // MULTIPLY(wsptr[2], FIX_1_847759065 + MULTIPLY(wsptr[6], -FIX_0_765366865) subu s4, s4, s5 addu t3, t2, s4 // tmp10 = tmp0 + z2 mflo s7, $ac1 subu t4, t2, s4 // tmp10 = tmp0 - z2 addu t7, t4, s6 subu t8, t4, s6 addu t5, t3, s7 subu t6, t3, s7 shra_r.w t5, t5, 19 // DESCALE(tmp10 + temp2, 19) shra_r.w t6, t6, 19 // DESCALE(tmp10 - temp2, 19) shra_r.w t7, t7, 19 // DESCALE(tmp12 + temp1, 19) shra_r.w t8, t8, 19 // DESCALE(tmp12 - temp1, 19) sll s4, t9, 2 lw v0, 0(a2) // output_buf[ctr] shll_s.w t5, t5, 24 shll_s.w t6, t6, 24 shll_s.w t7, t7, 24 shll_s.w t8, t8, 24 sra t5, t5, 24 sra t6, t6, 24 sra t7, t7, 24 sra t8, t8, 24 addu v0, v0, a3 // outptr = output_buf[ctr] + output_col addiu t5, t5, 128 addiu t6, t6, 128 addiu t7, t7, 128 addiu t8, t8, 128 sb t5, 0(v0) sb t7, 1(v0) sb t8, 2(v0) sb t6, 3(v0) // 2 li s4, 15137 lw s6, 40(t1) // wsptr[2] li s5, 6270 lw s7, 56(t1) // wsptr[6] mul s4, s4, s6 // MULTIPLY((INT32) wsptr[2], FIX_1_847759065) lw t2, 32(t1) // wsptr[0] mul s5, s5, s7 // MULTIPLY((INT32) wsptr[6], - FIX_0_765366865) lh t5, 60(t1) // wsptr[7] lh t6, 52(t1) // wsptr[5] lh t7, 44(t1) // wsptr[3] lh t8, 36(t1) // wsptr[1] ins t5, t6, 16, 16 ins t7, t8, 16, 16 mult $ac0, zero, zero dpa.w.ph $ac0, t5, s0 dpa.w.ph $ac0, t7, s1 mult $ac1, zero, zero dpa.w.ph $ac1, t5, s2 dpa.w.ph $ac1, t7, s3 sll t2, t2, 14 // tmp0 = ((INT32) wsptr[0]) << (CONST_BITS+1) mflo s6, $ac0 // MULTIPLY(wsptr[2], FIX_1_847759065 + MULTIPLY(wsptr[6], -FIX_0_765366865) subu s4, s4, s5 addu t3, t2, s4 // tmp10 = tmp0 + z2 mflo s7, $ac1 subu t4, t2, s4 // tmp10 = tmp0 - z2 addu t7, t4, s6 subu t8, t4, s6 addu t5, t3, s7 subu t6, t3, s7 shra_r.w t5, t5, 19 // DESCALE(tmp10 + temp2, CONST_BITS-PASS1_BITS+1) shra_r.w t6, t6, 19 // DESCALE(tmp10 - temp2, CONST_BITS-PASS1_BITS+1) shra_r.w t7, t7, 19 // DESCALE(tmp12 + temp1, CONST_BITS-PASS1_BITS+1) shra_r.w t8, t8, 19 // DESCALE(tmp12 - temp1, CONST_BITS-PASS1_BITS+1) sll s4, t9, 2 lw v0, 4(a2) // output_buf[ctr] shll_s.w t5, t5, 24 shll_s.w t6, t6, 24 shll_s.w t7, t7, 24 shll_s.w t8, t8, 24 sra t5, t5, 24 sra t6, t6, 24 sra t7, t7, 24 sra t8, t8, 24 addu v0, v0, a3 // outptr = output_buf[ctr] + output_col addiu t5, t5, 128 addiu t6, t6, 128 addiu t7, t7, 128 addiu t8, t8, 128 sb t5, 0(v0) sb t7, 1(v0) sb t8, 2(v0) sb t6, 3(v0) // 3 li s4, 15137 lw s6, 72(t1) // wsptr[2] li s5, 6270 lw s7, 88(t1) // wsptr[6] mul s4, s4, s6 // MULTIPLY((INT32) wsptr[2], FIX_1_847759065) lw t2, 64(t1) // wsptr[0] mul s5, s5, s7 // MULTIPLY((INT32) wsptr[6], - FIX_0_765366865) lh t5, 92(t1) // wsptr[7] lh t6, 84(t1) // wsptr[5] lh t7, 76(t1) // wsptr[3] lh t8, 68(t1) // wsptr[1] ins t5, t6, 16, 16 ins t7, t8, 16, 16 mult $ac0, zero, zero dpa.w.ph $ac0, t5, s0 dpa.w.ph $ac0, t7, s1 mult $ac1, zero, zero dpa.w.ph $ac1, t5, s2 dpa.w.ph $ac1, t7, s3 sll t2, t2, 14 // tmp0 = ((INT32) wsptr[0]) << (CONST_BITS+1) mflo s6, $ac0 // MULTIPLY(wsptr[2], FIX_1_847759065 + MULTIPLY(wsptr[6], -FIX_0_765366865) subu s4, s4, s5 addu t3, t2, s4 // tmp10 = tmp0 + z2 mflo s7, $ac1 subu t4, t2, s4 // tmp10 = tmp0 - z2 addu t7, t4, s6 subu t8, t4, s6 addu t5, t3, s7 subu t6, t3, s7 shra_r.w t5, t5, 19 // DESCALE(tmp10 + temp2, 19) shra_r.w t6, t6, 19 // DESCALE(tmp10 - temp2, 19) shra_r.w t7, t7, 19 // DESCALE(tmp12 + temp1, 19) shra_r.w t8, t8, 19 // DESCALE(tmp12 - temp1, 19) sll s4, t9, 2 lw v0, 8(a2) // output_buf[ctr] shll_s.w t5, t5, 24 shll_s.w t6, t6, 24 shll_s.w t7, t7, 24 shll_s.w t8, t8, 24 sra t5, t5, 24 sra t6, t6, 24 sra t7, t7, 24 sra t8, t8, 24 addu v0, v0, a3 // outptr = output_buf[ctr] + output_col addiu t5, t5, 128 addiu t6, t6, 128 addiu t7, t7, 128 addiu t8, t8, 128 sb t5, 0(v0) sb t7, 1(v0) sb t8, 2(v0) sb t6, 3(v0) li s4, 15137 lw s6, 104(t1) // wsptr[2] li s5, 6270 lw s7, 120(t1) // wsptr[6] mul s4, s4, s6 // MULTIPLY((INT32) wsptr[2], FIX_1_847759065) lw t2, 96(t1) // wsptr[0] mul s5, s5, s7 // MULTIPLY((INT32) wsptr[6], -FIX_0_765366865) lh t5, 124(t1) // wsptr[7] lh t6, 116(t1) // wsptr[5] lh t7, 108(t1) // wsptr[3] lh t8, 100(t1) // wsptr[1] ins t5, t6, 16, 16 ins t7, t8, 16, 16 mult $ac0, zero, zero dpa.w.ph $ac0, t5, s0 dpa.w.ph $ac0, t7, s1 mult $ac1, zero, zero dpa.w.ph $ac1, t5, s2 dpa.w.ph $ac1, t7, s3 sll t2, t2, 14 // tmp0 = ((INT32) wsptr[0]) << (CONST_BITS+1) mflo s6, $ac0 // MULTIPLY(wsptr[2], FIX_1_847759065 + MULTIPLY(wsptr[6], -FIX_0_765366865) subu s4, s4, s5 addu t3, t2, s4 // tmp10 = tmp0 + z2; mflo s7, $ac1 subu t4, t2, s4 // tmp10 = tmp0 - z2; addu t7, t4, s6 subu t8, t4, s6 addu t5, t3, s7 subu t6, t3, s7 shra_r.w t5, t5, 19 // DESCALE(tmp10 + temp2, 19) shra_r.w t6, t6, 19 // DESCALE(tmp10 - temp2, 19) shra_r.w t7, t7, 19 // DESCALE(tmp12 + temp1, 19) shra_r.w t8, t8, 19 // DESCALE(tmp12 - temp1, 19) sll s4, t9, 2 lw v0, 12(a2) // output_buf[ctr] shll_s.w t5, t5, 24 shll_s.w t6, t6, 24 shll_s.w t7, t7, 24 shll_s.w t8, t8, 24 sra t5, t5, 24 sra t6, t6, 24 sra t7, t7, 24 sra t8, t8, 24 addu v0, v0, a3 // outptr = output_buf[ctr] + output_col addiu t5, t5, 128 addiu t6, t6, 128 addiu t7, t7, 128 addiu t8, t8, 128 sb t5, 0(v0) sb t7, 1(v0) sb t8, 2(v0) sb t6, 3(v0) RESTORE_REGS_FROM_STACK 32, s0, s1, s2, s3, s4, s5, s6, s7 j ra nop END(jsimd_idct_4x4_mips_dspr2) /*****************************************************************************/ LEAF_MIPS_DSPR2(jsimd_idct_6x6_mips_dspr2) /* * a0 - compptr->dct_table * a1 - coef_block * a2 - output_buf * a3 - output_col */ .set at SAVE_REGS_ON_STACK 32, s0, s1, s2, s3, s4, s5, s6, s7 addiu sp, sp, -144 move v0, sp addiu v1, v0, 24 addiu t9, zero, 5793 addiu s0, zero, 10033 addiu s1, zero, 2998 1: lh s2, 0(a0) // q0 = quantptr[ 0] lh s3, 32(a0) // q1 = quantptr[16] lh s4, 64(a0) // q2 = quantptr[32] lh t2, 64(a1) // tmp2 = inptr[32] lh t1, 32(a1) // tmp1 = inptr[16] lh t0, 0(a1) // tmp0 = inptr[ 0] mul t2, t2, s4 // tmp2 = tmp2 * q2 mul t1, t1, s3 // tmp1 = tmp1 * q1 mul t0, t0, s2 // tmp0 = tmp0 * q0 lh t6, 16(a1) // z1 = inptr[ 8] lh t8, 80(a1) // z3 = inptr[40] lh t7, 48(a1) // z2 = inptr[24] lh s2, 16(a0) // q0 = quantptr[ 8] lh s4, 80(a0) // q2 = quantptr[40] lh s3, 48(a0) // q1 = quantptr[24] mul t2, t2, t9 // tmp2 = tmp2 * 5793 mul t1, t1, s0 // tmp1 = tmp1 * 10033 sll t0, t0, 13 // tmp0 = tmp0 << 13 mul t6, t6, s2 // z1 = z1 * q0 mul t8, t8, s4 // z3 = z3 * q2 mul t7, t7, s3 // z2 = z2 * q1 addu t3, t0, t2 // tmp10 = tmp0 + tmp2 sll t2, t2, 1 // tmp2 = tmp2 << 2 subu t4, t0, t2 // tmp11 = tmp0 - tmp2; subu t5, t3, t1 // tmp12 = tmp10 - tmp1 addu t3, t3, t1 // tmp10 = tmp10 + tmp1 addu t1, t6, t8 // tmp1 = z1 + z3 mul t1, t1, s1 // tmp1 = tmp1 * 2998 shra_r.w t4, t4, 11 // tmp11 = (tmp11 + 1024) >> 11 subu t2, t6, t8 // tmp2 = z1 - z3 subu t2, t2, t7 // tmp2 = tmp2 - z2 sll t2, t2, 2 // tmp2 = tmp2 << 2 addu t0, t6, t7 // tmp0 = z1 + z2 sll t0, t0, 13 // tmp0 = tmp0 << 13 subu s2, t8, t7 // q0 = z3 - z2 sll s2, s2, 13 // q0 = q0 << 13 addu t0, t0, t1 // tmp0 = tmp0 + tmp1 addu t1, s2, t1 // tmp1 = q0 + tmp1 addu s2, t4, t2 // q0 = tmp11 + tmp2 subu s3, t4, t2 // q1 = tmp11 - tmp2 addu t6, t3, t0 // z1 = tmp10 + tmp0 subu t7, t3, t0 // z2 = tmp10 - tmp0 addu t4, t5, t1 // tmp11 = tmp12 + tmp1 subu t5, t5, t1 // tmp12 = tmp12 - tmp1 shra_r.w t6, t6, 11 // z1 = (z1 + 1024) >> 11 shra_r.w t7, t7, 11 // z2 = (z2 + 1024) >> 11 shra_r.w t4, t4, 11 // tmp11 = (tmp11 + 1024) >> 11 shra_r.w t5, t5, 11 // tmp12 = (tmp12 + 1024) >> 11 sw s2, 24(v0) sw s3, 96(v0) sw t6, 0(v0) sw t7, 120(v0) sw t4, 48(v0) sw t5, 72(v0) addiu v0, v0, 4 addiu a1, a1, 2 bne v0, v1, 1b addiu a0, a0, 2 /* Pass 2: process 6 rows from work array, store into output array. */ move v0, sp addiu v1, v0, 144 2: lw t0, 0(v0) lw t2, 16(v0) lw s5, 0(a2) addiu t0, t0, 16 sll t0, t0, 13 mul t3, t2, t9 lw t6, 4(v0) lw t8, 20(v0) lw t7, 12(v0) addu s5, s5, a3 addu s6, t6, t8 mul s6, s6, s1 addu t1, t0, t3 subu t4, t0, t3 subu t4, t4, t3 lw t3, 8(v0) mul t0, t3, s0 addu s7, t6, t7 sll s7, s7, 13 addu s7, s6, s7 subu t2, t8, t7 sll t2, t2, 13 addu t2, s6, t2 subu s6, t6, t7 subu s6, s6, t8 sll s6, s6, 13 addu t3, t1, t0 subu t5, t1, t0 addu t6, t3, s7 subu t3, t3, s7 addu t7, t4, s6 subu t4, t4, s6 addu t8, t5, t2 subu t5, t5, t2 shll_s.w t6, t6, 6 shll_s.w t3, t3, 6 shll_s.w t7, t7, 6 shll_s.w t4, t4, 6 shll_s.w t8, t8, 6 shll_s.w t5, t5, 6 sra t6, t6, 24 addiu t6, t6, 128 sra t3, t3, 24 addiu t3, t3, 128 sb t6, 0(s5) sra t7, t7, 24 addiu t7, t7, 128 sb t3, 5(s5) sra t4, t4, 24 addiu t4, t4, 128 sb t7, 1(s5) sra t8, t8, 24 addiu t8, t8, 128 sb t4, 4(s5) addiu v0, v0, 24 sra t5, t5, 24 addiu t5, t5, 128 sb t8, 2(s5) addiu a2, a2, 4 bne v0, v1, 2b sb t5, 3(s5) addiu sp, sp, 144 RESTORE_REGS_FROM_STACK 32, s0, s1, s2, s3, s4, s5, s6, s7 j ra nop END(jsimd_idct_6x6_mips_dspr2) /*****************************************************************************/ LEAF_MIPS_DSPR2(jsimd_idct_12x12_pass1_mips_dspr2) /* * a0 - compptr->dct_table * a1 - coef_block * a2 - workspace */ SAVE_REGS_ON_STACK 16, s0, s1, s2, s3 li a3, 8 1: // odd part lh t0, 48(a1) lh t1, 48(a0) lh t2, 16(a1) lh t3, 16(a0) lh t4, 80(a1) lh t5, 80(a0) lh t6, 112(a1) lh t7, 112(a0) mul t0, t0, t1 // z2 mul t1, t2, t3 // z1 mul t2, t4, t5 // z3 mul t3, t6, t7 // z4 li t4, 10703 // FIX(1.306562965) li t5, 4433 // FIX_0_541196100 li t6, 7053 // FIX(0.860918669) mul t4, t0,t4 // tmp11 mul t5, t0,t5 // -tmp14 addu t7, t1,t2 // tmp10 addu t8, t7,t3 // tmp10 + z4 mul t6, t6, t8 // tmp15 li t8, 2139 // FIX(0.261052384) mul t8, t7, t8 // MULTIPLY(tmp10, FIX(0.261052384)) li t7, 2295 // FIX(0.280143716) mul t7, t1, t7 // MULTIPLY(z1, FIX(0.280143716)) addu t9, t2, t3 // z3 + z4 li s0, 8565 // FIX(1.045510580) mul t9, t9, s0 // -tmp13 li s0, 12112 // FIX(1.478575242) mul s0, t2, s0 // MULTIPLY(z3, FIX(1.478575242) li s1, 12998 // FIX(1.586706681) mul s1, t3, s1 // MULTIPLY(z4, FIX(1.586706681)) li s2, 5540 // FIX(0.676326758) mul s2, t1, s2 // MULTIPLY(z1, FIX(0.676326758)) li s3, 16244 // FIX(1.982889723) mul s3, t3, s3 // MULTIPLY(z4, FIX(1.982889723)) subu t1, t1, t3 // z1-=z4 subu t0, t0, t2 // z2-=z3 addu t2, t0, t1 // z1+z2 li t3, 4433 // FIX_0_541196100 mul t2, t2, t3 // z3 li t3, 6270 // FIX_0_765366865 mul t1, t1, t3 // MULTIPLY(z1, FIX_0_765366865) li t3, 15137 // FIX_0_765366865 mul t0, t0, t3 // MULTIPLY(z2, FIX_1_847759065) addu t8, t6, t8 // tmp12 addu t3, t8, t4 // tmp12 + tmp11 addu t3, t3, t7 // tmp10 subu t8, t8, t9 // tmp12 + tmp13 addu s0, t5, s0 subu t8, t8, s0 // tmp12 subu t9, t6, t9 subu s1, s1, t4 addu t9, t9, s1 // tmp13 subu t6, t6, t5 subu t6, t6, s2 subu t6, t6, s3 // tmp15 // even part start lh t4, 64(a1) lh t5, 64(a0) lh t7, 32(a1) lh s0, 32(a0) lh s1, 0(a1) lh s2, 0(a0) lh s3, 96(a1) lh v0, 96(a0) mul t4, t4, t5 // DEQUANTIZE(inptr[DCTSIZE*4],quantptr[DCTSIZE*4]) mul t5, t7, s0 // DEQUANTIZE(inptr[DCTSIZE*2],quantptr[DCTSIZE*2]) mul t7, s1, s2 // DEQUANTIZE(inptr[DCTSIZE*0],quantptr[DCTSIZE*0]) mul s0, s3, v0 // DEQUANTIZE(inptr[DCTSIZE*6],quantptr[DCTSIZE*6]) // odd part end addu t1, t2, t1 // tmp11 subu t0, t2, t0 // tmp14 // update counter and pointers addiu a3, a3, -1 addiu a0, a0, 2 addiu a1, a1, 2 // even part rest li s1, 10033 li s2, 11190 mul t4, t4, s1 // z4 mul s1, t5, s2 // z4 sll t5, t5, 13 // z1 sll t7, t7, 13 addiu t7, t7, 1024 // z3 sll s0, s0, 13 // z2 addu s2, t7, t4 // tmp10 subu t4, t7, t4 // tmp11 subu s3, t5, s0 // tmp12 addu t2, t7, s3 // tmp21 subu s3, t7, s3 // tmp24 addu t7, s1, s0 // tmp12 addu v0, s2, t7 // tmp20 subu s2, s2, t7 // tmp25 subu s1, s1, t5 // z4 - z1 subu s1, s1, s0 // tmp12 addu s0, t4, s1 // tmp22 subu t4, t4, s1 // tmp23 // final output stage addu t5, v0, t3 subu v0, v0, t3 addu t3, t2, t1 subu t2, t2, t1 addu t1, s0, t8 subu s0, s0, t8 addu t8, t4, t9 subu t4, t4, t9 addu t9, s3, t0 subu s3, s3, t0 addu t0, s2, t6 subu s2, s2, t6 sra t5, t5, 11 sra t3, t3, 11 sra t1, t1, 11 sra t8, t8, 11 sra t9, t9, 11 sra t0, t0, 11 sra s2, s2, 11 sra s3, s3, 11 sra t4, t4, 11 sra s0, s0, 11 sra t2, t2, 11 sra v0, v0, 11 sw t5, 0(a2) sw t3, 32(a2) sw t1, 64(a2) sw t8, 96(a2) sw t9, 128(a2) sw t0, 160(a2) sw s2, 192(a2) sw s3, 224(a2) sw t4, 256(a2) sw s0, 288(a2) sw t2, 320(a2) sw v0, 352(a2) bgtz a3, 1b addiu a2, a2, 4 RESTORE_REGS_FROM_STACK 16, s0, s1, s2, s3 j ra nop END(jsimd_idct_12x12_pass1_mips_dspr2) /*****************************************************************************/ LEAF_MIPS_DSPR2(jsimd_idct_12x12_pass2_mips_dspr2) /* * a0 - workspace * a1 - output */ SAVE_REGS_ON_STACK 16, s0, s1, s2, s3 li a3, 12 1: // Odd part lw t0, 12(a0) lw t1, 4(a0) lw t2, 20(a0) lw t3, 28(a0) li t4, 10703 // FIX(1.306562965) li t5, 4433 // FIX_0_541196100 mul t4, t0, t4 // tmp11 mul t5, t0, t5 // -tmp14 addu t6, t1, t2 // tmp10 li t7, 2139 // FIX(0.261052384) mul t7, t6, t7 // MULTIPLY(tmp10, FIX(0.261052384)) addu t6, t6, t3 // tmp10 + z4 li t8, 7053 // FIX(0.860918669) mul t6, t6, t8 // tmp15 li t8, 2295 // FIX(0.280143716) mul t8, t1, t8 // MULTIPLY(z1, FIX(0.280143716)) addu t9, t2, t3 // z3 + z4 li s0, 8565 // FIX(1.045510580) mul t9, t9, s0 // -tmp13 li s0, 12112 // FIX(1.478575242) mul s0, t2, s0 // MULTIPLY(z3, FIX(1.478575242)) li s1, 12998 // FIX(1.586706681) mul s1, t3, s1 // MULTIPLY(z4, FIX(1.586706681)) li s2, 5540 // FIX(0.676326758) mul s2, t1, s2 // MULTIPLY(z1, FIX(0.676326758)) li s3, 16244 // FIX(1.982889723) mul s3, t3, s3 // MULTIPLY(z4, FIX(1.982889723)) subu t1, t1, t3 // z1 -= z4 subu t0, t0, t2 // z2 -= z3 addu t2, t1, t0 // z1 + z2 li t3, 4433 // FIX_0_541196100 mul t2, t2, t3 // z3 li t3, 6270 // FIX_0_765366865 mul t1, t1, t3 // MULTIPLY(z1, FIX_0_765366865) li t3, 15137 // FIX_1_847759065 mul t0, t0, t3 // MULTIPLY(z2, FIX_1_847759065) addu t3, t6, t7 // tmp12 addu t7, t3, t4 addu t7, t7, t8 // tmp10 subu t3, t3, t9 subu t3, t3, t5 subu t3, t3, s0 // tmp12 subu t9, t6, t9 subu t9, t9, t4 addu t9, t9, s1 // tmp13 subu t6, t6, t5 subu t6, t6, s2 subu t6, t6, s3 // tmp15 addu t1, t2, t1 // tmp11 subu t0, t2, t0 // tmp14 // even part lw t2, 16(a0) // z4 lw t4, 8(a0) // z1 lw t5, 0(a0) // z3 lw t8, 24(a0) // z2 li s0, 10033 // FIX(1.224744871) li s1, 11190 // FIX(1.366025404) mul t2, t2, s0 // z4 mul s0, t4, s1 // z4 addiu t5, t5, 0x10 sll t5, t5, 13 // z3 sll t4, t4, 13 // z1 sll t8, t8, 13 // z2 subu s1, t4, t8 // tmp12 addu s2, t5, t2 // tmp10 subu t2, t5, t2 // tmp11 addu s3, t5, s1 // tmp21 subu s1, t5, s1 // tmp24 addu t5, s0, t8 // tmp12 addu v0, s2, t5 // tmp20 subu t5, s2, t5 // tmp25 subu t4, s0, t4 subu t4, t4, t8 // tmp12 addu t8, t2, t4 // tmp22 subu t2, t2, t4 // tmp23 // increment counter and pointers addiu a3, a3, -1 addiu a0, a0, 32 // Final stage addu t4, v0, t7 subu v0, v0, t7 addu t7, s3, t1 subu s3, s3, t1 addu t1, t8, t3 subu t8, t8, t3 addu t3, t2, t9 subu t2, t2, t9 addu t9, s1, t0 subu s1, s1, t0 addu t0, t5, t6 subu t5, t5, t6 sll t4, t4, 4 sll t7, t7, 4 sll t1, t1, 4 sll t3, t3, 4 sll t9, t9, 4 sll t0, t0, 4 sll t5, t5, 4 sll s1, s1, 4 sll t2, t2, 4 sll t8, t8, 4 sll s3, s3, 4 sll v0, v0, 4 shll_s.w t4, t4, 2 shll_s.w t7, t7, 2 shll_s.w t1, t1, 2 shll_s.w t3, t3, 2 shll_s.w t9, t9, 2 shll_s.w t0, t0, 2 shll_s.w t5, t5, 2 shll_s.w s1, s1, 2 shll_s.w t2, t2, 2 shll_s.w t8, t8, 2 shll_s.w s3, s3, 2 shll_s.w v0, v0, 2 srl t4, t4, 24 srl t7, t7, 24 srl t1, t1, 24 srl t3, t3, 24 srl t9, t9, 24 srl t0, t0, 24 srl t5, t5, 24 srl s1, s1, 24 srl t2, t2, 24 srl t8, t8, 24 srl s3, s3, 24 srl v0, v0, 24 lw t6, 0(a1) addiu t4, t4, 0x80 addiu t7, t7, 0x80 addiu t1, t1, 0x80 addiu t3, t3, 0x80 addiu t9, t9, 0x80 addiu t0, t0, 0x80 addiu t5, t5, 0x80 addiu s1, s1, 0x80 addiu t2, t2, 0x80 addiu t8, t8, 0x80 addiu s3, s3, 0x80 addiu v0, v0, 0x80 sb t4, 0(t6) sb t7, 1(t6) sb t1, 2(t6) sb t3, 3(t6) sb t9, 4(t6) sb t0, 5(t6) sb t5, 6(t6) sb s1, 7(t6) sb t2, 8(t6) sb t8, 9(t6) sb s3, 10(t6) sb v0, 11(t6) bgtz a3, 1b addiu a1, a1, 4 RESTORE_REGS_FROM_STACK 16, s0, s1, s2, s3 jr ra nop END(jsimd_idct_12x12_pass2_mips_dspr2) /*****************************************************************************/ LEAF_MIPS_DSPR2(jsimd_convsamp_mips_dspr2) /* * a0 - sample_data * a1 - start_col * a2 - workspace */ lw t0, 0(a0) li t7, 0xff80ff80 addu t0, t0, a1 ulw t1, 0(t0) ulw t2, 4(t0) preceu.ph.qbr t3, t1 preceu.ph.qbl t4, t1 lw t0, 4(a0) preceu.ph.qbr t5, t2 preceu.ph.qbl t6, t2 addu t0, t0, a1 addu.ph t3, t3, t7 addu.ph t4, t4, t7 ulw t1, 0(t0) ulw t2, 4(t0) addu.ph t5, t5, t7 addu.ph t6, t6, t7 usw t3, 0(a2) usw t4, 4(a2) preceu.ph.qbr t3, t1 preceu.ph.qbl t4, t1 usw t5, 8(a2) usw t6, 12(a2) lw t0, 8(a0) preceu.ph.qbr t5, t2 preceu.ph.qbl t6, t2 addu t0, t0, a1 addu.ph t3, t3, t7 addu.ph t4, t4, t7 ulw t1, 0(t0) ulw t2, 4(t0) addu.ph t5, t5, t7 addu.ph t6, t6, t7 usw t3, 16(a2) usw t4, 20(a2) preceu.ph.qbr t3, t1 preceu.ph.qbl t4, t1 usw t5, 24(a2) usw t6, 28(a2) lw t0, 12(a0) preceu.ph.qbr t5, t2 preceu.ph.qbl t6, t2 addu t0, t0, a1 addu.ph t3, t3, t7 addu.ph t4, t4, t7 ulw t1, 0(t0) ulw t2, 4(t0) addu.ph t5, t5, t7 addu.ph t6, t6, t7 usw t3, 32(a2) usw t4, 36(a2) preceu.ph.qbr t3, t1 preceu.ph.qbl t4, t1 usw t5, 40(a2) usw t6, 44(a2) lw t0, 16(a0) preceu.ph.qbr t5, t2 preceu.ph.qbl t6, t2 addu t0, t0, a1 addu.ph t3, t3, t7 addu.ph t4, t4, t7 ulw t1, 0(t0) ulw t2, 4(t0) addu.ph t5, t5, t7 addu.ph t6, t6, t7 usw t3, 48(a2) usw t4, 52(a2) preceu.ph.qbr t3, t1 preceu.ph.qbl t4, t1 usw t5, 56(a2) usw t6, 60(a2) lw t0, 20(a0) preceu.ph.qbr t5, t2 preceu.ph.qbl t6, t2 addu t0, t0, a1 addu.ph t3, t3, t7 addu.ph t4, t4, t7 ulw t1, 0(t0) ulw t2, 4(t0) addu.ph t5, t5, t7 addu.ph t6, t6, t7 usw t3, 64(a2) usw t4, 68(a2) preceu.ph.qbr t3, t1 preceu.ph.qbl t4, t1 usw t5, 72(a2) usw t6, 76(a2) lw t0, 24(a0) preceu.ph.qbr t5, t2 preceu.ph.qbl t6, t2 addu t0, t0, a1 addu.ph t3, t3, t7 addu.ph t4, t4, t7 ulw t1, 0(t0) ulw t2, 4(t0) addu.ph t5, t5, t7 addu.ph t6, t6, t7 usw t3, 80(a2) usw t4, 84(a2) preceu.ph.qbr t3, t1 preceu.ph.qbl t4, t1 usw t5, 88(a2) usw t6, 92(a2) lw t0, 28(a0) preceu.ph.qbr t5, t2 preceu.ph.qbl t6, t2 addu t0, t0, a1 addu.ph t3, t3, t7 addu.ph t4, t4, t7 ulw t1, 0(t0) ulw t2, 4(t0) addu.ph t5, t5, t7 addu.ph t6, t6, t7 usw t3, 96(a2) usw t4, 100(a2) preceu.ph.qbr t3, t1 preceu.ph.qbl t4, t1 usw t5, 104(a2) usw t6, 108(a2) preceu.ph.qbr t5, t2 preceu.ph.qbl t6, t2 addu.ph t3, t3, t7 addu.ph t4, t4, t7 addu.ph t5, t5, t7 addu.ph t6, t6, t7 usw t3, 112(a2) usw t4, 116(a2) usw t5, 120(a2) usw t6, 124(a2) j ra nop END(jsimd_convsamp_mips_dspr2) /*****************************************************************************/ LEAF_MIPS_DSPR2(jsimd_convsamp_float_mips_dspr2) /* * a0 - sample_data * a1 - start_col * a2 - workspace */ .set at lw t0, 0(a0) addu t0, t0, a1 lbu t1, 0(t0) lbu t2, 1(t0) lbu t3, 2(t0) lbu t4, 3(t0) lbu t5, 4(t0) lbu t6, 5(t0) lbu t7, 6(t0) lbu t8, 7(t0) addiu t1, t1, -128 addiu t2, t2, -128 addiu t3, t3, -128 addiu t4, t4, -128 addiu t5, t5, -128 addiu t6, t6, -128 addiu t7, t7, -128 addiu t8, t8, -128 mtc1 t1, f1 mtc1 t2, f2 mtc1 t3, f3 mtc1 t4, f4 mtc1 t5, f5 mtc1 t6, f6 mtc1 t7, f7 mtc1 t8, f8 cvt.s.w f1, f1 cvt.s.w f2, f2 cvt.s.w f3, f3 cvt.s.w f4, f4 cvt.s.w f5, f5 cvt.s.w f6, f6 cvt.s.w f7, f7 cvt.s.w f8, f8 lw t0, 4(a0) swc1 f1, 0(a2) swc1 f2, 4(a2) swc1 f3, 8(a2) addu t0, t0, a1 swc1 f4, 12(a2) swc1 f5, 16(a2) swc1 f6, 20(a2) swc1 f7, 24(a2) swc1 f8, 28(a2) //elemr 1 lbu t1, 0(t0) lbu t2, 1(t0) lbu t3, 2(t0) lbu t4, 3(t0) lbu t5, 4(t0) lbu t6, 5(t0) lbu t7, 6(t0) lbu t8, 7(t0) addiu t1, t1, -128 addiu t2, t2, -128 addiu t3, t3, -128 addiu t4, t4, -128 addiu t5, t5, -128 addiu t6, t6, -128 addiu t7, t7, -128 addiu t8, t8, -128 mtc1 t1, f1 mtc1 t2, f2 mtc1 t3, f3 mtc1 t4, f4 mtc1 t5, f5 mtc1 t6, f6 mtc1 t7, f7 mtc1 t8, f8 cvt.s.w f1, f1 cvt.s.w f2, f2 cvt.s.w f3, f3 cvt.s.w f4, f4 cvt.s.w f5, f5 cvt.s.w f6, f6 cvt.s.w f7, f7 cvt.s.w f8, f8 lw t0, 8(a0) swc1 f1, 32(a2) swc1 f2, 36(a2) swc1 f3, 40(a2) addu t0, t0, a1 swc1 f4, 44(a2) swc1 f5, 48(a2) swc1 f6, 52(a2) swc1 f7, 56(a2) swc1 f8, 60(a2) //elemr 2 lbu t1, 0(t0) lbu t2, 1(t0) lbu t3, 2(t0) lbu t4, 3(t0) lbu t5, 4(t0) lbu t6, 5(t0) lbu t7, 6(t0) lbu t8, 7(t0) addiu t1, t1, -128 addiu t2, t2, -128 addiu t3, t3, -128 addiu t4, t4, -128 addiu t5, t5, -128 addiu t6, t6, -128 addiu t7, t7, -128 addiu t8, t8, -128 mtc1 t1, f1 mtc1 t2, f2 mtc1 t3, f3 mtc1 t4, f4 mtc1 t5, f5 mtc1 t6, f6 mtc1 t7, f7 mtc1 t8, f8 cvt.s.w f1, f1 cvt.s.w f2, f2 cvt.s.w f3, f3 cvt.s.w f4, f4 cvt.s.w f5, f5 cvt.s.w f6, f6 cvt.s.w f7, f7 cvt.s.w f8, f8 lw t0, 12(a0) swc1 f1, 64(a2) swc1 f2, 68(a2) swc1 f3, 72(a2) addu t0, t0, a1 swc1 f4, 76(a2) swc1 f5, 80(a2) swc1 f6, 84(a2) swc1 f7, 88(a2) swc1 f8, 92(a2) //elemr 3 lbu t1, 0(t0) lbu t2, 1(t0) lbu t3, 2(t0) lbu t4, 3(t0) lbu t5, 4(t0) lbu t6, 5(t0) lbu t7, 6(t0) lbu t8, 7(t0) addiu t1, t1, -128 addiu t2, t2, -128 addiu t3, t3, -128 addiu t4, t4, -128 addiu t5, t5, -128 addiu t6, t6, -128 addiu t7, t7, -128 addiu t8, t8, -128 mtc1 t1, f1 mtc1 t2, f2 mtc1 t3, f3 mtc1 t4, f4 mtc1 t5, f5 mtc1 t6, f6 mtc1 t7, f7 mtc1 t8, f8 cvt.s.w f1, f1 cvt.s.w f2, f2 cvt.s.w f3, f3 cvt.s.w f4, f4 cvt.s.w f5, f5 cvt.s.w f6, f6 cvt.s.w f7, f7 cvt.s.w f8, f8 lw t0, 16(a0) swc1 f1, 96(a2) swc1 f2, 100(a2) swc1 f3, 104(a2) addu t0, t0, a1 swc1 f4, 108(a2) swc1 f5, 112(a2) swc1 f6, 116(a2) swc1 f7, 120(a2) swc1 f8, 124(a2) //elemr 4 lbu t1, 0(t0) lbu t2, 1(t0) lbu t3, 2(t0) lbu t4, 3(t0) lbu t5, 4(t0) lbu t6, 5(t0) lbu t7, 6(t0) lbu t8, 7(t0) addiu t1, t1, -128 addiu t2, t2, -128 addiu t3, t3, -128 addiu t4, t4, -128 addiu t5, t5, -128 addiu t6, t6, -128 addiu t7, t7, -128 addiu t8, t8, -128 mtc1 t1, f1 mtc1 t2, f2 mtc1 t3, f3 mtc1 t4, f4 mtc1 t5, f5 mtc1 t6, f6 mtc1 t7, f7 mtc1 t8, f8 cvt.s.w f1, f1 cvt.s.w f2, f2 cvt.s.w f3, f3 cvt.s.w f4, f4 cvt.s.w f5, f5 cvt.s.w f6, f6 cvt.s.w f7, f7 cvt.s.w f8, f8 lw t0, 20(a0) swc1 f1, 128(a2) swc1 f2, 132(a2) swc1 f3, 136(a2) addu t0, t0, a1 swc1 f4, 140(a2) swc1 f5, 144(a2) swc1 f6, 148(a2) swc1 f7, 152(a2) swc1 f8, 156(a2) //elemr 5 lbu t1, 0(t0) lbu t2, 1(t0) lbu t3, 2(t0) lbu t4, 3(t0) lbu t5, 4(t0) lbu t6, 5(t0) lbu t7, 6(t0) lbu t8, 7(t0) addiu t1, t1, -128 addiu t2, t2, -128 addiu t3, t3, -128 addiu t4, t4, -128 addiu t5, t5, -128 addiu t6, t6, -128 addiu t7, t7, -128 addiu t8, t8, -128 mtc1 t1, f1 mtc1 t2, f2 mtc1 t3, f3 mtc1 t4, f4 mtc1 t5, f5 mtc1 t6, f6 mtc1 t7, f7 mtc1 t8, f8 cvt.s.w f1, f1 cvt.s.w f2, f2 cvt.s.w f3, f3 cvt.s.w f4, f4 cvt.s.w f5, f5 cvt.s.w f6, f6 cvt.s.w f7, f7 cvt.s.w f8, f8 lw t0, 24(a0) swc1 f1, 160(a2) swc1 f2, 164(a2) swc1 f3, 168(a2) addu t0, t0, a1 swc1 f4, 172(a2) swc1 f5, 176(a2) swc1 f6, 180(a2) swc1 f7, 184(a2) swc1 f8, 188(a2) //elemr 6 lbu t1, 0(t0) lbu t2, 1(t0) lbu t3, 2(t0) lbu t4, 3(t0) lbu t5, 4(t0) lbu t6, 5(t0) lbu t7, 6(t0) lbu t8, 7(t0) addiu t1, t1, -128 addiu t2, t2, -128 addiu t3, t3, -128 addiu t4, t4, -128 addiu t5, t5, -128 addiu t6, t6, -128 addiu t7, t7, -128 addiu t8, t8, -128 mtc1 t1, f1 mtc1 t2, f2 mtc1 t3, f3 mtc1 t4, f4 mtc1 t5, f5 mtc1 t6, f6 mtc1 t7, f7 mtc1 t8, f8 cvt.s.w f1, f1 cvt.s.w f2, f2 cvt.s.w f3, f3 cvt.s.w f4, f4 cvt.s.w f5, f5 cvt.s.w f6, f6 cvt.s.w f7, f7 cvt.s.w f8, f8 lw t0, 28(a0) swc1 f1, 192(a2) swc1 f2, 196(a2) swc1 f3, 200(a2) addu t0, t0, a1 swc1 f4, 204(a2) swc1 f5, 208(a2) swc1 f6, 212(a2) swc1 f7, 216(a2) swc1 f8, 220(a2) //elemr 7 lbu t1, 0(t0) lbu t2, 1(t0) lbu t3, 2(t0) lbu t4, 3(t0) lbu t5, 4(t0) lbu t6, 5(t0) lbu t7, 6(t0) lbu t8, 7(t0) addiu t1, t1, -128 addiu t2, t2, -128 addiu t3, t3, -128 addiu t4, t4, -128 addiu t5, t5, -128 addiu t6, t6, -128 addiu t7, t7, -128 addiu t8, t8, -128 mtc1 t1, f1 mtc1 t2, f2 mtc1 t3, f3 mtc1 t4, f4 mtc1 t5, f5 mtc1 t6, f6 mtc1 t7, f7 mtc1 t8, f8 cvt.s.w f1, f1 cvt.s.w f2, f2 cvt.s.w f3, f3 cvt.s.w f4, f4 cvt.s.w f5, f5 cvt.s.w f6, f6 cvt.s.w f7, f7 cvt.s.w f8, f8 swc1 f1, 224(a2) swc1 f2, 228(a2) swc1 f3, 232(a2) swc1 f4, 236(a2) swc1 f5, 240(a2) swc1 f6, 244(a2) swc1 f7, 248(a2) swc1 f8, 252(a2) j ra nop END(jsimd_convsamp_float_mips_dspr2) /*****************************************************************************/ libjpeg-turbo-1.4.2/simd/jidctred-sse2.asm0000644000076500007650000005633512600050400015315 00000000000000; ; jidctred.asm - reduced-size IDCT (SSE2) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; ; Based on ; x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; This file contains inverse-DCT routines that produce reduced-size ; output: either 4x4 or 2x2 pixels from an 8x8 DCT block. ; The following code is based directly on the IJG's original jidctred.c; ; see the jidctred.c for more details. ; ; [TAB8] %include "jsimdext.inc" %include "jdct.inc" ; -------------------------------------------------------------------------- %define CONST_BITS 13 %define PASS1_BITS 2 %define DESCALE_P1_4 (CONST_BITS-PASS1_BITS+1) %define DESCALE_P2_4 (CONST_BITS+PASS1_BITS+3+1) %define DESCALE_P1_2 (CONST_BITS-PASS1_BITS+2) %define DESCALE_P2_2 (CONST_BITS+PASS1_BITS+3+2) %if CONST_BITS == 13 F_0_211 equ 1730 ; FIX(0.211164243) F_0_509 equ 4176 ; FIX(0.509795579) F_0_601 equ 4926 ; FIX(0.601344887) F_0_720 equ 5906 ; FIX(0.720959822) F_0_765 equ 6270 ; FIX(0.765366865) F_0_850 equ 6967 ; FIX(0.850430095) F_0_899 equ 7373 ; FIX(0.899976223) F_1_061 equ 8697 ; FIX(1.061594337) F_1_272 equ 10426 ; FIX(1.272758580) F_1_451 equ 11893 ; FIX(1.451774981) F_1_847 equ 15137 ; FIX(1.847759065) F_2_172 equ 17799 ; FIX(2.172734803) F_2_562 equ 20995 ; FIX(2.562915447) F_3_624 equ 29692 ; FIX(3.624509785) %else ; NASM cannot do compile-time arithmetic on floating-point constants. %define DESCALE(x,n) (((x)+(1<<((n)-1)))>>(n)) F_0_211 equ DESCALE( 226735879,30-CONST_BITS) ; FIX(0.211164243) F_0_509 equ DESCALE( 547388834,30-CONST_BITS) ; FIX(0.509795579) F_0_601 equ DESCALE( 645689155,30-CONST_BITS) ; FIX(0.601344887) F_0_720 equ DESCALE( 774124714,30-CONST_BITS) ; FIX(0.720959822) F_0_765 equ DESCALE( 821806413,30-CONST_BITS) ; FIX(0.765366865) F_0_850 equ DESCALE( 913142361,30-CONST_BITS) ; FIX(0.850430095) F_0_899 equ DESCALE( 966342111,30-CONST_BITS) ; FIX(0.899976223) F_1_061 equ DESCALE(1139878239,30-CONST_BITS) ; FIX(1.061594337) F_1_272 equ DESCALE(1366614119,30-CONST_BITS) ; FIX(1.272758580) F_1_451 equ DESCALE(1558831516,30-CONST_BITS) ; FIX(1.451774981) F_1_847 equ DESCALE(1984016188,30-CONST_BITS) ; FIX(1.847759065) F_2_172 equ DESCALE(2332956230,30-CONST_BITS) ; FIX(2.172734803) F_2_562 equ DESCALE(2751909506,30-CONST_BITS) ; FIX(2.562915447) F_3_624 equ DESCALE(3891787747,30-CONST_BITS) ; FIX(3.624509785) %endif ; -------------------------------------------------------------------------- SECTION SEG_CONST alignz 16 global EXTN(jconst_idct_red_sse2) EXTN(jconst_idct_red_sse2): PW_F184_MF076 times 4 dw F_1_847,-F_0_765 PW_F256_F089 times 4 dw F_2_562, F_0_899 PW_F106_MF217 times 4 dw F_1_061,-F_2_172 PW_MF060_MF050 times 4 dw -F_0_601,-F_0_509 PW_F145_MF021 times 4 dw F_1_451,-F_0_211 PW_F362_MF127 times 4 dw F_3_624,-F_1_272 PW_F085_MF072 times 4 dw F_0_850,-F_0_720 PD_DESCALE_P1_4 times 4 dd 1 << (DESCALE_P1_4-1) PD_DESCALE_P2_4 times 4 dd 1 << (DESCALE_P2_4-1) PD_DESCALE_P1_2 times 4 dd 1 << (DESCALE_P1_2-1) PD_DESCALE_P2_2 times 4 dd 1 << (DESCALE_P2_2-1) PB_CENTERJSAMP times 16 db CENTERJSAMPLE alignz 16 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 32 ; ; Perform dequantization and inverse DCT on one block of coefficients, ; producing a reduced-size 4x4 output block. ; ; GLOBAL(void) ; jsimd_idct_4x4_sse2 (void * dct_table, JCOEFPTR coef_block, ; JSAMPARRAY output_buf, JDIMENSION output_col) ; %define dct_table(b) (b)+8 ; void * dct_table %define coef_block(b) (b)+12 ; JCOEFPTR coef_block %define output_buf(b) (b)+16 ; JSAMPARRAY output_buf %define output_col(b) (b)+20 ; JDIMENSION output_col %define original_ebp ebp+0 %define wk(i) ebp-(WK_NUM-(i))*SIZEOF_XMMWORD ; xmmword wk[WK_NUM] %define WK_NUM 2 align 16 global EXTN(jsimd_idct_4x4_sse2) EXTN(jsimd_idct_4x4_sse2): push ebp mov eax,esp ; eax = original ebp sub esp, byte 4 and esp, byte (-SIZEOF_XMMWORD) ; align to 128 bits mov [esp],eax mov ebp,esp ; ebp = aligned ebp lea esp, [wk(0)] pushpic ebx ; push ecx ; unused ; push edx ; need not be preserved push esi push edi get_GOT ebx ; get GOT address ; ---- Pass 1: process columns from input. ; mov eax, [original_ebp] mov edx, POINTER [dct_table(eax)] ; quantptr mov esi, JCOEFPTR [coef_block(eax)] ; inptr %ifndef NO_ZERO_COLUMN_TEST_4X4_SSE2 mov eax, DWORD [DWBLOCK(1,0,esi,SIZEOF_JCOEF)] or eax, DWORD [DWBLOCK(2,0,esi,SIZEOF_JCOEF)] jnz short .columnDCT movdqa xmm0, XMMWORD [XMMBLOCK(1,0,esi,SIZEOF_JCOEF)] movdqa xmm1, XMMWORD [XMMBLOCK(2,0,esi,SIZEOF_JCOEF)] por xmm0, XMMWORD [XMMBLOCK(3,0,esi,SIZEOF_JCOEF)] por xmm1, XMMWORD [XMMBLOCK(5,0,esi,SIZEOF_JCOEF)] por xmm0, XMMWORD [XMMBLOCK(6,0,esi,SIZEOF_JCOEF)] por xmm1, XMMWORD [XMMBLOCK(7,0,esi,SIZEOF_JCOEF)] por xmm0,xmm1 packsswb xmm0,xmm0 packsswb xmm0,xmm0 movd eax,xmm0 test eax,eax jnz short .columnDCT ; -- AC terms all zero movdqa xmm0, XMMWORD [XMMBLOCK(0,0,esi,SIZEOF_JCOEF)] pmullw xmm0, XMMWORD [XMMBLOCK(0,0,edx,SIZEOF_ISLOW_MULT_TYPE)] psllw xmm0,PASS1_BITS movdqa xmm3,xmm0 ; xmm0=in0=(00 01 02 03 04 05 06 07) punpcklwd xmm0,xmm0 ; xmm0=(00 00 01 01 02 02 03 03) punpckhwd xmm3,xmm3 ; xmm3=(04 04 05 05 06 06 07 07) pshufd xmm1,xmm0,0x50 ; xmm1=[col0 col1]=(00 00 00 00 01 01 01 01) pshufd xmm0,xmm0,0xFA ; xmm0=[col2 col3]=(02 02 02 02 03 03 03 03) pshufd xmm6,xmm3,0x50 ; xmm6=[col4 col5]=(04 04 04 04 05 05 05 05) pshufd xmm3,xmm3,0xFA ; xmm3=[col6 col7]=(06 06 06 06 07 07 07 07) jmp near .column_end alignx 16,7 %endif .columnDCT: ; -- Odd part movdqa xmm0, XMMWORD [XMMBLOCK(1,0,esi,SIZEOF_JCOEF)] movdqa xmm1, XMMWORD [XMMBLOCK(3,0,esi,SIZEOF_JCOEF)] pmullw xmm0, XMMWORD [XMMBLOCK(1,0,edx,SIZEOF_ISLOW_MULT_TYPE)] pmullw xmm1, XMMWORD [XMMBLOCK(3,0,edx,SIZEOF_ISLOW_MULT_TYPE)] movdqa xmm2, XMMWORD [XMMBLOCK(5,0,esi,SIZEOF_JCOEF)] movdqa xmm3, XMMWORD [XMMBLOCK(7,0,esi,SIZEOF_JCOEF)] pmullw xmm2, XMMWORD [XMMBLOCK(5,0,edx,SIZEOF_ISLOW_MULT_TYPE)] pmullw xmm3, XMMWORD [XMMBLOCK(7,0,edx,SIZEOF_ISLOW_MULT_TYPE)] movdqa xmm4,xmm0 movdqa xmm5,xmm0 punpcklwd xmm4,xmm1 punpckhwd xmm5,xmm1 movdqa xmm0,xmm4 movdqa xmm1,xmm5 pmaddwd xmm4,[GOTOFF(ebx,PW_F256_F089)] ; xmm4=(tmp2L) pmaddwd xmm5,[GOTOFF(ebx,PW_F256_F089)] ; xmm5=(tmp2H) pmaddwd xmm0,[GOTOFF(ebx,PW_F106_MF217)] ; xmm0=(tmp0L) pmaddwd xmm1,[GOTOFF(ebx,PW_F106_MF217)] ; xmm1=(tmp0H) movdqa xmm6,xmm2 movdqa xmm7,xmm2 punpcklwd xmm6,xmm3 punpckhwd xmm7,xmm3 movdqa xmm2,xmm6 movdqa xmm3,xmm7 pmaddwd xmm6,[GOTOFF(ebx,PW_MF060_MF050)] ; xmm6=(tmp2L) pmaddwd xmm7,[GOTOFF(ebx,PW_MF060_MF050)] ; xmm7=(tmp2H) pmaddwd xmm2,[GOTOFF(ebx,PW_F145_MF021)] ; xmm2=(tmp0L) pmaddwd xmm3,[GOTOFF(ebx,PW_F145_MF021)] ; xmm3=(tmp0H) paddd xmm6,xmm4 ; xmm6=tmp2L paddd xmm7,xmm5 ; xmm7=tmp2H paddd xmm2,xmm0 ; xmm2=tmp0L paddd xmm3,xmm1 ; xmm3=tmp0H movdqa XMMWORD [wk(0)], xmm2 ; wk(0)=tmp0L movdqa XMMWORD [wk(1)], xmm3 ; wk(1)=tmp0H ; -- Even part movdqa xmm4, XMMWORD [XMMBLOCK(0,0,esi,SIZEOF_JCOEF)] movdqa xmm5, XMMWORD [XMMBLOCK(2,0,esi,SIZEOF_JCOEF)] movdqa xmm0, XMMWORD [XMMBLOCK(6,0,esi,SIZEOF_JCOEF)] pmullw xmm4, XMMWORD [XMMBLOCK(0,0,edx,SIZEOF_ISLOW_MULT_TYPE)] pmullw xmm5, XMMWORD [XMMBLOCK(2,0,edx,SIZEOF_ISLOW_MULT_TYPE)] pmullw xmm0, XMMWORD [XMMBLOCK(6,0,edx,SIZEOF_ISLOW_MULT_TYPE)] pxor xmm1,xmm1 pxor xmm2,xmm2 punpcklwd xmm1,xmm4 ; xmm1=tmp0L punpckhwd xmm2,xmm4 ; xmm2=tmp0H psrad xmm1,(16-CONST_BITS-1) ; psrad xmm1,16 & pslld xmm1,CONST_BITS+1 psrad xmm2,(16-CONST_BITS-1) ; psrad xmm2,16 & pslld xmm2,CONST_BITS+1 movdqa xmm3,xmm5 ; xmm5=in2=z2 punpcklwd xmm5,xmm0 ; xmm0=in6=z3 punpckhwd xmm3,xmm0 pmaddwd xmm5,[GOTOFF(ebx,PW_F184_MF076)] ; xmm5=tmp2L pmaddwd xmm3,[GOTOFF(ebx,PW_F184_MF076)] ; xmm3=tmp2H movdqa xmm4,xmm1 movdqa xmm0,xmm2 paddd xmm1,xmm5 ; xmm1=tmp10L paddd xmm2,xmm3 ; xmm2=tmp10H psubd xmm4,xmm5 ; xmm4=tmp12L psubd xmm0,xmm3 ; xmm0=tmp12H ; -- Final output stage movdqa xmm5,xmm1 movdqa xmm3,xmm2 paddd xmm1,xmm6 ; xmm1=data0L paddd xmm2,xmm7 ; xmm2=data0H psubd xmm5,xmm6 ; xmm5=data3L psubd xmm3,xmm7 ; xmm3=data3H movdqa xmm6,[GOTOFF(ebx,PD_DESCALE_P1_4)] ; xmm6=[PD_DESCALE_P1_4] paddd xmm1,xmm6 paddd xmm2,xmm6 psrad xmm1,DESCALE_P1_4 psrad xmm2,DESCALE_P1_4 paddd xmm5,xmm6 paddd xmm3,xmm6 psrad xmm5,DESCALE_P1_4 psrad xmm3,DESCALE_P1_4 packssdw xmm1,xmm2 ; xmm1=data0=(00 01 02 03 04 05 06 07) packssdw xmm5,xmm3 ; xmm5=data3=(30 31 32 33 34 35 36 37) movdqa xmm7, XMMWORD [wk(0)] ; xmm7=tmp0L movdqa xmm6, XMMWORD [wk(1)] ; xmm6=tmp0H movdqa xmm2,xmm4 movdqa xmm3,xmm0 paddd xmm4,xmm7 ; xmm4=data1L paddd xmm0,xmm6 ; xmm0=data1H psubd xmm2,xmm7 ; xmm2=data2L psubd xmm3,xmm6 ; xmm3=data2H movdqa xmm7,[GOTOFF(ebx,PD_DESCALE_P1_4)] ; xmm7=[PD_DESCALE_P1_4] paddd xmm4,xmm7 paddd xmm0,xmm7 psrad xmm4,DESCALE_P1_4 psrad xmm0,DESCALE_P1_4 paddd xmm2,xmm7 paddd xmm3,xmm7 psrad xmm2,DESCALE_P1_4 psrad xmm3,DESCALE_P1_4 packssdw xmm4,xmm0 ; xmm4=data1=(10 11 12 13 14 15 16 17) packssdw xmm2,xmm3 ; xmm2=data2=(20 21 22 23 24 25 26 27) movdqa xmm6,xmm1 ; transpose coefficients(phase 1) punpcklwd xmm1,xmm4 ; xmm1=(00 10 01 11 02 12 03 13) punpckhwd xmm6,xmm4 ; xmm6=(04 14 05 15 06 16 07 17) movdqa xmm7,xmm2 ; transpose coefficients(phase 1) punpcklwd xmm2,xmm5 ; xmm2=(20 30 21 31 22 32 23 33) punpckhwd xmm7,xmm5 ; xmm7=(24 34 25 35 26 36 27 37) movdqa xmm0,xmm1 ; transpose coefficients(phase 2) punpckldq xmm1,xmm2 ; xmm1=[col0 col1]=(00 10 20 30 01 11 21 31) punpckhdq xmm0,xmm2 ; xmm0=[col2 col3]=(02 12 22 32 03 13 23 33) movdqa xmm3,xmm6 ; transpose coefficients(phase 2) punpckldq xmm6,xmm7 ; xmm6=[col4 col5]=(04 14 24 34 05 15 25 35) punpckhdq xmm3,xmm7 ; xmm3=[col6 col7]=(06 16 26 36 07 17 27 37) .column_end: ; -- Prefetch the next coefficient block prefetchnta [esi + DCTSIZE2*SIZEOF_JCOEF + 0*32] prefetchnta [esi + DCTSIZE2*SIZEOF_JCOEF + 1*32] prefetchnta [esi + DCTSIZE2*SIZEOF_JCOEF + 2*32] prefetchnta [esi + DCTSIZE2*SIZEOF_JCOEF + 3*32] ; ---- Pass 2: process rows, store into output array. mov eax, [original_ebp] mov edi, JSAMPARRAY [output_buf(eax)] ; (JSAMPROW *) mov eax, JDIMENSION [output_col(eax)] ; -- Even part pxor xmm4,xmm4 punpcklwd xmm4,xmm1 ; xmm4=tmp0 psrad xmm4,(16-CONST_BITS-1) ; psrad xmm4,16 & pslld xmm4,CONST_BITS+1 ; -- Odd part punpckhwd xmm1,xmm0 punpckhwd xmm6,xmm3 movdqa xmm5,xmm1 movdqa xmm2,xmm6 pmaddwd xmm1,[GOTOFF(ebx,PW_F256_F089)] ; xmm1=(tmp2) pmaddwd xmm6,[GOTOFF(ebx,PW_MF060_MF050)] ; xmm6=(tmp2) pmaddwd xmm5,[GOTOFF(ebx,PW_F106_MF217)] ; xmm5=(tmp0) pmaddwd xmm2,[GOTOFF(ebx,PW_F145_MF021)] ; xmm2=(tmp0) paddd xmm6,xmm1 ; xmm6=tmp2 paddd xmm2,xmm5 ; xmm2=tmp0 ; -- Even part punpcklwd xmm0,xmm3 pmaddwd xmm0,[GOTOFF(ebx,PW_F184_MF076)] ; xmm0=tmp2 movdqa xmm7,xmm4 paddd xmm4,xmm0 ; xmm4=tmp10 psubd xmm7,xmm0 ; xmm7=tmp12 ; -- Final output stage movdqa xmm1,[GOTOFF(ebx,PD_DESCALE_P2_4)] ; xmm1=[PD_DESCALE_P2_4] movdqa xmm5,xmm4 movdqa xmm3,xmm7 paddd xmm4,xmm6 ; xmm4=data0=(00 10 20 30) paddd xmm7,xmm2 ; xmm7=data1=(01 11 21 31) psubd xmm5,xmm6 ; xmm5=data3=(03 13 23 33) psubd xmm3,xmm2 ; xmm3=data2=(02 12 22 32) paddd xmm4,xmm1 paddd xmm7,xmm1 psrad xmm4,DESCALE_P2_4 psrad xmm7,DESCALE_P2_4 paddd xmm5,xmm1 paddd xmm3,xmm1 psrad xmm5,DESCALE_P2_4 psrad xmm3,DESCALE_P2_4 packssdw xmm4,xmm3 ; xmm4=(00 10 20 30 02 12 22 32) packssdw xmm7,xmm5 ; xmm7=(01 11 21 31 03 13 23 33) movdqa xmm0,xmm4 ; transpose coefficients(phase 1) punpcklwd xmm4,xmm7 ; xmm4=(00 01 10 11 20 21 30 31) punpckhwd xmm0,xmm7 ; xmm0=(02 03 12 13 22 23 32 33) movdqa xmm6,xmm4 ; transpose coefficients(phase 2) punpckldq xmm4,xmm0 ; xmm4=(00 01 02 03 10 11 12 13) punpckhdq xmm6,xmm0 ; xmm6=(20 21 22 23 30 31 32 33) packsswb xmm4,xmm6 ; xmm4=(00 01 02 03 10 11 12 13 20 ..) paddb xmm4,[GOTOFF(ebx,PB_CENTERJSAMP)] pshufd xmm2,xmm4,0x39 ; xmm2=(10 11 12 13 20 21 22 23 30 ..) pshufd xmm1,xmm4,0x4E ; xmm1=(20 21 22 23 30 31 32 33 00 ..) pshufd xmm3,xmm4,0x93 ; xmm3=(30 31 32 33 00 01 02 03 10 ..) mov edx, JSAMPROW [edi+0*SIZEOF_JSAMPROW] mov esi, JSAMPROW [edi+1*SIZEOF_JSAMPROW] movd XMM_DWORD [edx+eax*SIZEOF_JSAMPLE], xmm4 movd XMM_DWORD [esi+eax*SIZEOF_JSAMPLE], xmm2 mov edx, JSAMPROW [edi+2*SIZEOF_JSAMPROW] mov esi, JSAMPROW [edi+3*SIZEOF_JSAMPROW] movd XMM_DWORD [edx+eax*SIZEOF_JSAMPLE], xmm1 movd XMM_DWORD [esi+eax*SIZEOF_JSAMPLE], xmm3 pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; unused poppic ebx mov esp,ebp ; esp <- aligned ebp pop esp ; esp <- original ebp pop ebp ret ; -------------------------------------------------------------------------- ; ; Perform dequantization and inverse DCT on one block of coefficients, ; producing a reduced-size 2x2 output block. ; ; GLOBAL(void) ; jsimd_idct_2x2_sse2 (void * dct_table, JCOEFPTR coef_block, ; JSAMPARRAY output_buf, JDIMENSION output_col) ; %define dct_table(b) (b)+8 ; void * dct_table %define coef_block(b) (b)+12 ; JCOEFPTR coef_block %define output_buf(b) (b)+16 ; JSAMPARRAY output_buf %define output_col(b) (b)+20 ; JDIMENSION output_col align 16 global EXTN(jsimd_idct_2x2_sse2) EXTN(jsimd_idct_2x2_sse2): push ebp mov ebp,esp push ebx ; push ecx ; need not be preserved ; push edx ; need not be preserved push esi push edi get_GOT ebx ; get GOT address ; ---- Pass 1: process columns from input. mov edx, POINTER [dct_table(ebp)] ; quantptr mov esi, JCOEFPTR [coef_block(ebp)] ; inptr ; | input: | result: | ; | 00 01 ** 03 ** 05 ** 07 | | ; | 10 11 ** 13 ** 15 ** 17 | | ; | ** ** ** ** ** ** ** ** | | ; | 30 31 ** 33 ** 35 ** 37 | A0 A1 A3 A5 A7 | ; | ** ** ** ** ** ** ** ** | B0 B1 B3 B5 B7 | ; | 50 51 ** 53 ** 55 ** 57 | | ; | ** ** ** ** ** ** ** ** | | ; | 70 71 ** 73 ** 75 ** 77 | | ; -- Odd part movdqa xmm0, XMMWORD [XMMBLOCK(1,0,esi,SIZEOF_JCOEF)] movdqa xmm1, XMMWORD [XMMBLOCK(3,0,esi,SIZEOF_JCOEF)] pmullw xmm0, XMMWORD [XMMBLOCK(1,0,edx,SIZEOF_ISLOW_MULT_TYPE)] pmullw xmm1, XMMWORD [XMMBLOCK(3,0,edx,SIZEOF_ISLOW_MULT_TYPE)] movdqa xmm2, XMMWORD [XMMBLOCK(5,0,esi,SIZEOF_JCOEF)] movdqa xmm3, XMMWORD [XMMBLOCK(7,0,esi,SIZEOF_JCOEF)] pmullw xmm2, XMMWORD [XMMBLOCK(5,0,edx,SIZEOF_ISLOW_MULT_TYPE)] pmullw xmm3, XMMWORD [XMMBLOCK(7,0,edx,SIZEOF_ISLOW_MULT_TYPE)] ; xmm0=(10 11 ** 13 ** 15 ** 17), xmm1=(30 31 ** 33 ** 35 ** 37) ; xmm2=(50 51 ** 53 ** 55 ** 57), xmm3=(70 71 ** 73 ** 75 ** 77) pcmpeqd xmm7,xmm7 pslld xmm7,WORD_BIT ; xmm7={0x0000 0xFFFF 0x0000 0xFFFF ..} movdqa xmm4,xmm0 ; xmm4=(10 11 ** 13 ** 15 ** 17) movdqa xmm5,xmm2 ; xmm5=(50 51 ** 53 ** 55 ** 57) punpcklwd xmm4,xmm1 ; xmm4=(10 30 11 31 ** ** 13 33) punpcklwd xmm5,xmm3 ; xmm5=(50 70 51 71 ** ** 53 73) pmaddwd xmm4,[GOTOFF(ebx,PW_F362_MF127)] pmaddwd xmm5,[GOTOFF(ebx,PW_F085_MF072)] psrld xmm0,WORD_BIT ; xmm0=(11 -- 13 -- 15 -- 17 --) pand xmm1,xmm7 ; xmm1=(-- 31 -- 33 -- 35 -- 37) psrld xmm2,WORD_BIT ; xmm2=(51 -- 53 -- 55 -- 57 --) pand xmm3,xmm7 ; xmm3=(-- 71 -- 73 -- 75 -- 77) por xmm0,xmm1 ; xmm0=(11 31 13 33 15 35 17 37) por xmm2,xmm3 ; xmm2=(51 71 53 73 55 75 57 77) pmaddwd xmm0,[GOTOFF(ebx,PW_F362_MF127)] pmaddwd xmm2,[GOTOFF(ebx,PW_F085_MF072)] paddd xmm4,xmm5 ; xmm4=tmp0[col0 col1 **** col3] paddd xmm0,xmm2 ; xmm0=tmp0[col1 col3 col5 col7] ; -- Even part movdqa xmm6, XMMWORD [XMMBLOCK(0,0,esi,SIZEOF_JCOEF)] pmullw xmm6, XMMWORD [XMMBLOCK(0,0,edx,SIZEOF_ISLOW_MULT_TYPE)] ; xmm6=(00 01 ** 03 ** 05 ** 07) movdqa xmm1,xmm6 ; xmm1=(00 01 ** 03 ** 05 ** 07) pslld xmm6,WORD_BIT ; xmm6=(-- 00 -- ** -- ** -- **) pand xmm1,xmm7 ; xmm1=(-- 01 -- 03 -- 05 -- 07) psrad xmm6,(WORD_BIT-CONST_BITS-2) ; xmm6=tmp10[col0 **** **** ****] psrad xmm1,(WORD_BIT-CONST_BITS-2) ; xmm1=tmp10[col1 col3 col5 col7] ; -- Final output stage movdqa xmm3,xmm6 movdqa xmm5,xmm1 paddd xmm6,xmm4 ; xmm6=data0[col0 **** **** ****]=(A0 ** ** **) paddd xmm1,xmm0 ; xmm1=data0[col1 col3 col5 col7]=(A1 A3 A5 A7) psubd xmm3,xmm4 ; xmm3=data1[col0 **** **** ****]=(B0 ** ** **) psubd xmm5,xmm0 ; xmm5=data1[col1 col3 col5 col7]=(B1 B3 B5 B7) movdqa xmm2,[GOTOFF(ebx,PD_DESCALE_P1_2)] ; xmm2=[PD_DESCALE_P1_2] punpckldq xmm6,xmm3 ; xmm6=(A0 B0 ** **) movdqa xmm7,xmm1 punpcklqdq xmm1,xmm5 ; xmm1=(A1 A3 B1 B3) punpckhqdq xmm7,xmm5 ; xmm7=(A5 A7 B5 B7) paddd xmm6,xmm2 psrad xmm6,DESCALE_P1_2 paddd xmm1,xmm2 paddd xmm7,xmm2 psrad xmm1,DESCALE_P1_2 psrad xmm7,DESCALE_P1_2 ; -- Prefetch the next coefficient block prefetchnta [esi + DCTSIZE2*SIZEOF_JCOEF + 0*32] prefetchnta [esi + DCTSIZE2*SIZEOF_JCOEF + 1*32] prefetchnta [esi + DCTSIZE2*SIZEOF_JCOEF + 2*32] prefetchnta [esi + DCTSIZE2*SIZEOF_JCOEF + 3*32] ; ---- Pass 2: process rows, store into output array. mov edi, JSAMPARRAY [output_buf(ebp)] ; (JSAMPROW *) mov eax, JDIMENSION [output_col(ebp)] ; | input:| result:| ; | A0 B0 | | ; | A1 B1 | C0 C1 | ; | A3 B3 | D0 D1 | ; | A5 B5 | | ; | A7 B7 | | ; -- Odd part packssdw xmm1,xmm1 ; xmm1=(A1 A3 B1 B3 A1 A3 B1 B3) packssdw xmm7,xmm7 ; xmm7=(A5 A7 B5 B7 A5 A7 B5 B7) pmaddwd xmm1,[GOTOFF(ebx,PW_F362_MF127)] pmaddwd xmm7,[GOTOFF(ebx,PW_F085_MF072)] paddd xmm1,xmm7 ; xmm1=tmp0[row0 row1 row0 row1] ; -- Even part pslld xmm6,(CONST_BITS+2) ; xmm6=tmp10[row0 row1 **** ****] ; -- Final output stage movdqa xmm4,xmm6 paddd xmm6,xmm1 ; xmm6=data0[row0 row1 **** ****]=(C0 C1 ** **) psubd xmm4,xmm1 ; xmm4=data1[row0 row1 **** ****]=(D0 D1 ** **) punpckldq xmm6,xmm4 ; xmm6=(C0 D0 C1 D1) paddd xmm6,[GOTOFF(ebx,PD_DESCALE_P2_2)] psrad xmm6,DESCALE_P2_2 packssdw xmm6,xmm6 ; xmm6=(C0 D0 C1 D1 C0 D0 C1 D1) packsswb xmm6,xmm6 ; xmm6=(C0 D0 C1 D1 C0 D0 C1 D1 ..) paddb xmm6,[GOTOFF(ebx,PB_CENTERJSAMP)] pextrw ebx,xmm6,0x00 ; ebx=(C0 D0 -- --) pextrw ecx,xmm6,0x01 ; ecx=(C1 D1 -- --) mov edx, JSAMPROW [edi+0*SIZEOF_JSAMPROW] mov esi, JSAMPROW [edi+1*SIZEOF_JSAMPROW] mov WORD [edx+eax*SIZEOF_JSAMPLE], bx mov WORD [esi+eax*SIZEOF_JSAMPLE], cx pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; need not be preserved pop ebx pop ebp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 16 libjpeg-turbo-1.4.2/simd/jccolext-mmx.asm0000644000076500007650000004152212600050400015255 00000000000000; ; jccolext.asm - colorspace conversion (MMX) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; ; Based on ; x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; [TAB8] %include "jcolsamp.inc" ; -------------------------------------------------------------------------- ; ; Convert some rows of samples to the output colorspace. ; ; GLOBAL(void) ; jsimd_rgb_ycc_convert_mmx (JDIMENSION img_width, ; JSAMPARRAY input_buf, JSAMPIMAGE output_buf, ; JDIMENSION output_row, int num_rows); ; %define img_width(b) (b)+8 ; JDIMENSION img_width %define input_buf(b) (b)+12 ; JSAMPARRAY input_buf %define output_buf(b) (b)+16 ; JSAMPIMAGE output_buf %define output_row(b) (b)+20 ; JDIMENSION output_row %define num_rows(b) (b)+24 ; int num_rows %define original_ebp ebp+0 %define wk(i) ebp-(WK_NUM-(i))*SIZEOF_MMWORD ; mmword wk[WK_NUM] %define WK_NUM 8 %define gotptr wk(0)-SIZEOF_POINTER ; void * gotptr align 16 global EXTN(jsimd_rgb_ycc_convert_mmx) EXTN(jsimd_rgb_ycc_convert_mmx): push ebp mov eax,esp ; eax = original ebp sub esp, byte 4 and esp, byte (-SIZEOF_MMWORD) ; align to 64 bits mov [esp],eax mov ebp,esp ; ebp = aligned ebp lea esp, [wk(0)] pushpic eax ; make a room for GOT address push ebx ; push ecx ; need not be preserved ; push edx ; need not be preserved push esi push edi get_GOT ebx ; get GOT address movpic POINTER [gotptr], ebx ; save GOT address mov ecx, JDIMENSION [img_width(eax)] ; num_cols test ecx,ecx jz near .return push ecx mov esi, JSAMPIMAGE [output_buf(eax)] mov ecx, JDIMENSION [output_row(eax)] mov edi, JSAMPARRAY [esi+0*SIZEOF_JSAMPARRAY] mov ebx, JSAMPARRAY [esi+1*SIZEOF_JSAMPARRAY] mov edx, JSAMPARRAY [esi+2*SIZEOF_JSAMPARRAY] lea edi, [edi+ecx*SIZEOF_JSAMPROW] lea ebx, [ebx+ecx*SIZEOF_JSAMPROW] lea edx, [edx+ecx*SIZEOF_JSAMPROW] pop ecx mov esi, JSAMPARRAY [input_buf(eax)] mov eax, INT [num_rows(eax)] test eax,eax jle near .return alignx 16,7 .rowloop: pushpic eax push edx push ebx push edi push esi push ecx ; col mov esi, JSAMPROW [esi] ; inptr mov edi, JSAMPROW [edi] ; outptr0 mov ebx, JSAMPROW [ebx] ; outptr1 mov edx, JSAMPROW [edx] ; outptr2 movpic eax, POINTER [gotptr] ; load GOT address (eax) cmp ecx, byte SIZEOF_MMWORD jae short .columnloop alignx 16,7 %if RGB_PIXELSIZE == 3 ; --------------- .column_ld1: push eax push edx lea ecx,[ecx+ecx*2] ; imul ecx,RGB_PIXELSIZE test cl, SIZEOF_BYTE jz short .column_ld2 sub ecx, byte SIZEOF_BYTE xor eax,eax mov al, BYTE [esi+ecx] .column_ld2: test cl, SIZEOF_WORD jz short .column_ld4 sub ecx, byte SIZEOF_WORD xor edx,edx mov dx, WORD [esi+ecx] shl eax, WORD_BIT or eax,edx .column_ld4: movd mmA,eax pop edx pop eax test cl, SIZEOF_DWORD jz short .column_ld8 sub ecx, byte SIZEOF_DWORD movd mmG, DWORD [esi+ecx] psllq mmA, DWORD_BIT por mmA,mmG .column_ld8: test cl, SIZEOF_MMWORD jz short .column_ld16 movq mmG,mmA movq mmA, MMWORD [esi+0*SIZEOF_MMWORD] mov ecx, SIZEOF_MMWORD jmp short .rgb_ycc_cnv .column_ld16: test cl, 2*SIZEOF_MMWORD mov ecx, SIZEOF_MMWORD jz short .rgb_ycc_cnv movq mmF,mmA movq mmA, MMWORD [esi+0*SIZEOF_MMWORD] movq mmG, MMWORD [esi+1*SIZEOF_MMWORD] jmp short .rgb_ycc_cnv alignx 16,7 .columnloop: movq mmA, MMWORD [esi+0*SIZEOF_MMWORD] movq mmG, MMWORD [esi+1*SIZEOF_MMWORD] movq mmF, MMWORD [esi+2*SIZEOF_MMWORD] .rgb_ycc_cnv: ; mmA=(00 10 20 01 11 21 02 12) ; mmG=(22 03 13 23 04 14 24 05) ; mmF=(15 25 06 16 26 07 17 27) movq mmD,mmA psllq mmA,4*BYTE_BIT ; mmA=(-- -- -- -- 00 10 20 01) psrlq mmD,4*BYTE_BIT ; mmD=(11 21 02 12 -- -- -- --) punpckhbw mmA,mmG ; mmA=(00 04 10 14 20 24 01 05) psllq mmG,4*BYTE_BIT ; mmG=(-- -- -- -- 22 03 13 23) punpcklbw mmD,mmF ; mmD=(11 15 21 25 02 06 12 16) punpckhbw mmG,mmF ; mmG=(22 26 03 07 13 17 23 27) movq mmE,mmA psllq mmA,4*BYTE_BIT ; mmA=(-- -- -- -- 00 04 10 14) psrlq mmE,4*BYTE_BIT ; mmE=(20 24 01 05 -- -- -- --) punpckhbw mmA,mmD ; mmA=(00 02 04 06 10 12 14 16) psllq mmD,4*BYTE_BIT ; mmD=(-- -- -- -- 11 15 21 25) punpcklbw mmE,mmG ; mmE=(20 22 24 26 01 03 05 07) punpckhbw mmD,mmG ; mmD=(11 13 15 17 21 23 25 27) pxor mmH,mmH movq mmC,mmA punpcklbw mmA,mmH ; mmA=(00 02 04 06) punpckhbw mmC,mmH ; mmC=(10 12 14 16) movq mmB,mmE punpcklbw mmE,mmH ; mmE=(20 22 24 26) punpckhbw mmB,mmH ; mmB=(01 03 05 07) movq mmF,mmD punpcklbw mmD,mmH ; mmD=(11 13 15 17) punpckhbw mmF,mmH ; mmF=(21 23 25 27) %else ; RGB_PIXELSIZE == 4 ; ----------- .column_ld1: test cl, SIZEOF_MMWORD/8 jz short .column_ld2 sub ecx, byte SIZEOF_MMWORD/8 movd mmA, DWORD [esi+ecx*RGB_PIXELSIZE] .column_ld2: test cl, SIZEOF_MMWORD/4 jz short .column_ld4 sub ecx, byte SIZEOF_MMWORD/4 movq mmF,mmA movq mmA, MMWORD [esi+ecx*RGB_PIXELSIZE] .column_ld4: test cl, SIZEOF_MMWORD/2 mov ecx, SIZEOF_MMWORD jz short .rgb_ycc_cnv movq mmD,mmA movq mmC,mmF movq mmA, MMWORD [esi+0*SIZEOF_MMWORD] movq mmF, MMWORD [esi+1*SIZEOF_MMWORD] jmp short .rgb_ycc_cnv alignx 16,7 .columnloop: movq mmA, MMWORD [esi+0*SIZEOF_MMWORD] movq mmF, MMWORD [esi+1*SIZEOF_MMWORD] movq mmD, MMWORD [esi+2*SIZEOF_MMWORD] movq mmC, MMWORD [esi+3*SIZEOF_MMWORD] .rgb_ycc_cnv: ; mmA=(00 10 20 30 01 11 21 31) ; mmF=(02 12 22 32 03 13 23 33) ; mmD=(04 14 24 34 05 15 25 35) ; mmC=(06 16 26 36 07 17 27 37) movq mmB,mmA punpcklbw mmA,mmF ; mmA=(00 02 10 12 20 22 30 32) punpckhbw mmB,mmF ; mmB=(01 03 11 13 21 23 31 33) movq mmG,mmD punpcklbw mmD,mmC ; mmD=(04 06 14 16 24 26 34 36) punpckhbw mmG,mmC ; mmG=(05 07 15 17 25 27 35 37) movq mmE,mmA punpcklwd mmA,mmD ; mmA=(00 02 04 06 10 12 14 16) punpckhwd mmE,mmD ; mmE=(20 22 24 26 30 32 34 36) movq mmH,mmB punpcklwd mmB,mmG ; mmB=(01 03 05 07 11 13 15 17) punpckhwd mmH,mmG ; mmH=(21 23 25 27 31 33 35 37) pxor mmF,mmF movq mmC,mmA punpcklbw mmA,mmF ; mmA=(00 02 04 06) punpckhbw mmC,mmF ; mmC=(10 12 14 16) movq mmD,mmB punpcklbw mmB,mmF ; mmB=(01 03 05 07) punpckhbw mmD,mmF ; mmD=(11 13 15 17) movq mmG,mmE punpcklbw mmE,mmF ; mmE=(20 22 24 26) punpckhbw mmG,mmF ; mmG=(30 32 34 36) punpcklbw mmF,mmH punpckhbw mmH,mmH psrlw mmF,BYTE_BIT ; mmF=(21 23 25 27) psrlw mmH,BYTE_BIT ; mmH=(31 33 35 37) %endif ; RGB_PIXELSIZE ; --------------- ; mm0=(R0 R2 R4 R6)=RE, mm2=(G0 G2 G4 G6)=GE, mm4=(B0 B2 B4 B6)=BE ; mm1=(R1 R3 R5 R7)=RO, mm3=(G1 G3 G5 G7)=GO, mm5=(B1 B3 B5 B7)=BO ; (Original) ; Y = 0.29900 * R + 0.58700 * G + 0.11400 * B ; Cb = -0.16874 * R - 0.33126 * G + 0.50000 * B + CENTERJSAMPLE ; Cr = 0.50000 * R - 0.41869 * G - 0.08131 * B + CENTERJSAMPLE ; ; (This implementation) ; Y = 0.29900 * R + 0.33700 * G + 0.11400 * B + 0.25000 * G ; Cb = -0.16874 * R - 0.33126 * G + 0.50000 * B + CENTERJSAMPLE ; Cr = 0.50000 * R - 0.41869 * G - 0.08131 * B + CENTERJSAMPLE movq MMWORD [wk(0)], mm0 ; wk(0)=RE movq MMWORD [wk(1)], mm1 ; wk(1)=RO movq MMWORD [wk(2)], mm4 ; wk(2)=BE movq MMWORD [wk(3)], mm5 ; wk(3)=BO movq mm6,mm1 punpcklwd mm1,mm3 punpckhwd mm6,mm3 movq mm7,mm1 movq mm4,mm6 pmaddwd mm1,[GOTOFF(eax,PW_F0299_F0337)] ; mm1=ROL*FIX(0.299)+GOL*FIX(0.337) pmaddwd mm6,[GOTOFF(eax,PW_F0299_F0337)] ; mm6=ROH*FIX(0.299)+GOH*FIX(0.337) pmaddwd mm7,[GOTOFF(eax,PW_MF016_MF033)] ; mm7=ROL*-FIX(0.168)+GOL*-FIX(0.331) pmaddwd mm4,[GOTOFF(eax,PW_MF016_MF033)] ; mm4=ROH*-FIX(0.168)+GOH*-FIX(0.331) movq MMWORD [wk(4)], mm1 ; wk(4)=ROL*FIX(0.299)+GOL*FIX(0.337) movq MMWORD [wk(5)], mm6 ; wk(5)=ROH*FIX(0.299)+GOH*FIX(0.337) pxor mm1,mm1 pxor mm6,mm6 punpcklwd mm1,mm5 ; mm1=BOL punpckhwd mm6,mm5 ; mm6=BOH psrld mm1,1 ; mm1=BOL*FIX(0.500) psrld mm6,1 ; mm6=BOH*FIX(0.500) movq mm5,[GOTOFF(eax,PD_ONEHALFM1_CJ)] ; mm5=[PD_ONEHALFM1_CJ] paddd mm7,mm1 paddd mm4,mm6 paddd mm7,mm5 paddd mm4,mm5 psrld mm7,SCALEBITS ; mm7=CbOL psrld mm4,SCALEBITS ; mm4=CbOH packssdw mm7,mm4 ; mm7=CbO movq mm1, MMWORD [wk(2)] ; mm1=BE movq mm6,mm0 punpcklwd mm0,mm2 punpckhwd mm6,mm2 movq mm5,mm0 movq mm4,mm6 pmaddwd mm0,[GOTOFF(eax,PW_F0299_F0337)] ; mm0=REL*FIX(0.299)+GEL*FIX(0.337) pmaddwd mm6,[GOTOFF(eax,PW_F0299_F0337)] ; mm6=REH*FIX(0.299)+GEH*FIX(0.337) pmaddwd mm5,[GOTOFF(eax,PW_MF016_MF033)] ; mm5=REL*-FIX(0.168)+GEL*-FIX(0.331) pmaddwd mm4,[GOTOFF(eax,PW_MF016_MF033)] ; mm4=REH*-FIX(0.168)+GEH*-FIX(0.331) movq MMWORD [wk(6)], mm0 ; wk(6)=REL*FIX(0.299)+GEL*FIX(0.337) movq MMWORD [wk(7)], mm6 ; wk(7)=REH*FIX(0.299)+GEH*FIX(0.337) pxor mm0,mm0 pxor mm6,mm6 punpcklwd mm0,mm1 ; mm0=BEL punpckhwd mm6,mm1 ; mm6=BEH psrld mm0,1 ; mm0=BEL*FIX(0.500) psrld mm6,1 ; mm6=BEH*FIX(0.500) movq mm1,[GOTOFF(eax,PD_ONEHALFM1_CJ)] ; mm1=[PD_ONEHALFM1_CJ] paddd mm5,mm0 paddd mm4,mm6 paddd mm5,mm1 paddd mm4,mm1 psrld mm5,SCALEBITS ; mm5=CbEL psrld mm4,SCALEBITS ; mm4=CbEH packssdw mm5,mm4 ; mm5=CbE psllw mm7,BYTE_BIT por mm5,mm7 ; mm5=Cb movq MMWORD [ebx], mm5 ; Save Cb movq mm0, MMWORD [wk(3)] ; mm0=BO movq mm6, MMWORD [wk(2)] ; mm6=BE movq mm1, MMWORD [wk(1)] ; mm1=RO movq mm4,mm0 punpcklwd mm0,mm3 punpckhwd mm4,mm3 movq mm7,mm0 movq mm5,mm4 pmaddwd mm0,[GOTOFF(eax,PW_F0114_F0250)] ; mm0=BOL*FIX(0.114)+GOL*FIX(0.250) pmaddwd mm4,[GOTOFF(eax,PW_F0114_F0250)] ; mm4=BOH*FIX(0.114)+GOH*FIX(0.250) pmaddwd mm7,[GOTOFF(eax,PW_MF008_MF041)] ; mm7=BOL*-FIX(0.081)+GOL*-FIX(0.418) pmaddwd mm5,[GOTOFF(eax,PW_MF008_MF041)] ; mm5=BOH*-FIX(0.081)+GOH*-FIX(0.418) movq mm3,[GOTOFF(eax,PD_ONEHALF)] ; mm3=[PD_ONEHALF] paddd mm0, MMWORD [wk(4)] paddd mm4, MMWORD [wk(5)] paddd mm0,mm3 paddd mm4,mm3 psrld mm0,SCALEBITS ; mm0=YOL psrld mm4,SCALEBITS ; mm4=YOH packssdw mm0,mm4 ; mm0=YO pxor mm3,mm3 pxor mm4,mm4 punpcklwd mm3,mm1 ; mm3=ROL punpckhwd mm4,mm1 ; mm4=ROH psrld mm3,1 ; mm3=ROL*FIX(0.500) psrld mm4,1 ; mm4=ROH*FIX(0.500) movq mm1,[GOTOFF(eax,PD_ONEHALFM1_CJ)] ; mm1=[PD_ONEHALFM1_CJ] paddd mm7,mm3 paddd mm5,mm4 paddd mm7,mm1 paddd mm5,mm1 psrld mm7,SCALEBITS ; mm7=CrOL psrld mm5,SCALEBITS ; mm5=CrOH packssdw mm7,mm5 ; mm7=CrO movq mm3, MMWORD [wk(0)] ; mm3=RE movq mm4,mm6 punpcklwd mm6,mm2 punpckhwd mm4,mm2 movq mm1,mm6 movq mm5,mm4 pmaddwd mm6,[GOTOFF(eax,PW_F0114_F0250)] ; mm6=BEL*FIX(0.114)+GEL*FIX(0.250) pmaddwd mm4,[GOTOFF(eax,PW_F0114_F0250)] ; mm4=BEH*FIX(0.114)+GEH*FIX(0.250) pmaddwd mm1,[GOTOFF(eax,PW_MF008_MF041)] ; mm1=BEL*-FIX(0.081)+GEL*-FIX(0.418) pmaddwd mm5,[GOTOFF(eax,PW_MF008_MF041)] ; mm5=BEH*-FIX(0.081)+GEH*-FIX(0.418) movq mm2,[GOTOFF(eax,PD_ONEHALF)] ; mm2=[PD_ONEHALF] paddd mm6, MMWORD [wk(6)] paddd mm4, MMWORD [wk(7)] paddd mm6,mm2 paddd mm4,mm2 psrld mm6,SCALEBITS ; mm6=YEL psrld mm4,SCALEBITS ; mm4=YEH packssdw mm6,mm4 ; mm6=YE psllw mm0,BYTE_BIT por mm6,mm0 ; mm6=Y movq MMWORD [edi], mm6 ; Save Y pxor mm2,mm2 pxor mm4,mm4 punpcklwd mm2,mm3 ; mm2=REL punpckhwd mm4,mm3 ; mm4=REH psrld mm2,1 ; mm2=REL*FIX(0.500) psrld mm4,1 ; mm4=REH*FIX(0.500) movq mm0,[GOTOFF(eax,PD_ONEHALFM1_CJ)] ; mm0=[PD_ONEHALFM1_CJ] paddd mm1,mm2 paddd mm5,mm4 paddd mm1,mm0 paddd mm5,mm0 psrld mm1,SCALEBITS ; mm1=CrEL psrld mm5,SCALEBITS ; mm5=CrEH packssdw mm1,mm5 ; mm1=CrE psllw mm7,BYTE_BIT por mm1,mm7 ; mm1=Cr movq MMWORD [edx], mm1 ; Save Cr sub ecx, byte SIZEOF_MMWORD add esi, byte RGB_PIXELSIZE*SIZEOF_MMWORD ; inptr add edi, byte SIZEOF_MMWORD ; outptr0 add ebx, byte SIZEOF_MMWORD ; outptr1 add edx, byte SIZEOF_MMWORD ; outptr2 cmp ecx, byte SIZEOF_MMWORD jae near .columnloop test ecx,ecx jnz near .column_ld1 pop ecx ; col pop esi pop edi pop ebx pop edx poppic eax add esi, byte SIZEOF_JSAMPROW ; input_buf add edi, byte SIZEOF_JSAMPROW add ebx, byte SIZEOF_JSAMPROW add edx, byte SIZEOF_JSAMPROW dec eax ; num_rows jg near .rowloop emms ; empty MMX state .return: pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; need not be preserved pop ebx mov esp,ebp ; esp <- aligned ebp pop esp ; esp <- original ebp pop ebp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 16 libjpeg-turbo-1.4.2/simd/jfdctint-mmx.asm0000644000076500007650000006105212600050400015247 00000000000000; ; jfdctint.asm - accurate integer FDCT (MMX) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; ; Based on ; x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; This file contains a slow-but-accurate integer implementation of the ; forward DCT (Discrete Cosine Transform). The following code is based ; directly on the IJG's original jfdctint.c; see the jfdctint.c for ; more details. ; ; [TAB8] %include "jsimdext.inc" %include "jdct.inc" ; -------------------------------------------------------------------------- %define CONST_BITS 13 %define PASS1_BITS 2 %define DESCALE_P1 (CONST_BITS-PASS1_BITS) %define DESCALE_P2 (CONST_BITS+PASS1_BITS) %if CONST_BITS == 13 F_0_298 equ 2446 ; FIX(0.298631336) F_0_390 equ 3196 ; FIX(0.390180644) F_0_541 equ 4433 ; FIX(0.541196100) F_0_765 equ 6270 ; FIX(0.765366865) F_0_899 equ 7373 ; FIX(0.899976223) F_1_175 equ 9633 ; FIX(1.175875602) F_1_501 equ 12299 ; FIX(1.501321110) F_1_847 equ 15137 ; FIX(1.847759065) F_1_961 equ 16069 ; FIX(1.961570560) F_2_053 equ 16819 ; FIX(2.053119869) F_2_562 equ 20995 ; FIX(2.562915447) F_3_072 equ 25172 ; FIX(3.072711026) %else ; NASM cannot do compile-time arithmetic on floating-point constants. %define DESCALE(x,n) (((x)+(1<<((n)-1)))>>(n)) F_0_298 equ DESCALE( 320652955,30-CONST_BITS) ; FIX(0.298631336) F_0_390 equ DESCALE( 418953276,30-CONST_BITS) ; FIX(0.390180644) F_0_541 equ DESCALE( 581104887,30-CONST_BITS) ; FIX(0.541196100) F_0_765 equ DESCALE( 821806413,30-CONST_BITS) ; FIX(0.765366865) F_0_899 equ DESCALE( 966342111,30-CONST_BITS) ; FIX(0.899976223) F_1_175 equ DESCALE(1262586813,30-CONST_BITS) ; FIX(1.175875602) F_1_501 equ DESCALE(1612031267,30-CONST_BITS) ; FIX(1.501321110) F_1_847 equ DESCALE(1984016188,30-CONST_BITS) ; FIX(1.847759065) F_1_961 equ DESCALE(2106220350,30-CONST_BITS) ; FIX(1.961570560) F_2_053 equ DESCALE(2204520673,30-CONST_BITS) ; FIX(2.053119869) F_2_562 equ DESCALE(2751909506,30-CONST_BITS) ; FIX(2.562915447) F_3_072 equ DESCALE(3299298341,30-CONST_BITS) ; FIX(3.072711026) %endif ; -------------------------------------------------------------------------- SECTION SEG_CONST alignz 16 global EXTN(jconst_fdct_islow_mmx) EXTN(jconst_fdct_islow_mmx): PW_F130_F054 times 2 dw (F_0_541+F_0_765), F_0_541 PW_F054_MF130 times 2 dw F_0_541, (F_0_541-F_1_847) PW_MF078_F117 times 2 dw (F_1_175-F_1_961), F_1_175 PW_F117_F078 times 2 dw F_1_175, (F_1_175-F_0_390) PW_MF060_MF089 times 2 dw (F_0_298-F_0_899),-F_0_899 PW_MF089_F060 times 2 dw -F_0_899, (F_1_501-F_0_899) PW_MF050_MF256 times 2 dw (F_2_053-F_2_562),-F_2_562 PW_MF256_F050 times 2 dw -F_2_562, (F_3_072-F_2_562) PD_DESCALE_P1 times 2 dd 1 << (DESCALE_P1-1) PD_DESCALE_P2 times 2 dd 1 << (DESCALE_P2-1) PW_DESCALE_P2X times 4 dw 1 << (PASS1_BITS-1) alignz 16 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 32 ; ; Perform the forward DCT on one block of samples. ; ; GLOBAL(void) ; jsimd_fdct_islow_mmx (DCTELEM * data) ; %define data(b) (b)+8 ; DCTELEM * data %define original_ebp ebp+0 %define wk(i) ebp-(WK_NUM-(i))*SIZEOF_MMWORD ; mmword wk[WK_NUM] %define WK_NUM 2 align 16 global EXTN(jsimd_fdct_islow_mmx) EXTN(jsimd_fdct_islow_mmx): push ebp mov eax,esp ; eax = original ebp sub esp, byte 4 and esp, byte (-SIZEOF_MMWORD) ; align to 64 bits mov [esp],eax mov ebp,esp ; ebp = aligned ebp lea esp, [wk(0)] pushpic ebx ; push ecx ; need not be preserved ; push edx ; need not be preserved ; push esi ; unused ; push edi ; unused get_GOT ebx ; get GOT address ; ---- Pass 1: process rows. mov edx, POINTER [data(eax)] ; (DCTELEM *) mov ecx, DCTSIZE/4 alignx 16,7 .rowloop: movq mm0, MMWORD [MMBLOCK(2,0,edx,SIZEOF_DCTELEM)] movq mm1, MMWORD [MMBLOCK(3,0,edx,SIZEOF_DCTELEM)] movq mm2, MMWORD [MMBLOCK(2,1,edx,SIZEOF_DCTELEM)] movq mm3, MMWORD [MMBLOCK(3,1,edx,SIZEOF_DCTELEM)] ; mm0=(20 21 22 23), mm2=(24 25 26 27) ; mm1=(30 31 32 33), mm3=(34 35 36 37) movq mm4,mm0 ; transpose coefficients(phase 1) punpcklwd mm0,mm1 ; mm0=(20 30 21 31) punpckhwd mm4,mm1 ; mm4=(22 32 23 33) movq mm5,mm2 ; transpose coefficients(phase 1) punpcklwd mm2,mm3 ; mm2=(24 34 25 35) punpckhwd mm5,mm3 ; mm5=(26 36 27 37) movq mm6, MMWORD [MMBLOCK(0,0,edx,SIZEOF_DCTELEM)] movq mm7, MMWORD [MMBLOCK(1,0,edx,SIZEOF_DCTELEM)] movq mm1, MMWORD [MMBLOCK(0,1,edx,SIZEOF_DCTELEM)] movq mm3, MMWORD [MMBLOCK(1,1,edx,SIZEOF_DCTELEM)] ; mm6=(00 01 02 03), mm1=(04 05 06 07) ; mm7=(10 11 12 13), mm3=(14 15 16 17) movq MMWORD [wk(0)], mm4 ; wk(0)=(22 32 23 33) movq MMWORD [wk(1)], mm2 ; wk(1)=(24 34 25 35) movq mm4,mm6 ; transpose coefficients(phase 1) punpcklwd mm6,mm7 ; mm6=(00 10 01 11) punpckhwd mm4,mm7 ; mm4=(02 12 03 13) movq mm2,mm1 ; transpose coefficients(phase 1) punpcklwd mm1,mm3 ; mm1=(04 14 05 15) punpckhwd mm2,mm3 ; mm2=(06 16 07 17) movq mm7,mm6 ; transpose coefficients(phase 2) punpckldq mm6,mm0 ; mm6=(00 10 20 30)=data0 punpckhdq mm7,mm0 ; mm7=(01 11 21 31)=data1 movq mm3,mm2 ; transpose coefficients(phase 2) punpckldq mm2,mm5 ; mm2=(06 16 26 36)=data6 punpckhdq mm3,mm5 ; mm3=(07 17 27 37)=data7 movq mm0,mm7 movq mm5,mm6 psubw mm7,mm2 ; mm7=data1-data6=tmp6 psubw mm6,mm3 ; mm6=data0-data7=tmp7 paddw mm0,mm2 ; mm0=data1+data6=tmp1 paddw mm5,mm3 ; mm5=data0+data7=tmp0 movq mm2, MMWORD [wk(0)] ; mm2=(22 32 23 33) movq mm3, MMWORD [wk(1)] ; mm3=(24 34 25 35) movq MMWORD [wk(0)], mm7 ; wk(0)=tmp6 movq MMWORD [wk(1)], mm6 ; wk(1)=tmp7 movq mm7,mm4 ; transpose coefficients(phase 2) punpckldq mm4,mm2 ; mm4=(02 12 22 32)=data2 punpckhdq mm7,mm2 ; mm7=(03 13 23 33)=data3 movq mm6,mm1 ; transpose coefficients(phase 2) punpckldq mm1,mm3 ; mm1=(04 14 24 34)=data4 punpckhdq mm6,mm3 ; mm6=(05 15 25 35)=data5 movq mm2,mm7 movq mm3,mm4 paddw mm7,mm1 ; mm7=data3+data4=tmp3 paddw mm4,mm6 ; mm4=data2+data5=tmp2 psubw mm2,mm1 ; mm2=data3-data4=tmp4 psubw mm3,mm6 ; mm3=data2-data5=tmp5 ; -- Even part movq mm1,mm5 movq mm6,mm0 paddw mm5,mm7 ; mm5=tmp10 paddw mm0,mm4 ; mm0=tmp11 psubw mm1,mm7 ; mm1=tmp13 psubw mm6,mm4 ; mm6=tmp12 movq mm7,mm5 paddw mm5,mm0 ; mm5=tmp10+tmp11 psubw mm7,mm0 ; mm7=tmp10-tmp11 psllw mm5,PASS1_BITS ; mm5=data0 psllw mm7,PASS1_BITS ; mm7=data4 movq MMWORD [MMBLOCK(0,0,edx,SIZEOF_DCTELEM)], mm5 movq MMWORD [MMBLOCK(0,1,edx,SIZEOF_DCTELEM)], mm7 ; (Original) ; z1 = (tmp12 + tmp13) * 0.541196100; ; data2 = z1 + tmp13 * 0.765366865; ; data6 = z1 + tmp12 * -1.847759065; ; ; (This implementation) ; data2 = tmp13 * (0.541196100 + 0.765366865) + tmp12 * 0.541196100; ; data6 = tmp13 * 0.541196100 + tmp12 * (0.541196100 - 1.847759065); movq mm4,mm1 ; mm1=tmp13 movq mm0,mm1 punpcklwd mm4,mm6 ; mm6=tmp12 punpckhwd mm0,mm6 movq mm1,mm4 movq mm6,mm0 pmaddwd mm4,[GOTOFF(ebx,PW_F130_F054)] ; mm4=data2L pmaddwd mm0,[GOTOFF(ebx,PW_F130_F054)] ; mm0=data2H pmaddwd mm1,[GOTOFF(ebx,PW_F054_MF130)] ; mm1=data6L pmaddwd mm6,[GOTOFF(ebx,PW_F054_MF130)] ; mm6=data6H paddd mm4,[GOTOFF(ebx,PD_DESCALE_P1)] paddd mm0,[GOTOFF(ebx,PD_DESCALE_P1)] psrad mm4,DESCALE_P1 psrad mm0,DESCALE_P1 paddd mm1,[GOTOFF(ebx,PD_DESCALE_P1)] paddd mm6,[GOTOFF(ebx,PD_DESCALE_P1)] psrad mm1,DESCALE_P1 psrad mm6,DESCALE_P1 packssdw mm4,mm0 ; mm4=data2 packssdw mm1,mm6 ; mm1=data6 movq MMWORD [MMBLOCK(2,0,edx,SIZEOF_DCTELEM)], mm4 movq MMWORD [MMBLOCK(2,1,edx,SIZEOF_DCTELEM)], mm1 ; -- Odd part movq mm5, MMWORD [wk(0)] ; mm5=tmp6 movq mm7, MMWORD [wk(1)] ; mm7=tmp7 movq mm0,mm2 ; mm2=tmp4 movq mm6,mm3 ; mm3=tmp5 paddw mm0,mm5 ; mm0=z3 paddw mm6,mm7 ; mm6=z4 ; (Original) ; z5 = (z3 + z4) * 1.175875602; ; z3 = z3 * -1.961570560; z4 = z4 * -0.390180644; ; z3 += z5; z4 += z5; ; ; (This implementation) ; z3 = z3 * (1.175875602 - 1.961570560) + z4 * 1.175875602; ; z4 = z3 * 1.175875602 + z4 * (1.175875602 - 0.390180644); movq mm4,mm0 movq mm1,mm0 punpcklwd mm4,mm6 punpckhwd mm1,mm6 movq mm0,mm4 movq mm6,mm1 pmaddwd mm4,[GOTOFF(ebx,PW_MF078_F117)] ; mm4=z3L pmaddwd mm1,[GOTOFF(ebx,PW_MF078_F117)] ; mm1=z3H pmaddwd mm0,[GOTOFF(ebx,PW_F117_F078)] ; mm0=z4L pmaddwd mm6,[GOTOFF(ebx,PW_F117_F078)] ; mm6=z4H movq MMWORD [wk(0)], mm4 ; wk(0)=z3L movq MMWORD [wk(1)], mm1 ; wk(1)=z3H ; (Original) ; z1 = tmp4 + tmp7; z2 = tmp5 + tmp6; ; tmp4 = tmp4 * 0.298631336; tmp5 = tmp5 * 2.053119869; ; tmp6 = tmp6 * 3.072711026; tmp7 = tmp7 * 1.501321110; ; z1 = z1 * -0.899976223; z2 = z2 * -2.562915447; ; data7 = tmp4 + z1 + z3; data5 = tmp5 + z2 + z4; ; data3 = tmp6 + z2 + z3; data1 = tmp7 + z1 + z4; ; ; (This implementation) ; tmp4 = tmp4 * (0.298631336 - 0.899976223) + tmp7 * -0.899976223; ; tmp5 = tmp5 * (2.053119869 - 2.562915447) + tmp6 * -2.562915447; ; tmp6 = tmp5 * -2.562915447 + tmp6 * (3.072711026 - 2.562915447); ; tmp7 = tmp4 * -0.899976223 + tmp7 * (1.501321110 - 0.899976223); ; data7 = tmp4 + z3; data5 = tmp5 + z4; ; data3 = tmp6 + z3; data1 = tmp7 + z4; movq mm4,mm2 movq mm1,mm2 punpcklwd mm4,mm7 punpckhwd mm1,mm7 movq mm2,mm4 movq mm7,mm1 pmaddwd mm4,[GOTOFF(ebx,PW_MF060_MF089)] ; mm4=tmp4L pmaddwd mm1,[GOTOFF(ebx,PW_MF060_MF089)] ; mm1=tmp4H pmaddwd mm2,[GOTOFF(ebx,PW_MF089_F060)] ; mm2=tmp7L pmaddwd mm7,[GOTOFF(ebx,PW_MF089_F060)] ; mm7=tmp7H paddd mm4, MMWORD [wk(0)] ; mm4=data7L paddd mm1, MMWORD [wk(1)] ; mm1=data7H paddd mm2,mm0 ; mm2=data1L paddd mm7,mm6 ; mm7=data1H paddd mm4,[GOTOFF(ebx,PD_DESCALE_P1)] paddd mm1,[GOTOFF(ebx,PD_DESCALE_P1)] psrad mm4,DESCALE_P1 psrad mm1,DESCALE_P1 paddd mm2,[GOTOFF(ebx,PD_DESCALE_P1)] paddd mm7,[GOTOFF(ebx,PD_DESCALE_P1)] psrad mm2,DESCALE_P1 psrad mm7,DESCALE_P1 packssdw mm4,mm1 ; mm4=data7 packssdw mm2,mm7 ; mm2=data1 movq MMWORD [MMBLOCK(3,1,edx,SIZEOF_DCTELEM)], mm4 movq MMWORD [MMBLOCK(1,0,edx,SIZEOF_DCTELEM)], mm2 movq mm1,mm3 movq mm7,mm3 punpcklwd mm1,mm5 punpckhwd mm7,mm5 movq mm3,mm1 movq mm5,mm7 pmaddwd mm1,[GOTOFF(ebx,PW_MF050_MF256)] ; mm1=tmp5L pmaddwd mm7,[GOTOFF(ebx,PW_MF050_MF256)] ; mm7=tmp5H pmaddwd mm3,[GOTOFF(ebx,PW_MF256_F050)] ; mm3=tmp6L pmaddwd mm5,[GOTOFF(ebx,PW_MF256_F050)] ; mm5=tmp6H paddd mm1,mm0 ; mm1=data5L paddd mm7,mm6 ; mm7=data5H paddd mm3, MMWORD [wk(0)] ; mm3=data3L paddd mm5, MMWORD [wk(1)] ; mm5=data3H paddd mm1,[GOTOFF(ebx,PD_DESCALE_P1)] paddd mm7,[GOTOFF(ebx,PD_DESCALE_P1)] psrad mm1,DESCALE_P1 psrad mm7,DESCALE_P1 paddd mm3,[GOTOFF(ebx,PD_DESCALE_P1)] paddd mm5,[GOTOFF(ebx,PD_DESCALE_P1)] psrad mm3,DESCALE_P1 psrad mm5,DESCALE_P1 packssdw mm1,mm7 ; mm1=data5 packssdw mm3,mm5 ; mm3=data3 movq MMWORD [MMBLOCK(1,1,edx,SIZEOF_DCTELEM)], mm1 movq MMWORD [MMBLOCK(3,0,edx,SIZEOF_DCTELEM)], mm3 add edx, byte 4*DCTSIZE*SIZEOF_DCTELEM dec ecx jnz near .rowloop ; ---- Pass 2: process columns. mov edx, POINTER [data(eax)] ; (DCTELEM *) mov ecx, DCTSIZE/4 alignx 16,7 .columnloop: movq mm0, MMWORD [MMBLOCK(2,0,edx,SIZEOF_DCTELEM)] movq mm1, MMWORD [MMBLOCK(3,0,edx,SIZEOF_DCTELEM)] movq mm2, MMWORD [MMBLOCK(6,0,edx,SIZEOF_DCTELEM)] movq mm3, MMWORD [MMBLOCK(7,0,edx,SIZEOF_DCTELEM)] ; mm0=(02 12 22 32), mm2=(42 52 62 72) ; mm1=(03 13 23 33), mm3=(43 53 63 73) movq mm4,mm0 ; transpose coefficients(phase 1) punpcklwd mm0,mm1 ; mm0=(02 03 12 13) punpckhwd mm4,mm1 ; mm4=(22 23 32 33) movq mm5,mm2 ; transpose coefficients(phase 1) punpcklwd mm2,mm3 ; mm2=(42 43 52 53) punpckhwd mm5,mm3 ; mm5=(62 63 72 73) movq mm6, MMWORD [MMBLOCK(0,0,edx,SIZEOF_DCTELEM)] movq mm7, MMWORD [MMBLOCK(1,0,edx,SIZEOF_DCTELEM)] movq mm1, MMWORD [MMBLOCK(4,0,edx,SIZEOF_DCTELEM)] movq mm3, MMWORD [MMBLOCK(5,0,edx,SIZEOF_DCTELEM)] ; mm6=(00 10 20 30), mm1=(40 50 60 70) ; mm7=(01 11 21 31), mm3=(41 51 61 71) movq MMWORD [wk(0)], mm4 ; wk(0)=(22 23 32 33) movq MMWORD [wk(1)], mm2 ; wk(1)=(42 43 52 53) movq mm4,mm6 ; transpose coefficients(phase 1) punpcklwd mm6,mm7 ; mm6=(00 01 10 11) punpckhwd mm4,mm7 ; mm4=(20 21 30 31) movq mm2,mm1 ; transpose coefficients(phase 1) punpcklwd mm1,mm3 ; mm1=(40 41 50 51) punpckhwd mm2,mm3 ; mm2=(60 61 70 71) movq mm7,mm6 ; transpose coefficients(phase 2) punpckldq mm6,mm0 ; mm6=(00 01 02 03)=data0 punpckhdq mm7,mm0 ; mm7=(10 11 12 13)=data1 movq mm3,mm2 ; transpose coefficients(phase 2) punpckldq mm2,mm5 ; mm2=(60 61 62 63)=data6 punpckhdq mm3,mm5 ; mm3=(70 71 72 73)=data7 movq mm0,mm7 movq mm5,mm6 psubw mm7,mm2 ; mm7=data1-data6=tmp6 psubw mm6,mm3 ; mm6=data0-data7=tmp7 paddw mm0,mm2 ; mm0=data1+data6=tmp1 paddw mm5,mm3 ; mm5=data0+data7=tmp0 movq mm2, MMWORD [wk(0)] ; mm2=(22 23 32 33) movq mm3, MMWORD [wk(1)] ; mm3=(42 43 52 53) movq MMWORD [wk(0)], mm7 ; wk(0)=tmp6 movq MMWORD [wk(1)], mm6 ; wk(1)=tmp7 movq mm7,mm4 ; transpose coefficients(phase 2) punpckldq mm4,mm2 ; mm4=(20 21 22 23)=data2 punpckhdq mm7,mm2 ; mm7=(30 31 32 33)=data3 movq mm6,mm1 ; transpose coefficients(phase 2) punpckldq mm1,mm3 ; mm1=(40 41 42 43)=data4 punpckhdq mm6,mm3 ; mm6=(50 51 52 53)=data5 movq mm2,mm7 movq mm3,mm4 paddw mm7,mm1 ; mm7=data3+data4=tmp3 paddw mm4,mm6 ; mm4=data2+data5=tmp2 psubw mm2,mm1 ; mm2=data3-data4=tmp4 psubw mm3,mm6 ; mm3=data2-data5=tmp5 ; -- Even part movq mm1,mm5 movq mm6,mm0 paddw mm5,mm7 ; mm5=tmp10 paddw mm0,mm4 ; mm0=tmp11 psubw mm1,mm7 ; mm1=tmp13 psubw mm6,mm4 ; mm6=tmp12 movq mm7,mm5 paddw mm5,mm0 ; mm5=tmp10+tmp11 psubw mm7,mm0 ; mm7=tmp10-tmp11 paddw mm5,[GOTOFF(ebx,PW_DESCALE_P2X)] paddw mm7,[GOTOFF(ebx,PW_DESCALE_P2X)] psraw mm5,PASS1_BITS ; mm5=data0 psraw mm7,PASS1_BITS ; mm7=data4 movq MMWORD [MMBLOCK(0,0,edx,SIZEOF_DCTELEM)], mm5 movq MMWORD [MMBLOCK(4,0,edx,SIZEOF_DCTELEM)], mm7 ; (Original) ; z1 = (tmp12 + tmp13) * 0.541196100; ; data2 = z1 + tmp13 * 0.765366865; ; data6 = z1 + tmp12 * -1.847759065; ; ; (This implementation) ; data2 = tmp13 * (0.541196100 + 0.765366865) + tmp12 * 0.541196100; ; data6 = tmp13 * 0.541196100 + tmp12 * (0.541196100 - 1.847759065); movq mm4,mm1 ; mm1=tmp13 movq mm0,mm1 punpcklwd mm4,mm6 ; mm6=tmp12 punpckhwd mm0,mm6 movq mm1,mm4 movq mm6,mm0 pmaddwd mm4,[GOTOFF(ebx,PW_F130_F054)] ; mm4=data2L pmaddwd mm0,[GOTOFF(ebx,PW_F130_F054)] ; mm0=data2H pmaddwd mm1,[GOTOFF(ebx,PW_F054_MF130)] ; mm1=data6L pmaddwd mm6,[GOTOFF(ebx,PW_F054_MF130)] ; mm6=data6H paddd mm4,[GOTOFF(ebx,PD_DESCALE_P2)] paddd mm0,[GOTOFF(ebx,PD_DESCALE_P2)] psrad mm4,DESCALE_P2 psrad mm0,DESCALE_P2 paddd mm1,[GOTOFF(ebx,PD_DESCALE_P2)] paddd mm6,[GOTOFF(ebx,PD_DESCALE_P2)] psrad mm1,DESCALE_P2 psrad mm6,DESCALE_P2 packssdw mm4,mm0 ; mm4=data2 packssdw mm1,mm6 ; mm1=data6 movq MMWORD [MMBLOCK(2,0,edx,SIZEOF_DCTELEM)], mm4 movq MMWORD [MMBLOCK(6,0,edx,SIZEOF_DCTELEM)], mm1 ; -- Odd part movq mm5, MMWORD [wk(0)] ; mm5=tmp6 movq mm7, MMWORD [wk(1)] ; mm7=tmp7 movq mm0,mm2 ; mm2=tmp4 movq mm6,mm3 ; mm3=tmp5 paddw mm0,mm5 ; mm0=z3 paddw mm6,mm7 ; mm6=z4 ; (Original) ; z5 = (z3 + z4) * 1.175875602; ; z3 = z3 * -1.961570560; z4 = z4 * -0.390180644; ; z3 += z5; z4 += z5; ; ; (This implementation) ; z3 = z3 * (1.175875602 - 1.961570560) + z4 * 1.175875602; ; z4 = z3 * 1.175875602 + z4 * (1.175875602 - 0.390180644); movq mm4,mm0 movq mm1,mm0 punpcklwd mm4,mm6 punpckhwd mm1,mm6 movq mm0,mm4 movq mm6,mm1 pmaddwd mm4,[GOTOFF(ebx,PW_MF078_F117)] ; mm4=z3L pmaddwd mm1,[GOTOFF(ebx,PW_MF078_F117)] ; mm1=z3H pmaddwd mm0,[GOTOFF(ebx,PW_F117_F078)] ; mm0=z4L pmaddwd mm6,[GOTOFF(ebx,PW_F117_F078)] ; mm6=z4H movq MMWORD [wk(0)], mm4 ; wk(0)=z3L movq MMWORD [wk(1)], mm1 ; wk(1)=z3H ; (Original) ; z1 = tmp4 + tmp7; z2 = tmp5 + tmp6; ; tmp4 = tmp4 * 0.298631336; tmp5 = tmp5 * 2.053119869; ; tmp6 = tmp6 * 3.072711026; tmp7 = tmp7 * 1.501321110; ; z1 = z1 * -0.899976223; z2 = z2 * -2.562915447; ; data7 = tmp4 + z1 + z3; data5 = tmp5 + z2 + z4; ; data3 = tmp6 + z2 + z3; data1 = tmp7 + z1 + z4; ; ; (This implementation) ; tmp4 = tmp4 * (0.298631336 - 0.899976223) + tmp7 * -0.899976223; ; tmp5 = tmp5 * (2.053119869 - 2.562915447) + tmp6 * -2.562915447; ; tmp6 = tmp5 * -2.562915447 + tmp6 * (3.072711026 - 2.562915447); ; tmp7 = tmp4 * -0.899976223 + tmp7 * (1.501321110 - 0.899976223); ; data7 = tmp4 + z3; data5 = tmp5 + z4; ; data3 = tmp6 + z3; data1 = tmp7 + z4; movq mm4,mm2 movq mm1,mm2 punpcklwd mm4,mm7 punpckhwd mm1,mm7 movq mm2,mm4 movq mm7,mm1 pmaddwd mm4,[GOTOFF(ebx,PW_MF060_MF089)] ; mm4=tmp4L pmaddwd mm1,[GOTOFF(ebx,PW_MF060_MF089)] ; mm1=tmp4H pmaddwd mm2,[GOTOFF(ebx,PW_MF089_F060)] ; mm2=tmp7L pmaddwd mm7,[GOTOFF(ebx,PW_MF089_F060)] ; mm7=tmp7H paddd mm4, MMWORD [wk(0)] ; mm4=data7L paddd mm1, MMWORD [wk(1)] ; mm1=data7H paddd mm2,mm0 ; mm2=data1L paddd mm7,mm6 ; mm7=data1H paddd mm4,[GOTOFF(ebx,PD_DESCALE_P2)] paddd mm1,[GOTOFF(ebx,PD_DESCALE_P2)] psrad mm4,DESCALE_P2 psrad mm1,DESCALE_P2 paddd mm2,[GOTOFF(ebx,PD_DESCALE_P2)] paddd mm7,[GOTOFF(ebx,PD_DESCALE_P2)] psrad mm2,DESCALE_P2 psrad mm7,DESCALE_P2 packssdw mm4,mm1 ; mm4=data7 packssdw mm2,mm7 ; mm2=data1 movq MMWORD [MMBLOCK(7,0,edx,SIZEOF_DCTELEM)], mm4 movq MMWORD [MMBLOCK(1,0,edx,SIZEOF_DCTELEM)], mm2 movq mm1,mm3 movq mm7,mm3 punpcklwd mm1,mm5 punpckhwd mm7,mm5 movq mm3,mm1 movq mm5,mm7 pmaddwd mm1,[GOTOFF(ebx,PW_MF050_MF256)] ; mm1=tmp5L pmaddwd mm7,[GOTOFF(ebx,PW_MF050_MF256)] ; mm7=tmp5H pmaddwd mm3,[GOTOFF(ebx,PW_MF256_F050)] ; mm3=tmp6L pmaddwd mm5,[GOTOFF(ebx,PW_MF256_F050)] ; mm5=tmp6H paddd mm1,mm0 ; mm1=data5L paddd mm7,mm6 ; mm7=data5H paddd mm3, MMWORD [wk(0)] ; mm3=data3L paddd mm5, MMWORD [wk(1)] ; mm5=data3H paddd mm1,[GOTOFF(ebx,PD_DESCALE_P2)] paddd mm7,[GOTOFF(ebx,PD_DESCALE_P2)] psrad mm1,DESCALE_P2 psrad mm7,DESCALE_P2 paddd mm3,[GOTOFF(ebx,PD_DESCALE_P2)] paddd mm5,[GOTOFF(ebx,PD_DESCALE_P2)] psrad mm3,DESCALE_P2 psrad mm5,DESCALE_P2 packssdw mm1,mm7 ; mm1=data5 packssdw mm3,mm5 ; mm3=data3 movq MMWORD [MMBLOCK(5,0,edx,SIZEOF_DCTELEM)], mm1 movq MMWORD [MMBLOCK(3,0,edx,SIZEOF_DCTELEM)], mm3 add edx, byte 4*SIZEOF_DCTELEM dec ecx jnz near .columnloop emms ; empty MMX state ; pop edi ; unused ; pop esi ; unused ; pop edx ; need not be preserved ; pop ecx ; need not be preserved poppic ebx mov esp,ebp ; esp <- aligned ebp pop esp ; esp <- original ebp pop ebp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 16 libjpeg-turbo-1.4.2/simd/jsimd_mips.c0000644000076500007650000006514212600050400014447 00000000000000/* * jsimd_mips.c * * Copyright 2009 Pierre Ossman for Cendio AB * Copyright 2009-2011, 2014 D. R. Commander * Copyright (C) 2013-2014, MIPS Technologies, Inc., California * * Based on the x86 SIMD extension for IJG JPEG library, * Copyright (C) 1999-2006, MIYASAKA Masaru. * For conditions of distribution and use, see copyright notice in jsimdext.inc * * This file contains the interface between the "normal" portions * of the library and the SIMD implementations when running on a * MIPS architecture. */ #define JPEG_INTERNALS #include "../jinclude.h" #include "../jpeglib.h" #include "../jsimd.h" #include "../jdct.h" #include "../jsimddct.h" #include "jsimd.h" #include #include #include static unsigned int simd_support = ~0; #if defined(__linux__) LOCAL(int) parse_proc_cpuinfo(const char* search_string) { const char* file_name = "/proc/cpuinfo"; char cpuinfo_line[256]; FILE* f = NULL; simd_support = 0; if ((f = fopen(file_name, "r")) != NULL) { while (fgets(cpuinfo_line, sizeof(cpuinfo_line), f) != NULL) { if (strstr(cpuinfo_line, search_string) != NULL) { fclose(f); simd_support |= JSIMD_MIPS_DSPR2; return 1; } } fclose(f); } /* Did not find string in the proc file, or not Linux ELF. */ return 0; } #endif /* * Check what SIMD accelerations are supported. * * FIXME: This code is racy under a multi-threaded environment. */ LOCAL(void) init_simd (void) { if (simd_support != ~0U) return; simd_support = 0; #if defined(__MIPSEL__) && defined(__mips_dsp) && (__mips_dsp_rev >= 2) simd_support |= JSIMD_MIPS_DSPR2; #elif defined(__linux__) /* We still have a chance to use MIPS DSPR2 regardless of globally used * -mdspr2 options passed to gcc by performing runtime detection via * /proc/cpuinfo parsing on linux */ if (!parse_proc_cpuinfo("MIPS 74K")) return; #endif } static const int mips_idct_ifast_coefs[4] = { 0x45404540, // FIX( 1.082392200 / 2) = 17734 = 0x4546 0x5A805A80, // FIX( 1.414213562 / 2) = 23170 = 0x5A82 0x76407640, // FIX( 1.847759065 / 2) = 30274 = 0x7642 0xAC60AC60 // FIX(-2.613125930 / 4) = -21407 = 0xAC61 }; /* The following struct is borrowed from jdsample.c */ typedef void (*upsample1_ptr) (j_decompress_ptr cinfo, jpeg_component_info * compptr, JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr); typedef struct { struct jpeg_upsampler pub; JSAMPARRAY color_buf[MAX_COMPONENTS]; upsample1_ptr methods[MAX_COMPONENTS]; int next_row_out; JDIMENSION rows_to_go; int rowgroup_height[MAX_COMPONENTS]; UINT8 h_expand[MAX_COMPONENTS]; UINT8 v_expand[MAX_COMPONENTS]; } my_upsampler; typedef my_upsampler * my_upsample_ptr; GLOBAL(int) jsimd_can_rgb_ycc (void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if ((RGB_PIXELSIZE != 3) && (RGB_PIXELSIZE != 4)) return 0; if (simd_support & JSIMD_MIPS_DSPR2) return 1; return 0; } GLOBAL(int) jsimd_can_rgb_gray (void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if ((RGB_PIXELSIZE != 3) && (RGB_PIXELSIZE != 4)) return 0; if (simd_support & JSIMD_MIPS_DSPR2) return 1; return 0; } GLOBAL(int) jsimd_can_ycc_rgb (void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if ((RGB_PIXELSIZE != 3) && (RGB_PIXELSIZE != 4)) return 0; if (simd_support & JSIMD_MIPS_DSPR2) return 1; return 0; } GLOBAL(int) jsimd_can_ycc_rgb565 (void) { return 0; } GLOBAL(int) jsimd_c_can_null_convert (void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (simd_support & JSIMD_MIPS_DSPR2) return 1; return 0; } GLOBAL(void) jsimd_rgb_ycc_convert (j_compress_ptr cinfo, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows) { void (*mipsdspr2fct)(JDIMENSION, JSAMPARRAY, JSAMPIMAGE, JDIMENSION, int); switch(cinfo->in_color_space) { case JCS_EXT_RGB: mipsdspr2fct=jsimd_extrgb_ycc_convert_mips_dspr2; break; case JCS_EXT_RGBX: case JCS_EXT_RGBA: mipsdspr2fct=jsimd_extrgbx_ycc_convert_mips_dspr2; break; case JCS_EXT_BGR: mipsdspr2fct=jsimd_extbgr_ycc_convert_mips_dspr2; break; case JCS_EXT_BGRX: case JCS_EXT_BGRA: mipsdspr2fct=jsimd_extbgrx_ycc_convert_mips_dspr2; break; case JCS_EXT_XBGR: case JCS_EXT_ABGR: mipsdspr2fct=jsimd_extxbgr_ycc_convert_mips_dspr2; break; case JCS_EXT_XRGB: case JCS_EXT_ARGB: mipsdspr2fct=jsimd_extxrgb_ycc_convert_mips_dspr2; break; default: mipsdspr2fct=jsimd_extrgb_ycc_convert_mips_dspr2; break; } if (simd_support & JSIMD_MIPS_DSPR2) mipsdspr2fct(cinfo->image_width, input_buf, output_buf, output_row, num_rows); } GLOBAL(void) jsimd_rgb_gray_convert (j_compress_ptr cinfo, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows) { void (*mipsdspr2fct)(JDIMENSION, JSAMPARRAY, JSAMPIMAGE, JDIMENSION, int); switch(cinfo->in_color_space) { case JCS_EXT_RGB: mipsdspr2fct=jsimd_extrgb_gray_convert_mips_dspr2; break; case JCS_EXT_RGBX: case JCS_EXT_RGBA: mipsdspr2fct=jsimd_extrgbx_gray_convert_mips_dspr2; break; case JCS_EXT_BGR: mipsdspr2fct=jsimd_extbgr_gray_convert_mips_dspr2; break; case JCS_EXT_BGRX: case JCS_EXT_BGRA: mipsdspr2fct=jsimd_extbgrx_gray_convert_mips_dspr2; break; case JCS_EXT_XBGR: case JCS_EXT_ABGR: mipsdspr2fct=jsimd_extxbgr_gray_convert_mips_dspr2; break; case JCS_EXT_XRGB: case JCS_EXT_ARGB: mipsdspr2fct=jsimd_extxrgb_gray_convert_mips_dspr2; break; default: mipsdspr2fct=jsimd_extrgb_gray_convert_mips_dspr2; break; } if (simd_support & JSIMD_MIPS_DSPR2) mipsdspr2fct(cinfo->image_width, input_buf, output_buf, output_row, num_rows); } GLOBAL(void) jsimd_ycc_rgb_convert (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) { void (*mipsdspr2fct)(JDIMENSION, JSAMPIMAGE, JDIMENSION, JSAMPARRAY, int); switch(cinfo->out_color_space) { case JCS_EXT_RGB: mipsdspr2fct=jsimd_ycc_extrgb_convert_mips_dspr2; break; case JCS_EXT_RGBX: case JCS_EXT_RGBA: mipsdspr2fct=jsimd_ycc_extrgbx_convert_mips_dspr2; break; case JCS_EXT_BGR: mipsdspr2fct=jsimd_ycc_extbgr_convert_mips_dspr2; break; case JCS_EXT_BGRX: case JCS_EXT_BGRA: mipsdspr2fct=jsimd_ycc_extbgrx_convert_mips_dspr2; break; case JCS_EXT_XBGR: case JCS_EXT_ABGR: mipsdspr2fct=jsimd_ycc_extxbgr_convert_mips_dspr2; break; case JCS_EXT_XRGB: case JCS_EXT_ARGB: mipsdspr2fct=jsimd_ycc_extxrgb_convert_mips_dspr2; break; default: mipsdspr2fct=jsimd_ycc_extrgb_convert_mips_dspr2; break; } if (simd_support & JSIMD_MIPS_DSPR2) mipsdspr2fct(cinfo->output_width, input_buf, input_row, output_buf, num_rows); } GLOBAL(void) jsimd_ycc_rgb565_convert (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) { } GLOBAL(void) jsimd_c_null_convert (j_compress_ptr cinfo, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows) { if (simd_support & JSIMD_MIPS_DSPR2) jsimd_c_null_convert_mips_dspr2(cinfo->image_width, input_buf, output_buf, output_row, num_rows, cinfo->num_components); } GLOBAL(int) jsimd_can_h2v2_downsample (void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (simd_support & JSIMD_MIPS_DSPR2) return 1; return 0; } GLOBAL(int) jsimd_can_h2v2_smooth_downsample (void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if(DCTSIZE != 8) return 0; if (simd_support & JSIMD_MIPS_DSPR2) return 1; return 0; } GLOBAL(int) jsimd_can_h2v1_downsample (void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (simd_support & JSIMD_MIPS_DSPR2) return 1; return 0; } GLOBAL(void) jsimd_h2v2_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, JSAMPARRAY input_data, JSAMPARRAY output_data) { if (simd_support & JSIMD_MIPS_DSPR2) jsimd_h2v2_downsample_mips_dspr2(cinfo->image_width, cinfo->max_v_samp_factor, compptr->v_samp_factor, compptr->width_in_blocks, input_data, output_data); } GLOBAL(void) jsimd_h2v2_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, JSAMPARRAY input_data, JSAMPARRAY output_data) { jsimd_h2v2_smooth_downsample_mips_dspr2(input_data, output_data, compptr->v_samp_factor, cinfo->max_v_samp_factor, cinfo->smoothing_factor, compptr->width_in_blocks, cinfo->image_width); } GLOBAL(void) jsimd_h2v1_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, JSAMPARRAY input_data, JSAMPARRAY output_data) { if (simd_support & JSIMD_MIPS_DSPR2) jsimd_h2v1_downsample_mips_dspr2(cinfo->image_width, cinfo->max_v_samp_factor, compptr->v_samp_factor, compptr->width_in_blocks, input_data, output_data); } GLOBAL(int) jsimd_can_h2v2_upsample (void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (simd_support & JSIMD_MIPS_DSPR2) return 1; return 0; } GLOBAL(int) jsimd_can_h2v1_upsample (void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (simd_support & JSIMD_MIPS_DSPR2) return 1; return 0; } GLOBAL(int) jsimd_can_int_upsample (void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (simd_support & JSIMD_MIPS_DSPR2) return 1; return 0; } GLOBAL(void) jsimd_h2v2_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) { if (simd_support & JSIMD_MIPS_DSPR2) jsimd_h2v2_upsample_mips_dspr2(cinfo->max_v_samp_factor, cinfo->output_width, input_data, output_data_ptr); } GLOBAL(void) jsimd_h2v1_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) { if (simd_support & JSIMD_MIPS_DSPR2) jsimd_h2v1_upsample_mips_dspr2(cinfo->max_v_samp_factor, cinfo->output_width, input_data, output_data_ptr); } GLOBAL(void) jsimd_int_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) { my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; jsimd_int_upsample_mips_dspr2(upsample->h_expand[compptr->component_index], upsample->v_expand[compptr->component_index], input_data, output_data_ptr, cinfo->output_width, cinfo->max_v_samp_factor); } GLOBAL(int) jsimd_can_h2v2_fancy_upsample (void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (simd_support & JSIMD_MIPS_DSPR2) return 1; return 0; } GLOBAL(int) jsimd_can_h2v1_fancy_upsample (void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (simd_support & JSIMD_MIPS_DSPR2) return 1; return 0; } GLOBAL(void) jsimd_h2v2_fancy_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) { if (simd_support & JSIMD_MIPS_DSPR2) jsimd_h2v2_fancy_upsample_mips_dspr2(cinfo->max_v_samp_factor, compptr->downsampled_width, input_data, output_data_ptr); } GLOBAL(void) jsimd_h2v1_fancy_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) { if (simd_support & JSIMD_MIPS_DSPR2) jsimd_h2v1_fancy_upsample_mips_dspr2(cinfo->max_v_samp_factor, compptr->downsampled_width, input_data, output_data_ptr); } GLOBAL(int) jsimd_can_h2v2_merged_upsample (void) { init_simd(); if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (simd_support & JSIMD_MIPS_DSPR2) return 1; return 0; } GLOBAL(int) jsimd_can_h2v1_merged_upsample (void) { init_simd(); if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (simd_support & JSIMD_MIPS_DSPR2) return 1; return 0; } GLOBAL(void) jsimd_h2v2_merged_upsample (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf) { void (*mipsdspr2fct)(JDIMENSION, JSAMPIMAGE, JDIMENSION, JSAMPARRAY, JSAMPLE *); switch(cinfo->out_color_space) { case JCS_EXT_RGB: mipsdspr2fct=jsimd_h2v2_extrgb_merged_upsample_mips_dspr2; break; case JCS_EXT_RGBX: case JCS_EXT_RGBA: mipsdspr2fct=jsimd_h2v2_extrgbx_merged_upsample_mips_dspr2; break; case JCS_EXT_BGR: mipsdspr2fct=jsimd_h2v2_extbgr_merged_upsample_mips_dspr2; break; case JCS_EXT_BGRX: case JCS_EXT_BGRA: mipsdspr2fct=jsimd_h2v2_extbgrx_merged_upsample_mips_dspr2; break; case JCS_EXT_XBGR: case JCS_EXT_ABGR: mipsdspr2fct=jsimd_h2v2_extxbgr_merged_upsample_mips_dspr2; break; case JCS_EXT_XRGB: case JCS_EXT_ARGB: mipsdspr2fct=jsimd_h2v2_extxrgb_merged_upsample_mips_dspr2; break; default: mipsdspr2fct=jsimd_h2v2_extrgb_merged_upsample_mips_dspr2; break; } mipsdspr2fct(cinfo->output_width, input_buf, in_row_group_ctr, output_buf, cinfo->sample_range_limit); } GLOBAL(void) jsimd_h2v1_merged_upsample (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf) { void (*mipsdspr2fct)(JDIMENSION, JSAMPIMAGE, JDIMENSION, JSAMPARRAY, JSAMPLE *); switch(cinfo->out_color_space) { case JCS_EXT_RGB: mipsdspr2fct=jsimd_h2v1_extrgb_merged_upsample_mips_dspr2; break; case JCS_EXT_RGBX: case JCS_EXT_RGBA: mipsdspr2fct=jsimd_h2v1_extrgbx_merged_upsample_mips_dspr2; break; case JCS_EXT_BGR: mipsdspr2fct=jsimd_h2v1_extbgr_merged_upsample_mips_dspr2; break; case JCS_EXT_BGRX: case JCS_EXT_BGRA: mipsdspr2fct=jsimd_h2v1_extbgrx_merged_upsample_mips_dspr2; break; case JCS_EXT_XBGR: case JCS_EXT_ABGR: mipsdspr2fct=jsimd_h2v1_extxbgr_merged_upsample_mips_dspr2; break; case JCS_EXT_XRGB: case JCS_EXT_ARGB: mipsdspr2fct=jsimd_h2v1_extxrgb_merged_upsample_mips_dspr2; break; default: mipsdspr2fct=jsimd_h2v1_extrgb_merged_upsample_mips_dspr2; break; } mipsdspr2fct(cinfo->output_width, input_buf, in_row_group_ctr, output_buf, cinfo->sample_range_limit); } GLOBAL(int) jsimd_can_convsamp (void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (sizeof(DCTELEM) != 2) return 0; if (simd_support & JSIMD_MIPS_DSPR2) return 1; return 0; } GLOBAL(int) jsimd_can_convsamp_float (void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (sizeof(JCOEF) != 2) return 0; if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (sizeof(ISLOW_MULT_TYPE) != 2) return 0; if (simd_support & JSIMD_MIPS_DSPR2) return 1; return 0; } GLOBAL(void) jsimd_convsamp (JSAMPARRAY sample_data, JDIMENSION start_col, DCTELEM * workspace) { if (simd_support & JSIMD_MIPS_DSPR2) jsimd_convsamp_mips_dspr2(sample_data, start_col, workspace); } GLOBAL(void) jsimd_convsamp_float (JSAMPARRAY sample_data, JDIMENSION start_col, FAST_FLOAT * workspace) { if ((simd_support & JSIMD_MIPS_DSPR2)) jsimd_convsamp_float_mips_dspr2(sample_data, start_col, workspace); } GLOBAL(int) jsimd_can_fdct_islow (void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (sizeof(DCTELEM) != 2) return 0; if (simd_support & JSIMD_MIPS_DSPR2) return 1; return 0; } GLOBAL(int) jsimd_can_fdct_ifast (void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (sizeof(DCTELEM) != 2) return 0; if (simd_support & JSIMD_MIPS_DSPR2) return 1; return 0; } GLOBAL(int) jsimd_can_fdct_float (void) { init_simd(); return 0; } GLOBAL(void) jsimd_fdct_islow (DCTELEM * data) { if (simd_support & JSIMD_MIPS_DSPR2) jsimd_fdct_islow_mips_dspr2(data); } GLOBAL(void) jsimd_fdct_ifast (DCTELEM * data) { if (simd_support & JSIMD_MIPS_DSPR2) jsimd_fdct_ifast_mips_dspr2(data); } GLOBAL(void) jsimd_fdct_float (FAST_FLOAT * data) { } GLOBAL(int) jsimd_can_quantize (void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (sizeof(JCOEF) != 2) return 0; if (sizeof(DCTELEM) != 2) return 0; if (simd_support & JSIMD_MIPS_DSPR2) return 1; return 0; } GLOBAL(int) jsimd_can_quantize_float (void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (sizeof(JCOEF) != 2) return 0; if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (sizeof(ISLOW_MULT_TYPE) != 2) return 0; if (simd_support & JSIMD_MIPS_DSPR2) return 1; return 0; } GLOBAL(void) jsimd_quantize (JCOEFPTR coef_block, DCTELEM * divisors, DCTELEM * workspace) { if (simd_support & JSIMD_MIPS_DSPR2) jsimd_quantize_mips_dspr2(coef_block, divisors, workspace); } GLOBAL(void) jsimd_quantize_float (JCOEFPTR coef_block, FAST_FLOAT * divisors, FAST_FLOAT * workspace) { if (simd_support & JSIMD_MIPS_DSPR2) jsimd_quantize_float_mips_dspr2(coef_block, divisors, workspace); } GLOBAL(int) jsimd_can_idct_2x2 (void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (sizeof(JCOEF) != 2) return 0; if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (sizeof(ISLOW_MULT_TYPE) != 2) return 0; if (simd_support & JSIMD_MIPS_DSPR2) return 1; return 0; } GLOBAL(int) jsimd_can_idct_4x4 (void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (sizeof(JCOEF) != 2) return 0; if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (sizeof(ISLOW_MULT_TYPE) != 2) return 0; if (simd_support & JSIMD_MIPS_DSPR2) return 1; return 0; } GLOBAL(int) jsimd_can_idct_6x6 (void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (sizeof(JCOEF) != 2) return 0; if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (sizeof(ISLOW_MULT_TYPE) != 2) return 0; if (simd_support & JSIMD_MIPS_DSPR2) return 1; return 0; } GLOBAL(int) jsimd_can_idct_12x12 (void) { init_simd(); if (BITS_IN_JSAMPLE != 8) return 0; if (DCTSIZE != 8) return 0; if (sizeof(JCOEF) != 2) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (sizeof(ISLOW_MULT_TYPE) != 2) return 0; if (simd_support & JSIMD_MIPS_DSPR2) return 1; return 0; } GLOBAL(void) jsimd_idct_2x2 (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { if (simd_support & JSIMD_MIPS_DSPR2) jsimd_idct_2x2_mips_dspr2(compptr->dct_table, coef_block, output_buf, output_col); } GLOBAL(void) jsimd_idct_4x4 (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { if (simd_support & JSIMD_MIPS_DSPR2) { int workspace[DCTSIZE*4]; /* buffers data between passes */ jsimd_idct_4x4_mips_dspr2(compptr->dct_table, coef_block, output_buf, output_col, workspace); } } GLOBAL(void) jsimd_idct_6x6 (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { if (simd_support & JSIMD_MIPS_DSPR2) jsimd_idct_6x6_mips_dspr2(compptr->dct_table, coef_block, output_buf, output_col); } GLOBAL(void) jsimd_idct_12x12 (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { if (simd_support & JSIMD_MIPS_DSPR2) { int workspace[96]; int output[12] = { (int)(output_buf[0] + output_col), (int)(output_buf[1] + output_col), (int)(output_buf[2] + output_col), (int)(output_buf[3] + output_col), (int)(output_buf[4] + output_col), (int)(output_buf[5] + output_col), (int)(output_buf[6] + output_col), (int)(output_buf[7] + output_col), (int)(output_buf[8] + output_col), (int)(output_buf[9] + output_col), (int)(output_buf[10] + output_col), (int)(output_buf[11] + output_col), }; jsimd_idct_12x12_pass1_mips_dspr2(coef_block, compptr->dct_table, workspace); jsimd_idct_12x12_pass2_mips_dspr2(workspace, output); } } GLOBAL(int) jsimd_can_idct_islow (void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (sizeof(JCOEF) != 2) return 0; if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (sizeof(ISLOW_MULT_TYPE) != 2) return 0; if (simd_support & JSIMD_MIPS_DSPR2) return 1; return 0; } GLOBAL(int) jsimd_can_idct_ifast (void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (sizeof(JCOEF) != 2) return 0; if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (sizeof(IFAST_MULT_TYPE) != 2) return 0; if (IFAST_SCALE_BITS != 2) return 0; if (simd_support & JSIMD_MIPS_DSPR2) return 1; return 0; } GLOBAL(int) jsimd_can_idct_float (void) { init_simd(); return 0; } GLOBAL(void) jsimd_idct_islow (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { if (simd_support & JSIMD_MIPS_DSPR2) { int output[8] = { (int)(output_buf[0] + output_col), (int)(output_buf[1] + output_col), (int)(output_buf[2] + output_col), (int)(output_buf[3] + output_col), (int)(output_buf[4] + output_col), (int)(output_buf[5] + output_col), (int)(output_buf[6] + output_col), (int)(output_buf[7] + output_col), }; jsimd_idct_islow_mips_dspr2(coef_block, compptr->dct_table, output, IDCT_range_limit(cinfo)); } } GLOBAL(void) jsimd_idct_ifast (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { if (simd_support & JSIMD_MIPS_DSPR2) { JCOEFPTR inptr; IFAST_MULT_TYPE * quantptr; DCTELEM workspace[DCTSIZE2]; /* buffers data between passes */ /* Pass 1: process columns from input, store into work array. */ inptr = coef_block; quantptr = (IFAST_MULT_TYPE *) compptr->dct_table; jsimd_idct_ifast_cols_mips_dspr2(inptr, quantptr, workspace, mips_idct_ifast_coefs); /* Pass 2: process rows from work array, store into output array. */ /* Note that we must descale the results by a factor of 8 == 2**3, */ /* and also undo the PASS1_BITS scaling. */ jsimd_idct_ifast_rows_mips_dspr2(workspace, output_buf, output_col, mips_idct_ifast_coefs); } } GLOBAL(void) jsimd_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { } libjpeg-turbo-1.4.2/simd/jcgray-mmx.asm0000644000076500007650000000644312600050400014724 00000000000000; ; jcgray.asm - grayscale colorspace conversion (MMX) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; Copyright 2011 D. R. Commander ; ; Based on ; x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; [TAB8] %include "jsimdext.inc" ; -------------------------------------------------------------------------- %define SCALEBITS 16 F_0_114 equ 7471 ; FIX(0.11400) F_0_250 equ 16384 ; FIX(0.25000) F_0_299 equ 19595 ; FIX(0.29900) F_0_587 equ 38470 ; FIX(0.58700) F_0_337 equ (F_0_587 - F_0_250) ; FIX(0.58700) - FIX(0.25000) ; -------------------------------------------------------------------------- SECTION SEG_CONST alignz 16 global EXTN(jconst_rgb_gray_convert_mmx) EXTN(jconst_rgb_gray_convert_mmx): PW_F0299_F0337 times 2 dw F_0_299, F_0_337 PW_F0114_F0250 times 2 dw F_0_114, F_0_250 PD_ONEHALF times 2 dd (1 << (SCALEBITS-1)) alignz 16 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 32 %include "jcgryext-mmx.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_RGB_RED %define RGB_GREEN EXT_RGB_GREEN %define RGB_BLUE EXT_RGB_BLUE %define RGB_PIXELSIZE EXT_RGB_PIXELSIZE %define jsimd_rgb_gray_convert_mmx jsimd_extrgb_gray_convert_mmx %include "jcgryext-mmx.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_RGBX_RED %define RGB_GREEN EXT_RGBX_GREEN %define RGB_BLUE EXT_RGBX_BLUE %define RGB_PIXELSIZE EXT_RGBX_PIXELSIZE %define jsimd_rgb_gray_convert_mmx jsimd_extrgbx_gray_convert_mmx %include "jcgryext-mmx.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_BGR_RED %define RGB_GREEN EXT_BGR_GREEN %define RGB_BLUE EXT_BGR_BLUE %define RGB_PIXELSIZE EXT_BGR_PIXELSIZE %define jsimd_rgb_gray_convert_mmx jsimd_extbgr_gray_convert_mmx %include "jcgryext-mmx.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_BGRX_RED %define RGB_GREEN EXT_BGRX_GREEN %define RGB_BLUE EXT_BGRX_BLUE %define RGB_PIXELSIZE EXT_BGRX_PIXELSIZE %define jsimd_rgb_gray_convert_mmx jsimd_extbgrx_gray_convert_mmx %include "jcgryext-mmx.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_XBGR_RED %define RGB_GREEN EXT_XBGR_GREEN %define RGB_BLUE EXT_XBGR_BLUE %define RGB_PIXELSIZE EXT_XBGR_PIXELSIZE %define jsimd_rgb_gray_convert_mmx jsimd_extxbgr_gray_convert_mmx %include "jcgryext-mmx.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_XRGB_RED %define RGB_GREEN EXT_XRGB_GREEN %define RGB_BLUE EXT_XRGB_BLUE %define RGB_PIXELSIZE EXT_XRGB_PIXELSIZE %define jsimd_rgb_gray_convert_mmx jsimd_extxrgb_gray_convert_mmx %include "jcgryext-mmx.asm" libjpeg-turbo-1.4.2/simd/jfdctflt-sse-64.asm0000644000076500007650000003411212600050400015457 00000000000000; ; jfdctflt.asm - floating-point FDCT (64-bit SSE) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; Copyright 2009 D. R. Commander ; ; Based on ; x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; This file contains a floating-point implementation of the forward DCT ; (Discrete Cosine Transform). The following code is based directly on ; the IJG's original jfdctflt.c; see the jfdctflt.c for more details. ; ; [TAB8] %include "jsimdext.inc" %include "jdct.inc" ; -------------------------------------------------------------------------- %macro unpcklps2 2 ; %1=(0 1 2 3) / %2=(4 5 6 7) => %1=(0 1 4 5) shufps %1,%2,0x44 %endmacro %macro unpckhps2 2 ; %1=(0 1 2 3) / %2=(4 5 6 7) => %1=(2 3 6 7) shufps %1,%2,0xEE %endmacro ; -------------------------------------------------------------------------- SECTION SEG_CONST alignz 16 global EXTN(jconst_fdct_float_sse) EXTN(jconst_fdct_float_sse): PD_0_382 times 4 dd 0.382683432365089771728460 PD_0_707 times 4 dd 0.707106781186547524400844 PD_0_541 times 4 dd 0.541196100146196984399723 PD_1_306 times 4 dd 1.306562964876376527856643 alignz 16 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 64 ; ; Perform the forward DCT on one block of samples. ; ; GLOBAL(void) ; jsimd_fdct_float_sse (FAST_FLOAT * data) ; ; r10 = FAST_FLOAT * data %define wk(i) rbp-(WK_NUM-(i))*SIZEOF_XMMWORD ; xmmword wk[WK_NUM] %define WK_NUM 2 align 16 global EXTN(jsimd_fdct_float_sse) EXTN(jsimd_fdct_float_sse): push rbp mov rax,rsp ; rax = original rbp sub rsp, byte 4 and rsp, byte (-SIZEOF_XMMWORD) ; align to 128 bits mov [rsp],rax mov rbp,rsp ; rbp = aligned rbp lea rsp, [wk(0)] collect_args ; ---- Pass 1: process rows. mov rdx, r10 ; (FAST_FLOAT *) mov rcx, DCTSIZE/4 .rowloop: movaps xmm0, XMMWORD [XMMBLOCK(2,0,rdx,SIZEOF_FAST_FLOAT)] movaps xmm1, XMMWORD [XMMBLOCK(3,0,rdx,SIZEOF_FAST_FLOAT)] movaps xmm2, XMMWORD [XMMBLOCK(2,1,rdx,SIZEOF_FAST_FLOAT)] movaps xmm3, XMMWORD [XMMBLOCK(3,1,rdx,SIZEOF_FAST_FLOAT)] ; xmm0=(20 21 22 23), xmm2=(24 25 26 27) ; xmm1=(30 31 32 33), xmm3=(34 35 36 37) movaps xmm4,xmm0 ; transpose coefficients(phase 1) unpcklps xmm0,xmm1 ; xmm0=(20 30 21 31) unpckhps xmm4,xmm1 ; xmm4=(22 32 23 33) movaps xmm5,xmm2 ; transpose coefficients(phase 1) unpcklps xmm2,xmm3 ; xmm2=(24 34 25 35) unpckhps xmm5,xmm3 ; xmm5=(26 36 27 37) movaps xmm6, XMMWORD [XMMBLOCK(0,0,rdx,SIZEOF_FAST_FLOAT)] movaps xmm7, XMMWORD [XMMBLOCK(1,0,rdx,SIZEOF_FAST_FLOAT)] movaps xmm1, XMMWORD [XMMBLOCK(0,1,rdx,SIZEOF_FAST_FLOAT)] movaps xmm3, XMMWORD [XMMBLOCK(1,1,rdx,SIZEOF_FAST_FLOAT)] ; xmm6=(00 01 02 03), xmm1=(04 05 06 07) ; xmm7=(10 11 12 13), xmm3=(14 15 16 17) movaps XMMWORD [wk(0)], xmm4 ; wk(0)=(22 32 23 33) movaps XMMWORD [wk(1)], xmm2 ; wk(1)=(24 34 25 35) movaps xmm4,xmm6 ; transpose coefficients(phase 1) unpcklps xmm6,xmm7 ; xmm6=(00 10 01 11) unpckhps xmm4,xmm7 ; xmm4=(02 12 03 13) movaps xmm2,xmm1 ; transpose coefficients(phase 1) unpcklps xmm1,xmm3 ; xmm1=(04 14 05 15) unpckhps xmm2,xmm3 ; xmm2=(06 16 07 17) movaps xmm7,xmm6 ; transpose coefficients(phase 2) unpcklps2 xmm6,xmm0 ; xmm6=(00 10 20 30)=data0 unpckhps2 xmm7,xmm0 ; xmm7=(01 11 21 31)=data1 movaps xmm3,xmm2 ; transpose coefficients(phase 2) unpcklps2 xmm2,xmm5 ; xmm2=(06 16 26 36)=data6 unpckhps2 xmm3,xmm5 ; xmm3=(07 17 27 37)=data7 movaps xmm0,xmm7 movaps xmm5,xmm6 subps xmm7,xmm2 ; xmm7=data1-data6=tmp6 subps xmm6,xmm3 ; xmm6=data0-data7=tmp7 addps xmm0,xmm2 ; xmm0=data1+data6=tmp1 addps xmm5,xmm3 ; xmm5=data0+data7=tmp0 movaps xmm2, XMMWORD [wk(0)] ; xmm2=(22 32 23 33) movaps xmm3, XMMWORD [wk(1)] ; xmm3=(24 34 25 35) movaps XMMWORD [wk(0)], xmm7 ; wk(0)=tmp6 movaps XMMWORD [wk(1)], xmm6 ; wk(1)=tmp7 movaps xmm7,xmm4 ; transpose coefficients(phase 2) unpcklps2 xmm4,xmm2 ; xmm4=(02 12 22 32)=data2 unpckhps2 xmm7,xmm2 ; xmm7=(03 13 23 33)=data3 movaps xmm6,xmm1 ; transpose coefficients(phase 2) unpcklps2 xmm1,xmm3 ; xmm1=(04 14 24 34)=data4 unpckhps2 xmm6,xmm3 ; xmm6=(05 15 25 35)=data5 movaps xmm2,xmm7 movaps xmm3,xmm4 addps xmm7,xmm1 ; xmm7=data3+data4=tmp3 addps xmm4,xmm6 ; xmm4=data2+data5=tmp2 subps xmm2,xmm1 ; xmm2=data3-data4=tmp4 subps xmm3,xmm6 ; xmm3=data2-data5=tmp5 ; -- Even part movaps xmm1,xmm5 movaps xmm6,xmm0 subps xmm5,xmm7 ; xmm5=tmp13 subps xmm0,xmm4 ; xmm0=tmp12 addps xmm1,xmm7 ; xmm1=tmp10 addps xmm6,xmm4 ; xmm6=tmp11 addps xmm0,xmm5 mulps xmm0,[rel PD_0_707] ; xmm0=z1 movaps xmm7,xmm1 movaps xmm4,xmm5 subps xmm1,xmm6 ; xmm1=data4 subps xmm5,xmm0 ; xmm5=data6 addps xmm7,xmm6 ; xmm7=data0 addps xmm4,xmm0 ; xmm4=data2 movaps XMMWORD [XMMBLOCK(0,1,rdx,SIZEOF_FAST_FLOAT)], xmm1 movaps XMMWORD [XMMBLOCK(2,1,rdx,SIZEOF_FAST_FLOAT)], xmm5 movaps XMMWORD [XMMBLOCK(0,0,rdx,SIZEOF_FAST_FLOAT)], xmm7 movaps XMMWORD [XMMBLOCK(2,0,rdx,SIZEOF_FAST_FLOAT)], xmm4 ; -- Odd part movaps xmm6, XMMWORD [wk(0)] ; xmm6=tmp6 movaps xmm0, XMMWORD [wk(1)] ; xmm0=tmp7 addps xmm2,xmm3 ; xmm2=tmp10 addps xmm3,xmm6 ; xmm3=tmp11 addps xmm6,xmm0 ; xmm6=tmp12, xmm0=tmp7 mulps xmm3,[rel PD_0_707] ; xmm3=z3 movaps xmm1,xmm2 ; xmm1=tmp10 subps xmm2,xmm6 mulps xmm2,[rel PD_0_382] ; xmm2=z5 mulps xmm1,[rel PD_0_541] ; xmm1=MULTIPLY(tmp10,FIX_0_541196) mulps xmm6,[rel PD_1_306] ; xmm6=MULTIPLY(tmp12,FIX_1_306562) addps xmm1,xmm2 ; xmm1=z2 addps xmm6,xmm2 ; xmm6=z4 movaps xmm5,xmm0 subps xmm0,xmm3 ; xmm0=z13 addps xmm5,xmm3 ; xmm5=z11 movaps xmm7,xmm0 movaps xmm4,xmm5 subps xmm0,xmm1 ; xmm0=data3 subps xmm5,xmm6 ; xmm5=data7 addps xmm7,xmm1 ; xmm7=data5 addps xmm4,xmm6 ; xmm4=data1 movaps XMMWORD [XMMBLOCK(3,0,rdx,SIZEOF_FAST_FLOAT)], xmm0 movaps XMMWORD [XMMBLOCK(3,1,rdx,SIZEOF_FAST_FLOAT)], xmm5 movaps XMMWORD [XMMBLOCK(1,1,rdx,SIZEOF_FAST_FLOAT)], xmm7 movaps XMMWORD [XMMBLOCK(1,0,rdx,SIZEOF_FAST_FLOAT)], xmm4 add rdx, 4*DCTSIZE*SIZEOF_FAST_FLOAT dec rcx jnz near .rowloop ; ---- Pass 2: process columns. mov rdx, r10 ; (FAST_FLOAT *) mov rcx, DCTSIZE/4 .columnloop: movaps xmm0, XMMWORD [XMMBLOCK(2,0,rdx,SIZEOF_FAST_FLOAT)] movaps xmm1, XMMWORD [XMMBLOCK(3,0,rdx,SIZEOF_FAST_FLOAT)] movaps xmm2, XMMWORD [XMMBLOCK(6,0,rdx,SIZEOF_FAST_FLOAT)] movaps xmm3, XMMWORD [XMMBLOCK(7,0,rdx,SIZEOF_FAST_FLOAT)] ; xmm0=(02 12 22 32), xmm2=(42 52 62 72) ; xmm1=(03 13 23 33), xmm3=(43 53 63 73) movaps xmm4,xmm0 ; transpose coefficients(phase 1) unpcklps xmm0,xmm1 ; xmm0=(02 03 12 13) unpckhps xmm4,xmm1 ; xmm4=(22 23 32 33) movaps xmm5,xmm2 ; transpose coefficients(phase 1) unpcklps xmm2,xmm3 ; xmm2=(42 43 52 53) unpckhps xmm5,xmm3 ; xmm5=(62 63 72 73) movaps xmm6, XMMWORD [XMMBLOCK(0,0,rdx,SIZEOF_FAST_FLOAT)] movaps xmm7, XMMWORD [XMMBLOCK(1,0,rdx,SIZEOF_FAST_FLOAT)] movaps xmm1, XMMWORD [XMMBLOCK(4,0,rdx,SIZEOF_FAST_FLOAT)] movaps xmm3, XMMWORD [XMMBLOCK(5,0,rdx,SIZEOF_FAST_FLOAT)] ; xmm6=(00 10 20 30), xmm1=(40 50 60 70) ; xmm7=(01 11 21 31), xmm3=(41 51 61 71) movaps XMMWORD [wk(0)], xmm4 ; wk(0)=(22 23 32 33) movaps XMMWORD [wk(1)], xmm2 ; wk(1)=(42 43 52 53) movaps xmm4,xmm6 ; transpose coefficients(phase 1) unpcklps xmm6,xmm7 ; xmm6=(00 01 10 11) unpckhps xmm4,xmm7 ; xmm4=(20 21 30 31) movaps xmm2,xmm1 ; transpose coefficients(phase 1) unpcklps xmm1,xmm3 ; xmm1=(40 41 50 51) unpckhps xmm2,xmm3 ; xmm2=(60 61 70 71) movaps xmm7,xmm6 ; transpose coefficients(phase 2) unpcklps2 xmm6,xmm0 ; xmm6=(00 01 02 03)=data0 unpckhps2 xmm7,xmm0 ; xmm7=(10 11 12 13)=data1 movaps xmm3,xmm2 ; transpose coefficients(phase 2) unpcklps2 xmm2,xmm5 ; xmm2=(60 61 62 63)=data6 unpckhps2 xmm3,xmm5 ; xmm3=(70 71 72 73)=data7 movaps xmm0,xmm7 movaps xmm5,xmm6 subps xmm7,xmm2 ; xmm7=data1-data6=tmp6 subps xmm6,xmm3 ; xmm6=data0-data7=tmp7 addps xmm0,xmm2 ; xmm0=data1+data6=tmp1 addps xmm5,xmm3 ; xmm5=data0+data7=tmp0 movaps xmm2, XMMWORD [wk(0)] ; xmm2=(22 23 32 33) movaps xmm3, XMMWORD [wk(1)] ; xmm3=(42 43 52 53) movaps XMMWORD [wk(0)], xmm7 ; wk(0)=tmp6 movaps XMMWORD [wk(1)], xmm6 ; wk(1)=tmp7 movaps xmm7,xmm4 ; transpose coefficients(phase 2) unpcklps2 xmm4,xmm2 ; xmm4=(20 21 22 23)=data2 unpckhps2 xmm7,xmm2 ; xmm7=(30 31 32 33)=data3 movaps xmm6,xmm1 ; transpose coefficients(phase 2) unpcklps2 xmm1,xmm3 ; xmm1=(40 41 42 43)=data4 unpckhps2 xmm6,xmm3 ; xmm6=(50 51 52 53)=data5 movaps xmm2,xmm7 movaps xmm3,xmm4 addps xmm7,xmm1 ; xmm7=data3+data4=tmp3 addps xmm4,xmm6 ; xmm4=data2+data5=tmp2 subps xmm2,xmm1 ; xmm2=data3-data4=tmp4 subps xmm3,xmm6 ; xmm3=data2-data5=tmp5 ; -- Even part movaps xmm1,xmm5 movaps xmm6,xmm0 subps xmm5,xmm7 ; xmm5=tmp13 subps xmm0,xmm4 ; xmm0=tmp12 addps xmm1,xmm7 ; xmm1=tmp10 addps xmm6,xmm4 ; xmm6=tmp11 addps xmm0,xmm5 mulps xmm0,[rel PD_0_707] ; xmm0=z1 movaps xmm7,xmm1 movaps xmm4,xmm5 subps xmm1,xmm6 ; xmm1=data4 subps xmm5,xmm0 ; xmm5=data6 addps xmm7,xmm6 ; xmm7=data0 addps xmm4,xmm0 ; xmm4=data2 movaps XMMWORD [XMMBLOCK(4,0,rdx,SIZEOF_FAST_FLOAT)], xmm1 movaps XMMWORD [XMMBLOCK(6,0,rdx,SIZEOF_FAST_FLOAT)], xmm5 movaps XMMWORD [XMMBLOCK(0,0,rdx,SIZEOF_FAST_FLOAT)], xmm7 movaps XMMWORD [XMMBLOCK(2,0,rdx,SIZEOF_FAST_FLOAT)], xmm4 ; -- Odd part movaps xmm6, XMMWORD [wk(0)] ; xmm6=tmp6 movaps xmm0, XMMWORD [wk(1)] ; xmm0=tmp7 addps xmm2,xmm3 ; xmm2=tmp10 addps xmm3,xmm6 ; xmm3=tmp11 addps xmm6,xmm0 ; xmm6=tmp12, xmm0=tmp7 mulps xmm3,[rel PD_0_707] ; xmm3=z3 movaps xmm1,xmm2 ; xmm1=tmp10 subps xmm2,xmm6 mulps xmm2,[rel PD_0_382] ; xmm2=z5 mulps xmm1,[rel PD_0_541] ; xmm1=MULTIPLY(tmp10,FIX_0_541196) mulps xmm6,[rel PD_1_306] ; xmm6=MULTIPLY(tmp12,FIX_1_306562) addps xmm1,xmm2 ; xmm1=z2 addps xmm6,xmm2 ; xmm6=z4 movaps xmm5,xmm0 subps xmm0,xmm3 ; xmm0=z13 addps xmm5,xmm3 ; xmm5=z11 movaps xmm7,xmm0 movaps xmm4,xmm5 subps xmm0,xmm1 ; xmm0=data3 subps xmm5,xmm6 ; xmm5=data7 addps xmm7,xmm1 ; xmm7=data5 addps xmm4,xmm6 ; xmm4=data1 movaps XMMWORD [XMMBLOCK(3,0,rdx,SIZEOF_FAST_FLOAT)], xmm0 movaps XMMWORD [XMMBLOCK(7,0,rdx,SIZEOF_FAST_FLOAT)], xmm5 movaps XMMWORD [XMMBLOCK(5,0,rdx,SIZEOF_FAST_FLOAT)], xmm7 movaps XMMWORD [XMMBLOCK(1,0,rdx,SIZEOF_FAST_FLOAT)], xmm4 add rdx, byte 4*SIZEOF_FAST_FLOAT dec rcx jnz near .columnloop uncollect_args mov rsp,rbp ; rsp <- aligned rbp pop rsp ; rsp <- original rbp pop rbp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 16 libjpeg-turbo-1.4.2/simd/jsimd_arm64_neon.S0000644000076500007650000023362212600050400015427 00000000000000/* * ARMv8 NEON optimizations for libjpeg-turbo * * Copyright (C) 2009-2011 Nokia Corporation and/or its subsidiary(-ies). * All rights reserved. * Author: Siarhei Siamashka * Copyright (C) 2013-2014, Linaro Limited * Author: Ragesh Radhakrishnan * Copyright (C) 2014, D. R. Commander. All rights reserved. * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ #if defined(__linux__) && defined(__ELF__) .section .note.GNU-stack,"",%progbits /* mark stack as non-executable */ #endif .text .arch armv8-a+fp+simd #define RESPECT_STRICT_ALIGNMENT 1 /*****************************************************************************/ /* Supplementary macro for setting function attributes */ .macro asm_function fname #ifdef __APPLE__ .globl _\fname _\fname: #else .global \fname #ifdef __ELF__ .hidden \fname .type \fname, %function #endif \fname: #endif .endm /* Transpose elements of single 128 bit registers */ .macro transpose_single x0,x1,xi,xilen,literal ins \xi\xilen[0], \x0\xilen[0] ins \x1\xilen[0], \x0\xilen[1] trn1 \x0\literal, \x0\literal, \x1\literal trn2 \x1\literal, \xi\literal, \x1\literal .endm /* Transpose elements of 2 differnet registers */ .macro transpose x0,x1,xi,xilen,literal mov \xi\xilen, \x0\xilen trn1 \x0\literal, \x0\literal, \x1\literal trn2 \x1\literal, \xi\literal, \x1\literal .endm /* Transpose a block of 4x4 coefficients in four 64-bit registers */ .macro transpose_4x4_32 x0,x0len x1,x1len x2,x2len x3,x3len,xi,xilen mov \xi\xilen, \x0\xilen trn1 \x0\x0len, \x0\x0len, \x2\x2len trn2 \x2\x2len, \xi\x0len, \x2\x2len mov \xi\xilen, \x1\xilen trn1 \x1\x1len, \x1\x1len, \x3\x3len trn2 \x3\x3len, \xi\x1len, \x3\x3len .endm .macro transpose_4x4_16 x0,x0len x1,x1len, x2,x2len, x3,x3len,xi,xilen mov \xi\xilen, \x0\xilen trn1 \x0\x0len, \x0\x0len, \x1\x1len trn2 \x1\x2len, \xi\x0len, \x1\x2len mov \xi\xilen, \x2\xilen trn1 \x2\x2len, \x2\x2len, \x3\x3len trn2 \x3\x2len, \xi\x1len, \x3\x3len .endm .macro transpose_4x4 x0, x1, x2, x3,x5 transpose_4x4_16 \x0,.4h, \x1,.4h, \x2,.4h,\x3,.4h,\x5,.16b transpose_4x4_32 \x0,.2s, \x1,.2s, \x2,.2s,\x3,.2s,\x5,.16b .endm #define CENTERJSAMPLE 128 /*****************************************************************************/ /* * Perform dequantization and inverse DCT on one block of coefficients. * * GLOBAL(void) * jsimd_idct_islow_neon (void * dct_table, JCOEFPTR coef_block, * JSAMPARRAY output_buf, JDIMENSION output_col) */ #define FIX_0_298631336 (2446) #define FIX_0_390180644 (3196) #define FIX_0_541196100 (4433) #define FIX_0_765366865 (6270) #define FIX_0_899976223 (7373) #define FIX_1_175875602 (9633) #define FIX_1_501321110 (12299) #define FIX_1_847759065 (15137) #define FIX_1_961570560 (16069) #define FIX_2_053119869 (16819) #define FIX_2_562915447 (20995) #define FIX_3_072711026 (25172) #define FIX_1_175875602_MINUS_1_961570560 (FIX_1_175875602 - FIX_1_961570560) #define FIX_1_175875602_MINUS_0_390180644 (FIX_1_175875602 - FIX_0_390180644) #define FIX_0_541196100_MINUS_1_847759065 (FIX_0_541196100 - FIX_1_847759065) #define FIX_3_072711026_MINUS_2_562915447 (FIX_3_072711026 - FIX_2_562915447) #define FIX_0_298631336_MINUS_0_899976223 (FIX_0_298631336 - FIX_0_899976223) #define FIX_1_501321110_MINUS_0_899976223 (FIX_1_501321110 - FIX_0_899976223) #define FIX_2_053119869_MINUS_2_562915447 (FIX_2_053119869 - FIX_2_562915447) #define FIX_0_541196100_PLUS_0_765366865 (FIX_0_541196100 + FIX_0_765366865) /* * Reference SIMD-friendly 1-D ISLOW iDCT C implementation. * Uses some ideas from the comments in 'simd/jiss2int-64.asm' */ #define REF_1D_IDCT(xrow0, xrow1, xrow2, xrow3, xrow4, xrow5, xrow6, xrow7) \ { \ DCTELEM row0, row1, row2, row3, row4, row5, row6, row7; \ INT32 q1, q2, q3, q4, q5, q6, q7; \ INT32 tmp11_plus_tmp2, tmp11_minus_tmp2; \ \ /* 1-D iDCT input data */ \ row0 = xrow0; \ row1 = xrow1; \ row2 = xrow2; \ row3 = xrow3; \ row4 = xrow4; \ row5 = xrow5; \ row6 = xrow6; \ row7 = xrow7; \ \ q5 = row7 + row3; \ q4 = row5 + row1; \ q6 = MULTIPLY(q5, FIX_1_175875602_MINUS_1_961570560) + \ MULTIPLY(q4, FIX_1_175875602); \ q7 = MULTIPLY(q5, FIX_1_175875602) + \ MULTIPLY(q4, FIX_1_175875602_MINUS_0_390180644); \ q2 = MULTIPLY(row2, FIX_0_541196100) + \ MULTIPLY(row6, FIX_0_541196100_MINUS_1_847759065); \ q4 = q6; \ q3 = ((INT32) row0 - (INT32) row4) << 13; \ q6 += MULTIPLY(row5, -FIX_2_562915447) + \ MULTIPLY(row3, FIX_3_072711026_MINUS_2_562915447); \ /* now we can use q1 (reloadable constants have been used up) */ \ q1 = q3 + q2; \ q4 += MULTIPLY(row7, FIX_0_298631336_MINUS_0_899976223) + \ MULTIPLY(row1, -FIX_0_899976223); \ q5 = q7; \ q1 = q1 + q6; \ q7 += MULTIPLY(row7, -FIX_0_899976223) + \ MULTIPLY(row1, FIX_1_501321110_MINUS_0_899976223); \ \ /* (tmp11 + tmp2) has been calculated (out_row1 before descale) */ \ tmp11_plus_tmp2 = q1; \ row1 = 0; \ \ q1 = q1 - q6; \ q5 += MULTIPLY(row5, FIX_2_053119869_MINUS_2_562915447) + \ MULTIPLY(row3, -FIX_2_562915447); \ q1 = q1 - q6; \ q6 = MULTIPLY(row2, FIX_0_541196100_PLUS_0_765366865) + \ MULTIPLY(row6, FIX_0_541196100); \ q3 = q3 - q2; \ \ /* (tmp11 - tmp2) has been calculated (out_row6 before descale) */ \ tmp11_minus_tmp2 = q1; \ \ q1 = ((INT32) row0 + (INT32) row4) << 13; \ q2 = q1 + q6; \ q1 = q1 - q6; \ \ /* pick up the results */ \ tmp0 = q4; \ tmp1 = q5; \ tmp2 = (tmp11_plus_tmp2 - tmp11_minus_tmp2) / 2; \ tmp3 = q7; \ tmp10 = q2; \ tmp11 = (tmp11_plus_tmp2 + tmp11_minus_tmp2) / 2; \ tmp12 = q3; \ tmp13 = q1; \ } #define XFIX_0_899976223 v0.h[0] #define XFIX_0_541196100 v0.h[1] #define XFIX_2_562915447 v0.h[2] #define XFIX_0_298631336_MINUS_0_899976223 v0.h[3] #define XFIX_1_501321110_MINUS_0_899976223 v1.h[0] #define XFIX_2_053119869_MINUS_2_562915447 v1.h[1] #define XFIX_0_541196100_PLUS_0_765366865 v1.h[2] #define XFIX_1_175875602 v1.h[3] #define XFIX_1_175875602_MINUS_0_390180644 v2.h[0] #define XFIX_0_541196100_MINUS_1_847759065 v2.h[1] #define XFIX_3_072711026_MINUS_2_562915447 v2.h[2] #define XFIX_1_175875602_MINUS_1_961570560 v2.h[3] .balign 16 Ljsimd_idct_islow_neon_consts: .short FIX_0_899976223 /* d0[0] */ .short FIX_0_541196100 /* d0[1] */ .short FIX_2_562915447 /* d0[2] */ .short FIX_0_298631336_MINUS_0_899976223 /* d0[3] */ .short FIX_1_501321110_MINUS_0_899976223 /* d1[0] */ .short FIX_2_053119869_MINUS_2_562915447 /* d1[1] */ .short FIX_0_541196100_PLUS_0_765366865 /* d1[2] */ .short FIX_1_175875602 /* d1[3] */ /* reloadable constants */ .short FIX_1_175875602_MINUS_0_390180644 /* d2[0] */ .short FIX_0_541196100_MINUS_1_847759065 /* d2[1] */ .short FIX_3_072711026_MINUS_2_562915447 /* d2[2] */ .short FIX_1_175875602_MINUS_1_961570560 /* d2[3] */ asm_function jsimd_idct_islow_neon DCT_TABLE .req x0 COEF_BLOCK .req x1 OUTPUT_BUF .req x2 OUTPUT_COL .req x3 TMP1 .req x0 TMP2 .req x1 TMP3 .req x2 TMP4 .req x15 ROW0L .req v16 ROW0R .req v17 ROW1L .req v18 ROW1R .req v19 ROW2L .req v20 ROW2R .req v21 ROW3L .req v22 ROW3R .req v23 ROW4L .req v24 ROW4R .req v25 ROW5L .req v26 ROW5R .req v27 ROW6L .req v28 ROW6R .req v29 ROW7L .req v30 ROW7R .req v31 /* Save all NEON registers and x15 (32 NEON registers * 8 bytes + 16) */ sub sp, sp, 272 str x15, [sp], 16 adr x15, Ljsimd_idct_islow_neon_consts st1 {v0.8b, v1.8b, v2.8b, v3.8b}, [sp], 32 st1 {v4.8b, v5.8b, v6.8b, v7.8b}, [sp], 32 st1 {v8.8b, v9.8b, v10.8b, v11.8b}, [sp], 32 st1 {v12.8b, v13.8b, v14.8b, v15.8b}, [sp], 32 st1 {v16.8b, v17.8b, v18.8b, v19.8b}, [sp], 32 st1 {v20.8b, v21.8b, v22.8b, v23.8b}, [sp], 32 st1 {v24.8b, v25.8b, v26.8b, v27.8b}, [sp], 32 st1 {v28.8b, v29.8b, v30.8b, v31.8b}, [sp], 32 ld1 {v16.4h, v17.4h, v18.4h, v19.4h}, [COEF_BLOCK], 32 ld1 {v0.4h, v1.4h, v2.4h, v3.4h}, [DCT_TABLE], 32 ld1 {v20.4h, v21.4h, v22.4h, v23.4h}, [COEF_BLOCK], 32 mul v16.4h, v16.4h, v0.4h mul v17.4h, v17.4h, v1.4h ins v16.d[1], v17.d[0] /* 128 bit q8 */ ld1 {v4.4h, v5.4h, v6.4h, v7.4h}, [DCT_TABLE], 32 mul v18.4h, v18.4h, v2.4h mul v19.4h, v19.4h, v3.4h ins v18.d[1], v19.d[0] /* 128 bit q9 */ ld1 {v24.4h, v25.4h, v26.4h, v27.4h}, [COEF_BLOCK], 32 mul v20.4h, v20.4h, v4.4h mul v21.4h, v21.4h, v5.4h ins v20.d[1], v21.d[0] /* 128 bit q10 */ ld1 {v0.4h, v1.4h, v2.4h, v3.4h}, [DCT_TABLE], 32 mul v22.4h, v22.4h, v6.4h mul v23.4h, v23.4h, v7.4h ins v22.d[1], v23.d[0] /* 128 bit q11 */ ld1 {v28.4h, v29.4h, v30.4h, v31.4h}, [COEF_BLOCK] mul v24.4h, v24.4h, v0.4h mul v25.4h, v25.4h, v1.4h ins v24.d[1], v25.d[0] /* 128 bit q12 */ ld1 {v4.4h, v5.4h, v6.4h, v7.4h}, [DCT_TABLE], 32 mul v28.4h, v28.4h, v4.4h mul v29.4h, v29.4h, v5.4h ins v28.d[1], v29.d[0] /* 128 bit q14 */ mul v26.4h, v26.4h, v2.4h mul v27.4h, v27.4h, v3.4h ins v26.d[1], v27.d[0] /* 128 bit q13 */ ld1 {v0.4h, v1.4h, v2.4h, v3.4h}, [x15] /* load constants */ add x15, x15, #16 mul v30.4h, v30.4h, v6.4h mul v31.4h, v31.4h, v7.4h ins v30.d[1], v31.d[0] /* 128 bit q15 */ /* Go to the bottom of the stack */ sub sp, sp, 352 stp x4, x5, [sp], 16 st1 {v8.4h, v9.4h, v10.4h, v11.4h}, [sp], 32 /* save NEON registers */ st1 {v12.4h, v13.4h, v14.4h, v15.4h}, [sp], 32 /* 1-D IDCT, pass 1, left 4x8 half */ add v4.4h, ROW7L.4h, ROW3L.4h add v5.4h, ROW5L.4h, ROW1L.4h smull v12.4s, v4.4h, XFIX_1_175875602_MINUS_1_961570560 smlal v12.4s, v5.4h, XFIX_1_175875602 smull v14.4s, v4.4h, XFIX_1_175875602 /* Check for the zero coefficients in the right 4x8 half */ smlal v14.4s, v5.4h, XFIX_1_175875602_MINUS_0_390180644 ssubl v6.4s, ROW0L.4h, ROW4L.4h ldp w4, w5, [COEF_BLOCK, #(-96 + 2 * (4 + 1 * 8))] smull v4.4s, ROW2L.4h, XFIX_0_541196100 smlal v4.4s, ROW6L.4h, XFIX_0_541196100_MINUS_1_847759065 orr x0, x4, x5 mov v8.16b, v12.16b smlsl v12.4s, ROW5L.4h, XFIX_2_562915447 ldp w4, w5, [COEF_BLOCK, #(-96 + 2 * (4 + 2 * 8))] smlal v12.4s, ROW3L.4h, XFIX_3_072711026_MINUS_2_562915447 shl v6.4s, v6.4s, #13 orr x0, x0, x4 smlsl v8.4s, ROW1L.4h, XFIX_0_899976223 orr x0, x0 , x5 add v2.4s, v6.4s, v4.4s ldp w4, w5, [COEF_BLOCK, #(-96 + 2 * (4 + 3 * 8))] mov v10.16b, v14.16b add v2.4s, v2.4s, v12.4s orr x0, x0, x4 smlsl v14.4s, ROW7L.4h, XFIX_0_899976223 orr x0, x0, x5 smlal v14.4s, ROW1L.4h, XFIX_1_501321110_MINUS_0_899976223 rshrn ROW1L.4h, v2.4s, #11 ldp w4, w5, [COEF_BLOCK, #(-96 + 2 * (4 + 4 * 8))] sub v2.4s, v2.4s, v12.4s smlal v10.4s, ROW5L.4h, XFIX_2_053119869_MINUS_2_562915447 orr x0, x0, x4 smlsl v10.4s, ROW3L.4h, XFIX_2_562915447 orr x0, x0, x5 sub v2.4s, v2.4s, v12.4s smull v12.4s, ROW2L.4h, XFIX_0_541196100_PLUS_0_765366865 ldp w4, w5, [COEF_BLOCK, #(-96 + 2 * (4 + 5 * 8))] smlal v12.4s, ROW6L.4h, XFIX_0_541196100 sub v6.4s, v6.4s, v4.4s orr x0, x0, x4 rshrn ROW6L.4h, v2.4s, #11 orr x0, x0, x5 add v2.4s, v6.4s, v10.4s ldp w4, w5, [COEF_BLOCK, #(-96 + 2 * (4 + 6 * 8))] sub v6.4s, v6.4s, v10.4s saddl v10.4s, ROW0L.4h, ROW4L.4h orr x0, x0, x4 rshrn ROW2L.4h, v2.4s, #11 orr x0, x0, x5 rshrn ROW5L.4h, v6.4s, #11 ldp w4, w5, [COEF_BLOCK, #(-96 + 2 * (4 + 7 * 8))] shl v10.4s, v10.4s, #13 smlal v8.4s, ROW7L.4h, XFIX_0_298631336_MINUS_0_899976223 orr x0, x0, x4 add v4.4s, v10.4s, v12.4s orr x0, x0, x5 cmp x0, #0 /* orrs instruction removed */ sub v2.4s, v10.4s, v12.4s add v12.4s, v4.4s, v14.4s ldp w4, w5, [COEF_BLOCK, #(-96 + 2 * (4 + 0 * 8))] sub v4.4s, v4.4s, v14.4s add v10.4s, v2.4s, v8.4s orr x0, x4, x5 sub v6.4s, v2.4s, v8.4s /* pop {x4, x5} */ sub sp, sp, 80 ldp x4, x5, [sp], 16 rshrn ROW7L.4h, v4.4s, #11 rshrn ROW3L.4h, v10.4s, #11 rshrn ROW0L.4h, v12.4s, #11 rshrn ROW4L.4h, v6.4s, #11 b.eq 3f /* Go to do some special handling for the sparse right 4x8 half */ /* 1-D IDCT, pass 1, right 4x8 half */ ld1 {v2.4h}, [x15] /* reload constants */ add v10.4h, ROW7R.4h, ROW3R.4h add v8.4h, ROW5R.4h, ROW1R.4h /* Transpose ROW6L <-> ROW7L (v3 available free register) */ transpose ROW6L, ROW7L, v3, .16b, .4h smull v12.4s, v10.4h, XFIX_1_175875602_MINUS_1_961570560 smlal v12.4s, v8.4h, XFIX_1_175875602 /* Transpose ROW2L <-> ROW3L (v3 available free register) */ transpose ROW2L, ROW3L, v3, .16b, .4h smull v14.4s, v10.4h, XFIX_1_175875602 smlal v14.4s, v8.4h, XFIX_1_175875602_MINUS_0_390180644 /* Transpose ROW0L <-> ROW1L (v3 available free register) */ transpose ROW0L, ROW1L, v3, .16b, .4h ssubl v6.4s, ROW0R.4h, ROW4R.4h smull v4.4s, ROW2R.4h, XFIX_0_541196100 smlal v4.4s, ROW6R.4h, XFIX_0_541196100_MINUS_1_847759065 /* Transpose ROW4L <-> ROW5L (v3 available free register) */ transpose ROW4L, ROW5L, v3, .16b, .4h mov v8.16b, v12.16b smlsl v12.4s, ROW5R.4h, XFIX_2_562915447 smlal v12.4s, ROW3R.4h, XFIX_3_072711026_MINUS_2_562915447 /* Transpose ROW1L <-> ROW3L (v3 available free register) */ transpose ROW1L, ROW3L, v3, .16b, .2s shl v6.4s, v6.4s, #13 smlsl v8.4s, ROW1R.4h, XFIX_0_899976223 /* Transpose ROW4L <-> ROW6L (v3 available free register) */ transpose ROW4L, ROW6L, v3, .16b, .2s add v2.4s, v6.4s, v4.4s mov v10.16b, v14.16b add v2.4s, v2.4s, v12.4s /* Transpose ROW0L <-> ROW2L (v3 available free register) */ transpose ROW0L, ROW2L, v3, .16b, .2s smlsl v14.4s, ROW7R.4h, XFIX_0_899976223 smlal v14.4s, ROW1R.4h, XFIX_1_501321110_MINUS_0_899976223 rshrn ROW1R.4h, v2.4s, #11 /* Transpose ROW5L <-> ROW7L (v3 available free register) */ transpose ROW5L, ROW7L, v3, .16b, .2s sub v2.4s, v2.4s, v12.4s smlal v10.4s, ROW5R.4h, XFIX_2_053119869_MINUS_2_562915447 smlsl v10.4s, ROW3R.4h, XFIX_2_562915447 sub v2.4s, v2.4s, v12.4s smull v12.4s, ROW2R.4h, XFIX_0_541196100_PLUS_0_765366865 smlal v12.4s, ROW6R.4h, XFIX_0_541196100 sub v6.4s, v6.4s, v4.4s rshrn ROW6R.4h, v2.4s, #11 add v2.4s, v6.4s, v10.4s sub v6.4s, v6.4s, v10.4s saddl v10.4s, ROW0R.4h, ROW4R.4h rshrn ROW2R.4h, v2.4s, #11 rshrn ROW5R.4h, v6.4s, #11 shl v10.4s, v10.4s, #13 smlal v8.4s, ROW7R.4h, XFIX_0_298631336_MINUS_0_899976223 add v4.4s, v10.4s, v12.4s sub v2.4s, v10.4s, v12.4s add v12.4s, v4.4s, v14.4s sub v4.4s, v4.4s, v14.4s add v10.4s, v2.4s, v8.4s sub v6.4s, v2.4s, v8.4s rshrn ROW7R.4h, v4.4s, #11 rshrn ROW3R.4h, v10.4s, #11 rshrn ROW0R.4h, v12.4s, #11 rshrn ROW4R.4h, v6.4s, #11 /* Transpose right 4x8 half */ transpose ROW6R, ROW7R, v3, .16b, .4h transpose ROW2R, ROW3R, v3, .16b, .4h transpose ROW0R, ROW1R, v3, .16b, .4h transpose ROW4R, ROW5R, v3, .16b, .4h transpose ROW1R, ROW3R, v3, .16b, .2s transpose ROW4R, ROW6R, v3, .16b, .2s transpose ROW0R, ROW2R, v3, .16b, .2s transpose ROW5R, ROW7R, v3, .16b, .2s 1: /* 1-D IDCT, pass 2 (normal variant), left 4x8 half */ ld1 {v2.4h}, [x15] /* reload constants */ smull v12.4S, ROW1R.4h, XFIX_1_175875602 /* ROW5L.4h <-> ROW1R.4h */ smlal v12.4s, ROW1L.4h, XFIX_1_175875602 smlal v12.4s, ROW3R.4h, XFIX_1_175875602_MINUS_1_961570560 /* ROW7L.4h <-> ROW3R.4h */ smlal v12.4s, ROW3L.4h, XFIX_1_175875602_MINUS_1_961570560 smull v14.4s, ROW3R.4h, XFIX_1_175875602 /* ROW7L.4h <-> ROW3R.4h */ smlal v14.4s, ROW3L.4h, XFIX_1_175875602 smlal v14.4s, ROW1R.4h, XFIX_1_175875602_MINUS_0_390180644 /* ROW5L.4h <-> ROW1R.4h */ smlal v14.4s, ROW1L.4h, XFIX_1_175875602_MINUS_0_390180644 ssubl v6.4s, ROW0L.4h, ROW0R.4h /* ROW4L.4h <-> ROW0R.4h */ smull v4.4s, ROW2L.4h, XFIX_0_541196100 smlal v4.4s, ROW2R.4h, XFIX_0_541196100_MINUS_1_847759065 /* ROW6L.4h <-> ROW2R.4h */ mov v8.16b, v12.16b smlsl v12.4s, ROW1R.4h, XFIX_2_562915447 /* ROW5L.4h <-> ROW1R.4h */ smlal v12.4s, ROW3L.4h, XFIX_3_072711026_MINUS_2_562915447 shl v6.4s, v6.4s, #13 smlsl v8.4s, ROW1L.4h, XFIX_0_899976223 add v2.4s, v6.4s, v4.4s mov v10.16b, v14.16b add v2.4s, v2.4s, v12.4s smlsl v14.4s, ROW3R.4h, XFIX_0_899976223 /* ROW7L.4h <-> ROW3R.4h */ smlal v14.4s, ROW1L.4h, XFIX_1_501321110_MINUS_0_899976223 shrn ROW1L.4h, v2.4s, #16 sub v2.4s, v2.4s, v12.4s smlal v10.4s, ROW1R.4h, XFIX_2_053119869_MINUS_2_562915447 /* ROW5L.4h <-> ROW1R.4h */ smlsl v10.4s, ROW3L.4h, XFIX_2_562915447 sub v2.4s, v2.4s, v12.4s smull v12.4s, ROW2L.4h, XFIX_0_541196100_PLUS_0_765366865 smlal v12.4s, ROW2R.4h, XFIX_0_541196100 /* ROW6L.4h <-> ROW2R.4h */ sub v6.4s, v6.4s, v4.4s shrn ROW2R.4h, v2.4s, #16 /* ROW6L.4h <-> ROW2R.4h */ add v2.4s, v6.4s, v10.4s sub v6.4s, v6.4s, v10.4s saddl v10.4s, ROW0L.4h, ROW0R.4h /* ROW4L.4h <-> ROW0R.4h */ shrn ROW2L.4h, v2.4s, #16 shrn ROW1R.4h, v6.4s, #16 /* ROW5L.4h <-> ROW1R.4h */ shl v10.4s, v10.4s, #13 smlal v8.4s, ROW3R.4h, XFIX_0_298631336_MINUS_0_899976223 /* ROW7L.4h <-> ROW3R.4h */ add v4.4s, v10.4s, v12.4s sub v2.4s, v10.4s, v12.4s add v12.4s, v4.4s, v14.4s sub v4.4s, v4.4s, v14.4s add v10.4s, v2.4s, v8.4s sub v6.4s, v2.4s, v8.4s shrn ROW3R.4h, v4.4s, #16 /* ROW7L.4h <-> ROW3R.4h */ shrn ROW3L.4h, v10.4s, #16 shrn ROW0L.4h, v12.4s, #16 shrn ROW0R.4h, v6.4s, #16 /* ROW4L.4h <-> ROW0R.4h */ /* 1-D IDCT, pass 2, right 4x8 half */ ld1 {v2.4h}, [x15] /* reload constants */ smull v12.4s, ROW5R.4h, XFIX_1_175875602 smlal v12.4s, ROW5L.4h, XFIX_1_175875602 /* ROW5L.4h <-> ROW1R.4h */ smlal v12.4s, ROW7R.4h, XFIX_1_175875602_MINUS_1_961570560 smlal v12.4s, ROW7L.4h, XFIX_1_175875602_MINUS_1_961570560 /* ROW7L.4h <-> ROW3R.4h */ smull v14.4s, ROW7R.4h, XFIX_1_175875602 smlal v14.4s, ROW7L.4h, XFIX_1_175875602 /* ROW7L.4h <-> ROW3R.4h */ smlal v14.4s, ROW5R.4h, XFIX_1_175875602_MINUS_0_390180644 smlal v14.4s, ROW5L.4h, XFIX_1_175875602_MINUS_0_390180644 /* ROW5L.4h <-> ROW1R.4h */ ssubl v6.4s, ROW4L.4h, ROW4R.4h /* ROW4L.4h <-> ROW0R.4h */ smull v4.4s, ROW6L.4h, XFIX_0_541196100 /* ROW6L.4h <-> ROW2R.4h */ smlal v4.4s, ROW6R.4h, XFIX_0_541196100_MINUS_1_847759065 mov v8.16b, v12.16b smlsl v12.4s, ROW5R.4h, XFIX_2_562915447 smlal v12.4s, ROW7L.4h, XFIX_3_072711026_MINUS_2_562915447 /* ROW7L.4h <-> ROW3R.4h */ shl v6.4s, v6.4s, #13 smlsl v8.4s, ROW5L.4h, XFIX_0_899976223 /* ROW5L.4h <-> ROW1R.4h */ add v2.4s, v6.4s, v4.4s mov v10.16b, v14.16b add v2.4s, v2.4s, v12.4s smlsl v14.4s, ROW7R.4h, XFIX_0_899976223 smlal v14.4s, ROW5L.4h, XFIX_1_501321110_MINUS_0_899976223 /* ROW5L.4h <-> ROW1R.4h */ shrn ROW5L.4h, v2.4s, #16 /* ROW5L.4h <-> ROW1R.4h */ sub v2.4s, v2.4s, v12.4s smlal v10.4s, ROW5R.4h, XFIX_2_053119869_MINUS_2_562915447 smlsl v10.4s, ROW7L.4h, XFIX_2_562915447 /* ROW7L.4h <-> ROW3R.4h */ sub v2.4s, v2.4s, v12.4s smull v12.4s, ROW6L.4h, XFIX_0_541196100_PLUS_0_765366865 /* ROW6L.4h <-> ROW2R.4h */ smlal v12.4s, ROW6R.4h, XFIX_0_541196100 sub v6.4s, v6.4s, v4.4s shrn ROW6R.4h, v2.4s, #16 add v2.4s, v6.4s, v10.4s sub v6.4s, v6.4s, v10.4s saddl v10.4s, ROW4L.4h, ROW4R.4h /* ROW4L.4h <-> ROW0R.4h */ shrn ROW6L.4h, v2.4s, #16 /* ROW6L.4h <-> ROW2R.4h */ shrn ROW5R.4h, v6.4s, #16 shl v10.4s, v10.4s, #13 smlal v8.4s, ROW7R.4h, XFIX_0_298631336_MINUS_0_899976223 add v4.4s, v10.4s, v12.4s sub v2.4s, v10.4s, v12.4s add v12.4s, v4.4s, v14.4s sub v4.4s, v4.4s, v14.4s add v10.4s, v2.4s, v8.4s sub v6.4s, v2.4s, v8.4s shrn ROW7R.4h, v4.4s, #16 shrn ROW7L.4h, v10.4s, #16 /* ROW7L.4h <-> ROW3R.4h */ shrn ROW4L.4h, v12.4s, #16 /* ROW4L.4h <-> ROW0R.4h */ shrn ROW4R.4h, v6.4s, #16 2: /* Descale to 8-bit and range limit */ ins v16.d[1], v17.d[0] ins v18.d[1], v19.d[0] ins v20.d[1], v21.d[0] ins v22.d[1], v23.d[0] sqrshrn v16.8b, v16.8h, #2 sqrshrn2 v16.16b, v18.8h, #2 sqrshrn v18.8b, v20.8h, #2 sqrshrn2 v18.16b, v22.8h, #2 /* vpop {v8.4h - d15.4h} */ /* restore NEON registers */ ld1 {v8.4h, v9.4h, v10.4h, v11.4h}, [sp], 32 ld1 {v12.4h, v13.4h, v14.4h, v15.4h}, [sp], 32 ins v24.d[1], v25.d[0] sqrshrn v20.8b, v24.8h, #2 /* Transpose the final 8-bit samples and do signed->unsigned conversion */ /* trn1 v16.8h, v16.8h, v18.8h */ transpose v16, v18, v3, .16b, .8h ins v26.d[1], v27.d[0] ins v28.d[1], v29.d[0] ins v30.d[1], v31.d[0] sqrshrn2 v20.16b, v26.8h, #2 sqrshrn v22.8b, v28.8h, #2 movi v0.16b, #(CENTERJSAMPLE) sqrshrn2 v22.16b, v30.8h, #2 transpose_single v16, v17, v3, .d, .8b transpose_single v18, v19, v3, .d, .8b add v16.8b, v16.8b, v0.8b add v17.8b, v17.8b, v0.8b add v18.8b, v18.8b, v0.8b add v19.8b, v19.8b, v0.8b transpose v20, v22, v3, .16b, .8h /* Store results to the output buffer */ ldp TMP1, TMP2, [OUTPUT_BUF], 16 add TMP1, TMP1, OUTPUT_COL add TMP2, TMP2, OUTPUT_COL st1 {v16.8b}, [TMP1] transpose_single v20, v21, v3, .d, .8b st1 {v17.8b}, [TMP2] ldp TMP1, TMP2, [OUTPUT_BUF], 16 add TMP1, TMP1, OUTPUT_COL add TMP2, TMP2, OUTPUT_COL st1 {v18.8b}, [TMP1] add v20.8b, v20.8b, v0.8b add v21.8b, v21.8b, v0.8b st1 {v19.8b}, [TMP2] ldp TMP1, TMP2, [OUTPUT_BUF], 16 ldp TMP3, TMP4, [OUTPUT_BUF] add TMP1, TMP1, OUTPUT_COL add TMP2, TMP2, OUTPUT_COL add TMP3, TMP3, OUTPUT_COL add TMP4, TMP4, OUTPUT_COL transpose_single v22, v23, v3, .d, .8b st1 {v20.8b}, [TMP1] add v22.8b, v22.8b, v0.8b add v23.8b, v23.8b, v0.8b st1 {v21.8b}, [TMP2] st1 {v22.8b}, [TMP3] st1 {v23.8b}, [TMP4] ldr x15, [sp], 16 ld1 {v0.8b, v1.8b, v2.8b, v3.8b}, [sp], 32 ld1 {v4.8b, v5.8b, v6.8b, v7.8b}, [sp], 32 ld1 {v8.8b, v9.8b, v10.8b, v11.8b}, [sp], 32 ld1 {v12.8b, v13.8b, v14.8b, v15.8b}, [sp], 32 ld1 {v16.8b, v17.8b, v18.8b, v19.8b}, [sp], 32 ld1 {v20.8b, v21.8b, v22.8b, v23.8b}, [sp], 32 ld1 {v24.8b, v25.8b, v26.8b, v27.8b}, [sp], 32 ld1 {v28.8b, v29.8b, v30.8b, v31.8b}, [sp], 32 blr x30 3: /* Left 4x8 half is done, right 4x8 half contains mostly zeros */ /* Transpose left 4x8 half */ transpose ROW6L, ROW7L, v3, .16b, .4h transpose ROW2L, ROW3L, v3, .16b, .4h transpose ROW0L, ROW1L, v3, .16b, .4h transpose ROW4L, ROW5L, v3, .16b, .4h shl ROW0R.4h, ROW0R.4h, #2 /* PASS1_BITS */ transpose ROW1L, ROW3L, v3, .16b, .2s transpose ROW4L, ROW6L, v3, .16b, .2s transpose ROW0L, ROW2L, v3, .16b, .2s transpose ROW5L, ROW7L, v3, .16b, .2s cmp x0, #0 b.eq 4f /* Right 4x8 half has all zeros, go to 'sparse' second pass */ /* Only row 0 is non-zero for the right 4x8 half */ dup ROW1R.4h, ROW0R.h[1] dup ROW2R.4h, ROW0R.h[2] dup ROW3R.4h, ROW0R.h[3] dup ROW4R.4h, ROW0R.h[0] dup ROW5R.4h, ROW0R.h[1] dup ROW6R.4h, ROW0R.h[2] dup ROW7R.4h, ROW0R.h[3] dup ROW0R.4h, ROW0R.h[0] b 1b /* Go to 'normal' second pass */ 4: /* 1-D IDCT, pass 2 (sparse variant with zero rows 4-7), left 4x8 half */ ld1 {v2.4h}, [x15] /* reload constants */ smull v12.4s, ROW1L.4h, XFIX_1_175875602 smlal v12.4s, ROW3L.4h, XFIX_1_175875602_MINUS_1_961570560 smull v14.4s, ROW3L.4h, XFIX_1_175875602 smlal v14.4s, ROW1L.4h, XFIX_1_175875602_MINUS_0_390180644 smull v4.4s, ROW2L.4h, XFIX_0_541196100 sshll v6.4s, ROW0L.4h, #13 mov v8.16b, v12.16b smlal v12.4s, ROW3L.4h, XFIX_3_072711026_MINUS_2_562915447 smlsl v8.4s, ROW1L.4h, XFIX_0_899976223 add v2.4s, v6.4s, v4.4s mov v10.16b, v14.16b smlal v14.4s, ROW1L.4h, XFIX_1_501321110_MINUS_0_899976223 add v2.4s, v2.4s, v12.4s add v12.4s, v12.4s, v12.4s smlsl v10.4s, ROW3L.4h, XFIX_2_562915447 shrn ROW1L.4h, v2.4s, #16 sub v2.4s, v2.4s, v12.4s smull v12.4s, ROW2L.4h, XFIX_0_541196100_PLUS_0_765366865 sub v6.4s, v6.4s, v4.4s shrn ROW2R.4h, v2.4s, #16 /* ROW6L.4h <-> ROW2R.4h */ add v2.4s, v6.4s, v10.4s sub v6.4s, v6.4s, v10.4s sshll v10.4s, ROW0L.4h, #13 shrn ROW2L.4h, v2.4s, #16 shrn ROW1R.4h, v6.4s, #16 /* ROW5L.4h <-> ROW1R.4h */ add v4.4s, v10.4s, v12.4s sub v2.4s, v10.4s, v12.4s add v12.4s, v4.4s, v14.4s sub v4.4s, v4.4s, v14.4s add v10.4s, v2.4s, v8.4s sub v6.4s, v2.4s, v8.4s shrn ROW3R.4h, v4.4s, #16 /* ROW7L.4h <-> ROW3R.4h */ shrn ROW3L.4h, v10.4s, #16 shrn ROW0L.4h, v12.4s, #16 shrn ROW0R.4h, v6.4s, #16 /* ROW4L.4h <-> ROW0R.4h */ /* 1-D IDCT, pass 2 (sparse variant with zero rows 4-7), right 4x8 half */ ld1 {v2.4h}, [x15] /* reload constants */ smull v12.4s, ROW5L.4h, XFIX_1_175875602 smlal v12.4s, ROW7L.4h, XFIX_1_175875602_MINUS_1_961570560 smull v14.4s, ROW7L.4h, XFIX_1_175875602 smlal v14.4s, ROW5L.4h, XFIX_1_175875602_MINUS_0_390180644 smull v4.4s, ROW6L.4h, XFIX_0_541196100 sshll v6.4s, ROW4L.4h, #13 mov v8.16b, v12.16b smlal v12.4s, ROW7L.4h, XFIX_3_072711026_MINUS_2_562915447 smlsl v8.4s, ROW5L.4h, XFIX_0_899976223 add v2.4s, v6.4s, v4.4s mov v10.16b, v14.16b smlal v14.4s, ROW5L.4h, XFIX_1_501321110_MINUS_0_899976223 add v2.4s, v2.4s, v12.4s add v12.4s, v12.4s, v12.4s smlsl v10.4s, ROW7L.4h, XFIX_2_562915447 shrn ROW5L.4h, v2.4s, #16 /* ROW5L.4h <-> ROW1R.4h */ sub v2.4s, v2.4s, v12.4s smull v12.4s, ROW6L.4h, XFIX_0_541196100_PLUS_0_765366865 sub v6.4s, v6.4s, v4.4s shrn ROW6R.4h, v2.4s, #16 add v2.4s, v6.4s, v10.4s sub v6.4s, v6.4s, v10.4s sshll v10.4s, ROW4L.4h, #13 shrn ROW6L.4h, v2.4s, #16 /* ROW6L.4h <-> ROW2R.4h */ shrn ROW5R.4h, v6.4s, #16 add v4.4s, v10.4s, v12.4s sub v2.4s, v10.4s, v12.4s add v12.4s, v4.4s, v14.4s sub v4.4s, v4.4s, v14.4s add v10.4s, v2.4s, v8.4s sub v6.4s, v2.4s, v8.4s shrn ROW7R.4h, v4.4s, #16 shrn ROW7L.4h, v10.4s, #16 /* ROW7L.4h <-> ROW3R.4h */ shrn ROW4L.4h, v12.4s, #16 /* ROW4L.4h <-> ROW0R.4h */ shrn ROW4R.4h, v6.4s, #16 b 2b /* Go to epilogue */ .unreq DCT_TABLE .unreq COEF_BLOCK .unreq OUTPUT_BUF .unreq OUTPUT_COL .unreq TMP1 .unreq TMP2 .unreq TMP3 .unreq TMP4 .unreq ROW0L .unreq ROW0R .unreq ROW1L .unreq ROW1R .unreq ROW2L .unreq ROW2R .unreq ROW3L .unreq ROW3R .unreq ROW4L .unreq ROW4R .unreq ROW5L .unreq ROW5R .unreq ROW6L .unreq ROW6R .unreq ROW7L .unreq ROW7R /*****************************************************************************/ /* * jsimd_idct_ifast_neon * * This function contains a fast, not so accurate integer implementation of * the inverse DCT (Discrete Cosine Transform). It uses the same calculations * and produces exactly the same output as IJG's original 'jpeg_idct_ifast' * function from jidctfst.c * * Normally 1-D AAN DCT needs 5 multiplications and 29 additions. * But in ARM NEON case some extra additions are required because VQDMULH * instruction can't handle the constants larger than 1. So the expressions * like "x * 1.082392200" have to be converted to "x * 0.082392200 + x", * which introduces an extra addition. Overall, there are 6 extra additions * per 1-D IDCT pass, totalling to 5 VQDMULH and 35 VADD/VSUB instructions. */ #define XFIX_1_082392200 v0.h[0] #define XFIX_1_414213562 v0.h[1] #define XFIX_1_847759065 v0.h[2] #define XFIX_2_613125930 v0.h[3] .balign 16 Ljsimd_idct_ifast_neon_consts: .short (277 * 128 - 256 * 128) /* XFIX_1_082392200 */ .short (362 * 128 - 256 * 128) /* XFIX_1_414213562 */ .short (473 * 128 - 256 * 128) /* XFIX_1_847759065 */ .short (669 * 128 - 512 * 128) /* XFIX_2_613125930 */ asm_function jsimd_idct_ifast_neon DCT_TABLE .req x0 COEF_BLOCK .req x1 OUTPUT_BUF .req x2 OUTPUT_COL .req x3 TMP1 .req x0 TMP2 .req x1 TMP3 .req x2 TMP4 .req x22 TMP5 .req x23 /* Load and dequantize coefficients into NEON registers * with the following allocation: * 0 1 2 3 | 4 5 6 7 * ---------+-------- * 0 | d16 | d17 ( v8.8h ) * 1 | d18 | d19 ( v9.8h ) * 2 | d20 | d21 ( v10.8h ) * 3 | d22 | d23 ( v11.8h ) * 4 | d24 | d25 ( v12.8h ) * 5 | d26 | d27 ( v13.8h ) * 6 | d28 | d29 ( v14.8h ) * 7 | d30 | d31 ( v15.8h ) */ /* Save NEON registers used in fast IDCT */ sub sp, sp, #176 stp x22, x23, [sp], 16 adr x23, Ljsimd_idct_ifast_neon_consts st1 {v0.8b, v1.8b, v2.8b, v3.8b}, [sp], 32 st1 {v4.8b, v5.8b, v6.8b, v7.8b}, [sp], 32 st1 {v8.8b, v9.8b, v10.8b, v11.8b}, [sp], 32 st1 {v12.8b, v13.8b, v14.8b, v15.8b}, [sp], 32 st1 {v16.8b, v17.8b, v18.8b, v19.8b}, [sp], 32 ld1 {v8.8h, v9.8h}, [COEF_BLOCK], 32 ld1 {v0.8h, v1.8h}, [DCT_TABLE], 32 ld1 {v10.8h, v11.8h}, [COEF_BLOCK], 32 mul v8.8h, v8.8h, v0.8h ld1 {v2.8h, v3.8h}, [DCT_TABLE], 32 mul v9.8h, v9.8h, v1.8h ld1 {v12.8h, v13.8h}, [COEF_BLOCK], 32 mul v10.8h, v10.8h, v2.8h ld1 {v0.8h, v1.8h}, [DCT_TABLE], 32 mul v11.8h, v11.8h, v3.8h ld1 {v14.8h, v15.8h}, [COEF_BLOCK], 32 mul v12.8h, v12.8h, v0.8h ld1 {v2.8h, v3.8h}, [DCT_TABLE], 32 mul v14.8h, v14.8h, v2.8h mul v13.8h, v13.8h, v1.8h ld1 {v0.4h}, [x23] /* load constants */ mul v15.8h, v15.8h, v3.8h /* 1-D IDCT, pass 1 */ sub v2.8h, v10.8h, v14.8h add v14.8h, v10.8h, v14.8h sub v1.8h, v11.8h, v13.8h add v13.8h, v11.8h, v13.8h sub v5.8h, v9.8h, v15.8h add v15.8h, v9.8h, v15.8h sqdmulh v4.8h, v2.8h, XFIX_1_414213562 sqdmulh v6.8h, v1.8h, XFIX_2_613125930 add v3.8h, v1.8h, v1.8h sub v1.8h, v5.8h, v1.8h add v10.8h, v2.8h, v4.8h sqdmulh v4.8h, v1.8h, XFIX_1_847759065 sub v2.8h, v15.8h, v13.8h add v3.8h, v3.8h, v6.8h sqdmulh v6.8h, v2.8h, XFIX_1_414213562 add v1.8h, v1.8h, v4.8h sqdmulh v4.8h, v5.8h, XFIX_1_082392200 sub v10.8h, v10.8h, v14.8h add v2.8h, v2.8h, v6.8h sub v6.8h, v8.8h, v12.8h add v12.8h, v8.8h, v12.8h add v9.8h, v5.8h, v4.8h add v5.8h, v6.8h, v10.8h sub v10.8h, v6.8h, v10.8h add v6.8h, v15.8h, v13.8h add v8.8h, v12.8h, v14.8h sub v3.8h, v6.8h, v3.8h sub v12.8h, v12.8h, v14.8h sub v3.8h, v3.8h, v1.8h sub v1.8h, v9.8h, v1.8h add v2.8h, v3.8h, v2.8h sub v15.8h, v8.8h, v6.8h add v1.8h, v1.8h, v2.8h add v8.8h, v8.8h, v6.8h add v14.8h, v5.8h, v3.8h sub v9.8h, v5.8h, v3.8h sub v13.8h, v10.8h, v2.8h add v10.8h, v10.8h, v2.8h /* Transpose q8-q9 */ mov v18.16b, v8.16b trn1 v8.8h, v8.8h, v9.8h trn2 v9.8h, v18.8h, v9.8h sub v11.8h, v12.8h, v1.8h /* Transpose q14-q15 */ mov v18.16b, v14.16b trn1 v14.8h, v14.8h, v15.8h trn2 v15.8h, v18.8h, v15.8h add v12.8h, v12.8h, v1.8h /* Transpose q10-q11 */ mov v18.16b, v10.16b trn1 v10.8h, v10.8h, v11.8h trn2 v11.8h, v18.8h, v11.8h /* Transpose q12-q13 */ mov v18.16b, v12.16b trn1 v12.8h, v12.8h, v13.8h trn2 v13.8h, v18.8h, v13.8h /* Transpose q9-q11 */ mov v18.16b, v9.16b trn1 v9.4s, v9.4s, v11.4s trn2 v11.4s, v18.4s, v11.4s /* Transpose q12-q14 */ mov v18.16b, v12.16b trn1 v12.4s, v12.4s, v14.4s trn2 v14.4s, v18.4s, v14.4s /* Transpose q8-q10 */ mov v18.16b, v8.16b trn1 v8.4s, v8.4s, v10.4s trn2 v10.4s, v18.4s, v10.4s /* Transpose q13-q15 */ mov v18.16b, v13.16b trn1 v13.4s, v13.4s, v15.4s trn2 v15.4s, v18.4s, v15.4s /* vswp v14.4h, v10-MSB.4h */ umov x22, v14.d[0] ins v14.d[0], v10.d[1] ins v10.d[1], x22 /* vswp v13.4h, v9MSB.4h */ umov x22, v13.d[0] ins v13.d[0], v9.d[1] ins v9.d[1], x22 /* 1-D IDCT, pass 2 */ sub v2.8h, v10.8h, v14.8h /* vswp v15.4h, v11MSB.4h */ umov x22, v15.d[0] ins v15.d[0], v11.d[1] ins v11.d[1], x22 add v14.8h, v10.8h, v14.8h /* vswp v12.4h, v8-MSB.4h */ umov x22, v12.d[0] ins v12.d[0], v8.d[1] ins v8.d[1], x22 sub v1.8h, v11.8h, v13.8h add v13.8h, v11.8h, v13.8h sub v5.8h, v9.8h, v15.8h add v15.8h, v9.8h, v15.8h sqdmulh v4.8h, v2.8h, XFIX_1_414213562 sqdmulh v6.8h, v1.8h, XFIX_2_613125930 add v3.8h, v1.8h, v1.8h sub v1.8h, v5.8h, v1.8h add v10.8h, v2.8h, v4.8h sqdmulh v4.8h, v1.8h, XFIX_1_847759065 sub v2.8h, v15.8h, v13.8h add v3.8h, v3.8h, v6.8h sqdmulh v6.8h, v2.8h, XFIX_1_414213562 add v1.8h, v1.8h, v4.8h sqdmulh v4.8h, v5.8h, XFIX_1_082392200 sub v10.8h, v10.8h, v14.8h add v2.8h, v2.8h, v6.8h sub v6.8h, v8.8h, v12.8h add v12.8h, v8.8h, v12.8h add v9.8h, v5.8h, v4.8h add v5.8h, v6.8h, v10.8h sub v10.8h, v6.8h, v10.8h add v6.8h, v15.8h, v13.8h add v8.8h, v12.8h, v14.8h sub v3.8h, v6.8h, v3.8h sub v12.8h, v12.8h, v14.8h sub v3.8h, v3.8h, v1.8h sub v1.8h, v9.8h, v1.8h add v2.8h, v3.8h, v2.8h sub v15.8h, v8.8h, v6.8h add v1.8h, v1.8h, v2.8h add v8.8h, v8.8h, v6.8h add v14.8h, v5.8h, v3.8h sub v9.8h, v5.8h, v3.8h sub v13.8h, v10.8h, v2.8h add v10.8h, v10.8h, v2.8h sub v11.8h, v12.8h, v1.8h add v12.8h, v12.8h, v1.8h /* Descale to 8-bit and range limit */ movi v0.16b, #0x80 sqshrn v8.8b, v8.8h, #5 sqshrn2 v8.16b, v9.8h, #5 sqshrn v9.8b, v10.8h, #5 sqshrn2 v9.16b, v11.8h, #5 sqshrn v10.8b, v12.8h, #5 sqshrn2 v10.16b, v13.8h, #5 sqshrn v11.8b, v14.8h, #5 sqshrn2 v11.16b, v15.8h, #5 add v8.16b, v8.16b, v0.16b add v9.16b, v9.16b, v0.16b add v10.16b, v10.16b, v0.16b add v11.16b, v11.16b, v0.16b /* Transpose the final 8-bit samples */ /* Transpose q8-q9 */ mov v18.16b, v8.16b trn1 v8.8h, v8.8h, v9.8h trn2 v9.8h, v18.8h, v9.8h /* Transpose q10-q11 */ mov v18.16b, v10.16b trn1 v10.8h, v10.8h, v11.8h trn2 v11.8h, v18.8h, v11.8h /* Transpose q8-q10 */ mov v18.16b, v8.16b trn1 v8.4s, v8.4s, v10.4s trn2 v10.4s, v18.4s, v10.4s /* Transpose q9-q11 */ mov v18.16b, v9.16b trn1 v9.4s, v9.4s, v11.4s trn2 v11.4s, v18.4s, v11.4s /* make copy */ ins v17.d[0], v8.d[1] /* Transpose d16-d17-msb */ mov v18.16b, v8.16b trn1 v8.8b, v8.8b, v17.8b trn2 v17.8b, v18.8b, v17.8b /* make copy */ ins v19.d[0], v9.d[1] mov v18.16b, v9.16b trn1 v9.8b, v9.8b, v19.8b trn2 v19.8b, v18.8b, v19.8b /* Store results to the output buffer */ ldp TMP1, TMP2, [OUTPUT_BUF], 16 add TMP1, TMP1, OUTPUT_COL add TMP2, TMP2, OUTPUT_COL st1 {v8.8b}, [TMP1] st1 {v17.8b}, [TMP2] ldp TMP1, TMP2, [OUTPUT_BUF], 16 add TMP1, TMP1, OUTPUT_COL add TMP2, TMP2, OUTPUT_COL st1 {v9.8b}, [TMP1] /* make copy */ ins v7.d[0], v10.d[1] mov v18.16b, v10.16b trn1 v10.8b, v10.8b, v7.8b trn2 v7.8b, v18.8b, v7.8b st1 {v19.8b}, [TMP2] ldp TMP1, TMP2, [OUTPUT_BUF], 16 ldp TMP4, TMP5, [OUTPUT_BUF], 16 add TMP1, TMP1, OUTPUT_COL add TMP2, TMP2, OUTPUT_COL add TMP4, TMP4, OUTPUT_COL add TMP5, TMP5, OUTPUT_COL st1 {v10.8b}, [TMP1] /* make copy */ ins v16.d[0], v11.d[1] mov v18.16b, v11.16b trn1 v11.8b, v11.8b, v16.8b trn2 v16.8b, v18.8b, v16.8b st1 {v7.8b}, [TMP2] st1 {v11.8b}, [TMP4] st1 {v16.8b}, [TMP5] sub sp, sp, #176 ldp x22, x23, [sp], 16 ld1 {v0.8b, v1.8b, v2.8b, v3.8b}, [sp], 32 ld1 {v4.8b, v5.8b, v6.8b, v7.8b}, [sp], 32 ld1 {v8.8b, v9.8b, v10.8b, v11.8b}, [sp], 32 ld1 {v12.8b, v13.8b, v14.8b, v15.8b}, [sp], 32 ld1 {v16.8b, v17.8b, v18.8b, v19.8b}, [sp], 32 blr x30 .unreq DCT_TABLE .unreq COEF_BLOCK .unreq OUTPUT_BUF .unreq OUTPUT_COL .unreq TMP1 .unreq TMP2 .unreq TMP3 .unreq TMP4 /*****************************************************************************/ /* * jsimd_idct_4x4_neon * * This function contains inverse-DCT code for getting reduced-size * 4x4 pixels output from an 8x8 DCT block. It uses the same calculations * and produces exactly the same output as IJG's original 'jpeg_idct_4x4' * function from jpeg-6b (jidctred.c). * * NOTE: jpeg-8 has an improved implementation of 4x4 inverse-DCT, which * requires much less arithmetic operations and hence should be faster. * The primary purpose of this particular NEON optimized function is * bit exact compatibility with jpeg-6b. * * TODO: a bit better instructions scheduling can be achieved by expanding * idct_helper/transpose_4x4 macros and reordering instructions, * but readability will suffer somewhat. */ #define CONST_BITS 13 #define FIX_0_211164243 (1730) /* FIX(0.211164243) */ #define FIX_0_509795579 (4176) /* FIX(0.509795579) */ #define FIX_0_601344887 (4926) /* FIX(0.601344887) */ #define FIX_0_720959822 (5906) /* FIX(0.720959822) */ #define FIX_0_765366865 (6270) /* FIX(0.765366865) */ #define FIX_0_850430095 (6967) /* FIX(0.850430095) */ #define FIX_0_899976223 (7373) /* FIX(0.899976223) */ #define FIX_1_061594337 (8697) /* FIX(1.061594337) */ #define FIX_1_272758580 (10426) /* FIX(1.272758580) */ #define FIX_1_451774981 (11893) /* FIX(1.451774981) */ #define FIX_1_847759065 (15137) /* FIX(1.847759065) */ #define FIX_2_172734803 (17799) /* FIX(2.172734803) */ #define FIX_2_562915447 (20995) /* FIX(2.562915447) */ #define FIX_3_624509785 (29692) /* FIX(3.624509785) */ .balign 16 Ljsimd_idct_4x4_neon_consts: .short FIX_1_847759065 /* v0.h[0] */ .short -FIX_0_765366865 /* v0.h[1] */ .short -FIX_0_211164243 /* v0.h[2] */ .short FIX_1_451774981 /* v0.h[3] */ .short -FIX_2_172734803 /* d1[0] */ .short FIX_1_061594337 /* d1[1] */ .short -FIX_0_509795579 /* d1[2] */ .short -FIX_0_601344887 /* d1[3] */ .short FIX_0_899976223 /* v2.h[0] */ .short FIX_2_562915447 /* v2.h[1] */ .short 1 << (CONST_BITS+1) /* v2.h[2] */ .short 0 /* v2.h[3] */ .macro idct_helper x4, x6, x8, x10, x12, x14, x16, shift, y26, y27, y28, y29 smull v28.4s, \x4, v2.h[2] smlal v28.4s, \x8, v0.h[0] smlal v28.4s, \x14, v0.h[1] smull v26.4s, \x16, v1.h[2] smlal v26.4s, \x12, v1.h[3] smlal v26.4s, \x10, v2.h[0] smlal v26.4s, \x6, v2.h[1] smull v30.4s, \x4, v2.h[2] smlsl v30.4s, \x8, v0.h[0] smlsl v30.4s, \x14, v0.h[1] smull v24.4s, \x16, v0.h[2] smlal v24.4s, \x12, v0.h[3] smlal v24.4s, \x10, v1.h[0] smlal v24.4s, \x6, v1.h[1] add v20.4s, v28.4s, v26.4s sub v28.4s, v28.4s, v26.4s .if \shift > 16 srshr v20.4s, v20.4s, #\shift srshr v28.4s, v28.4s, #\shift xtn \y26, v20.4s xtn \y29, v28.4s .else rshrn \y26, v20.4s, #\shift rshrn \y29, v28.4s, #\shift .endif add v20.4s, v30.4s, v24.4s sub v30.4s, v30.4s, v24.4s .if \shift > 16 srshr v20.4s, v20.4s, #\shift srshr v30.4s, v30.4s, #\shift xtn \y27, v20.4s xtn \y28, v30.4s .else rshrn \y27, v20.4s, #\shift rshrn \y28, v30.4s, #\shift .endif .endm asm_function jsimd_idct_4x4_neon DCT_TABLE .req x0 COEF_BLOCK .req x1 OUTPUT_BUF .req x2 OUTPUT_COL .req x3 TMP1 .req x0 TMP2 .req x1 TMP3 .req x2 TMP4 .req x15 /* Save all used NEON registers */ sub sp, sp, 272 str x15, [sp], 16 /* Load constants (v3.4h is just used for padding) */ adr TMP4, Ljsimd_idct_4x4_neon_consts st1 {v0.8b, v1.8b, v2.8b, v3.8b}, [sp], 32 st1 {v4.8b, v5.8b, v6.8b, v7.8b}, [sp], 32 st1 {v8.8b, v9.8b, v10.8b, v11.8b}, [sp], 32 st1 {v12.8b, v13.8b, v14.8b, v15.8b}, [sp], 32 st1 {v16.8b, v17.8b, v18.8b, v19.8b}, [sp], 32 st1 {v20.8b, v21.8b, v22.8b, v23.8b}, [sp], 32 st1 {v24.8b, v25.8b, v26.8b, v27.8b}, [sp], 32 st1 {v28.8b, v29.8b, v30.8b, v31.8b}, [sp], 32 ld1 {v0.4h, v1.4h, v2.4h, v3.4h}, [TMP4] /* Load all COEF_BLOCK into NEON registers with the following allocation: * 0 1 2 3 | 4 5 6 7 * ---------+-------- * 0 | v4.4h | v5.4h * 1 | v6.4h | v7.4h * 2 | v8.4h | v9.4h * 3 | v10.4h | v11.4h * 4 | - | - * 5 | v12.4h | v13.4h * 6 | v14.4h | v15.4h * 7 | v16.4h | v17.4h */ ld1 {v4.4h, v5.4h, v6.4h, v7.4h}, [COEF_BLOCK], 32 ld1 {v8.4h, v9.4h, v10.4h, v11.4h}, [COEF_BLOCK], 32 add COEF_BLOCK, COEF_BLOCK, #16 ld1 {v12.4h, v13.4h, v14.4h, v15.4h}, [COEF_BLOCK], 32 ld1 {v16.4h, v17.4h}, [COEF_BLOCK], 16 /* dequantize */ ld1 {v18.4h, v19.4h, v20.4h, v21.4h}, [DCT_TABLE], 32 mul v4.4h, v4.4h, v18.4h mul v5.4h, v5.4h, v19.4h ins v4.d[1], v5.d[0] /* 128 bit q4 */ ld1 {v22.4h, v23.4h, v24.4h, v25.4h}, [DCT_TABLE], 32 mul v6.4h, v6.4h, v20.4h mul v7.4h, v7.4h, v21.4h ins v6.d[1], v7.d[0] /* 128 bit q6 */ mul v8.4h, v8.4h, v22.4h mul v9.4h, v9.4h, v23.4h ins v8.d[1], v9.d[0] /* 128 bit q8 */ add DCT_TABLE, DCT_TABLE, #16 ld1 {v26.4h, v27.4h, v28.4h, v29.4h}, [DCT_TABLE], 32 mul v10.4h, v10.4h, v24.4h mul v11.4h, v11.4h, v25.4h ins v10.d[1], v11.d[0] /* 128 bit q10 */ mul v12.4h, v12.4h, v26.4h mul v13.4h, v13.4h, v27.4h ins v12.d[1], v13.d[0] /* 128 bit q12 */ ld1 {v30.4h, v31.4h}, [DCT_TABLE], 16 mul v14.4h, v14.4h, v28.4h mul v15.4h, v15.4h, v29.4h ins v14.d[1], v15.d[0] /* 128 bit q14 */ mul v16.4h, v16.4h, v30.4h mul v17.4h, v17.4h, v31.4h ins v16.d[1], v17.d[0] /* 128 bit q16 */ /* Pass 1 */ idct_helper v4.4h, v6.4h, v8.4h, v10.4h, v12.4h, v14.4h, v16.4h, 12, v4.4h, v6.4h, v8.4h, v10.4h transpose_4x4 v4, v6, v8, v10, v3 ins v10.d[1], v11.d[0] idct_helper v5.4h, v7.4h, v9.4h, v11.4h, v13.4h, v15.4h, v17.4h, 12, v5.4h, v7.4h, v9.4h, v11.4h transpose_4x4 v5, v7, v9, v11, v3 ins v10.d[1], v11.d[0] /* Pass 2 */ idct_helper v4.4h, v6.4h, v8.4h, v10.4h, v7.4h, v9.4h, v11.4h, 19, v26.4h, v27.4h, v28.4h, v29.4h transpose_4x4 v26, v27, v28, v29, v3 /* Range limit */ movi v30.8h, #0x80 ins v26.d[1], v27.d[0] ins v28.d[1], v29.d[0] add v26.8h, v26.8h, v30.8h add v28.8h, v28.8h, v30.8h sqxtun v26.8b, v26.8h sqxtun v27.8b, v28.8h /* Store results to the output buffer */ ldp TMP1, TMP2, [OUTPUT_BUF], 16 ldp TMP3, TMP4, [OUTPUT_BUF] add TMP1, TMP1, OUTPUT_COL add TMP2, TMP2, OUTPUT_COL add TMP3, TMP3, OUTPUT_COL add TMP4, TMP4, OUTPUT_COL #if defined(__ARMEL__) && !RESPECT_STRICT_ALIGNMENT /* We can use much less instructions on little endian systems if the * OS kernel is not configured to trap unaligned memory accesses */ st1 {v26.s}[0], [TMP1], 4 st1 {v27.s}[0], [TMP3], 4 st1 {v26.s}[1], [TMP2], 4 st1 {v27.s}[1], [TMP4], 4 #else st1 {v26.b}[0], [TMP1], 1 st1 {v27.b}[0], [TMP3], 1 st1 {v26.b}[1], [TMP1], 1 st1 {v27.b}[1], [TMP3], 1 st1 {v26.b}[2], [TMP1], 1 st1 {v27.b}[2], [TMP3], 1 st1 {v26.b}[3], [TMP1], 1 st1 {v27.b}[3], [TMP3], 1 st1 {v26.b}[4], [TMP2], 1 st1 {v27.b}[4], [TMP4], 1 st1 {v26.b}[5], [TMP2], 1 st1 {v27.b}[5], [TMP4], 1 st1 {v26.b}[6], [TMP2], 1 st1 {v27.b}[6], [TMP4], 1 st1 {v26.b}[7], [TMP2], 1 st1 {v27.b}[7], [TMP4], 1 #endif /* vpop {v8.4h - v15.4h} ;not available */ sub sp, sp, #272 ldr x15, [sp], 16 ld1 {v0.8b, v1.8b, v2.8b, v3.8b}, [sp], 32 ld1 {v4.8b, v5.8b, v6.8b, v7.8b}, [sp], 32 ld1 {v8.8b, v9.8b, v10.8b, v11.8b}, [sp], 32 ld1 {v12.8b, v13.8b, v14.8b, v15.8b}, [sp], 32 ld1 {v16.8b, v17.8b, v18.8b, v19.8b}, [sp], 32 ld1 {v20.8b, v21.8b, v22.8b, v23.8b}, [sp], 32 ld1 {v24.8b, v25.8b, v26.8b, v27.8b}, [sp], 32 ld1 {v28.8b, v29.8b, v30.8b, v31.8b}, [sp], 32 blr x30 .unreq DCT_TABLE .unreq COEF_BLOCK .unreq OUTPUT_BUF .unreq OUTPUT_COL .unreq TMP1 .unreq TMP2 .unreq TMP3 .unreq TMP4 .purgem idct_helper /*****************************************************************************/ /* * jsimd_idct_2x2_neon * * This function contains inverse-DCT code for getting reduced-size * 2x2 pixels output from an 8x8 DCT block. It uses the same calculations * and produces exactly the same output as IJG's original 'jpeg_idct_2x2' * function from jpeg-6b (jidctred.c). * * NOTE: jpeg-8 has an improved implementation of 2x2 inverse-DCT, which * requires much less arithmetic operations and hence should be faster. * The primary purpose of this particular NEON optimized function is * bit exact compatibility with jpeg-6b. */ .balign 8 Ljsimd_idct_2x2_neon_consts: .short -FIX_0_720959822 /* v14[0] */ .short FIX_0_850430095 /* v14[1] */ .short -FIX_1_272758580 /* v14[2] */ .short FIX_3_624509785 /* v14[3] */ .macro idct_helper x4, x6, x10, x12, x16, shift, y26, y27 sshll v15.4s, \x4, #15 smull v26.4s, \x6, v14.h[3] smlal v26.4s, \x10, v14.h[2] smlal v26.4s, \x12, v14.h[1] smlal v26.4s, \x16, v14.h[0] add v20.4s, v15.4s, v26.4s sub v15.4s, v15.4s, v26.4s .if \shift > 16 srshr v20.4s, v20.4s, #\shift srshr v15.4s, v15.4s, #\shift xtn \y26, v20.4s xtn \y27, v15.4s .else rshrn \y26, v20.4s, #\shift rshrn \y27, v15.4s, #\shift .endif .endm asm_function jsimd_idct_2x2_neon DCT_TABLE .req x0 COEF_BLOCK .req x1 OUTPUT_BUF .req x2 OUTPUT_COL .req x3 TMP1 .req x0 TMP2 .req x15 /* vpush {v8.4h - v15.4h} ; not available */ sub sp, sp, 208 str x15, [sp], 16 /* Load constants */ adr TMP2, Ljsimd_idct_2x2_neon_consts st1 {v4.8b, v5.8b, v6.8b, v7.8b}, [sp], 32 st1 {v8.8b, v9.8b, v10.8b, v11.8b}, [sp], 32 st1 {v12.8b, v13.8b, v14.8b, v15.8b}, [sp], 32 st1 {v16.8b, v17.8b, v18.8b, v19.8b}, [sp], 32 st1 {v21.8b, v22.8b}, [sp], 16 st1 {v24.8b, v25.8b, v26.8b, v27.8b}, [sp], 32 st1 {v30.8b, v31.8b}, [sp], 16 ld1 {v14.4h}, [TMP2] /* Load all COEF_BLOCK into NEON registers with the following allocation: * 0 1 2 3 | 4 5 6 7 * ---------+-------- * 0 | v4.4h | v5.4h * 1 | v6.4h | v7.4h * 2 | - | - * 3 | v10.4h | v11.4h * 4 | - | - * 5 | v12.4h | v13.4h * 6 | - | - * 7 | v16.4h | v17.4h */ ld1 {v4.4h, v5.4h, v6.4h, v7.4h}, [COEF_BLOCK], 32 add COEF_BLOCK, COEF_BLOCK, #16 ld1 {v10.4h, v11.4h}, [COEF_BLOCK], 16 add COEF_BLOCK, COEF_BLOCK, #16 ld1 {v12.4h, v13.4h}, [COEF_BLOCK], 16 add COEF_BLOCK, COEF_BLOCK, #16 ld1 {v16.4h, v17.4h}, [COEF_BLOCK], 16 /* Dequantize */ ld1 {v18.4h, v19.4h, v20.4h, v21.4h}, [DCT_TABLE], 32 mul v4.4h, v4.4h, v18.4h mul v5.4h, v5.4h, v19.4h ins v4.d[1], v5.d[0] mul v6.4h, v6.4h, v20.4h mul v7.4h, v7.4h, v21.4h ins v6.d[1], v7.d[0] add DCT_TABLE, DCT_TABLE, #16 ld1 {v24.4h, v25.4h}, [DCT_TABLE], 16 mul v10.4h, v10.4h, v24.4h mul v11.4h, v11.4h, v25.4h ins v10.d[1], v11.d[0] add DCT_TABLE, DCT_TABLE, #16 ld1 {v26.4h, v27.4h}, [DCT_TABLE], 16 mul v12.4h, v12.4h, v26.4h mul v13.4h, v13.4h, v27.4h ins v12.d[1], v13.d[0] add DCT_TABLE, DCT_TABLE, #16 ld1 {v30.4h, v31.4h}, [DCT_TABLE], 16 mul v16.4h, v16.4h, v30.4h mul v17.4h, v17.4h, v31.4h ins v16.d[1], v17.d[0] /* Pass 1 */ #if 0 idct_helper v4.4h, v6.4h, v10.4h, v12.4h, v16.4h, 13, v4.4h, v6.4h transpose_4x4 v4.4h, v6.4h, v8.4h, v10.4h idct_helper v5.4h, v7.4h, v11.4h, v13.4h, v17.4h, 13, v5.4h, v7.4h transpose_4x4 v5.4h, v7.4h, v9.4h, v11.4h #else smull v26.4s, v6.4h, v14.h[3] smlal v26.4s, v10.4h, v14.h[2] smlal v26.4s, v12.4h, v14.h[1] smlal v26.4s, v16.4h, v14.h[0] smull v24.4s, v7.4h, v14.h[3] smlal v24.4s, v11.4h, v14.h[2] smlal v24.4s, v13.4h, v14.h[1] smlal v24.4s, v17.4h, v14.h[0] sshll v15.4s, v4.4h, #15 sshll v30.4s, v5.4h, #15 add v20.4s, v15.4s, v26.4s sub v15.4s, v15.4s, v26.4s rshrn v4.4h, v20.4s, #13 rshrn v6.4h, v15.4s, #13 add v20.4s, v30.4s, v24.4s sub v15.4s, v30.4s, v24.4s rshrn v5.4h, v20.4s, #13 rshrn v7.4h, v15.4s, #13 ins v4.d[1], v5.d[0] ins v6.d[1], v7.d[0] transpose v4, v6, v3, .16b, .8h transpose v6, v10, v3, .16b, .4s ins v11.d[0], v10.d[1] ins v7.d[0], v6.d[1] #endif /* Pass 2 */ idct_helper v4.4h, v6.4h, v10.4h, v7.4h, v11.4h, 20, v26.4h, v27.4h /* Range limit */ movi v30.8h, #0x80 ins v26.d[1], v27.d[0] add v26.8h, v26.8h, v30.8h sqxtun v30.8b, v26.8h ins v26.d[0], v30.d[0] sqxtun v27.8b, v26.8h /* Store results to the output buffer */ ldp TMP1, TMP2, [OUTPUT_BUF] add TMP1, TMP1, OUTPUT_COL add TMP2, TMP2, OUTPUT_COL st1 {v26.b}[0], [TMP1], 1 st1 {v27.b}[4], [TMP1], 1 st1 {v26.b}[1], [TMP2], 1 st1 {v27.b}[5], [TMP2], 1 sub sp, sp, #208 ldr x15, [sp], 16 ld1 {v4.8b, v5.8b, v6.8b, v7.8b}, [sp], 32 ld1 {v8.8b, v9.8b, v10.8b, v11.8b}, [sp], 32 ld1 {v12.8b, v13.8b, v14.8b, v15.8b}, [sp], 32 ld1 {v16.8b, v17.8b, v18.8b, v19.8b}, [sp], 32 ld1 {v21.8b, v22.8b}, [sp], 16 ld1 {v24.8b, v25.8b, v26.8b, v27.8b}, [sp], 32 ld1 {v30.8b, v31.8b}, [sp], 16 blr x30 .unreq DCT_TABLE .unreq COEF_BLOCK .unreq OUTPUT_BUF .unreq OUTPUT_COL .unreq TMP1 .unreq TMP2 .purgem idct_helper /*****************************************************************************/ /* * jsimd_ycc_extrgb_convert_neon * jsimd_ycc_extbgr_convert_neon * jsimd_ycc_extrgbx_convert_neon * jsimd_ycc_extbgrx_convert_neon * jsimd_ycc_extxbgr_convert_neon * jsimd_ycc_extxrgb_convert_neon * * Colorspace conversion YCbCr -> RGB */ .macro do_load size .if \size == 8 ld1 {v4.8b}, [U], 8 ld1 {v5.8b}, [V], 8 ld1 {v0.8b}, [Y], 8 prfm pldl1keep, [U, #64] prfm pldl1keep, [V, #64] prfm pldl1keep, [Y, #64] .elseif \size == 4 ld1 {v4.b}[0], [U], 1 ld1 {v4.b}[1], [U], 1 ld1 {v4.b}[2], [U], 1 ld1 {v4.b}[3], [U], 1 ld1 {v5.b}[0], [V], 1 ld1 {v5.b}[1], [V], 1 ld1 {v5.b}[2], [V], 1 ld1 {v5.b}[3], [V], 1 ld1 {v0.b}[0], [Y], 1 ld1 {v0.b}[1], [Y], 1 ld1 {v0.b}[2], [Y], 1 ld1 {v0.b}[3], [Y], 1 .elseif \size == 2 ld1 {v4.b}[4], [U], 1 ld1 {v4.b}[5], [U], 1 ld1 {v5.b}[4], [V], 1 ld1 {v5.b}[5], [V], 1 ld1 {v0.b}[4], [Y], 1 ld1 {v0.b}[5], [Y], 1 .elseif \size == 1 ld1 {v4.b}[6], [U], 1 ld1 {v5.b}[6], [V], 1 ld1 {v0.b}[6], [Y], 1 .else .error unsupported macroblock size .endif .endm .macro do_store bpp, size .if \bpp == 24 .if \size == 8 st3 {v10.8b, v11.8b, v12.8b}, [RGB], 24 .elseif \size == 4 st3 {v10.b, v11.b, v12.b}[0], [RGB], 3 st3 {v10.b, v11.b, v12.b}[1], [RGB], 3 st3 {v10.b, v11.b, v12.b}[2], [RGB], 3 st3 {v10.b, v11.b, v12.b}[3], [RGB], 3 .elseif \size == 2 st3 {v10.b, v11.b, v12.b}[4], [RGB], 3 st3 {v10.b, v11.b, v12.b}[5], [RGB], 3 .elseif \size == 1 st3 {v10.b, v11.b, v12.b}[6], [RGB], 3 .else .error unsupported macroblock size .endif .elseif \bpp == 32 .if \size == 8 st4 {v10.8b, v11.8b, v12.8b, v13.8b}, [RGB], 32 .elseif \size == 4 st4 {v10.b, v11.b, v12.b, v13.b}[0], [RGB], 4 st4 {v10.b, v11.b, v12.b, v13.b}[1], [RGB], 4 st4 {v10.b, v11.b, v12.b, v13.b}[2], [RGB], 4 st4 {v10.b, v11.b, v12.b, v13.b}[3], [RGB], 4 .elseif \size == 2 st4 {v10.b, v11.b, v12.b, v13.b}[4], [RGB], 4 st4 {v10.b, v11.b, v12.b, v13.b}[5], [RGB], 4 .elseif \size == 1 st4 {v10.b, v11.b, v12.b, v13.b}[6], [RGB], 4 .else .error unsupported macroblock size .endif .elseif \bpp==16 .if \size == 8 st1 {v25.8h}, [RGB],16 .elseif \size == 4 st1 {v25.4h}, [RGB],8 .elseif \size == 2 st1 {v25.h}[4], [RGB],2 st1 {v25.h}[5], [RGB],2 .elseif \size == 1 st1 {v25.h}[6], [RGB],2 .else .error unsupported macroblock size .endif .else .error unsupported bpp .endif .endm .macro generate_jsimd_ycc_rgb_convert_neon colorid, bpp, r_offs, rsize, g_offs, gsize, b_offs, bsize, defsize /* * 2-stage pipelined YCbCr->RGB conversion */ .macro do_yuv_to_rgb_stage1 uaddw v6.8h, v2.8h, v4.8b /* q3 = u - 128 */ uaddw v8.8h, v2.8h, v5.8b /* q2 = v - 128 */ smull v20.4s, v6.4h, v1.h[1] /* multiply by -11277 */ smlal v20.4s, v8.4h, v1.h[2] /* multiply by -23401 */ smull2 v22.4s, v6.8h, v1.h[1] /* multiply by -11277 */ smlal2 v22.4s, v8.8h, v1.h[2] /* multiply by -23401 */ smull v24.4s, v8.4h, v1.h[0] /* multiply by 22971 */ smull2 v26.4s, v8.8h, v1.h[0] /* multiply by 22971 */ smull v28.4s, v6.4h, v1.h[3] /* multiply by 29033 */ smull2 v30.4s, v6.8h, v1.h[3] /* multiply by 29033 */ .endm .macro do_yuv_to_rgb_stage2 rshrn v20.4h, v20.4s, #15 rshrn2 v20.8h, v22.4s, #15 rshrn v24.4h, v24.4s, #14 rshrn2 v24.8h, v26.4s, #14 rshrn v28.4h, v28.4s, #14 rshrn2 v28.8h, v30.4s, #14 uaddw v20.8h, v20.8h, v0.8b uaddw v24.8h, v24.8h, v0.8b uaddw v28.8h, v28.8h, v0.8b .if \bpp != 16 sqxtun v1\g_offs\defsize, v20.8h sqxtun v1\r_offs\defsize, v24.8h sqxtun v1\b_offs\defsize, v28.8h .else sqshlu v21.8h, v20.8h, #8 sqshlu v25.8h, v24.8h, #8 sqshlu v29.8h, v28.8h, #8 sri v25.8h, v21.8h, #5 sri v25.8h, v29.8h, #11 .endif .endm .macro do_yuv_to_rgb_stage2_store_load_stage1 rshrn v20.4h, v20.4s, #15 rshrn v24.4h, v24.4s, #14 rshrn v28.4h, v28.4s, #14 ld1 {v4.8b}, [U], 8 rshrn2 v20.8h, v22.4s, #15 rshrn2 v24.8h, v26.4s, #14 rshrn2 v28.8h, v30.4s, #14 ld1 {v5.8b}, [V], 8 uaddw v20.8h, v20.8h, v0.8b uaddw v24.8h, v24.8h, v0.8b uaddw v28.8h, v28.8h, v0.8b .if \bpp != 16 /**************** rgb24/rgb32 *********************************/ sqxtun v1\g_offs\defsize, v20.8h ld1 {v0.8b}, [Y], 8 sqxtun v1\r_offs\defsize, v24.8h prfm pldl1keep, [U, #64] prfm pldl1keep, [V, #64] prfm pldl1keep, [Y, #64] sqxtun v1\b_offs\defsize, v28.8h uaddw v6.8h, v2.8h, v4.8b /* v6.16b = u - 128 */ uaddw v8.8h, v2.8h, v5.8b /* q2 = v - 128 */ smull v20.4s, v6.4h, v1.h[1] /* multiply by -11277 */ smlal v20.4s, v8.4h, v1.h[2] /* multiply by -23401 */ smull2 v22.4s, v6.8h, v1.h[1] /* multiply by -11277 */ smlal2 v22.4s, v8.8h, v1.h[2] /* multiply by -23401 */ smull v24.4s, v8.4h, v1.h[0] /* multiply by 22971 */ smull2 v26.4s, v8.8h, v1.h[0] /* multiply by 22971 */ .else /**************************** rgb565 ***********************************/ sqshlu v21.8h, v20.8h, #8 sqshlu v25.8h, v24.8h, #8 sqshlu v29.8h, v28.8h, #8 uaddw v6.8h, v2.8h, v4.8b /* v6.16b = u - 128 */ uaddw v8.8h, v2.8h, v5.8b /* q2 = v - 128 */ ld1 {v0.8b}, [Y], 8 smull v20.4s, v6.4h, v1.h[1] /* multiply by -11277 */ smlal v20.4s, v8.4h, v1.h[2] /* multiply by -23401 */ smull2 v22.4s, v6.8h, v1.h[1] /* multiply by -11277 */ smlal2 v22.4s, v8.8h, v1.h[2] /* multiply by -23401 */ sri v25.8h, v21.8h, #5 smull v24.4s, v8.4h, v1.h[0] /* multiply by 22971 */ smull2 v26.4s, v8.8h, v1.h[0] /* multiply by 22971 */ prfm pldl1keep, [U, #64] prfm pldl1keep, [V, #64] prfm pldl1keep, [Y, #64] sri v25.8h, v29.8h, #11 .endif do_store \bpp, 8 smull v28.4s, v6.4h, v1.h[3] /* multiply by 29033 */ smull2 v30.4s, v6.8h, v1.h[3] /* multiply by 29033 */ .endm .macro do_yuv_to_rgb do_yuv_to_rgb_stage1 do_yuv_to_rgb_stage2 .endm /* Apple gas crashes on adrl, work around that by using adr. * But this requires a copy of these constants for each function. */ .balign 16 Ljsimd_ycc_\colorid\()_neon_consts: .short 0, 0, 0, 0 .short 22971, -11277, -23401, 29033 .short -128, -128, -128, -128 .short -128, -128, -128, -128 asm_function jsimd_ycc_\colorid\()_convert_neon OUTPUT_WIDTH .req x0 INPUT_BUF .req x1 INPUT_ROW .req x2 OUTPUT_BUF .req x3 NUM_ROWS .req x4 INPUT_BUF0 .req x5 INPUT_BUF1 .req x6 INPUT_BUF2 .req x1 RGB .req x7 Y .req x8 U .req x9 V .req x10 N .req x15 sub sp, sp, 336 str x15, [sp], 16 /* Load constants to d1, d2, d3 (v0.4h is just used for padding) */ adr x15, Ljsimd_ycc_\colorid\()_neon_consts /* Save NEON registers */ st1 {v0.8b, v1.8b, v2.8b, v3.8b}, [sp], 32 st1 {v4.8b, v5.8b, v6.8b, v7.8b}, [sp], 32 st1 {v8.8b, v9.8b, v10.8b, v11.8b}, [sp], 32 st1 {v12.8b, v13.8b, v14.8b, v15.8b}, [sp], 32 st1 {v16.8b, v17.8b, v18.8b, v19.8b}, [sp], 32 st1 {v20.8b, v21.8b, v22.8b, v23.8b}, [sp], 32 st1 {v24.8b, v25.8b, v26.8b, v27.8b}, [sp], 32 st1 {v28.8b, v29.8b, v30.8b, v31.8b}, [sp], 32 ld1 {v0.4h, v1.4h}, [x15], 16 ld1 {v2.8h}, [x15] /* Save ARM registers and handle input arguments */ /* push {x4, x5, x6, x7, x8, x9, x10, x30} */ stp x4, x5, [sp], 16 stp x6, x7, [sp], 16 stp x8, x9, [sp], 16 stp x10, x30, [sp], 16 ldr INPUT_BUF0, [INPUT_BUF] ldr INPUT_BUF1, [INPUT_BUF, #8] ldr INPUT_BUF2, [INPUT_BUF, #16] .unreq INPUT_BUF /* Initially set v10, v11.4h, v12.8b, d13 to 0xFF */ movi v10.16b, #255 movi v13.16b, #255 /* Outer loop over scanlines */ cmp NUM_ROWS, #1 b.lt 9f 0: lsl x16, INPUT_ROW, #3 ldr Y, [INPUT_BUF0, x16] ldr U, [INPUT_BUF1, x16] mov N, OUTPUT_WIDTH ldr V, [INPUT_BUF2, x16] add INPUT_ROW, INPUT_ROW, #1 ldr RGB, [OUTPUT_BUF], #8 /* Inner loop over pixels */ subs N, N, #8 b.lt 3f do_load 8 do_yuv_to_rgb_stage1 subs N, N, #8 b.lt 2f 1: do_yuv_to_rgb_stage2_store_load_stage1 subs N, N, #8 b.ge 1b 2: do_yuv_to_rgb_stage2 do_store \bpp, 8 tst N, #7 b.eq 8f 3: tst N, #4 b.eq 3f do_load 4 3: tst N, #2 b.eq 4f do_load 2 4: tst N, #1 b.eq 5f do_load 1 5: do_yuv_to_rgb tst N, #4 b.eq 6f do_store \bpp, 4 6: tst N, #2 b.eq 7f do_store \bpp, 2 7: tst N, #1 b.eq 8f do_store \bpp, 1 8: subs NUM_ROWS, NUM_ROWS, #1 b.gt 0b 9: /* Restore all registers and return */ sub sp, sp, #336 ldr x15, [sp], 16 ld1 {v0.8b, v1.8b, v2.8b, v3.8b}, [sp], 32 ld1 {v4.8b, v5.8b, v6.8b, v7.8b}, [sp], 32 ld1 {v8.8b, v9.8b, v10.8b, v11.8b}, [sp], 32 ld1 {v12.8b, v13.8b, v14.8b, v15.8b}, [sp], 32 ld1 {v16.8b, v17.8b, v18.8b, v19.8b}, [sp], 32 ld1 {v20.8b, v21.8b, v22.8b, v23.8b}, [sp], 32 ld1 {v24.8b, v25.8b, v26.8b, v27.8b}, [sp], 32 ld1 {v28.8b, v29.8b, v30.8b, v31.8b}, [sp], 32 /* pop {r4, r5, r6, r7, r8, r9, r10, pc} */ ldp x4, x5, [sp], 16 ldp x6, x7, [sp], 16 ldp x8, x9, [sp], 16 ldp x10, x30, [sp], 16 br x30 .unreq OUTPUT_WIDTH .unreq INPUT_ROW .unreq OUTPUT_BUF .unreq NUM_ROWS .unreq INPUT_BUF0 .unreq INPUT_BUF1 .unreq INPUT_BUF2 .unreq RGB .unreq Y .unreq U .unreq V .unreq N .purgem do_yuv_to_rgb .purgem do_yuv_to_rgb_stage1 .purgem do_yuv_to_rgb_stage2 .purgem do_yuv_to_rgb_stage2_store_load_stage1 .endm /*--------------------------------- id ----- bpp R rsize G gsize B bsize defsize */ generate_jsimd_ycc_rgb_convert_neon extrgb, 24, 0, .4h, 1, .4h, 2, .4h, .8b generate_jsimd_ycc_rgb_convert_neon extbgr, 24, 2, .4h, 1, .4h, 0, .4h, .8b generate_jsimd_ycc_rgb_convert_neon extrgbx, 32, 0, .4h, 1, .4h, 2, .4h, .8b generate_jsimd_ycc_rgb_convert_neon extbgrx, 32, 2, .4h, 1, .4h, 0, .4h, .8b generate_jsimd_ycc_rgb_convert_neon extxbgr, 32, 3, .4h, 2, .4h, 1, .4h, .8b generate_jsimd_ycc_rgb_convert_neon extxrgb, 32, 1, .4h, 2, .4h, 3, .4h, .8b generate_jsimd_ycc_rgb_convert_neon rgb565, 16, 0, .4h, 0, .4h, 0, .4h, .8b .purgem do_load .purgem do_store libjpeg-turbo-1.4.2/simd/jidctfst-sse2.asm0000644000076500007650000005206012600050400015326 00000000000000; ; jidctfst.asm - fast integer IDCT (SSE2) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; ; Based on ; x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; This file contains a fast, not so accurate integer implementation of ; the inverse DCT (Discrete Cosine Transform). The following code is ; based directly on the IJG's original jidctfst.c; see the jidctfst.c ; for more details. ; ; [TAB8] %include "jsimdext.inc" %include "jdct.inc" ; -------------------------------------------------------------------------- %define CONST_BITS 8 ; 14 is also OK. %define PASS1_BITS 2 %if IFAST_SCALE_BITS != PASS1_BITS %error "'IFAST_SCALE_BITS' must be equal to 'PASS1_BITS'." %endif %if CONST_BITS == 8 F_1_082 equ 277 ; FIX(1.082392200) F_1_414 equ 362 ; FIX(1.414213562) F_1_847 equ 473 ; FIX(1.847759065) F_2_613 equ 669 ; FIX(2.613125930) F_1_613 equ (F_2_613 - 256) ; FIX(2.613125930) - FIX(1) %else ; NASM cannot do compile-time arithmetic on floating-point constants. %define DESCALE(x,n) (((x)+(1<<((n)-1)))>>(n)) F_1_082 equ DESCALE(1162209775,30-CONST_BITS) ; FIX(1.082392200) F_1_414 equ DESCALE(1518500249,30-CONST_BITS) ; FIX(1.414213562) F_1_847 equ DESCALE(1984016188,30-CONST_BITS) ; FIX(1.847759065) F_2_613 equ DESCALE(2805822602,30-CONST_BITS) ; FIX(2.613125930) F_1_613 equ (F_2_613 - (1 << CONST_BITS)) ; FIX(2.613125930) - FIX(1) %endif ; -------------------------------------------------------------------------- SECTION SEG_CONST ; PRE_MULTIPLY_SCALE_BITS <= 2 (to avoid overflow) ; CONST_BITS + CONST_SHIFT + PRE_MULTIPLY_SCALE_BITS == 16 (for pmulhw) %define PRE_MULTIPLY_SCALE_BITS 2 %define CONST_SHIFT (16 - PRE_MULTIPLY_SCALE_BITS - CONST_BITS) alignz 16 global EXTN(jconst_idct_ifast_sse2) EXTN(jconst_idct_ifast_sse2): PW_F1414 times 8 dw F_1_414 << CONST_SHIFT PW_F1847 times 8 dw F_1_847 << CONST_SHIFT PW_MF1613 times 8 dw -F_1_613 << CONST_SHIFT PW_F1082 times 8 dw F_1_082 << CONST_SHIFT PB_CENTERJSAMP times 16 db CENTERJSAMPLE alignz 16 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 32 ; ; Perform dequantization and inverse DCT on one block of coefficients. ; ; GLOBAL(void) ; jsimd_idct_ifast_sse2 (void * dct_table, JCOEFPTR coef_block, ; JSAMPARRAY output_buf, JDIMENSION output_col) ; %define dct_table(b) (b)+8 ; jpeg_component_info * compptr %define coef_block(b) (b)+12 ; JCOEFPTR coef_block %define output_buf(b) (b)+16 ; JSAMPARRAY output_buf %define output_col(b) (b)+20 ; JDIMENSION output_col %define original_ebp ebp+0 %define wk(i) ebp-(WK_NUM-(i))*SIZEOF_XMMWORD ; xmmword wk[WK_NUM] %define WK_NUM 2 align 16 global EXTN(jsimd_idct_ifast_sse2) EXTN(jsimd_idct_ifast_sse2): push ebp mov eax,esp ; eax = original ebp sub esp, byte 4 and esp, byte (-SIZEOF_XMMWORD) ; align to 128 bits mov [esp],eax mov ebp,esp ; ebp = aligned ebp lea esp, [wk(0)] pushpic ebx ; push ecx ; unused ; push edx ; need not be preserved push esi push edi get_GOT ebx ; get GOT address ; ---- Pass 1: process columns from input. ; mov eax, [original_ebp] mov edx, POINTER [dct_table(eax)] ; quantptr mov esi, JCOEFPTR [coef_block(eax)] ; inptr %ifndef NO_ZERO_COLUMN_TEST_IFAST_SSE2 mov eax, DWORD [DWBLOCK(1,0,esi,SIZEOF_JCOEF)] or eax, DWORD [DWBLOCK(2,0,esi,SIZEOF_JCOEF)] jnz near .columnDCT movdqa xmm0, XMMWORD [XMMBLOCK(1,0,esi,SIZEOF_JCOEF)] movdqa xmm1, XMMWORD [XMMBLOCK(2,0,esi,SIZEOF_JCOEF)] por xmm0, XMMWORD [XMMBLOCK(3,0,esi,SIZEOF_JCOEF)] por xmm1, XMMWORD [XMMBLOCK(4,0,esi,SIZEOF_JCOEF)] por xmm0, XMMWORD [XMMBLOCK(5,0,esi,SIZEOF_JCOEF)] por xmm1, XMMWORD [XMMBLOCK(6,0,esi,SIZEOF_JCOEF)] por xmm0, XMMWORD [XMMBLOCK(7,0,esi,SIZEOF_JCOEF)] por xmm1,xmm0 packsswb xmm1,xmm1 packsswb xmm1,xmm1 movd eax,xmm1 test eax,eax jnz short .columnDCT ; -- AC terms all zero movdqa xmm0, XMMWORD [XMMBLOCK(0,0,esi,SIZEOF_JCOEF)] pmullw xmm0, XMMWORD [XMMBLOCK(0,0,edx,SIZEOF_ISLOW_MULT_TYPE)] movdqa xmm7,xmm0 ; xmm0=in0=(00 01 02 03 04 05 06 07) punpcklwd xmm0,xmm0 ; xmm0=(00 00 01 01 02 02 03 03) punpckhwd xmm7,xmm7 ; xmm7=(04 04 05 05 06 06 07 07) pshufd xmm6,xmm0,0x00 ; xmm6=col0=(00 00 00 00 00 00 00 00) pshufd xmm2,xmm0,0x55 ; xmm2=col1=(01 01 01 01 01 01 01 01) pshufd xmm5,xmm0,0xAA ; xmm5=col2=(02 02 02 02 02 02 02 02) pshufd xmm0,xmm0,0xFF ; xmm0=col3=(03 03 03 03 03 03 03 03) pshufd xmm1,xmm7,0x00 ; xmm1=col4=(04 04 04 04 04 04 04 04) pshufd xmm4,xmm7,0x55 ; xmm4=col5=(05 05 05 05 05 05 05 05) pshufd xmm3,xmm7,0xAA ; xmm3=col6=(06 06 06 06 06 06 06 06) pshufd xmm7,xmm7,0xFF ; xmm7=col7=(07 07 07 07 07 07 07 07) movdqa XMMWORD [wk(0)], xmm2 ; wk(0)=col1 movdqa XMMWORD [wk(1)], xmm0 ; wk(1)=col3 jmp near .column_end alignx 16,7 %endif .columnDCT: ; -- Even part movdqa xmm0, XMMWORD [XMMBLOCK(0,0,esi,SIZEOF_JCOEF)] movdqa xmm1, XMMWORD [XMMBLOCK(2,0,esi,SIZEOF_JCOEF)] pmullw xmm0, XMMWORD [XMMBLOCK(0,0,edx,SIZEOF_IFAST_MULT_TYPE)] pmullw xmm1, XMMWORD [XMMBLOCK(2,0,edx,SIZEOF_IFAST_MULT_TYPE)] movdqa xmm2, XMMWORD [XMMBLOCK(4,0,esi,SIZEOF_JCOEF)] movdqa xmm3, XMMWORD [XMMBLOCK(6,0,esi,SIZEOF_JCOEF)] pmullw xmm2, XMMWORD [XMMBLOCK(4,0,edx,SIZEOF_IFAST_MULT_TYPE)] pmullw xmm3, XMMWORD [XMMBLOCK(6,0,edx,SIZEOF_IFAST_MULT_TYPE)] movdqa xmm4,xmm0 movdqa xmm5,xmm1 psubw xmm0,xmm2 ; xmm0=tmp11 psubw xmm1,xmm3 paddw xmm4,xmm2 ; xmm4=tmp10 paddw xmm5,xmm3 ; xmm5=tmp13 psllw xmm1,PRE_MULTIPLY_SCALE_BITS pmulhw xmm1,[GOTOFF(ebx,PW_F1414)] psubw xmm1,xmm5 ; xmm1=tmp12 movdqa xmm6,xmm4 movdqa xmm7,xmm0 psubw xmm4,xmm5 ; xmm4=tmp3 psubw xmm0,xmm1 ; xmm0=tmp2 paddw xmm6,xmm5 ; xmm6=tmp0 paddw xmm7,xmm1 ; xmm7=tmp1 movdqa XMMWORD [wk(1)], xmm4 ; wk(1)=tmp3 movdqa XMMWORD [wk(0)], xmm0 ; wk(0)=tmp2 ; -- Odd part movdqa xmm2, XMMWORD [XMMBLOCK(1,0,esi,SIZEOF_JCOEF)] movdqa xmm3, XMMWORD [XMMBLOCK(3,0,esi,SIZEOF_JCOEF)] pmullw xmm2, XMMWORD [XMMBLOCK(1,0,edx,SIZEOF_IFAST_MULT_TYPE)] pmullw xmm3, XMMWORD [XMMBLOCK(3,0,edx,SIZEOF_IFAST_MULT_TYPE)] movdqa xmm5, XMMWORD [XMMBLOCK(5,0,esi,SIZEOF_JCOEF)] movdqa xmm1, XMMWORD [XMMBLOCK(7,0,esi,SIZEOF_JCOEF)] pmullw xmm5, XMMWORD [XMMBLOCK(5,0,edx,SIZEOF_IFAST_MULT_TYPE)] pmullw xmm1, XMMWORD [XMMBLOCK(7,0,edx,SIZEOF_IFAST_MULT_TYPE)] movdqa xmm4,xmm2 movdqa xmm0,xmm5 psubw xmm2,xmm1 ; xmm2=z12 psubw xmm5,xmm3 ; xmm5=z10 paddw xmm4,xmm1 ; xmm4=z11 paddw xmm0,xmm3 ; xmm0=z13 movdqa xmm1,xmm5 ; xmm1=z10(unscaled) psllw xmm2,PRE_MULTIPLY_SCALE_BITS psllw xmm5,PRE_MULTIPLY_SCALE_BITS movdqa xmm3,xmm4 psubw xmm4,xmm0 paddw xmm3,xmm0 ; xmm3=tmp7 psllw xmm4,PRE_MULTIPLY_SCALE_BITS pmulhw xmm4,[GOTOFF(ebx,PW_F1414)] ; xmm4=tmp11 ; To avoid overflow... ; ; (Original) ; tmp12 = -2.613125930 * z10 + z5; ; ; (This implementation) ; tmp12 = (-1.613125930 - 1) * z10 + z5; ; = -1.613125930 * z10 - z10 + z5; movdqa xmm0,xmm5 paddw xmm5,xmm2 pmulhw xmm5,[GOTOFF(ebx,PW_F1847)] ; xmm5=z5 pmulhw xmm0,[GOTOFF(ebx,PW_MF1613)] pmulhw xmm2,[GOTOFF(ebx,PW_F1082)] psubw xmm0,xmm1 psubw xmm2,xmm5 ; xmm2=tmp10 paddw xmm0,xmm5 ; xmm0=tmp12 ; -- Final output stage psubw xmm0,xmm3 ; xmm0=tmp6 movdqa xmm1,xmm6 movdqa xmm5,xmm7 paddw xmm6,xmm3 ; xmm6=data0=(00 01 02 03 04 05 06 07) paddw xmm7,xmm0 ; xmm7=data1=(10 11 12 13 14 15 16 17) psubw xmm1,xmm3 ; xmm1=data7=(70 71 72 73 74 75 76 77) psubw xmm5,xmm0 ; xmm5=data6=(60 61 62 63 64 65 66 67) psubw xmm4,xmm0 ; xmm4=tmp5 movdqa xmm3,xmm6 ; transpose coefficients(phase 1) punpcklwd xmm6,xmm7 ; xmm6=(00 10 01 11 02 12 03 13) punpckhwd xmm3,xmm7 ; xmm3=(04 14 05 15 06 16 07 17) movdqa xmm0,xmm5 ; transpose coefficients(phase 1) punpcklwd xmm5,xmm1 ; xmm5=(60 70 61 71 62 72 63 73) punpckhwd xmm0,xmm1 ; xmm0=(64 74 65 75 66 76 67 77) movdqa xmm7, XMMWORD [wk(0)] ; xmm7=tmp2 movdqa xmm1, XMMWORD [wk(1)] ; xmm1=tmp3 movdqa XMMWORD [wk(0)], xmm5 ; wk(0)=(60 70 61 71 62 72 63 73) movdqa XMMWORD [wk(1)], xmm0 ; wk(1)=(64 74 65 75 66 76 67 77) paddw xmm2,xmm4 ; xmm2=tmp4 movdqa xmm5,xmm7 movdqa xmm0,xmm1 paddw xmm7,xmm4 ; xmm7=data2=(20 21 22 23 24 25 26 27) paddw xmm1,xmm2 ; xmm1=data4=(40 41 42 43 44 45 46 47) psubw xmm5,xmm4 ; xmm5=data5=(50 51 52 53 54 55 56 57) psubw xmm0,xmm2 ; xmm0=data3=(30 31 32 33 34 35 36 37) movdqa xmm4,xmm7 ; transpose coefficients(phase 1) punpcklwd xmm7,xmm0 ; xmm7=(20 30 21 31 22 32 23 33) punpckhwd xmm4,xmm0 ; xmm4=(24 34 25 35 26 36 27 37) movdqa xmm2,xmm1 ; transpose coefficients(phase 1) punpcklwd xmm1,xmm5 ; xmm1=(40 50 41 51 42 52 43 53) punpckhwd xmm2,xmm5 ; xmm2=(44 54 45 55 46 56 47 57) movdqa xmm0,xmm3 ; transpose coefficients(phase 2) punpckldq xmm3,xmm4 ; xmm3=(04 14 24 34 05 15 25 35) punpckhdq xmm0,xmm4 ; xmm0=(06 16 26 36 07 17 27 37) movdqa xmm5,xmm6 ; transpose coefficients(phase 2) punpckldq xmm6,xmm7 ; xmm6=(00 10 20 30 01 11 21 31) punpckhdq xmm5,xmm7 ; xmm5=(02 12 22 32 03 13 23 33) movdqa xmm4, XMMWORD [wk(0)] ; xmm4=(60 70 61 71 62 72 63 73) movdqa xmm7, XMMWORD [wk(1)] ; xmm7=(64 74 65 75 66 76 67 77) movdqa XMMWORD [wk(0)], xmm3 ; wk(0)=(04 14 24 34 05 15 25 35) movdqa XMMWORD [wk(1)], xmm0 ; wk(1)=(06 16 26 36 07 17 27 37) movdqa xmm3,xmm1 ; transpose coefficients(phase 2) punpckldq xmm1,xmm4 ; xmm1=(40 50 60 70 41 51 61 71) punpckhdq xmm3,xmm4 ; xmm3=(42 52 62 72 43 53 63 73) movdqa xmm0,xmm2 ; transpose coefficients(phase 2) punpckldq xmm2,xmm7 ; xmm2=(44 54 64 74 45 55 65 75) punpckhdq xmm0,xmm7 ; xmm0=(46 56 66 76 47 57 67 77) movdqa xmm4,xmm6 ; transpose coefficients(phase 3) punpcklqdq xmm6,xmm1 ; xmm6=col0=(00 10 20 30 40 50 60 70) punpckhqdq xmm4,xmm1 ; xmm4=col1=(01 11 21 31 41 51 61 71) movdqa xmm7,xmm5 ; transpose coefficients(phase 3) punpcklqdq xmm5,xmm3 ; xmm5=col2=(02 12 22 32 42 52 62 72) punpckhqdq xmm7,xmm3 ; xmm7=col3=(03 13 23 33 43 53 63 73) movdqa xmm1, XMMWORD [wk(0)] ; xmm1=(04 14 24 34 05 15 25 35) movdqa xmm3, XMMWORD [wk(1)] ; xmm3=(06 16 26 36 07 17 27 37) movdqa XMMWORD [wk(0)], xmm4 ; wk(0)=col1 movdqa XMMWORD [wk(1)], xmm7 ; wk(1)=col3 movdqa xmm4,xmm1 ; transpose coefficients(phase 3) punpcklqdq xmm1,xmm2 ; xmm1=col4=(04 14 24 34 44 54 64 74) punpckhqdq xmm4,xmm2 ; xmm4=col5=(05 15 25 35 45 55 65 75) movdqa xmm7,xmm3 ; transpose coefficients(phase 3) punpcklqdq xmm3,xmm0 ; xmm3=col6=(06 16 26 36 46 56 66 76) punpckhqdq xmm7,xmm0 ; xmm7=col7=(07 17 27 37 47 57 67 77) .column_end: ; -- Prefetch the next coefficient block prefetchnta [esi + DCTSIZE2*SIZEOF_JCOEF + 0*32] prefetchnta [esi + DCTSIZE2*SIZEOF_JCOEF + 1*32] prefetchnta [esi + DCTSIZE2*SIZEOF_JCOEF + 2*32] prefetchnta [esi + DCTSIZE2*SIZEOF_JCOEF + 3*32] ; ---- Pass 2: process rows from work array, store into output array. mov eax, [original_ebp] mov edi, JSAMPARRAY [output_buf(eax)] ; (JSAMPROW *) mov eax, JDIMENSION [output_col(eax)] ; -- Even part ; xmm6=col0, xmm5=col2, xmm1=col4, xmm3=col6 movdqa xmm2,xmm6 movdqa xmm0,xmm5 psubw xmm6,xmm1 ; xmm6=tmp11 psubw xmm5,xmm3 paddw xmm2,xmm1 ; xmm2=tmp10 paddw xmm0,xmm3 ; xmm0=tmp13 psllw xmm5,PRE_MULTIPLY_SCALE_BITS pmulhw xmm5,[GOTOFF(ebx,PW_F1414)] psubw xmm5,xmm0 ; xmm5=tmp12 movdqa xmm1,xmm2 movdqa xmm3,xmm6 psubw xmm2,xmm0 ; xmm2=tmp3 psubw xmm6,xmm5 ; xmm6=tmp2 paddw xmm1,xmm0 ; xmm1=tmp0 paddw xmm3,xmm5 ; xmm3=tmp1 movdqa xmm0, XMMWORD [wk(0)] ; xmm0=col1 movdqa xmm5, XMMWORD [wk(1)] ; xmm5=col3 movdqa XMMWORD [wk(0)], xmm2 ; wk(0)=tmp3 movdqa XMMWORD [wk(1)], xmm6 ; wk(1)=tmp2 ; -- Odd part ; xmm0=col1, xmm5=col3, xmm4=col5, xmm7=col7 movdqa xmm2,xmm0 movdqa xmm6,xmm4 psubw xmm0,xmm7 ; xmm0=z12 psubw xmm4,xmm5 ; xmm4=z10 paddw xmm2,xmm7 ; xmm2=z11 paddw xmm6,xmm5 ; xmm6=z13 movdqa xmm7,xmm4 ; xmm7=z10(unscaled) psllw xmm0,PRE_MULTIPLY_SCALE_BITS psllw xmm4,PRE_MULTIPLY_SCALE_BITS movdqa xmm5,xmm2 psubw xmm2,xmm6 paddw xmm5,xmm6 ; xmm5=tmp7 psllw xmm2,PRE_MULTIPLY_SCALE_BITS pmulhw xmm2,[GOTOFF(ebx,PW_F1414)] ; xmm2=tmp11 ; To avoid overflow... ; ; (Original) ; tmp12 = -2.613125930 * z10 + z5; ; ; (This implementation) ; tmp12 = (-1.613125930 - 1) * z10 + z5; ; = -1.613125930 * z10 - z10 + z5; movdqa xmm6,xmm4 paddw xmm4,xmm0 pmulhw xmm4,[GOTOFF(ebx,PW_F1847)] ; xmm4=z5 pmulhw xmm6,[GOTOFF(ebx,PW_MF1613)] pmulhw xmm0,[GOTOFF(ebx,PW_F1082)] psubw xmm6,xmm7 psubw xmm0,xmm4 ; xmm0=tmp10 paddw xmm6,xmm4 ; xmm6=tmp12 ; -- Final output stage psubw xmm6,xmm5 ; xmm6=tmp6 movdqa xmm7,xmm1 movdqa xmm4,xmm3 paddw xmm1,xmm5 ; xmm1=data0=(00 10 20 30 40 50 60 70) paddw xmm3,xmm6 ; xmm3=data1=(01 11 21 31 41 51 61 71) psraw xmm1,(PASS1_BITS+3) ; descale psraw xmm3,(PASS1_BITS+3) ; descale psubw xmm7,xmm5 ; xmm7=data7=(07 17 27 37 47 57 67 77) psubw xmm4,xmm6 ; xmm4=data6=(06 16 26 36 46 56 66 76) psraw xmm7,(PASS1_BITS+3) ; descale psraw xmm4,(PASS1_BITS+3) ; descale psubw xmm2,xmm6 ; xmm2=tmp5 packsswb xmm1,xmm4 ; xmm1=(00 10 20 30 40 50 60 70 06 16 26 36 46 56 66 76) packsswb xmm3,xmm7 ; xmm3=(01 11 21 31 41 51 61 71 07 17 27 37 47 57 67 77) movdqa xmm5, XMMWORD [wk(1)] ; xmm5=tmp2 movdqa xmm6, XMMWORD [wk(0)] ; xmm6=tmp3 paddw xmm0,xmm2 ; xmm0=tmp4 movdqa xmm4,xmm5 movdqa xmm7,xmm6 paddw xmm5,xmm2 ; xmm5=data2=(02 12 22 32 42 52 62 72) paddw xmm6,xmm0 ; xmm6=data4=(04 14 24 34 44 54 64 74) psraw xmm5,(PASS1_BITS+3) ; descale psraw xmm6,(PASS1_BITS+3) ; descale psubw xmm4,xmm2 ; xmm4=data5=(05 15 25 35 45 55 65 75) psubw xmm7,xmm0 ; xmm7=data3=(03 13 23 33 43 53 63 73) psraw xmm4,(PASS1_BITS+3) ; descale psraw xmm7,(PASS1_BITS+3) ; descale movdqa xmm2,[GOTOFF(ebx,PB_CENTERJSAMP)] ; xmm2=[PB_CENTERJSAMP] packsswb xmm5,xmm6 ; xmm5=(02 12 22 32 42 52 62 72 04 14 24 34 44 54 64 74) packsswb xmm7,xmm4 ; xmm7=(03 13 23 33 43 53 63 73 05 15 25 35 45 55 65 75) paddb xmm1,xmm2 paddb xmm3,xmm2 paddb xmm5,xmm2 paddb xmm7,xmm2 movdqa xmm0,xmm1 ; transpose coefficients(phase 1) punpcklbw xmm1,xmm3 ; xmm1=(00 01 10 11 20 21 30 31 40 41 50 51 60 61 70 71) punpckhbw xmm0,xmm3 ; xmm0=(06 07 16 17 26 27 36 37 46 47 56 57 66 67 76 77) movdqa xmm6,xmm5 ; transpose coefficients(phase 1) punpcklbw xmm5,xmm7 ; xmm5=(02 03 12 13 22 23 32 33 42 43 52 53 62 63 72 73) punpckhbw xmm6,xmm7 ; xmm6=(04 05 14 15 24 25 34 35 44 45 54 55 64 65 74 75) movdqa xmm4,xmm1 ; transpose coefficients(phase 2) punpcklwd xmm1,xmm5 ; xmm1=(00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 33) punpckhwd xmm4,xmm5 ; xmm4=(40 41 42 43 50 51 52 53 60 61 62 63 70 71 72 73) movdqa xmm2,xmm6 ; transpose coefficients(phase 2) punpcklwd xmm6,xmm0 ; xmm6=(04 05 06 07 14 15 16 17 24 25 26 27 34 35 36 37) punpckhwd xmm2,xmm0 ; xmm2=(44 45 46 47 54 55 56 57 64 65 66 67 74 75 76 77) movdqa xmm3,xmm1 ; transpose coefficients(phase 3) punpckldq xmm1,xmm6 ; xmm1=(00 01 02 03 04 05 06 07 10 11 12 13 14 15 16 17) punpckhdq xmm3,xmm6 ; xmm3=(20 21 22 23 24 25 26 27 30 31 32 33 34 35 36 37) movdqa xmm7,xmm4 ; transpose coefficients(phase 3) punpckldq xmm4,xmm2 ; xmm4=(40 41 42 43 44 45 46 47 50 51 52 53 54 55 56 57) punpckhdq xmm7,xmm2 ; xmm7=(60 61 62 63 64 65 66 67 70 71 72 73 74 75 76 77) pshufd xmm5,xmm1,0x4E ; xmm5=(10 11 12 13 14 15 16 17 00 01 02 03 04 05 06 07) pshufd xmm0,xmm3,0x4E ; xmm0=(30 31 32 33 34 35 36 37 20 21 22 23 24 25 26 27) pshufd xmm6,xmm4,0x4E ; xmm6=(50 51 52 53 54 55 56 57 40 41 42 43 44 45 46 47) pshufd xmm2,xmm7,0x4E ; xmm2=(70 71 72 73 74 75 76 77 60 61 62 63 64 65 66 67) mov edx, JSAMPROW [edi+0*SIZEOF_JSAMPROW] mov esi, JSAMPROW [edi+2*SIZEOF_JSAMPROW] movq XMM_MMWORD [edx+eax*SIZEOF_JSAMPLE], xmm1 movq XMM_MMWORD [esi+eax*SIZEOF_JSAMPLE], xmm3 mov edx, JSAMPROW [edi+4*SIZEOF_JSAMPROW] mov esi, JSAMPROW [edi+6*SIZEOF_JSAMPROW] movq XMM_MMWORD [edx+eax*SIZEOF_JSAMPLE], xmm4 movq XMM_MMWORD [esi+eax*SIZEOF_JSAMPLE], xmm7 mov edx, JSAMPROW [edi+1*SIZEOF_JSAMPROW] mov esi, JSAMPROW [edi+3*SIZEOF_JSAMPROW] movq XMM_MMWORD [edx+eax*SIZEOF_JSAMPLE], xmm5 movq XMM_MMWORD [esi+eax*SIZEOF_JSAMPLE], xmm0 mov edx, JSAMPROW [edi+5*SIZEOF_JSAMPROW] mov esi, JSAMPROW [edi+7*SIZEOF_JSAMPROW] movq XMM_MMWORD [edx+eax*SIZEOF_JSAMPLE], xmm6 movq XMM_MMWORD [esi+eax*SIZEOF_JSAMPLE], xmm2 pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; unused poppic ebx mov esp,ebp ; esp <- aligned ebp pop esp ; esp <- original ebp pop ebp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 16 libjpeg-turbo-1.4.2/simd/jdcolor-mmx.asm0000644000076500007650000000667512600050400015110 00000000000000; ; jdcolor.asm - colorspace conversion (MMX) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; Copyright 2009 D. R. Commander ; ; Based on ; x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; [TAB8] %include "jsimdext.inc" ; -------------------------------------------------------------------------- %define SCALEBITS 16 F_0_344 equ 22554 ; FIX(0.34414) F_0_714 equ 46802 ; FIX(0.71414) F_1_402 equ 91881 ; FIX(1.40200) F_1_772 equ 116130 ; FIX(1.77200) F_0_402 equ (F_1_402 - 65536) ; FIX(1.40200) - FIX(1) F_0_285 equ ( 65536 - F_0_714) ; FIX(1) - FIX(0.71414) F_0_228 equ (131072 - F_1_772) ; FIX(2) - FIX(1.77200) ; -------------------------------------------------------------------------- SECTION SEG_CONST alignz 16 global EXTN(jconst_ycc_rgb_convert_mmx) EXTN(jconst_ycc_rgb_convert_mmx): PW_F0402 times 4 dw F_0_402 PW_MF0228 times 4 dw -F_0_228 PW_MF0344_F0285 times 2 dw -F_0_344, F_0_285 PW_ONE times 4 dw 1 PD_ONEHALF times 2 dd 1 << (SCALEBITS-1) alignz 16 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 32 %include "jdcolext-mmx.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_RGB_RED %define RGB_GREEN EXT_RGB_GREEN %define RGB_BLUE EXT_RGB_BLUE %define RGB_PIXELSIZE EXT_RGB_PIXELSIZE %define jsimd_ycc_rgb_convert_mmx jsimd_ycc_extrgb_convert_mmx %include "jdcolext-mmx.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_RGBX_RED %define RGB_GREEN EXT_RGBX_GREEN %define RGB_BLUE EXT_RGBX_BLUE %define RGB_PIXELSIZE EXT_RGBX_PIXELSIZE %define jsimd_ycc_rgb_convert_mmx jsimd_ycc_extrgbx_convert_mmx %include "jdcolext-mmx.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_BGR_RED %define RGB_GREEN EXT_BGR_GREEN %define RGB_BLUE EXT_BGR_BLUE %define RGB_PIXELSIZE EXT_BGR_PIXELSIZE %define jsimd_ycc_rgb_convert_mmx jsimd_ycc_extbgr_convert_mmx %include "jdcolext-mmx.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_BGRX_RED %define RGB_GREEN EXT_BGRX_GREEN %define RGB_BLUE EXT_BGRX_BLUE %define RGB_PIXELSIZE EXT_BGRX_PIXELSIZE %define jsimd_ycc_rgb_convert_mmx jsimd_ycc_extbgrx_convert_mmx %include "jdcolext-mmx.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_XBGR_RED %define RGB_GREEN EXT_XBGR_GREEN %define RGB_BLUE EXT_XBGR_BLUE %define RGB_PIXELSIZE EXT_XBGR_PIXELSIZE %define jsimd_ycc_rgb_convert_mmx jsimd_ycc_extxbgr_convert_mmx %include "jdcolext-mmx.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_XRGB_RED %define RGB_GREEN EXT_XRGB_GREEN %define RGB_BLUE EXT_XRGB_BLUE %define RGB_PIXELSIZE EXT_XRGB_PIXELSIZE %define jsimd_ycc_rgb_convert_mmx jsimd_ycc_extxrgb_convert_mmx %include "jdcolext-mmx.asm" libjpeg-turbo-1.4.2/simd/jidctint-sse2-64.asm0000644000076500007650000010514412600050400015555 00000000000000; ; jidctint.asm - accurate integer IDCT (64-bit SSE2) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; Copyright 2009 D. R. Commander ; ; Based on ; x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; This file contains a slow-but-accurate integer implementation of the ; inverse DCT (Discrete Cosine Transform). The following code is based ; directly on the IJG's original jidctint.c; see the jidctint.c for ; more details. ; ; [TAB8] %include "jsimdext.inc" %include "jdct.inc" ; -------------------------------------------------------------------------- %define CONST_BITS 13 %define PASS1_BITS 2 %define DESCALE_P1 (CONST_BITS-PASS1_BITS) %define DESCALE_P2 (CONST_BITS+PASS1_BITS+3) %if CONST_BITS == 13 F_0_298 equ 2446 ; FIX(0.298631336) F_0_390 equ 3196 ; FIX(0.390180644) F_0_541 equ 4433 ; FIX(0.541196100) F_0_765 equ 6270 ; FIX(0.765366865) F_0_899 equ 7373 ; FIX(0.899976223) F_1_175 equ 9633 ; FIX(1.175875602) F_1_501 equ 12299 ; FIX(1.501321110) F_1_847 equ 15137 ; FIX(1.847759065) F_1_961 equ 16069 ; FIX(1.961570560) F_2_053 equ 16819 ; FIX(2.053119869) F_2_562 equ 20995 ; FIX(2.562915447) F_3_072 equ 25172 ; FIX(3.072711026) %else ; NASM cannot do compile-time arithmetic on floating-point constants. %define DESCALE(x,n) (((x)+(1<<((n)-1)))>>(n)) F_0_298 equ DESCALE( 320652955,30-CONST_BITS) ; FIX(0.298631336) F_0_390 equ DESCALE( 418953276,30-CONST_BITS) ; FIX(0.390180644) F_0_541 equ DESCALE( 581104887,30-CONST_BITS) ; FIX(0.541196100) F_0_765 equ DESCALE( 821806413,30-CONST_BITS) ; FIX(0.765366865) F_0_899 equ DESCALE( 966342111,30-CONST_BITS) ; FIX(0.899976223) F_1_175 equ DESCALE(1262586813,30-CONST_BITS) ; FIX(1.175875602) F_1_501 equ DESCALE(1612031267,30-CONST_BITS) ; FIX(1.501321110) F_1_847 equ DESCALE(1984016188,30-CONST_BITS) ; FIX(1.847759065) F_1_961 equ DESCALE(2106220350,30-CONST_BITS) ; FIX(1.961570560) F_2_053 equ DESCALE(2204520673,30-CONST_BITS) ; FIX(2.053119869) F_2_562 equ DESCALE(2751909506,30-CONST_BITS) ; FIX(2.562915447) F_3_072 equ DESCALE(3299298341,30-CONST_BITS) ; FIX(3.072711026) %endif ; -------------------------------------------------------------------------- SECTION SEG_CONST alignz 16 global EXTN(jconst_idct_islow_sse2) EXTN(jconst_idct_islow_sse2): PW_F130_F054 times 4 dw (F_0_541+F_0_765), F_0_541 PW_F054_MF130 times 4 dw F_0_541, (F_0_541-F_1_847) PW_MF078_F117 times 4 dw (F_1_175-F_1_961), F_1_175 PW_F117_F078 times 4 dw F_1_175, (F_1_175-F_0_390) PW_MF060_MF089 times 4 dw (F_0_298-F_0_899),-F_0_899 PW_MF089_F060 times 4 dw -F_0_899, (F_1_501-F_0_899) PW_MF050_MF256 times 4 dw (F_2_053-F_2_562),-F_2_562 PW_MF256_F050 times 4 dw -F_2_562, (F_3_072-F_2_562) PD_DESCALE_P1 times 4 dd 1 << (DESCALE_P1-1) PD_DESCALE_P2 times 4 dd 1 << (DESCALE_P2-1) PB_CENTERJSAMP times 16 db CENTERJSAMPLE alignz 16 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 64 ; ; Perform dequantization and inverse DCT on one block of coefficients. ; ; GLOBAL(void) ; jsimd_idct_islow_sse2 (void * dct_table, JCOEFPTR coef_block, ; JSAMPARRAY output_buf, JDIMENSION output_col) ; ; r10 = jpeg_component_info * compptr ; r11 = JCOEFPTR coef_block ; r12 = JSAMPARRAY output_buf ; r13 = JDIMENSION output_col %define original_rbp rbp+0 %define wk(i) rbp-(WK_NUM-(i))*SIZEOF_XMMWORD ; xmmword wk[WK_NUM] %define WK_NUM 12 align 16 global EXTN(jsimd_idct_islow_sse2) EXTN(jsimd_idct_islow_sse2): push rbp mov rax,rsp ; rax = original rbp sub rsp, byte 4 and rsp, byte (-SIZEOF_XMMWORD) ; align to 128 bits mov [rsp],rax mov rbp,rsp ; rbp = aligned rbp lea rsp, [wk(0)] collect_args ; ---- Pass 1: process columns from input. mov rdx, r10 ; quantptr mov rsi, r11 ; inptr %ifndef NO_ZERO_COLUMN_TEST_ISLOW_SSE2 mov eax, DWORD [DWBLOCK(1,0,rsi,SIZEOF_JCOEF)] or eax, DWORD [DWBLOCK(2,0,rsi,SIZEOF_JCOEF)] jnz near .columnDCT movdqa xmm0, XMMWORD [XMMBLOCK(1,0,rsi,SIZEOF_JCOEF)] movdqa xmm1, XMMWORD [XMMBLOCK(2,0,rsi,SIZEOF_JCOEF)] por xmm0, XMMWORD [XMMBLOCK(3,0,rsi,SIZEOF_JCOEF)] por xmm1, XMMWORD [XMMBLOCK(4,0,rsi,SIZEOF_JCOEF)] por xmm0, XMMWORD [XMMBLOCK(5,0,rsi,SIZEOF_JCOEF)] por xmm1, XMMWORD [XMMBLOCK(6,0,rsi,SIZEOF_JCOEF)] por xmm0, XMMWORD [XMMBLOCK(7,0,rsi,SIZEOF_JCOEF)] por xmm1,xmm0 packsswb xmm1,xmm1 packsswb xmm1,xmm1 movd eax,xmm1 test rax,rax jnz short .columnDCT ; -- AC terms all zero movdqa xmm5, XMMWORD [XMMBLOCK(0,0,rsi,SIZEOF_JCOEF)] pmullw xmm5, XMMWORD [XMMBLOCK(0,0,rdx,SIZEOF_ISLOW_MULT_TYPE)] psllw xmm5,PASS1_BITS movdqa xmm4,xmm5 ; xmm5=in0=(00 01 02 03 04 05 06 07) punpcklwd xmm5,xmm5 ; xmm5=(00 00 01 01 02 02 03 03) punpckhwd xmm4,xmm4 ; xmm4=(04 04 05 05 06 06 07 07) pshufd xmm7,xmm5,0x00 ; xmm7=col0=(00 00 00 00 00 00 00 00) pshufd xmm6,xmm5,0x55 ; xmm6=col1=(01 01 01 01 01 01 01 01) pshufd xmm1,xmm5,0xAA ; xmm1=col2=(02 02 02 02 02 02 02 02) pshufd xmm5,xmm5,0xFF ; xmm5=col3=(03 03 03 03 03 03 03 03) pshufd xmm0,xmm4,0x00 ; xmm0=col4=(04 04 04 04 04 04 04 04) pshufd xmm3,xmm4,0x55 ; xmm3=col5=(05 05 05 05 05 05 05 05) pshufd xmm2,xmm4,0xAA ; xmm2=col6=(06 06 06 06 06 06 06 06) pshufd xmm4,xmm4,0xFF ; xmm4=col7=(07 07 07 07 07 07 07 07) movdqa XMMWORD [wk(8)], xmm6 ; wk(8)=col1 movdqa XMMWORD [wk(9)], xmm5 ; wk(9)=col3 movdqa XMMWORD [wk(10)], xmm3 ; wk(10)=col5 movdqa XMMWORD [wk(11)], xmm4 ; wk(11)=col7 jmp near .column_end %endif .columnDCT: ; -- Even part movdqa xmm0, XMMWORD [XMMBLOCK(0,0,rsi,SIZEOF_JCOEF)] movdqa xmm1, XMMWORD [XMMBLOCK(2,0,rsi,SIZEOF_JCOEF)] pmullw xmm0, XMMWORD [XMMBLOCK(0,0,rdx,SIZEOF_ISLOW_MULT_TYPE)] pmullw xmm1, XMMWORD [XMMBLOCK(2,0,rdx,SIZEOF_ISLOW_MULT_TYPE)] movdqa xmm2, XMMWORD [XMMBLOCK(4,0,rsi,SIZEOF_JCOEF)] movdqa xmm3, XMMWORD [XMMBLOCK(6,0,rsi,SIZEOF_JCOEF)] pmullw xmm2, XMMWORD [XMMBLOCK(4,0,rdx,SIZEOF_ISLOW_MULT_TYPE)] pmullw xmm3, XMMWORD [XMMBLOCK(6,0,rdx,SIZEOF_ISLOW_MULT_TYPE)] ; (Original) ; z1 = (z2 + z3) * 0.541196100; ; tmp2 = z1 + z3 * -1.847759065; ; tmp3 = z1 + z2 * 0.765366865; ; ; (This implementation) ; tmp2 = z2 * 0.541196100 + z3 * (0.541196100 - 1.847759065); ; tmp3 = z2 * (0.541196100 + 0.765366865) + z3 * 0.541196100; movdqa xmm4,xmm1 ; xmm1=in2=z2 movdqa xmm5,xmm1 punpcklwd xmm4,xmm3 ; xmm3=in6=z3 punpckhwd xmm5,xmm3 movdqa xmm1,xmm4 movdqa xmm3,xmm5 pmaddwd xmm4,[rel PW_F130_F054] ; xmm4=tmp3L pmaddwd xmm5,[rel PW_F130_F054] ; xmm5=tmp3H pmaddwd xmm1,[rel PW_F054_MF130] ; xmm1=tmp2L pmaddwd xmm3,[rel PW_F054_MF130] ; xmm3=tmp2H movdqa xmm6,xmm0 paddw xmm0,xmm2 ; xmm0=in0+in4 psubw xmm6,xmm2 ; xmm6=in0-in4 pxor xmm7,xmm7 pxor xmm2,xmm2 punpcklwd xmm7,xmm0 ; xmm7=tmp0L punpckhwd xmm2,xmm0 ; xmm2=tmp0H psrad xmm7,(16-CONST_BITS) ; psrad xmm7,16 & pslld xmm7,CONST_BITS psrad xmm2,(16-CONST_BITS) ; psrad xmm2,16 & pslld xmm2,CONST_BITS movdqa xmm0,xmm7 paddd xmm7,xmm4 ; xmm7=tmp10L psubd xmm0,xmm4 ; xmm0=tmp13L movdqa xmm4,xmm2 paddd xmm2,xmm5 ; xmm2=tmp10H psubd xmm4,xmm5 ; xmm4=tmp13H movdqa XMMWORD [wk(0)], xmm7 ; wk(0)=tmp10L movdqa XMMWORD [wk(1)], xmm2 ; wk(1)=tmp10H movdqa XMMWORD [wk(2)], xmm0 ; wk(2)=tmp13L movdqa XMMWORD [wk(3)], xmm4 ; wk(3)=tmp13H pxor xmm5,xmm5 pxor xmm7,xmm7 punpcklwd xmm5,xmm6 ; xmm5=tmp1L punpckhwd xmm7,xmm6 ; xmm7=tmp1H psrad xmm5,(16-CONST_BITS) ; psrad xmm5,16 & pslld xmm5,CONST_BITS psrad xmm7,(16-CONST_BITS) ; psrad xmm7,16 & pslld xmm7,CONST_BITS movdqa xmm2,xmm5 paddd xmm5,xmm1 ; xmm5=tmp11L psubd xmm2,xmm1 ; xmm2=tmp12L movdqa xmm0,xmm7 paddd xmm7,xmm3 ; xmm7=tmp11H psubd xmm0,xmm3 ; xmm0=tmp12H movdqa XMMWORD [wk(4)], xmm5 ; wk(4)=tmp11L movdqa XMMWORD [wk(5)], xmm7 ; wk(5)=tmp11H movdqa XMMWORD [wk(6)], xmm2 ; wk(6)=tmp12L movdqa XMMWORD [wk(7)], xmm0 ; wk(7)=tmp12H ; -- Odd part movdqa xmm4, XMMWORD [XMMBLOCK(1,0,rsi,SIZEOF_JCOEF)] movdqa xmm6, XMMWORD [XMMBLOCK(3,0,rsi,SIZEOF_JCOEF)] pmullw xmm4, XMMWORD [XMMBLOCK(1,0,rdx,SIZEOF_ISLOW_MULT_TYPE)] pmullw xmm6, XMMWORD [XMMBLOCK(3,0,rdx,SIZEOF_ISLOW_MULT_TYPE)] movdqa xmm1, XMMWORD [XMMBLOCK(5,0,rsi,SIZEOF_JCOEF)] movdqa xmm3, XMMWORD [XMMBLOCK(7,0,rsi,SIZEOF_JCOEF)] pmullw xmm1, XMMWORD [XMMBLOCK(5,0,rdx,SIZEOF_ISLOW_MULT_TYPE)] pmullw xmm3, XMMWORD [XMMBLOCK(7,0,rdx,SIZEOF_ISLOW_MULT_TYPE)] movdqa xmm5,xmm6 movdqa xmm7,xmm4 paddw xmm5,xmm3 ; xmm5=z3 paddw xmm7,xmm1 ; xmm7=z4 ; (Original) ; z5 = (z3 + z4) * 1.175875602; ; z3 = z3 * -1.961570560; z4 = z4 * -0.390180644; ; z3 += z5; z4 += z5; ; ; (This implementation) ; z3 = z3 * (1.175875602 - 1.961570560) + z4 * 1.175875602; ; z4 = z3 * 1.175875602 + z4 * (1.175875602 - 0.390180644); movdqa xmm2,xmm5 movdqa xmm0,xmm5 punpcklwd xmm2,xmm7 punpckhwd xmm0,xmm7 movdqa xmm5,xmm2 movdqa xmm7,xmm0 pmaddwd xmm2,[rel PW_MF078_F117] ; xmm2=z3L pmaddwd xmm0,[rel PW_MF078_F117] ; xmm0=z3H pmaddwd xmm5,[rel PW_F117_F078] ; xmm5=z4L pmaddwd xmm7,[rel PW_F117_F078] ; xmm7=z4H movdqa XMMWORD [wk(10)], xmm2 ; wk(10)=z3L movdqa XMMWORD [wk(11)], xmm0 ; wk(11)=z3H ; (Original) ; z1 = tmp0 + tmp3; z2 = tmp1 + tmp2; ; tmp0 = tmp0 * 0.298631336; tmp1 = tmp1 * 2.053119869; ; tmp2 = tmp2 * 3.072711026; tmp3 = tmp3 * 1.501321110; ; z1 = z1 * -0.899976223; z2 = z2 * -2.562915447; ; tmp0 += z1 + z3; tmp1 += z2 + z4; ; tmp2 += z2 + z3; tmp3 += z1 + z4; ; ; (This implementation) ; tmp0 = tmp0 * (0.298631336 - 0.899976223) + tmp3 * -0.899976223; ; tmp1 = tmp1 * (2.053119869 - 2.562915447) + tmp2 * -2.562915447; ; tmp2 = tmp1 * -2.562915447 + tmp2 * (3.072711026 - 2.562915447); ; tmp3 = tmp0 * -0.899976223 + tmp3 * (1.501321110 - 0.899976223); ; tmp0 += z3; tmp1 += z4; ; tmp2 += z3; tmp3 += z4; movdqa xmm2,xmm3 movdqa xmm0,xmm3 punpcklwd xmm2,xmm4 punpckhwd xmm0,xmm4 movdqa xmm3,xmm2 movdqa xmm4,xmm0 pmaddwd xmm2,[rel PW_MF060_MF089] ; xmm2=tmp0L pmaddwd xmm0,[rel PW_MF060_MF089] ; xmm0=tmp0H pmaddwd xmm3,[rel PW_MF089_F060] ; xmm3=tmp3L pmaddwd xmm4,[rel PW_MF089_F060] ; xmm4=tmp3H paddd xmm2, XMMWORD [wk(10)] ; xmm2=tmp0L paddd xmm0, XMMWORD [wk(11)] ; xmm0=tmp0H paddd xmm3,xmm5 ; xmm3=tmp3L paddd xmm4,xmm7 ; xmm4=tmp3H movdqa XMMWORD [wk(8)], xmm2 ; wk(8)=tmp0L movdqa XMMWORD [wk(9)], xmm0 ; wk(9)=tmp0H movdqa xmm2,xmm1 movdqa xmm0,xmm1 punpcklwd xmm2,xmm6 punpckhwd xmm0,xmm6 movdqa xmm1,xmm2 movdqa xmm6,xmm0 pmaddwd xmm2,[rel PW_MF050_MF256] ; xmm2=tmp1L pmaddwd xmm0,[rel PW_MF050_MF256] ; xmm0=tmp1H pmaddwd xmm1,[rel PW_MF256_F050] ; xmm1=tmp2L pmaddwd xmm6,[rel PW_MF256_F050] ; xmm6=tmp2H paddd xmm2,xmm5 ; xmm2=tmp1L paddd xmm0,xmm7 ; xmm0=tmp1H paddd xmm1, XMMWORD [wk(10)] ; xmm1=tmp2L paddd xmm6, XMMWORD [wk(11)] ; xmm6=tmp2H movdqa XMMWORD [wk(10)], xmm2 ; wk(10)=tmp1L movdqa XMMWORD [wk(11)], xmm0 ; wk(11)=tmp1H ; -- Final output stage movdqa xmm5, XMMWORD [wk(0)] ; xmm5=tmp10L movdqa xmm7, XMMWORD [wk(1)] ; xmm7=tmp10H movdqa xmm2,xmm5 movdqa xmm0,xmm7 paddd xmm5,xmm3 ; xmm5=data0L paddd xmm7,xmm4 ; xmm7=data0H psubd xmm2,xmm3 ; xmm2=data7L psubd xmm0,xmm4 ; xmm0=data7H movdqa xmm3,[rel PD_DESCALE_P1] ; xmm3=[rel PD_DESCALE_P1] paddd xmm5,xmm3 paddd xmm7,xmm3 psrad xmm5,DESCALE_P1 psrad xmm7,DESCALE_P1 paddd xmm2,xmm3 paddd xmm0,xmm3 psrad xmm2,DESCALE_P1 psrad xmm0,DESCALE_P1 packssdw xmm5,xmm7 ; xmm5=data0=(00 01 02 03 04 05 06 07) packssdw xmm2,xmm0 ; xmm2=data7=(70 71 72 73 74 75 76 77) movdqa xmm4, XMMWORD [wk(4)] ; xmm4=tmp11L movdqa xmm3, XMMWORD [wk(5)] ; xmm3=tmp11H movdqa xmm7,xmm4 movdqa xmm0,xmm3 paddd xmm4,xmm1 ; xmm4=data1L paddd xmm3,xmm6 ; xmm3=data1H psubd xmm7,xmm1 ; xmm7=data6L psubd xmm0,xmm6 ; xmm0=data6H movdqa xmm1,[rel PD_DESCALE_P1] ; xmm1=[rel PD_DESCALE_P1] paddd xmm4,xmm1 paddd xmm3,xmm1 psrad xmm4,DESCALE_P1 psrad xmm3,DESCALE_P1 paddd xmm7,xmm1 paddd xmm0,xmm1 psrad xmm7,DESCALE_P1 psrad xmm0,DESCALE_P1 packssdw xmm4,xmm3 ; xmm4=data1=(10 11 12 13 14 15 16 17) packssdw xmm7,xmm0 ; xmm7=data6=(60 61 62 63 64 65 66 67) movdqa xmm6,xmm5 ; transpose coefficients(phase 1) punpcklwd xmm5,xmm4 ; xmm5=(00 10 01 11 02 12 03 13) punpckhwd xmm6,xmm4 ; xmm6=(04 14 05 15 06 16 07 17) movdqa xmm1,xmm7 ; transpose coefficients(phase 1) punpcklwd xmm7,xmm2 ; xmm7=(60 70 61 71 62 72 63 73) punpckhwd xmm1,xmm2 ; xmm1=(64 74 65 75 66 76 67 77) movdqa xmm3, XMMWORD [wk(6)] ; xmm3=tmp12L movdqa xmm0, XMMWORD [wk(7)] ; xmm0=tmp12H movdqa xmm4, XMMWORD [wk(10)] ; xmm4=tmp1L movdqa xmm2, XMMWORD [wk(11)] ; xmm2=tmp1H movdqa XMMWORD [wk(0)], xmm5 ; wk(0)=(00 10 01 11 02 12 03 13) movdqa XMMWORD [wk(1)], xmm6 ; wk(1)=(04 14 05 15 06 16 07 17) movdqa XMMWORD [wk(4)], xmm7 ; wk(4)=(60 70 61 71 62 72 63 73) movdqa XMMWORD [wk(5)], xmm1 ; wk(5)=(64 74 65 75 66 76 67 77) movdqa xmm5,xmm3 movdqa xmm6,xmm0 paddd xmm3,xmm4 ; xmm3=data2L paddd xmm0,xmm2 ; xmm0=data2H psubd xmm5,xmm4 ; xmm5=data5L psubd xmm6,xmm2 ; xmm6=data5H movdqa xmm7,[rel PD_DESCALE_P1] ; xmm7=[rel PD_DESCALE_P1] paddd xmm3,xmm7 paddd xmm0,xmm7 psrad xmm3,DESCALE_P1 psrad xmm0,DESCALE_P1 paddd xmm5,xmm7 paddd xmm6,xmm7 psrad xmm5,DESCALE_P1 psrad xmm6,DESCALE_P1 packssdw xmm3,xmm0 ; xmm3=data2=(20 21 22 23 24 25 26 27) packssdw xmm5,xmm6 ; xmm5=data5=(50 51 52 53 54 55 56 57) movdqa xmm1, XMMWORD [wk(2)] ; xmm1=tmp13L movdqa xmm4, XMMWORD [wk(3)] ; xmm4=tmp13H movdqa xmm2, XMMWORD [wk(8)] ; xmm2=tmp0L movdqa xmm7, XMMWORD [wk(9)] ; xmm7=tmp0H movdqa xmm0,xmm1 movdqa xmm6,xmm4 paddd xmm1,xmm2 ; xmm1=data3L paddd xmm4,xmm7 ; xmm4=data3H psubd xmm0,xmm2 ; xmm0=data4L psubd xmm6,xmm7 ; xmm6=data4H movdqa xmm2,[rel PD_DESCALE_P1] ; xmm2=[rel PD_DESCALE_P1] paddd xmm1,xmm2 paddd xmm4,xmm2 psrad xmm1,DESCALE_P1 psrad xmm4,DESCALE_P1 paddd xmm0,xmm2 paddd xmm6,xmm2 psrad xmm0,DESCALE_P1 psrad xmm6,DESCALE_P1 packssdw xmm1,xmm4 ; xmm1=data3=(30 31 32 33 34 35 36 37) packssdw xmm0,xmm6 ; xmm0=data4=(40 41 42 43 44 45 46 47) movdqa xmm7, XMMWORD [wk(0)] ; xmm7=(00 10 01 11 02 12 03 13) movdqa xmm2, XMMWORD [wk(1)] ; xmm2=(04 14 05 15 06 16 07 17) movdqa xmm4,xmm3 ; transpose coefficients(phase 1) punpcklwd xmm3,xmm1 ; xmm3=(20 30 21 31 22 32 23 33) punpckhwd xmm4,xmm1 ; xmm4=(24 34 25 35 26 36 27 37) movdqa xmm6,xmm0 ; transpose coefficients(phase 1) punpcklwd xmm0,xmm5 ; xmm0=(40 50 41 51 42 52 43 53) punpckhwd xmm6,xmm5 ; xmm6=(44 54 45 55 46 56 47 57) movdqa xmm1,xmm7 ; transpose coefficients(phase 2) punpckldq xmm7,xmm3 ; xmm7=(00 10 20 30 01 11 21 31) punpckhdq xmm1,xmm3 ; xmm1=(02 12 22 32 03 13 23 33) movdqa xmm5,xmm2 ; transpose coefficients(phase 2) punpckldq xmm2,xmm4 ; xmm2=(04 14 24 34 05 15 25 35) punpckhdq xmm5,xmm4 ; xmm5=(06 16 26 36 07 17 27 37) movdqa xmm3, XMMWORD [wk(4)] ; xmm3=(60 70 61 71 62 72 63 73) movdqa xmm4, XMMWORD [wk(5)] ; xmm4=(64 74 65 75 66 76 67 77) movdqa XMMWORD [wk(6)], xmm2 ; wk(6)=(04 14 24 34 05 15 25 35) movdqa XMMWORD [wk(7)], xmm5 ; wk(7)=(06 16 26 36 07 17 27 37) movdqa xmm2,xmm0 ; transpose coefficients(phase 2) punpckldq xmm0,xmm3 ; xmm0=(40 50 60 70 41 51 61 71) punpckhdq xmm2,xmm3 ; xmm2=(42 52 62 72 43 53 63 73) movdqa xmm5,xmm6 ; transpose coefficients(phase 2) punpckldq xmm6,xmm4 ; xmm6=(44 54 64 74 45 55 65 75) punpckhdq xmm5,xmm4 ; xmm5=(46 56 66 76 47 57 67 77) movdqa xmm3,xmm7 ; transpose coefficients(phase 3) punpcklqdq xmm7,xmm0 ; xmm7=col0=(00 10 20 30 40 50 60 70) punpckhqdq xmm3,xmm0 ; xmm3=col1=(01 11 21 31 41 51 61 71) movdqa xmm4,xmm1 ; transpose coefficients(phase 3) punpcklqdq xmm1,xmm2 ; xmm1=col2=(02 12 22 32 42 52 62 72) punpckhqdq xmm4,xmm2 ; xmm4=col3=(03 13 23 33 43 53 63 73) movdqa xmm0, XMMWORD [wk(6)] ; xmm0=(04 14 24 34 05 15 25 35) movdqa xmm2, XMMWORD [wk(7)] ; xmm2=(06 16 26 36 07 17 27 37) movdqa XMMWORD [wk(8)], xmm3 ; wk(8)=col1 movdqa XMMWORD [wk(9)], xmm4 ; wk(9)=col3 movdqa xmm3,xmm0 ; transpose coefficients(phase 3) punpcklqdq xmm0,xmm6 ; xmm0=col4=(04 14 24 34 44 54 64 74) punpckhqdq xmm3,xmm6 ; xmm3=col5=(05 15 25 35 45 55 65 75) movdqa xmm4,xmm2 ; transpose coefficients(phase 3) punpcklqdq xmm2,xmm5 ; xmm2=col6=(06 16 26 36 46 56 66 76) punpckhqdq xmm4,xmm5 ; xmm4=col7=(07 17 27 37 47 57 67 77) movdqa XMMWORD [wk(10)], xmm3 ; wk(10)=col5 movdqa XMMWORD [wk(11)], xmm4 ; wk(11)=col7 .column_end: ; -- Prefetch the next coefficient block prefetchnta [rsi + DCTSIZE2*SIZEOF_JCOEF + 0*32] prefetchnta [rsi + DCTSIZE2*SIZEOF_JCOEF + 1*32] prefetchnta [rsi + DCTSIZE2*SIZEOF_JCOEF + 2*32] prefetchnta [rsi + DCTSIZE2*SIZEOF_JCOEF + 3*32] ; ---- Pass 2: process rows from work array, store into output array. mov rax, [original_rbp] mov rdi, r12 ; (JSAMPROW *) mov eax, r13d ; -- Even part ; xmm7=col0, xmm1=col2, xmm0=col4, xmm2=col6 ; (Original) ; z1 = (z2 + z3) * 0.541196100; ; tmp2 = z1 + z3 * -1.847759065; ; tmp3 = z1 + z2 * 0.765366865; ; ; (This implementation) ; tmp2 = z2 * 0.541196100 + z3 * (0.541196100 - 1.847759065); ; tmp3 = z2 * (0.541196100 + 0.765366865) + z3 * 0.541196100; movdqa xmm6,xmm1 ; xmm1=in2=z2 movdqa xmm5,xmm1 punpcklwd xmm6,xmm2 ; xmm2=in6=z3 punpckhwd xmm5,xmm2 movdqa xmm1,xmm6 movdqa xmm2,xmm5 pmaddwd xmm6,[rel PW_F130_F054] ; xmm6=tmp3L pmaddwd xmm5,[rel PW_F130_F054] ; xmm5=tmp3H pmaddwd xmm1,[rel PW_F054_MF130] ; xmm1=tmp2L pmaddwd xmm2,[rel PW_F054_MF130] ; xmm2=tmp2H movdqa xmm3,xmm7 paddw xmm7,xmm0 ; xmm7=in0+in4 psubw xmm3,xmm0 ; xmm3=in0-in4 pxor xmm4,xmm4 pxor xmm0,xmm0 punpcklwd xmm4,xmm7 ; xmm4=tmp0L punpckhwd xmm0,xmm7 ; xmm0=tmp0H psrad xmm4,(16-CONST_BITS) ; psrad xmm4,16 & pslld xmm4,CONST_BITS psrad xmm0,(16-CONST_BITS) ; psrad xmm0,16 & pslld xmm0,CONST_BITS movdqa xmm7,xmm4 paddd xmm4,xmm6 ; xmm4=tmp10L psubd xmm7,xmm6 ; xmm7=tmp13L movdqa xmm6,xmm0 paddd xmm0,xmm5 ; xmm0=tmp10H psubd xmm6,xmm5 ; xmm6=tmp13H movdqa XMMWORD [wk(0)], xmm4 ; wk(0)=tmp10L movdqa XMMWORD [wk(1)], xmm0 ; wk(1)=tmp10H movdqa XMMWORD [wk(2)], xmm7 ; wk(2)=tmp13L movdqa XMMWORD [wk(3)], xmm6 ; wk(3)=tmp13H pxor xmm5,xmm5 pxor xmm4,xmm4 punpcklwd xmm5,xmm3 ; xmm5=tmp1L punpckhwd xmm4,xmm3 ; xmm4=tmp1H psrad xmm5,(16-CONST_BITS) ; psrad xmm5,16 & pslld xmm5,CONST_BITS psrad xmm4,(16-CONST_BITS) ; psrad xmm4,16 & pslld xmm4,CONST_BITS movdqa xmm0,xmm5 paddd xmm5,xmm1 ; xmm5=tmp11L psubd xmm0,xmm1 ; xmm0=tmp12L movdqa xmm7,xmm4 paddd xmm4,xmm2 ; xmm4=tmp11H psubd xmm7,xmm2 ; xmm7=tmp12H movdqa XMMWORD [wk(4)], xmm5 ; wk(4)=tmp11L movdqa XMMWORD [wk(5)], xmm4 ; wk(5)=tmp11H movdqa XMMWORD [wk(6)], xmm0 ; wk(6)=tmp12L movdqa XMMWORD [wk(7)], xmm7 ; wk(7)=tmp12H ; -- Odd part movdqa xmm6, XMMWORD [wk(9)] ; xmm6=col3 movdqa xmm3, XMMWORD [wk(8)] ; xmm3=col1 movdqa xmm1, XMMWORD [wk(11)] ; xmm1=col7 movdqa xmm2, XMMWORD [wk(10)] ; xmm2=col5 movdqa xmm5,xmm6 movdqa xmm4,xmm3 paddw xmm5,xmm1 ; xmm5=z3 paddw xmm4,xmm2 ; xmm4=z4 ; (Original) ; z5 = (z3 + z4) * 1.175875602; ; z3 = z3 * -1.961570560; z4 = z4 * -0.390180644; ; z3 += z5; z4 += z5; ; ; (This implementation) ; z3 = z3 * (1.175875602 - 1.961570560) + z4 * 1.175875602; ; z4 = z3 * 1.175875602 + z4 * (1.175875602 - 0.390180644); movdqa xmm0,xmm5 movdqa xmm7,xmm5 punpcklwd xmm0,xmm4 punpckhwd xmm7,xmm4 movdqa xmm5,xmm0 movdqa xmm4,xmm7 pmaddwd xmm0,[rel PW_MF078_F117] ; xmm0=z3L pmaddwd xmm7,[rel PW_MF078_F117] ; xmm7=z3H pmaddwd xmm5,[rel PW_F117_F078] ; xmm5=z4L pmaddwd xmm4,[rel PW_F117_F078] ; xmm4=z4H movdqa XMMWORD [wk(10)], xmm0 ; wk(10)=z3L movdqa XMMWORD [wk(11)], xmm7 ; wk(11)=z3H ; (Original) ; z1 = tmp0 + tmp3; z2 = tmp1 + tmp2; ; tmp0 = tmp0 * 0.298631336; tmp1 = tmp1 * 2.053119869; ; tmp2 = tmp2 * 3.072711026; tmp3 = tmp3 * 1.501321110; ; z1 = z1 * -0.899976223; z2 = z2 * -2.562915447; ; tmp0 += z1 + z3; tmp1 += z2 + z4; ; tmp2 += z2 + z3; tmp3 += z1 + z4; ; ; (This implementation) ; tmp0 = tmp0 * (0.298631336 - 0.899976223) + tmp3 * -0.899976223; ; tmp1 = tmp1 * (2.053119869 - 2.562915447) + tmp2 * -2.562915447; ; tmp2 = tmp1 * -2.562915447 + tmp2 * (3.072711026 - 2.562915447); ; tmp3 = tmp0 * -0.899976223 + tmp3 * (1.501321110 - 0.899976223); ; tmp0 += z3; tmp1 += z4; ; tmp2 += z3; tmp3 += z4; movdqa xmm0,xmm1 movdqa xmm7,xmm1 punpcklwd xmm0,xmm3 punpckhwd xmm7,xmm3 movdqa xmm1,xmm0 movdqa xmm3,xmm7 pmaddwd xmm0,[rel PW_MF060_MF089] ; xmm0=tmp0L pmaddwd xmm7,[rel PW_MF060_MF089] ; xmm7=tmp0H pmaddwd xmm1,[rel PW_MF089_F060] ; xmm1=tmp3L pmaddwd xmm3,[rel PW_MF089_F060] ; xmm3=tmp3H paddd xmm0, XMMWORD [wk(10)] ; xmm0=tmp0L paddd xmm7, XMMWORD [wk(11)] ; xmm7=tmp0H paddd xmm1,xmm5 ; xmm1=tmp3L paddd xmm3,xmm4 ; xmm3=tmp3H movdqa XMMWORD [wk(8)], xmm0 ; wk(8)=tmp0L movdqa XMMWORD [wk(9)], xmm7 ; wk(9)=tmp0H movdqa xmm0,xmm2 movdqa xmm7,xmm2 punpcklwd xmm0,xmm6 punpckhwd xmm7,xmm6 movdqa xmm2,xmm0 movdqa xmm6,xmm7 pmaddwd xmm0,[rel PW_MF050_MF256] ; xmm0=tmp1L pmaddwd xmm7,[rel PW_MF050_MF256] ; xmm7=tmp1H pmaddwd xmm2,[rel PW_MF256_F050] ; xmm2=tmp2L pmaddwd xmm6,[rel PW_MF256_F050] ; xmm6=tmp2H paddd xmm0,xmm5 ; xmm0=tmp1L paddd xmm7,xmm4 ; xmm7=tmp1H paddd xmm2, XMMWORD [wk(10)] ; xmm2=tmp2L paddd xmm6, XMMWORD [wk(11)] ; xmm6=tmp2H movdqa XMMWORD [wk(10)], xmm0 ; wk(10)=tmp1L movdqa XMMWORD [wk(11)], xmm7 ; wk(11)=tmp1H ; -- Final output stage movdqa xmm5, XMMWORD [wk(0)] ; xmm5=tmp10L movdqa xmm4, XMMWORD [wk(1)] ; xmm4=tmp10H movdqa xmm0,xmm5 movdqa xmm7,xmm4 paddd xmm5,xmm1 ; xmm5=data0L paddd xmm4,xmm3 ; xmm4=data0H psubd xmm0,xmm1 ; xmm0=data7L psubd xmm7,xmm3 ; xmm7=data7H movdqa xmm1,[rel PD_DESCALE_P2] ; xmm1=[rel PD_DESCALE_P2] paddd xmm5,xmm1 paddd xmm4,xmm1 psrad xmm5,DESCALE_P2 psrad xmm4,DESCALE_P2 paddd xmm0,xmm1 paddd xmm7,xmm1 psrad xmm0,DESCALE_P2 psrad xmm7,DESCALE_P2 packssdw xmm5,xmm4 ; xmm5=data0=(00 10 20 30 40 50 60 70) packssdw xmm0,xmm7 ; xmm0=data7=(07 17 27 37 47 57 67 77) movdqa xmm3, XMMWORD [wk(4)] ; xmm3=tmp11L movdqa xmm1, XMMWORD [wk(5)] ; xmm1=tmp11H movdqa xmm4,xmm3 movdqa xmm7,xmm1 paddd xmm3,xmm2 ; xmm3=data1L paddd xmm1,xmm6 ; xmm1=data1H psubd xmm4,xmm2 ; xmm4=data6L psubd xmm7,xmm6 ; xmm7=data6H movdqa xmm2,[rel PD_DESCALE_P2] ; xmm2=[rel PD_DESCALE_P2] paddd xmm3,xmm2 paddd xmm1,xmm2 psrad xmm3,DESCALE_P2 psrad xmm1,DESCALE_P2 paddd xmm4,xmm2 paddd xmm7,xmm2 psrad xmm4,DESCALE_P2 psrad xmm7,DESCALE_P2 packssdw xmm3,xmm1 ; xmm3=data1=(01 11 21 31 41 51 61 71) packssdw xmm4,xmm7 ; xmm4=data6=(06 16 26 36 46 56 66 76) packsswb xmm5,xmm4 ; xmm5=(00 10 20 30 40 50 60 70 06 16 26 36 46 56 66 76) packsswb xmm3,xmm0 ; xmm3=(01 11 21 31 41 51 61 71 07 17 27 37 47 57 67 77) movdqa xmm6, XMMWORD [wk(6)] ; xmm6=tmp12L movdqa xmm2, XMMWORD [wk(7)] ; xmm2=tmp12H movdqa xmm1, XMMWORD [wk(10)] ; xmm1=tmp1L movdqa xmm7, XMMWORD [wk(11)] ; xmm7=tmp1H movdqa XMMWORD [wk(0)], xmm5 ; wk(0)=(00 10 20 30 40 50 60 70 06 16 26 36 46 56 66 76) movdqa XMMWORD [wk(1)], xmm3 ; wk(1)=(01 11 21 31 41 51 61 71 07 17 27 37 47 57 67 77) movdqa xmm4,xmm6 movdqa xmm0,xmm2 paddd xmm6,xmm1 ; xmm6=data2L paddd xmm2,xmm7 ; xmm2=data2H psubd xmm4,xmm1 ; xmm4=data5L psubd xmm0,xmm7 ; xmm0=data5H movdqa xmm5,[rel PD_DESCALE_P2] ; xmm5=[rel PD_DESCALE_P2] paddd xmm6,xmm5 paddd xmm2,xmm5 psrad xmm6,DESCALE_P2 psrad xmm2,DESCALE_P2 paddd xmm4,xmm5 paddd xmm0,xmm5 psrad xmm4,DESCALE_P2 psrad xmm0,DESCALE_P2 packssdw xmm6,xmm2 ; xmm6=data2=(02 12 22 32 42 52 62 72) packssdw xmm4,xmm0 ; xmm4=data5=(05 15 25 35 45 55 65 75) movdqa xmm3, XMMWORD [wk(2)] ; xmm3=tmp13L movdqa xmm1, XMMWORD [wk(3)] ; xmm1=tmp13H movdqa xmm7, XMMWORD [wk(8)] ; xmm7=tmp0L movdqa xmm5, XMMWORD [wk(9)] ; xmm5=tmp0H movdqa xmm2,xmm3 movdqa xmm0,xmm1 paddd xmm3,xmm7 ; xmm3=data3L paddd xmm1,xmm5 ; xmm1=data3H psubd xmm2,xmm7 ; xmm2=data4L psubd xmm0,xmm5 ; xmm0=data4H movdqa xmm7,[rel PD_DESCALE_P2] ; xmm7=[rel PD_DESCALE_P2] paddd xmm3,xmm7 paddd xmm1,xmm7 psrad xmm3,DESCALE_P2 psrad xmm1,DESCALE_P2 paddd xmm2,xmm7 paddd xmm0,xmm7 psrad xmm2,DESCALE_P2 psrad xmm0,DESCALE_P2 movdqa xmm5,[rel PB_CENTERJSAMP] ; xmm5=[rel PB_CENTERJSAMP] packssdw xmm3,xmm1 ; xmm3=data3=(03 13 23 33 43 53 63 73) packssdw xmm2,xmm0 ; xmm2=data4=(04 14 24 34 44 54 64 74) movdqa xmm7, XMMWORD [wk(0)] ; xmm7=(00 10 20 30 40 50 60 70 06 16 26 36 46 56 66 76) movdqa xmm1, XMMWORD [wk(1)] ; xmm1=(01 11 21 31 41 51 61 71 07 17 27 37 47 57 67 77) packsswb xmm6,xmm2 ; xmm6=(02 12 22 32 42 52 62 72 04 14 24 34 44 54 64 74) packsswb xmm3,xmm4 ; xmm3=(03 13 23 33 43 53 63 73 05 15 25 35 45 55 65 75) paddb xmm7,xmm5 paddb xmm1,xmm5 paddb xmm6,xmm5 paddb xmm3,xmm5 movdqa xmm0,xmm7 ; transpose coefficients(phase 1) punpcklbw xmm7,xmm1 ; xmm7=(00 01 10 11 20 21 30 31 40 41 50 51 60 61 70 71) punpckhbw xmm0,xmm1 ; xmm0=(06 07 16 17 26 27 36 37 46 47 56 57 66 67 76 77) movdqa xmm2,xmm6 ; transpose coefficients(phase 1) punpcklbw xmm6,xmm3 ; xmm6=(02 03 12 13 22 23 32 33 42 43 52 53 62 63 72 73) punpckhbw xmm2,xmm3 ; xmm2=(04 05 14 15 24 25 34 35 44 45 54 55 64 65 74 75) movdqa xmm4,xmm7 ; transpose coefficients(phase 2) punpcklwd xmm7,xmm6 ; xmm7=(00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 33) punpckhwd xmm4,xmm6 ; xmm4=(40 41 42 43 50 51 52 53 60 61 62 63 70 71 72 73) movdqa xmm5,xmm2 ; transpose coefficients(phase 2) punpcklwd xmm2,xmm0 ; xmm2=(04 05 06 07 14 15 16 17 24 25 26 27 34 35 36 37) punpckhwd xmm5,xmm0 ; xmm5=(44 45 46 47 54 55 56 57 64 65 66 67 74 75 76 77) movdqa xmm1,xmm7 ; transpose coefficients(phase 3) punpckldq xmm7,xmm2 ; xmm7=(00 01 02 03 04 05 06 07 10 11 12 13 14 15 16 17) punpckhdq xmm1,xmm2 ; xmm1=(20 21 22 23 24 25 26 27 30 31 32 33 34 35 36 37) movdqa xmm3,xmm4 ; transpose coefficients(phase 3) punpckldq xmm4,xmm5 ; xmm4=(40 41 42 43 44 45 46 47 50 51 52 53 54 55 56 57) punpckhdq xmm3,xmm5 ; xmm3=(60 61 62 63 64 65 66 67 70 71 72 73 74 75 76 77) pshufd xmm6,xmm7,0x4E ; xmm6=(10 11 12 13 14 15 16 17 00 01 02 03 04 05 06 07) pshufd xmm0,xmm1,0x4E ; xmm0=(30 31 32 33 34 35 36 37 20 21 22 23 24 25 26 27) pshufd xmm2,xmm4,0x4E ; xmm2=(50 51 52 53 54 55 56 57 40 41 42 43 44 45 46 47) pshufd xmm5,xmm3,0x4E ; xmm5=(70 71 72 73 74 75 76 77 60 61 62 63 64 65 66 67) mov rdx, JSAMPROW [rdi+0*SIZEOF_JSAMPROW] mov rsi, JSAMPROW [rdi+2*SIZEOF_JSAMPROW] movq XMM_MMWORD [rdx+rax*SIZEOF_JSAMPLE], xmm7 movq XMM_MMWORD [rsi+rax*SIZEOF_JSAMPLE], xmm1 mov rdx, JSAMPROW [rdi+4*SIZEOF_JSAMPROW] mov rsi, JSAMPROW [rdi+6*SIZEOF_JSAMPROW] movq XMM_MMWORD [rdx+rax*SIZEOF_JSAMPLE], xmm4 movq XMM_MMWORD [rsi+rax*SIZEOF_JSAMPLE], xmm3 mov rdx, JSAMPROW [rdi+1*SIZEOF_JSAMPROW] mov rsi, JSAMPROW [rdi+3*SIZEOF_JSAMPROW] movq XMM_MMWORD [rdx+rax*SIZEOF_JSAMPLE], xmm6 movq XMM_MMWORD [rsi+rax*SIZEOF_JSAMPLE], xmm0 mov rdx, JSAMPROW [rdi+5*SIZEOF_JSAMPROW] mov rsi, JSAMPROW [rdi+7*SIZEOF_JSAMPROW] movq XMM_MMWORD [rdx+rax*SIZEOF_JSAMPLE], xmm2 movq XMM_MMWORD [rsi+rax*SIZEOF_JSAMPLE], xmm5 uncollect_args mov rsp,rbp ; rsp <- aligned rbp pop rsp ; rsp <- original rbp pop rbp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 16 libjpeg-turbo-1.4.2/simd/jidctint-mmx.asm0000644000076500007650000010232312600050400015247 00000000000000; ; jidctint.asm - accurate integer IDCT (MMX) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; ; Based on ; x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; This file contains a slow-but-accurate integer implementation of the ; inverse DCT (Discrete Cosine Transform). The following code is based ; directly on the IJG's original jidctint.c; see the jidctint.c for ; more details. ; ; [TAB8] %include "jsimdext.inc" %include "jdct.inc" ; -------------------------------------------------------------------------- %define CONST_BITS 13 %define PASS1_BITS 2 %define DESCALE_P1 (CONST_BITS-PASS1_BITS) %define DESCALE_P2 (CONST_BITS+PASS1_BITS+3) %if CONST_BITS == 13 F_0_298 equ 2446 ; FIX(0.298631336) F_0_390 equ 3196 ; FIX(0.390180644) F_0_541 equ 4433 ; FIX(0.541196100) F_0_765 equ 6270 ; FIX(0.765366865) F_0_899 equ 7373 ; FIX(0.899976223) F_1_175 equ 9633 ; FIX(1.175875602) F_1_501 equ 12299 ; FIX(1.501321110) F_1_847 equ 15137 ; FIX(1.847759065) F_1_961 equ 16069 ; FIX(1.961570560) F_2_053 equ 16819 ; FIX(2.053119869) F_2_562 equ 20995 ; FIX(2.562915447) F_3_072 equ 25172 ; FIX(3.072711026) %else ; NASM cannot do compile-time arithmetic on floating-point constants. %define DESCALE(x,n) (((x)+(1<<((n)-1)))>>(n)) F_0_298 equ DESCALE( 320652955,30-CONST_BITS) ; FIX(0.298631336) F_0_390 equ DESCALE( 418953276,30-CONST_BITS) ; FIX(0.390180644) F_0_541 equ DESCALE( 581104887,30-CONST_BITS) ; FIX(0.541196100) F_0_765 equ DESCALE( 821806413,30-CONST_BITS) ; FIX(0.765366865) F_0_899 equ DESCALE( 966342111,30-CONST_BITS) ; FIX(0.899976223) F_1_175 equ DESCALE(1262586813,30-CONST_BITS) ; FIX(1.175875602) F_1_501 equ DESCALE(1612031267,30-CONST_BITS) ; FIX(1.501321110) F_1_847 equ DESCALE(1984016188,30-CONST_BITS) ; FIX(1.847759065) F_1_961 equ DESCALE(2106220350,30-CONST_BITS) ; FIX(1.961570560) F_2_053 equ DESCALE(2204520673,30-CONST_BITS) ; FIX(2.053119869) F_2_562 equ DESCALE(2751909506,30-CONST_BITS) ; FIX(2.562915447) F_3_072 equ DESCALE(3299298341,30-CONST_BITS) ; FIX(3.072711026) %endif ; -------------------------------------------------------------------------- SECTION SEG_CONST alignz 16 global EXTN(jconst_idct_islow_mmx) EXTN(jconst_idct_islow_mmx): PW_F130_F054 times 2 dw (F_0_541+F_0_765), F_0_541 PW_F054_MF130 times 2 dw F_0_541, (F_0_541-F_1_847) PW_MF078_F117 times 2 dw (F_1_175-F_1_961), F_1_175 PW_F117_F078 times 2 dw F_1_175, (F_1_175-F_0_390) PW_MF060_MF089 times 2 dw (F_0_298-F_0_899),-F_0_899 PW_MF089_F060 times 2 dw -F_0_899, (F_1_501-F_0_899) PW_MF050_MF256 times 2 dw (F_2_053-F_2_562),-F_2_562 PW_MF256_F050 times 2 dw -F_2_562, (F_3_072-F_2_562) PD_DESCALE_P1 times 2 dd 1 << (DESCALE_P1-1) PD_DESCALE_P2 times 2 dd 1 << (DESCALE_P2-1) PB_CENTERJSAMP times 8 db CENTERJSAMPLE alignz 16 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 32 ; ; Perform dequantization and inverse DCT on one block of coefficients. ; ; GLOBAL(void) ; jsimd_idct_islow_mmx (void * dct_table, JCOEFPTR coef_block, ; JSAMPARRAY output_buf, JDIMENSION output_col) ; %define dct_table(b) (b)+8 ; jpeg_component_info * compptr %define coef_block(b) (b)+12 ; JCOEFPTR coef_block %define output_buf(b) (b)+16 ; JSAMPARRAY output_buf %define output_col(b) (b)+20 ; JDIMENSION output_col %define original_ebp ebp+0 %define wk(i) ebp-(WK_NUM-(i))*SIZEOF_MMWORD ; mmword wk[WK_NUM] %define WK_NUM 12 %define workspace wk(0)-DCTSIZE2*SIZEOF_JCOEF ; JCOEF workspace[DCTSIZE2] align 16 global EXTN(jsimd_idct_islow_mmx) EXTN(jsimd_idct_islow_mmx): push ebp mov eax,esp ; eax = original ebp sub esp, byte 4 and esp, byte (-SIZEOF_MMWORD) ; align to 64 bits mov [esp],eax mov ebp,esp ; ebp = aligned ebp lea esp, [workspace] push ebx ; push ecx ; need not be preserved ; push edx ; need not be preserved push esi push edi get_GOT ebx ; get GOT address ; ---- Pass 1: process columns from input, store into work array. ; mov eax, [original_ebp] mov edx, POINTER [dct_table(eax)] ; quantptr mov esi, JCOEFPTR [coef_block(eax)] ; inptr lea edi, [workspace] ; JCOEF * wsptr mov ecx, DCTSIZE/4 ; ctr alignx 16,7 .columnloop: %ifndef NO_ZERO_COLUMN_TEST_ISLOW_MMX mov eax, DWORD [DWBLOCK(1,0,esi,SIZEOF_JCOEF)] or eax, DWORD [DWBLOCK(2,0,esi,SIZEOF_JCOEF)] jnz short .columnDCT movq mm0, MMWORD [MMBLOCK(1,0,esi,SIZEOF_JCOEF)] movq mm1, MMWORD [MMBLOCK(2,0,esi,SIZEOF_JCOEF)] por mm0, MMWORD [MMBLOCK(3,0,esi,SIZEOF_JCOEF)] por mm1, MMWORD [MMBLOCK(4,0,esi,SIZEOF_JCOEF)] por mm0, MMWORD [MMBLOCK(5,0,esi,SIZEOF_JCOEF)] por mm1, MMWORD [MMBLOCK(6,0,esi,SIZEOF_JCOEF)] por mm0, MMWORD [MMBLOCK(7,0,esi,SIZEOF_JCOEF)] por mm1,mm0 packsswb mm1,mm1 movd eax,mm1 test eax,eax jnz short .columnDCT ; -- AC terms all zero movq mm0, MMWORD [MMBLOCK(0,0,esi,SIZEOF_JCOEF)] pmullw mm0, MMWORD [MMBLOCK(0,0,edx,SIZEOF_ISLOW_MULT_TYPE)] psllw mm0,PASS1_BITS movq mm2,mm0 ; mm0=in0=(00 01 02 03) punpcklwd mm0,mm0 ; mm0=(00 00 01 01) punpckhwd mm2,mm2 ; mm2=(02 02 03 03) movq mm1,mm0 punpckldq mm0,mm0 ; mm0=(00 00 00 00) punpckhdq mm1,mm1 ; mm1=(01 01 01 01) movq mm3,mm2 punpckldq mm2,mm2 ; mm2=(02 02 02 02) punpckhdq mm3,mm3 ; mm3=(03 03 03 03) movq MMWORD [MMBLOCK(0,0,edi,SIZEOF_JCOEF)], mm0 movq MMWORD [MMBLOCK(0,1,edi,SIZEOF_JCOEF)], mm0 movq MMWORD [MMBLOCK(1,0,edi,SIZEOF_JCOEF)], mm1 movq MMWORD [MMBLOCK(1,1,edi,SIZEOF_JCOEF)], mm1 movq MMWORD [MMBLOCK(2,0,edi,SIZEOF_JCOEF)], mm2 movq MMWORD [MMBLOCK(2,1,edi,SIZEOF_JCOEF)], mm2 movq MMWORD [MMBLOCK(3,0,edi,SIZEOF_JCOEF)], mm3 movq MMWORD [MMBLOCK(3,1,edi,SIZEOF_JCOEF)], mm3 jmp near .nextcolumn alignx 16,7 %endif .columnDCT: ; -- Even part movq mm0, MMWORD [MMBLOCK(0,0,esi,SIZEOF_JCOEF)] movq mm1, MMWORD [MMBLOCK(2,0,esi,SIZEOF_JCOEF)] pmullw mm0, MMWORD [MMBLOCK(0,0,edx,SIZEOF_ISLOW_MULT_TYPE)] pmullw mm1, MMWORD [MMBLOCK(2,0,edx,SIZEOF_ISLOW_MULT_TYPE)] movq mm2, MMWORD [MMBLOCK(4,0,esi,SIZEOF_JCOEF)] movq mm3, MMWORD [MMBLOCK(6,0,esi,SIZEOF_JCOEF)] pmullw mm2, MMWORD [MMBLOCK(4,0,edx,SIZEOF_ISLOW_MULT_TYPE)] pmullw mm3, MMWORD [MMBLOCK(6,0,edx,SIZEOF_ISLOW_MULT_TYPE)] ; (Original) ; z1 = (z2 + z3) * 0.541196100; ; tmp2 = z1 + z3 * -1.847759065; ; tmp3 = z1 + z2 * 0.765366865; ; ; (This implementation) ; tmp2 = z2 * 0.541196100 + z3 * (0.541196100 - 1.847759065); ; tmp3 = z2 * (0.541196100 + 0.765366865) + z3 * 0.541196100; movq mm4,mm1 ; mm1=in2=z2 movq mm5,mm1 punpcklwd mm4,mm3 ; mm3=in6=z3 punpckhwd mm5,mm3 movq mm1,mm4 movq mm3,mm5 pmaddwd mm4,[GOTOFF(ebx,PW_F130_F054)] ; mm4=tmp3L pmaddwd mm5,[GOTOFF(ebx,PW_F130_F054)] ; mm5=tmp3H pmaddwd mm1,[GOTOFF(ebx,PW_F054_MF130)] ; mm1=tmp2L pmaddwd mm3,[GOTOFF(ebx,PW_F054_MF130)] ; mm3=tmp2H movq mm6,mm0 paddw mm0,mm2 ; mm0=in0+in4 psubw mm6,mm2 ; mm6=in0-in4 pxor mm7,mm7 pxor mm2,mm2 punpcklwd mm7,mm0 ; mm7=tmp0L punpckhwd mm2,mm0 ; mm2=tmp0H psrad mm7,(16-CONST_BITS) ; psrad mm7,16 & pslld mm7,CONST_BITS psrad mm2,(16-CONST_BITS) ; psrad mm2,16 & pslld mm2,CONST_BITS movq mm0,mm7 paddd mm7,mm4 ; mm7=tmp10L psubd mm0,mm4 ; mm0=tmp13L movq mm4,mm2 paddd mm2,mm5 ; mm2=tmp10H psubd mm4,mm5 ; mm4=tmp13H movq MMWORD [wk(0)], mm7 ; wk(0)=tmp10L movq MMWORD [wk(1)], mm2 ; wk(1)=tmp10H movq MMWORD [wk(2)], mm0 ; wk(2)=tmp13L movq MMWORD [wk(3)], mm4 ; wk(3)=tmp13H pxor mm5,mm5 pxor mm7,mm7 punpcklwd mm5,mm6 ; mm5=tmp1L punpckhwd mm7,mm6 ; mm7=tmp1H psrad mm5,(16-CONST_BITS) ; psrad mm5,16 & pslld mm5,CONST_BITS psrad mm7,(16-CONST_BITS) ; psrad mm7,16 & pslld mm7,CONST_BITS movq mm2,mm5 paddd mm5,mm1 ; mm5=tmp11L psubd mm2,mm1 ; mm2=tmp12L movq mm0,mm7 paddd mm7,mm3 ; mm7=tmp11H psubd mm0,mm3 ; mm0=tmp12H movq MMWORD [wk(4)], mm5 ; wk(4)=tmp11L movq MMWORD [wk(5)], mm7 ; wk(5)=tmp11H movq MMWORD [wk(6)], mm2 ; wk(6)=tmp12L movq MMWORD [wk(7)], mm0 ; wk(7)=tmp12H ; -- Odd part movq mm4, MMWORD [MMBLOCK(1,0,esi,SIZEOF_JCOEF)] movq mm6, MMWORD [MMBLOCK(3,0,esi,SIZEOF_JCOEF)] pmullw mm4, MMWORD [MMBLOCK(1,0,edx,SIZEOF_ISLOW_MULT_TYPE)] pmullw mm6, MMWORD [MMBLOCK(3,0,edx,SIZEOF_ISLOW_MULT_TYPE)] movq mm1, MMWORD [MMBLOCK(5,0,esi,SIZEOF_JCOEF)] movq mm3, MMWORD [MMBLOCK(7,0,esi,SIZEOF_JCOEF)] pmullw mm1, MMWORD [MMBLOCK(5,0,edx,SIZEOF_ISLOW_MULT_TYPE)] pmullw mm3, MMWORD [MMBLOCK(7,0,edx,SIZEOF_ISLOW_MULT_TYPE)] movq mm5,mm6 movq mm7,mm4 paddw mm5,mm3 ; mm5=z3 paddw mm7,mm1 ; mm7=z4 ; (Original) ; z5 = (z3 + z4) * 1.175875602; ; z3 = z3 * -1.961570560; z4 = z4 * -0.390180644; ; z3 += z5; z4 += z5; ; ; (This implementation) ; z3 = z3 * (1.175875602 - 1.961570560) + z4 * 1.175875602; ; z4 = z3 * 1.175875602 + z4 * (1.175875602 - 0.390180644); movq mm2,mm5 movq mm0,mm5 punpcklwd mm2,mm7 punpckhwd mm0,mm7 movq mm5,mm2 movq mm7,mm0 pmaddwd mm2,[GOTOFF(ebx,PW_MF078_F117)] ; mm2=z3L pmaddwd mm0,[GOTOFF(ebx,PW_MF078_F117)] ; mm0=z3H pmaddwd mm5,[GOTOFF(ebx,PW_F117_F078)] ; mm5=z4L pmaddwd mm7,[GOTOFF(ebx,PW_F117_F078)] ; mm7=z4H movq MMWORD [wk(10)], mm2 ; wk(10)=z3L movq MMWORD [wk(11)], mm0 ; wk(11)=z3H ; (Original) ; z1 = tmp0 + tmp3; z2 = tmp1 + tmp2; ; tmp0 = tmp0 * 0.298631336; tmp1 = tmp1 * 2.053119869; ; tmp2 = tmp2 * 3.072711026; tmp3 = tmp3 * 1.501321110; ; z1 = z1 * -0.899976223; z2 = z2 * -2.562915447; ; tmp0 += z1 + z3; tmp1 += z2 + z4; ; tmp2 += z2 + z3; tmp3 += z1 + z4; ; ; (This implementation) ; tmp0 = tmp0 * (0.298631336 - 0.899976223) + tmp3 * -0.899976223; ; tmp1 = tmp1 * (2.053119869 - 2.562915447) + tmp2 * -2.562915447; ; tmp2 = tmp1 * -2.562915447 + tmp2 * (3.072711026 - 2.562915447); ; tmp3 = tmp0 * -0.899976223 + tmp3 * (1.501321110 - 0.899976223); ; tmp0 += z3; tmp1 += z4; ; tmp2 += z3; tmp3 += z4; movq mm2,mm3 movq mm0,mm3 punpcklwd mm2,mm4 punpckhwd mm0,mm4 movq mm3,mm2 movq mm4,mm0 pmaddwd mm2,[GOTOFF(ebx,PW_MF060_MF089)] ; mm2=tmp0L pmaddwd mm0,[GOTOFF(ebx,PW_MF060_MF089)] ; mm0=tmp0H pmaddwd mm3,[GOTOFF(ebx,PW_MF089_F060)] ; mm3=tmp3L pmaddwd mm4,[GOTOFF(ebx,PW_MF089_F060)] ; mm4=tmp3H paddd mm2, MMWORD [wk(10)] ; mm2=tmp0L paddd mm0, MMWORD [wk(11)] ; mm0=tmp0H paddd mm3,mm5 ; mm3=tmp3L paddd mm4,mm7 ; mm4=tmp3H movq MMWORD [wk(8)], mm2 ; wk(8)=tmp0L movq MMWORD [wk(9)], mm0 ; wk(9)=tmp0H movq mm2,mm1 movq mm0,mm1 punpcklwd mm2,mm6 punpckhwd mm0,mm6 movq mm1,mm2 movq mm6,mm0 pmaddwd mm2,[GOTOFF(ebx,PW_MF050_MF256)] ; mm2=tmp1L pmaddwd mm0,[GOTOFF(ebx,PW_MF050_MF256)] ; mm0=tmp1H pmaddwd mm1,[GOTOFF(ebx,PW_MF256_F050)] ; mm1=tmp2L pmaddwd mm6,[GOTOFF(ebx,PW_MF256_F050)] ; mm6=tmp2H paddd mm2,mm5 ; mm2=tmp1L paddd mm0,mm7 ; mm0=tmp1H paddd mm1, MMWORD [wk(10)] ; mm1=tmp2L paddd mm6, MMWORD [wk(11)] ; mm6=tmp2H movq MMWORD [wk(10)], mm2 ; wk(10)=tmp1L movq MMWORD [wk(11)], mm0 ; wk(11)=tmp1H ; -- Final output stage movq mm5, MMWORD [wk(0)] ; mm5=tmp10L movq mm7, MMWORD [wk(1)] ; mm7=tmp10H movq mm2,mm5 movq mm0,mm7 paddd mm5,mm3 ; mm5=data0L paddd mm7,mm4 ; mm7=data0H psubd mm2,mm3 ; mm2=data7L psubd mm0,mm4 ; mm0=data7H movq mm3,[GOTOFF(ebx,PD_DESCALE_P1)] ; mm3=[PD_DESCALE_P1] paddd mm5,mm3 paddd mm7,mm3 psrad mm5,DESCALE_P1 psrad mm7,DESCALE_P1 paddd mm2,mm3 paddd mm0,mm3 psrad mm2,DESCALE_P1 psrad mm0,DESCALE_P1 packssdw mm5,mm7 ; mm5=data0=(00 01 02 03) packssdw mm2,mm0 ; mm2=data7=(70 71 72 73) movq mm4, MMWORD [wk(4)] ; mm4=tmp11L movq mm3, MMWORD [wk(5)] ; mm3=tmp11H movq mm7,mm4 movq mm0,mm3 paddd mm4,mm1 ; mm4=data1L paddd mm3,mm6 ; mm3=data1H psubd mm7,mm1 ; mm7=data6L psubd mm0,mm6 ; mm0=data6H movq mm1,[GOTOFF(ebx,PD_DESCALE_P1)] ; mm1=[PD_DESCALE_P1] paddd mm4,mm1 paddd mm3,mm1 psrad mm4,DESCALE_P1 psrad mm3,DESCALE_P1 paddd mm7,mm1 paddd mm0,mm1 psrad mm7,DESCALE_P1 psrad mm0,DESCALE_P1 packssdw mm4,mm3 ; mm4=data1=(10 11 12 13) packssdw mm7,mm0 ; mm7=data6=(60 61 62 63) movq mm6,mm5 ; transpose coefficients(phase 1) punpcklwd mm5,mm4 ; mm5=(00 10 01 11) punpckhwd mm6,mm4 ; mm6=(02 12 03 13) movq mm1,mm7 ; transpose coefficients(phase 1) punpcklwd mm7,mm2 ; mm7=(60 70 61 71) punpckhwd mm1,mm2 ; mm1=(62 72 63 73) movq mm3, MMWORD [wk(6)] ; mm3=tmp12L movq mm0, MMWORD [wk(7)] ; mm0=tmp12H movq mm4, MMWORD [wk(10)] ; mm4=tmp1L movq mm2, MMWORD [wk(11)] ; mm2=tmp1H movq MMWORD [wk(0)], mm5 ; wk(0)=(00 10 01 11) movq MMWORD [wk(1)], mm6 ; wk(1)=(02 12 03 13) movq MMWORD [wk(4)], mm7 ; wk(4)=(60 70 61 71) movq MMWORD [wk(5)], mm1 ; wk(5)=(62 72 63 73) movq mm5,mm3 movq mm6,mm0 paddd mm3,mm4 ; mm3=data2L paddd mm0,mm2 ; mm0=data2H psubd mm5,mm4 ; mm5=data5L psubd mm6,mm2 ; mm6=data5H movq mm7,[GOTOFF(ebx,PD_DESCALE_P1)] ; mm7=[PD_DESCALE_P1] paddd mm3,mm7 paddd mm0,mm7 psrad mm3,DESCALE_P1 psrad mm0,DESCALE_P1 paddd mm5,mm7 paddd mm6,mm7 psrad mm5,DESCALE_P1 psrad mm6,DESCALE_P1 packssdw mm3,mm0 ; mm3=data2=(20 21 22 23) packssdw mm5,mm6 ; mm5=data5=(50 51 52 53) movq mm1, MMWORD [wk(2)] ; mm1=tmp13L movq mm4, MMWORD [wk(3)] ; mm4=tmp13H movq mm2, MMWORD [wk(8)] ; mm2=tmp0L movq mm7, MMWORD [wk(9)] ; mm7=tmp0H movq mm0,mm1 movq mm6,mm4 paddd mm1,mm2 ; mm1=data3L paddd mm4,mm7 ; mm4=data3H psubd mm0,mm2 ; mm0=data4L psubd mm6,mm7 ; mm6=data4H movq mm2,[GOTOFF(ebx,PD_DESCALE_P1)] ; mm2=[PD_DESCALE_P1] paddd mm1,mm2 paddd mm4,mm2 psrad mm1,DESCALE_P1 psrad mm4,DESCALE_P1 paddd mm0,mm2 paddd mm6,mm2 psrad mm0,DESCALE_P1 psrad mm6,DESCALE_P1 packssdw mm1,mm4 ; mm1=data3=(30 31 32 33) packssdw mm0,mm6 ; mm0=data4=(40 41 42 43) movq mm7, MMWORD [wk(0)] ; mm7=(00 10 01 11) movq mm2, MMWORD [wk(1)] ; mm2=(02 12 03 13) movq mm4,mm3 ; transpose coefficients(phase 1) punpcklwd mm3,mm1 ; mm3=(20 30 21 31) punpckhwd mm4,mm1 ; mm4=(22 32 23 33) movq mm6,mm0 ; transpose coefficients(phase 1) punpcklwd mm0,mm5 ; mm0=(40 50 41 51) punpckhwd mm6,mm5 ; mm6=(42 52 43 53) movq mm1,mm7 ; transpose coefficients(phase 2) punpckldq mm7,mm3 ; mm7=(00 10 20 30) punpckhdq mm1,mm3 ; mm1=(01 11 21 31) movq mm5,mm2 ; transpose coefficients(phase 2) punpckldq mm2,mm4 ; mm2=(02 12 22 32) punpckhdq mm5,mm4 ; mm5=(03 13 23 33) movq mm3, MMWORD [wk(4)] ; mm3=(60 70 61 71) movq mm4, MMWORD [wk(5)] ; mm4=(62 72 63 73) movq MMWORD [MMBLOCK(0,0,edi,SIZEOF_JCOEF)], mm7 movq MMWORD [MMBLOCK(1,0,edi,SIZEOF_JCOEF)], mm1 movq MMWORD [MMBLOCK(2,0,edi,SIZEOF_JCOEF)], mm2 movq MMWORD [MMBLOCK(3,0,edi,SIZEOF_JCOEF)], mm5 movq mm7,mm0 ; transpose coefficients(phase 2) punpckldq mm0,mm3 ; mm0=(40 50 60 70) punpckhdq mm7,mm3 ; mm7=(41 51 61 71) movq mm1,mm6 ; transpose coefficients(phase 2) punpckldq mm6,mm4 ; mm6=(42 52 62 72) punpckhdq mm1,mm4 ; mm1=(43 53 63 73) movq MMWORD [MMBLOCK(0,1,edi,SIZEOF_JCOEF)], mm0 movq MMWORD [MMBLOCK(1,1,edi,SIZEOF_JCOEF)], mm7 movq MMWORD [MMBLOCK(2,1,edi,SIZEOF_JCOEF)], mm6 movq MMWORD [MMBLOCK(3,1,edi,SIZEOF_JCOEF)], mm1 .nextcolumn: add esi, byte 4*SIZEOF_JCOEF ; coef_block add edx, byte 4*SIZEOF_ISLOW_MULT_TYPE ; quantptr add edi, byte 4*DCTSIZE*SIZEOF_JCOEF ; wsptr dec ecx ; ctr jnz near .columnloop ; ---- Pass 2: process rows from work array, store into output array. mov eax, [original_ebp] lea esi, [workspace] ; JCOEF * wsptr mov edi, JSAMPARRAY [output_buf(eax)] ; (JSAMPROW *) mov eax, JDIMENSION [output_col(eax)] mov ecx, DCTSIZE/4 ; ctr alignx 16,7 .rowloop: ; -- Even part movq mm0, MMWORD [MMBLOCK(0,0,esi,SIZEOF_JCOEF)] movq mm1, MMWORD [MMBLOCK(2,0,esi,SIZEOF_JCOEF)] movq mm2, MMWORD [MMBLOCK(4,0,esi,SIZEOF_JCOEF)] movq mm3, MMWORD [MMBLOCK(6,0,esi,SIZEOF_JCOEF)] ; (Original) ; z1 = (z2 + z3) * 0.541196100; ; tmp2 = z1 + z3 * -1.847759065; ; tmp3 = z1 + z2 * 0.765366865; ; ; (This implementation) ; tmp2 = z2 * 0.541196100 + z3 * (0.541196100 - 1.847759065); ; tmp3 = z2 * (0.541196100 + 0.765366865) + z3 * 0.541196100; movq mm4,mm1 ; mm1=in2=z2 movq mm5,mm1 punpcklwd mm4,mm3 ; mm3=in6=z3 punpckhwd mm5,mm3 movq mm1,mm4 movq mm3,mm5 pmaddwd mm4,[GOTOFF(ebx,PW_F130_F054)] ; mm4=tmp3L pmaddwd mm5,[GOTOFF(ebx,PW_F130_F054)] ; mm5=tmp3H pmaddwd mm1,[GOTOFF(ebx,PW_F054_MF130)] ; mm1=tmp2L pmaddwd mm3,[GOTOFF(ebx,PW_F054_MF130)] ; mm3=tmp2H movq mm6,mm0 paddw mm0,mm2 ; mm0=in0+in4 psubw mm6,mm2 ; mm6=in0-in4 pxor mm7,mm7 pxor mm2,mm2 punpcklwd mm7,mm0 ; mm7=tmp0L punpckhwd mm2,mm0 ; mm2=tmp0H psrad mm7,(16-CONST_BITS) ; psrad mm7,16 & pslld mm7,CONST_BITS psrad mm2,(16-CONST_BITS) ; psrad mm2,16 & pslld mm2,CONST_BITS movq mm0,mm7 paddd mm7,mm4 ; mm7=tmp10L psubd mm0,mm4 ; mm0=tmp13L movq mm4,mm2 paddd mm2,mm5 ; mm2=tmp10H psubd mm4,mm5 ; mm4=tmp13H movq MMWORD [wk(0)], mm7 ; wk(0)=tmp10L movq MMWORD [wk(1)], mm2 ; wk(1)=tmp10H movq MMWORD [wk(2)], mm0 ; wk(2)=tmp13L movq MMWORD [wk(3)], mm4 ; wk(3)=tmp13H pxor mm5,mm5 pxor mm7,mm7 punpcklwd mm5,mm6 ; mm5=tmp1L punpckhwd mm7,mm6 ; mm7=tmp1H psrad mm5,(16-CONST_BITS) ; psrad mm5,16 & pslld mm5,CONST_BITS psrad mm7,(16-CONST_BITS) ; psrad mm7,16 & pslld mm7,CONST_BITS movq mm2,mm5 paddd mm5,mm1 ; mm5=tmp11L psubd mm2,mm1 ; mm2=tmp12L movq mm0,mm7 paddd mm7,mm3 ; mm7=tmp11H psubd mm0,mm3 ; mm0=tmp12H movq MMWORD [wk(4)], mm5 ; wk(4)=tmp11L movq MMWORD [wk(5)], mm7 ; wk(5)=tmp11H movq MMWORD [wk(6)], mm2 ; wk(6)=tmp12L movq MMWORD [wk(7)], mm0 ; wk(7)=tmp12H ; -- Odd part movq mm4, MMWORD [MMBLOCK(1,0,esi,SIZEOF_JCOEF)] movq mm6, MMWORD [MMBLOCK(3,0,esi,SIZEOF_JCOEF)] movq mm1, MMWORD [MMBLOCK(5,0,esi,SIZEOF_JCOEF)] movq mm3, MMWORD [MMBLOCK(7,0,esi,SIZEOF_JCOEF)] movq mm5,mm6 movq mm7,mm4 paddw mm5,mm3 ; mm5=z3 paddw mm7,mm1 ; mm7=z4 ; (Original) ; z5 = (z3 + z4) * 1.175875602; ; z3 = z3 * -1.961570560; z4 = z4 * -0.390180644; ; z3 += z5; z4 += z5; ; ; (This implementation) ; z3 = z3 * (1.175875602 - 1.961570560) + z4 * 1.175875602; ; z4 = z3 * 1.175875602 + z4 * (1.175875602 - 0.390180644); movq mm2,mm5 movq mm0,mm5 punpcklwd mm2,mm7 punpckhwd mm0,mm7 movq mm5,mm2 movq mm7,mm0 pmaddwd mm2,[GOTOFF(ebx,PW_MF078_F117)] ; mm2=z3L pmaddwd mm0,[GOTOFF(ebx,PW_MF078_F117)] ; mm0=z3H pmaddwd mm5,[GOTOFF(ebx,PW_F117_F078)] ; mm5=z4L pmaddwd mm7,[GOTOFF(ebx,PW_F117_F078)] ; mm7=z4H movq MMWORD [wk(10)], mm2 ; wk(10)=z3L movq MMWORD [wk(11)], mm0 ; wk(11)=z3H ; (Original) ; z1 = tmp0 + tmp3; z2 = tmp1 + tmp2; ; tmp0 = tmp0 * 0.298631336; tmp1 = tmp1 * 2.053119869; ; tmp2 = tmp2 * 3.072711026; tmp3 = tmp3 * 1.501321110; ; z1 = z1 * -0.899976223; z2 = z2 * -2.562915447; ; tmp0 += z1 + z3; tmp1 += z2 + z4; ; tmp2 += z2 + z3; tmp3 += z1 + z4; ; ; (This implementation) ; tmp0 = tmp0 * (0.298631336 - 0.899976223) + tmp3 * -0.899976223; ; tmp1 = tmp1 * (2.053119869 - 2.562915447) + tmp2 * -2.562915447; ; tmp2 = tmp1 * -2.562915447 + tmp2 * (3.072711026 - 2.562915447); ; tmp3 = tmp0 * -0.899976223 + tmp3 * (1.501321110 - 0.899976223); ; tmp0 += z3; tmp1 += z4; ; tmp2 += z3; tmp3 += z4; movq mm2,mm3 movq mm0,mm3 punpcklwd mm2,mm4 punpckhwd mm0,mm4 movq mm3,mm2 movq mm4,mm0 pmaddwd mm2,[GOTOFF(ebx,PW_MF060_MF089)] ; mm2=tmp0L pmaddwd mm0,[GOTOFF(ebx,PW_MF060_MF089)] ; mm0=tmp0H pmaddwd mm3,[GOTOFF(ebx,PW_MF089_F060)] ; mm3=tmp3L pmaddwd mm4,[GOTOFF(ebx,PW_MF089_F060)] ; mm4=tmp3H paddd mm2, MMWORD [wk(10)] ; mm2=tmp0L paddd mm0, MMWORD [wk(11)] ; mm0=tmp0H paddd mm3,mm5 ; mm3=tmp3L paddd mm4,mm7 ; mm4=tmp3H movq MMWORD [wk(8)], mm2 ; wk(8)=tmp0L movq MMWORD [wk(9)], mm0 ; wk(9)=tmp0H movq mm2,mm1 movq mm0,mm1 punpcklwd mm2,mm6 punpckhwd mm0,mm6 movq mm1,mm2 movq mm6,mm0 pmaddwd mm2,[GOTOFF(ebx,PW_MF050_MF256)] ; mm2=tmp1L pmaddwd mm0,[GOTOFF(ebx,PW_MF050_MF256)] ; mm0=tmp1H pmaddwd mm1,[GOTOFF(ebx,PW_MF256_F050)] ; mm1=tmp2L pmaddwd mm6,[GOTOFF(ebx,PW_MF256_F050)] ; mm6=tmp2H paddd mm2,mm5 ; mm2=tmp1L paddd mm0,mm7 ; mm0=tmp1H paddd mm1, MMWORD [wk(10)] ; mm1=tmp2L paddd mm6, MMWORD [wk(11)] ; mm6=tmp2H movq MMWORD [wk(10)], mm2 ; wk(10)=tmp1L movq MMWORD [wk(11)], mm0 ; wk(11)=tmp1H ; -- Final output stage movq mm5, MMWORD [wk(0)] ; mm5=tmp10L movq mm7, MMWORD [wk(1)] ; mm7=tmp10H movq mm2,mm5 movq mm0,mm7 paddd mm5,mm3 ; mm5=data0L paddd mm7,mm4 ; mm7=data0H psubd mm2,mm3 ; mm2=data7L psubd mm0,mm4 ; mm0=data7H movq mm3,[GOTOFF(ebx,PD_DESCALE_P2)] ; mm3=[PD_DESCALE_P2] paddd mm5,mm3 paddd mm7,mm3 psrad mm5,DESCALE_P2 psrad mm7,DESCALE_P2 paddd mm2,mm3 paddd mm0,mm3 psrad mm2,DESCALE_P2 psrad mm0,DESCALE_P2 packssdw mm5,mm7 ; mm5=data0=(00 10 20 30) packssdw mm2,mm0 ; mm2=data7=(07 17 27 37) movq mm4, MMWORD [wk(4)] ; mm4=tmp11L movq mm3, MMWORD [wk(5)] ; mm3=tmp11H movq mm7,mm4 movq mm0,mm3 paddd mm4,mm1 ; mm4=data1L paddd mm3,mm6 ; mm3=data1H psubd mm7,mm1 ; mm7=data6L psubd mm0,mm6 ; mm0=data6H movq mm1,[GOTOFF(ebx,PD_DESCALE_P2)] ; mm1=[PD_DESCALE_P2] paddd mm4,mm1 paddd mm3,mm1 psrad mm4,DESCALE_P2 psrad mm3,DESCALE_P2 paddd mm7,mm1 paddd mm0,mm1 psrad mm7,DESCALE_P2 psrad mm0,DESCALE_P2 packssdw mm4,mm3 ; mm4=data1=(01 11 21 31) packssdw mm7,mm0 ; mm7=data6=(06 16 26 36) packsswb mm5,mm7 ; mm5=(00 10 20 30 06 16 26 36) packsswb mm4,mm2 ; mm4=(01 11 21 31 07 17 27 37) movq mm6, MMWORD [wk(6)] ; mm6=tmp12L movq mm1, MMWORD [wk(7)] ; mm1=tmp12H movq mm3, MMWORD [wk(10)] ; mm3=tmp1L movq mm0, MMWORD [wk(11)] ; mm0=tmp1H movq MMWORD [wk(0)], mm5 ; wk(0)=(00 10 20 30 06 16 26 36) movq MMWORD [wk(1)], mm4 ; wk(1)=(01 11 21 31 07 17 27 37) movq mm7,mm6 movq mm2,mm1 paddd mm6,mm3 ; mm6=data2L paddd mm1,mm0 ; mm1=data2H psubd mm7,mm3 ; mm7=data5L psubd mm2,mm0 ; mm2=data5H movq mm5,[GOTOFF(ebx,PD_DESCALE_P2)] ; mm5=[PD_DESCALE_P2] paddd mm6,mm5 paddd mm1,mm5 psrad mm6,DESCALE_P2 psrad mm1,DESCALE_P2 paddd mm7,mm5 paddd mm2,mm5 psrad mm7,DESCALE_P2 psrad mm2,DESCALE_P2 packssdw mm6,mm1 ; mm6=data2=(02 12 22 32) packssdw mm7,mm2 ; mm7=data5=(05 15 25 35) movq mm4, MMWORD [wk(2)] ; mm4=tmp13L movq mm3, MMWORD [wk(3)] ; mm3=tmp13H movq mm0, MMWORD [wk(8)] ; mm0=tmp0L movq mm5, MMWORD [wk(9)] ; mm5=tmp0H movq mm1,mm4 movq mm2,mm3 paddd mm4,mm0 ; mm4=data3L paddd mm3,mm5 ; mm3=data3H psubd mm1,mm0 ; mm1=data4L psubd mm2,mm5 ; mm2=data4H movq mm0,[GOTOFF(ebx,PD_DESCALE_P2)] ; mm0=[PD_DESCALE_P2] paddd mm4,mm0 paddd mm3,mm0 psrad mm4,DESCALE_P2 psrad mm3,DESCALE_P2 paddd mm1,mm0 paddd mm2,mm0 psrad mm1,DESCALE_P2 psrad mm2,DESCALE_P2 movq mm5,[GOTOFF(ebx,PB_CENTERJSAMP)] ; mm5=[PB_CENTERJSAMP] packssdw mm4,mm3 ; mm4=data3=(03 13 23 33) packssdw mm1,mm2 ; mm1=data4=(04 14 24 34) movq mm0, MMWORD [wk(0)] ; mm0=(00 10 20 30 06 16 26 36) movq mm3, MMWORD [wk(1)] ; mm3=(01 11 21 31 07 17 27 37) packsswb mm6,mm1 ; mm6=(02 12 22 32 04 14 24 34) packsswb mm4,mm7 ; mm4=(03 13 23 33 05 15 25 35) paddb mm0,mm5 paddb mm3,mm5 paddb mm6,mm5 paddb mm4,mm5 movq mm2,mm0 ; transpose coefficients(phase 1) punpcklbw mm0,mm3 ; mm0=(00 01 10 11 20 21 30 31) punpckhbw mm2,mm3 ; mm2=(06 07 16 17 26 27 36 37) movq mm1,mm6 ; transpose coefficients(phase 1) punpcklbw mm6,mm4 ; mm6=(02 03 12 13 22 23 32 33) punpckhbw mm1,mm4 ; mm1=(04 05 14 15 24 25 34 35) movq mm7,mm0 ; transpose coefficients(phase 2) punpcklwd mm0,mm6 ; mm0=(00 01 02 03 10 11 12 13) punpckhwd mm7,mm6 ; mm7=(20 21 22 23 30 31 32 33) movq mm5,mm1 ; transpose coefficients(phase 2) punpcklwd mm1,mm2 ; mm1=(04 05 06 07 14 15 16 17) punpckhwd mm5,mm2 ; mm5=(24 25 26 27 34 35 36 37) movq mm3,mm0 ; transpose coefficients(phase 3) punpckldq mm0,mm1 ; mm0=(00 01 02 03 04 05 06 07) punpckhdq mm3,mm1 ; mm3=(10 11 12 13 14 15 16 17) movq mm4,mm7 ; transpose coefficients(phase 3) punpckldq mm7,mm5 ; mm7=(20 21 22 23 24 25 26 27) punpckhdq mm4,mm5 ; mm4=(30 31 32 33 34 35 36 37) pushpic ebx ; save GOT address mov edx, JSAMPROW [edi+0*SIZEOF_JSAMPROW] mov ebx, JSAMPROW [edi+1*SIZEOF_JSAMPROW] movq MMWORD [edx+eax*SIZEOF_JSAMPLE], mm0 movq MMWORD [ebx+eax*SIZEOF_JSAMPLE], mm3 mov edx, JSAMPROW [edi+2*SIZEOF_JSAMPROW] mov ebx, JSAMPROW [edi+3*SIZEOF_JSAMPROW] movq MMWORD [edx+eax*SIZEOF_JSAMPLE], mm7 movq MMWORD [ebx+eax*SIZEOF_JSAMPLE], mm4 poppic ebx ; restore GOT address add esi, byte 4*SIZEOF_JCOEF ; wsptr add edi, byte 4*SIZEOF_JSAMPROW dec ecx ; ctr jnz near .rowloop emms ; empty MMX state pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; need not be preserved pop ebx mov esp,ebp ; esp <- aligned ebp pop esp ; esp <- original ebp pop ebp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 16 libjpeg-turbo-1.4.2/simd/jfdctfst-sse2-64.asm0000644000076500007650000004154312600050400015556 00000000000000; ; jfdctfst.asm - fast integer FDCT (64-bit SSE2) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; Copyright 2009 D. R. Commander ; ; Based on ; x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; This file contains a fast, not so accurate integer implementation of ; the forward DCT (Discrete Cosine Transform). The following code is ; based directly on the IJG's original jfdctfst.c; see the jfdctfst.c ; for more details. ; ; [TAB8] %include "jsimdext.inc" %include "jdct.inc" ; -------------------------------------------------------------------------- %define CONST_BITS 8 ; 14 is also OK. %if CONST_BITS == 8 F_0_382 equ 98 ; FIX(0.382683433) F_0_541 equ 139 ; FIX(0.541196100) F_0_707 equ 181 ; FIX(0.707106781) F_1_306 equ 334 ; FIX(1.306562965) %else ; NASM cannot do compile-time arithmetic on floating-point constants. %define DESCALE(x,n) (((x)+(1<<((n)-1)))>>(n)) F_0_382 equ DESCALE( 410903207,30-CONST_BITS) ; FIX(0.382683433) F_0_541 equ DESCALE( 581104887,30-CONST_BITS) ; FIX(0.541196100) F_0_707 equ DESCALE( 759250124,30-CONST_BITS) ; FIX(0.707106781) F_1_306 equ DESCALE(1402911301,30-CONST_BITS) ; FIX(1.306562965) %endif ; -------------------------------------------------------------------------- SECTION SEG_CONST ; PRE_MULTIPLY_SCALE_BITS <= 2 (to avoid overflow) ; CONST_BITS + CONST_SHIFT + PRE_MULTIPLY_SCALE_BITS == 16 (for pmulhw) %define PRE_MULTIPLY_SCALE_BITS 2 %define CONST_SHIFT (16 - PRE_MULTIPLY_SCALE_BITS - CONST_BITS) alignz 16 global EXTN(jconst_fdct_ifast_sse2) EXTN(jconst_fdct_ifast_sse2): PW_F0707 times 8 dw F_0_707 << CONST_SHIFT PW_F0382 times 8 dw F_0_382 << CONST_SHIFT PW_F0541 times 8 dw F_0_541 << CONST_SHIFT PW_F1306 times 8 dw F_1_306 << CONST_SHIFT alignz 16 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 64 ; ; Perform the forward DCT on one block of samples. ; ; GLOBAL(void) ; jsimd_fdct_ifast_sse2 (DCTELEM * data) ; ; r10 = DCTELEM * data %define wk(i) rbp-(WK_NUM-(i))*SIZEOF_XMMWORD ; xmmword wk[WK_NUM] %define WK_NUM 2 align 16 global EXTN(jsimd_fdct_ifast_sse2) EXTN(jsimd_fdct_ifast_sse2): push rbp mov rax,rsp ; rax = original rbp sub rsp, byte 4 and rsp, byte (-SIZEOF_XMMWORD) ; align to 128 bits mov [rsp],rax mov rbp,rsp ; rbp = aligned rbp lea rsp, [wk(0)] collect_args ; ---- Pass 1: process rows. mov rdx, r10 ; (DCTELEM *) movdqa xmm0, XMMWORD [XMMBLOCK(0,0,rdx,SIZEOF_DCTELEM)] movdqa xmm1, XMMWORD [XMMBLOCK(1,0,rdx,SIZEOF_DCTELEM)] movdqa xmm2, XMMWORD [XMMBLOCK(2,0,rdx,SIZEOF_DCTELEM)] movdqa xmm3, XMMWORD [XMMBLOCK(3,0,rdx,SIZEOF_DCTELEM)] ; xmm0=(00 01 02 03 04 05 06 07), xmm2=(20 21 22 23 24 25 26 27) ; xmm1=(10 11 12 13 14 15 16 17), xmm3=(30 31 32 33 34 35 36 37) movdqa xmm4,xmm0 ; transpose coefficients(phase 1) punpcklwd xmm0,xmm1 ; xmm0=(00 10 01 11 02 12 03 13) punpckhwd xmm4,xmm1 ; xmm4=(04 14 05 15 06 16 07 17) movdqa xmm5,xmm2 ; transpose coefficients(phase 1) punpcklwd xmm2,xmm3 ; xmm2=(20 30 21 31 22 32 23 33) punpckhwd xmm5,xmm3 ; xmm5=(24 34 25 35 26 36 27 37) movdqa xmm6, XMMWORD [XMMBLOCK(4,0,rdx,SIZEOF_DCTELEM)] movdqa xmm7, XMMWORD [XMMBLOCK(5,0,rdx,SIZEOF_DCTELEM)] movdqa xmm1, XMMWORD [XMMBLOCK(6,0,rdx,SIZEOF_DCTELEM)] movdqa xmm3, XMMWORD [XMMBLOCK(7,0,rdx,SIZEOF_DCTELEM)] ; xmm6=( 4 12 20 28 36 44 52 60), xmm1=( 6 14 22 30 38 46 54 62) ; xmm7=( 5 13 21 29 37 45 53 61), xmm3=( 7 15 23 31 39 47 55 63) movdqa XMMWORD [wk(0)], xmm2 ; wk(0)=(20 30 21 31 22 32 23 33) movdqa XMMWORD [wk(1)], xmm5 ; wk(1)=(24 34 25 35 26 36 27 37) movdqa xmm2,xmm6 ; transpose coefficients(phase 1) punpcklwd xmm6,xmm7 ; xmm6=(40 50 41 51 42 52 43 53) punpckhwd xmm2,xmm7 ; xmm2=(44 54 45 55 46 56 47 57) movdqa xmm5,xmm1 ; transpose coefficients(phase 1) punpcklwd xmm1,xmm3 ; xmm1=(60 70 61 71 62 72 63 73) punpckhwd xmm5,xmm3 ; xmm5=(64 74 65 75 66 76 67 77) movdqa xmm7,xmm6 ; transpose coefficients(phase 2) punpckldq xmm6,xmm1 ; xmm6=(40 50 60 70 41 51 61 71) punpckhdq xmm7,xmm1 ; xmm7=(42 52 62 72 43 53 63 73) movdqa xmm3,xmm2 ; transpose coefficients(phase 2) punpckldq xmm2,xmm5 ; xmm2=(44 54 64 74 45 55 65 75) punpckhdq xmm3,xmm5 ; xmm3=(46 56 66 76 47 57 67 77) movdqa xmm1, XMMWORD [wk(0)] ; xmm1=(20 30 21 31 22 32 23 33) movdqa xmm5, XMMWORD [wk(1)] ; xmm5=(24 34 25 35 26 36 27 37) movdqa XMMWORD [wk(0)], xmm7 ; wk(0)=(42 52 62 72 43 53 63 73) movdqa XMMWORD [wk(1)], xmm2 ; wk(1)=(44 54 64 74 45 55 65 75) movdqa xmm7,xmm0 ; transpose coefficients(phase 2) punpckldq xmm0,xmm1 ; xmm0=(00 10 20 30 01 11 21 31) punpckhdq xmm7,xmm1 ; xmm7=(02 12 22 32 03 13 23 33) movdqa xmm2,xmm4 ; transpose coefficients(phase 2) punpckldq xmm4,xmm5 ; xmm4=(04 14 24 34 05 15 25 35) punpckhdq xmm2,xmm5 ; xmm2=(06 16 26 36 07 17 27 37) movdqa xmm1,xmm0 ; transpose coefficients(phase 3) punpcklqdq xmm0,xmm6 ; xmm0=(00 10 20 30 40 50 60 70)=data0 punpckhqdq xmm1,xmm6 ; xmm1=(01 11 21 31 41 51 61 71)=data1 movdqa xmm5,xmm2 ; transpose coefficients(phase 3) punpcklqdq xmm2,xmm3 ; xmm2=(06 16 26 36 46 56 66 76)=data6 punpckhqdq xmm5,xmm3 ; xmm5=(07 17 27 37 47 57 67 77)=data7 movdqa xmm6,xmm1 movdqa xmm3,xmm0 psubw xmm1,xmm2 ; xmm1=data1-data6=tmp6 psubw xmm0,xmm5 ; xmm0=data0-data7=tmp7 paddw xmm6,xmm2 ; xmm6=data1+data6=tmp1 paddw xmm3,xmm5 ; xmm3=data0+data7=tmp0 movdqa xmm2, XMMWORD [wk(0)] ; xmm2=(42 52 62 72 43 53 63 73) movdqa xmm5, XMMWORD [wk(1)] ; xmm5=(44 54 64 74 45 55 65 75) movdqa XMMWORD [wk(0)], xmm1 ; wk(0)=tmp6 movdqa XMMWORD [wk(1)], xmm0 ; wk(1)=tmp7 movdqa xmm1,xmm7 ; transpose coefficients(phase 3) punpcklqdq xmm7,xmm2 ; xmm7=(02 12 22 32 42 52 62 72)=data2 punpckhqdq xmm1,xmm2 ; xmm1=(03 13 23 33 43 53 63 73)=data3 movdqa xmm0,xmm4 ; transpose coefficients(phase 3) punpcklqdq xmm4,xmm5 ; xmm4=(04 14 24 34 44 54 64 74)=data4 punpckhqdq xmm0,xmm5 ; xmm0=(05 15 25 35 45 55 65 75)=data5 movdqa xmm2,xmm1 movdqa xmm5,xmm7 paddw xmm1,xmm4 ; xmm1=data3+data4=tmp3 paddw xmm7,xmm0 ; xmm7=data2+data5=tmp2 psubw xmm2,xmm4 ; xmm2=data3-data4=tmp4 psubw xmm5,xmm0 ; xmm5=data2-data5=tmp5 ; -- Even part movdqa xmm4,xmm3 movdqa xmm0,xmm6 psubw xmm3,xmm1 ; xmm3=tmp13 psubw xmm6,xmm7 ; xmm6=tmp12 paddw xmm4,xmm1 ; xmm4=tmp10 paddw xmm0,xmm7 ; xmm0=tmp11 paddw xmm6,xmm3 psllw xmm6,PRE_MULTIPLY_SCALE_BITS pmulhw xmm6,[rel PW_F0707] ; xmm6=z1 movdqa xmm1,xmm4 movdqa xmm7,xmm3 psubw xmm4,xmm0 ; xmm4=data4 psubw xmm3,xmm6 ; xmm3=data6 paddw xmm1,xmm0 ; xmm1=data0 paddw xmm7,xmm6 ; xmm7=data2 movdqa xmm0, XMMWORD [wk(0)] ; xmm0=tmp6 movdqa xmm6, XMMWORD [wk(1)] ; xmm6=tmp7 movdqa XMMWORD [wk(0)], xmm4 ; wk(0)=data4 movdqa XMMWORD [wk(1)], xmm3 ; wk(1)=data6 ; -- Odd part paddw xmm2,xmm5 ; xmm2=tmp10 paddw xmm5,xmm0 ; xmm5=tmp11 paddw xmm0,xmm6 ; xmm0=tmp12, xmm6=tmp7 psllw xmm2,PRE_MULTIPLY_SCALE_BITS psllw xmm0,PRE_MULTIPLY_SCALE_BITS psllw xmm5,PRE_MULTIPLY_SCALE_BITS pmulhw xmm5,[rel PW_F0707] ; xmm5=z3 movdqa xmm4,xmm2 ; xmm4=tmp10 psubw xmm2,xmm0 pmulhw xmm2,[rel PW_F0382] ; xmm2=z5 pmulhw xmm4,[rel PW_F0541] ; xmm4=MULTIPLY(tmp10,FIX_0_541196) pmulhw xmm0,[rel PW_F1306] ; xmm0=MULTIPLY(tmp12,FIX_1_306562) paddw xmm4,xmm2 ; xmm4=z2 paddw xmm0,xmm2 ; xmm0=z4 movdqa xmm3,xmm6 psubw xmm6,xmm5 ; xmm6=z13 paddw xmm3,xmm5 ; xmm3=z11 movdqa xmm2,xmm6 movdqa xmm5,xmm3 psubw xmm6,xmm4 ; xmm6=data3 psubw xmm3,xmm0 ; xmm3=data7 paddw xmm2,xmm4 ; xmm2=data5 paddw xmm5,xmm0 ; xmm5=data1 ; ---- Pass 2: process columns. ; xmm1=(00 10 20 30 40 50 60 70), xmm7=(02 12 22 32 42 52 62 72) ; xmm5=(01 11 21 31 41 51 61 71), xmm6=(03 13 23 33 43 53 63 73) movdqa xmm4,xmm1 ; transpose coefficients(phase 1) punpcklwd xmm1,xmm5 ; xmm1=(00 01 10 11 20 21 30 31) punpckhwd xmm4,xmm5 ; xmm4=(40 41 50 51 60 61 70 71) movdqa xmm0,xmm7 ; transpose coefficients(phase 1) punpcklwd xmm7,xmm6 ; xmm7=(02 03 12 13 22 23 32 33) punpckhwd xmm0,xmm6 ; xmm0=(42 43 52 53 62 63 72 73) movdqa xmm5, XMMWORD [wk(0)] ; xmm5=col4 movdqa xmm6, XMMWORD [wk(1)] ; xmm6=col6 ; xmm5=(04 14 24 34 44 54 64 74), xmm6=(06 16 26 36 46 56 66 76) ; xmm2=(05 15 25 35 45 55 65 75), xmm3=(07 17 27 37 47 57 67 77) movdqa XMMWORD [wk(0)], xmm7 ; wk(0)=(02 03 12 13 22 23 32 33) movdqa XMMWORD [wk(1)], xmm0 ; wk(1)=(42 43 52 53 62 63 72 73) movdqa xmm7,xmm5 ; transpose coefficients(phase 1) punpcklwd xmm5,xmm2 ; xmm5=(04 05 14 15 24 25 34 35) punpckhwd xmm7,xmm2 ; xmm7=(44 45 54 55 64 65 74 75) movdqa xmm0,xmm6 ; transpose coefficients(phase 1) punpcklwd xmm6,xmm3 ; xmm6=(06 07 16 17 26 27 36 37) punpckhwd xmm0,xmm3 ; xmm0=(46 47 56 57 66 67 76 77) movdqa xmm2,xmm5 ; transpose coefficients(phase 2) punpckldq xmm5,xmm6 ; xmm5=(04 05 06 07 14 15 16 17) punpckhdq xmm2,xmm6 ; xmm2=(24 25 26 27 34 35 36 37) movdqa xmm3,xmm7 ; transpose coefficients(phase 2) punpckldq xmm7,xmm0 ; xmm7=(44 45 46 47 54 55 56 57) punpckhdq xmm3,xmm0 ; xmm3=(64 65 66 67 74 75 76 77) movdqa xmm6, XMMWORD [wk(0)] ; xmm6=(02 03 12 13 22 23 32 33) movdqa xmm0, XMMWORD [wk(1)] ; xmm0=(42 43 52 53 62 63 72 73) movdqa XMMWORD [wk(0)], xmm2 ; wk(0)=(24 25 26 27 34 35 36 37) movdqa XMMWORD [wk(1)], xmm7 ; wk(1)=(44 45 46 47 54 55 56 57) movdqa xmm2,xmm1 ; transpose coefficients(phase 2) punpckldq xmm1,xmm6 ; xmm1=(00 01 02 03 10 11 12 13) punpckhdq xmm2,xmm6 ; xmm2=(20 21 22 23 30 31 32 33) movdqa xmm7,xmm4 ; transpose coefficients(phase 2) punpckldq xmm4,xmm0 ; xmm4=(40 41 42 43 50 51 52 53) punpckhdq xmm7,xmm0 ; xmm7=(60 61 62 63 70 71 72 73) movdqa xmm6,xmm1 ; transpose coefficients(phase 3) punpcklqdq xmm1,xmm5 ; xmm1=(00 01 02 03 04 05 06 07)=data0 punpckhqdq xmm6,xmm5 ; xmm6=(10 11 12 13 14 15 16 17)=data1 movdqa xmm0,xmm7 ; transpose coefficients(phase 3) punpcklqdq xmm7,xmm3 ; xmm7=(60 61 62 63 64 65 66 67)=data6 punpckhqdq xmm0,xmm3 ; xmm0=(70 71 72 73 74 75 76 77)=data7 movdqa xmm5,xmm6 movdqa xmm3,xmm1 psubw xmm6,xmm7 ; xmm6=data1-data6=tmp6 psubw xmm1,xmm0 ; xmm1=data0-data7=tmp7 paddw xmm5,xmm7 ; xmm5=data1+data6=tmp1 paddw xmm3,xmm0 ; xmm3=data0+data7=tmp0 movdqa xmm7, XMMWORD [wk(0)] ; xmm7=(24 25 26 27 34 35 36 37) movdqa xmm0, XMMWORD [wk(1)] ; xmm0=(44 45 46 47 54 55 56 57) movdqa XMMWORD [wk(0)], xmm6 ; wk(0)=tmp6 movdqa XMMWORD [wk(1)], xmm1 ; wk(1)=tmp7 movdqa xmm6,xmm2 ; transpose coefficients(phase 3) punpcklqdq xmm2,xmm7 ; xmm2=(20 21 22 23 24 25 26 27)=data2 punpckhqdq xmm6,xmm7 ; xmm6=(30 31 32 33 34 35 36 37)=data3 movdqa xmm1,xmm4 ; transpose coefficients(phase 3) punpcklqdq xmm4,xmm0 ; xmm4=(40 41 42 43 44 45 46 47)=data4 punpckhqdq xmm1,xmm0 ; xmm1=(50 51 52 53 54 55 56 57)=data5 movdqa xmm7,xmm6 movdqa xmm0,xmm2 paddw xmm6,xmm4 ; xmm6=data3+data4=tmp3 paddw xmm2,xmm1 ; xmm2=data2+data5=tmp2 psubw xmm7,xmm4 ; xmm7=data3-data4=tmp4 psubw xmm0,xmm1 ; xmm0=data2-data5=tmp5 ; -- Even part movdqa xmm4,xmm3 movdqa xmm1,xmm5 psubw xmm3,xmm6 ; xmm3=tmp13 psubw xmm5,xmm2 ; xmm5=tmp12 paddw xmm4,xmm6 ; xmm4=tmp10 paddw xmm1,xmm2 ; xmm1=tmp11 paddw xmm5,xmm3 psllw xmm5,PRE_MULTIPLY_SCALE_BITS pmulhw xmm5,[rel PW_F0707] ; xmm5=z1 movdqa xmm6,xmm4 movdqa xmm2,xmm3 psubw xmm4,xmm1 ; xmm4=data4 psubw xmm3,xmm5 ; xmm3=data6 paddw xmm6,xmm1 ; xmm6=data0 paddw xmm2,xmm5 ; xmm2=data2 movdqa XMMWORD [XMMBLOCK(4,0,rdx,SIZEOF_DCTELEM)], xmm4 movdqa XMMWORD [XMMBLOCK(6,0,rdx,SIZEOF_DCTELEM)], xmm3 movdqa XMMWORD [XMMBLOCK(0,0,rdx,SIZEOF_DCTELEM)], xmm6 movdqa XMMWORD [XMMBLOCK(2,0,rdx,SIZEOF_DCTELEM)], xmm2 ; -- Odd part movdqa xmm1, XMMWORD [wk(0)] ; xmm1=tmp6 movdqa xmm5, XMMWORD [wk(1)] ; xmm5=tmp7 paddw xmm7,xmm0 ; xmm7=tmp10 paddw xmm0,xmm1 ; xmm0=tmp11 paddw xmm1,xmm5 ; xmm1=tmp12, xmm5=tmp7 psllw xmm7,PRE_MULTIPLY_SCALE_BITS psllw xmm1,PRE_MULTIPLY_SCALE_BITS psllw xmm0,PRE_MULTIPLY_SCALE_BITS pmulhw xmm0,[rel PW_F0707] ; xmm0=z3 movdqa xmm4,xmm7 ; xmm4=tmp10 psubw xmm7,xmm1 pmulhw xmm7,[rel PW_F0382] ; xmm7=z5 pmulhw xmm4,[rel PW_F0541] ; xmm4=MULTIPLY(tmp10,FIX_0_541196) pmulhw xmm1,[rel PW_F1306] ; xmm1=MULTIPLY(tmp12,FIX_1_306562) paddw xmm4,xmm7 ; xmm4=z2 paddw xmm1,xmm7 ; xmm1=z4 movdqa xmm3,xmm5 psubw xmm5,xmm0 ; xmm5=z13 paddw xmm3,xmm0 ; xmm3=z11 movdqa xmm6,xmm5 movdqa xmm2,xmm3 psubw xmm5,xmm4 ; xmm5=data3 psubw xmm3,xmm1 ; xmm3=data7 paddw xmm6,xmm4 ; xmm6=data5 paddw xmm2,xmm1 ; xmm2=data1 movdqa XMMWORD [XMMBLOCK(3,0,rdx,SIZEOF_DCTELEM)], xmm5 movdqa XMMWORD [XMMBLOCK(7,0,rdx,SIZEOF_DCTELEM)], xmm3 movdqa XMMWORD [XMMBLOCK(5,0,rdx,SIZEOF_DCTELEM)], xmm6 movdqa XMMWORD [XMMBLOCK(1,0,rdx,SIZEOF_DCTELEM)], xmm2 uncollect_args mov rsp,rbp ; rsp <- aligned rbp pop rsp ; rsp <- original rbp pop rbp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 16 libjpeg-turbo-1.4.2/simd/jdmrgext-mmx.asm0000644000076500007650000004327712600050400015277 00000000000000; ; jdmrgext.asm - merged upsampling/color conversion (MMX) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; ; Based on ; x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; [TAB8] %include "jcolsamp.inc" ; -------------------------------------------------------------------------- ; ; Upsample and color convert for the case of 2:1 horizontal and 1:1 vertical. ; ; GLOBAL(void) ; jsimd_h2v1_merged_upsample_mmx (JDIMENSION output_width, ; JSAMPIMAGE input_buf, ; JDIMENSION in_row_group_ctr, ; JSAMPARRAY output_buf); ; %define output_width(b) (b)+8 ; JDIMENSION output_width %define input_buf(b) (b)+12 ; JSAMPIMAGE input_buf %define in_row_group_ctr(b) (b)+16 ; JDIMENSION in_row_group_ctr %define output_buf(b) (b)+20 ; JSAMPARRAY output_buf %define original_ebp ebp+0 %define wk(i) ebp-(WK_NUM-(i))*SIZEOF_MMWORD ; mmword wk[WK_NUM] %define WK_NUM 3 %define gotptr wk(0)-SIZEOF_POINTER ; void * gotptr align 16 global EXTN(jsimd_h2v1_merged_upsample_mmx) EXTN(jsimd_h2v1_merged_upsample_mmx): push ebp mov eax,esp ; eax = original ebp sub esp, byte 4 and esp, byte (-SIZEOF_MMWORD) ; align to 64 bits mov [esp],eax mov ebp,esp ; ebp = aligned ebp lea esp, [wk(0)] pushpic eax ; make a room for GOT address push ebx ; push ecx ; need not be preserved ; push edx ; need not be preserved push esi push edi get_GOT ebx ; get GOT address movpic POINTER [gotptr], ebx ; save GOT address mov ecx, JDIMENSION [output_width(eax)] ; col test ecx,ecx jz near .return push ecx mov edi, JSAMPIMAGE [input_buf(eax)] mov ecx, JDIMENSION [in_row_group_ctr(eax)] mov esi, JSAMPARRAY [edi+0*SIZEOF_JSAMPARRAY] mov ebx, JSAMPARRAY [edi+1*SIZEOF_JSAMPARRAY] mov edx, JSAMPARRAY [edi+2*SIZEOF_JSAMPARRAY] mov edi, JSAMPARRAY [output_buf(eax)] mov esi, JSAMPROW [esi+ecx*SIZEOF_JSAMPROW] ; inptr0 mov ebx, JSAMPROW [ebx+ecx*SIZEOF_JSAMPROW] ; inptr1 mov edx, JSAMPROW [edx+ecx*SIZEOF_JSAMPROW] ; inptr2 mov edi, JSAMPROW [edi] ; outptr pop ecx ; col alignx 16,7 .columnloop: movpic eax, POINTER [gotptr] ; load GOT address (eax) movq mm6, MMWORD [ebx] ; mm6=Cb(01234567) movq mm7, MMWORD [edx] ; mm7=Cr(01234567) pxor mm1,mm1 ; mm1=(all 0's) pcmpeqw mm3,mm3 psllw mm3,7 ; mm3={0xFF80 0xFF80 0xFF80 0xFF80} movq mm4,mm6 punpckhbw mm6,mm1 ; mm6=Cb(4567)=CbH punpcklbw mm4,mm1 ; mm4=Cb(0123)=CbL movq mm0,mm7 punpckhbw mm7,mm1 ; mm7=Cr(4567)=CrH punpcklbw mm0,mm1 ; mm0=Cr(0123)=CrL paddw mm6,mm3 paddw mm4,mm3 paddw mm7,mm3 paddw mm0,mm3 ; (Original) ; R = Y + 1.40200 * Cr ; G = Y - 0.34414 * Cb - 0.71414 * Cr ; B = Y + 1.77200 * Cb ; ; (This implementation) ; R = Y + 0.40200 * Cr + Cr ; G = Y - 0.34414 * Cb + 0.28586 * Cr - Cr ; B = Y - 0.22800 * Cb + Cb + Cb movq mm5,mm6 ; mm5=CbH movq mm2,mm4 ; mm2=CbL paddw mm6,mm6 ; mm6=2*CbH paddw mm4,mm4 ; mm4=2*CbL movq mm1,mm7 ; mm1=CrH movq mm3,mm0 ; mm3=CrL paddw mm7,mm7 ; mm7=2*CrH paddw mm0,mm0 ; mm0=2*CrL pmulhw mm6,[GOTOFF(eax,PW_MF0228)] ; mm6=(2*CbH * -FIX(0.22800)) pmulhw mm4,[GOTOFF(eax,PW_MF0228)] ; mm4=(2*CbL * -FIX(0.22800)) pmulhw mm7,[GOTOFF(eax,PW_F0402)] ; mm7=(2*CrH * FIX(0.40200)) pmulhw mm0,[GOTOFF(eax,PW_F0402)] ; mm0=(2*CrL * FIX(0.40200)) paddw mm6,[GOTOFF(eax,PW_ONE)] paddw mm4,[GOTOFF(eax,PW_ONE)] psraw mm6,1 ; mm6=(CbH * -FIX(0.22800)) psraw mm4,1 ; mm4=(CbL * -FIX(0.22800)) paddw mm7,[GOTOFF(eax,PW_ONE)] paddw mm0,[GOTOFF(eax,PW_ONE)] psraw mm7,1 ; mm7=(CrH * FIX(0.40200)) psraw mm0,1 ; mm0=(CrL * FIX(0.40200)) paddw mm6,mm5 paddw mm4,mm2 paddw mm6,mm5 ; mm6=(CbH * FIX(1.77200))=(B-Y)H paddw mm4,mm2 ; mm4=(CbL * FIX(1.77200))=(B-Y)L paddw mm7,mm1 ; mm7=(CrH * FIX(1.40200))=(R-Y)H paddw mm0,mm3 ; mm0=(CrL * FIX(1.40200))=(R-Y)L movq MMWORD [wk(0)], mm6 ; wk(0)=(B-Y)H movq MMWORD [wk(1)], mm7 ; wk(1)=(R-Y)H movq mm6,mm5 movq mm7,mm2 punpcklwd mm5,mm1 punpckhwd mm6,mm1 pmaddwd mm5,[GOTOFF(eax,PW_MF0344_F0285)] pmaddwd mm6,[GOTOFF(eax,PW_MF0344_F0285)] punpcklwd mm2,mm3 punpckhwd mm7,mm3 pmaddwd mm2,[GOTOFF(eax,PW_MF0344_F0285)] pmaddwd mm7,[GOTOFF(eax,PW_MF0344_F0285)] paddd mm5,[GOTOFF(eax,PD_ONEHALF)] paddd mm6,[GOTOFF(eax,PD_ONEHALF)] psrad mm5,SCALEBITS psrad mm6,SCALEBITS paddd mm2,[GOTOFF(eax,PD_ONEHALF)] paddd mm7,[GOTOFF(eax,PD_ONEHALF)] psrad mm2,SCALEBITS psrad mm7,SCALEBITS packssdw mm5,mm6 ; mm5=CbH*-FIX(0.344)+CrH*FIX(0.285) packssdw mm2,mm7 ; mm2=CbL*-FIX(0.344)+CrL*FIX(0.285) psubw mm5,mm1 ; mm5=CbH*-FIX(0.344)+CrH*-FIX(0.714)=(G-Y)H psubw mm2,mm3 ; mm2=CbL*-FIX(0.344)+CrL*-FIX(0.714)=(G-Y)L movq MMWORD [wk(2)], mm5 ; wk(2)=(G-Y)H mov al,2 ; Yctr jmp short .Yloop_1st alignx 16,7 .Yloop_2nd: movq mm0, MMWORD [wk(1)] ; mm0=(R-Y)H movq mm2, MMWORD [wk(2)] ; mm2=(G-Y)H movq mm4, MMWORD [wk(0)] ; mm4=(B-Y)H alignx 16,7 .Yloop_1st: movq mm7, MMWORD [esi] ; mm7=Y(01234567) pcmpeqw mm6,mm6 psrlw mm6,BYTE_BIT ; mm6={0xFF 0x00 0xFF 0x00 ..} pand mm6,mm7 ; mm6=Y(0246)=YE psrlw mm7,BYTE_BIT ; mm7=Y(1357)=YO movq mm1,mm0 ; mm1=mm0=(R-Y)(L/H) movq mm3,mm2 ; mm3=mm2=(G-Y)(L/H) movq mm5,mm4 ; mm5=mm4=(B-Y)(L/H) paddw mm0,mm6 ; mm0=((R-Y)+YE)=RE=(R0 R2 R4 R6) paddw mm1,mm7 ; mm1=((R-Y)+YO)=RO=(R1 R3 R5 R7) packuswb mm0,mm0 ; mm0=(R0 R2 R4 R6 ** ** ** **) packuswb mm1,mm1 ; mm1=(R1 R3 R5 R7 ** ** ** **) paddw mm2,mm6 ; mm2=((G-Y)+YE)=GE=(G0 G2 G4 G6) paddw mm3,mm7 ; mm3=((G-Y)+YO)=GO=(G1 G3 G5 G7) packuswb mm2,mm2 ; mm2=(G0 G2 G4 G6 ** ** ** **) packuswb mm3,mm3 ; mm3=(G1 G3 G5 G7 ** ** ** **) paddw mm4,mm6 ; mm4=((B-Y)+YE)=BE=(B0 B2 B4 B6) paddw mm5,mm7 ; mm5=((B-Y)+YO)=BO=(B1 B3 B5 B7) packuswb mm4,mm4 ; mm4=(B0 B2 B4 B6 ** ** ** **) packuswb mm5,mm5 ; mm5=(B1 B3 B5 B7 ** ** ** **) %if RGB_PIXELSIZE == 3 ; --------------- ; mmA=(00 02 04 06 ** ** ** **), mmB=(01 03 05 07 ** ** ** **) ; mmC=(10 12 14 16 ** ** ** **), mmD=(11 13 15 17 ** ** ** **) ; mmE=(20 22 24 26 ** ** ** **), mmF=(21 23 25 27 ** ** ** **) ; mmG=(** ** ** ** ** ** ** **), mmH=(** ** ** ** ** ** ** **) punpcklbw mmA,mmC ; mmA=(00 10 02 12 04 14 06 16) punpcklbw mmE,mmB ; mmE=(20 01 22 03 24 05 26 07) punpcklbw mmD,mmF ; mmD=(11 21 13 23 15 25 17 27) movq mmG,mmA movq mmH,mmA punpcklwd mmA,mmE ; mmA=(00 10 20 01 02 12 22 03) punpckhwd mmG,mmE ; mmG=(04 14 24 05 06 16 26 07) psrlq mmH,2*BYTE_BIT ; mmH=(02 12 04 14 06 16 -- --) psrlq mmE,2*BYTE_BIT ; mmE=(22 03 24 05 26 07 -- --) movq mmC,mmD movq mmB,mmD punpcklwd mmD,mmH ; mmD=(11 21 02 12 13 23 04 14) punpckhwd mmC,mmH ; mmC=(15 25 06 16 17 27 -- --) psrlq mmB,2*BYTE_BIT ; mmB=(13 23 15 25 17 27 -- --) movq mmF,mmE punpcklwd mmE,mmB ; mmE=(22 03 13 23 24 05 15 25) punpckhwd mmF,mmB ; mmF=(26 07 17 27 -- -- -- --) punpckldq mmA,mmD ; mmA=(00 10 20 01 11 21 02 12) punpckldq mmE,mmG ; mmE=(22 03 13 23 04 14 24 05) punpckldq mmC,mmF ; mmC=(15 25 06 16 26 07 17 27) cmp ecx, byte SIZEOF_MMWORD jb short .column_st16 movq MMWORD [edi+0*SIZEOF_MMWORD], mmA movq MMWORD [edi+1*SIZEOF_MMWORD], mmE movq MMWORD [edi+2*SIZEOF_MMWORD], mmC sub ecx, byte SIZEOF_MMWORD jz near .endcolumn add edi, byte RGB_PIXELSIZE*SIZEOF_MMWORD ; outptr add esi, byte SIZEOF_MMWORD ; inptr0 dec al ; Yctr jnz near .Yloop_2nd add ebx, byte SIZEOF_MMWORD ; inptr1 add edx, byte SIZEOF_MMWORD ; inptr2 jmp near .columnloop alignx 16,7 .column_st16: lea ecx, [ecx+ecx*2] ; imul ecx, RGB_PIXELSIZE cmp ecx, byte 2*SIZEOF_MMWORD jb short .column_st8 movq MMWORD [edi+0*SIZEOF_MMWORD], mmA movq MMWORD [edi+1*SIZEOF_MMWORD], mmE movq mmA,mmC sub ecx, byte 2*SIZEOF_MMWORD add edi, byte 2*SIZEOF_MMWORD jmp short .column_st4 .column_st8: cmp ecx, byte SIZEOF_MMWORD jb short .column_st4 movq MMWORD [edi+0*SIZEOF_MMWORD], mmA movq mmA,mmE sub ecx, byte SIZEOF_MMWORD add edi, byte SIZEOF_MMWORD .column_st4: movd eax,mmA cmp ecx, byte SIZEOF_DWORD jb short .column_st2 mov DWORD [edi+0*SIZEOF_DWORD], eax psrlq mmA,DWORD_BIT movd eax,mmA sub ecx, byte SIZEOF_DWORD add edi, byte SIZEOF_DWORD .column_st2: cmp ecx, byte SIZEOF_WORD jb short .column_st1 mov WORD [edi+0*SIZEOF_WORD], ax shr eax,WORD_BIT sub ecx, byte SIZEOF_WORD add edi, byte SIZEOF_WORD .column_st1: cmp ecx, byte SIZEOF_BYTE jb short .endcolumn mov BYTE [edi+0*SIZEOF_BYTE], al %else ; RGB_PIXELSIZE == 4 ; ----------- %ifdef RGBX_FILLER_0XFF pcmpeqb mm6,mm6 ; mm6=(X0 X2 X4 X6 ** ** ** **) pcmpeqb mm7,mm7 ; mm7=(X1 X3 X5 X7 ** ** ** **) %else pxor mm6,mm6 ; mm6=(X0 X2 X4 X6 ** ** ** **) pxor mm7,mm7 ; mm7=(X1 X3 X5 X7 ** ** ** **) %endif ; mmA=(00 02 04 06 ** ** ** **), mmB=(01 03 05 07 ** ** ** **) ; mmC=(10 12 14 16 ** ** ** **), mmD=(11 13 15 17 ** ** ** **) ; mmE=(20 22 24 26 ** ** ** **), mmF=(21 23 25 27 ** ** ** **) ; mmG=(30 32 34 36 ** ** ** **), mmH=(31 33 35 37 ** ** ** **) punpcklbw mmA,mmC ; mmA=(00 10 02 12 04 14 06 16) punpcklbw mmE,mmG ; mmE=(20 30 22 32 24 34 26 36) punpcklbw mmB,mmD ; mmB=(01 11 03 13 05 15 07 17) punpcklbw mmF,mmH ; mmF=(21 31 23 33 25 35 27 37) movq mmC,mmA punpcklwd mmA,mmE ; mmA=(00 10 20 30 02 12 22 32) punpckhwd mmC,mmE ; mmC=(04 14 24 34 06 16 26 36) movq mmG,mmB punpcklwd mmB,mmF ; mmB=(01 11 21 31 03 13 23 33) punpckhwd mmG,mmF ; mmG=(05 15 25 35 07 17 27 37) movq mmD,mmA punpckldq mmA,mmB ; mmA=(00 10 20 30 01 11 21 31) punpckhdq mmD,mmB ; mmD=(02 12 22 32 03 13 23 33) movq mmH,mmC punpckldq mmC,mmG ; mmC=(04 14 24 34 05 15 25 35) punpckhdq mmH,mmG ; mmH=(06 16 26 36 07 17 27 37) cmp ecx, byte SIZEOF_MMWORD jb short .column_st16 movq MMWORD [edi+0*SIZEOF_MMWORD], mmA movq MMWORD [edi+1*SIZEOF_MMWORD], mmD movq MMWORD [edi+2*SIZEOF_MMWORD], mmC movq MMWORD [edi+3*SIZEOF_MMWORD], mmH sub ecx, byte SIZEOF_MMWORD jz short .endcolumn add edi, byte RGB_PIXELSIZE*SIZEOF_MMWORD ; outptr add esi, byte SIZEOF_MMWORD ; inptr0 dec al ; Yctr jnz near .Yloop_2nd add ebx, byte SIZEOF_MMWORD ; inptr1 add edx, byte SIZEOF_MMWORD ; inptr2 jmp near .columnloop alignx 16,7 .column_st16: cmp ecx, byte SIZEOF_MMWORD/2 jb short .column_st8 movq MMWORD [edi+0*SIZEOF_MMWORD], mmA movq MMWORD [edi+1*SIZEOF_MMWORD], mmD movq mmA,mmC movq mmD,mmH sub ecx, byte SIZEOF_MMWORD/2 add edi, byte 2*SIZEOF_MMWORD .column_st8: cmp ecx, byte SIZEOF_MMWORD/4 jb short .column_st4 movq MMWORD [edi+0*SIZEOF_MMWORD], mmA movq mmA,mmD sub ecx, byte SIZEOF_MMWORD/4 add edi, byte 1*SIZEOF_MMWORD .column_st4: cmp ecx, byte SIZEOF_MMWORD/8 jb short .endcolumn movd DWORD [edi+0*SIZEOF_DWORD], mmA %endif ; RGB_PIXELSIZE ; --------------- .endcolumn: emms ; empty MMX state .return: pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; need not be preserved pop ebx mov esp,ebp ; esp <- aligned ebp pop esp ; esp <- original ebp pop ebp ret ; -------------------------------------------------------------------------- ; ; Upsample and color convert for the case of 2:1 horizontal and 2:1 vertical. ; ; GLOBAL(void) ; jsimd_h2v2_merged_upsample_mmx (JDIMENSION output_width, ; JSAMPIMAGE input_buf, ; JDIMENSION in_row_group_ctr, ; JSAMPARRAY output_buf); ; %define output_width(b) (b)+8 ; JDIMENSION output_width %define input_buf(b) (b)+12 ; JSAMPIMAGE input_buf %define in_row_group_ctr(b) (b)+16 ; JDIMENSION in_row_group_ctr %define output_buf(b) (b)+20 ; JSAMPARRAY output_buf align 16 global EXTN(jsimd_h2v2_merged_upsample_mmx) EXTN(jsimd_h2v2_merged_upsample_mmx): push ebp mov ebp,esp push ebx ; push ecx ; need not be preserved ; push edx ; need not be preserved push esi push edi mov eax, JDIMENSION [output_width(ebp)] mov edi, JSAMPIMAGE [input_buf(ebp)] mov ecx, JDIMENSION [in_row_group_ctr(ebp)] mov esi, JSAMPARRAY [edi+0*SIZEOF_JSAMPARRAY] mov ebx, JSAMPARRAY [edi+1*SIZEOF_JSAMPARRAY] mov edx, JSAMPARRAY [edi+2*SIZEOF_JSAMPARRAY] mov edi, JSAMPARRAY [output_buf(ebp)] lea esi, [esi+ecx*SIZEOF_JSAMPROW] push edx ; inptr2 push ebx ; inptr1 push esi ; inptr00 mov ebx,esp push edi ; output_buf (outptr0) push ecx ; in_row_group_ctr push ebx ; input_buf push eax ; output_width call near EXTN(jsimd_h2v1_merged_upsample_mmx) add esi, byte SIZEOF_JSAMPROW ; inptr01 add edi, byte SIZEOF_JSAMPROW ; outptr1 mov POINTER [ebx+0*SIZEOF_POINTER], esi mov POINTER [ebx-1*SIZEOF_POINTER], edi call near EXTN(jsimd_h2v1_merged_upsample_mmx) add esp, byte 7*SIZEOF_DWORD pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; need not be preserved pop ebx pop ebp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 16 libjpeg-turbo-1.4.2/simd/jcolsamp.inc0000644000076500007650000000370412600050400014444 00000000000000; ; jcolsamp.inc - private declarations for color conversion & up/downsampling ; ; Copyright 2009 Pierre Ossman for Cendio AB ; ; Based on ; x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; [TAB8] ; -------------------------------------------------------------------------- ; pseudo-resisters to make ordering of RGB configurable ; %if RGB_RED == 0 %define mmA mm0 %define mmB mm1 %define xmmA xmm0 %define xmmB xmm1 %elif RGB_GREEN == 0 %define mmA mm2 %define mmB mm3 %define xmmA xmm2 %define xmmB xmm3 %elif RGB_BLUE == 0 %define mmA mm4 %define mmB mm5 %define xmmA xmm4 %define xmmB xmm5 %else %define mmA mm6 %define mmB mm7 %define xmmA xmm6 %define xmmB xmm7 %endif %if RGB_RED == 1 %define mmC mm0 %define mmD mm1 %define xmmC xmm0 %define xmmD xmm1 %elif RGB_GREEN == 1 %define mmC mm2 %define mmD mm3 %define xmmC xmm2 %define xmmD xmm3 %elif RGB_BLUE == 1 %define mmC mm4 %define mmD mm5 %define xmmC xmm4 %define xmmD xmm5 %else %define mmC mm6 %define mmD mm7 %define xmmC xmm6 %define xmmD xmm7 %endif %if RGB_RED == 2 %define mmE mm0 %define mmF mm1 %define xmmE xmm0 %define xmmF xmm1 %elif RGB_GREEN == 2 %define mmE mm2 %define mmF mm3 %define xmmE xmm2 %define xmmF xmm3 %elif RGB_BLUE == 2 %define mmE mm4 %define mmF mm5 %define xmmE xmm4 %define xmmF xmm5 %else %define mmE mm6 %define mmF mm7 %define xmmE xmm6 %define xmmF xmm7 %endif %if RGB_RED == 3 %define mmG mm0 %define mmH mm1 %define xmmG xmm0 %define xmmH xmm1 %elif RGB_GREEN == 3 %define mmG mm2 %define mmH mm3 %define xmmG xmm2 %define xmmH xmm3 %elif RGB_BLUE == 3 %define mmG mm4 %define mmH mm5 %define xmmG xmm4 %define xmmH xmm5 %else %define mmG mm6 %define mmH mm7 %define xmmG xmm6 %define xmmH xmm7 %endif ; -------------------------------------------------------------------------- libjpeg-turbo-1.4.2/simd/jquant-3dn.asm0000644000076500007650000002142312600050400014625 00000000000000; ; jquant.asm - sample data conversion and quantization (3DNow! & MMX) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; ; Based on ; x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; [TAB8] %include "jsimdext.inc" %include "jdct.inc" ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 32 ; ; Load data into workspace, applying unsigned->signed conversion ; ; GLOBAL(void) ; jsimd_convsamp_float_3dnow (JSAMPARRAY sample_data, JDIMENSION start_col, ; FAST_FLOAT * workspace); ; %define sample_data ebp+8 ; JSAMPARRAY sample_data %define start_col ebp+12 ; JDIMENSION start_col %define workspace ebp+16 ; FAST_FLOAT * workspace align 16 global EXTN(jsimd_convsamp_float_3dnow) EXTN(jsimd_convsamp_float_3dnow): push ebp mov ebp,esp push ebx ; push ecx ; need not be preserved ; push edx ; need not be preserved push esi push edi pcmpeqw mm7,mm7 psllw mm7,7 packsswb mm7,mm7 ; mm7 = PB_CENTERJSAMPLE (0x808080..) mov esi, JSAMPARRAY [sample_data] ; (JSAMPROW *) mov eax, JDIMENSION [start_col] mov edi, POINTER [workspace] ; (DCTELEM *) mov ecx, DCTSIZE/2 alignx 16,7 .convloop: mov ebx, JSAMPROW [esi+0*SIZEOF_JSAMPROW] ; (JSAMPLE *) mov edx, JSAMPROW [esi+1*SIZEOF_JSAMPROW] ; (JSAMPLE *) movq mm0, MMWORD [ebx+eax*SIZEOF_JSAMPLE] movq mm1, MMWORD [edx+eax*SIZEOF_JSAMPLE] psubb mm0,mm7 ; mm0=(01234567) psubb mm1,mm7 ; mm1=(89ABCDEF) punpcklbw mm2,mm0 ; mm2=(*0*1*2*3) punpckhbw mm0,mm0 ; mm0=(*4*5*6*7) punpcklbw mm3,mm1 ; mm3=(*8*9*A*B) punpckhbw mm1,mm1 ; mm1=(*C*D*E*F) punpcklwd mm4,mm2 ; mm4=(***0***1) punpckhwd mm2,mm2 ; mm2=(***2***3) punpcklwd mm5,mm0 ; mm5=(***4***5) punpckhwd mm0,mm0 ; mm0=(***6***7) psrad mm4,(DWORD_BIT-BYTE_BIT) ; mm4=(01) psrad mm2,(DWORD_BIT-BYTE_BIT) ; mm2=(23) pi2fd mm4,mm4 pi2fd mm2,mm2 psrad mm5,(DWORD_BIT-BYTE_BIT) ; mm5=(45) psrad mm0,(DWORD_BIT-BYTE_BIT) ; mm0=(67) pi2fd mm5,mm5 pi2fd mm0,mm0 movq MMWORD [MMBLOCK(0,0,edi,SIZEOF_FAST_FLOAT)], mm4 movq MMWORD [MMBLOCK(0,1,edi,SIZEOF_FAST_FLOAT)], mm2 movq MMWORD [MMBLOCK(0,2,edi,SIZEOF_FAST_FLOAT)], mm5 movq MMWORD [MMBLOCK(0,3,edi,SIZEOF_FAST_FLOAT)], mm0 punpcklwd mm6,mm3 ; mm6=(***8***9) punpckhwd mm3,mm3 ; mm3=(***A***B) punpcklwd mm4,mm1 ; mm4=(***C***D) punpckhwd mm1,mm1 ; mm1=(***E***F) psrad mm6,(DWORD_BIT-BYTE_BIT) ; mm6=(89) psrad mm3,(DWORD_BIT-BYTE_BIT) ; mm3=(AB) pi2fd mm6,mm6 pi2fd mm3,mm3 psrad mm4,(DWORD_BIT-BYTE_BIT) ; mm4=(CD) psrad mm1,(DWORD_BIT-BYTE_BIT) ; mm1=(EF) pi2fd mm4,mm4 pi2fd mm1,mm1 movq MMWORD [MMBLOCK(1,0,edi,SIZEOF_FAST_FLOAT)], mm6 movq MMWORD [MMBLOCK(1,1,edi,SIZEOF_FAST_FLOAT)], mm3 movq MMWORD [MMBLOCK(1,2,edi,SIZEOF_FAST_FLOAT)], mm4 movq MMWORD [MMBLOCK(1,3,edi,SIZEOF_FAST_FLOAT)], mm1 add esi, byte 2*SIZEOF_JSAMPROW add edi, byte 2*DCTSIZE*SIZEOF_FAST_FLOAT dec ecx jnz near .convloop femms ; empty MMX/3DNow! state pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; need not be preserved pop ebx pop ebp ret ; -------------------------------------------------------------------------- ; ; Quantize/descale the coefficients, and store into coef_block ; ; GLOBAL(void) ; jsimd_quantize_float_3dnow (JCOEFPTR coef_block, FAST_FLOAT * divisors, ; FAST_FLOAT * workspace); ; %define coef_block ebp+8 ; JCOEFPTR coef_block %define divisors ebp+12 ; FAST_FLOAT * divisors %define workspace ebp+16 ; FAST_FLOAT * workspace align 16 global EXTN(jsimd_quantize_float_3dnow) EXTN(jsimd_quantize_float_3dnow): push ebp mov ebp,esp ; push ebx ; unused ; push ecx ; unused ; push edx ; need not be preserved push esi push edi mov eax, 0x4B400000 ; (float)0x00C00000 (rndint_magic) movd mm7,eax punpckldq mm7,mm7 ; mm7={12582912.0F 12582912.0F} mov esi, POINTER [workspace] mov edx, POINTER [divisors] mov edi, JCOEFPTR [coef_block] mov eax, DCTSIZE2/16 alignx 16,7 .quantloop: movq mm0, MMWORD [MMBLOCK(0,0,esi,SIZEOF_FAST_FLOAT)] movq mm1, MMWORD [MMBLOCK(0,1,esi,SIZEOF_FAST_FLOAT)] pfmul mm0, MMWORD [MMBLOCK(0,0,edx,SIZEOF_FAST_FLOAT)] pfmul mm1, MMWORD [MMBLOCK(0,1,edx,SIZEOF_FAST_FLOAT)] movq mm2, MMWORD [MMBLOCK(0,2,esi,SIZEOF_FAST_FLOAT)] movq mm3, MMWORD [MMBLOCK(0,3,esi,SIZEOF_FAST_FLOAT)] pfmul mm2, MMWORD [MMBLOCK(0,2,edx,SIZEOF_FAST_FLOAT)] pfmul mm3, MMWORD [MMBLOCK(0,3,edx,SIZEOF_FAST_FLOAT)] pfadd mm0,mm7 ; mm0=(00 ** 01 **) pfadd mm1,mm7 ; mm1=(02 ** 03 **) pfadd mm2,mm7 ; mm0=(04 ** 05 **) pfadd mm3,mm7 ; mm1=(06 ** 07 **) movq mm4,mm0 punpcklwd mm0,mm1 ; mm0=(00 02 ** **) punpckhwd mm4,mm1 ; mm4=(01 03 ** **) movq mm5,mm2 punpcklwd mm2,mm3 ; mm2=(04 06 ** **) punpckhwd mm5,mm3 ; mm5=(05 07 ** **) punpcklwd mm0,mm4 ; mm0=(00 01 02 03) punpcklwd mm2,mm5 ; mm2=(04 05 06 07) movq mm6, MMWORD [MMBLOCK(1,0,esi,SIZEOF_FAST_FLOAT)] movq mm1, MMWORD [MMBLOCK(1,1,esi,SIZEOF_FAST_FLOAT)] pfmul mm6, MMWORD [MMBLOCK(1,0,edx,SIZEOF_FAST_FLOAT)] pfmul mm1, MMWORD [MMBLOCK(1,1,edx,SIZEOF_FAST_FLOAT)] movq mm3, MMWORD [MMBLOCK(1,2,esi,SIZEOF_FAST_FLOAT)] movq mm4, MMWORD [MMBLOCK(1,3,esi,SIZEOF_FAST_FLOAT)] pfmul mm3, MMWORD [MMBLOCK(1,2,edx,SIZEOF_FAST_FLOAT)] pfmul mm4, MMWORD [MMBLOCK(1,3,edx,SIZEOF_FAST_FLOAT)] pfadd mm6,mm7 ; mm0=(10 ** 11 **) pfadd mm1,mm7 ; mm4=(12 ** 13 **) pfadd mm3,mm7 ; mm0=(14 ** 15 **) pfadd mm4,mm7 ; mm4=(16 ** 17 **) movq mm5,mm6 punpcklwd mm6,mm1 ; mm6=(10 12 ** **) punpckhwd mm5,mm1 ; mm5=(11 13 ** **) movq mm1,mm3 punpcklwd mm3,mm4 ; mm3=(14 16 ** **) punpckhwd mm1,mm4 ; mm1=(15 17 ** **) punpcklwd mm6,mm5 ; mm6=(10 11 12 13) punpcklwd mm3,mm1 ; mm3=(14 15 16 17) movq MMWORD [MMBLOCK(0,0,edi,SIZEOF_JCOEF)], mm0 movq MMWORD [MMBLOCK(0,1,edi,SIZEOF_JCOEF)], mm2 movq MMWORD [MMBLOCK(1,0,edi,SIZEOF_JCOEF)], mm6 movq MMWORD [MMBLOCK(1,1,edi,SIZEOF_JCOEF)], mm3 add esi, byte 16*SIZEOF_FAST_FLOAT add edx, byte 16*SIZEOF_FAST_FLOAT add edi, byte 16*SIZEOF_JCOEF dec eax jnz near .quantloop femms ; empty MMX/3DNow! state pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; unused ; pop ebx ; unused pop ebp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 16 libjpeg-turbo-1.4.2/simd/jquanti-sse2-64.asm0000644000076500007650000001442612600050400015422 00000000000000; ; jquanti.asm - sample data conversion and quantization (64-bit SSE2) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; Copyright 2009 D. R. Commander ; ; Based on ; x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; [TAB8] %include "jsimdext.inc" %include "jdct.inc" ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 64 ; ; Load data into workspace, applying unsigned->signed conversion ; ; GLOBAL(void) ; jsimd_convsamp_sse2 (JSAMPARRAY sample_data, JDIMENSION start_col, ; DCTELEM * workspace); ; ; r10 = JSAMPARRAY sample_data ; r11 = JDIMENSION start_col ; r12 = DCTELEM * workspace align 16 global EXTN(jsimd_convsamp_sse2) EXTN(jsimd_convsamp_sse2): push rbp mov rax,rsp mov rbp,rsp collect_args push rbx pxor xmm6,xmm6 ; xmm6=(all 0's) pcmpeqw xmm7,xmm7 psllw xmm7,7 ; xmm7={0xFF80 0xFF80 0xFF80 0xFF80 ..} mov rsi, r10 mov eax, r11d mov rdi, r12 mov rcx, DCTSIZE/4 .convloop: mov rbx, JSAMPROW [rsi+0*SIZEOF_JSAMPROW] ; (JSAMPLE *) mov rdx, JSAMPROW [rsi+1*SIZEOF_JSAMPROW] ; (JSAMPLE *) movq xmm0, XMM_MMWORD [rbx+rax*SIZEOF_JSAMPLE] ; xmm0=(01234567) movq xmm1, XMM_MMWORD [rdx+rax*SIZEOF_JSAMPLE] ; xmm1=(89ABCDEF) mov rbx, JSAMPROW [rsi+2*SIZEOF_JSAMPROW] ; (JSAMPLE *) mov rdx, JSAMPROW [rsi+3*SIZEOF_JSAMPROW] ; (JSAMPLE *) movq xmm2, XMM_MMWORD [rbx+rax*SIZEOF_JSAMPLE] ; xmm2=(GHIJKLMN) movq xmm3, XMM_MMWORD [rdx+rax*SIZEOF_JSAMPLE] ; xmm3=(OPQRSTUV) punpcklbw xmm0,xmm6 ; xmm0=(01234567) punpcklbw xmm1,xmm6 ; xmm1=(89ABCDEF) paddw xmm0,xmm7 paddw xmm1,xmm7 punpcklbw xmm2,xmm6 ; xmm2=(GHIJKLMN) punpcklbw xmm3,xmm6 ; xmm3=(OPQRSTUV) paddw xmm2,xmm7 paddw xmm3,xmm7 movdqa XMMWORD [XMMBLOCK(0,0,rdi,SIZEOF_DCTELEM)], xmm0 movdqa XMMWORD [XMMBLOCK(1,0,rdi,SIZEOF_DCTELEM)], xmm1 movdqa XMMWORD [XMMBLOCK(2,0,rdi,SIZEOF_DCTELEM)], xmm2 movdqa XMMWORD [XMMBLOCK(3,0,rdi,SIZEOF_DCTELEM)], xmm3 add rsi, byte 4*SIZEOF_JSAMPROW add rdi, byte 4*DCTSIZE*SIZEOF_DCTELEM dec rcx jnz short .convloop pop rbx uncollect_args pop rbp ret ; -------------------------------------------------------------------------- ; ; Quantize/descale the coefficients, and store into coef_block ; ; This implementation is based on an algorithm described in ; "How to optimize for the Pentium family of microprocessors" ; (http://www.agner.org/assem/). ; ; GLOBAL(void) ; jsimd_quantize_sse2 (JCOEFPTR coef_block, DCTELEM * divisors, ; DCTELEM * workspace); ; %define RECIPROCAL(m,n,b) XMMBLOCK(DCTSIZE*0+(m),(n),(b),SIZEOF_DCTELEM) %define CORRECTION(m,n,b) XMMBLOCK(DCTSIZE*1+(m),(n),(b),SIZEOF_DCTELEM) %define SCALE(m,n,b) XMMBLOCK(DCTSIZE*2+(m),(n),(b),SIZEOF_DCTELEM) ; r10 = JCOEFPTR coef_block ; r11 = DCTELEM * divisors ; r12 = DCTELEM * workspace align 16 global EXTN(jsimd_quantize_sse2) EXTN(jsimd_quantize_sse2): push rbp mov rax,rsp mov rbp,rsp collect_args mov rsi, r12 mov rdx, r11 mov rdi, r10 mov rax, DCTSIZE2/32 .quantloop: movdqa xmm4, XMMWORD [XMMBLOCK(0,0,rsi,SIZEOF_DCTELEM)] movdqa xmm5, XMMWORD [XMMBLOCK(1,0,rsi,SIZEOF_DCTELEM)] movdqa xmm6, XMMWORD [XMMBLOCK(2,0,rsi,SIZEOF_DCTELEM)] movdqa xmm7, XMMWORD [XMMBLOCK(3,0,rsi,SIZEOF_DCTELEM)] movdqa xmm0,xmm4 movdqa xmm1,xmm5 movdqa xmm2,xmm6 movdqa xmm3,xmm7 psraw xmm4,(WORD_BIT-1) psraw xmm5,(WORD_BIT-1) psraw xmm6,(WORD_BIT-1) psraw xmm7,(WORD_BIT-1) pxor xmm0,xmm4 pxor xmm1,xmm5 pxor xmm2,xmm6 pxor xmm3,xmm7 psubw xmm0,xmm4 ; if (xmm0 < 0) xmm0 = -xmm0; psubw xmm1,xmm5 ; if (xmm1 < 0) xmm1 = -xmm1; psubw xmm2,xmm6 ; if (xmm2 < 0) xmm2 = -xmm2; psubw xmm3,xmm7 ; if (xmm3 < 0) xmm3 = -xmm3; paddw xmm0, XMMWORD [CORRECTION(0,0,rdx)] ; correction + roundfactor paddw xmm1, XMMWORD [CORRECTION(1,0,rdx)] paddw xmm2, XMMWORD [CORRECTION(2,0,rdx)] paddw xmm3, XMMWORD [CORRECTION(3,0,rdx)] pmulhuw xmm0, XMMWORD [RECIPROCAL(0,0,rdx)] ; reciprocal pmulhuw xmm1, XMMWORD [RECIPROCAL(1,0,rdx)] pmulhuw xmm2, XMMWORD [RECIPROCAL(2,0,rdx)] pmulhuw xmm3, XMMWORD [RECIPROCAL(3,0,rdx)] pmulhuw xmm0, XMMWORD [SCALE(0,0,rdx)] ; scale pmulhuw xmm1, XMMWORD [SCALE(1,0,rdx)] pmulhuw xmm2, XMMWORD [SCALE(2,0,rdx)] pmulhuw xmm3, XMMWORD [SCALE(3,0,rdx)] pxor xmm0,xmm4 pxor xmm1,xmm5 pxor xmm2,xmm6 pxor xmm3,xmm7 psubw xmm0,xmm4 psubw xmm1,xmm5 psubw xmm2,xmm6 psubw xmm3,xmm7 movdqa XMMWORD [XMMBLOCK(0,0,rdi,SIZEOF_DCTELEM)], xmm0 movdqa XMMWORD [XMMBLOCK(1,0,rdi,SIZEOF_DCTELEM)], xmm1 movdqa XMMWORD [XMMBLOCK(2,0,rdi,SIZEOF_DCTELEM)], xmm2 movdqa XMMWORD [XMMBLOCK(3,0,rdi,SIZEOF_DCTELEM)], xmm3 add rsi, byte 32*SIZEOF_DCTELEM add rdx, byte 32*SIZEOF_DCTELEM add rdi, byte 32*SIZEOF_JCOEF dec rax jnz near .quantloop uncollect_args pop rbp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 16 libjpeg-turbo-1.4.2/simd/jdmerge-sse2.asm0000644000076500007650000001002212600050400015121 00000000000000; ; jdmerge.asm - merged upsampling/color conversion (SSE2) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; Copyright 2009 D. R. Commander ; ; Based on ; x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; [TAB8] %include "jsimdext.inc" ; -------------------------------------------------------------------------- %define SCALEBITS 16 F_0_344 equ 22554 ; FIX(0.34414) F_0_714 equ 46802 ; FIX(0.71414) F_1_402 equ 91881 ; FIX(1.40200) F_1_772 equ 116130 ; FIX(1.77200) F_0_402 equ (F_1_402 - 65536) ; FIX(1.40200) - FIX(1) F_0_285 equ ( 65536 - F_0_714) ; FIX(1) - FIX(0.71414) F_0_228 equ (131072 - F_1_772) ; FIX(2) - FIX(1.77200) ; -------------------------------------------------------------------------- SECTION SEG_CONST alignz 16 global EXTN(jconst_merged_upsample_sse2) EXTN(jconst_merged_upsample_sse2): PW_F0402 times 8 dw F_0_402 PW_MF0228 times 8 dw -F_0_228 PW_MF0344_F0285 times 4 dw -F_0_344, F_0_285 PW_ONE times 8 dw 1 PD_ONEHALF times 4 dd 1 << (SCALEBITS-1) alignz 16 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 32 %include "jdmrgext-sse2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_RGB_RED %define RGB_GREEN EXT_RGB_GREEN %define RGB_BLUE EXT_RGB_BLUE %define RGB_PIXELSIZE EXT_RGB_PIXELSIZE %define jsimd_h2v1_merged_upsample_sse2 jsimd_h2v1_extrgb_merged_upsample_sse2 %define jsimd_h2v2_merged_upsample_sse2 jsimd_h2v2_extrgb_merged_upsample_sse2 %include "jdmrgext-sse2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_RGBX_RED %define RGB_GREEN EXT_RGBX_GREEN %define RGB_BLUE EXT_RGBX_BLUE %define RGB_PIXELSIZE EXT_RGBX_PIXELSIZE %define jsimd_h2v1_merged_upsample_sse2 jsimd_h2v1_extrgbx_merged_upsample_sse2 %define jsimd_h2v2_merged_upsample_sse2 jsimd_h2v2_extrgbx_merged_upsample_sse2 %include "jdmrgext-sse2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_BGR_RED %define RGB_GREEN EXT_BGR_GREEN %define RGB_BLUE EXT_BGR_BLUE %define RGB_PIXELSIZE EXT_BGR_PIXELSIZE %define jsimd_h2v1_merged_upsample_sse2 jsimd_h2v1_extbgr_merged_upsample_sse2 %define jsimd_h2v2_merged_upsample_sse2 jsimd_h2v2_extbgr_merged_upsample_sse2 %include "jdmrgext-sse2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_BGRX_RED %define RGB_GREEN EXT_BGRX_GREEN %define RGB_BLUE EXT_BGRX_BLUE %define RGB_PIXELSIZE EXT_BGRX_PIXELSIZE %define jsimd_h2v1_merged_upsample_sse2 jsimd_h2v1_extbgrx_merged_upsample_sse2 %define jsimd_h2v2_merged_upsample_sse2 jsimd_h2v2_extbgrx_merged_upsample_sse2 %include "jdmrgext-sse2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_XBGR_RED %define RGB_GREEN EXT_XBGR_GREEN %define RGB_BLUE EXT_XBGR_BLUE %define RGB_PIXELSIZE EXT_XBGR_PIXELSIZE %define jsimd_h2v1_merged_upsample_sse2 jsimd_h2v1_extxbgr_merged_upsample_sse2 %define jsimd_h2v2_merged_upsample_sse2 jsimd_h2v2_extxbgr_merged_upsample_sse2 %include "jdmrgext-sse2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_XRGB_RED %define RGB_GREEN EXT_XRGB_GREEN %define RGB_BLUE EXT_XRGB_BLUE %define RGB_PIXELSIZE EXT_XRGB_PIXELSIZE %define jsimd_h2v1_merged_upsample_sse2 jsimd_h2v1_extxrgb_merged_upsample_sse2 %define jsimd_h2v2_merged_upsample_sse2 jsimd_h2v2_extxrgb_merged_upsample_sse2 %include "jdmrgext-sse2.asm" libjpeg-turbo-1.4.2/simd/Makefile.am0000644000076500007650000000520112600050400014167 00000000000000noinst_LTLIBRARIES = libsimd.la BUILT_SOURCES = jsimdcfg.inc EXTRA_DIST = nasm_lt.sh CMakeLists.txt \ jccolext-mmx.asm jcgryext-mmx.asm jdcolext-mmx.asm jdmrgext-mmx.asm \ jccolext-sse2.asm jcgryext-sse2.asm jdcolext-sse2.asm jdmrgext-sse2.asm \ jccolext-sse2-64.asm jcgryext-sse2-64.asm jdcolext-sse2-64.asm \ jdmrgext-sse2-64.asm if SIMD_X86_64 libsimd_la_SOURCES = jsimd_x86_64.c jsimd.h jsimdcfg.inc.h jsimdext.inc \ jcolsamp.inc jdct.inc jfdctflt-sse-64.asm \ jccolor-sse2-64.asm jcgray-sse2-64.asm jcsample-sse2-64.asm \ jdcolor-sse2-64.asm jdmerge-sse2-64.asm jdsample-sse2-64.asm \ jfdctfst-sse2-64.asm jfdctint-sse2-64.asm jidctflt-sse2-64.asm \ jidctfst-sse2-64.asm jidctint-sse2-64.asm jidctred-sse2-64.asm \ jquantf-sse2-64.asm jquanti-sse2-64.asm jccolor-sse2-64.lo: jccolext-sse2-64.asm jcgray-sse2-64.lo: jcgryext-sse2-64.asm jdcolor-sse2-64.lo: jdcolext-sse2-64.asm jdmerge-sse2-64.lo: jdmrgext-sse2-64.asm endif if SIMD_I386 libsimd_la_SOURCES = jsimd_i386.c jsimd.h jsimdcfg.inc.h jsimdext.inc \ jcolsamp.inc jdct.inc jsimdcpu.asm \ jfdctflt-3dn.asm jidctflt-3dn.asm jquant-3dn.asm \ jccolor-mmx.asm jcgray-mmx.asm jcsample-mmx.asm \ jdcolor-mmx.asm jdmerge-mmx.asm jdsample-mmx.asm \ jfdctfst-mmx.asm jfdctint-mmx.asm jidctfst-mmx.asm \ jidctint-mmx.asm jidctred-mmx.asm jquant-mmx.asm \ jfdctflt-sse.asm jidctflt-sse.asm jquant-sse.asm \ jccolor-sse2.asm jcgray-sse2.asm jcsample-sse2.asm \ jdcolor-sse2.asm jdmerge-sse2.asm jdsample-sse2.asm \ jfdctfst-sse2.asm jfdctint-sse2.asm jidctflt-sse2.asm \ jidctfst-sse2.asm jidctint-sse2.asm jidctred-sse2.asm \ jquantf-sse2.asm jquanti-sse2.asm jccolor-mmx.lo: jccolext-mmx.asm jcgray.-mmx.lo: jcgryext-mmx.asm jdcolor-mmx.lo: jdcolext-mmx.asm jdmerge-mmx.lo: jdmrgext-mmx.asm jccolor-sse2.lo: jccolext-sse2.asm jcgray-sse2.lo: jcgryext-sse2.asm jdcolor-sse2.lo: jdcolext-sse2.asm jdmerge-sse2.lo: jdmrgext-sse2.asm endif if SIMD_ARM libsimd_la_SOURCES = jsimd_arm.c jsimd_arm_neon.S endif if SIMD_ARM_64 libsimd_la_SOURCES = jsimd_arm64.c jsimd_arm64_neon.S endif if SIMD_MIPS libsimd_la_SOURCES = jsimd_mips.c jsimd_mips_dspr2_asm.h jsimd_mips_dspr2.S endif AM_CPPFLAGS = -I$(top_srcdir) .asm.lo: $(AM_V_GEN) $(LIBTOOL) $(AM_V_lt) --mode=compile --tag NASM $(srcdir)/nasm_lt.sh $(AM_V_lt) $(NASM) $(NAFLAGS) -I$(srcdir) -I. $< -o $@ jsimdcfg.inc: $(srcdir)/jsimdcfg.inc.h ../jpeglib.h ../jconfig.h ../jmorecfg.h $(AM_V_GEN) $(CPP) -I$(top_builddir) -I$(top_builddir)/simd $(srcdir)/jsimdcfg.inc.h | $(EGREP) "^[\;%]|^\ %" | sed 's%_cpp_protection_%%' | sed 's@% define@%define@g' > $@ libjpeg-turbo-1.4.2/simd/jidctfst-sse2-64.asm0000644000076500007650000005067612600050400015570 00000000000000; ; jidctfst.asm - fast integer IDCT (64-bit SSE2) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; Copyright 2009 D. R. Commander ; ; Based on ; x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; This file contains a fast, not so accurate integer implementation of ; the inverse DCT (Discrete Cosine Transform). The following code is ; based directly on the IJG's original jidctfst.c; see the jidctfst.c ; for more details. ; ; [TAB8] %include "jsimdext.inc" %include "jdct.inc" ; -------------------------------------------------------------------------- %define CONST_BITS 8 ; 14 is also OK. %define PASS1_BITS 2 %if IFAST_SCALE_BITS != PASS1_BITS %error "'IFAST_SCALE_BITS' must be equal to 'PASS1_BITS'." %endif %if CONST_BITS == 8 F_1_082 equ 277 ; FIX(1.082392200) F_1_414 equ 362 ; FIX(1.414213562) F_1_847 equ 473 ; FIX(1.847759065) F_2_613 equ 669 ; FIX(2.613125930) F_1_613 equ (F_2_613 - 256) ; FIX(2.613125930) - FIX(1) %else ; NASM cannot do compile-time arithmetic on floating-point constants. %define DESCALE(x,n) (((x)+(1<<((n)-1)))>>(n)) F_1_082 equ DESCALE(1162209775,30-CONST_BITS) ; FIX(1.082392200) F_1_414 equ DESCALE(1518500249,30-CONST_BITS) ; FIX(1.414213562) F_1_847 equ DESCALE(1984016188,30-CONST_BITS) ; FIX(1.847759065) F_2_613 equ DESCALE(2805822602,30-CONST_BITS) ; FIX(2.613125930) F_1_613 equ (F_2_613 - (1 << CONST_BITS)) ; FIX(2.613125930) - FIX(1) %endif ; -------------------------------------------------------------------------- SECTION SEG_CONST ; PRE_MULTIPLY_SCALE_BITS <= 2 (to avoid overflow) ; CONST_BITS + CONST_SHIFT + PRE_MULTIPLY_SCALE_BITS == 16 (for pmulhw) %define PRE_MULTIPLY_SCALE_BITS 2 %define CONST_SHIFT (16 - PRE_MULTIPLY_SCALE_BITS - CONST_BITS) alignz 16 global EXTN(jconst_idct_ifast_sse2) EXTN(jconst_idct_ifast_sse2): PW_F1414 times 8 dw F_1_414 << CONST_SHIFT PW_F1847 times 8 dw F_1_847 << CONST_SHIFT PW_MF1613 times 8 dw -F_1_613 << CONST_SHIFT PW_F1082 times 8 dw F_1_082 << CONST_SHIFT PB_CENTERJSAMP times 16 db CENTERJSAMPLE alignz 16 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 64 ; ; Perform dequantization and inverse DCT on one block of coefficients. ; ; GLOBAL(void) ; jsimd_idct_ifast_sse2 (void * dct_table, JCOEFPTR coef_block, ; JSAMPARRAY output_buf, JDIMENSION output_col) ; ; r10 = jpeg_component_info * compptr ; r11 = JCOEFPTR coef_block ; r12 = JSAMPARRAY output_buf ; r13 = JDIMENSION output_col %define original_rbp rbp+0 %define wk(i) rbp-(WK_NUM-(i))*SIZEOF_XMMWORD ; xmmword wk[WK_NUM] %define WK_NUM 2 align 16 global EXTN(jsimd_idct_ifast_sse2) EXTN(jsimd_idct_ifast_sse2): push rbp mov rax,rsp ; rax = original rbp sub rsp, byte 4 and rsp, byte (-SIZEOF_XMMWORD) ; align to 128 bits mov [rsp],rax mov rbp,rsp ; rbp = aligned rbp lea rsp, [wk(0)] collect_args ; ---- Pass 1: process columns from input. mov rdx, r10 ; quantptr mov rsi, r11 ; inptr %ifndef NO_ZERO_COLUMN_TEST_IFAST_SSE2 mov eax, DWORD [DWBLOCK(1,0,rsi,SIZEOF_JCOEF)] or eax, DWORD [DWBLOCK(2,0,rsi,SIZEOF_JCOEF)] jnz near .columnDCT movdqa xmm0, XMMWORD [XMMBLOCK(1,0,rsi,SIZEOF_JCOEF)] movdqa xmm1, XMMWORD [XMMBLOCK(2,0,rsi,SIZEOF_JCOEF)] por xmm0, XMMWORD [XMMBLOCK(3,0,rsi,SIZEOF_JCOEF)] por xmm1, XMMWORD [XMMBLOCK(4,0,rsi,SIZEOF_JCOEF)] por xmm0, XMMWORD [XMMBLOCK(5,0,rsi,SIZEOF_JCOEF)] por xmm1, XMMWORD [XMMBLOCK(6,0,rsi,SIZEOF_JCOEF)] por xmm0, XMMWORD [XMMBLOCK(7,0,rsi,SIZEOF_JCOEF)] por xmm1,xmm0 packsswb xmm1,xmm1 packsswb xmm1,xmm1 movd eax,xmm1 test rax,rax jnz short .columnDCT ; -- AC terms all zero movdqa xmm0, XMMWORD [XMMBLOCK(0,0,rsi,SIZEOF_JCOEF)] pmullw xmm0, XMMWORD [XMMBLOCK(0,0,rdx,SIZEOF_ISLOW_MULT_TYPE)] movdqa xmm7,xmm0 ; xmm0=in0=(00 01 02 03 04 05 06 07) punpcklwd xmm0,xmm0 ; xmm0=(00 00 01 01 02 02 03 03) punpckhwd xmm7,xmm7 ; xmm7=(04 04 05 05 06 06 07 07) pshufd xmm6,xmm0,0x00 ; xmm6=col0=(00 00 00 00 00 00 00 00) pshufd xmm2,xmm0,0x55 ; xmm2=col1=(01 01 01 01 01 01 01 01) pshufd xmm5,xmm0,0xAA ; xmm5=col2=(02 02 02 02 02 02 02 02) pshufd xmm0,xmm0,0xFF ; xmm0=col3=(03 03 03 03 03 03 03 03) pshufd xmm1,xmm7,0x00 ; xmm1=col4=(04 04 04 04 04 04 04 04) pshufd xmm4,xmm7,0x55 ; xmm4=col5=(05 05 05 05 05 05 05 05) pshufd xmm3,xmm7,0xAA ; xmm3=col6=(06 06 06 06 06 06 06 06) pshufd xmm7,xmm7,0xFF ; xmm7=col7=(07 07 07 07 07 07 07 07) movdqa XMMWORD [wk(0)], xmm2 ; wk(0)=col1 movdqa XMMWORD [wk(1)], xmm0 ; wk(1)=col3 jmp near .column_end %endif .columnDCT: ; -- Even part movdqa xmm0, XMMWORD [XMMBLOCK(0,0,rsi,SIZEOF_JCOEF)] movdqa xmm1, XMMWORD [XMMBLOCK(2,0,rsi,SIZEOF_JCOEF)] pmullw xmm0, XMMWORD [XMMBLOCK(0,0,rdx,SIZEOF_IFAST_MULT_TYPE)] pmullw xmm1, XMMWORD [XMMBLOCK(2,0,rdx,SIZEOF_IFAST_MULT_TYPE)] movdqa xmm2, XMMWORD [XMMBLOCK(4,0,rsi,SIZEOF_JCOEF)] movdqa xmm3, XMMWORD [XMMBLOCK(6,0,rsi,SIZEOF_JCOEF)] pmullw xmm2, XMMWORD [XMMBLOCK(4,0,rdx,SIZEOF_IFAST_MULT_TYPE)] pmullw xmm3, XMMWORD [XMMBLOCK(6,0,rdx,SIZEOF_IFAST_MULT_TYPE)] movdqa xmm4,xmm0 movdqa xmm5,xmm1 psubw xmm0,xmm2 ; xmm0=tmp11 psubw xmm1,xmm3 paddw xmm4,xmm2 ; xmm4=tmp10 paddw xmm5,xmm3 ; xmm5=tmp13 psllw xmm1,PRE_MULTIPLY_SCALE_BITS pmulhw xmm1,[rel PW_F1414] psubw xmm1,xmm5 ; xmm1=tmp12 movdqa xmm6,xmm4 movdqa xmm7,xmm0 psubw xmm4,xmm5 ; xmm4=tmp3 psubw xmm0,xmm1 ; xmm0=tmp2 paddw xmm6,xmm5 ; xmm6=tmp0 paddw xmm7,xmm1 ; xmm7=tmp1 movdqa XMMWORD [wk(1)], xmm4 ; wk(1)=tmp3 movdqa XMMWORD [wk(0)], xmm0 ; wk(0)=tmp2 ; -- Odd part movdqa xmm2, XMMWORD [XMMBLOCK(1,0,rsi,SIZEOF_JCOEF)] movdqa xmm3, XMMWORD [XMMBLOCK(3,0,rsi,SIZEOF_JCOEF)] pmullw xmm2, XMMWORD [XMMBLOCK(1,0,rdx,SIZEOF_IFAST_MULT_TYPE)] pmullw xmm3, XMMWORD [XMMBLOCK(3,0,rdx,SIZEOF_IFAST_MULT_TYPE)] movdqa xmm5, XMMWORD [XMMBLOCK(5,0,rsi,SIZEOF_JCOEF)] movdqa xmm1, XMMWORD [XMMBLOCK(7,0,rsi,SIZEOF_JCOEF)] pmullw xmm5, XMMWORD [XMMBLOCK(5,0,rdx,SIZEOF_IFAST_MULT_TYPE)] pmullw xmm1, XMMWORD [XMMBLOCK(7,0,rdx,SIZEOF_IFAST_MULT_TYPE)] movdqa xmm4,xmm2 movdqa xmm0,xmm5 psubw xmm2,xmm1 ; xmm2=z12 psubw xmm5,xmm3 ; xmm5=z10 paddw xmm4,xmm1 ; xmm4=z11 paddw xmm0,xmm3 ; xmm0=z13 movdqa xmm1,xmm5 ; xmm1=z10(unscaled) psllw xmm2,PRE_MULTIPLY_SCALE_BITS psllw xmm5,PRE_MULTIPLY_SCALE_BITS movdqa xmm3,xmm4 psubw xmm4,xmm0 paddw xmm3,xmm0 ; xmm3=tmp7 psllw xmm4,PRE_MULTIPLY_SCALE_BITS pmulhw xmm4,[rel PW_F1414] ; xmm4=tmp11 ; To avoid overflow... ; ; (Original) ; tmp12 = -2.613125930 * z10 + z5; ; ; (This implementation) ; tmp12 = (-1.613125930 - 1) * z10 + z5; ; = -1.613125930 * z10 - z10 + z5; movdqa xmm0,xmm5 paddw xmm5,xmm2 pmulhw xmm5,[rel PW_F1847] ; xmm5=z5 pmulhw xmm0,[rel PW_MF1613] pmulhw xmm2,[rel PW_F1082] psubw xmm0,xmm1 psubw xmm2,xmm5 ; xmm2=tmp10 paddw xmm0,xmm5 ; xmm0=tmp12 ; -- Final output stage psubw xmm0,xmm3 ; xmm0=tmp6 movdqa xmm1,xmm6 movdqa xmm5,xmm7 paddw xmm6,xmm3 ; xmm6=data0=(00 01 02 03 04 05 06 07) paddw xmm7,xmm0 ; xmm7=data1=(10 11 12 13 14 15 16 17) psubw xmm1,xmm3 ; xmm1=data7=(70 71 72 73 74 75 76 77) psubw xmm5,xmm0 ; xmm5=data6=(60 61 62 63 64 65 66 67) psubw xmm4,xmm0 ; xmm4=tmp5 movdqa xmm3,xmm6 ; transpose coefficients(phase 1) punpcklwd xmm6,xmm7 ; xmm6=(00 10 01 11 02 12 03 13) punpckhwd xmm3,xmm7 ; xmm3=(04 14 05 15 06 16 07 17) movdqa xmm0,xmm5 ; transpose coefficients(phase 1) punpcklwd xmm5,xmm1 ; xmm5=(60 70 61 71 62 72 63 73) punpckhwd xmm0,xmm1 ; xmm0=(64 74 65 75 66 76 67 77) movdqa xmm7, XMMWORD [wk(0)] ; xmm7=tmp2 movdqa xmm1, XMMWORD [wk(1)] ; xmm1=tmp3 movdqa XMMWORD [wk(0)], xmm5 ; wk(0)=(60 70 61 71 62 72 63 73) movdqa XMMWORD [wk(1)], xmm0 ; wk(1)=(64 74 65 75 66 76 67 77) paddw xmm2,xmm4 ; xmm2=tmp4 movdqa xmm5,xmm7 movdqa xmm0,xmm1 paddw xmm7,xmm4 ; xmm7=data2=(20 21 22 23 24 25 26 27) paddw xmm1,xmm2 ; xmm1=data4=(40 41 42 43 44 45 46 47) psubw xmm5,xmm4 ; xmm5=data5=(50 51 52 53 54 55 56 57) psubw xmm0,xmm2 ; xmm0=data3=(30 31 32 33 34 35 36 37) movdqa xmm4,xmm7 ; transpose coefficients(phase 1) punpcklwd xmm7,xmm0 ; xmm7=(20 30 21 31 22 32 23 33) punpckhwd xmm4,xmm0 ; xmm4=(24 34 25 35 26 36 27 37) movdqa xmm2,xmm1 ; transpose coefficients(phase 1) punpcklwd xmm1,xmm5 ; xmm1=(40 50 41 51 42 52 43 53) punpckhwd xmm2,xmm5 ; xmm2=(44 54 45 55 46 56 47 57) movdqa xmm0,xmm3 ; transpose coefficients(phase 2) punpckldq xmm3,xmm4 ; xmm3=(04 14 24 34 05 15 25 35) punpckhdq xmm0,xmm4 ; xmm0=(06 16 26 36 07 17 27 37) movdqa xmm5,xmm6 ; transpose coefficients(phase 2) punpckldq xmm6,xmm7 ; xmm6=(00 10 20 30 01 11 21 31) punpckhdq xmm5,xmm7 ; xmm5=(02 12 22 32 03 13 23 33) movdqa xmm4, XMMWORD [wk(0)] ; xmm4=(60 70 61 71 62 72 63 73) movdqa xmm7, XMMWORD [wk(1)] ; xmm7=(64 74 65 75 66 76 67 77) movdqa XMMWORD [wk(0)], xmm3 ; wk(0)=(04 14 24 34 05 15 25 35) movdqa XMMWORD [wk(1)], xmm0 ; wk(1)=(06 16 26 36 07 17 27 37) movdqa xmm3,xmm1 ; transpose coefficients(phase 2) punpckldq xmm1,xmm4 ; xmm1=(40 50 60 70 41 51 61 71) punpckhdq xmm3,xmm4 ; xmm3=(42 52 62 72 43 53 63 73) movdqa xmm0,xmm2 ; transpose coefficients(phase 2) punpckldq xmm2,xmm7 ; xmm2=(44 54 64 74 45 55 65 75) punpckhdq xmm0,xmm7 ; xmm0=(46 56 66 76 47 57 67 77) movdqa xmm4,xmm6 ; transpose coefficients(phase 3) punpcklqdq xmm6,xmm1 ; xmm6=col0=(00 10 20 30 40 50 60 70) punpckhqdq xmm4,xmm1 ; xmm4=col1=(01 11 21 31 41 51 61 71) movdqa xmm7,xmm5 ; transpose coefficients(phase 3) punpcklqdq xmm5,xmm3 ; xmm5=col2=(02 12 22 32 42 52 62 72) punpckhqdq xmm7,xmm3 ; xmm7=col3=(03 13 23 33 43 53 63 73) movdqa xmm1, XMMWORD [wk(0)] ; xmm1=(04 14 24 34 05 15 25 35) movdqa xmm3, XMMWORD [wk(1)] ; xmm3=(06 16 26 36 07 17 27 37) movdqa XMMWORD [wk(0)], xmm4 ; wk(0)=col1 movdqa XMMWORD [wk(1)], xmm7 ; wk(1)=col3 movdqa xmm4,xmm1 ; transpose coefficients(phase 3) punpcklqdq xmm1,xmm2 ; xmm1=col4=(04 14 24 34 44 54 64 74) punpckhqdq xmm4,xmm2 ; xmm4=col5=(05 15 25 35 45 55 65 75) movdqa xmm7,xmm3 ; transpose coefficients(phase 3) punpcklqdq xmm3,xmm0 ; xmm3=col6=(06 16 26 36 46 56 66 76) punpckhqdq xmm7,xmm0 ; xmm7=col7=(07 17 27 37 47 57 67 77) .column_end: ; -- Prefetch the next coefficient block prefetchnta [rsi + DCTSIZE2*SIZEOF_JCOEF + 0*32] prefetchnta [rsi + DCTSIZE2*SIZEOF_JCOEF + 1*32] prefetchnta [rsi + DCTSIZE2*SIZEOF_JCOEF + 2*32] prefetchnta [rsi + DCTSIZE2*SIZEOF_JCOEF + 3*32] ; ---- Pass 2: process rows from work array, store into output array. mov rax, [original_rbp] mov rdi, r12 ; (JSAMPROW *) mov eax, r13d ; -- Even part ; xmm6=col0, xmm5=col2, xmm1=col4, xmm3=col6 movdqa xmm2,xmm6 movdqa xmm0,xmm5 psubw xmm6,xmm1 ; xmm6=tmp11 psubw xmm5,xmm3 paddw xmm2,xmm1 ; xmm2=tmp10 paddw xmm0,xmm3 ; xmm0=tmp13 psllw xmm5,PRE_MULTIPLY_SCALE_BITS pmulhw xmm5,[rel PW_F1414] psubw xmm5,xmm0 ; xmm5=tmp12 movdqa xmm1,xmm2 movdqa xmm3,xmm6 psubw xmm2,xmm0 ; xmm2=tmp3 psubw xmm6,xmm5 ; xmm6=tmp2 paddw xmm1,xmm0 ; xmm1=tmp0 paddw xmm3,xmm5 ; xmm3=tmp1 movdqa xmm0, XMMWORD [wk(0)] ; xmm0=col1 movdqa xmm5, XMMWORD [wk(1)] ; xmm5=col3 movdqa XMMWORD [wk(0)], xmm2 ; wk(0)=tmp3 movdqa XMMWORD [wk(1)], xmm6 ; wk(1)=tmp2 ; -- Odd part ; xmm0=col1, xmm5=col3, xmm4=col5, xmm7=col7 movdqa xmm2,xmm0 movdqa xmm6,xmm4 psubw xmm0,xmm7 ; xmm0=z12 psubw xmm4,xmm5 ; xmm4=z10 paddw xmm2,xmm7 ; xmm2=z11 paddw xmm6,xmm5 ; xmm6=z13 movdqa xmm7,xmm4 ; xmm7=z10(unscaled) psllw xmm0,PRE_MULTIPLY_SCALE_BITS psllw xmm4,PRE_MULTIPLY_SCALE_BITS movdqa xmm5,xmm2 psubw xmm2,xmm6 paddw xmm5,xmm6 ; xmm5=tmp7 psllw xmm2,PRE_MULTIPLY_SCALE_BITS pmulhw xmm2,[rel PW_F1414] ; xmm2=tmp11 ; To avoid overflow... ; ; (Original) ; tmp12 = -2.613125930 * z10 + z5; ; ; (This implementation) ; tmp12 = (-1.613125930 - 1) * z10 + z5; ; = -1.613125930 * z10 - z10 + z5; movdqa xmm6,xmm4 paddw xmm4,xmm0 pmulhw xmm4,[rel PW_F1847] ; xmm4=z5 pmulhw xmm6,[rel PW_MF1613] pmulhw xmm0,[rel PW_F1082] psubw xmm6,xmm7 psubw xmm0,xmm4 ; xmm0=tmp10 paddw xmm6,xmm4 ; xmm6=tmp12 ; -- Final output stage psubw xmm6,xmm5 ; xmm6=tmp6 movdqa xmm7,xmm1 movdqa xmm4,xmm3 paddw xmm1,xmm5 ; xmm1=data0=(00 10 20 30 40 50 60 70) paddw xmm3,xmm6 ; xmm3=data1=(01 11 21 31 41 51 61 71) psraw xmm1,(PASS1_BITS+3) ; descale psraw xmm3,(PASS1_BITS+3) ; descale psubw xmm7,xmm5 ; xmm7=data7=(07 17 27 37 47 57 67 77) psubw xmm4,xmm6 ; xmm4=data6=(06 16 26 36 46 56 66 76) psraw xmm7,(PASS1_BITS+3) ; descale psraw xmm4,(PASS1_BITS+3) ; descale psubw xmm2,xmm6 ; xmm2=tmp5 packsswb xmm1,xmm4 ; xmm1=(00 10 20 30 40 50 60 70 06 16 26 36 46 56 66 76) packsswb xmm3,xmm7 ; xmm3=(01 11 21 31 41 51 61 71 07 17 27 37 47 57 67 77) movdqa xmm5, XMMWORD [wk(1)] ; xmm5=tmp2 movdqa xmm6, XMMWORD [wk(0)] ; xmm6=tmp3 paddw xmm0,xmm2 ; xmm0=tmp4 movdqa xmm4,xmm5 movdqa xmm7,xmm6 paddw xmm5,xmm2 ; xmm5=data2=(02 12 22 32 42 52 62 72) paddw xmm6,xmm0 ; xmm6=data4=(04 14 24 34 44 54 64 74) psraw xmm5,(PASS1_BITS+3) ; descale psraw xmm6,(PASS1_BITS+3) ; descale psubw xmm4,xmm2 ; xmm4=data5=(05 15 25 35 45 55 65 75) psubw xmm7,xmm0 ; xmm7=data3=(03 13 23 33 43 53 63 73) psraw xmm4,(PASS1_BITS+3) ; descale psraw xmm7,(PASS1_BITS+3) ; descale movdqa xmm2,[rel PB_CENTERJSAMP] ; xmm2=[rel PB_CENTERJSAMP] packsswb xmm5,xmm6 ; xmm5=(02 12 22 32 42 52 62 72 04 14 24 34 44 54 64 74) packsswb xmm7,xmm4 ; xmm7=(03 13 23 33 43 53 63 73 05 15 25 35 45 55 65 75) paddb xmm1,xmm2 paddb xmm3,xmm2 paddb xmm5,xmm2 paddb xmm7,xmm2 movdqa xmm0,xmm1 ; transpose coefficients(phase 1) punpcklbw xmm1,xmm3 ; xmm1=(00 01 10 11 20 21 30 31 40 41 50 51 60 61 70 71) punpckhbw xmm0,xmm3 ; xmm0=(06 07 16 17 26 27 36 37 46 47 56 57 66 67 76 77) movdqa xmm6,xmm5 ; transpose coefficients(phase 1) punpcklbw xmm5,xmm7 ; xmm5=(02 03 12 13 22 23 32 33 42 43 52 53 62 63 72 73) punpckhbw xmm6,xmm7 ; xmm6=(04 05 14 15 24 25 34 35 44 45 54 55 64 65 74 75) movdqa xmm4,xmm1 ; transpose coefficients(phase 2) punpcklwd xmm1,xmm5 ; xmm1=(00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 33) punpckhwd xmm4,xmm5 ; xmm4=(40 41 42 43 50 51 52 53 60 61 62 63 70 71 72 73) movdqa xmm2,xmm6 ; transpose coefficients(phase 2) punpcklwd xmm6,xmm0 ; xmm6=(04 05 06 07 14 15 16 17 24 25 26 27 34 35 36 37) punpckhwd xmm2,xmm0 ; xmm2=(44 45 46 47 54 55 56 57 64 65 66 67 74 75 76 77) movdqa xmm3,xmm1 ; transpose coefficients(phase 3) punpckldq xmm1,xmm6 ; xmm1=(00 01 02 03 04 05 06 07 10 11 12 13 14 15 16 17) punpckhdq xmm3,xmm6 ; xmm3=(20 21 22 23 24 25 26 27 30 31 32 33 34 35 36 37) movdqa xmm7,xmm4 ; transpose coefficients(phase 3) punpckldq xmm4,xmm2 ; xmm4=(40 41 42 43 44 45 46 47 50 51 52 53 54 55 56 57) punpckhdq xmm7,xmm2 ; xmm7=(60 61 62 63 64 65 66 67 70 71 72 73 74 75 76 77) pshufd xmm5,xmm1,0x4E ; xmm5=(10 11 12 13 14 15 16 17 00 01 02 03 04 05 06 07) pshufd xmm0,xmm3,0x4E ; xmm0=(30 31 32 33 34 35 36 37 20 21 22 23 24 25 26 27) pshufd xmm6,xmm4,0x4E ; xmm6=(50 51 52 53 54 55 56 57 40 41 42 43 44 45 46 47) pshufd xmm2,xmm7,0x4E ; xmm2=(70 71 72 73 74 75 76 77 60 61 62 63 64 65 66 67) mov rdx, JSAMPROW [rdi+0*SIZEOF_JSAMPROW] mov rsi, JSAMPROW [rdi+2*SIZEOF_JSAMPROW] movq XMM_MMWORD [rdx+rax*SIZEOF_JSAMPLE], xmm1 movq XMM_MMWORD [rsi+rax*SIZEOF_JSAMPLE], xmm3 mov rdx, JSAMPROW [rdi+4*SIZEOF_JSAMPROW] mov rsi, JSAMPROW [rdi+6*SIZEOF_JSAMPROW] movq XMM_MMWORD [rdx+rax*SIZEOF_JSAMPLE], xmm4 movq XMM_MMWORD [rsi+rax*SIZEOF_JSAMPLE], xmm7 mov rdx, JSAMPROW [rdi+1*SIZEOF_JSAMPROW] mov rsi, JSAMPROW [rdi+3*SIZEOF_JSAMPROW] movq XMM_MMWORD [rdx+rax*SIZEOF_JSAMPLE], xmm5 movq XMM_MMWORD [rsi+rax*SIZEOF_JSAMPLE], xmm0 mov rdx, JSAMPROW [rdi+5*SIZEOF_JSAMPROW] mov rsi, JSAMPROW [rdi+7*SIZEOF_JSAMPROW] movq XMM_MMWORD [rdx+rax*SIZEOF_JSAMPLE], xmm6 movq XMM_MMWORD [rsi+rax*SIZEOF_JSAMPLE], xmm2 uncollect_args mov rsp,rbp ; rsp <- aligned rbp pop rsp ; rsp <- original rbp pop rbp ret ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 16 libjpeg-turbo-1.4.2/simd/CMakeLists.txt0000755000076500007650000000545412600050400014710 00000000000000if(NOT DEFINED NASM) set(NASM nasm CACHE PATH "Path to NASM/YASM executable") endif() if(SIMD_X86_64) set(NAFLAGS -fwin64 -DWIN64 -D__x86_64__) else() if(BORLAND) set(NAFLAGS -fobj -DOBJ32) else() set(NAFLAGS -fwin32 -DWIN32) endif() endif() set(NAFLAGS ${NAFLAGS} -I${CMAKE_SOURCE_DIR}/win/ -I${CMAKE_CURRENT_SOURCE_DIR}/) # This only works if building from the command line. There is currently no way # to set a variable's value based on the build type when using the MSVC IDE. if(CMAKE_BUILD_TYPE STREQUAL "Debug" OR CMAKE_BUILD_TYPE STREQUAL "RelWithDebInfo") set(NAFLAGS ${NAFLAGS} -g) endif() if(SIMD_X86_64) set(SIMD_BASENAMES jfdctflt-sse-64 jccolor-sse2-64 jcgray-sse2-64 jcsample-sse2-64 jdcolor-sse2-64 jdmerge-sse2-64 jdsample-sse2-64 jfdctfst-sse2-64 jfdctint-sse2-64 jidctflt-sse2-64 jidctfst-sse2-64 jidctint-sse2-64 jidctred-sse2-64 jquantf-sse2-64 jquanti-sse2-64) message(STATUS "Building x86_64 SIMD extensions") else() set(SIMD_BASENAMES jsimdcpu jfdctflt-3dn jidctflt-3dn jquant-3dn jccolor-mmx jcgray-mmx jcsample-mmx jdcolor-mmx jdmerge-mmx jdsample-mmx jfdctfst-mmx jfdctint-mmx jidctfst-mmx jidctint-mmx jidctred-mmx jquant-mmx jfdctflt-sse jidctflt-sse jquant-sse jccolor-sse2 jcgray-sse2 jcsample-sse2 jdcolor-sse2 jdmerge-sse2 jdsample-sse2 jfdctfst-sse2 jfdctint-sse2 jidctflt-sse2 jidctfst-sse2 jidctint-sse2 jidctred-sse2 jquantf-sse2 jquanti-sse2) message(STATUS "Building i386 SIMD extensions") endif() if(MSVC_IDE) set(OBJDIR "${CMAKE_CURRENT_BINARY_DIR}/${CMAKE_CFG_INTDIR}") else() set(OBJDIR ${CMAKE_CURRENT_BINARY_DIR}) endif() file(GLOB INC_FILES *.inc) foreach(file ${SIMD_BASENAMES}) set(DEPFILE "") set(SIMD_SRC ${CMAKE_CURRENT_SOURCE_DIR}/${file}.asm) if(${file} MATCHES jccolor) set(DEPFILE ${file}) string(REGEX REPLACE "jccolor" "jccolext" DEPFILE ${DEPFILE}) set(DEPFILE ${CMAKE_CURRENT_SOURCE_DIR}/${DEPFILE}.asm) endif() if(${file} MATCHES jcgray) set(DEPFILE ${file}) string(REGEX REPLACE "jcgray" "jcgryext" DEPFILE ${DEPFILE}) set(DEPFILE ${CMAKE_CURRENT_SOURCE_DIR}/${DEPFILE}.asm) endif() if(${file} MATCHES jdcolor) set(DEPFILE ${file}) string(REGEX REPLACE "jdcolor" "jdcolext" DEPFILE ${DEPFILE}) set(DEPFILE ${CMAKE_CURRENT_SOURCE_DIR}/${DEPFILE}.asm) endif() if(${file} MATCHES jdmerge) set(DEPFILE ${file}) string(REGEX REPLACE "jdmerge" "jdmrgext" DEPFILE ${DEPFILE}) set(DEPFILE ${CMAKE_CURRENT_SOURCE_DIR}/${DEPFILE}.asm) endif() set(SIMD_OBJ ${OBJDIR}/${file}.obj) add_custom_command(OUTPUT ${SIMD_OBJ} DEPENDS ${SIMD_SRC} ${DEPFILE} ${INC_FILES} COMMAND ${NASM} ${NAFLAGS} ${SIMD_SRC} -o${SIMD_OBJ}) set(SIMD_OBJS ${SIMD_OBJS} ${SIMD_OBJ}) endforeach() set(SIMD_OBJS ${SIMD_OBJS} PARENT_SCOPE) add_custom_target(simd DEPENDS ${SIMD_OBJS}) libjpeg-turbo-1.4.2/simd/jccolor-sse2.asm0000644000076500007650000000714512600050400015153 00000000000000; ; jccolor.asm - colorspace conversion (SSE2) ; ; x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; Copyright (C) 2009, D. R. Commander. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; [TAB8] %include "jsimdext.inc" ; -------------------------------------------------------------------------- %define SCALEBITS 16 F_0_081 equ 5329 ; FIX(0.08131) F_0_114 equ 7471 ; FIX(0.11400) F_0_168 equ 11059 ; FIX(0.16874) F_0_250 equ 16384 ; FIX(0.25000) F_0_299 equ 19595 ; FIX(0.29900) F_0_331 equ 21709 ; FIX(0.33126) F_0_418 equ 27439 ; FIX(0.41869) F_0_587 equ 38470 ; FIX(0.58700) F_0_337 equ (F_0_587 - F_0_250) ; FIX(0.58700) - FIX(0.25000) ; -------------------------------------------------------------------------- SECTION SEG_CONST alignz 16 global EXTN(jconst_rgb_ycc_convert_sse2) EXTN(jconst_rgb_ycc_convert_sse2): PW_F0299_F0337 times 4 dw F_0_299, F_0_337 PW_F0114_F0250 times 4 dw F_0_114, F_0_250 PW_MF016_MF033 times 4 dw -F_0_168,-F_0_331 PW_MF008_MF041 times 4 dw -F_0_081,-F_0_418 PD_ONEHALFM1_CJ times 4 dd (1 << (SCALEBITS-1)) - 1 + (CENTERJSAMPLE << SCALEBITS) PD_ONEHALF times 4 dd (1 << (SCALEBITS-1)) alignz 16 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 32 %include "jccolext-sse2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_RGB_RED %define RGB_GREEN EXT_RGB_GREEN %define RGB_BLUE EXT_RGB_BLUE %define RGB_PIXELSIZE EXT_RGB_PIXELSIZE %define jsimd_rgb_ycc_convert_sse2 jsimd_extrgb_ycc_convert_sse2 %include "jccolext-sse2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_RGBX_RED %define RGB_GREEN EXT_RGBX_GREEN %define RGB_BLUE EXT_RGBX_BLUE %define RGB_PIXELSIZE EXT_RGBX_PIXELSIZE %define jsimd_rgb_ycc_convert_sse2 jsimd_extrgbx_ycc_convert_sse2 %include "jccolext-sse2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_BGR_RED %define RGB_GREEN EXT_BGR_GREEN %define RGB_BLUE EXT_BGR_BLUE %define RGB_PIXELSIZE EXT_BGR_PIXELSIZE %define jsimd_rgb_ycc_convert_sse2 jsimd_extbgr_ycc_convert_sse2 %include "jccolext-sse2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_BGRX_RED %define RGB_GREEN EXT_BGRX_GREEN %define RGB_BLUE EXT_BGRX_BLUE %define RGB_PIXELSIZE EXT_BGRX_PIXELSIZE %define jsimd_rgb_ycc_convert_sse2 jsimd_extbgrx_ycc_convert_sse2 %include "jccolext-sse2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_XBGR_RED %define RGB_GREEN EXT_XBGR_GREEN %define RGB_BLUE EXT_XBGR_BLUE %define RGB_PIXELSIZE EXT_XBGR_PIXELSIZE %define jsimd_rgb_ycc_convert_sse2 jsimd_extxbgr_ycc_convert_sse2 %include "jccolext-sse2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_XRGB_RED %define RGB_GREEN EXT_XRGB_GREEN %define RGB_BLUE EXT_XRGB_BLUE %define RGB_PIXELSIZE EXT_XRGB_PIXELSIZE %define jsimd_rgb_ycc_convert_sse2 jsimd_extxrgb_ycc_convert_sse2 %include "jccolext-sse2.asm" libjpeg-turbo-1.4.2/simd/jsimdcpu.asm0000644000076500007650000000556712600050400014472 00000000000000; ; jsimdcpu.asm - SIMD instruction support check ; ; Copyright 2009 Pierre Ossman for Cendio AB ; ; Based on ; x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; [TAB8] %include "jsimdext.inc" ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 32 ; ; Check if the CPU supports SIMD instructions ; ; GLOBAL(unsigned int) ; jpeg_simd_cpu_support (void) ; align 16 global EXTN(jpeg_simd_cpu_support) EXTN(jpeg_simd_cpu_support): push ebx ; push ecx ; need not be preserved ; push edx ; need not be preserved ; push esi ; unused push edi xor edi,edi ; simd support flag pushfd pop eax mov edx,eax xor eax, 1<<21 ; flip ID bit in EFLAGS push eax popfd pushfd pop eax xor eax,edx jz short .return ; CPUID is not supported ; Check for MMX instruction support xor eax,eax cpuid test eax,eax jz short .return xor eax,eax inc eax cpuid mov eax,edx ; eax = Standard feature flags test eax, 1<<23 ; bit23:MMX jz short .no_mmx or edi, byte JSIMD_MMX .no_mmx: test eax, 1<<25 ; bit25:SSE jz short .no_sse or edi, byte JSIMD_SSE .no_sse: test eax, 1<<26 ; bit26:SSE2 jz short .no_sse2 or edi, byte JSIMD_SSE2 .no_sse2: ; Check for 3DNow! instruction support mov eax, 0x80000000 cpuid cmp eax, 0x80000000 jbe short .return mov eax, 0x80000001 cpuid mov eax,edx ; eax = Extended feature flags test eax, 1<<31 ; bit31:3DNow!(vendor independent) jz short .no_3dnow or edi, byte JSIMD_3DNOW .no_3dnow: .return: mov eax,edi pop edi ; pop esi ; unused ; pop edx ; need not be preserved ; pop ecx ; need not be preserved pop ebx ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 16 libjpeg-turbo-1.4.2/simd/jfdctflt-sse.asm0000644000076500007650000003525712600050400015243 00000000000000; ; jfdctflt.asm - floating-point FDCT (SSE) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; ; Based on ; x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; This file contains a floating-point implementation of the forward DCT ; (Discrete Cosine Transform). The following code is based directly on ; the IJG's original jfdctflt.c; see the jfdctflt.c for more details. ; ; [TAB8] %include "jsimdext.inc" %include "jdct.inc" ; -------------------------------------------------------------------------- %macro unpcklps2 2 ; %1=(0 1 2 3) / %2=(4 5 6 7) => %1=(0 1 4 5) shufps %1,%2,0x44 %endmacro %macro unpckhps2 2 ; %1=(0 1 2 3) / %2=(4 5 6 7) => %1=(2 3 6 7) shufps %1,%2,0xEE %endmacro ; -------------------------------------------------------------------------- SECTION SEG_CONST alignz 16 global EXTN(jconst_fdct_float_sse) EXTN(jconst_fdct_float_sse): PD_0_382 times 4 dd 0.382683432365089771728460 PD_0_707 times 4 dd 0.707106781186547524400844 PD_0_541 times 4 dd 0.541196100146196984399723 PD_1_306 times 4 dd 1.306562964876376527856643 alignz 16 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 32 ; ; Perform the forward DCT on one block of samples. ; ; GLOBAL(void) ; jsimd_fdct_float_sse (FAST_FLOAT * data) ; %define data(b) (b)+8 ; FAST_FLOAT * data %define original_ebp ebp+0 %define wk(i) ebp-(WK_NUM-(i))*SIZEOF_XMMWORD ; xmmword wk[WK_NUM] %define WK_NUM 2 align 16 global EXTN(jsimd_fdct_float_sse) EXTN(jsimd_fdct_float_sse): push ebp mov eax,esp ; eax = original ebp sub esp, byte 4 and esp, byte (-SIZEOF_XMMWORD) ; align to 128 bits mov [esp],eax mov ebp,esp ; ebp = aligned ebp lea esp, [wk(0)] pushpic ebx ; push ecx ; need not be preserved ; push edx ; need not be preserved ; push esi ; unused ; push edi ; unused get_GOT ebx ; get GOT address ; ---- Pass 1: process rows. mov edx, POINTER [data(eax)] ; (FAST_FLOAT *) mov ecx, DCTSIZE/4 alignx 16,7 .rowloop: movaps xmm0, XMMWORD [XMMBLOCK(2,0,edx,SIZEOF_FAST_FLOAT)] movaps xmm1, XMMWORD [XMMBLOCK(3,0,edx,SIZEOF_FAST_FLOAT)] movaps xmm2, XMMWORD [XMMBLOCK(2,1,edx,SIZEOF_FAST_FLOAT)] movaps xmm3, XMMWORD [XMMBLOCK(3,1,edx,SIZEOF_FAST_FLOAT)] ; xmm0=(20 21 22 23), xmm2=(24 25 26 27) ; xmm1=(30 31 32 33), xmm3=(34 35 36 37) movaps xmm4,xmm0 ; transpose coefficients(phase 1) unpcklps xmm0,xmm1 ; xmm0=(20 30 21 31) unpckhps xmm4,xmm1 ; xmm4=(22 32 23 33) movaps xmm5,xmm2 ; transpose coefficients(phase 1) unpcklps xmm2,xmm3 ; xmm2=(24 34 25 35) unpckhps xmm5,xmm3 ; xmm5=(26 36 27 37) movaps xmm6, XMMWORD [XMMBLOCK(0,0,edx,SIZEOF_FAST_FLOAT)] movaps xmm7, XMMWORD [XMMBLOCK(1,0,edx,SIZEOF_FAST_FLOAT)] movaps xmm1, XMMWORD [XMMBLOCK(0,1,edx,SIZEOF_FAST_FLOAT)] movaps xmm3, XMMWORD [XMMBLOCK(1,1,edx,SIZEOF_FAST_FLOAT)] ; xmm6=(00 01 02 03), xmm1=(04 05 06 07) ; xmm7=(10 11 12 13), xmm3=(14 15 16 17) movaps XMMWORD [wk(0)], xmm4 ; wk(0)=(22 32 23 33) movaps XMMWORD [wk(1)], xmm2 ; wk(1)=(24 34 25 35) movaps xmm4,xmm6 ; transpose coefficients(phase 1) unpcklps xmm6,xmm7 ; xmm6=(00 10 01 11) unpckhps xmm4,xmm7 ; xmm4=(02 12 03 13) movaps xmm2,xmm1 ; transpose coefficients(phase 1) unpcklps xmm1,xmm3 ; xmm1=(04 14 05 15) unpckhps xmm2,xmm3 ; xmm2=(06 16 07 17) movaps xmm7,xmm6 ; transpose coefficients(phase 2) unpcklps2 xmm6,xmm0 ; xmm6=(00 10 20 30)=data0 unpckhps2 xmm7,xmm0 ; xmm7=(01 11 21 31)=data1 movaps xmm3,xmm2 ; transpose coefficients(phase 2) unpcklps2 xmm2,xmm5 ; xmm2=(06 16 26 36)=data6 unpckhps2 xmm3,xmm5 ; xmm3=(07 17 27 37)=data7 movaps xmm0,xmm7 movaps xmm5,xmm6 subps xmm7,xmm2 ; xmm7=data1-data6=tmp6 subps xmm6,xmm3 ; xmm6=data0-data7=tmp7 addps xmm0,xmm2 ; xmm0=data1+data6=tmp1 addps xmm5,xmm3 ; xmm5=data0+data7=tmp0 movaps xmm2, XMMWORD [wk(0)] ; xmm2=(22 32 23 33) movaps xmm3, XMMWORD [wk(1)] ; xmm3=(24 34 25 35) movaps XMMWORD [wk(0)], xmm7 ; wk(0)=tmp6 movaps XMMWORD [wk(1)], xmm6 ; wk(1)=tmp7 movaps xmm7,xmm4 ; transpose coefficients(phase 2) unpcklps2 xmm4,xmm2 ; xmm4=(02 12 22 32)=data2 unpckhps2 xmm7,xmm2 ; xmm7=(03 13 23 33)=data3 movaps xmm6,xmm1 ; transpose coefficients(phase 2) unpcklps2 xmm1,xmm3 ; xmm1=(04 14 24 34)=data4 unpckhps2 xmm6,xmm3 ; xmm6=(05 15 25 35)=data5 movaps xmm2,xmm7 movaps xmm3,xmm4 addps xmm7,xmm1 ; xmm7=data3+data4=tmp3 addps xmm4,xmm6 ; xmm4=data2+data5=tmp2 subps xmm2,xmm1 ; xmm2=data3-data4=tmp4 subps xmm3,xmm6 ; xmm3=data2-data5=tmp5 ; -- Even part movaps xmm1,xmm5 movaps xmm6,xmm0 subps xmm5,xmm7 ; xmm5=tmp13 subps xmm0,xmm4 ; xmm0=tmp12 addps xmm1,xmm7 ; xmm1=tmp10 addps xmm6,xmm4 ; xmm6=tmp11 addps xmm0,xmm5 mulps xmm0,[GOTOFF(ebx,PD_0_707)] ; xmm0=z1 movaps xmm7,xmm1 movaps xmm4,xmm5 subps xmm1,xmm6 ; xmm1=data4 subps xmm5,xmm0 ; xmm5=data6 addps xmm7,xmm6 ; xmm7=data0 addps xmm4,xmm0 ; xmm4=data2 movaps XMMWORD [XMMBLOCK(0,1,edx,SIZEOF_FAST_FLOAT)], xmm1 movaps XMMWORD [XMMBLOCK(2,1,edx,SIZEOF_FAST_FLOAT)], xmm5 movaps XMMWORD [XMMBLOCK(0,0,edx,SIZEOF_FAST_FLOAT)], xmm7 movaps XMMWORD [XMMBLOCK(2,0,edx,SIZEOF_FAST_FLOAT)], xmm4 ; -- Odd part movaps xmm6, XMMWORD [wk(0)] ; xmm6=tmp6 movaps xmm0, XMMWORD [wk(1)] ; xmm0=tmp7 addps xmm2,xmm3 ; xmm2=tmp10 addps xmm3,xmm6 ; xmm3=tmp11 addps xmm6,xmm0 ; xmm6=tmp12, xmm0=tmp7 mulps xmm3,[GOTOFF(ebx,PD_0_707)] ; xmm3=z3 movaps xmm1,xmm2 ; xmm1=tmp10 subps xmm2,xmm6 mulps xmm2,[GOTOFF(ebx,PD_0_382)] ; xmm2=z5 mulps xmm1,[GOTOFF(ebx,PD_0_541)] ; xmm1=MULTIPLY(tmp10,FIX_0_541196) mulps xmm6,[GOTOFF(ebx,PD_1_306)] ; xmm6=MULTIPLY(tmp12,FIX_1_306562) addps xmm1,xmm2 ; xmm1=z2 addps xmm6,xmm2 ; xmm6=z4 movaps xmm5,xmm0 subps xmm0,xmm3 ; xmm0=z13 addps xmm5,xmm3 ; xmm5=z11 movaps xmm7,xmm0 movaps xmm4,xmm5 subps xmm0,xmm1 ; xmm0=data3 subps xmm5,xmm6 ; xmm5=data7 addps xmm7,xmm1 ; xmm7=data5 addps xmm4,xmm6 ; xmm4=data1 movaps XMMWORD [XMMBLOCK(3,0,edx,SIZEOF_FAST_FLOAT)], xmm0 movaps XMMWORD [XMMBLOCK(3,1,edx,SIZEOF_FAST_FLOAT)], xmm5 movaps XMMWORD [XMMBLOCK(1,1,edx,SIZEOF_FAST_FLOAT)], xmm7 movaps XMMWORD [XMMBLOCK(1,0,edx,SIZEOF_FAST_FLOAT)], xmm4 add edx, 4*DCTSIZE*SIZEOF_FAST_FLOAT dec ecx jnz near .rowloop ; ---- Pass 2: process columns. mov edx, POINTER [data(eax)] ; (FAST_FLOAT *) mov ecx, DCTSIZE/4 alignx 16,7 .columnloop: movaps xmm0, XMMWORD [XMMBLOCK(2,0,edx,SIZEOF_FAST_FLOAT)] movaps xmm1, XMMWORD [XMMBLOCK(3,0,edx,SIZEOF_FAST_FLOAT)] movaps xmm2, XMMWORD [XMMBLOCK(6,0,edx,SIZEOF_FAST_FLOAT)] movaps xmm3, XMMWORD [XMMBLOCK(7,0,edx,SIZEOF_FAST_FLOAT)] ; xmm0=(02 12 22 32), xmm2=(42 52 62 72) ; xmm1=(03 13 23 33), xmm3=(43 53 63 73) movaps xmm4,xmm0 ; transpose coefficients(phase 1) unpcklps xmm0,xmm1 ; xmm0=(02 03 12 13) unpckhps xmm4,xmm1 ; xmm4=(22 23 32 33) movaps xmm5,xmm2 ; transpose coefficients(phase 1) unpcklps xmm2,xmm3 ; xmm2=(42 43 52 53) unpckhps xmm5,xmm3 ; xmm5=(62 63 72 73) movaps xmm6, XMMWORD [XMMBLOCK(0,0,edx,SIZEOF_FAST_FLOAT)] movaps xmm7, XMMWORD [XMMBLOCK(1,0,edx,SIZEOF_FAST_FLOAT)] movaps xmm1, XMMWORD [XMMBLOCK(4,0,edx,SIZEOF_FAST_FLOAT)] movaps xmm3, XMMWORD [XMMBLOCK(5,0,edx,SIZEOF_FAST_FLOAT)] ; xmm6=(00 10 20 30), xmm1=(40 50 60 70) ; xmm7=(01 11 21 31), xmm3=(41 51 61 71) movaps XMMWORD [wk(0)], xmm4 ; wk(0)=(22 23 32 33) movaps XMMWORD [wk(1)], xmm2 ; wk(1)=(42 43 52 53) movaps xmm4,xmm6 ; transpose coefficients(phase 1) unpcklps xmm6,xmm7 ; xmm6=(00 01 10 11) unpckhps xmm4,xmm7 ; xmm4=(20 21 30 31) movaps xmm2,xmm1 ; transpose coefficients(phase 1) unpcklps xmm1,xmm3 ; xmm1=(40 41 50 51) unpckhps xmm2,xmm3 ; xmm2=(60 61 70 71) movaps xmm7,xmm6 ; transpose coefficients(phase 2) unpcklps2 xmm6,xmm0 ; xmm6=(00 01 02 03)=data0 unpckhps2 xmm7,xmm0 ; xmm7=(10 11 12 13)=data1 movaps xmm3,xmm2 ; transpose coefficients(phase 2) unpcklps2 xmm2,xmm5 ; xmm2=(60 61 62 63)=data6 unpckhps2 xmm3,xmm5 ; xmm3=(70 71 72 73)=data7 movaps xmm0,xmm7 movaps xmm5,xmm6 subps xmm7,xmm2 ; xmm7=data1-data6=tmp6 subps xmm6,xmm3 ; xmm6=data0-data7=tmp7 addps xmm0,xmm2 ; xmm0=data1+data6=tmp1 addps xmm5,xmm3 ; xmm5=data0+data7=tmp0 movaps xmm2, XMMWORD [wk(0)] ; xmm2=(22 23 32 33) movaps xmm3, XMMWORD [wk(1)] ; xmm3=(42 43 52 53) movaps XMMWORD [wk(0)], xmm7 ; wk(0)=tmp6 movaps XMMWORD [wk(1)], xmm6 ; wk(1)=tmp7 movaps xmm7,xmm4 ; transpose coefficients(phase 2) unpcklps2 xmm4,xmm2 ; xmm4=(20 21 22 23)=data2 unpckhps2 xmm7,xmm2 ; xmm7=(30 31 32 33)=data3 movaps xmm6,xmm1 ; transpose coefficients(phase 2) unpcklps2 xmm1,xmm3 ; xmm1=(40 41 42 43)=data4 unpckhps2 xmm6,xmm3 ; xmm6=(50 51 52 53)=data5 movaps xmm2,xmm7 movaps xmm3,xmm4 addps xmm7,xmm1 ; xmm7=data3+data4=tmp3 addps xmm4,xmm6 ; xmm4=data2+data5=tmp2 subps xmm2,xmm1 ; xmm2=data3-data4=tmp4 subps xmm3,xmm6 ; xmm3=data2-data5=tmp5 ; -- Even part movaps xmm1,xmm5 movaps xmm6,xmm0 subps xmm5,xmm7 ; xmm5=tmp13 subps xmm0,xmm4 ; xmm0=tmp12 addps xmm1,xmm7 ; xmm1=tmp10 addps xmm6,xmm4 ; xmm6=tmp11 addps xmm0,xmm5 mulps xmm0,[GOTOFF(ebx,PD_0_707)] ; xmm0=z1 movaps xmm7,xmm1 movaps xmm4,xmm5 subps xmm1,xmm6 ; xmm1=data4 subps xmm5,xmm0 ; xmm5=data6 addps xmm7,xmm6 ; xmm7=data0 addps xmm4,xmm0 ; xmm4=data2 movaps XMMWORD [XMMBLOCK(4,0,edx,SIZEOF_FAST_FLOAT)], xmm1 movaps XMMWORD [XMMBLOCK(6,0,edx,SIZEOF_FAST_FLOAT)], xmm5 movaps XMMWORD [XMMBLOCK(0,0,edx,SIZEOF_FAST_FLOAT)], xmm7 movaps XMMWORD [XMMBLOCK(2,0,edx,SIZEOF_FAST_FLOAT)], xmm4 ; -- Odd part movaps xmm6, XMMWORD [wk(0)] ; xmm6=tmp6 movaps xmm0, XMMWORD [wk(1)] ; xmm0=tmp7 addps xmm2,xmm3 ; xmm2=tmp10 addps xmm3,xmm6 ; xmm3=tmp11 addps xmm6,xmm0 ; xmm6=tmp12, xmm0=tmp7 mulps xmm3,[GOTOFF(ebx,PD_0_707)] ; xmm3=z3 movaps xmm1,xmm2 ; xmm1=tmp10 subps xmm2,xmm6 mulps xmm2,[GOTOFF(ebx,PD_0_382)] ; xmm2=z5 mulps xmm1,[GOTOFF(ebx,PD_0_541)] ; xmm1=MULTIPLY(tmp10,FIX_0_541196) mulps xmm6,[GOTOFF(ebx,PD_1_306)] ; xmm6=MULTIPLY(tmp12,FIX_1_306562) addps xmm1,xmm2 ; xmm1=z2 addps xmm6,xmm2 ; xmm6=z4 movaps xmm5,xmm0 subps xmm0,xmm3 ; xmm0=z13 addps xmm5,xmm3 ; xmm5=z11 movaps xmm7,xmm0 movaps xmm4,xmm5 subps xmm0,xmm1 ; xmm0=data3 subps xmm5,xmm6 ; xmm5=data7 addps xmm7,xmm1 ; xmm7=data5 addps xmm4,xmm6 ; xmm4=data1 movaps XMMWORD [XMMBLOCK(3,0,edx,SIZEOF_FAST_FLOAT)], xmm0 movaps XMMWORD [XMMBLOCK(7,0,edx,SIZEOF_FAST_FLOAT)], xmm5 movaps XMMWORD [XMMBLOCK(5,0,edx,SIZEOF_FAST_FLOAT)], xmm7 movaps XMMWORD [XMMBLOCK(1,0,edx,SIZEOF_FAST_FLOAT)], xmm4 add edx, byte 4*SIZEOF_FAST_FLOAT dec ecx jnz near .columnloop ; pop edi ; unused ; pop esi ; unused ; pop edx ; need not be preserved ; pop ecx ; need not be preserved poppic ebx mov esp,ebp ; esp <- aligned ebp pop esp ; esp <- original ebp pop ebp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 16 libjpeg-turbo-1.4.2/simd/jcgryext-sse2.asm0000644000076500007650000003400612600050400015353 00000000000000; ; jcgryext.asm - grayscale colorspace conversion (SSE2) ; ; x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; Copyright (C) 2011, D. R. Commander. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; [TAB8] %include "jcolsamp.inc" ; -------------------------------------------------------------------------- ; ; Convert some rows of samples to the output colorspace. ; ; GLOBAL(void) ; jsimd_rgb_gray_convert_sse2 (JDIMENSION img_width, ; JSAMPARRAY input_buf, JSAMPIMAGE output_buf, ; JDIMENSION output_row, int num_rows); ; %define img_width(b) (b)+8 ; JDIMENSION img_width %define input_buf(b) (b)+12 ; JSAMPARRAY input_buf %define output_buf(b) (b)+16 ; JSAMPIMAGE output_buf %define output_row(b) (b)+20 ; JDIMENSION output_row %define num_rows(b) (b)+24 ; int num_rows %define original_ebp ebp+0 %define wk(i) ebp-(WK_NUM-(i))*SIZEOF_XMMWORD ; xmmword wk[WK_NUM] %define WK_NUM 2 %define gotptr wk(0)-SIZEOF_POINTER ; void * gotptr align 16 global EXTN(jsimd_rgb_gray_convert_sse2) EXTN(jsimd_rgb_gray_convert_sse2): push ebp mov eax,esp ; eax = original ebp sub esp, byte 4 and esp, byte (-SIZEOF_XMMWORD) ; align to 128 bits mov [esp],eax mov ebp,esp ; ebp = aligned ebp lea esp, [wk(0)] pushpic eax ; make a room for GOT address push ebx ; push ecx ; need not be preserved ; push edx ; need not be preserved push esi push edi get_GOT ebx ; get GOT address movpic POINTER [gotptr], ebx ; save GOT address mov ecx, JDIMENSION [img_width(eax)] test ecx,ecx jz near .return push ecx mov esi, JSAMPIMAGE [output_buf(eax)] mov ecx, JDIMENSION [output_row(eax)] mov edi, JSAMPARRAY [esi+0*SIZEOF_JSAMPARRAY] lea edi, [edi+ecx*SIZEOF_JSAMPROW] pop ecx mov esi, JSAMPARRAY [input_buf(eax)] mov eax, INT [num_rows(eax)] test eax,eax jle near .return alignx 16,7 .rowloop: pushpic eax push edi push esi push ecx ; col mov esi, JSAMPROW [esi] ; inptr mov edi, JSAMPROW [edi] ; outptr0 movpic eax, POINTER [gotptr] ; load GOT address (eax) cmp ecx, byte SIZEOF_XMMWORD jae near .columnloop alignx 16,7 %if RGB_PIXELSIZE == 3 ; --------------- .column_ld1: push eax push edx lea ecx,[ecx+ecx*2] ; imul ecx,RGB_PIXELSIZE test cl, SIZEOF_BYTE jz short .column_ld2 sub ecx, byte SIZEOF_BYTE movzx eax, BYTE [esi+ecx] .column_ld2: test cl, SIZEOF_WORD jz short .column_ld4 sub ecx, byte SIZEOF_WORD movzx edx, WORD [esi+ecx] shl eax, WORD_BIT or eax,edx .column_ld4: movd xmmA,eax pop edx pop eax test cl, SIZEOF_DWORD jz short .column_ld8 sub ecx, byte SIZEOF_DWORD movd xmmF, XMM_DWORD [esi+ecx] pslldq xmmA, SIZEOF_DWORD por xmmA,xmmF .column_ld8: test cl, SIZEOF_MMWORD jz short .column_ld16 sub ecx, byte SIZEOF_MMWORD movq xmmB, XMM_MMWORD [esi+ecx] pslldq xmmA, SIZEOF_MMWORD por xmmA,xmmB .column_ld16: test cl, SIZEOF_XMMWORD jz short .column_ld32 movdqa xmmF,xmmA movdqu xmmA, XMMWORD [esi+0*SIZEOF_XMMWORD] mov ecx, SIZEOF_XMMWORD jmp short .rgb_gray_cnv .column_ld32: test cl, 2*SIZEOF_XMMWORD mov ecx, SIZEOF_XMMWORD jz short .rgb_gray_cnv movdqa xmmB,xmmA movdqu xmmA, XMMWORD [esi+0*SIZEOF_XMMWORD] movdqu xmmF, XMMWORD [esi+1*SIZEOF_XMMWORD] jmp short .rgb_gray_cnv alignx 16,7 .columnloop: movdqu xmmA, XMMWORD [esi+0*SIZEOF_XMMWORD] movdqu xmmF, XMMWORD [esi+1*SIZEOF_XMMWORD] movdqu xmmB, XMMWORD [esi+2*SIZEOF_XMMWORD] .rgb_gray_cnv: ; xmmA=(00 10 20 01 11 21 02 12 22 03 13 23 04 14 24 05) ; xmmF=(15 25 06 16 26 07 17 27 08 18 28 09 19 29 0A 1A) ; xmmB=(2A 0B 1B 2B 0C 1C 2C 0D 1D 2D 0E 1E 2E 0F 1F 2F) movdqa xmmG,xmmA pslldq xmmA,8 ; xmmA=(-- -- -- -- -- -- -- -- 00 10 20 01 11 21 02 12) psrldq xmmG,8 ; xmmG=(22 03 13 23 04 14 24 05 -- -- -- -- -- -- -- --) punpckhbw xmmA,xmmF ; xmmA=(00 08 10 18 20 28 01 09 11 19 21 29 02 0A 12 1A) pslldq xmmF,8 ; xmmF=(-- -- -- -- -- -- -- -- 15 25 06 16 26 07 17 27) punpcklbw xmmG,xmmB ; xmmG=(22 2A 03 0B 13 1B 23 2B 04 0C 14 1C 24 2C 05 0D) punpckhbw xmmF,xmmB ; xmmF=(15 1D 25 2D 06 0E 16 1E 26 2E 07 0F 17 1F 27 2F) movdqa xmmD,xmmA pslldq xmmA,8 ; xmmA=(-- -- -- -- -- -- -- -- 00 08 10 18 20 28 01 09) psrldq xmmD,8 ; xmmD=(11 19 21 29 02 0A 12 1A -- -- -- -- -- -- -- --) punpckhbw xmmA,xmmG ; xmmA=(00 04 08 0C 10 14 18 1C 20 24 28 2C 01 05 09 0D) pslldq xmmG,8 ; xmmG=(-- -- -- -- -- -- -- -- 22 2A 03 0B 13 1B 23 2B) punpcklbw xmmD,xmmF ; xmmD=(11 15 19 1D 21 25 29 2D 02 06 0A 0E 12 16 1A 1E) punpckhbw xmmG,xmmF ; xmmG=(22 26 2A 2E 03 07 0B 0F 13 17 1B 1F 23 27 2B 2F) movdqa xmmE,xmmA pslldq xmmA,8 ; xmmA=(-- -- -- -- -- -- -- -- 00 04 08 0C 10 14 18 1C) psrldq xmmE,8 ; xmmE=(20 24 28 2C 01 05 09 0D -- -- -- -- -- -- -- --) punpckhbw xmmA,xmmD ; xmmA=(00 02 04 06 08 0A 0C 0E 10 12 14 16 18 1A 1C 1E) pslldq xmmD,8 ; xmmD=(-- -- -- -- -- -- -- -- 11 15 19 1D 21 25 29 2D) punpcklbw xmmE,xmmG ; xmmE=(20 22 24 26 28 2A 2C 2E 01 03 05 07 09 0B 0D 0F) punpckhbw xmmD,xmmG ; xmmD=(11 13 15 17 19 1B 1D 1F 21 23 25 27 29 2B 2D 2F) pxor xmmH,xmmH movdqa xmmC,xmmA punpcklbw xmmA,xmmH ; xmmA=(00 02 04 06 08 0A 0C 0E) punpckhbw xmmC,xmmH ; xmmC=(10 12 14 16 18 1A 1C 1E) movdqa xmmB,xmmE punpcklbw xmmE,xmmH ; xmmE=(20 22 24 26 28 2A 2C 2E) punpckhbw xmmB,xmmH ; xmmB=(01 03 05 07 09 0B 0D 0F) movdqa xmmF,xmmD punpcklbw xmmD,xmmH ; xmmD=(11 13 15 17 19 1B 1D 1F) punpckhbw xmmF,xmmH ; xmmF=(21 23 25 27 29 2B 2D 2F) %else ; RGB_PIXELSIZE == 4 ; ----------- .column_ld1: test cl, SIZEOF_XMMWORD/16 jz short .column_ld2 sub ecx, byte SIZEOF_XMMWORD/16 movd xmmA, XMM_DWORD [esi+ecx*RGB_PIXELSIZE] .column_ld2: test cl, SIZEOF_XMMWORD/8 jz short .column_ld4 sub ecx, byte SIZEOF_XMMWORD/8 movq xmmE, XMM_MMWORD [esi+ecx*RGB_PIXELSIZE] pslldq xmmA, SIZEOF_MMWORD por xmmA,xmmE .column_ld4: test cl, SIZEOF_XMMWORD/4 jz short .column_ld8 sub ecx, byte SIZEOF_XMMWORD/4 movdqa xmmE,xmmA movdqu xmmA, XMMWORD [esi+ecx*RGB_PIXELSIZE] .column_ld8: test cl, SIZEOF_XMMWORD/2 mov ecx, SIZEOF_XMMWORD jz short .rgb_gray_cnv movdqa xmmF,xmmA movdqa xmmH,xmmE movdqu xmmA, XMMWORD [esi+0*SIZEOF_XMMWORD] movdqu xmmE, XMMWORD [esi+1*SIZEOF_XMMWORD] jmp short .rgb_gray_cnv alignx 16,7 .columnloop: movdqu xmmA, XMMWORD [esi+0*SIZEOF_XMMWORD] movdqu xmmE, XMMWORD [esi+1*SIZEOF_XMMWORD] movdqu xmmF, XMMWORD [esi+2*SIZEOF_XMMWORD] movdqu xmmH, XMMWORD [esi+3*SIZEOF_XMMWORD] .rgb_gray_cnv: ; xmmA=(00 10 20 30 01 11 21 31 02 12 22 32 03 13 23 33) ; xmmE=(04 14 24 34 05 15 25 35 06 16 26 36 07 17 27 37) ; xmmF=(08 18 28 38 09 19 29 39 0A 1A 2A 3A 0B 1B 2B 3B) ; xmmH=(0C 1C 2C 3C 0D 1D 2D 3D 0E 1E 2E 3E 0F 1F 2F 3F) movdqa xmmD,xmmA punpcklbw xmmA,xmmE ; xmmA=(00 04 10 14 20 24 30 34 01 05 11 15 21 25 31 35) punpckhbw xmmD,xmmE ; xmmD=(02 06 12 16 22 26 32 36 03 07 13 17 23 27 33 37) movdqa xmmC,xmmF punpcklbw xmmF,xmmH ; xmmF=(08 0C 18 1C 28 2C 38 3C 09 0D 19 1D 29 2D 39 3D) punpckhbw xmmC,xmmH ; xmmC=(0A 0E 1A 1E 2A 2E 3A 3E 0B 0F 1B 1F 2B 2F 3B 3F) movdqa xmmB,xmmA punpcklwd xmmA,xmmF ; xmmA=(00 04 08 0C 10 14 18 1C 20 24 28 2C 30 34 38 3C) punpckhwd xmmB,xmmF ; xmmB=(01 05 09 0D 11 15 19 1D 21 25 29 2D 31 35 39 3D) movdqa xmmG,xmmD punpcklwd xmmD,xmmC ; xmmD=(02 06 0A 0E 12 16 1A 1E 22 26 2A 2E 32 36 3A 3E) punpckhwd xmmG,xmmC ; xmmG=(03 07 0B 0F 13 17 1B 1F 23 27 2B 2F 33 37 3B 3F) movdqa xmmE,xmmA punpcklbw xmmA,xmmD ; xmmA=(00 02 04 06 08 0A 0C 0E 10 12 14 16 18 1A 1C 1E) punpckhbw xmmE,xmmD ; xmmE=(20 22 24 26 28 2A 2C 2E 30 32 34 36 38 3A 3C 3E) movdqa xmmH,xmmB punpcklbw xmmB,xmmG ; xmmB=(01 03 05 07 09 0B 0D 0F 11 13 15 17 19 1B 1D 1F) punpckhbw xmmH,xmmG ; xmmH=(21 23 25 27 29 2B 2D 2F 31 33 35 37 39 3B 3D 3F) pxor xmmF,xmmF movdqa xmmC,xmmA punpcklbw xmmA,xmmF ; xmmA=(00 02 04 06 08 0A 0C 0E) punpckhbw xmmC,xmmF ; xmmC=(10 12 14 16 18 1A 1C 1E) movdqa xmmD,xmmB punpcklbw xmmB,xmmF ; xmmB=(01 03 05 07 09 0B 0D 0F) punpckhbw xmmD,xmmF ; xmmD=(11 13 15 17 19 1B 1D 1F) movdqa xmmG,xmmE punpcklbw xmmE,xmmF ; xmmE=(20 22 24 26 28 2A 2C 2E) punpckhbw xmmG,xmmF ; xmmG=(30 32 34 36 38 3A 3C 3E) punpcklbw xmmF,xmmH punpckhbw xmmH,xmmH psrlw xmmF,BYTE_BIT ; xmmF=(21 23 25 27 29 2B 2D 2F) psrlw xmmH,BYTE_BIT ; xmmH=(31 33 35 37 39 3B 3D 3F) %endif ; RGB_PIXELSIZE ; --------------- ; xmm0=R(02468ACE)=RE, xmm2=G(02468ACE)=GE, xmm4=B(02468ACE)=BE ; xmm1=R(13579BDF)=RO, xmm3=G(13579BDF)=GO, xmm5=B(13579BDF)=BO ; (Original) ; Y = 0.29900 * R + 0.58700 * G + 0.11400 * B ; ; (This implementation) ; Y = 0.29900 * R + 0.33700 * G + 0.11400 * B + 0.25000 * G movdqa xmm6,xmm1 punpcklwd xmm1,xmm3 punpckhwd xmm6,xmm3 pmaddwd xmm1,[GOTOFF(eax,PW_F0299_F0337)] ; xmm1=ROL*FIX(0.299)+GOL*FIX(0.337) pmaddwd xmm6,[GOTOFF(eax,PW_F0299_F0337)] ; xmm6=ROH*FIX(0.299)+GOH*FIX(0.337) movdqa xmm7, xmm6 ; xmm7=ROH*FIX(0.299)+GOH*FIX(0.337) movdqa xmm6,xmm0 punpcklwd xmm0,xmm2 punpckhwd xmm6,xmm2 pmaddwd xmm0,[GOTOFF(eax,PW_F0299_F0337)] ; xmm0=REL*FIX(0.299)+GEL*FIX(0.337) pmaddwd xmm6,[GOTOFF(eax,PW_F0299_F0337)] ; xmm6=REH*FIX(0.299)+GEH*FIX(0.337) movdqa XMMWORD [wk(0)], xmm0 ; wk(0)=REL*FIX(0.299)+GEL*FIX(0.337) movdqa XMMWORD [wk(1)], xmm6 ; wk(1)=REH*FIX(0.299)+GEH*FIX(0.337) movdqa xmm0, xmm5 ; xmm0=BO movdqa xmm6, xmm4 ; xmm6=BE movdqa xmm4,xmm0 punpcklwd xmm0,xmm3 punpckhwd xmm4,xmm3 pmaddwd xmm0,[GOTOFF(eax,PW_F0114_F0250)] ; xmm0=BOL*FIX(0.114)+GOL*FIX(0.250) pmaddwd xmm4,[GOTOFF(eax,PW_F0114_F0250)] ; xmm4=BOH*FIX(0.114)+GOH*FIX(0.250) movdqa xmm3,[GOTOFF(eax,PD_ONEHALF)] ; xmm3=[PD_ONEHALF] paddd xmm0, xmm1 paddd xmm4, xmm7 paddd xmm0,xmm3 paddd xmm4,xmm3 psrld xmm0,SCALEBITS ; xmm0=YOL psrld xmm4,SCALEBITS ; xmm4=YOH packssdw xmm0,xmm4 ; xmm0=YO movdqa xmm4,xmm6 punpcklwd xmm6,xmm2 punpckhwd xmm4,xmm2 pmaddwd xmm6,[GOTOFF(eax,PW_F0114_F0250)] ; xmm6=BEL*FIX(0.114)+GEL*FIX(0.250) pmaddwd xmm4,[GOTOFF(eax,PW_F0114_F0250)] ; xmm4=BEH*FIX(0.114)+GEH*FIX(0.250) movdqa xmm2,[GOTOFF(eax,PD_ONEHALF)] ; xmm2=[PD_ONEHALF] paddd xmm6, XMMWORD [wk(0)] paddd xmm4, XMMWORD [wk(1)] paddd xmm6,xmm2 paddd xmm4,xmm2 psrld xmm6,SCALEBITS ; xmm6=YEL psrld xmm4,SCALEBITS ; xmm4=YEH packssdw xmm6,xmm4 ; xmm6=YE psllw xmm0,BYTE_BIT por xmm6,xmm0 ; xmm6=Y movdqa XMMWORD [edi], xmm6 ; Save Y sub ecx, byte SIZEOF_XMMWORD add esi, byte RGB_PIXELSIZE*SIZEOF_XMMWORD ; inptr add edi, byte SIZEOF_XMMWORD ; outptr0 cmp ecx, byte SIZEOF_XMMWORD jae near .columnloop test ecx,ecx jnz near .column_ld1 pop ecx ; col pop esi pop edi poppic eax add esi, byte SIZEOF_JSAMPROW ; input_buf add edi, byte SIZEOF_JSAMPROW dec eax ; num_rows jg near .rowloop .return: pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; need not be preserved pop ebx mov esp,ebp ; esp <- aligned ebp pop esp ; esp <- original ebp pop ebp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 16 libjpeg-turbo-1.4.2/simd/jdcolext-sse2-64.asm0000644000076500007650000004247012600050400015563 00000000000000; ; jdcolext.asm - colorspace conversion (64-bit SSE2) ; ; Copyright 2009, 2012 Pierre Ossman for Cendio AB ; Copyright 2009, 2012 D. R. Commander ; ; Based on ; x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; [TAB8] %include "jcolsamp.inc" ; -------------------------------------------------------------------------- ; ; Convert some rows of samples to the output colorspace. ; ; GLOBAL(void) ; jsimd_ycc_rgb_convert_sse2 (JDIMENSION out_width, ; JSAMPIMAGE input_buf, JDIMENSION input_row, ; JSAMPARRAY output_buf, int num_rows) ; ; r10 = JDIMENSION out_width ; r11 = JSAMPIMAGE input_buf ; r12 = JDIMENSION input_row ; r13 = JSAMPARRAY output_buf ; r14 = int num_rows %define wk(i) rbp-(WK_NUM-(i))*SIZEOF_XMMWORD ; xmmword wk[WK_NUM] %define WK_NUM 2 align 16 global EXTN(jsimd_ycc_rgb_convert_sse2) EXTN(jsimd_ycc_rgb_convert_sse2): push rbp mov rax,rsp ; rax = original rbp sub rsp, byte 4 and rsp, byte (-SIZEOF_XMMWORD) ; align to 128 bits mov [rsp],rax mov rbp,rsp ; rbp = aligned rbp lea rsp, [wk(0)] collect_args push rbx mov ecx, r10d ; num_cols test rcx,rcx jz near .return push rcx mov rdi, r11 mov ecx, r12d mov rsi, JSAMPARRAY [rdi+0*SIZEOF_JSAMPARRAY] mov rbx, JSAMPARRAY [rdi+1*SIZEOF_JSAMPARRAY] mov rdx, JSAMPARRAY [rdi+2*SIZEOF_JSAMPARRAY] lea rsi, [rsi+rcx*SIZEOF_JSAMPROW] lea rbx, [rbx+rcx*SIZEOF_JSAMPROW] lea rdx, [rdx+rcx*SIZEOF_JSAMPROW] pop rcx mov rdi, r13 mov eax, r14d test rax,rax jle near .return .rowloop: push rax push rdi push rdx push rbx push rsi push rcx ; col mov rsi, JSAMPROW [rsi] ; inptr0 mov rbx, JSAMPROW [rbx] ; inptr1 mov rdx, JSAMPROW [rdx] ; inptr2 mov rdi, JSAMPROW [rdi] ; outptr .columnloop: movdqa xmm5, XMMWORD [rbx] ; xmm5=Cb(0123456789ABCDEF) movdqa xmm1, XMMWORD [rdx] ; xmm1=Cr(0123456789ABCDEF) pcmpeqw xmm4,xmm4 pcmpeqw xmm7,xmm7 psrlw xmm4,BYTE_BIT psllw xmm7,7 ; xmm7={0xFF80 0xFF80 0xFF80 0xFF80 ..} movdqa xmm0,xmm4 ; xmm0=xmm4={0xFF 0x00 0xFF 0x00 ..} pand xmm4,xmm5 ; xmm4=Cb(02468ACE)=CbE psrlw xmm5,BYTE_BIT ; xmm5=Cb(13579BDF)=CbO pand xmm0,xmm1 ; xmm0=Cr(02468ACE)=CrE psrlw xmm1,BYTE_BIT ; xmm1=Cr(13579BDF)=CrO paddw xmm4,xmm7 paddw xmm5,xmm7 paddw xmm0,xmm7 paddw xmm1,xmm7 ; (Original) ; R = Y + 1.40200 * Cr ; G = Y - 0.34414 * Cb - 0.71414 * Cr ; B = Y + 1.77200 * Cb ; ; (This implementation) ; R = Y + 0.40200 * Cr + Cr ; G = Y - 0.34414 * Cb + 0.28586 * Cr - Cr ; B = Y - 0.22800 * Cb + Cb + Cb movdqa xmm2,xmm4 ; xmm2=CbE movdqa xmm3,xmm5 ; xmm3=CbO paddw xmm4,xmm4 ; xmm4=2*CbE paddw xmm5,xmm5 ; xmm5=2*CbO movdqa xmm6,xmm0 ; xmm6=CrE movdqa xmm7,xmm1 ; xmm7=CrO paddw xmm0,xmm0 ; xmm0=2*CrE paddw xmm1,xmm1 ; xmm1=2*CrO pmulhw xmm4,[rel PW_MF0228] ; xmm4=(2*CbE * -FIX(0.22800)) pmulhw xmm5,[rel PW_MF0228] ; xmm5=(2*CbO * -FIX(0.22800)) pmulhw xmm0,[rel PW_F0402] ; xmm0=(2*CrE * FIX(0.40200)) pmulhw xmm1,[rel PW_F0402] ; xmm1=(2*CrO * FIX(0.40200)) paddw xmm4,[rel PW_ONE] paddw xmm5,[rel PW_ONE] psraw xmm4,1 ; xmm4=(CbE * -FIX(0.22800)) psraw xmm5,1 ; xmm5=(CbO * -FIX(0.22800)) paddw xmm0,[rel PW_ONE] paddw xmm1,[rel PW_ONE] psraw xmm0,1 ; xmm0=(CrE * FIX(0.40200)) psraw xmm1,1 ; xmm1=(CrO * FIX(0.40200)) paddw xmm4,xmm2 paddw xmm5,xmm3 paddw xmm4,xmm2 ; xmm4=(CbE * FIX(1.77200))=(B-Y)E paddw xmm5,xmm3 ; xmm5=(CbO * FIX(1.77200))=(B-Y)O paddw xmm0,xmm6 ; xmm0=(CrE * FIX(1.40200))=(R-Y)E paddw xmm1,xmm7 ; xmm1=(CrO * FIX(1.40200))=(R-Y)O movdqa XMMWORD [wk(0)], xmm4 ; wk(0)=(B-Y)E movdqa XMMWORD [wk(1)], xmm5 ; wk(1)=(B-Y)O movdqa xmm4,xmm2 movdqa xmm5,xmm3 punpcklwd xmm2,xmm6 punpckhwd xmm4,xmm6 pmaddwd xmm2,[rel PW_MF0344_F0285] pmaddwd xmm4,[rel PW_MF0344_F0285] punpcklwd xmm3,xmm7 punpckhwd xmm5,xmm7 pmaddwd xmm3,[rel PW_MF0344_F0285] pmaddwd xmm5,[rel PW_MF0344_F0285] paddd xmm2,[rel PD_ONEHALF] paddd xmm4,[rel PD_ONEHALF] psrad xmm2,SCALEBITS psrad xmm4,SCALEBITS paddd xmm3,[rel PD_ONEHALF] paddd xmm5,[rel PD_ONEHALF] psrad xmm3,SCALEBITS psrad xmm5,SCALEBITS packssdw xmm2,xmm4 ; xmm2=CbE*-FIX(0.344)+CrE*FIX(0.285) packssdw xmm3,xmm5 ; xmm3=CbO*-FIX(0.344)+CrO*FIX(0.285) psubw xmm2,xmm6 ; xmm2=CbE*-FIX(0.344)+CrE*-FIX(0.714)=(G-Y)E psubw xmm3,xmm7 ; xmm3=CbO*-FIX(0.344)+CrO*-FIX(0.714)=(G-Y)O movdqa xmm5, XMMWORD [rsi] ; xmm5=Y(0123456789ABCDEF) pcmpeqw xmm4,xmm4 psrlw xmm4,BYTE_BIT ; xmm4={0xFF 0x00 0xFF 0x00 ..} pand xmm4,xmm5 ; xmm4=Y(02468ACE)=YE psrlw xmm5,BYTE_BIT ; xmm5=Y(13579BDF)=YO paddw xmm0,xmm4 ; xmm0=((R-Y)E+YE)=RE=R(02468ACE) paddw xmm1,xmm5 ; xmm1=((R-Y)O+YO)=RO=R(13579BDF) packuswb xmm0,xmm0 ; xmm0=R(02468ACE********) packuswb xmm1,xmm1 ; xmm1=R(13579BDF********) paddw xmm2,xmm4 ; xmm2=((G-Y)E+YE)=GE=G(02468ACE) paddw xmm3,xmm5 ; xmm3=((G-Y)O+YO)=GO=G(13579BDF) packuswb xmm2,xmm2 ; xmm2=G(02468ACE********) packuswb xmm3,xmm3 ; xmm3=G(13579BDF********) paddw xmm4, XMMWORD [wk(0)] ; xmm4=(YE+(B-Y)E)=BE=B(02468ACE) paddw xmm5, XMMWORD [wk(1)] ; xmm5=(YO+(B-Y)O)=BO=B(13579BDF) packuswb xmm4,xmm4 ; xmm4=B(02468ACE********) packuswb xmm5,xmm5 ; xmm5=B(13579BDF********) %if RGB_PIXELSIZE == 3 ; --------------- ; xmmA=(00 02 04 06 08 0A 0C 0E **), xmmB=(01 03 05 07 09 0B 0D 0F **) ; xmmC=(10 12 14 16 18 1A 1C 1E **), xmmD=(11 13 15 17 19 1B 1D 1F **) ; xmmE=(20 22 24 26 28 2A 2C 2E **), xmmF=(21 23 25 27 29 2B 2D 2F **) ; xmmG=(** ** ** ** ** ** ** ** **), xmmH=(** ** ** ** ** ** ** ** **) punpcklbw xmmA,xmmC ; xmmA=(00 10 02 12 04 14 06 16 08 18 0A 1A 0C 1C 0E 1E) punpcklbw xmmE,xmmB ; xmmE=(20 01 22 03 24 05 26 07 28 09 2A 0B 2C 0D 2E 0F) punpcklbw xmmD,xmmF ; xmmD=(11 21 13 23 15 25 17 27 19 29 1B 2B 1D 2D 1F 2F) movdqa xmmG,xmmA movdqa xmmH,xmmA punpcklwd xmmA,xmmE ; xmmA=(00 10 20 01 02 12 22 03 04 14 24 05 06 16 26 07) punpckhwd xmmG,xmmE ; xmmG=(08 18 28 09 0A 1A 2A 0B 0C 1C 2C 0D 0E 1E 2E 0F) psrldq xmmH,2 ; xmmH=(02 12 04 14 06 16 08 18 0A 1A 0C 1C 0E 1E -- --) psrldq xmmE,2 ; xmmE=(22 03 24 05 26 07 28 09 2A 0B 2C 0D 2E 0F -- --) movdqa xmmC,xmmD movdqa xmmB,xmmD punpcklwd xmmD,xmmH ; xmmD=(11 21 02 12 13 23 04 14 15 25 06 16 17 27 08 18) punpckhwd xmmC,xmmH ; xmmC=(19 29 0A 1A 1B 2B 0C 1C 1D 2D 0E 1E 1F 2F -- --) psrldq xmmB,2 ; xmmB=(13 23 15 25 17 27 19 29 1B 2B 1D 2D 1F 2F -- --) movdqa xmmF,xmmE punpcklwd xmmE,xmmB ; xmmE=(22 03 13 23 24 05 15 25 26 07 17 27 28 09 19 29) punpckhwd xmmF,xmmB ; xmmF=(2A 0B 1B 2B 2C 0D 1D 2D 2E 0F 1F 2F -- -- -- --) pshufd xmmH,xmmA,0x4E; xmmH=(04 14 24 05 06 16 26 07 00 10 20 01 02 12 22 03) movdqa xmmB,xmmE punpckldq xmmA,xmmD ; xmmA=(00 10 20 01 11 21 02 12 02 12 22 03 13 23 04 14) punpckldq xmmE,xmmH ; xmmE=(22 03 13 23 04 14 24 05 24 05 15 25 06 16 26 07) punpckhdq xmmD,xmmB ; xmmD=(15 25 06 16 26 07 17 27 17 27 08 18 28 09 19 29) pshufd xmmH,xmmG,0x4E; xmmH=(0C 1C 2C 0D 0E 1E 2E 0F 08 18 28 09 0A 1A 2A 0B) movdqa xmmB,xmmF punpckldq xmmG,xmmC ; xmmG=(08 18 28 09 19 29 0A 1A 0A 1A 2A 0B 1B 2B 0C 1C) punpckldq xmmF,xmmH ; xmmF=(2A 0B 1B 2B 0C 1C 2C 0D 2C 0D 1D 2D 0E 1E 2E 0F) punpckhdq xmmC,xmmB ; xmmC=(1D 2D 0E 1E 2E 0F 1F 2F 1F 2F -- -- -- -- -- --) punpcklqdq xmmA,xmmE ; xmmA=(00 10 20 01 11 21 02 12 22 03 13 23 04 14 24 05) punpcklqdq xmmD,xmmG ; xmmD=(15 25 06 16 26 07 17 27 08 18 28 09 19 29 0A 1A) punpcklqdq xmmF,xmmC ; xmmF=(2A 0B 1B 2B 0C 1C 2C 0D 1D 2D 0E 1E 2E 0F 1F 2F) cmp rcx, byte SIZEOF_XMMWORD jb short .column_st32 test rdi, SIZEOF_XMMWORD-1 jnz short .out1 ; --(aligned)------------------- movntdq XMMWORD [rdi+0*SIZEOF_XMMWORD], xmmA movntdq XMMWORD [rdi+1*SIZEOF_XMMWORD], xmmD movntdq XMMWORD [rdi+2*SIZEOF_XMMWORD], xmmF jmp short .out0 .out1: ; --(unaligned)----------------- movdqu XMMWORD [rdi+0*SIZEOF_XMMWORD], xmmA movdqu XMMWORD [rdi+1*SIZEOF_XMMWORD], xmmD movdqu XMMWORD [rdi+2*SIZEOF_XMMWORD], xmmF .out0: add rdi, byte RGB_PIXELSIZE*SIZEOF_XMMWORD ; outptr sub rcx, byte SIZEOF_XMMWORD jz near .nextrow add rsi, byte SIZEOF_XMMWORD ; inptr0 add rbx, byte SIZEOF_XMMWORD ; inptr1 add rdx, byte SIZEOF_XMMWORD ; inptr2 jmp near .columnloop .column_st32: lea rcx, [rcx+rcx*2] ; imul ecx, RGB_PIXELSIZE cmp rcx, byte 2*SIZEOF_XMMWORD jb short .column_st16 movdqu XMMWORD [rdi+0*SIZEOF_XMMWORD], xmmA movdqu XMMWORD [rdi+1*SIZEOF_XMMWORD], xmmD add rdi, byte 2*SIZEOF_XMMWORD ; outptr movdqa xmmA,xmmF sub rcx, byte 2*SIZEOF_XMMWORD jmp short .column_st15 .column_st16: cmp rcx, byte SIZEOF_XMMWORD jb short .column_st15 movdqu XMMWORD [rdi+0*SIZEOF_XMMWORD], xmmA add rdi, byte SIZEOF_XMMWORD ; outptr movdqa xmmA,xmmD sub rcx, byte SIZEOF_XMMWORD .column_st15: ; Store the lower 8 bytes of xmmA to the output when it has enough ; space. cmp rcx, byte SIZEOF_MMWORD jb short .column_st7 movq XMM_MMWORD [rdi], xmmA add rdi, byte SIZEOF_MMWORD sub rcx, byte SIZEOF_MMWORD psrldq xmmA, SIZEOF_MMWORD .column_st7: ; Store the lower 4 bytes of xmmA to the output when it has enough ; space. cmp rcx, byte SIZEOF_DWORD jb short .column_st3 movd XMM_DWORD [rdi], xmmA add rdi, byte SIZEOF_DWORD sub rcx, byte SIZEOF_DWORD psrldq xmmA, SIZEOF_DWORD .column_st3: ; Store the lower 2 bytes of rax to the output when it has enough ; space. movd eax, xmmA cmp rcx, byte SIZEOF_WORD jb short .column_st1 mov WORD [rdi], ax add rdi, byte SIZEOF_WORD sub rcx, byte SIZEOF_WORD shr rax, 16 .column_st1: ; Store the lower 1 byte of rax to the output when it has enough ; space. test rcx, rcx jz short .nextrow mov BYTE [rdi], al %else ; RGB_PIXELSIZE == 4 ; ----------- %ifdef RGBX_FILLER_0XFF pcmpeqb xmm6,xmm6 ; xmm6=XE=X(02468ACE********) pcmpeqb xmm7,xmm7 ; xmm7=XO=X(13579BDF********) %else pxor xmm6,xmm6 ; xmm6=XE=X(02468ACE********) pxor xmm7,xmm7 ; xmm7=XO=X(13579BDF********) %endif ; xmmA=(00 02 04 06 08 0A 0C 0E **), xmmB=(01 03 05 07 09 0B 0D 0F **) ; xmmC=(10 12 14 16 18 1A 1C 1E **), xmmD=(11 13 15 17 19 1B 1D 1F **) ; xmmE=(20 22 24 26 28 2A 2C 2E **), xmmF=(21 23 25 27 29 2B 2D 2F **) ; xmmG=(30 32 34 36 38 3A 3C 3E **), xmmH=(31 33 35 37 39 3B 3D 3F **) punpcklbw xmmA,xmmC ; xmmA=(00 10 02 12 04 14 06 16 08 18 0A 1A 0C 1C 0E 1E) punpcklbw xmmE,xmmG ; xmmE=(20 30 22 32 24 34 26 36 28 38 2A 3A 2C 3C 2E 3E) punpcklbw xmmB,xmmD ; xmmB=(01 11 03 13 05 15 07 17 09 19 0B 1B 0D 1D 0F 1F) punpcklbw xmmF,xmmH ; xmmF=(21 31 23 33 25 35 27 37 29 39 2B 3B 2D 3D 2F 3F) movdqa xmmC,xmmA punpcklwd xmmA,xmmE ; xmmA=(00 10 20 30 02 12 22 32 04 14 24 34 06 16 26 36) punpckhwd xmmC,xmmE ; xmmC=(08 18 28 38 0A 1A 2A 3A 0C 1C 2C 3C 0E 1E 2E 3E) movdqa xmmG,xmmB punpcklwd xmmB,xmmF ; xmmB=(01 11 21 31 03 13 23 33 05 15 25 35 07 17 27 37) punpckhwd xmmG,xmmF ; xmmG=(09 19 29 39 0B 1B 2B 3B 0D 1D 2D 3D 0F 1F 2F 3F) movdqa xmmD,xmmA punpckldq xmmA,xmmB ; xmmA=(00 10 20 30 01 11 21 31 02 12 22 32 03 13 23 33) punpckhdq xmmD,xmmB ; xmmD=(04 14 24 34 05 15 25 35 06 16 26 36 07 17 27 37) movdqa xmmH,xmmC punpckldq xmmC,xmmG ; xmmC=(08 18 28 38 09 19 29 39 0A 1A 2A 3A 0B 1B 2B 3B) punpckhdq xmmH,xmmG ; xmmH=(0C 1C 2C 3C 0D 1D 2D 3D 0E 1E 2E 3E 0F 1F 2F 3F) cmp rcx, byte SIZEOF_XMMWORD jb short .column_st32 test rdi, SIZEOF_XMMWORD-1 jnz short .out1 ; --(aligned)------------------- movntdq XMMWORD [rdi+0*SIZEOF_XMMWORD], xmmA movntdq XMMWORD [rdi+1*SIZEOF_XMMWORD], xmmD movntdq XMMWORD [rdi+2*SIZEOF_XMMWORD], xmmC movntdq XMMWORD [rdi+3*SIZEOF_XMMWORD], xmmH jmp short .out0 .out1: ; --(unaligned)----------------- movdqu XMMWORD [rdi+0*SIZEOF_XMMWORD], xmmA movdqu XMMWORD [rdi+1*SIZEOF_XMMWORD], xmmD movdqu XMMWORD [rdi+2*SIZEOF_XMMWORD], xmmC movdqu XMMWORD [rdi+3*SIZEOF_XMMWORD], xmmH .out0: add rdi, byte RGB_PIXELSIZE*SIZEOF_XMMWORD ; outptr sub rcx, byte SIZEOF_XMMWORD jz near .nextrow add rsi, byte SIZEOF_XMMWORD ; inptr0 add rbx, byte SIZEOF_XMMWORD ; inptr1 add rdx, byte SIZEOF_XMMWORD ; inptr2 jmp near .columnloop .column_st32: cmp rcx, byte SIZEOF_XMMWORD/2 jb short .column_st16 movdqu XMMWORD [rdi+0*SIZEOF_XMMWORD], xmmA movdqu XMMWORD [rdi+1*SIZEOF_XMMWORD], xmmD add rdi, byte 2*SIZEOF_XMMWORD ; outptr movdqa xmmA,xmmC movdqa xmmD,xmmH sub rcx, byte SIZEOF_XMMWORD/2 .column_st16: cmp rcx, byte SIZEOF_XMMWORD/4 jb short .column_st15 movdqu XMMWORD [rdi+0*SIZEOF_XMMWORD], xmmA add rdi, byte SIZEOF_XMMWORD ; outptr movdqa xmmA,xmmD sub rcx, byte SIZEOF_XMMWORD/4 .column_st15: ; Store two pixels (8 bytes) of xmmA to the output when it has enough ; space. cmp rcx, byte SIZEOF_XMMWORD/8 jb short .column_st7 movq MMWORD [rdi], xmmA add rdi, byte SIZEOF_XMMWORD/8*4 sub rcx, byte SIZEOF_XMMWORD/8 psrldq xmmA, SIZEOF_XMMWORD/8*4 .column_st7: ; Store one pixel (4 bytes) of xmmA to the output when it has enough ; space. test rcx, rcx jz short .nextrow movd XMM_DWORD [rdi], xmmA %endif ; RGB_PIXELSIZE ; --------------- .nextrow: pop rcx pop rsi pop rbx pop rdx pop rdi pop rax add rsi, byte SIZEOF_JSAMPROW add rbx, byte SIZEOF_JSAMPROW add rdx, byte SIZEOF_JSAMPROW add rdi, byte SIZEOF_JSAMPROW ; output_buf dec rax ; num_rows jg near .rowloop sfence ; flush the write buffer .return: pop rbx uncollect_args mov rsp,rbp ; rsp <- aligned rbp pop rsp ; rsp <- original rbp pop rbp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 16 libjpeg-turbo-1.4.2/simd/jsimd_arm_neon.S0000644000076500007650000025313112600050400015252 00000000000000/* * ARMv7 NEON optimizations for libjpeg-turbo * * Copyright (C) 2009-2011 Nokia Corporation and/or its subsidiary(-ies). * All rights reserved. * Author: Siarhei Siamashka * Copyright (C) 2014 Siarhei Siamashka. All Rights Reserved. * Copyright (C) 2014 Linaro Limited. All Rights Reserved. * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ #if defined(__linux__) && defined(__ELF__) .section .note.GNU-stack,"",%progbits /* mark stack as non-executable */ #endif .text .fpu neon .arch armv7a .object_arch armv4 .arm #define RESPECT_STRICT_ALIGNMENT 1 /*****************************************************************************/ /* Supplementary macro for setting function attributes */ .macro asm_function fname #ifdef __APPLE__ .globl _\fname _\fname: #else .global \fname #ifdef __ELF__ .hidden \fname .type \fname, %function #endif \fname: #endif .endm /* Transpose a block of 4x4 coefficients in four 64-bit registers */ .macro transpose_4x4 x0, x1, x2, x3 vtrn.16 \x0, \x1 vtrn.16 \x2, \x3 vtrn.32 \x0, \x2 vtrn.32 \x1, \x3 .endm #define CENTERJSAMPLE 128 /*****************************************************************************/ /* * Perform dequantization and inverse DCT on one block of coefficients. * * GLOBAL(void) * jsimd_idct_islow_neon (void * dct_table, JCOEFPTR coef_block, * JSAMPARRAY output_buf, JDIMENSION output_col) */ #define FIX_0_298631336 (2446) #define FIX_0_390180644 (3196) #define FIX_0_541196100 (4433) #define FIX_0_765366865 (6270) #define FIX_0_899976223 (7373) #define FIX_1_175875602 (9633) #define FIX_1_501321110 (12299) #define FIX_1_847759065 (15137) #define FIX_1_961570560 (16069) #define FIX_2_053119869 (16819) #define FIX_2_562915447 (20995) #define FIX_3_072711026 (25172) #define FIX_1_175875602_MINUS_1_961570560 (FIX_1_175875602 - FIX_1_961570560) #define FIX_1_175875602_MINUS_0_390180644 (FIX_1_175875602 - FIX_0_390180644) #define FIX_0_541196100_MINUS_1_847759065 (FIX_0_541196100 - FIX_1_847759065) #define FIX_3_072711026_MINUS_2_562915447 (FIX_3_072711026 - FIX_2_562915447) #define FIX_0_298631336_MINUS_0_899976223 (FIX_0_298631336 - FIX_0_899976223) #define FIX_1_501321110_MINUS_0_899976223 (FIX_1_501321110 - FIX_0_899976223) #define FIX_2_053119869_MINUS_2_562915447 (FIX_2_053119869 - FIX_2_562915447) #define FIX_0_541196100_PLUS_0_765366865 (FIX_0_541196100 + FIX_0_765366865) /* * Reference SIMD-friendly 1-D ISLOW iDCT C implementation. * Uses some ideas from the comments in 'simd/jiss2int-64.asm' */ #define REF_1D_IDCT(xrow0, xrow1, xrow2, xrow3, xrow4, xrow5, xrow6, xrow7) \ { \ DCTELEM row0, row1, row2, row3, row4, row5, row6, row7; \ INT32 q1, q2, q3, q4, q5, q6, q7; \ INT32 tmp11_plus_tmp2, tmp11_minus_tmp2; \ \ /* 1-D iDCT input data */ \ row0 = xrow0; \ row1 = xrow1; \ row2 = xrow2; \ row3 = xrow3; \ row4 = xrow4; \ row5 = xrow5; \ row6 = xrow6; \ row7 = xrow7; \ \ q5 = row7 + row3; \ q4 = row5 + row1; \ q6 = MULTIPLY(q5, FIX_1_175875602_MINUS_1_961570560) + \ MULTIPLY(q4, FIX_1_175875602); \ q7 = MULTIPLY(q5, FIX_1_175875602) + \ MULTIPLY(q4, FIX_1_175875602_MINUS_0_390180644); \ q2 = MULTIPLY(row2, FIX_0_541196100) + \ MULTIPLY(row6, FIX_0_541196100_MINUS_1_847759065); \ q4 = q6; \ q3 = ((INT32) row0 - (INT32) row4) << 13; \ q6 += MULTIPLY(row5, -FIX_2_562915447) + \ MULTIPLY(row3, FIX_3_072711026_MINUS_2_562915447); \ /* now we can use q1 (reloadable constants have been used up) */ \ q1 = q3 + q2; \ q4 += MULTIPLY(row7, FIX_0_298631336_MINUS_0_899976223) + \ MULTIPLY(row1, -FIX_0_899976223); \ q5 = q7; \ q1 = q1 + q6; \ q7 += MULTIPLY(row7, -FIX_0_899976223) + \ MULTIPLY(row1, FIX_1_501321110_MINUS_0_899976223); \ \ /* (tmp11 + tmp2) has been calculated (out_row1 before descale) */ \ tmp11_plus_tmp2 = q1; \ row1 = 0; \ \ q1 = q1 - q6; \ q5 += MULTIPLY(row5, FIX_2_053119869_MINUS_2_562915447) + \ MULTIPLY(row3, -FIX_2_562915447); \ q1 = q1 - q6; \ q6 = MULTIPLY(row2, FIX_0_541196100_PLUS_0_765366865) + \ MULTIPLY(row6, FIX_0_541196100); \ q3 = q3 - q2; \ \ /* (tmp11 - tmp2) has been calculated (out_row6 before descale) */ \ tmp11_minus_tmp2 = q1; \ \ q1 = ((INT32) row0 + (INT32) row4) << 13; \ q2 = q1 + q6; \ q1 = q1 - q6; \ \ /* pick up the results */ \ tmp0 = q4; \ tmp1 = q5; \ tmp2 = (tmp11_plus_tmp2 - tmp11_minus_tmp2) / 2; \ tmp3 = q7; \ tmp10 = q2; \ tmp11 = (tmp11_plus_tmp2 + tmp11_minus_tmp2) / 2; \ tmp12 = q3; \ tmp13 = q1; \ } #define XFIX_0_899976223 d0[0] #define XFIX_0_541196100 d0[1] #define XFIX_2_562915447 d0[2] #define XFIX_0_298631336_MINUS_0_899976223 d0[3] #define XFIX_1_501321110_MINUS_0_899976223 d1[0] #define XFIX_2_053119869_MINUS_2_562915447 d1[1] #define XFIX_0_541196100_PLUS_0_765366865 d1[2] #define XFIX_1_175875602 d1[3] #define XFIX_1_175875602_MINUS_0_390180644 d2[0] #define XFIX_0_541196100_MINUS_1_847759065 d2[1] #define XFIX_3_072711026_MINUS_2_562915447 d2[2] #define XFIX_1_175875602_MINUS_1_961570560 d2[3] .balign 16 jsimd_idct_islow_neon_consts: .short FIX_0_899976223 /* d0[0] */ .short FIX_0_541196100 /* d0[1] */ .short FIX_2_562915447 /* d0[2] */ .short FIX_0_298631336_MINUS_0_899976223 /* d0[3] */ .short FIX_1_501321110_MINUS_0_899976223 /* d1[0] */ .short FIX_2_053119869_MINUS_2_562915447 /* d1[1] */ .short FIX_0_541196100_PLUS_0_765366865 /* d1[2] */ .short FIX_1_175875602 /* d1[3] */ /* reloadable constants */ .short FIX_1_175875602_MINUS_0_390180644 /* d2[0] */ .short FIX_0_541196100_MINUS_1_847759065 /* d2[1] */ .short FIX_3_072711026_MINUS_2_562915447 /* d2[2] */ .short FIX_1_175875602_MINUS_1_961570560 /* d2[3] */ asm_function jsimd_idct_islow_neon DCT_TABLE .req r0 COEF_BLOCK .req r1 OUTPUT_BUF .req r2 OUTPUT_COL .req r3 TMP1 .req r0 TMP2 .req r1 TMP3 .req r2 TMP4 .req ip ROW0L .req d16 ROW0R .req d17 ROW1L .req d18 ROW1R .req d19 ROW2L .req d20 ROW2R .req d21 ROW3L .req d22 ROW3R .req d23 ROW4L .req d24 ROW4R .req d25 ROW5L .req d26 ROW5R .req d27 ROW6L .req d28 ROW6R .req d29 ROW7L .req d30 ROW7R .req d31 /* Load and dequantize coefficients into NEON registers * with the following allocation: * 0 1 2 3 | 4 5 6 7 * ---------+-------- * 0 | d16 | d17 ( q8 ) * 1 | d18 | d19 ( q9 ) * 2 | d20 | d21 ( q10 ) * 3 | d22 | d23 ( q11 ) * 4 | d24 | d25 ( q12 ) * 5 | d26 | d27 ( q13 ) * 6 | d28 | d29 ( q14 ) * 7 | d30 | d31 ( q15 ) */ adr ip, jsimd_idct_islow_neon_consts vld1.16 {d16, d17, d18, d19}, [COEF_BLOCK, :128]! vld1.16 {d0, d1, d2, d3}, [DCT_TABLE, :128]! vld1.16 {d20, d21, d22, d23}, [COEF_BLOCK, :128]! vmul.s16 q8, q8, q0 vld1.16 {d4, d5, d6, d7}, [DCT_TABLE, :128]! vmul.s16 q9, q9, q1 vld1.16 {d24, d25, d26, d27}, [COEF_BLOCK, :128]! vmul.s16 q10, q10, q2 vld1.16 {d0, d1, d2, d3}, [DCT_TABLE, :128]! vmul.s16 q11, q11, q3 vld1.16 {d28, d29, d30, d31}, [COEF_BLOCK, :128] vmul.s16 q12, q12, q0 vld1.16 {d4, d5, d6, d7}, [DCT_TABLE, :128]! vmul.s16 q14, q14, q2 vmul.s16 q13, q13, q1 vld1.16 {d0, d1, d2, d3}, [ip, :128] /* load constants */ add ip, ip, #16 vmul.s16 q15, q15, q3 vpush {d8-d15} /* save NEON registers */ /* 1-D IDCT, pass 1, left 4x8 half */ vadd.s16 d4, ROW7L, ROW3L vadd.s16 d5, ROW5L, ROW1L vmull.s16 q6, d4, XFIX_1_175875602_MINUS_1_961570560 vmlal.s16 q6, d5, XFIX_1_175875602 vmull.s16 q7, d4, XFIX_1_175875602 /* Check for the zero coefficients in the right 4x8 half */ push {r4, r5} vmlal.s16 q7, d5, XFIX_1_175875602_MINUS_0_390180644 vsubl.s16 q3, ROW0L, ROW4L ldrd r4, [COEF_BLOCK, #(-96 + 2 * (4 + 1 * 8))] vmull.s16 q2, ROW2L, XFIX_0_541196100 vmlal.s16 q2, ROW6L, XFIX_0_541196100_MINUS_1_847759065 orr r0, r4, r5 vmov q4, q6 vmlsl.s16 q6, ROW5L, XFIX_2_562915447 ldrd r4, [COEF_BLOCK, #(-96 + 2 * (4 + 2 * 8))] vmlal.s16 q6, ROW3L, XFIX_3_072711026_MINUS_2_562915447 vshl.s32 q3, q3, #13 orr r0, r0, r4 vmlsl.s16 q4, ROW1L, XFIX_0_899976223 orr r0, r0, r5 vadd.s32 q1, q3, q2 ldrd r4, [COEF_BLOCK, #(-96 + 2 * (4 + 3 * 8))] vmov q5, q7 vadd.s32 q1, q1, q6 orr r0, r0, r4 vmlsl.s16 q7, ROW7L, XFIX_0_899976223 orr r0, r0, r5 vmlal.s16 q7, ROW1L, XFIX_1_501321110_MINUS_0_899976223 vrshrn.s32 ROW1L, q1, #11 ldrd r4, [COEF_BLOCK, #(-96 + 2 * (4 + 4 * 8))] vsub.s32 q1, q1, q6 vmlal.s16 q5, ROW5L, XFIX_2_053119869_MINUS_2_562915447 orr r0, r0, r4 vmlsl.s16 q5, ROW3L, XFIX_2_562915447 orr r0, r0, r5 vsub.s32 q1, q1, q6 vmull.s16 q6, ROW2L, XFIX_0_541196100_PLUS_0_765366865 ldrd r4, [COEF_BLOCK, #(-96 + 2 * (4 + 5 * 8))] vmlal.s16 q6, ROW6L, XFIX_0_541196100 vsub.s32 q3, q3, q2 orr r0, r0, r4 vrshrn.s32 ROW6L, q1, #11 orr r0, r0, r5 vadd.s32 q1, q3, q5 ldrd r4, [COEF_BLOCK, #(-96 + 2 * (4 + 6 * 8))] vsub.s32 q3, q3, q5 vaddl.s16 q5, ROW0L, ROW4L orr r0, r0, r4 vrshrn.s32 ROW2L, q1, #11 orr r0, r0, r5 vrshrn.s32 ROW5L, q3, #11 ldrd r4, [COEF_BLOCK, #(-96 + 2 * (4 + 7 * 8))] vshl.s32 q5, q5, #13 vmlal.s16 q4, ROW7L, XFIX_0_298631336_MINUS_0_899976223 orr r0, r0, r4 vadd.s32 q2, q5, q6 orrs r0, r0, r5 vsub.s32 q1, q5, q6 vadd.s32 q6, q2, q7 ldrd r4, [COEF_BLOCK, #(-96 + 2 * (4 + 0 * 8))] vsub.s32 q2, q2, q7 vadd.s32 q5, q1, q4 orr r0, r4, r5 vsub.s32 q3, q1, q4 pop {r4, r5} vrshrn.s32 ROW7L, q2, #11 vrshrn.s32 ROW3L, q5, #11 vrshrn.s32 ROW0L, q6, #11 vrshrn.s32 ROW4L, q3, #11 beq 3f /* Go to do some special handling for the sparse right 4x8 half */ /* 1-D IDCT, pass 1, right 4x8 half */ vld1.s16 {d2}, [ip, :64] /* reload constants */ vadd.s16 d10, ROW7R, ROW3R vadd.s16 d8, ROW5R, ROW1R /* Transpose left 4x8 half */ vtrn.16 ROW6L, ROW7L vmull.s16 q6, d10, XFIX_1_175875602_MINUS_1_961570560 vmlal.s16 q6, d8, XFIX_1_175875602 vtrn.16 ROW2L, ROW3L vmull.s16 q7, d10, XFIX_1_175875602 vmlal.s16 q7, d8, XFIX_1_175875602_MINUS_0_390180644 vtrn.16 ROW0L, ROW1L vsubl.s16 q3, ROW0R, ROW4R vmull.s16 q2, ROW2R, XFIX_0_541196100 vmlal.s16 q2, ROW6R, XFIX_0_541196100_MINUS_1_847759065 vtrn.16 ROW4L, ROW5L vmov q4, q6 vmlsl.s16 q6, ROW5R, XFIX_2_562915447 vmlal.s16 q6, ROW3R, XFIX_3_072711026_MINUS_2_562915447 vtrn.32 ROW1L, ROW3L vshl.s32 q3, q3, #13 vmlsl.s16 q4, ROW1R, XFIX_0_899976223 vtrn.32 ROW4L, ROW6L vadd.s32 q1, q3, q2 vmov q5, q7 vadd.s32 q1, q1, q6 vtrn.32 ROW0L, ROW2L vmlsl.s16 q7, ROW7R, XFIX_0_899976223 vmlal.s16 q7, ROW1R, XFIX_1_501321110_MINUS_0_899976223 vrshrn.s32 ROW1R, q1, #11 vtrn.32 ROW5L, ROW7L vsub.s32 q1, q1, q6 vmlal.s16 q5, ROW5R, XFIX_2_053119869_MINUS_2_562915447 vmlsl.s16 q5, ROW3R, XFIX_2_562915447 vsub.s32 q1, q1, q6 vmull.s16 q6, ROW2R, XFIX_0_541196100_PLUS_0_765366865 vmlal.s16 q6, ROW6R, XFIX_0_541196100 vsub.s32 q3, q3, q2 vrshrn.s32 ROW6R, q1, #11 vadd.s32 q1, q3, q5 vsub.s32 q3, q3, q5 vaddl.s16 q5, ROW0R, ROW4R vrshrn.s32 ROW2R, q1, #11 vrshrn.s32 ROW5R, q3, #11 vshl.s32 q5, q5, #13 vmlal.s16 q4, ROW7R, XFIX_0_298631336_MINUS_0_899976223 vadd.s32 q2, q5, q6 vsub.s32 q1, q5, q6 vadd.s32 q6, q2, q7 vsub.s32 q2, q2, q7 vadd.s32 q5, q1, q4 vsub.s32 q3, q1, q4 vrshrn.s32 ROW7R, q2, #11 vrshrn.s32 ROW3R, q5, #11 vrshrn.s32 ROW0R, q6, #11 vrshrn.s32 ROW4R, q3, #11 /* Transpose right 4x8 half */ vtrn.16 ROW6R, ROW7R vtrn.16 ROW2R, ROW3R vtrn.16 ROW0R, ROW1R vtrn.16 ROW4R, ROW5R vtrn.32 ROW1R, ROW3R vtrn.32 ROW4R, ROW6R vtrn.32 ROW0R, ROW2R vtrn.32 ROW5R, ROW7R 1: /* 1-D IDCT, pass 2 (normal variant), left 4x8 half */ vld1.s16 {d2}, [ip, :64] /* reload constants */ vmull.s16 q6, ROW1R, XFIX_1_175875602 /* ROW5L <-> ROW1R */ vmlal.s16 q6, ROW1L, XFIX_1_175875602 vmlal.s16 q6, ROW3R, XFIX_1_175875602_MINUS_1_961570560 /* ROW7L <-> ROW3R */ vmlal.s16 q6, ROW3L, XFIX_1_175875602_MINUS_1_961570560 vmull.s16 q7, ROW3R, XFIX_1_175875602 /* ROW7L <-> ROW3R */ vmlal.s16 q7, ROW3L, XFIX_1_175875602 vmlal.s16 q7, ROW1R, XFIX_1_175875602_MINUS_0_390180644 /* ROW5L <-> ROW1R */ vmlal.s16 q7, ROW1L, XFIX_1_175875602_MINUS_0_390180644 vsubl.s16 q3, ROW0L, ROW0R /* ROW4L <-> ROW0R */ vmull.s16 q2, ROW2L, XFIX_0_541196100 vmlal.s16 q2, ROW2R, XFIX_0_541196100_MINUS_1_847759065 /* ROW6L <-> ROW2R */ vmov q4, q6 vmlsl.s16 q6, ROW1R, XFIX_2_562915447 /* ROW5L <-> ROW1R */ vmlal.s16 q6, ROW3L, XFIX_3_072711026_MINUS_2_562915447 vshl.s32 q3, q3, #13 vmlsl.s16 q4, ROW1L, XFIX_0_899976223 vadd.s32 q1, q3, q2 vmov q5, q7 vadd.s32 q1, q1, q6 vmlsl.s16 q7, ROW3R, XFIX_0_899976223 /* ROW7L <-> ROW3R */ vmlal.s16 q7, ROW1L, XFIX_1_501321110_MINUS_0_899976223 vshrn.s32 ROW1L, q1, #16 vsub.s32 q1, q1, q6 vmlal.s16 q5, ROW1R, XFIX_2_053119869_MINUS_2_562915447 /* ROW5L <-> ROW1R */ vmlsl.s16 q5, ROW3L, XFIX_2_562915447 vsub.s32 q1, q1, q6 vmull.s16 q6, ROW2L, XFIX_0_541196100_PLUS_0_765366865 vmlal.s16 q6, ROW2R, XFIX_0_541196100 /* ROW6L <-> ROW2R */ vsub.s32 q3, q3, q2 vshrn.s32 ROW2R, q1, #16 /* ROW6L <-> ROW2R */ vadd.s32 q1, q3, q5 vsub.s32 q3, q3, q5 vaddl.s16 q5, ROW0L, ROW0R /* ROW4L <-> ROW0R */ vshrn.s32 ROW2L, q1, #16 vshrn.s32 ROW1R, q3, #16 /* ROW5L <-> ROW1R */ vshl.s32 q5, q5, #13 vmlal.s16 q4, ROW3R, XFIX_0_298631336_MINUS_0_899976223 /* ROW7L <-> ROW3R */ vadd.s32 q2, q5, q6 vsub.s32 q1, q5, q6 vadd.s32 q6, q2, q7 vsub.s32 q2, q2, q7 vadd.s32 q5, q1, q4 vsub.s32 q3, q1, q4 vshrn.s32 ROW3R, q2, #16 /* ROW7L <-> ROW3R */ vshrn.s32 ROW3L, q5, #16 vshrn.s32 ROW0L, q6, #16 vshrn.s32 ROW0R, q3, #16 /* ROW4L <-> ROW0R */ /* 1-D IDCT, pass 2, right 4x8 half */ vld1.s16 {d2}, [ip, :64] /* reload constants */ vmull.s16 q6, ROW5R, XFIX_1_175875602 vmlal.s16 q6, ROW5L, XFIX_1_175875602 /* ROW5L <-> ROW1R */ vmlal.s16 q6, ROW7R, XFIX_1_175875602_MINUS_1_961570560 vmlal.s16 q6, ROW7L, XFIX_1_175875602_MINUS_1_961570560 /* ROW7L <-> ROW3R */ vmull.s16 q7, ROW7R, XFIX_1_175875602 vmlal.s16 q7, ROW7L, XFIX_1_175875602 /* ROW7L <-> ROW3R */ vmlal.s16 q7, ROW5R, XFIX_1_175875602_MINUS_0_390180644 vmlal.s16 q7, ROW5L, XFIX_1_175875602_MINUS_0_390180644 /* ROW5L <-> ROW1R */ vsubl.s16 q3, ROW4L, ROW4R /* ROW4L <-> ROW0R */ vmull.s16 q2, ROW6L, XFIX_0_541196100 /* ROW6L <-> ROW2R */ vmlal.s16 q2, ROW6R, XFIX_0_541196100_MINUS_1_847759065 vmov q4, q6 vmlsl.s16 q6, ROW5R, XFIX_2_562915447 vmlal.s16 q6, ROW7L, XFIX_3_072711026_MINUS_2_562915447 /* ROW7L <-> ROW3R */ vshl.s32 q3, q3, #13 vmlsl.s16 q4, ROW5L, XFIX_0_899976223 /* ROW5L <-> ROW1R */ vadd.s32 q1, q3, q2 vmov q5, q7 vadd.s32 q1, q1, q6 vmlsl.s16 q7, ROW7R, XFIX_0_899976223 vmlal.s16 q7, ROW5L, XFIX_1_501321110_MINUS_0_899976223 /* ROW5L <-> ROW1R */ vshrn.s32 ROW5L, q1, #16 /* ROW5L <-> ROW1R */ vsub.s32 q1, q1, q6 vmlal.s16 q5, ROW5R, XFIX_2_053119869_MINUS_2_562915447 vmlsl.s16 q5, ROW7L, XFIX_2_562915447 /* ROW7L <-> ROW3R */ vsub.s32 q1, q1, q6 vmull.s16 q6, ROW6L, XFIX_0_541196100_PLUS_0_765366865 /* ROW6L <-> ROW2R */ vmlal.s16 q6, ROW6R, XFIX_0_541196100 vsub.s32 q3, q3, q2 vshrn.s32 ROW6R, q1, #16 vadd.s32 q1, q3, q5 vsub.s32 q3, q3, q5 vaddl.s16 q5, ROW4L, ROW4R /* ROW4L <-> ROW0R */ vshrn.s32 ROW6L, q1, #16 /* ROW6L <-> ROW2R */ vshrn.s32 ROW5R, q3, #16 vshl.s32 q5, q5, #13 vmlal.s16 q4, ROW7R, XFIX_0_298631336_MINUS_0_899976223 vadd.s32 q2, q5, q6 vsub.s32 q1, q5, q6 vadd.s32 q6, q2, q7 vsub.s32 q2, q2, q7 vadd.s32 q5, q1, q4 vsub.s32 q3, q1, q4 vshrn.s32 ROW7R, q2, #16 vshrn.s32 ROW7L, q5, #16 /* ROW7L <-> ROW3R */ vshrn.s32 ROW4L, q6, #16 /* ROW4L <-> ROW0R */ vshrn.s32 ROW4R, q3, #16 2: /* Descale to 8-bit and range limit */ vqrshrn.s16 d16, q8, #2 vqrshrn.s16 d17, q9, #2 vqrshrn.s16 d18, q10, #2 vqrshrn.s16 d19, q11, #2 vpop {d8-d15} /* restore NEON registers */ vqrshrn.s16 d20, q12, #2 /* Transpose the final 8-bit samples and do signed->unsigned conversion */ vtrn.16 q8, q9 vqrshrn.s16 d21, q13, #2 vqrshrn.s16 d22, q14, #2 vmov.u8 q0, #(CENTERJSAMPLE) vqrshrn.s16 d23, q15, #2 vtrn.8 d16, d17 vtrn.8 d18, d19 vadd.u8 q8, q8, q0 vadd.u8 q9, q9, q0 vtrn.16 q10, q11 /* Store results to the output buffer */ ldmia OUTPUT_BUF!, {TMP1, TMP2} add TMP1, TMP1, OUTPUT_COL add TMP2, TMP2, OUTPUT_COL vst1.8 {d16}, [TMP1] vtrn.8 d20, d21 vst1.8 {d17}, [TMP2] ldmia OUTPUT_BUF!, {TMP1, TMP2} add TMP1, TMP1, OUTPUT_COL add TMP2, TMP2, OUTPUT_COL vst1.8 {d18}, [TMP1] vadd.u8 q10, q10, q0 vst1.8 {d19}, [TMP2] ldmia OUTPUT_BUF, {TMP1, TMP2, TMP3, TMP4} add TMP1, TMP1, OUTPUT_COL add TMP2, TMP2, OUTPUT_COL add TMP3, TMP3, OUTPUT_COL add TMP4, TMP4, OUTPUT_COL vtrn.8 d22, d23 vst1.8 {d20}, [TMP1] vadd.u8 q11, q11, q0 vst1.8 {d21}, [TMP2] vst1.8 {d22}, [TMP3] vst1.8 {d23}, [TMP4] bx lr 3: /* Left 4x8 half is done, right 4x8 half contains mostly zeros */ /* Transpose left 4x8 half */ vtrn.16 ROW6L, ROW7L vtrn.16 ROW2L, ROW3L vtrn.16 ROW0L, ROW1L vtrn.16 ROW4L, ROW5L vshl.s16 ROW0R, ROW0R, #2 /* PASS1_BITS */ vtrn.32 ROW1L, ROW3L vtrn.32 ROW4L, ROW6L vtrn.32 ROW0L, ROW2L vtrn.32 ROW5L, ROW7L cmp r0, #0 beq 4f /* Right 4x8 half has all zeros, go to 'sparse' second pass */ /* Only row 0 is non-zero for the right 4x8 half */ vdup.s16 ROW1R, ROW0R[1] vdup.s16 ROW2R, ROW0R[2] vdup.s16 ROW3R, ROW0R[3] vdup.s16 ROW4R, ROW0R[0] vdup.s16 ROW5R, ROW0R[1] vdup.s16 ROW6R, ROW0R[2] vdup.s16 ROW7R, ROW0R[3] vdup.s16 ROW0R, ROW0R[0] b 1b /* Go to 'normal' second pass */ 4: /* 1-D IDCT, pass 2 (sparse variant with zero rows 4-7), left 4x8 half */ vld1.s16 {d2}, [ip, :64] /* reload constants */ vmull.s16 q6, ROW1L, XFIX_1_175875602 vmlal.s16 q6, ROW3L, XFIX_1_175875602_MINUS_1_961570560 vmull.s16 q7, ROW3L, XFIX_1_175875602 vmlal.s16 q7, ROW1L, XFIX_1_175875602_MINUS_0_390180644 vmull.s16 q2, ROW2L, XFIX_0_541196100 vshll.s16 q3, ROW0L, #13 vmov q4, q6 vmlal.s16 q6, ROW3L, XFIX_3_072711026_MINUS_2_562915447 vmlsl.s16 q4, ROW1L, XFIX_0_899976223 vadd.s32 q1, q3, q2 vmov q5, q7 vmlal.s16 q7, ROW1L, XFIX_1_501321110_MINUS_0_899976223 vadd.s32 q1, q1, q6 vadd.s32 q6, q6, q6 vmlsl.s16 q5, ROW3L, XFIX_2_562915447 vshrn.s32 ROW1L, q1, #16 vsub.s32 q1, q1, q6 vmull.s16 q6, ROW2L, XFIX_0_541196100_PLUS_0_765366865 vsub.s32 q3, q3, q2 vshrn.s32 ROW2R, q1, #16 /* ROW6L <-> ROW2R */ vadd.s32 q1, q3, q5 vsub.s32 q3, q3, q5 vshll.s16 q5, ROW0L, #13 vshrn.s32 ROW2L, q1, #16 vshrn.s32 ROW1R, q3, #16 /* ROW5L <-> ROW1R */ vadd.s32 q2, q5, q6 vsub.s32 q1, q5, q6 vadd.s32 q6, q2, q7 vsub.s32 q2, q2, q7 vadd.s32 q5, q1, q4 vsub.s32 q3, q1, q4 vshrn.s32 ROW3R, q2, #16 /* ROW7L <-> ROW3R */ vshrn.s32 ROW3L, q5, #16 vshrn.s32 ROW0L, q6, #16 vshrn.s32 ROW0R, q3, #16 /* ROW4L <-> ROW0R */ /* 1-D IDCT, pass 2 (sparse variant with zero rows 4-7), right 4x8 half */ vld1.s16 {d2}, [ip, :64] /* reload constants */ vmull.s16 q6, ROW5L, XFIX_1_175875602 vmlal.s16 q6, ROW7L, XFIX_1_175875602_MINUS_1_961570560 vmull.s16 q7, ROW7L, XFIX_1_175875602 vmlal.s16 q7, ROW5L, XFIX_1_175875602_MINUS_0_390180644 vmull.s16 q2, ROW6L, XFIX_0_541196100 vshll.s16 q3, ROW4L, #13 vmov q4, q6 vmlal.s16 q6, ROW7L, XFIX_3_072711026_MINUS_2_562915447 vmlsl.s16 q4, ROW5L, XFIX_0_899976223 vadd.s32 q1, q3, q2 vmov q5, q7 vmlal.s16 q7, ROW5L, XFIX_1_501321110_MINUS_0_899976223 vadd.s32 q1, q1, q6 vadd.s32 q6, q6, q6 vmlsl.s16 q5, ROW7L, XFIX_2_562915447 vshrn.s32 ROW5L, q1, #16 /* ROW5L <-> ROW1R */ vsub.s32 q1, q1, q6 vmull.s16 q6, ROW6L, XFIX_0_541196100_PLUS_0_765366865 vsub.s32 q3, q3, q2 vshrn.s32 ROW6R, q1, #16 vadd.s32 q1, q3, q5 vsub.s32 q3, q3, q5 vshll.s16 q5, ROW4L, #13 vshrn.s32 ROW6L, q1, #16 /* ROW6L <-> ROW2R */ vshrn.s32 ROW5R, q3, #16 vadd.s32 q2, q5, q6 vsub.s32 q1, q5, q6 vadd.s32 q6, q2, q7 vsub.s32 q2, q2, q7 vadd.s32 q5, q1, q4 vsub.s32 q3, q1, q4 vshrn.s32 ROW7R, q2, #16 vshrn.s32 ROW7L, q5, #16 /* ROW7L <-> ROW3R */ vshrn.s32 ROW4L, q6, #16 /* ROW4L <-> ROW0R */ vshrn.s32 ROW4R, q3, #16 b 2b /* Go to epilogue */ .unreq DCT_TABLE .unreq COEF_BLOCK .unreq OUTPUT_BUF .unreq OUTPUT_COL .unreq TMP1 .unreq TMP2 .unreq TMP3 .unreq TMP4 .unreq ROW0L .unreq ROW0R .unreq ROW1L .unreq ROW1R .unreq ROW2L .unreq ROW2R .unreq ROW3L .unreq ROW3R .unreq ROW4L .unreq ROW4R .unreq ROW5L .unreq ROW5R .unreq ROW6L .unreq ROW6R .unreq ROW7L .unreq ROW7R /*****************************************************************************/ /* * jsimd_idct_ifast_neon * * This function contains a fast, not so accurate integer implementation of * the inverse DCT (Discrete Cosine Transform). It uses the same calculations * and produces exactly the same output as IJG's original 'jpeg_idct_ifast' * function from jidctfst.c * * Normally 1-D AAN DCT needs 5 multiplications and 29 additions. * But in ARM NEON case some extra additions are required because VQDMULH * instruction can't handle the constants larger than 1. So the expressions * like "x * 1.082392200" have to be converted to "x * 0.082392200 + x", * which introduces an extra addition. Overall, there are 6 extra additions * per 1-D IDCT pass, totalling to 5 VQDMULH and 35 VADD/VSUB instructions. */ #define XFIX_1_082392200 d0[0] #define XFIX_1_414213562 d0[1] #define XFIX_1_847759065 d0[2] #define XFIX_2_613125930 d0[3] .balign 16 jsimd_idct_ifast_neon_consts: .short (277 * 128 - 256 * 128) /* XFIX_1_082392200 */ .short (362 * 128 - 256 * 128) /* XFIX_1_414213562 */ .short (473 * 128 - 256 * 128) /* XFIX_1_847759065 */ .short (669 * 128 - 512 * 128) /* XFIX_2_613125930 */ asm_function jsimd_idct_ifast_neon DCT_TABLE .req r0 COEF_BLOCK .req r1 OUTPUT_BUF .req r2 OUTPUT_COL .req r3 TMP1 .req r0 TMP2 .req r1 TMP3 .req r2 TMP4 .req ip /* Load and dequantize coefficients into NEON registers * with the following allocation: * 0 1 2 3 | 4 5 6 7 * ---------+-------- * 0 | d16 | d17 ( q8 ) * 1 | d18 | d19 ( q9 ) * 2 | d20 | d21 ( q10 ) * 3 | d22 | d23 ( q11 ) * 4 | d24 | d25 ( q12 ) * 5 | d26 | d27 ( q13 ) * 6 | d28 | d29 ( q14 ) * 7 | d30 | d31 ( q15 ) */ adr ip, jsimd_idct_ifast_neon_consts vld1.16 {d16, d17, d18, d19}, [COEF_BLOCK, :128]! vld1.16 {d0, d1, d2, d3}, [DCT_TABLE, :128]! vld1.16 {d20, d21, d22, d23}, [COEF_BLOCK, :128]! vmul.s16 q8, q8, q0 vld1.16 {d4, d5, d6, d7}, [DCT_TABLE, :128]! vmul.s16 q9, q9, q1 vld1.16 {d24, d25, d26, d27}, [COEF_BLOCK, :128]! vmul.s16 q10, q10, q2 vld1.16 {d0, d1, d2, d3}, [DCT_TABLE, :128]! vmul.s16 q11, q11, q3 vld1.16 {d28, d29, d30, d31}, [COEF_BLOCK, :128] vmul.s16 q12, q12, q0 vld1.16 {d4, d5, d6, d7}, [DCT_TABLE, :128]! vmul.s16 q14, q14, q2 vmul.s16 q13, q13, q1 vld1.16 {d0}, [ip, :64] /* load constants */ vmul.s16 q15, q15, q3 vpush {d8-d13} /* save NEON registers */ /* 1-D IDCT, pass 1 */ vsub.s16 q2, q10, q14 vadd.s16 q14, q10, q14 vsub.s16 q1, q11, q13 vadd.s16 q13, q11, q13 vsub.s16 q5, q9, q15 vadd.s16 q15, q9, q15 vqdmulh.s16 q4, q2, XFIX_1_414213562 vqdmulh.s16 q6, q1, XFIX_2_613125930 vadd.s16 q3, q1, q1 vsub.s16 q1, q5, q1 vadd.s16 q10, q2, q4 vqdmulh.s16 q4, q1, XFIX_1_847759065 vsub.s16 q2, q15, q13 vadd.s16 q3, q3, q6 vqdmulh.s16 q6, q2, XFIX_1_414213562 vadd.s16 q1, q1, q4 vqdmulh.s16 q4, q5, XFIX_1_082392200 vsub.s16 q10, q10, q14 vadd.s16 q2, q2, q6 vsub.s16 q6, q8, q12 vadd.s16 q12, q8, q12 vadd.s16 q9, q5, q4 vadd.s16 q5, q6, q10 vsub.s16 q10, q6, q10 vadd.s16 q6, q15, q13 vadd.s16 q8, q12, q14 vsub.s16 q3, q6, q3 vsub.s16 q12, q12, q14 vsub.s16 q3, q3, q1 vsub.s16 q1, q9, q1 vadd.s16 q2, q3, q2 vsub.s16 q15, q8, q6 vadd.s16 q1, q1, q2 vadd.s16 q8, q8, q6 vadd.s16 q14, q5, q3 vsub.s16 q9, q5, q3 vsub.s16 q13, q10, q2 vadd.s16 q10, q10, q2 /* Transpose */ vtrn.16 q8, q9 vsub.s16 q11, q12, q1 vtrn.16 q14, q15 vadd.s16 q12, q12, q1 vtrn.16 q10, q11 vtrn.16 q12, q13 vtrn.32 q9, q11 vtrn.32 q12, q14 vtrn.32 q8, q10 vtrn.32 q13, q15 vswp d28, d21 vswp d26, d19 /* 1-D IDCT, pass 2 */ vsub.s16 q2, q10, q14 vswp d30, d23 vadd.s16 q14, q10, q14 vswp d24, d17 vsub.s16 q1, q11, q13 vadd.s16 q13, q11, q13 vsub.s16 q5, q9, q15 vadd.s16 q15, q9, q15 vqdmulh.s16 q4, q2, XFIX_1_414213562 vqdmulh.s16 q6, q1, XFIX_2_613125930 vadd.s16 q3, q1, q1 vsub.s16 q1, q5, q1 vadd.s16 q10, q2, q4 vqdmulh.s16 q4, q1, XFIX_1_847759065 vsub.s16 q2, q15, q13 vadd.s16 q3, q3, q6 vqdmulh.s16 q6, q2, XFIX_1_414213562 vadd.s16 q1, q1, q4 vqdmulh.s16 q4, q5, XFIX_1_082392200 vsub.s16 q10, q10, q14 vadd.s16 q2, q2, q6 vsub.s16 q6, q8, q12 vadd.s16 q12, q8, q12 vadd.s16 q9, q5, q4 vadd.s16 q5, q6, q10 vsub.s16 q10, q6, q10 vadd.s16 q6, q15, q13 vadd.s16 q8, q12, q14 vsub.s16 q3, q6, q3 vsub.s16 q12, q12, q14 vsub.s16 q3, q3, q1 vsub.s16 q1, q9, q1 vadd.s16 q2, q3, q2 vsub.s16 q15, q8, q6 vadd.s16 q1, q1, q2 vadd.s16 q8, q8, q6 vadd.s16 q14, q5, q3 vsub.s16 q9, q5, q3 vsub.s16 q13, q10, q2 vpop {d8-d13} /* restore NEON registers */ vadd.s16 q10, q10, q2 vsub.s16 q11, q12, q1 vadd.s16 q12, q12, q1 /* Descale to 8-bit and range limit */ vmov.u8 q0, #0x80 vqshrn.s16 d16, q8, #5 vqshrn.s16 d17, q9, #5 vqshrn.s16 d18, q10, #5 vqshrn.s16 d19, q11, #5 vqshrn.s16 d20, q12, #5 vqshrn.s16 d21, q13, #5 vqshrn.s16 d22, q14, #5 vqshrn.s16 d23, q15, #5 vadd.u8 q8, q8, q0 vadd.u8 q9, q9, q0 vadd.u8 q10, q10, q0 vadd.u8 q11, q11, q0 /* Transpose the final 8-bit samples */ vtrn.16 q8, q9 vtrn.16 q10, q11 vtrn.32 q8, q10 vtrn.32 q9, q11 vtrn.8 d16, d17 vtrn.8 d18, d19 /* Store results to the output buffer */ ldmia OUTPUT_BUF!, {TMP1, TMP2} add TMP1, TMP1, OUTPUT_COL add TMP2, TMP2, OUTPUT_COL vst1.8 {d16}, [TMP1] vst1.8 {d17}, [TMP2] ldmia OUTPUT_BUF!, {TMP1, TMP2} add TMP1, TMP1, OUTPUT_COL add TMP2, TMP2, OUTPUT_COL vst1.8 {d18}, [TMP1] vtrn.8 d20, d21 vst1.8 {d19}, [TMP2] ldmia OUTPUT_BUF, {TMP1, TMP2, TMP3, TMP4} add TMP1, TMP1, OUTPUT_COL add TMP2, TMP2, OUTPUT_COL add TMP3, TMP3, OUTPUT_COL add TMP4, TMP4, OUTPUT_COL vst1.8 {d20}, [TMP1] vtrn.8 d22, d23 vst1.8 {d21}, [TMP2] vst1.8 {d22}, [TMP3] vst1.8 {d23}, [TMP4] bx lr .unreq DCT_TABLE .unreq COEF_BLOCK .unreq OUTPUT_BUF .unreq OUTPUT_COL .unreq TMP1 .unreq TMP2 .unreq TMP3 .unreq TMP4 /*****************************************************************************/ /* * jsimd_idct_4x4_neon * * This function contains inverse-DCT code for getting reduced-size * 4x4 pixels output from an 8x8 DCT block. It uses the same calculations * and produces exactly the same output as IJG's original 'jpeg_idct_4x4' * function from jpeg-6b (jidctred.c). * * NOTE: jpeg-8 has an improved implementation of 4x4 inverse-DCT, which * requires much less arithmetic operations and hence should be faster. * The primary purpose of this particular NEON optimized function is * bit exact compatibility with jpeg-6b. * * TODO: a bit better instructions scheduling can be achieved by expanding * idct_helper/transpose_4x4 macros and reordering instructions, * but readability will suffer somewhat. */ #define CONST_BITS 13 #define FIX_0_211164243 (1730) /* FIX(0.211164243) */ #define FIX_0_509795579 (4176) /* FIX(0.509795579) */ #define FIX_0_601344887 (4926) /* FIX(0.601344887) */ #define FIX_0_720959822 (5906) /* FIX(0.720959822) */ #define FIX_0_765366865 (6270) /* FIX(0.765366865) */ #define FIX_0_850430095 (6967) /* FIX(0.850430095) */ #define FIX_0_899976223 (7373) /* FIX(0.899976223) */ #define FIX_1_061594337 (8697) /* FIX(1.061594337) */ #define FIX_1_272758580 (10426) /* FIX(1.272758580) */ #define FIX_1_451774981 (11893) /* FIX(1.451774981) */ #define FIX_1_847759065 (15137) /* FIX(1.847759065) */ #define FIX_2_172734803 (17799) /* FIX(2.172734803) */ #define FIX_2_562915447 (20995) /* FIX(2.562915447) */ #define FIX_3_624509785 (29692) /* FIX(3.624509785) */ .balign 16 jsimd_idct_4x4_neon_consts: .short FIX_1_847759065 /* d0[0] */ .short -FIX_0_765366865 /* d0[1] */ .short -FIX_0_211164243 /* d0[2] */ .short FIX_1_451774981 /* d0[3] */ .short -FIX_2_172734803 /* d1[0] */ .short FIX_1_061594337 /* d1[1] */ .short -FIX_0_509795579 /* d1[2] */ .short -FIX_0_601344887 /* d1[3] */ .short FIX_0_899976223 /* d2[0] */ .short FIX_2_562915447 /* d2[1] */ .short 1 << (CONST_BITS+1) /* d2[2] */ .short 0 /* d2[3] */ .macro idct_helper x4, x6, x8, x10, x12, x14, x16, shift, y26, y27, y28, y29 vmull.s16 q14, \x4, d2[2] vmlal.s16 q14, \x8, d0[0] vmlal.s16 q14, \x14, d0[1] vmull.s16 q13, \x16, d1[2] vmlal.s16 q13, \x12, d1[3] vmlal.s16 q13, \x10, d2[0] vmlal.s16 q13, \x6, d2[1] vmull.s16 q15, \x4, d2[2] vmlsl.s16 q15, \x8, d0[0] vmlsl.s16 q15, \x14, d0[1] vmull.s16 q12, \x16, d0[2] vmlal.s16 q12, \x12, d0[3] vmlal.s16 q12, \x10, d1[0] vmlal.s16 q12, \x6, d1[1] vadd.s32 q10, q14, q13 vsub.s32 q14, q14, q13 .if \shift > 16 vrshr.s32 q10, q10, #\shift vrshr.s32 q14, q14, #\shift vmovn.s32 \y26, q10 vmovn.s32 \y29, q14 .else vrshrn.s32 \y26, q10, #\shift vrshrn.s32 \y29, q14, #\shift .endif vadd.s32 q10, q15, q12 vsub.s32 q15, q15, q12 .if \shift > 16 vrshr.s32 q10, q10, #\shift vrshr.s32 q15, q15, #\shift vmovn.s32 \y27, q10 vmovn.s32 \y28, q15 .else vrshrn.s32 \y27, q10, #\shift vrshrn.s32 \y28, q15, #\shift .endif .endm asm_function jsimd_idct_4x4_neon DCT_TABLE .req r0 COEF_BLOCK .req r1 OUTPUT_BUF .req r2 OUTPUT_COL .req r3 TMP1 .req r0 TMP2 .req r1 TMP3 .req r2 TMP4 .req ip vpush {d8-d15} /* Load constants (d3 is just used for padding) */ adr TMP4, jsimd_idct_4x4_neon_consts vld1.16 {d0, d1, d2, d3}, [TMP4, :128] /* Load all COEF_BLOCK into NEON registers with the following allocation: * 0 1 2 3 | 4 5 6 7 * ---------+-------- * 0 | d4 | d5 * 1 | d6 | d7 * 2 | d8 | d9 * 3 | d10 | d11 * 4 | - | - * 5 | d12 | d13 * 6 | d14 | d15 * 7 | d16 | d17 */ vld1.16 {d4, d5, d6, d7}, [COEF_BLOCK, :128]! vld1.16 {d8, d9, d10, d11}, [COEF_BLOCK, :128]! add COEF_BLOCK, COEF_BLOCK, #16 vld1.16 {d12, d13, d14, d15}, [COEF_BLOCK, :128]! vld1.16 {d16, d17}, [COEF_BLOCK, :128]! /* dequantize */ vld1.16 {d18, d19, d20, d21}, [DCT_TABLE, :128]! vmul.s16 q2, q2, q9 vld1.16 {d22, d23, d24, d25}, [DCT_TABLE, :128]! vmul.s16 q3, q3, q10 vmul.s16 q4, q4, q11 add DCT_TABLE, DCT_TABLE, #16 vld1.16 {d26, d27, d28, d29}, [DCT_TABLE, :128]! vmul.s16 q5, q5, q12 vmul.s16 q6, q6, q13 vld1.16 {d30, d31}, [DCT_TABLE, :128]! vmul.s16 q7, q7, q14 vmul.s16 q8, q8, q15 /* Pass 1 */ idct_helper d4, d6, d8, d10, d12, d14, d16, 12, d4, d6, d8, d10 transpose_4x4 d4, d6, d8, d10 idct_helper d5, d7, d9, d11, d13, d15, d17, 12, d5, d7, d9, d11 transpose_4x4 d5, d7, d9, d11 /* Pass 2 */ idct_helper d4, d6, d8, d10, d7, d9, d11, 19, d26, d27, d28, d29 transpose_4x4 d26, d27, d28, d29 /* Range limit */ vmov.u16 q15, #0x80 vadd.s16 q13, q13, q15 vadd.s16 q14, q14, q15 vqmovun.s16 d26, q13 vqmovun.s16 d27, q14 /* Store results to the output buffer */ ldmia OUTPUT_BUF, {TMP1, TMP2, TMP3, TMP4} add TMP1, TMP1, OUTPUT_COL add TMP2, TMP2, OUTPUT_COL add TMP3, TMP3, OUTPUT_COL add TMP4, TMP4, OUTPUT_COL #if defined(__ARMEL__) && !RESPECT_STRICT_ALIGNMENT /* We can use much less instructions on little endian systems if the * OS kernel is not configured to trap unaligned memory accesses */ vst1.32 {d26[0]}, [TMP1]! vst1.32 {d27[0]}, [TMP3]! vst1.32 {d26[1]}, [TMP2]! vst1.32 {d27[1]}, [TMP4]! #else vst1.8 {d26[0]}, [TMP1]! vst1.8 {d27[0]}, [TMP3]! vst1.8 {d26[1]}, [TMP1]! vst1.8 {d27[1]}, [TMP3]! vst1.8 {d26[2]}, [TMP1]! vst1.8 {d27[2]}, [TMP3]! vst1.8 {d26[3]}, [TMP1]! vst1.8 {d27[3]}, [TMP3]! vst1.8 {d26[4]}, [TMP2]! vst1.8 {d27[4]}, [TMP4]! vst1.8 {d26[5]}, [TMP2]! vst1.8 {d27[5]}, [TMP4]! vst1.8 {d26[6]}, [TMP2]! vst1.8 {d27[6]}, [TMP4]! vst1.8 {d26[7]}, [TMP2]! vst1.8 {d27[7]}, [TMP4]! #endif vpop {d8-d15} bx lr .unreq DCT_TABLE .unreq COEF_BLOCK .unreq OUTPUT_BUF .unreq OUTPUT_COL .unreq TMP1 .unreq TMP2 .unreq TMP3 .unreq TMP4 .purgem idct_helper /*****************************************************************************/ /* * jsimd_idct_2x2_neon * * This function contains inverse-DCT code for getting reduced-size * 2x2 pixels output from an 8x8 DCT block. It uses the same calculations * and produces exactly the same output as IJG's original 'jpeg_idct_2x2' * function from jpeg-6b (jidctred.c). * * NOTE: jpeg-8 has an improved implementation of 2x2 inverse-DCT, which * requires much less arithmetic operations and hence should be faster. * The primary purpose of this particular NEON optimized function is * bit exact compatibility with jpeg-6b. */ .balign 8 jsimd_idct_2x2_neon_consts: .short -FIX_0_720959822 /* d0[0] */ .short FIX_0_850430095 /* d0[1] */ .short -FIX_1_272758580 /* d0[2] */ .short FIX_3_624509785 /* d0[3] */ .macro idct_helper x4, x6, x10, x12, x16, shift, y26, y27 vshll.s16 q14, \x4, #15 vmull.s16 q13, \x6, d0[3] vmlal.s16 q13, \x10, d0[2] vmlal.s16 q13, \x12, d0[1] vmlal.s16 q13, \x16, d0[0] vadd.s32 q10, q14, q13 vsub.s32 q14, q14, q13 .if \shift > 16 vrshr.s32 q10, q10, #\shift vrshr.s32 q14, q14, #\shift vmovn.s32 \y26, q10 vmovn.s32 \y27, q14 .else vrshrn.s32 \y26, q10, #\shift vrshrn.s32 \y27, q14, #\shift .endif .endm asm_function jsimd_idct_2x2_neon DCT_TABLE .req r0 COEF_BLOCK .req r1 OUTPUT_BUF .req r2 OUTPUT_COL .req r3 TMP1 .req r0 TMP2 .req ip vpush {d8-d15} /* Load constants */ adr TMP2, jsimd_idct_2x2_neon_consts vld1.16 {d0}, [TMP2, :64] /* Load all COEF_BLOCK into NEON registers with the following allocation: * 0 1 2 3 | 4 5 6 7 * ---------+-------- * 0 | d4 | d5 * 1 | d6 | d7 * 2 | - | - * 3 | d10 | d11 * 4 | - | - * 5 | d12 | d13 * 6 | - | - * 7 | d16 | d17 */ vld1.16 {d4, d5, d6, d7}, [COEF_BLOCK, :128]! add COEF_BLOCK, COEF_BLOCK, #16 vld1.16 {d10, d11}, [COEF_BLOCK, :128]! add COEF_BLOCK, COEF_BLOCK, #16 vld1.16 {d12, d13}, [COEF_BLOCK, :128]! add COEF_BLOCK, COEF_BLOCK, #16 vld1.16 {d16, d17}, [COEF_BLOCK, :128]! /* Dequantize */ vld1.16 {d18, d19, d20, d21}, [DCT_TABLE, :128]! vmul.s16 q2, q2, q9 vmul.s16 q3, q3, q10 add DCT_TABLE, DCT_TABLE, #16 vld1.16 {d24, d25}, [DCT_TABLE, :128]! vmul.s16 q5, q5, q12 add DCT_TABLE, DCT_TABLE, #16 vld1.16 {d26, d27}, [DCT_TABLE, :128]! vmul.s16 q6, q6, q13 add DCT_TABLE, DCT_TABLE, #16 vld1.16 {d30, d31}, [DCT_TABLE, :128]! vmul.s16 q8, q8, q15 /* Pass 1 */ #if 0 idct_helper d4, d6, d10, d12, d16, 13, d4, d6 transpose_4x4 d4, d6, d8, d10 idct_helper d5, d7, d11, d13, d17, 13, d5, d7 transpose_4x4 d5, d7, d9, d11 #else vmull.s16 q13, d6, d0[3] vmlal.s16 q13, d10, d0[2] vmlal.s16 q13, d12, d0[1] vmlal.s16 q13, d16, d0[0] vmull.s16 q12, d7, d0[3] vmlal.s16 q12, d11, d0[2] vmlal.s16 q12, d13, d0[1] vmlal.s16 q12, d17, d0[0] vshll.s16 q14, d4, #15 vshll.s16 q15, d5, #15 vadd.s32 q10, q14, q13 vsub.s32 q14, q14, q13 vrshrn.s32 d4, q10, #13 vrshrn.s32 d6, q14, #13 vadd.s32 q10, q15, q12 vsub.s32 q14, q15, q12 vrshrn.s32 d5, q10, #13 vrshrn.s32 d7, q14, #13 vtrn.16 q2, q3 vtrn.32 q3, q5 #endif /* Pass 2 */ idct_helper d4, d6, d10, d7, d11, 20, d26, d27 /* Range limit */ vmov.u16 q15, #0x80 vadd.s16 q13, q13, q15 vqmovun.s16 d26, q13 vqmovun.s16 d27, q13 /* Store results to the output buffer */ ldmia OUTPUT_BUF, {TMP1, TMP2} add TMP1, TMP1, OUTPUT_COL add TMP2, TMP2, OUTPUT_COL vst1.8 {d26[0]}, [TMP1]! vst1.8 {d27[4]}, [TMP1]! vst1.8 {d26[1]}, [TMP2]! vst1.8 {d27[5]}, [TMP2]! vpop {d8-d15} bx lr .unreq DCT_TABLE .unreq COEF_BLOCK .unreq OUTPUT_BUF .unreq OUTPUT_COL .unreq TMP1 .unreq TMP2 .purgem idct_helper /*****************************************************************************/ /* * jsimd_ycc_extrgb_convert_neon * jsimd_ycc_extbgr_convert_neon * jsimd_ycc_extrgbx_convert_neon * jsimd_ycc_extbgrx_convert_neon * jsimd_ycc_extxbgr_convert_neon * jsimd_ycc_extxrgb_convert_neon * * Colorspace conversion YCbCr -> RGB */ .macro do_load size .if \size == 8 vld1.8 {d4}, [U, :64]! vld1.8 {d5}, [V, :64]! vld1.8 {d0}, [Y, :64]! pld [U, #64] pld [V, #64] pld [Y, #64] .elseif \size == 4 vld1.8 {d4[0]}, [U]! vld1.8 {d4[1]}, [U]! vld1.8 {d4[2]}, [U]! vld1.8 {d4[3]}, [U]! vld1.8 {d5[0]}, [V]! vld1.8 {d5[1]}, [V]! vld1.8 {d5[2]}, [V]! vld1.8 {d5[3]}, [V]! vld1.8 {d0[0]}, [Y]! vld1.8 {d0[1]}, [Y]! vld1.8 {d0[2]}, [Y]! vld1.8 {d0[3]}, [Y]! .elseif \size == 2 vld1.8 {d4[4]}, [U]! vld1.8 {d4[5]}, [U]! vld1.8 {d5[4]}, [V]! vld1.8 {d5[5]}, [V]! vld1.8 {d0[4]}, [Y]! vld1.8 {d0[5]}, [Y]! .elseif \size == 1 vld1.8 {d4[6]}, [U]! vld1.8 {d5[6]}, [V]! vld1.8 {d0[6]}, [Y]! .else .error unsupported macroblock size .endif .endm .macro do_store bpp, size .if \bpp == 24 .if \size == 8 vst3.8 {d10, d11, d12}, [RGB]! .elseif \size == 4 vst3.8 {d10[0], d11[0], d12[0]}, [RGB]! vst3.8 {d10[1], d11[1], d12[1]}, [RGB]! vst3.8 {d10[2], d11[2], d12[2]}, [RGB]! vst3.8 {d10[3], d11[3], d12[3]}, [RGB]! .elseif \size == 2 vst3.8 {d10[4], d11[4], d12[4]}, [RGB]! vst3.8 {d10[5], d11[5], d12[5]}, [RGB]! .elseif \size == 1 vst3.8 {d10[6], d11[6], d12[6]}, [RGB]! .else .error unsupported macroblock size .endif .elseif \bpp == 32 .if \size == 8 vst4.8 {d10, d11, d12, d13}, [RGB]! .elseif \size == 4 vst4.8 {d10[0], d11[0], d12[0], d13[0]}, [RGB]! vst4.8 {d10[1], d11[1], d12[1], d13[1]}, [RGB]! vst4.8 {d10[2], d11[2], d12[2], d13[2]}, [RGB]! vst4.8 {d10[3], d11[3], d12[3], d13[3]}, [RGB]! .elseif \size == 2 vst4.8 {d10[4], d11[4], d12[4], d13[4]}, [RGB]! vst4.8 {d10[5], d11[5], d12[5], d13[5]}, [RGB]! .elseif \size == 1 vst4.8 {d10[6], d11[6], d12[6], d13[6]}, [RGB]! .else .error unsupported macroblock size .endif .elseif \bpp == 16 .if \size == 8 vst1.16 {q15}, [RGB]! .elseif \size == 4 vst1.16 {d30}, [RGB]! .elseif \size == 2 vst1.16 {d31[0]}, [RGB]! vst1.16 {d31[1]}, [RGB]! .elseif \size == 1 vst1.16 {d31[2]}, [RGB]! .else .error unsupported macroblock size .endif .else .error unsupported bpp .endif .endm .macro generate_jsimd_ycc_rgb_convert_neon colorid, bpp, r_offs, g_offs, b_offs /* * 2 stage pipelined YCbCr->RGB conversion */ .macro do_yuv_to_rgb_stage1 vaddw.u8 q3, q1, d4 /* q3 = u - 128 */ vaddw.u8 q4, q1, d5 /* q2 = v - 128 */ vmull.s16 q10, d6, d1[1] /* multiply by -11277 */ vmlal.s16 q10, d8, d1[2] /* multiply by -23401 */ vmull.s16 q11, d7, d1[1] /* multiply by -11277 */ vmlal.s16 q11, d9, d1[2] /* multiply by -23401 */ vmull.s16 q12, d8, d1[0] /* multiply by 22971 */ vmull.s16 q13, d9, d1[0] /* multiply by 22971 */ vmull.s16 q14, d6, d1[3] /* multiply by 29033 */ vmull.s16 q15, d7, d1[3] /* multiply by 29033 */ .endm .macro do_yuv_to_rgb_stage2 vrshrn.s32 d20, q10, #15 vrshrn.s32 d21, q11, #15 vrshrn.s32 d24, q12, #14 vrshrn.s32 d25, q13, #14 vrshrn.s32 d28, q14, #14 vrshrn.s32 d29, q15, #14 vaddw.u8 q11, q10, d0 vaddw.u8 q12, q12, d0 vaddw.u8 q14, q14, d0 .if \bpp != 16 vqmovun.s16 d1\g_offs, q11 vqmovun.s16 d1\r_offs, q12 vqmovun.s16 d1\b_offs, q14 .else /* rgb565 */ vqshlu.s16 q13, q11, #8 vqshlu.s16 q15, q12, #8 vqshlu.s16 q14, q14, #8 vsri.u16 q15, q13, #5 vsri.u16 q15, q14, #11 .endif .endm .macro do_yuv_to_rgb_stage2_store_load_stage1 /* "do_yuv_to_rgb_stage2" and "store" */ vrshrn.s32 d20, q10, #15 /* "load" and "do_yuv_to_rgb_stage1" */ pld [U, #64] vrshrn.s32 d21, q11, #15 pld [V, #64] vrshrn.s32 d24, q12, #14 vrshrn.s32 d25, q13, #14 vld1.8 {d4}, [U, :64]! vrshrn.s32 d28, q14, #14 vld1.8 {d5}, [V, :64]! vrshrn.s32 d29, q15, #14 vaddw.u8 q3, q1, d4 /* q3 = u - 128 */ vaddw.u8 q4, q1, d5 /* q2 = v - 128 */ vaddw.u8 q11, q10, d0 vmull.s16 q10, d6, d1[1] /* multiply by -11277 */ vmlal.s16 q10, d8, d1[2] /* multiply by -23401 */ vaddw.u8 q12, q12, d0 vaddw.u8 q14, q14, d0 .if \bpp != 16 /**************** rgb24/rgb32 *********************************/ vqmovun.s16 d1\g_offs, q11 pld [Y, #64] vqmovun.s16 d1\r_offs, q12 vld1.8 {d0}, [Y, :64]! vqmovun.s16 d1\b_offs, q14 vmull.s16 q11, d7, d1[1] /* multiply by -11277 */ vmlal.s16 q11, d9, d1[2] /* multiply by -23401 */ do_store \bpp, 8 vmull.s16 q12, d8, d1[0] /* multiply by 22971 */ vmull.s16 q13, d9, d1[0] /* multiply by 22971 */ vmull.s16 q14, d6, d1[3] /* multiply by 29033 */ vmull.s16 q15, d7, d1[3] /* multiply by 29033 */ .else /**************************** rgb565 ***********************************/ vqshlu.s16 q13, q11, #8 pld [Y, #64] vqshlu.s16 q15, q12, #8 vqshlu.s16 q14, q14, #8 vld1.8 {d0}, [Y, :64]! vmull.s16 q11, d7, d1[1] vmlal.s16 q11, d9, d1[2] vsri.u16 q15, q13, #5 vmull.s16 q12, d8, d1[0] vsri.u16 q15, q14, #11 vmull.s16 q13, d9, d1[0] vmull.s16 q14, d6, d1[3] do_store \bpp, 8 vmull.s16 q15, d7, d1[3] .endif .endm .macro do_yuv_to_rgb do_yuv_to_rgb_stage1 do_yuv_to_rgb_stage2 .endm /* Apple gas crashes on adrl, work around that by using adr. * But this requires a copy of these constants for each function. */ .balign 16 jsimd_ycc_\colorid\()_neon_consts: .short 0, 0, 0, 0 .short 22971, -11277, -23401, 29033 .short -128, -128, -128, -128 .short -128, -128, -128, -128 asm_function jsimd_ycc_\colorid\()_convert_neon OUTPUT_WIDTH .req r0 INPUT_BUF .req r1 INPUT_ROW .req r2 OUTPUT_BUF .req r3 NUM_ROWS .req r4 INPUT_BUF0 .req r5 INPUT_BUF1 .req r6 INPUT_BUF2 .req INPUT_BUF RGB .req r7 Y .req r8 U .req r9 V .req r10 N .req ip /* Load constants to d1, d2, d3 (d0 is just used for padding) */ adr ip, jsimd_ycc_\colorid\()_neon_consts vld1.16 {d0, d1, d2, d3}, [ip, :128] /* Save ARM registers and handle input arguments */ push {r4, r5, r6, r7, r8, r9, r10, lr} ldr NUM_ROWS, [sp, #(4 * 8)] ldr INPUT_BUF0, [INPUT_BUF] ldr INPUT_BUF1, [INPUT_BUF, #4] ldr INPUT_BUF2, [INPUT_BUF, #8] .unreq INPUT_BUF /* Save NEON registers */ vpush {d8-d15} /* Initially set d10, d11, d12, d13 to 0xFF */ vmov.u8 q5, #255 vmov.u8 q6, #255 /* Outer loop over scanlines */ cmp NUM_ROWS, #1 blt 9f 0: ldr Y, [INPUT_BUF0, INPUT_ROW, lsl #2] ldr U, [INPUT_BUF1, INPUT_ROW, lsl #2] mov N, OUTPUT_WIDTH ldr V, [INPUT_BUF2, INPUT_ROW, lsl #2] add INPUT_ROW, INPUT_ROW, #1 ldr RGB, [OUTPUT_BUF], #4 /* Inner loop over pixels */ subs N, N, #8 blt 3f do_load 8 do_yuv_to_rgb_stage1 subs N, N, #8 blt 2f 1: do_yuv_to_rgb_stage2_store_load_stage1 subs N, N, #8 bge 1b 2: do_yuv_to_rgb_stage2 do_store \bpp, 8 tst N, #7 beq 8f 3: tst N, #4 beq 3f do_load 4 3: tst N, #2 beq 4f do_load 2 4: tst N, #1 beq 5f do_load 1 5: do_yuv_to_rgb tst N, #4 beq 6f do_store \bpp, 4 6: tst N, #2 beq 7f do_store \bpp, 2 7: tst N, #1 beq 8f do_store \bpp, 1 8: subs NUM_ROWS, NUM_ROWS, #1 bgt 0b 9: /* Restore all registers and return */ vpop {d8-d15} pop {r4, r5, r6, r7, r8, r9, r10, pc} .unreq OUTPUT_WIDTH .unreq INPUT_ROW .unreq OUTPUT_BUF .unreq NUM_ROWS .unreq INPUT_BUF0 .unreq INPUT_BUF1 .unreq INPUT_BUF2 .unreq RGB .unreq Y .unreq U .unreq V .unreq N .purgem do_yuv_to_rgb .purgem do_yuv_to_rgb_stage1 .purgem do_yuv_to_rgb_stage2 .purgem do_yuv_to_rgb_stage2_store_load_stage1 .endm /*--------------------------------- id ----- bpp R G B */ generate_jsimd_ycc_rgb_convert_neon extrgb, 24, 0, 1, 2 generate_jsimd_ycc_rgb_convert_neon extbgr, 24, 2, 1, 0 generate_jsimd_ycc_rgb_convert_neon extrgbx, 32, 0, 1, 2 generate_jsimd_ycc_rgb_convert_neon extbgrx, 32, 2, 1, 0 generate_jsimd_ycc_rgb_convert_neon extxbgr, 32, 3, 2, 1 generate_jsimd_ycc_rgb_convert_neon extxrgb, 32, 1, 2, 3 generate_jsimd_ycc_rgb_convert_neon rgb565, 16, 0, 0, 0 .purgem do_load .purgem do_store /*****************************************************************************/ /* * jsimd_extrgb_ycc_convert_neon * jsimd_extbgr_ycc_convert_neon * jsimd_extrgbx_ycc_convert_neon * jsimd_extbgrx_ycc_convert_neon * jsimd_extxbgr_ycc_convert_neon * jsimd_extxrgb_ycc_convert_neon * * Colorspace conversion RGB -> YCbCr */ .macro do_store size .if \size == 8 vst1.8 {d20}, [Y]! vst1.8 {d21}, [U]! vst1.8 {d22}, [V]! .elseif \size == 4 vst1.8 {d20[0]}, [Y]! vst1.8 {d20[1]}, [Y]! vst1.8 {d20[2]}, [Y]! vst1.8 {d20[3]}, [Y]! vst1.8 {d21[0]}, [U]! vst1.8 {d21[1]}, [U]! vst1.8 {d21[2]}, [U]! vst1.8 {d21[3]}, [U]! vst1.8 {d22[0]}, [V]! vst1.8 {d22[1]}, [V]! vst1.8 {d22[2]}, [V]! vst1.8 {d22[3]}, [V]! .elseif \size == 2 vst1.8 {d20[4]}, [Y]! vst1.8 {d20[5]}, [Y]! vst1.8 {d21[4]}, [U]! vst1.8 {d21[5]}, [U]! vst1.8 {d22[4]}, [V]! vst1.8 {d22[5]}, [V]! .elseif \size == 1 vst1.8 {d20[6]}, [Y]! vst1.8 {d21[6]}, [U]! vst1.8 {d22[6]}, [V]! .else .error unsupported macroblock size .endif .endm .macro do_load bpp, size .if \bpp == 24 .if \size == 8 vld3.8 {d10, d11, d12}, [RGB]! pld [RGB, #128] .elseif \size == 4 vld3.8 {d10[0], d11[0], d12[0]}, [RGB]! vld3.8 {d10[1], d11[1], d12[1]}, [RGB]! vld3.8 {d10[2], d11[2], d12[2]}, [RGB]! vld3.8 {d10[3], d11[3], d12[3]}, [RGB]! .elseif \size == 2 vld3.8 {d10[4], d11[4], d12[4]}, [RGB]! vld3.8 {d10[5], d11[5], d12[5]}, [RGB]! .elseif \size == 1 vld3.8 {d10[6], d11[6], d12[6]}, [RGB]! .else .error unsupported macroblock size .endif .elseif \bpp == 32 .if \size == 8 vld4.8 {d10, d11, d12, d13}, [RGB]! pld [RGB, #128] .elseif \size == 4 vld4.8 {d10[0], d11[0], d12[0], d13[0]}, [RGB]! vld4.8 {d10[1], d11[1], d12[1], d13[1]}, [RGB]! vld4.8 {d10[2], d11[2], d12[2], d13[2]}, [RGB]! vld4.8 {d10[3], d11[3], d12[3], d13[3]}, [RGB]! .elseif \size == 2 vld4.8 {d10[4], d11[4], d12[4], d13[4]}, [RGB]! vld4.8 {d10[5], d11[5], d12[5], d13[5]}, [RGB]! .elseif \size == 1 vld4.8 {d10[6], d11[6], d12[6], d13[6]}, [RGB]! .else .error unsupported macroblock size .endif .else .error unsupported bpp .endif .endm .macro generate_jsimd_rgb_ycc_convert_neon colorid, bpp, r_offs, g_offs, b_offs /* * 2 stage pipelined RGB->YCbCr conversion */ .macro do_rgb_to_yuv_stage1 vmovl.u8 q2, d1\r_offs /* r = { d4, d5 } */ vmovl.u8 q3, d1\g_offs /* g = { d6, d7 } */ vmovl.u8 q4, d1\b_offs /* b = { d8, d9 } */ vmull.u16 q7, d4, d0[0] vmlal.u16 q7, d6, d0[1] vmlal.u16 q7, d8, d0[2] vmull.u16 q8, d5, d0[0] vmlal.u16 q8, d7, d0[1] vmlal.u16 q8, d9, d0[2] vrev64.32 q9, q1 vrev64.32 q13, q1 vmlsl.u16 q9, d4, d0[3] vmlsl.u16 q9, d6, d1[0] vmlal.u16 q9, d8, d1[1] vmlsl.u16 q13, d5, d0[3] vmlsl.u16 q13, d7, d1[0] vmlal.u16 q13, d9, d1[1] vrev64.32 q14, q1 vrev64.32 q15, q1 vmlal.u16 q14, d4, d1[1] vmlsl.u16 q14, d6, d1[2] vmlsl.u16 q14, d8, d1[3] vmlal.u16 q15, d5, d1[1] vmlsl.u16 q15, d7, d1[2] vmlsl.u16 q15, d9, d1[3] .endm .macro do_rgb_to_yuv_stage2 vrshrn.u32 d20, q7, #16 vrshrn.u32 d21, q8, #16 vshrn.u32 d22, q9, #16 vshrn.u32 d23, q13, #16 vshrn.u32 d24, q14, #16 vshrn.u32 d25, q15, #16 vmovn.u16 d20, q10 /* d20 = y */ vmovn.u16 d21, q11 /* d21 = u */ vmovn.u16 d22, q12 /* d22 = v */ .endm .macro do_rgb_to_yuv do_rgb_to_yuv_stage1 do_rgb_to_yuv_stage2 .endm .macro do_rgb_to_yuv_stage2_store_load_stage1 vrshrn.u32 d20, q7, #16 vrshrn.u32 d21, q8, #16 vshrn.u32 d22, q9, #16 vrev64.32 q9, q1 vshrn.u32 d23, q13, #16 vrev64.32 q13, q1 vshrn.u32 d24, q14, #16 vshrn.u32 d25, q15, #16 do_load \bpp, 8 vmovn.u16 d20, q10 /* d20 = y */ vmovl.u8 q2, d1\r_offs /* r = { d4, d5 } */ vmovn.u16 d21, q11 /* d21 = u */ vmovl.u8 q3, d1\g_offs /* g = { d6, d7 } */ vmovn.u16 d22, q12 /* d22 = v */ vmovl.u8 q4, d1\b_offs /* b = { d8, d9 } */ vmull.u16 q7, d4, d0[0] vmlal.u16 q7, d6, d0[1] vmlal.u16 q7, d8, d0[2] vst1.8 {d20}, [Y]! vmull.u16 q8, d5, d0[0] vmlal.u16 q8, d7, d0[1] vmlal.u16 q8, d9, d0[2] vmlsl.u16 q9, d4, d0[3] vmlsl.u16 q9, d6, d1[0] vmlal.u16 q9, d8, d1[1] vst1.8 {d21}, [U]! vmlsl.u16 q13, d5, d0[3] vmlsl.u16 q13, d7, d1[0] vmlal.u16 q13, d9, d1[1] vrev64.32 q14, q1 vrev64.32 q15, q1 vmlal.u16 q14, d4, d1[1] vmlsl.u16 q14, d6, d1[2] vmlsl.u16 q14, d8, d1[3] vst1.8 {d22}, [V]! vmlal.u16 q15, d5, d1[1] vmlsl.u16 q15, d7, d1[2] vmlsl.u16 q15, d9, d1[3] .endm .balign 16 jsimd_\colorid\()_ycc_neon_consts: .short 19595, 38470, 7471, 11059 .short 21709, 32768, 27439, 5329 .short 32767, 128, 32767, 128 .short 32767, 128, 32767, 128 asm_function jsimd_\colorid\()_ycc_convert_neon OUTPUT_WIDTH .req r0 INPUT_BUF .req r1 OUTPUT_BUF .req r2 OUTPUT_ROW .req r3 NUM_ROWS .req r4 OUTPUT_BUF0 .req r5 OUTPUT_BUF1 .req r6 OUTPUT_BUF2 .req OUTPUT_BUF RGB .req r7 Y .req r8 U .req r9 V .req r10 N .req ip /* Load constants to d0, d1, d2, d3 */ adr ip, jsimd_\colorid\()_ycc_neon_consts vld1.16 {d0, d1, d2, d3}, [ip, :128] /* Save ARM registers and handle input arguments */ push {r4, r5, r6, r7, r8, r9, r10, lr} ldr NUM_ROWS, [sp, #(4 * 8)] ldr OUTPUT_BUF0, [OUTPUT_BUF] ldr OUTPUT_BUF1, [OUTPUT_BUF, #4] ldr OUTPUT_BUF2, [OUTPUT_BUF, #8] .unreq OUTPUT_BUF /* Save NEON registers */ vpush {d8-d15} /* Outer loop over scanlines */ cmp NUM_ROWS, #1 blt 9f 0: ldr Y, [OUTPUT_BUF0, OUTPUT_ROW, lsl #2] ldr U, [OUTPUT_BUF1, OUTPUT_ROW, lsl #2] mov N, OUTPUT_WIDTH ldr V, [OUTPUT_BUF2, OUTPUT_ROW, lsl #2] add OUTPUT_ROW, OUTPUT_ROW, #1 ldr RGB, [INPUT_BUF], #4 /* Inner loop over pixels */ subs N, N, #8 blt 3f do_load \bpp, 8 do_rgb_to_yuv_stage1 subs N, N, #8 blt 2f 1: do_rgb_to_yuv_stage2_store_load_stage1 subs N, N, #8 bge 1b 2: do_rgb_to_yuv_stage2 do_store 8 tst N, #7 beq 8f 3: tst N, #4 beq 3f do_load \bpp, 4 3: tst N, #2 beq 4f do_load \bpp, 2 4: tst N, #1 beq 5f do_load \bpp, 1 5: do_rgb_to_yuv tst N, #4 beq 6f do_store 4 6: tst N, #2 beq 7f do_store 2 7: tst N, #1 beq 8f do_store 1 8: subs NUM_ROWS, NUM_ROWS, #1 bgt 0b 9: /* Restore all registers and return */ vpop {d8-d15} pop {r4, r5, r6, r7, r8, r9, r10, pc} .unreq OUTPUT_WIDTH .unreq OUTPUT_ROW .unreq INPUT_BUF .unreq NUM_ROWS .unreq OUTPUT_BUF0 .unreq OUTPUT_BUF1 .unreq OUTPUT_BUF2 .unreq RGB .unreq Y .unreq U .unreq V .unreq N .purgem do_rgb_to_yuv .purgem do_rgb_to_yuv_stage1 .purgem do_rgb_to_yuv_stage2 .purgem do_rgb_to_yuv_stage2_store_load_stage1 .endm /*--------------------------------- id ----- bpp R G B */ generate_jsimd_rgb_ycc_convert_neon extrgb, 24, 0, 1, 2 generate_jsimd_rgb_ycc_convert_neon extbgr, 24, 2, 1, 0 generate_jsimd_rgb_ycc_convert_neon extrgbx, 32, 0, 1, 2 generate_jsimd_rgb_ycc_convert_neon extbgrx, 32, 2, 1, 0 generate_jsimd_rgb_ycc_convert_neon extxbgr, 32, 3, 2, 1 generate_jsimd_rgb_ycc_convert_neon extxrgb, 32, 1, 2, 3 .purgem do_load .purgem do_store /*****************************************************************************/ /* * Load data into workspace, applying unsigned->signed conversion * * TODO: can be combined with 'jsimd_fdct_ifast_neon' to get * rid of VST1.16 instructions */ asm_function jsimd_convsamp_neon SAMPLE_DATA .req r0 START_COL .req r1 WORKSPACE .req r2 TMP1 .req r3 TMP2 .req r4 TMP3 .req r5 TMP4 .req ip push {r4, r5} vmov.u8 d0, #128 ldmia SAMPLE_DATA!, {TMP1, TMP2, TMP3, TMP4} add TMP1, TMP1, START_COL add TMP2, TMP2, START_COL add TMP3, TMP3, START_COL add TMP4, TMP4, START_COL vld1.8 {d16}, [TMP1] vsubl.u8 q8, d16, d0 vld1.8 {d18}, [TMP2] vsubl.u8 q9, d18, d0 vld1.8 {d20}, [TMP3] vsubl.u8 q10, d20, d0 vld1.8 {d22}, [TMP4] ldmia SAMPLE_DATA!, {TMP1, TMP2, TMP3, TMP4} vsubl.u8 q11, d22, d0 vst1.16 {d16, d17, d18, d19}, [WORKSPACE, :128]! add TMP1, TMP1, START_COL add TMP2, TMP2, START_COL vst1.16 {d20, d21, d22, d23}, [WORKSPACE, :128]! add TMP3, TMP3, START_COL add TMP4, TMP4, START_COL vld1.8 {d24}, [TMP1] vsubl.u8 q12, d24, d0 vld1.8 {d26}, [TMP2] vsubl.u8 q13, d26, d0 vld1.8 {d28}, [TMP3] vsubl.u8 q14, d28, d0 vld1.8 {d30}, [TMP4] vsubl.u8 q15, d30, d0 vst1.16 {d24, d25, d26, d27}, [WORKSPACE, :128]! vst1.16 {d28, d29, d30, d31}, [WORKSPACE, :128]! pop {r4, r5} bx lr .unreq SAMPLE_DATA .unreq START_COL .unreq WORKSPACE .unreq TMP1 .unreq TMP2 .unreq TMP3 .unreq TMP4 /*****************************************************************************/ /* * jsimd_fdct_ifast_neon * * This function contains a fast, not so accurate integer implementation of * the forward DCT (Discrete Cosine Transform). It uses the same calculations * and produces exactly the same output as IJG's original 'jpeg_fdct_ifast' * function from jfdctfst.c * * TODO: can be combined with 'jsimd_convsamp_neon' to get * rid of a bunch of VLD1.16 instructions */ #define XFIX_0_382683433 d0[0] #define XFIX_0_541196100 d0[1] #define XFIX_0_707106781 d0[2] #define XFIX_1_306562965 d0[3] .balign 16 jsimd_fdct_ifast_neon_consts: .short (98 * 128) /* XFIX_0_382683433 */ .short (139 * 128) /* XFIX_0_541196100 */ .short (181 * 128) /* XFIX_0_707106781 */ .short (334 * 128 - 256 * 128) /* XFIX_1_306562965 */ asm_function jsimd_fdct_ifast_neon DATA .req r0 TMP .req ip vpush {d8-d15} /* Load constants */ adr TMP, jsimd_fdct_ifast_neon_consts vld1.16 {d0}, [TMP, :64] /* Load all DATA into NEON registers with the following allocation: * 0 1 2 3 | 4 5 6 7 * ---------+-------- * 0 | d16 | d17 | q8 * 1 | d18 | d19 | q9 * 2 | d20 | d21 | q10 * 3 | d22 | d23 | q11 * 4 | d24 | d25 | q12 * 5 | d26 | d27 | q13 * 6 | d28 | d29 | q14 * 7 | d30 | d31 | q15 */ vld1.16 {d16, d17, d18, d19}, [DATA, :128]! vld1.16 {d20, d21, d22, d23}, [DATA, :128]! vld1.16 {d24, d25, d26, d27}, [DATA, :128]! vld1.16 {d28, d29, d30, d31}, [DATA, :128] sub DATA, DATA, #(128 - 32) mov TMP, #2 1: /* Transpose */ vtrn.16 q12, q13 vtrn.16 q10, q11 vtrn.16 q8, q9 vtrn.16 q14, q15 vtrn.32 q9, q11 vtrn.32 q13, q15 vtrn.32 q8, q10 vtrn.32 q12, q14 vswp d30, d23 vswp d24, d17 vswp d26, d19 /* 1-D FDCT */ vadd.s16 q2, q11, q12 vswp d28, d21 vsub.s16 q12, q11, q12 vsub.s16 q6, q10, q13 vadd.s16 q10, q10, q13 vsub.s16 q7, q9, q14 vadd.s16 q9, q9, q14 vsub.s16 q1, q8, q15 vadd.s16 q8, q8, q15 vsub.s16 q4, q9, q10 vsub.s16 q5, q8, q2 vadd.s16 q3, q9, q10 vadd.s16 q4, q4, q5 vadd.s16 q2, q8, q2 vqdmulh.s16 q4, q4, XFIX_0_707106781 vadd.s16 q11, q12, q6 vadd.s16 q8, q2, q3 vsub.s16 q12, q2, q3 vadd.s16 q3, q6, q7 vadd.s16 q7, q7, q1 vqdmulh.s16 q3, q3, XFIX_0_707106781 vsub.s16 q6, q11, q7 vadd.s16 q10, q5, q4 vqdmulh.s16 q6, q6, XFIX_0_382683433 vsub.s16 q14, q5, q4 vqdmulh.s16 q11, q11, XFIX_0_541196100 vqdmulh.s16 q5, q7, XFIX_1_306562965 vadd.s16 q4, q1, q3 vsub.s16 q3, q1, q3 vadd.s16 q7, q7, q6 vadd.s16 q11, q11, q6 vadd.s16 q7, q7, q5 vadd.s16 q13, q3, q11 vsub.s16 q11, q3, q11 vadd.s16 q9, q4, q7 vsub.s16 q15, q4, q7 subs TMP, TMP, #1 bne 1b /* store results */ vst1.16 {d16, d17, d18, d19}, [DATA, :128]! vst1.16 {d20, d21, d22, d23}, [DATA, :128]! vst1.16 {d24, d25, d26, d27}, [DATA, :128]! vst1.16 {d28, d29, d30, d31}, [DATA, :128] vpop {d8-d15} bx lr .unreq DATA .unreq TMP /*****************************************************************************/ /* * GLOBAL(void) * jsimd_quantize_neon (JCOEFPTR coef_block, DCTELEM * divisors, * DCTELEM * workspace); * * Note: the code uses 2 stage pipelining in order to improve instructions * scheduling and eliminate stalls (this provides ~15% better * performance for this function on both ARM Cortex-A8 and * ARM Cortex-A9 when compared to the non-pipelined variant). * The instructions which belong to the second stage use different * indentation for better readiability. */ asm_function jsimd_quantize_neon COEF_BLOCK .req r0 DIVISORS .req r1 WORKSPACE .req r2 RECIPROCAL .req DIVISORS CORRECTION .req r3 SHIFT .req ip LOOP_COUNT .req r4 vld1.16 {d0, d1, d2, d3}, [WORKSPACE, :128]! vabs.s16 q12, q0 add CORRECTION, DIVISORS, #(64 * 2) add SHIFT, DIVISORS, #(64 * 6) vld1.16 {d20, d21, d22, d23}, [CORRECTION, :128]! vabs.s16 q13, q1 vld1.16 {d16, d17, d18, d19}, [RECIPROCAL, :128]! vadd.u16 q12, q12, q10 /* add correction */ vadd.u16 q13, q13, q11 vmull.u16 q10, d24, d16 /* multiply by reciprocal */ vmull.u16 q11, d25, d17 vmull.u16 q8, d26, d18 vmull.u16 q9, d27, d19 vld1.16 {d24, d25, d26, d27}, [SHIFT, :128]! vshrn.u32 d20, q10, #16 vshrn.u32 d21, q11, #16 vshrn.u32 d22, q8, #16 vshrn.u32 d23, q9, #16 vneg.s16 q12, q12 vneg.s16 q13, q13 vshr.s16 q2, q0, #15 /* extract sign */ vshr.s16 q3, q1, #15 vshl.u16 q14, q10, q12 /* shift */ vshl.u16 q15, q11, q13 push {r4, r5} mov LOOP_COUNT, #3 1: vld1.16 {d0, d1, d2, d3}, [WORKSPACE, :128]! veor.u16 q14, q14, q2 /* restore sign */ vabs.s16 q12, q0 vld1.16 {d20, d21, d22, d23}, [CORRECTION, :128]! vabs.s16 q13, q1 veor.u16 q15, q15, q3 vld1.16 {d16, d17, d18, d19}, [RECIPROCAL, :128]! vadd.u16 q12, q12, q10 /* add correction */ vadd.u16 q13, q13, q11 vmull.u16 q10, d24, d16 /* multiply by reciprocal */ vmull.u16 q11, d25, d17 vmull.u16 q8, d26, d18 vmull.u16 q9, d27, d19 vsub.u16 q14, q14, q2 vld1.16 {d24, d25, d26, d27}, [SHIFT, :128]! vsub.u16 q15, q15, q3 vshrn.u32 d20, q10, #16 vshrn.u32 d21, q11, #16 vst1.16 {d28, d29, d30, d31}, [COEF_BLOCK, :128]! vshrn.u32 d22, q8, #16 vshrn.u32 d23, q9, #16 vneg.s16 q12, q12 vneg.s16 q13, q13 vshr.s16 q2, q0, #15 /* extract sign */ vshr.s16 q3, q1, #15 vshl.u16 q14, q10, q12 /* shift */ vshl.u16 q15, q11, q13 subs LOOP_COUNT, LOOP_COUNT, #1 bne 1b pop {r4, r5} veor.u16 q14, q14, q2 /* restore sign */ veor.u16 q15, q15, q3 vsub.u16 q14, q14, q2 vsub.u16 q15, q15, q3 vst1.16 {d28, d29, d30, d31}, [COEF_BLOCK, :128]! bx lr /* return */ .unreq COEF_BLOCK .unreq DIVISORS .unreq WORKSPACE .unreq RECIPROCAL .unreq CORRECTION .unreq SHIFT .unreq LOOP_COUNT /*****************************************************************************/ /* * GLOBAL(void) * jsimd_h2v1_fancy_upsample_neon (int max_v_samp_factor, * JDIMENSION downsampled_width, * JSAMPARRAY input_data, * JSAMPARRAY * output_data_ptr); * * Note: the use of unaligned writes is the main remaining bottleneck in * this code, which can be potentially solved to get up to tens * of percents performance improvement on Cortex-A8/Cortex-A9. */ /* * Upsample 16 source pixels to 32 destination pixels. The new 16 source * pixels are loaded to q0. The previous 16 source pixels are in q1. The * shifted-by-one source pixels are constructed in q2 by using q0 and q1. * Register d28 is used for multiplication by 3. Register q15 is used * for adding +1 bias. */ .macro upsample16 OUTPTR, INPTR vld1.8 {q0}, [\INPTR]! vmovl.u8 q8, d0 vext.8 q2, q1, q0, #15 vmovl.u8 q9, d1 vaddw.u8 q10, q15, d4 vaddw.u8 q11, q15, d5 vmlal.u8 q8, d4, d28 vmlal.u8 q9, d5, d28 vmlal.u8 q10, d0, d28 vmlal.u8 q11, d1, d28 vmov q1, q0 /* backup source pixels to q1 */ vrshrn.u16 d6, q8, #2 vrshrn.u16 d7, q9, #2 vshrn.u16 d8, q10, #2 vshrn.u16 d9, q11, #2 vst2.8 {d6, d7, d8, d9}, [\OUTPTR]! .endm /* * Upsample 32 source pixels to 64 destination pixels. Compared to 'usample16' * macro, the roles of q0 and q1 registers are reversed for even and odd * groups of 16 pixels, that's why "vmov q1, q0" instructions are not needed. * Also this unrolling allows to reorder loads and stores to compensate * multiplication latency and reduce stalls. */ .macro upsample32 OUTPTR, INPTR /* even 16 pixels group */ vld1.8 {q0}, [\INPTR]! vmovl.u8 q8, d0 vext.8 q2, q1, q0, #15 vmovl.u8 q9, d1 vaddw.u8 q10, q15, d4 vaddw.u8 q11, q15, d5 vmlal.u8 q8, d4, d28 vmlal.u8 q9, d5, d28 vmlal.u8 q10, d0, d28 vmlal.u8 q11, d1, d28 /* odd 16 pixels group */ vld1.8 {q1}, [\INPTR]! vrshrn.u16 d6, q8, #2 vrshrn.u16 d7, q9, #2 vshrn.u16 d8, q10, #2 vshrn.u16 d9, q11, #2 vmovl.u8 q8, d2 vext.8 q2, q0, q1, #15 vmovl.u8 q9, d3 vaddw.u8 q10, q15, d4 vaddw.u8 q11, q15, d5 vmlal.u8 q8, d4, d28 vmlal.u8 q9, d5, d28 vmlal.u8 q10, d2, d28 vmlal.u8 q11, d3, d28 vst2.8 {d6, d7, d8, d9}, [\OUTPTR]! vrshrn.u16 d6, q8, #2 vrshrn.u16 d7, q9, #2 vshrn.u16 d8, q10, #2 vshrn.u16 d9, q11, #2 vst2.8 {d6, d7, d8, d9}, [\OUTPTR]! .endm /* * Upsample a row of WIDTH pixels from INPTR to OUTPTR. */ .macro upsample_row OUTPTR, INPTR, WIDTH, TMP1 /* special case for the first and last pixels */ sub \WIDTH, \WIDTH, #1 add \OUTPTR, \OUTPTR, #1 ldrb \TMP1, [\INPTR, \WIDTH] strb \TMP1, [\OUTPTR, \WIDTH, asl #1] ldrb \TMP1, [\INPTR], #1 strb \TMP1, [\OUTPTR, #-1] vmov.8 d3[7], \TMP1 subs \WIDTH, \WIDTH, #32 blt 5f 0: /* process 32 pixels per iteration */ upsample32 \OUTPTR, \INPTR subs \WIDTH, \WIDTH, #32 bge 0b 5: adds \WIDTH, \WIDTH, #16 blt 1f 0: /* process 16 pixels if needed */ upsample16 \OUTPTR, \INPTR subs \WIDTH, \WIDTH, #16 1: adds \WIDTH, \WIDTH, #16 beq 9f /* load the remaining 1-15 pixels */ add \INPTR, \INPTR, \WIDTH tst \WIDTH, #1 beq 2f sub \INPTR, \INPTR, #1 vld1.8 {d0[0]}, [\INPTR] 2: tst \WIDTH, #2 beq 2f vext.8 d0, d0, d0, #6 sub \INPTR, \INPTR, #1 vld1.8 {d0[1]}, [\INPTR] sub \INPTR, \INPTR, #1 vld1.8 {d0[0]}, [\INPTR] 2: tst \WIDTH, #4 beq 2f vrev64.32 d0, d0 sub \INPTR, \INPTR, #1 vld1.8 {d0[3]}, [\INPTR] sub \INPTR, \INPTR, #1 vld1.8 {d0[2]}, [\INPTR] sub \INPTR, \INPTR, #1 vld1.8 {d0[1]}, [\INPTR] sub \INPTR, \INPTR, #1 vld1.8 {d0[0]}, [\INPTR] 2: tst \WIDTH, #8 beq 2f vmov d1, d0 sub \INPTR, \INPTR, #8 vld1.8 {d0}, [\INPTR] 2: /* upsample the remaining pixels */ vmovl.u8 q8, d0 vext.8 q2, q1, q0, #15 vmovl.u8 q9, d1 vaddw.u8 q10, q15, d4 vaddw.u8 q11, q15, d5 vmlal.u8 q8, d4, d28 vmlal.u8 q9, d5, d28 vmlal.u8 q10, d0, d28 vmlal.u8 q11, d1, d28 vrshrn.u16 d10, q8, #2 vrshrn.u16 d12, q9, #2 vshrn.u16 d11, q10, #2 vshrn.u16 d13, q11, #2 vzip.8 d10, d11 vzip.8 d12, d13 /* store the remaining pixels */ tst \WIDTH, #8 beq 2f vst1.8 {d10, d11}, [\OUTPTR]! vmov q5, q6 2: tst \WIDTH, #4 beq 2f vst1.8 {d10}, [\OUTPTR]! vmov d10, d11 2: tst \WIDTH, #2 beq 2f vst1.8 {d10[0]}, [\OUTPTR]! vst1.8 {d10[1]}, [\OUTPTR]! vst1.8 {d10[2]}, [\OUTPTR]! vst1.8 {d10[3]}, [\OUTPTR]! vext.8 d10, d10, d10, #4 2: tst \WIDTH, #1 beq 2f vst1.8 {d10[0]}, [\OUTPTR]! vst1.8 {d10[1]}, [\OUTPTR]! 2: 9: .endm asm_function jsimd_h2v1_fancy_upsample_neon MAX_V_SAMP_FACTOR .req r0 DOWNSAMPLED_WIDTH .req r1 INPUT_DATA .req r2 OUTPUT_DATA_PTR .req r3 OUTPUT_DATA .req OUTPUT_DATA_PTR OUTPTR .req r4 INPTR .req r5 WIDTH .req ip TMP .req lr push {r4, r5, r6, lr} vpush {d8-d15} ldr OUTPUT_DATA, [OUTPUT_DATA_PTR] cmp MAX_V_SAMP_FACTOR, #0 ble 99f /* initialize constants */ vmov.u8 d28, #3 vmov.u16 q15, #1 11: ldr INPTR, [INPUT_DATA], #4 ldr OUTPTR, [OUTPUT_DATA], #4 mov WIDTH, DOWNSAMPLED_WIDTH upsample_row OUTPTR, INPTR, WIDTH, TMP subs MAX_V_SAMP_FACTOR, MAX_V_SAMP_FACTOR, #1 bgt 11b 99: vpop {d8-d15} pop {r4, r5, r6, pc} .unreq MAX_V_SAMP_FACTOR .unreq DOWNSAMPLED_WIDTH .unreq INPUT_DATA .unreq OUTPUT_DATA_PTR .unreq OUTPUT_DATA .unreq OUTPTR .unreq INPTR .unreq WIDTH .unreq TMP .purgem upsample16 .purgem upsample32 .purgem upsample_row libjpeg-turbo-1.4.2/simd/jsimdext.inc0000644000076500007650000002671712600050400014474 00000000000000; ; jsimdext.inc - common declarations ; ; Copyright 2009 Pierre Ossman for Cendio AB ; Copyright 2010 D. R. Commander ; ; Based on ; x86 SIMD extension for IJG JPEG library - version 1.02 ; ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; ; This software is provided 'as-is', without any express or implied ; warranty. In no event will the authors be held liable for any damages ; arising from the use of this software. ; ; Permission is granted to anyone to use this software for any purpose, ; including commercial applications, and to alter it and redistribute it ; freely, subject to the following restrictions: ; ; 1. The origin of this software must not be misrepresented; you must not ; claim that you wrote the original software. If you use this software ; in a product, an acknowledgment in the product documentation would be ; appreciated but is not required. ; 2. Altered source versions must be plainly marked as such, and must not be ; misrepresented as being the original software. ; 3. This notice may not be removed or altered from any source distribution. ; ; [TAB8] ; ========================================================================== ; System-dependent configurations %ifdef WIN32 ; ----(nasm -fwin32 -DWIN32 ...)-------- ; * Microsoft Visual C++ ; * MinGW (Minimalist GNU for Windows) ; * CygWin ; * LCC-Win32 ; -- segment definition -- ; %ifdef __YASM_VER__ %define SEG_TEXT .text align=16 %define SEG_CONST .rdata align=16 %else %define SEG_TEXT .text align=16 public use32 class=CODE %define SEG_CONST .rdata align=16 public use32 class=CONST %endif %elifdef WIN64 ; ----(nasm -fwin64 -DWIN64 ...)-------- ; * Microsoft Visual C++ ; -- segment definition -- ; %ifdef __YASM_VER__ %define SEG_TEXT .text align=16 %define SEG_CONST .rdata align=16 %else %define SEG_TEXT .text align=16 public use64 class=CODE %define SEG_CONST .rdata align=16 public use64 class=CONST %endif %define EXTN(name) name ; foo() -> foo %elifdef OBJ32 ; ----(nasm -fobj -DOBJ32 ...)---------- ; * Borland C++ (Win32) ; -- segment definition -- ; %define SEG_TEXT _text align=16 public use32 class=CODE %define SEG_CONST _data align=16 public use32 class=DATA %elifdef ELF ; ----(nasm -felf[64] -DELF ...)------------ ; * Linux ; * *BSD family Unix using elf format ; * Unix System V, including Solaris x86, UnixWare and SCO Unix ; mark stack as non-executable section .note.GNU-stack noalloc noexec nowrite progbits ; -- segment definition -- ; %ifdef __x86_64__ %define SEG_TEXT .text progbits align=16 %define SEG_CONST .rodata progbits align=16 %else %define SEG_TEXT .text progbits alloc exec nowrite align=16 %define SEG_CONST .rodata progbits alloc noexec nowrite align=16 %endif ; To make the code position-independent, append -DPIC to the commandline ; %define GOT_SYMBOL _GLOBAL_OFFSET_TABLE_ ; ELF supports PIC %define EXTN(name) name ; foo() -> foo %elifdef AOUT ; ----(nasm -faoutb/aout -DAOUT ...)---- ; * Older Linux using a.out format (nasm -f aout -DAOUT ...) ; * *BSD family Unix using a.out format (nasm -f aoutb -DAOUT ...) ; -- segment definition -- ; %define SEG_TEXT .text %define SEG_CONST .data ; To make the code position-independent, append -DPIC to the commandline ; %define GOT_SYMBOL __GLOBAL_OFFSET_TABLE_ ; BSD-style a.out supports PIC %elifdef MACHO ; ----(nasm -fmacho -DMACHO ...)-------- ; * NeXTstep/OpenStep/Rhapsody/Darwin/MacOS X (Mach-O format) ; -- segment definition -- ; %define SEG_TEXT .text ;align=16 ; nasm doesn't accept align=16. why? %define SEG_CONST .rodata align=16 ; The generation of position-independent code (PIC) is the default on Darwin. ; %define PIC %define GOT_SYMBOL _MACHO_PIC_ ; Mach-O style code-relative addressing %else ; ----(Other case)---------------------- ; -- segment definition -- ; %define SEG_TEXT .text %define SEG_CONST .data %endif ; ---------------------------------------------- ; ========================================================================== ; -------------------------------------------------------------------------- ; Common types ; %ifdef __x86_64__ %define POINTER qword ; general pointer type %define SIZEOF_POINTER SIZEOF_QWORD ; sizeof(POINTER) %define POINTER_BIT QWORD_BIT ; sizeof(POINTER)*BYTE_BIT %else %define POINTER dword ; general pointer type %define SIZEOF_POINTER SIZEOF_DWORD ; sizeof(POINTER) %define POINTER_BIT DWORD_BIT ; sizeof(POINTER)*BYTE_BIT %endif %define INT dword ; signed integer type %define SIZEOF_INT SIZEOF_DWORD ; sizeof(INT) %define INT_BIT DWORD_BIT ; sizeof(INT)*BYTE_BIT %define FP32 dword ; IEEE754 single %define SIZEOF_FP32 SIZEOF_DWORD ; sizeof(FP32) %define FP32_BIT DWORD_BIT ; sizeof(FP32)*BYTE_BIT %define MMWORD qword ; int64 (MMX register) %define SIZEOF_MMWORD SIZEOF_QWORD ; sizeof(MMWORD) %define MMWORD_BIT QWORD_BIT ; sizeof(MMWORD)*BYTE_BIT ; NASM is buggy and doesn't properly handle operand sizes for SSE ; instructions, so for now we have to define XMMWORD as blank. %define XMMWORD ; int128 (SSE register) %define SIZEOF_XMMWORD SIZEOF_OWORD ; sizeof(XMMWORD) %define XMMWORD_BIT OWORD_BIT ; sizeof(XMMWORD)*BYTE_BIT ; Similar hacks for when we load a dword or MMWORD into an xmm# register %define XMM_DWORD %define XMM_MMWORD %define SIZEOF_BYTE 1 ; sizeof(BYTE) %define SIZEOF_WORD 2 ; sizeof(WORD) %define SIZEOF_DWORD 4 ; sizeof(DWORD) %define SIZEOF_QWORD 8 ; sizeof(QWORD) %define SIZEOF_OWORD 16 ; sizeof(OWORD) %define BYTE_BIT 8 ; CHAR_BIT in C %define WORD_BIT 16 ; sizeof(WORD)*BYTE_BIT %define DWORD_BIT 32 ; sizeof(DWORD)*BYTE_BIT %define QWORD_BIT 64 ; sizeof(QWORD)*BYTE_BIT %define OWORD_BIT 128 ; sizeof(OWORD)*BYTE_BIT ; -------------------------------------------------------------------------- ; External Symbol Name ; %ifndef EXTN %define EXTN(name) _ %+ name ; foo() -> _foo %endif ; -------------------------------------------------------------------------- ; Macros for position-independent code (PIC) support ; %ifndef GOT_SYMBOL %undef PIC %endif %ifdef PIC ; ------------------------------------------- %ifidn GOT_SYMBOL,_MACHO_PIC_ ; -------------------- ; At present, nasm doesn't seem to support PIC generation for Mach-O. ; The PIC support code below is a little tricky. SECTION SEG_CONST const_base: %define GOTOFF(got,sym) (got) + (sym) - const_base %imacro get_GOT 1 ; NOTE: this macro destroys ecx resister. call %%geteip add ecx, byte (%%ref - $) jmp short %%adjust %%geteip: mov ecx, POINTER [esp] ret %%adjust: push ebp xor ebp,ebp ; ebp = 0 %ifidni %1,ebx ; (%1 == ebx) ; db 0x8D,0x9C + jmp near const_base = ; lea ebx, [ecx+ebp*8+(const_base-%%ref)] ; 8D,9C,E9,(offset32) db 0x8D,0x9C ; 8D,9C jmp near const_base ; E9,(const_base-%%ref) %%ref: %else ; (%1 != ebx) ; db 0x8D,0x8C + jmp near const_base = ; lea ecx, [ecx+ebp*8+(const_base-%%ref)] ; 8D,8C,E9,(offset32) db 0x8D,0x8C ; 8D,8C jmp near const_base ; E9,(const_base-%%ref) %%ref: mov %1, ecx %endif ; (%1 == ebx) pop ebp %endmacro %else ; GOT_SYMBOL != _MACHO_PIC_ ---------------- %define GOTOFF(got,sym) (got) + (sym) wrt ..gotoff %imacro get_GOT 1 extern GOT_SYMBOL call %%geteip add %1, GOT_SYMBOL + $$ - $ wrt ..gotpc jmp short %%done %%geteip: mov %1, POINTER [esp] ret %%done: %endmacro %endif ; GOT_SYMBOL == _MACHO_PIC_ ---------------- %imacro pushpic 1.nolist push %1 %endmacro %imacro poppic 1.nolist pop %1 %endmacro %imacro movpic 2.nolist mov %1,%2 %endmacro %else ; !PIC ----------------------------------------- %define GOTOFF(got,sym) (sym) %imacro get_GOT 1.nolist %endmacro %imacro pushpic 1.nolist %endmacro %imacro poppic 1.nolist %endmacro %imacro movpic 2.nolist %endmacro %endif ; PIC ----------------------------------------- ; -------------------------------------------------------------------------- ; Align the next instruction on {2,4,8,16,..}-byte boundary. ; ".balign n,,m" in GNU as ; %define MSKLE(x,y) (~(((y) & 0xFFFF) - ((x) & 0xFFFF)) >> 16) %define FILLB(b,n) (($$-(b)) & ((n)-1)) %imacro alignx 1-2.nolist 0xFFFF %%bs: times MSKLE(FILLB(%%bs,%1),%2) & MSKLE(16,FILLB($,%1)) & FILLB($,%1) \ db 0x90 ; nop times MSKLE(FILLB(%%bs,%1),%2) & FILLB($,%1)/9 \ db 0x8D,0x9C,0x23,0x00,0x00,0x00,0x00 ; lea ebx,[ebx+0x00000000] times MSKLE(FILLB(%%bs,%1),%2) & FILLB($,%1)/7 \ db 0x8D,0xAC,0x25,0x00,0x00,0x00,0x00 ; lea ebp,[ebp+0x00000000] times MSKLE(FILLB(%%bs,%1),%2) & FILLB($,%1)/6 \ db 0x8D,0xAD,0x00,0x00,0x00,0x00 ; lea ebp,[ebp+0x00000000] times MSKLE(FILLB(%%bs,%1),%2) & FILLB($,%1)/4 \ db 0x8D,0x6C,0x25,0x00 ; lea ebp,[ebp+0x00] times MSKLE(FILLB(%%bs,%1),%2) & FILLB($,%1)/3 \ db 0x8D,0x6D,0x00 ; lea ebp,[ebp+0x00] times MSKLE(FILLB(%%bs,%1),%2) & FILLB($,%1)/2 \ db 0x8B,0xED ; mov ebp,ebp times MSKLE(FILLB(%%bs,%1),%2) & FILLB($,%1)/1 \ db 0x90 ; nop %endmacro ; Align the next data on {2,4,8,16,..}-byte boundary. ; %imacro alignz 1.nolist align %1, db 0 ; filling zeros %endmacro %ifdef __x86_64__ %ifdef WIN64 %imacro collect_args 0 push r12 push r13 push r14 push r15 mov r10, rcx mov r11, rdx mov r12, r8 mov r13, r9 mov r14, [rax+48] mov r15, [rax+56] push rsi push rdi sub rsp, SIZEOF_XMMWORD movaps XMMWORD [rsp], xmm6 sub rsp, SIZEOF_XMMWORD movaps XMMWORD [rsp], xmm7 %endmacro %imacro uncollect_args 0 movaps xmm7, XMMWORD [rsp] add rsp, SIZEOF_XMMWORD movaps xmm6, XMMWORD [rsp] add rsp, SIZEOF_XMMWORD pop rdi pop rsi pop r15 pop r14 pop r13 pop r12 %endmacro %else %imacro collect_args 0 push r10 push r11 push r12 push r13 push r14 push r15 mov r10, rdi mov r11, rsi mov r12, rdx mov r13, rcx mov r14, r8 mov r15, r9 %endmacro %imacro uncollect_args 0 pop r15 pop r14 pop r13 pop r12 pop r11 pop r10 %endmacro %endif %endif ; -------------------------------------------------------------------------- ; Defines picked up from the C headers ; %include "jsimdcfg.inc" ; -------------------------------------------------------------------------- libjpeg-turbo-1.4.2/simd/jfdctint-sse2.asm0000644000076500007650000006566112600050400015334 00000000000000; ; jfdctint.asm - accurate integer FDCT (SSE2) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; ; Based on ; x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; This file contains a slow-but-accurate integer implementation of the ; forward DCT (Discrete Cosine Transform). The following code is based ; directly on the IJG's original jfdctint.c; see the jfdctint.c for ; more details. ; ; [TAB8] %include "jsimdext.inc" %include "jdct.inc" ; -------------------------------------------------------------------------- %define CONST_BITS 13 %define PASS1_BITS 2 %define DESCALE_P1 (CONST_BITS-PASS1_BITS) %define DESCALE_P2 (CONST_BITS+PASS1_BITS) %if CONST_BITS == 13 F_0_298 equ 2446 ; FIX(0.298631336) F_0_390 equ 3196 ; FIX(0.390180644) F_0_541 equ 4433 ; FIX(0.541196100) F_0_765 equ 6270 ; FIX(0.765366865) F_0_899 equ 7373 ; FIX(0.899976223) F_1_175 equ 9633 ; FIX(1.175875602) F_1_501 equ 12299 ; FIX(1.501321110) F_1_847 equ 15137 ; FIX(1.847759065) F_1_961 equ 16069 ; FIX(1.961570560) F_2_053 equ 16819 ; FIX(2.053119869) F_2_562 equ 20995 ; FIX(2.562915447) F_3_072 equ 25172 ; FIX(3.072711026) %else ; NASM cannot do compile-time arithmetic on floating-point constants. %define DESCALE(x,n) (((x)+(1<<((n)-1)))>>(n)) F_0_298 equ DESCALE( 320652955,30-CONST_BITS) ; FIX(0.298631336) F_0_390 equ DESCALE( 418953276,30-CONST_BITS) ; FIX(0.390180644) F_0_541 equ DESCALE( 581104887,30-CONST_BITS) ; FIX(0.541196100) F_0_765 equ DESCALE( 821806413,30-CONST_BITS) ; FIX(0.765366865) F_0_899 equ DESCALE( 966342111,30-CONST_BITS) ; FIX(0.899976223) F_1_175 equ DESCALE(1262586813,30-CONST_BITS) ; FIX(1.175875602) F_1_501 equ DESCALE(1612031267,30-CONST_BITS) ; FIX(1.501321110) F_1_847 equ DESCALE(1984016188,30-CONST_BITS) ; FIX(1.847759065) F_1_961 equ DESCALE(2106220350,30-CONST_BITS) ; FIX(1.961570560) F_2_053 equ DESCALE(2204520673,30-CONST_BITS) ; FIX(2.053119869) F_2_562 equ DESCALE(2751909506,30-CONST_BITS) ; FIX(2.562915447) F_3_072 equ DESCALE(3299298341,30-CONST_BITS) ; FIX(3.072711026) %endif ; -------------------------------------------------------------------------- SECTION SEG_CONST alignz 16 global EXTN(jconst_fdct_islow_sse2) EXTN(jconst_fdct_islow_sse2): PW_F130_F054 times 4 dw (F_0_541+F_0_765), F_0_541 PW_F054_MF130 times 4 dw F_0_541, (F_0_541-F_1_847) PW_MF078_F117 times 4 dw (F_1_175-F_1_961), F_1_175 PW_F117_F078 times 4 dw F_1_175, (F_1_175-F_0_390) PW_MF060_MF089 times 4 dw (F_0_298-F_0_899),-F_0_899 PW_MF089_F060 times 4 dw -F_0_899, (F_1_501-F_0_899) PW_MF050_MF256 times 4 dw (F_2_053-F_2_562),-F_2_562 PW_MF256_F050 times 4 dw -F_2_562, (F_3_072-F_2_562) PD_DESCALE_P1 times 4 dd 1 << (DESCALE_P1-1) PD_DESCALE_P2 times 4 dd 1 << (DESCALE_P2-1) PW_DESCALE_P2X times 8 dw 1 << (PASS1_BITS-1) alignz 16 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 32 ; ; Perform the forward DCT on one block of samples. ; ; GLOBAL(void) ; jsimd_fdct_islow_sse2 (DCTELEM * data) ; %define data(b) (b)+8 ; DCTELEM * data %define original_ebp ebp+0 %define wk(i) ebp-(WK_NUM-(i))*SIZEOF_XMMWORD ; xmmword wk[WK_NUM] %define WK_NUM 6 align 16 global EXTN(jsimd_fdct_islow_sse2) EXTN(jsimd_fdct_islow_sse2): push ebp mov eax,esp ; eax = original ebp sub esp, byte 4 and esp, byte (-SIZEOF_XMMWORD) ; align to 128 bits mov [esp],eax mov ebp,esp ; ebp = aligned ebp lea esp, [wk(0)] pushpic ebx ; push ecx ; unused ; push edx ; need not be preserved ; push esi ; unused ; push edi ; unused get_GOT ebx ; get GOT address ; ---- Pass 1: process rows. mov edx, POINTER [data(eax)] ; (DCTELEM *) movdqa xmm0, XMMWORD [XMMBLOCK(0,0,edx,SIZEOF_DCTELEM)] movdqa xmm1, XMMWORD [XMMBLOCK(1,0,edx,SIZEOF_DCTELEM)] movdqa xmm2, XMMWORD [XMMBLOCK(2,0,edx,SIZEOF_DCTELEM)] movdqa xmm3, XMMWORD [XMMBLOCK(3,0,edx,SIZEOF_DCTELEM)] ; xmm0=(00 01 02 03 04 05 06 07), xmm2=(20 21 22 23 24 25 26 27) ; xmm1=(10 11 12 13 14 15 16 17), xmm3=(30 31 32 33 34 35 36 37) movdqa xmm4,xmm0 ; transpose coefficients(phase 1) punpcklwd xmm0,xmm1 ; xmm0=(00 10 01 11 02 12 03 13) punpckhwd xmm4,xmm1 ; xmm4=(04 14 05 15 06 16 07 17) movdqa xmm5,xmm2 ; transpose coefficients(phase 1) punpcklwd xmm2,xmm3 ; xmm2=(20 30 21 31 22 32 23 33) punpckhwd xmm5,xmm3 ; xmm5=(24 34 25 35 26 36 27 37) movdqa xmm6, XMMWORD [XMMBLOCK(4,0,edx,SIZEOF_DCTELEM)] movdqa xmm7, XMMWORD [XMMBLOCK(5,0,edx,SIZEOF_DCTELEM)] movdqa xmm1, XMMWORD [XMMBLOCK(6,0,edx,SIZEOF_DCTELEM)] movdqa xmm3, XMMWORD [XMMBLOCK(7,0,edx,SIZEOF_DCTELEM)] ; xmm6=( 4 12 20 28 36 44 52 60), xmm1=( 6 14 22 30 38 46 54 62) ; xmm7=( 5 13 21 29 37 45 53 61), xmm3=( 7 15 23 31 39 47 55 63) movdqa XMMWORD [wk(0)], xmm2 ; wk(0)=(20 30 21 31 22 32 23 33) movdqa XMMWORD [wk(1)], xmm5 ; wk(1)=(24 34 25 35 26 36 27 37) movdqa xmm2,xmm6 ; transpose coefficients(phase 1) punpcklwd xmm6,xmm7 ; xmm6=(40 50 41 51 42 52 43 53) punpckhwd xmm2,xmm7 ; xmm2=(44 54 45 55 46 56 47 57) movdqa xmm5,xmm1 ; transpose coefficients(phase 1) punpcklwd xmm1,xmm3 ; xmm1=(60 70 61 71 62 72 63 73) punpckhwd xmm5,xmm3 ; xmm5=(64 74 65 75 66 76 67 77) movdqa xmm7,xmm6 ; transpose coefficients(phase 2) punpckldq xmm6,xmm1 ; xmm6=(40 50 60 70 41 51 61 71) punpckhdq xmm7,xmm1 ; xmm7=(42 52 62 72 43 53 63 73) movdqa xmm3,xmm2 ; transpose coefficients(phase 2) punpckldq xmm2,xmm5 ; xmm2=(44 54 64 74 45 55 65 75) punpckhdq xmm3,xmm5 ; xmm3=(46 56 66 76 47 57 67 77) movdqa xmm1, XMMWORD [wk(0)] ; xmm1=(20 30 21 31 22 32 23 33) movdqa xmm5, XMMWORD [wk(1)] ; xmm5=(24 34 25 35 26 36 27 37) movdqa XMMWORD [wk(2)], xmm7 ; wk(2)=(42 52 62 72 43 53 63 73) movdqa XMMWORD [wk(3)], xmm2 ; wk(3)=(44 54 64 74 45 55 65 75) movdqa xmm7,xmm0 ; transpose coefficients(phase 2) punpckldq xmm0,xmm1 ; xmm0=(00 10 20 30 01 11 21 31) punpckhdq xmm7,xmm1 ; xmm7=(02 12 22 32 03 13 23 33) movdqa xmm2,xmm4 ; transpose coefficients(phase 2) punpckldq xmm4,xmm5 ; xmm4=(04 14 24 34 05 15 25 35) punpckhdq xmm2,xmm5 ; xmm2=(06 16 26 36 07 17 27 37) movdqa xmm1,xmm0 ; transpose coefficients(phase 3) punpcklqdq xmm0,xmm6 ; xmm0=(00 10 20 30 40 50 60 70)=data0 punpckhqdq xmm1,xmm6 ; xmm1=(01 11 21 31 41 51 61 71)=data1 movdqa xmm5,xmm2 ; transpose coefficients(phase 3) punpcklqdq xmm2,xmm3 ; xmm2=(06 16 26 36 46 56 66 76)=data6 punpckhqdq xmm5,xmm3 ; xmm5=(07 17 27 37 47 57 67 77)=data7 movdqa xmm6,xmm1 movdqa xmm3,xmm0 psubw xmm1,xmm2 ; xmm1=data1-data6=tmp6 psubw xmm0,xmm5 ; xmm0=data0-data7=tmp7 paddw xmm6,xmm2 ; xmm6=data1+data6=tmp1 paddw xmm3,xmm5 ; xmm3=data0+data7=tmp0 movdqa xmm2, XMMWORD [wk(2)] ; xmm2=(42 52 62 72 43 53 63 73) movdqa xmm5, XMMWORD [wk(3)] ; xmm5=(44 54 64 74 45 55 65 75) movdqa XMMWORD [wk(0)], xmm1 ; wk(0)=tmp6 movdqa XMMWORD [wk(1)], xmm0 ; wk(1)=tmp7 movdqa xmm1,xmm7 ; transpose coefficients(phase 3) punpcklqdq xmm7,xmm2 ; xmm7=(02 12 22 32 42 52 62 72)=data2 punpckhqdq xmm1,xmm2 ; xmm1=(03 13 23 33 43 53 63 73)=data3 movdqa xmm0,xmm4 ; transpose coefficients(phase 3) punpcklqdq xmm4,xmm5 ; xmm4=(04 14 24 34 44 54 64 74)=data4 punpckhqdq xmm0,xmm5 ; xmm0=(05 15 25 35 45 55 65 75)=data5 movdqa xmm2,xmm1 movdqa xmm5,xmm7 paddw xmm1,xmm4 ; xmm1=data3+data4=tmp3 paddw xmm7,xmm0 ; xmm7=data2+data5=tmp2 psubw xmm2,xmm4 ; xmm2=data3-data4=tmp4 psubw xmm5,xmm0 ; xmm5=data2-data5=tmp5 ; -- Even part movdqa xmm4,xmm3 movdqa xmm0,xmm6 paddw xmm3,xmm1 ; xmm3=tmp10 paddw xmm6,xmm7 ; xmm6=tmp11 psubw xmm4,xmm1 ; xmm4=tmp13 psubw xmm0,xmm7 ; xmm0=tmp12 movdqa xmm1,xmm3 paddw xmm3,xmm6 ; xmm3=tmp10+tmp11 psubw xmm1,xmm6 ; xmm1=tmp10-tmp11 psllw xmm3,PASS1_BITS ; xmm3=data0 psllw xmm1,PASS1_BITS ; xmm1=data4 movdqa XMMWORD [wk(2)], xmm3 ; wk(2)=data0 movdqa XMMWORD [wk(3)], xmm1 ; wk(3)=data4 ; (Original) ; z1 = (tmp12 + tmp13) * 0.541196100; ; data2 = z1 + tmp13 * 0.765366865; ; data6 = z1 + tmp12 * -1.847759065; ; ; (This implementation) ; data2 = tmp13 * (0.541196100 + 0.765366865) + tmp12 * 0.541196100; ; data6 = tmp13 * 0.541196100 + tmp12 * (0.541196100 - 1.847759065); movdqa xmm7,xmm4 ; xmm4=tmp13 movdqa xmm6,xmm4 punpcklwd xmm7,xmm0 ; xmm0=tmp12 punpckhwd xmm6,xmm0 movdqa xmm4,xmm7 movdqa xmm0,xmm6 pmaddwd xmm7,[GOTOFF(ebx,PW_F130_F054)] ; xmm7=data2L pmaddwd xmm6,[GOTOFF(ebx,PW_F130_F054)] ; xmm6=data2H pmaddwd xmm4,[GOTOFF(ebx,PW_F054_MF130)] ; xmm4=data6L pmaddwd xmm0,[GOTOFF(ebx,PW_F054_MF130)] ; xmm0=data6H paddd xmm7,[GOTOFF(ebx,PD_DESCALE_P1)] paddd xmm6,[GOTOFF(ebx,PD_DESCALE_P1)] psrad xmm7,DESCALE_P1 psrad xmm6,DESCALE_P1 paddd xmm4,[GOTOFF(ebx,PD_DESCALE_P1)] paddd xmm0,[GOTOFF(ebx,PD_DESCALE_P1)] psrad xmm4,DESCALE_P1 psrad xmm0,DESCALE_P1 packssdw xmm7,xmm6 ; xmm7=data2 packssdw xmm4,xmm0 ; xmm4=data6 movdqa XMMWORD [wk(4)], xmm7 ; wk(4)=data2 movdqa XMMWORD [wk(5)], xmm4 ; wk(5)=data6 ; -- Odd part movdqa xmm3, XMMWORD [wk(0)] ; xmm3=tmp6 movdqa xmm1, XMMWORD [wk(1)] ; xmm1=tmp7 movdqa xmm6,xmm2 ; xmm2=tmp4 movdqa xmm0,xmm5 ; xmm5=tmp5 paddw xmm6,xmm3 ; xmm6=z3 paddw xmm0,xmm1 ; xmm0=z4 ; (Original) ; z5 = (z3 + z4) * 1.175875602; ; z3 = z3 * -1.961570560; z4 = z4 * -0.390180644; ; z3 += z5; z4 += z5; ; ; (This implementation) ; z3 = z3 * (1.175875602 - 1.961570560) + z4 * 1.175875602; ; z4 = z3 * 1.175875602 + z4 * (1.175875602 - 0.390180644); movdqa xmm7,xmm6 movdqa xmm4,xmm6 punpcklwd xmm7,xmm0 punpckhwd xmm4,xmm0 movdqa xmm6,xmm7 movdqa xmm0,xmm4 pmaddwd xmm7,[GOTOFF(ebx,PW_MF078_F117)] ; xmm7=z3L pmaddwd xmm4,[GOTOFF(ebx,PW_MF078_F117)] ; xmm4=z3H pmaddwd xmm6,[GOTOFF(ebx,PW_F117_F078)] ; xmm6=z4L pmaddwd xmm0,[GOTOFF(ebx,PW_F117_F078)] ; xmm0=z4H movdqa XMMWORD [wk(0)], xmm7 ; wk(0)=z3L movdqa XMMWORD [wk(1)], xmm4 ; wk(1)=z3H ; (Original) ; z1 = tmp4 + tmp7; z2 = tmp5 + tmp6; ; tmp4 = tmp4 * 0.298631336; tmp5 = tmp5 * 2.053119869; ; tmp6 = tmp6 * 3.072711026; tmp7 = tmp7 * 1.501321110; ; z1 = z1 * -0.899976223; z2 = z2 * -2.562915447; ; data7 = tmp4 + z1 + z3; data5 = tmp5 + z2 + z4; ; data3 = tmp6 + z2 + z3; data1 = tmp7 + z1 + z4; ; ; (This implementation) ; tmp4 = tmp4 * (0.298631336 - 0.899976223) + tmp7 * -0.899976223; ; tmp5 = tmp5 * (2.053119869 - 2.562915447) + tmp6 * -2.562915447; ; tmp6 = tmp5 * -2.562915447 + tmp6 * (3.072711026 - 2.562915447); ; tmp7 = tmp4 * -0.899976223 + tmp7 * (1.501321110 - 0.899976223); ; data7 = tmp4 + z3; data5 = tmp5 + z4; ; data3 = tmp6 + z3; data1 = tmp7 + z4; movdqa xmm7,xmm2 movdqa xmm4,xmm2 punpcklwd xmm7,xmm1 punpckhwd xmm4,xmm1 movdqa xmm2,xmm7 movdqa xmm1,xmm4 pmaddwd xmm7,[GOTOFF(ebx,PW_MF060_MF089)] ; xmm7=tmp4L pmaddwd xmm4,[GOTOFF(ebx,PW_MF060_MF089)] ; xmm4=tmp4H pmaddwd xmm2,[GOTOFF(ebx,PW_MF089_F060)] ; xmm2=tmp7L pmaddwd xmm1,[GOTOFF(ebx,PW_MF089_F060)] ; xmm1=tmp7H paddd xmm7, XMMWORD [wk(0)] ; xmm7=data7L paddd xmm4, XMMWORD [wk(1)] ; xmm4=data7H paddd xmm2,xmm6 ; xmm2=data1L paddd xmm1,xmm0 ; xmm1=data1H paddd xmm7,[GOTOFF(ebx,PD_DESCALE_P1)] paddd xmm4,[GOTOFF(ebx,PD_DESCALE_P1)] psrad xmm7,DESCALE_P1 psrad xmm4,DESCALE_P1 paddd xmm2,[GOTOFF(ebx,PD_DESCALE_P1)] paddd xmm1,[GOTOFF(ebx,PD_DESCALE_P1)] psrad xmm2,DESCALE_P1 psrad xmm1,DESCALE_P1 packssdw xmm7,xmm4 ; xmm7=data7 packssdw xmm2,xmm1 ; xmm2=data1 movdqa xmm4,xmm5 movdqa xmm1,xmm5 punpcklwd xmm4,xmm3 punpckhwd xmm1,xmm3 movdqa xmm5,xmm4 movdqa xmm3,xmm1 pmaddwd xmm4,[GOTOFF(ebx,PW_MF050_MF256)] ; xmm4=tmp5L pmaddwd xmm1,[GOTOFF(ebx,PW_MF050_MF256)] ; xmm1=tmp5H pmaddwd xmm5,[GOTOFF(ebx,PW_MF256_F050)] ; xmm5=tmp6L pmaddwd xmm3,[GOTOFF(ebx,PW_MF256_F050)] ; xmm3=tmp6H paddd xmm4,xmm6 ; xmm4=data5L paddd xmm1,xmm0 ; xmm1=data5H paddd xmm5, XMMWORD [wk(0)] ; xmm5=data3L paddd xmm3, XMMWORD [wk(1)] ; xmm3=data3H paddd xmm4,[GOTOFF(ebx,PD_DESCALE_P1)] paddd xmm1,[GOTOFF(ebx,PD_DESCALE_P1)] psrad xmm4,DESCALE_P1 psrad xmm1,DESCALE_P1 paddd xmm5,[GOTOFF(ebx,PD_DESCALE_P1)] paddd xmm3,[GOTOFF(ebx,PD_DESCALE_P1)] psrad xmm5,DESCALE_P1 psrad xmm3,DESCALE_P1 packssdw xmm4,xmm1 ; xmm4=data5 packssdw xmm5,xmm3 ; xmm5=data3 ; ---- Pass 2: process columns. ; mov edx, POINTER [data(eax)] ; (DCTELEM *) movdqa xmm6, XMMWORD [wk(2)] ; xmm6=col0 movdqa xmm0, XMMWORD [wk(4)] ; xmm0=col2 ; xmm6=(00 10 20 30 40 50 60 70), xmm0=(02 12 22 32 42 52 62 72) ; xmm2=(01 11 21 31 41 51 61 71), xmm5=(03 13 23 33 43 53 63 73) movdqa xmm1,xmm6 ; transpose coefficients(phase 1) punpcklwd xmm6,xmm2 ; xmm6=(00 01 10 11 20 21 30 31) punpckhwd xmm1,xmm2 ; xmm1=(40 41 50 51 60 61 70 71) movdqa xmm3,xmm0 ; transpose coefficients(phase 1) punpcklwd xmm0,xmm5 ; xmm0=(02 03 12 13 22 23 32 33) punpckhwd xmm3,xmm5 ; xmm3=(42 43 52 53 62 63 72 73) movdqa xmm2, XMMWORD [wk(3)] ; xmm2=col4 movdqa xmm5, XMMWORD [wk(5)] ; xmm5=col6 ; xmm2=(04 14 24 34 44 54 64 74), xmm5=(06 16 26 36 46 56 66 76) ; xmm4=(05 15 25 35 45 55 65 75), xmm7=(07 17 27 37 47 57 67 77) movdqa XMMWORD [wk(0)], xmm0 ; wk(0)=(02 03 12 13 22 23 32 33) movdqa XMMWORD [wk(1)], xmm3 ; wk(1)=(42 43 52 53 62 63 72 73) movdqa xmm0,xmm2 ; transpose coefficients(phase 1) punpcklwd xmm2,xmm4 ; xmm2=(04 05 14 15 24 25 34 35) punpckhwd xmm0,xmm4 ; xmm0=(44 45 54 55 64 65 74 75) movdqa xmm3,xmm5 ; transpose coefficients(phase 1) punpcklwd xmm5,xmm7 ; xmm5=(06 07 16 17 26 27 36 37) punpckhwd xmm3,xmm7 ; xmm3=(46 47 56 57 66 67 76 77) movdqa xmm4,xmm2 ; transpose coefficients(phase 2) punpckldq xmm2,xmm5 ; xmm2=(04 05 06 07 14 15 16 17) punpckhdq xmm4,xmm5 ; xmm4=(24 25 26 27 34 35 36 37) movdqa xmm7,xmm0 ; transpose coefficients(phase 2) punpckldq xmm0,xmm3 ; xmm0=(44 45 46 47 54 55 56 57) punpckhdq xmm7,xmm3 ; xmm7=(64 65 66 67 74 75 76 77) movdqa xmm5, XMMWORD [wk(0)] ; xmm5=(02 03 12 13 22 23 32 33) movdqa xmm3, XMMWORD [wk(1)] ; xmm3=(42 43 52 53 62 63 72 73) movdqa XMMWORD [wk(2)], xmm4 ; wk(2)=(24 25 26 27 34 35 36 37) movdqa XMMWORD [wk(3)], xmm0 ; wk(3)=(44 45 46 47 54 55 56 57) movdqa xmm4,xmm6 ; transpose coefficients(phase 2) punpckldq xmm6,xmm5 ; xmm6=(00 01 02 03 10 11 12 13) punpckhdq xmm4,xmm5 ; xmm4=(20 21 22 23 30 31 32 33) movdqa xmm0,xmm1 ; transpose coefficients(phase 2) punpckldq xmm1,xmm3 ; xmm1=(40 41 42 43 50 51 52 53) punpckhdq xmm0,xmm3 ; xmm0=(60 61 62 63 70 71 72 73) movdqa xmm5,xmm6 ; transpose coefficients(phase 3) punpcklqdq xmm6,xmm2 ; xmm6=(00 01 02 03 04 05 06 07)=data0 punpckhqdq xmm5,xmm2 ; xmm5=(10 11 12 13 14 15 16 17)=data1 movdqa xmm3,xmm0 ; transpose coefficients(phase 3) punpcklqdq xmm0,xmm7 ; xmm0=(60 61 62 63 64 65 66 67)=data6 punpckhqdq xmm3,xmm7 ; xmm3=(70 71 72 73 74 75 76 77)=data7 movdqa xmm2,xmm5 movdqa xmm7,xmm6 psubw xmm5,xmm0 ; xmm5=data1-data6=tmp6 psubw xmm6,xmm3 ; xmm6=data0-data7=tmp7 paddw xmm2,xmm0 ; xmm2=data1+data6=tmp1 paddw xmm7,xmm3 ; xmm7=data0+data7=tmp0 movdqa xmm0, XMMWORD [wk(2)] ; xmm0=(24 25 26 27 34 35 36 37) movdqa xmm3, XMMWORD [wk(3)] ; xmm3=(44 45 46 47 54 55 56 57) movdqa XMMWORD [wk(0)], xmm5 ; wk(0)=tmp6 movdqa XMMWORD [wk(1)], xmm6 ; wk(1)=tmp7 movdqa xmm5,xmm4 ; transpose coefficients(phase 3) punpcklqdq xmm4,xmm0 ; xmm4=(20 21 22 23 24 25 26 27)=data2 punpckhqdq xmm5,xmm0 ; xmm5=(30 31 32 33 34 35 36 37)=data3 movdqa xmm6,xmm1 ; transpose coefficients(phase 3) punpcklqdq xmm1,xmm3 ; xmm1=(40 41 42 43 44 45 46 47)=data4 punpckhqdq xmm6,xmm3 ; xmm6=(50 51 52 53 54 55 56 57)=data5 movdqa xmm0,xmm5 movdqa xmm3,xmm4 paddw xmm5,xmm1 ; xmm5=data3+data4=tmp3 paddw xmm4,xmm6 ; xmm4=data2+data5=tmp2 psubw xmm0,xmm1 ; xmm0=data3-data4=tmp4 psubw xmm3,xmm6 ; xmm3=data2-data5=tmp5 ; -- Even part movdqa xmm1,xmm7 movdqa xmm6,xmm2 paddw xmm7,xmm5 ; xmm7=tmp10 paddw xmm2,xmm4 ; xmm2=tmp11 psubw xmm1,xmm5 ; xmm1=tmp13 psubw xmm6,xmm4 ; xmm6=tmp12 movdqa xmm5,xmm7 paddw xmm7,xmm2 ; xmm7=tmp10+tmp11 psubw xmm5,xmm2 ; xmm5=tmp10-tmp11 paddw xmm7,[GOTOFF(ebx,PW_DESCALE_P2X)] paddw xmm5,[GOTOFF(ebx,PW_DESCALE_P2X)] psraw xmm7,PASS1_BITS ; xmm7=data0 psraw xmm5,PASS1_BITS ; xmm5=data4 movdqa XMMWORD [XMMBLOCK(0,0,edx,SIZEOF_DCTELEM)], xmm7 movdqa XMMWORD [XMMBLOCK(4,0,edx,SIZEOF_DCTELEM)], xmm5 ; (Original) ; z1 = (tmp12 + tmp13) * 0.541196100; ; data2 = z1 + tmp13 * 0.765366865; ; data6 = z1 + tmp12 * -1.847759065; ; ; (This implementation) ; data2 = tmp13 * (0.541196100 + 0.765366865) + tmp12 * 0.541196100; ; data6 = tmp13 * 0.541196100 + tmp12 * (0.541196100 - 1.847759065); movdqa xmm4,xmm1 ; xmm1=tmp13 movdqa xmm2,xmm1 punpcklwd xmm4,xmm6 ; xmm6=tmp12 punpckhwd xmm2,xmm6 movdqa xmm1,xmm4 movdqa xmm6,xmm2 pmaddwd xmm4,[GOTOFF(ebx,PW_F130_F054)] ; xmm4=data2L pmaddwd xmm2,[GOTOFF(ebx,PW_F130_F054)] ; xmm2=data2H pmaddwd xmm1,[GOTOFF(ebx,PW_F054_MF130)] ; xmm1=data6L pmaddwd xmm6,[GOTOFF(ebx,PW_F054_MF130)] ; xmm6=data6H paddd xmm4,[GOTOFF(ebx,PD_DESCALE_P2)] paddd xmm2,[GOTOFF(ebx,PD_DESCALE_P2)] psrad xmm4,DESCALE_P2 psrad xmm2,DESCALE_P2 paddd xmm1,[GOTOFF(ebx,PD_DESCALE_P2)] paddd xmm6,[GOTOFF(ebx,PD_DESCALE_P2)] psrad xmm1,DESCALE_P2 psrad xmm6,DESCALE_P2 packssdw xmm4,xmm2 ; xmm4=data2 packssdw xmm1,xmm6 ; xmm1=data6 movdqa XMMWORD [XMMBLOCK(2,0,edx,SIZEOF_DCTELEM)], xmm4 movdqa XMMWORD [XMMBLOCK(6,0,edx,SIZEOF_DCTELEM)], xmm1 ; -- Odd part movdqa xmm7, XMMWORD [wk(0)] ; xmm7=tmp6 movdqa xmm5, XMMWORD [wk(1)] ; xmm5=tmp7 movdqa xmm2,xmm0 ; xmm0=tmp4 movdqa xmm6,xmm3 ; xmm3=tmp5 paddw xmm2,xmm7 ; xmm2=z3 paddw xmm6,xmm5 ; xmm6=z4 ; (Original) ; z5 = (z3 + z4) * 1.175875602; ; z3 = z3 * -1.961570560; z4 = z4 * -0.390180644; ; z3 += z5; z4 += z5; ; ; (This implementation) ; z3 = z3 * (1.175875602 - 1.961570560) + z4 * 1.175875602; ; z4 = z3 * 1.175875602 + z4 * (1.175875602 - 0.390180644); movdqa xmm4,xmm2 movdqa xmm1,xmm2 punpcklwd xmm4,xmm6 punpckhwd xmm1,xmm6 movdqa xmm2,xmm4 movdqa xmm6,xmm1 pmaddwd xmm4,[GOTOFF(ebx,PW_MF078_F117)] ; xmm4=z3L pmaddwd xmm1,[GOTOFF(ebx,PW_MF078_F117)] ; xmm1=z3H pmaddwd xmm2,[GOTOFF(ebx,PW_F117_F078)] ; xmm2=z4L pmaddwd xmm6,[GOTOFF(ebx,PW_F117_F078)] ; xmm6=z4H movdqa XMMWORD [wk(0)], xmm4 ; wk(0)=z3L movdqa XMMWORD [wk(1)], xmm1 ; wk(1)=z3H ; (Original) ; z1 = tmp4 + tmp7; z2 = tmp5 + tmp6; ; tmp4 = tmp4 * 0.298631336; tmp5 = tmp5 * 2.053119869; ; tmp6 = tmp6 * 3.072711026; tmp7 = tmp7 * 1.501321110; ; z1 = z1 * -0.899976223; z2 = z2 * -2.562915447; ; data7 = tmp4 + z1 + z3; data5 = tmp5 + z2 + z4; ; data3 = tmp6 + z2 + z3; data1 = tmp7 + z1 + z4; ; ; (This implementation) ; tmp4 = tmp4 * (0.298631336 - 0.899976223) + tmp7 * -0.899976223; ; tmp5 = tmp5 * (2.053119869 - 2.562915447) + tmp6 * -2.562915447; ; tmp6 = tmp5 * -2.562915447 + tmp6 * (3.072711026 - 2.562915447); ; tmp7 = tmp4 * -0.899976223 + tmp7 * (1.501321110 - 0.899976223); ; data7 = tmp4 + z3; data5 = tmp5 + z4; ; data3 = tmp6 + z3; data1 = tmp7 + z4; movdqa xmm4,xmm0 movdqa xmm1,xmm0 punpcklwd xmm4,xmm5 punpckhwd xmm1,xmm5 movdqa xmm0,xmm4 movdqa xmm5,xmm1 pmaddwd xmm4,[GOTOFF(ebx,PW_MF060_MF089)] ; xmm4=tmp4L pmaddwd xmm1,[GOTOFF(ebx,PW_MF060_MF089)] ; xmm1=tmp4H pmaddwd xmm0,[GOTOFF(ebx,PW_MF089_F060)] ; xmm0=tmp7L pmaddwd xmm5,[GOTOFF(ebx,PW_MF089_F060)] ; xmm5=tmp7H paddd xmm4, XMMWORD [wk(0)] ; xmm4=data7L paddd xmm1, XMMWORD [wk(1)] ; xmm1=data7H paddd xmm0,xmm2 ; xmm0=data1L paddd xmm5,xmm6 ; xmm5=data1H paddd xmm4,[GOTOFF(ebx,PD_DESCALE_P2)] paddd xmm1,[GOTOFF(ebx,PD_DESCALE_P2)] psrad xmm4,DESCALE_P2 psrad xmm1,DESCALE_P2 paddd xmm0,[GOTOFF(ebx,PD_DESCALE_P2)] paddd xmm5,[GOTOFF(ebx,PD_DESCALE_P2)] psrad xmm0,DESCALE_P2 psrad xmm5,DESCALE_P2 packssdw xmm4,xmm1 ; xmm4=data7 packssdw xmm0,xmm5 ; xmm0=data1 movdqa XMMWORD [XMMBLOCK(7,0,edx,SIZEOF_DCTELEM)], xmm4 movdqa XMMWORD [XMMBLOCK(1,0,edx,SIZEOF_DCTELEM)], xmm0 movdqa xmm1,xmm3 movdqa xmm5,xmm3 punpcklwd xmm1,xmm7 punpckhwd xmm5,xmm7 movdqa xmm3,xmm1 movdqa xmm7,xmm5 pmaddwd xmm1,[GOTOFF(ebx,PW_MF050_MF256)] ; xmm1=tmp5L pmaddwd xmm5,[GOTOFF(ebx,PW_MF050_MF256)] ; xmm5=tmp5H pmaddwd xmm3,[GOTOFF(ebx,PW_MF256_F050)] ; xmm3=tmp6L pmaddwd xmm7,[GOTOFF(ebx,PW_MF256_F050)] ; xmm7=tmp6H paddd xmm1,xmm2 ; xmm1=data5L paddd xmm5,xmm6 ; xmm5=data5H paddd xmm3, XMMWORD [wk(0)] ; xmm3=data3L paddd xmm7, XMMWORD [wk(1)] ; xmm7=data3H paddd xmm1,[GOTOFF(ebx,PD_DESCALE_P2)] paddd xmm5,[GOTOFF(ebx,PD_DESCALE_P2)] psrad xmm1,DESCALE_P2 psrad xmm5,DESCALE_P2 paddd xmm3,[GOTOFF(ebx,PD_DESCALE_P2)] paddd xmm7,[GOTOFF(ebx,PD_DESCALE_P2)] psrad xmm3,DESCALE_P2 psrad xmm7,DESCALE_P2 packssdw xmm1,xmm5 ; xmm1=data5 packssdw xmm3,xmm7 ; xmm3=data3 movdqa XMMWORD [XMMBLOCK(5,0,edx,SIZEOF_DCTELEM)], xmm1 movdqa XMMWORD [XMMBLOCK(3,0,edx,SIZEOF_DCTELEM)], xmm3 ; pop edi ; unused ; pop esi ; unused ; pop edx ; need not be preserved ; pop ecx ; unused poppic ebx mov esp,ebp ; esp <- aligned ebp pop esp ; esp <- original ebp pop ebp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 16 libjpeg-turbo-1.4.2/simd/jdcolext-mmx.asm0000644000076500007650000003634512600050400015265 00000000000000; ; jdcolext.asm - colorspace conversion (MMX) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; ; Based on ; x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; [TAB8] %include "jcolsamp.inc" ; -------------------------------------------------------------------------- ; ; Convert some rows of samples to the output colorspace. ; ; GLOBAL(void) ; jsimd_ycc_rgb_convert_mmx (JDIMENSION out_width, ; JSAMPIMAGE input_buf, JDIMENSION input_row, ; JSAMPARRAY output_buf, int num_rows) ; %define out_width(b) (b)+8 ; JDIMENSION out_width %define input_buf(b) (b)+12 ; JSAMPIMAGE input_buf %define input_row(b) (b)+16 ; JDIMENSION input_row %define output_buf(b) (b)+20 ; JSAMPARRAY output_buf %define num_rows(b) (b)+24 ; int num_rows %define original_ebp ebp+0 %define wk(i) ebp-(WK_NUM-(i))*SIZEOF_MMWORD ; mmword wk[WK_NUM] %define WK_NUM 2 %define gotptr wk(0)-SIZEOF_POINTER ; void * gotptr align 16 global EXTN(jsimd_ycc_rgb_convert_mmx) EXTN(jsimd_ycc_rgb_convert_mmx): push ebp mov eax,esp ; eax = original ebp sub esp, byte 4 and esp, byte (-SIZEOF_MMWORD) ; align to 64 bits mov [esp],eax mov ebp,esp ; ebp = aligned ebp lea esp, [wk(0)] pushpic eax ; make a room for GOT address push ebx ; push ecx ; need not be preserved ; push edx ; need not be preserved push esi push edi get_GOT ebx ; get GOT address movpic POINTER [gotptr], ebx ; save GOT address mov ecx, JDIMENSION [out_width(eax)] ; num_cols test ecx,ecx jz near .return push ecx mov edi, JSAMPIMAGE [input_buf(eax)] mov ecx, JDIMENSION [input_row(eax)] mov esi, JSAMPARRAY [edi+0*SIZEOF_JSAMPARRAY] mov ebx, JSAMPARRAY [edi+1*SIZEOF_JSAMPARRAY] mov edx, JSAMPARRAY [edi+2*SIZEOF_JSAMPARRAY] lea esi, [esi+ecx*SIZEOF_JSAMPROW] lea ebx, [ebx+ecx*SIZEOF_JSAMPROW] lea edx, [edx+ecx*SIZEOF_JSAMPROW] pop ecx mov edi, JSAMPARRAY [output_buf(eax)] mov eax, INT [num_rows(eax)] test eax,eax jle near .return alignx 16,7 .rowloop: push eax push edi push edx push ebx push esi push ecx ; col mov esi, JSAMPROW [esi] ; inptr0 mov ebx, JSAMPROW [ebx] ; inptr1 mov edx, JSAMPROW [edx] ; inptr2 mov edi, JSAMPROW [edi] ; outptr movpic eax, POINTER [gotptr] ; load GOT address (eax) alignx 16,7 .columnloop: movq mm5, MMWORD [ebx] ; mm5=Cb(01234567) movq mm1, MMWORD [edx] ; mm1=Cr(01234567) pcmpeqw mm4,mm4 pcmpeqw mm7,mm7 psrlw mm4,BYTE_BIT psllw mm7,7 ; mm7={0xFF80 0xFF80 0xFF80 0xFF80} movq mm0,mm4 ; mm0=mm4={0xFF 0x00 0xFF 0x00 ..} pand mm4,mm5 ; mm4=Cb(0246)=CbE psrlw mm5,BYTE_BIT ; mm5=Cb(1357)=CbO pand mm0,mm1 ; mm0=Cr(0246)=CrE psrlw mm1,BYTE_BIT ; mm1=Cr(1357)=CrO paddw mm4,mm7 paddw mm5,mm7 paddw mm0,mm7 paddw mm1,mm7 ; (Original) ; R = Y + 1.40200 * Cr ; G = Y - 0.34414 * Cb - 0.71414 * Cr ; B = Y + 1.77200 * Cb ; ; (This implementation) ; R = Y + 0.40200 * Cr + Cr ; G = Y - 0.34414 * Cb + 0.28586 * Cr - Cr ; B = Y - 0.22800 * Cb + Cb + Cb movq mm2,mm4 ; mm2=CbE movq mm3,mm5 ; mm3=CbO paddw mm4,mm4 ; mm4=2*CbE paddw mm5,mm5 ; mm5=2*CbO movq mm6,mm0 ; mm6=CrE movq mm7,mm1 ; mm7=CrO paddw mm0,mm0 ; mm0=2*CrE paddw mm1,mm1 ; mm1=2*CrO pmulhw mm4,[GOTOFF(eax,PW_MF0228)] ; mm4=(2*CbE * -FIX(0.22800)) pmulhw mm5,[GOTOFF(eax,PW_MF0228)] ; mm5=(2*CbO * -FIX(0.22800)) pmulhw mm0,[GOTOFF(eax,PW_F0402)] ; mm0=(2*CrE * FIX(0.40200)) pmulhw mm1,[GOTOFF(eax,PW_F0402)] ; mm1=(2*CrO * FIX(0.40200)) paddw mm4,[GOTOFF(eax,PW_ONE)] paddw mm5,[GOTOFF(eax,PW_ONE)] psraw mm4,1 ; mm4=(CbE * -FIX(0.22800)) psraw mm5,1 ; mm5=(CbO * -FIX(0.22800)) paddw mm0,[GOTOFF(eax,PW_ONE)] paddw mm1,[GOTOFF(eax,PW_ONE)] psraw mm0,1 ; mm0=(CrE * FIX(0.40200)) psraw mm1,1 ; mm1=(CrO * FIX(0.40200)) paddw mm4,mm2 paddw mm5,mm3 paddw mm4,mm2 ; mm4=(CbE * FIX(1.77200))=(B-Y)E paddw mm5,mm3 ; mm5=(CbO * FIX(1.77200))=(B-Y)O paddw mm0,mm6 ; mm0=(CrE * FIX(1.40200))=(R-Y)E paddw mm1,mm7 ; mm1=(CrO * FIX(1.40200))=(R-Y)O movq MMWORD [wk(0)], mm4 ; wk(0)=(B-Y)E movq MMWORD [wk(1)], mm5 ; wk(1)=(B-Y)O movq mm4,mm2 movq mm5,mm3 punpcklwd mm2,mm6 punpckhwd mm4,mm6 pmaddwd mm2,[GOTOFF(eax,PW_MF0344_F0285)] pmaddwd mm4,[GOTOFF(eax,PW_MF0344_F0285)] punpcklwd mm3,mm7 punpckhwd mm5,mm7 pmaddwd mm3,[GOTOFF(eax,PW_MF0344_F0285)] pmaddwd mm5,[GOTOFF(eax,PW_MF0344_F0285)] paddd mm2,[GOTOFF(eax,PD_ONEHALF)] paddd mm4,[GOTOFF(eax,PD_ONEHALF)] psrad mm2,SCALEBITS psrad mm4,SCALEBITS paddd mm3,[GOTOFF(eax,PD_ONEHALF)] paddd mm5,[GOTOFF(eax,PD_ONEHALF)] psrad mm3,SCALEBITS psrad mm5,SCALEBITS packssdw mm2,mm4 ; mm2=CbE*-FIX(0.344)+CrE*FIX(0.285) packssdw mm3,mm5 ; mm3=CbO*-FIX(0.344)+CrO*FIX(0.285) psubw mm2,mm6 ; mm2=CbE*-FIX(0.344)+CrE*-FIX(0.714)=(G-Y)E psubw mm3,mm7 ; mm3=CbO*-FIX(0.344)+CrO*-FIX(0.714)=(G-Y)O movq mm5, MMWORD [esi] ; mm5=Y(01234567) pcmpeqw mm4,mm4 psrlw mm4,BYTE_BIT ; mm4={0xFF 0x00 0xFF 0x00 ..} pand mm4,mm5 ; mm4=Y(0246)=YE psrlw mm5,BYTE_BIT ; mm5=Y(1357)=YO paddw mm0,mm4 ; mm0=((R-Y)E+YE)=RE=(R0 R2 R4 R6) paddw mm1,mm5 ; mm1=((R-Y)O+YO)=RO=(R1 R3 R5 R7) packuswb mm0,mm0 ; mm0=(R0 R2 R4 R6 ** ** ** **) packuswb mm1,mm1 ; mm1=(R1 R3 R5 R7 ** ** ** **) paddw mm2,mm4 ; mm2=((G-Y)E+YE)=GE=(G0 G2 G4 G6) paddw mm3,mm5 ; mm3=((G-Y)O+YO)=GO=(G1 G3 G5 G7) packuswb mm2,mm2 ; mm2=(G0 G2 G4 G6 ** ** ** **) packuswb mm3,mm3 ; mm3=(G1 G3 G5 G7 ** ** ** **) paddw mm4, MMWORD [wk(0)] ; mm4=(YE+(B-Y)E)=BE=(B0 B2 B4 B6) paddw mm5, MMWORD [wk(1)] ; mm5=(YO+(B-Y)O)=BO=(B1 B3 B5 B7) packuswb mm4,mm4 ; mm4=(B0 B2 B4 B6 ** ** ** **) packuswb mm5,mm5 ; mm5=(B1 B3 B5 B7 ** ** ** **) %if RGB_PIXELSIZE == 3 ; --------------- ; mmA=(00 02 04 06 ** ** ** **), mmB=(01 03 05 07 ** ** ** **) ; mmC=(10 12 14 16 ** ** ** **), mmD=(11 13 15 17 ** ** ** **) ; mmE=(20 22 24 26 ** ** ** **), mmF=(21 23 25 27 ** ** ** **) ; mmG=(** ** ** ** ** ** ** **), mmH=(** ** ** ** ** ** ** **) punpcklbw mmA,mmC ; mmA=(00 10 02 12 04 14 06 16) punpcklbw mmE,mmB ; mmE=(20 01 22 03 24 05 26 07) punpcklbw mmD,mmF ; mmD=(11 21 13 23 15 25 17 27) movq mmG,mmA movq mmH,mmA punpcklwd mmA,mmE ; mmA=(00 10 20 01 02 12 22 03) punpckhwd mmG,mmE ; mmG=(04 14 24 05 06 16 26 07) psrlq mmH,2*BYTE_BIT ; mmH=(02 12 04 14 06 16 -- --) psrlq mmE,2*BYTE_BIT ; mmE=(22 03 24 05 26 07 -- --) movq mmC,mmD movq mmB,mmD punpcklwd mmD,mmH ; mmD=(11 21 02 12 13 23 04 14) punpckhwd mmC,mmH ; mmC=(15 25 06 16 17 27 -- --) psrlq mmB,2*BYTE_BIT ; mmB=(13 23 15 25 17 27 -- --) movq mmF,mmE punpcklwd mmE,mmB ; mmE=(22 03 13 23 24 05 15 25) punpckhwd mmF,mmB ; mmF=(26 07 17 27 -- -- -- --) punpckldq mmA,mmD ; mmA=(00 10 20 01 11 21 02 12) punpckldq mmE,mmG ; mmE=(22 03 13 23 04 14 24 05) punpckldq mmC,mmF ; mmC=(15 25 06 16 26 07 17 27) cmp ecx, byte SIZEOF_MMWORD jb short .column_st16 movq MMWORD [edi+0*SIZEOF_MMWORD], mmA movq MMWORD [edi+1*SIZEOF_MMWORD], mmE movq MMWORD [edi+2*SIZEOF_MMWORD], mmC sub ecx, byte SIZEOF_MMWORD jz short .nextrow add esi, byte SIZEOF_MMWORD ; inptr0 add ebx, byte SIZEOF_MMWORD ; inptr1 add edx, byte SIZEOF_MMWORD ; inptr2 add edi, byte RGB_PIXELSIZE*SIZEOF_MMWORD ; outptr jmp near .columnloop alignx 16,7 .column_st16: lea ecx, [ecx+ecx*2] ; imul ecx, RGB_PIXELSIZE cmp ecx, byte 2*SIZEOF_MMWORD jb short .column_st8 movq MMWORD [edi+0*SIZEOF_MMWORD], mmA movq MMWORD [edi+1*SIZEOF_MMWORD], mmE movq mmA,mmC sub ecx, byte 2*SIZEOF_MMWORD add edi, byte 2*SIZEOF_MMWORD jmp short .column_st4 .column_st8: cmp ecx, byte SIZEOF_MMWORD jb short .column_st4 movq MMWORD [edi+0*SIZEOF_MMWORD], mmA movq mmA,mmE sub ecx, byte SIZEOF_MMWORD add edi, byte SIZEOF_MMWORD .column_st4: movd eax,mmA cmp ecx, byte SIZEOF_DWORD jb short .column_st2 mov DWORD [edi+0*SIZEOF_DWORD], eax psrlq mmA,DWORD_BIT movd eax,mmA sub ecx, byte SIZEOF_DWORD add edi, byte SIZEOF_DWORD .column_st2: cmp ecx, byte SIZEOF_WORD jb short .column_st1 mov WORD [edi+0*SIZEOF_WORD], ax shr eax,WORD_BIT sub ecx, byte SIZEOF_WORD add edi, byte SIZEOF_WORD .column_st1: cmp ecx, byte SIZEOF_BYTE jb short .nextrow mov BYTE [edi+0*SIZEOF_BYTE], al %else ; RGB_PIXELSIZE == 4 ; ----------- %ifdef RGBX_FILLER_0XFF pcmpeqb mm6,mm6 ; mm6=(X0 X2 X4 X6 ** ** ** **) pcmpeqb mm7,mm7 ; mm7=(X1 X3 X5 X7 ** ** ** **) %else pxor mm6,mm6 ; mm6=(X0 X2 X4 X6 ** ** ** **) pxor mm7,mm7 ; mm7=(X1 X3 X5 X7 ** ** ** **) %endif ; mmA=(00 02 04 06 ** ** ** **), mmB=(01 03 05 07 ** ** ** **) ; mmC=(10 12 14 16 ** ** ** **), mmD=(11 13 15 17 ** ** ** **) ; mmE=(20 22 24 26 ** ** ** **), mmF=(21 23 25 27 ** ** ** **) ; mmG=(30 32 34 36 ** ** ** **), mmH=(31 33 35 37 ** ** ** **) punpcklbw mmA,mmC ; mmA=(00 10 02 12 04 14 06 16) punpcklbw mmE,mmG ; mmE=(20 30 22 32 24 34 26 36) punpcklbw mmB,mmD ; mmB=(01 11 03 13 05 15 07 17) punpcklbw mmF,mmH ; mmF=(21 31 23 33 25 35 27 37) movq mmC,mmA punpcklwd mmA,mmE ; mmA=(00 10 20 30 02 12 22 32) punpckhwd mmC,mmE ; mmC=(04 14 24 34 06 16 26 36) movq mmG,mmB punpcklwd mmB,mmF ; mmB=(01 11 21 31 03 13 23 33) punpckhwd mmG,mmF ; mmG=(05 15 25 35 07 17 27 37) movq mmD,mmA punpckldq mmA,mmB ; mmA=(00 10 20 30 01 11 21 31) punpckhdq mmD,mmB ; mmD=(02 12 22 32 03 13 23 33) movq mmH,mmC punpckldq mmC,mmG ; mmC=(04 14 24 34 05 15 25 35) punpckhdq mmH,mmG ; mmH=(06 16 26 36 07 17 27 37) cmp ecx, byte SIZEOF_MMWORD jb short .column_st16 movq MMWORD [edi+0*SIZEOF_MMWORD], mmA movq MMWORD [edi+1*SIZEOF_MMWORD], mmD movq MMWORD [edi+2*SIZEOF_MMWORD], mmC movq MMWORD [edi+3*SIZEOF_MMWORD], mmH sub ecx, byte SIZEOF_MMWORD jz short .nextrow add esi, byte SIZEOF_MMWORD ; inptr0 add ebx, byte SIZEOF_MMWORD ; inptr1 add edx, byte SIZEOF_MMWORD ; inptr2 add edi, byte RGB_PIXELSIZE*SIZEOF_MMWORD ; outptr jmp near .columnloop alignx 16,7 .column_st16: cmp ecx, byte SIZEOF_MMWORD/2 jb short .column_st8 movq MMWORD [edi+0*SIZEOF_MMWORD], mmA movq MMWORD [edi+1*SIZEOF_MMWORD], mmD movq mmA,mmC movq mmD,mmH sub ecx, byte SIZEOF_MMWORD/2 add edi, byte 2*SIZEOF_MMWORD .column_st8: cmp ecx, byte SIZEOF_MMWORD/4 jb short .column_st4 movq MMWORD [edi+0*SIZEOF_MMWORD], mmA movq mmA,mmD sub ecx, byte SIZEOF_MMWORD/4 add edi, byte 1*SIZEOF_MMWORD .column_st4: cmp ecx, byte SIZEOF_MMWORD/8 jb short .nextrow movd DWORD [edi+0*SIZEOF_DWORD], mmA %endif ; RGB_PIXELSIZE ; --------------- alignx 16,7 .nextrow: pop ecx pop esi pop ebx pop edx pop edi pop eax add esi, byte SIZEOF_JSAMPROW add ebx, byte SIZEOF_JSAMPROW add edx, byte SIZEOF_JSAMPROW add edi, byte SIZEOF_JSAMPROW ; output_buf dec eax ; num_rows jg near .rowloop emms ; empty MMX state .return: pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; need not be preserved pop ebx mov esp,ebp ; esp <- aligned ebp pop esp ; esp <- original ebp pop ebp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 16 libjpeg-turbo-1.4.2/simd/jfdctfst-sse2.asm0000644000076500007650000004265712600050400015336 00000000000000; ; jfdctfst.asm - fast integer FDCT (SSE2) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; ; Based on ; x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; This file contains a fast, not so accurate integer implementation of ; the forward DCT (Discrete Cosine Transform). The following code is ; based directly on the IJG's original jfdctfst.c; see the jfdctfst.c ; for more details. ; ; [TAB8] %include "jsimdext.inc" %include "jdct.inc" ; -------------------------------------------------------------------------- %define CONST_BITS 8 ; 14 is also OK. %if CONST_BITS == 8 F_0_382 equ 98 ; FIX(0.382683433) F_0_541 equ 139 ; FIX(0.541196100) F_0_707 equ 181 ; FIX(0.707106781) F_1_306 equ 334 ; FIX(1.306562965) %else ; NASM cannot do compile-time arithmetic on floating-point constants. %define DESCALE(x,n) (((x)+(1<<((n)-1)))>>(n)) F_0_382 equ DESCALE( 410903207,30-CONST_BITS) ; FIX(0.382683433) F_0_541 equ DESCALE( 581104887,30-CONST_BITS) ; FIX(0.541196100) F_0_707 equ DESCALE( 759250124,30-CONST_BITS) ; FIX(0.707106781) F_1_306 equ DESCALE(1402911301,30-CONST_BITS) ; FIX(1.306562965) %endif ; -------------------------------------------------------------------------- SECTION SEG_CONST ; PRE_MULTIPLY_SCALE_BITS <= 2 (to avoid overflow) ; CONST_BITS + CONST_SHIFT + PRE_MULTIPLY_SCALE_BITS == 16 (for pmulhw) %define PRE_MULTIPLY_SCALE_BITS 2 %define CONST_SHIFT (16 - PRE_MULTIPLY_SCALE_BITS - CONST_BITS) alignz 16 global EXTN(jconst_fdct_ifast_sse2) EXTN(jconst_fdct_ifast_sse2): PW_F0707 times 8 dw F_0_707 << CONST_SHIFT PW_F0382 times 8 dw F_0_382 << CONST_SHIFT PW_F0541 times 8 dw F_0_541 << CONST_SHIFT PW_F1306 times 8 dw F_1_306 << CONST_SHIFT alignz 16 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 32 ; ; Perform the forward DCT on one block of samples. ; ; GLOBAL(void) ; jsimd_fdct_ifast_sse2 (DCTELEM * data) ; %define data(b) (b)+8 ; DCTELEM * data %define original_ebp ebp+0 %define wk(i) ebp-(WK_NUM-(i))*SIZEOF_XMMWORD ; xmmword wk[WK_NUM] %define WK_NUM 2 align 16 global EXTN(jsimd_fdct_ifast_sse2) EXTN(jsimd_fdct_ifast_sse2): push ebp mov eax,esp ; eax = original ebp sub esp, byte 4 and esp, byte (-SIZEOF_XMMWORD) ; align to 128 bits mov [esp],eax mov ebp,esp ; ebp = aligned ebp lea esp, [wk(0)] pushpic ebx ; push ecx ; unused ; push edx ; need not be preserved ; push esi ; unused ; push edi ; unused get_GOT ebx ; get GOT address ; ---- Pass 1: process rows. mov edx, POINTER [data(eax)] ; (DCTELEM *) movdqa xmm0, XMMWORD [XMMBLOCK(0,0,edx,SIZEOF_DCTELEM)] movdqa xmm1, XMMWORD [XMMBLOCK(1,0,edx,SIZEOF_DCTELEM)] movdqa xmm2, XMMWORD [XMMBLOCK(2,0,edx,SIZEOF_DCTELEM)] movdqa xmm3, XMMWORD [XMMBLOCK(3,0,edx,SIZEOF_DCTELEM)] ; xmm0=(00 01 02 03 04 05 06 07), xmm2=(20 21 22 23 24 25 26 27) ; xmm1=(10 11 12 13 14 15 16 17), xmm3=(30 31 32 33 34 35 36 37) movdqa xmm4,xmm0 ; transpose coefficients(phase 1) punpcklwd xmm0,xmm1 ; xmm0=(00 10 01 11 02 12 03 13) punpckhwd xmm4,xmm1 ; xmm4=(04 14 05 15 06 16 07 17) movdqa xmm5,xmm2 ; transpose coefficients(phase 1) punpcklwd xmm2,xmm3 ; xmm2=(20 30 21 31 22 32 23 33) punpckhwd xmm5,xmm3 ; xmm5=(24 34 25 35 26 36 27 37) movdqa xmm6, XMMWORD [XMMBLOCK(4,0,edx,SIZEOF_DCTELEM)] movdqa xmm7, XMMWORD [XMMBLOCK(5,0,edx,SIZEOF_DCTELEM)] movdqa xmm1, XMMWORD [XMMBLOCK(6,0,edx,SIZEOF_DCTELEM)] movdqa xmm3, XMMWORD [XMMBLOCK(7,0,edx,SIZEOF_DCTELEM)] ; xmm6=( 4 12 20 28 36 44 52 60), xmm1=( 6 14 22 30 38 46 54 62) ; xmm7=( 5 13 21 29 37 45 53 61), xmm3=( 7 15 23 31 39 47 55 63) movdqa XMMWORD [wk(0)], xmm2 ; wk(0)=(20 30 21 31 22 32 23 33) movdqa XMMWORD [wk(1)], xmm5 ; wk(1)=(24 34 25 35 26 36 27 37) movdqa xmm2,xmm6 ; transpose coefficients(phase 1) punpcklwd xmm6,xmm7 ; xmm6=(40 50 41 51 42 52 43 53) punpckhwd xmm2,xmm7 ; xmm2=(44 54 45 55 46 56 47 57) movdqa xmm5,xmm1 ; transpose coefficients(phase 1) punpcklwd xmm1,xmm3 ; xmm1=(60 70 61 71 62 72 63 73) punpckhwd xmm5,xmm3 ; xmm5=(64 74 65 75 66 76 67 77) movdqa xmm7,xmm6 ; transpose coefficients(phase 2) punpckldq xmm6,xmm1 ; xmm6=(40 50 60 70 41 51 61 71) punpckhdq xmm7,xmm1 ; xmm7=(42 52 62 72 43 53 63 73) movdqa xmm3,xmm2 ; transpose coefficients(phase 2) punpckldq xmm2,xmm5 ; xmm2=(44 54 64 74 45 55 65 75) punpckhdq xmm3,xmm5 ; xmm3=(46 56 66 76 47 57 67 77) movdqa xmm1, XMMWORD [wk(0)] ; xmm1=(20 30 21 31 22 32 23 33) movdqa xmm5, XMMWORD [wk(1)] ; xmm5=(24 34 25 35 26 36 27 37) movdqa XMMWORD [wk(0)], xmm7 ; wk(0)=(42 52 62 72 43 53 63 73) movdqa XMMWORD [wk(1)], xmm2 ; wk(1)=(44 54 64 74 45 55 65 75) movdqa xmm7,xmm0 ; transpose coefficients(phase 2) punpckldq xmm0,xmm1 ; xmm0=(00 10 20 30 01 11 21 31) punpckhdq xmm7,xmm1 ; xmm7=(02 12 22 32 03 13 23 33) movdqa xmm2,xmm4 ; transpose coefficients(phase 2) punpckldq xmm4,xmm5 ; xmm4=(04 14 24 34 05 15 25 35) punpckhdq xmm2,xmm5 ; xmm2=(06 16 26 36 07 17 27 37) movdqa xmm1,xmm0 ; transpose coefficients(phase 3) punpcklqdq xmm0,xmm6 ; xmm0=(00 10 20 30 40 50 60 70)=data0 punpckhqdq xmm1,xmm6 ; xmm1=(01 11 21 31 41 51 61 71)=data1 movdqa xmm5,xmm2 ; transpose coefficients(phase 3) punpcklqdq xmm2,xmm3 ; xmm2=(06 16 26 36 46 56 66 76)=data6 punpckhqdq xmm5,xmm3 ; xmm5=(07 17 27 37 47 57 67 77)=data7 movdqa xmm6,xmm1 movdqa xmm3,xmm0 psubw xmm1,xmm2 ; xmm1=data1-data6=tmp6 psubw xmm0,xmm5 ; xmm0=data0-data7=tmp7 paddw xmm6,xmm2 ; xmm6=data1+data6=tmp1 paddw xmm3,xmm5 ; xmm3=data0+data7=tmp0 movdqa xmm2, XMMWORD [wk(0)] ; xmm2=(42 52 62 72 43 53 63 73) movdqa xmm5, XMMWORD [wk(1)] ; xmm5=(44 54 64 74 45 55 65 75) movdqa XMMWORD [wk(0)], xmm1 ; wk(0)=tmp6 movdqa XMMWORD [wk(1)], xmm0 ; wk(1)=tmp7 movdqa xmm1,xmm7 ; transpose coefficients(phase 3) punpcklqdq xmm7,xmm2 ; xmm7=(02 12 22 32 42 52 62 72)=data2 punpckhqdq xmm1,xmm2 ; xmm1=(03 13 23 33 43 53 63 73)=data3 movdqa xmm0,xmm4 ; transpose coefficients(phase 3) punpcklqdq xmm4,xmm5 ; xmm4=(04 14 24 34 44 54 64 74)=data4 punpckhqdq xmm0,xmm5 ; xmm0=(05 15 25 35 45 55 65 75)=data5 movdqa xmm2,xmm1 movdqa xmm5,xmm7 paddw xmm1,xmm4 ; xmm1=data3+data4=tmp3 paddw xmm7,xmm0 ; xmm7=data2+data5=tmp2 psubw xmm2,xmm4 ; xmm2=data3-data4=tmp4 psubw xmm5,xmm0 ; xmm5=data2-data5=tmp5 ; -- Even part movdqa xmm4,xmm3 movdqa xmm0,xmm6 psubw xmm3,xmm1 ; xmm3=tmp13 psubw xmm6,xmm7 ; xmm6=tmp12 paddw xmm4,xmm1 ; xmm4=tmp10 paddw xmm0,xmm7 ; xmm0=tmp11 paddw xmm6,xmm3 psllw xmm6,PRE_MULTIPLY_SCALE_BITS pmulhw xmm6,[GOTOFF(ebx,PW_F0707)] ; xmm6=z1 movdqa xmm1,xmm4 movdqa xmm7,xmm3 psubw xmm4,xmm0 ; xmm4=data4 psubw xmm3,xmm6 ; xmm3=data6 paddw xmm1,xmm0 ; xmm1=data0 paddw xmm7,xmm6 ; xmm7=data2 movdqa xmm0, XMMWORD [wk(0)] ; xmm0=tmp6 movdqa xmm6, XMMWORD [wk(1)] ; xmm6=tmp7 movdqa XMMWORD [wk(0)], xmm4 ; wk(0)=data4 movdqa XMMWORD [wk(1)], xmm3 ; wk(1)=data6 ; -- Odd part paddw xmm2,xmm5 ; xmm2=tmp10 paddw xmm5,xmm0 ; xmm5=tmp11 paddw xmm0,xmm6 ; xmm0=tmp12, xmm6=tmp7 psllw xmm2,PRE_MULTIPLY_SCALE_BITS psllw xmm0,PRE_MULTIPLY_SCALE_BITS psllw xmm5,PRE_MULTIPLY_SCALE_BITS pmulhw xmm5,[GOTOFF(ebx,PW_F0707)] ; xmm5=z3 movdqa xmm4,xmm2 ; xmm4=tmp10 psubw xmm2,xmm0 pmulhw xmm2,[GOTOFF(ebx,PW_F0382)] ; xmm2=z5 pmulhw xmm4,[GOTOFF(ebx,PW_F0541)] ; xmm4=MULTIPLY(tmp10,FIX_0_541196) pmulhw xmm0,[GOTOFF(ebx,PW_F1306)] ; xmm0=MULTIPLY(tmp12,FIX_1_306562) paddw xmm4,xmm2 ; xmm4=z2 paddw xmm0,xmm2 ; xmm0=z4 movdqa xmm3,xmm6 psubw xmm6,xmm5 ; xmm6=z13 paddw xmm3,xmm5 ; xmm3=z11 movdqa xmm2,xmm6 movdqa xmm5,xmm3 psubw xmm6,xmm4 ; xmm6=data3 psubw xmm3,xmm0 ; xmm3=data7 paddw xmm2,xmm4 ; xmm2=data5 paddw xmm5,xmm0 ; xmm5=data1 ; ---- Pass 2: process columns. ; mov edx, POINTER [data(eax)] ; (DCTELEM *) ; xmm1=(00 10 20 30 40 50 60 70), xmm7=(02 12 22 32 42 52 62 72) ; xmm5=(01 11 21 31 41 51 61 71), xmm6=(03 13 23 33 43 53 63 73) movdqa xmm4,xmm1 ; transpose coefficients(phase 1) punpcklwd xmm1,xmm5 ; xmm1=(00 01 10 11 20 21 30 31) punpckhwd xmm4,xmm5 ; xmm4=(40 41 50 51 60 61 70 71) movdqa xmm0,xmm7 ; transpose coefficients(phase 1) punpcklwd xmm7,xmm6 ; xmm7=(02 03 12 13 22 23 32 33) punpckhwd xmm0,xmm6 ; xmm0=(42 43 52 53 62 63 72 73) movdqa xmm5, XMMWORD [wk(0)] ; xmm5=col4 movdqa xmm6, XMMWORD [wk(1)] ; xmm6=col6 ; xmm5=(04 14 24 34 44 54 64 74), xmm6=(06 16 26 36 46 56 66 76) ; xmm2=(05 15 25 35 45 55 65 75), xmm3=(07 17 27 37 47 57 67 77) movdqa XMMWORD [wk(0)], xmm7 ; wk(0)=(02 03 12 13 22 23 32 33) movdqa XMMWORD [wk(1)], xmm0 ; wk(1)=(42 43 52 53 62 63 72 73) movdqa xmm7,xmm5 ; transpose coefficients(phase 1) punpcklwd xmm5,xmm2 ; xmm5=(04 05 14 15 24 25 34 35) punpckhwd xmm7,xmm2 ; xmm7=(44 45 54 55 64 65 74 75) movdqa xmm0,xmm6 ; transpose coefficients(phase 1) punpcklwd xmm6,xmm3 ; xmm6=(06 07 16 17 26 27 36 37) punpckhwd xmm0,xmm3 ; xmm0=(46 47 56 57 66 67 76 77) movdqa xmm2,xmm5 ; transpose coefficients(phase 2) punpckldq xmm5,xmm6 ; xmm5=(04 05 06 07 14 15 16 17) punpckhdq xmm2,xmm6 ; xmm2=(24 25 26 27 34 35 36 37) movdqa xmm3,xmm7 ; transpose coefficients(phase 2) punpckldq xmm7,xmm0 ; xmm7=(44 45 46 47 54 55 56 57) punpckhdq xmm3,xmm0 ; xmm3=(64 65 66 67 74 75 76 77) movdqa xmm6, XMMWORD [wk(0)] ; xmm6=(02 03 12 13 22 23 32 33) movdqa xmm0, XMMWORD [wk(1)] ; xmm0=(42 43 52 53 62 63 72 73) movdqa XMMWORD [wk(0)], xmm2 ; wk(0)=(24 25 26 27 34 35 36 37) movdqa XMMWORD [wk(1)], xmm7 ; wk(1)=(44 45 46 47 54 55 56 57) movdqa xmm2,xmm1 ; transpose coefficients(phase 2) punpckldq xmm1,xmm6 ; xmm1=(00 01 02 03 10 11 12 13) punpckhdq xmm2,xmm6 ; xmm2=(20 21 22 23 30 31 32 33) movdqa xmm7,xmm4 ; transpose coefficients(phase 2) punpckldq xmm4,xmm0 ; xmm4=(40 41 42 43 50 51 52 53) punpckhdq xmm7,xmm0 ; xmm7=(60 61 62 63 70 71 72 73) movdqa xmm6,xmm1 ; transpose coefficients(phase 3) punpcklqdq xmm1,xmm5 ; xmm1=(00 01 02 03 04 05 06 07)=data0 punpckhqdq xmm6,xmm5 ; xmm6=(10 11 12 13 14 15 16 17)=data1 movdqa xmm0,xmm7 ; transpose coefficients(phase 3) punpcklqdq xmm7,xmm3 ; xmm7=(60 61 62 63 64 65 66 67)=data6 punpckhqdq xmm0,xmm3 ; xmm0=(70 71 72 73 74 75 76 77)=data7 movdqa xmm5,xmm6 movdqa xmm3,xmm1 psubw xmm6,xmm7 ; xmm6=data1-data6=tmp6 psubw xmm1,xmm0 ; xmm1=data0-data7=tmp7 paddw xmm5,xmm7 ; xmm5=data1+data6=tmp1 paddw xmm3,xmm0 ; xmm3=data0+data7=tmp0 movdqa xmm7, XMMWORD [wk(0)] ; xmm7=(24 25 26 27 34 35 36 37) movdqa xmm0, XMMWORD [wk(1)] ; xmm0=(44 45 46 47 54 55 56 57) movdqa XMMWORD [wk(0)], xmm6 ; wk(0)=tmp6 movdqa XMMWORD [wk(1)], xmm1 ; wk(1)=tmp7 movdqa xmm6,xmm2 ; transpose coefficients(phase 3) punpcklqdq xmm2,xmm7 ; xmm2=(20 21 22 23 24 25 26 27)=data2 punpckhqdq xmm6,xmm7 ; xmm6=(30 31 32 33 34 35 36 37)=data3 movdqa xmm1,xmm4 ; transpose coefficients(phase 3) punpcklqdq xmm4,xmm0 ; xmm4=(40 41 42 43 44 45 46 47)=data4 punpckhqdq xmm1,xmm0 ; xmm1=(50 51 52 53 54 55 56 57)=data5 movdqa xmm7,xmm6 movdqa xmm0,xmm2 paddw xmm6,xmm4 ; xmm6=data3+data4=tmp3 paddw xmm2,xmm1 ; xmm2=data2+data5=tmp2 psubw xmm7,xmm4 ; xmm7=data3-data4=tmp4 psubw xmm0,xmm1 ; xmm0=data2-data5=tmp5 ; -- Even part movdqa xmm4,xmm3 movdqa xmm1,xmm5 psubw xmm3,xmm6 ; xmm3=tmp13 psubw xmm5,xmm2 ; xmm5=tmp12 paddw xmm4,xmm6 ; xmm4=tmp10 paddw xmm1,xmm2 ; xmm1=tmp11 paddw xmm5,xmm3 psllw xmm5,PRE_MULTIPLY_SCALE_BITS pmulhw xmm5,[GOTOFF(ebx,PW_F0707)] ; xmm5=z1 movdqa xmm6,xmm4 movdqa xmm2,xmm3 psubw xmm4,xmm1 ; xmm4=data4 psubw xmm3,xmm5 ; xmm3=data6 paddw xmm6,xmm1 ; xmm6=data0 paddw xmm2,xmm5 ; xmm2=data2 movdqa XMMWORD [XMMBLOCK(4,0,edx,SIZEOF_DCTELEM)], xmm4 movdqa XMMWORD [XMMBLOCK(6,0,edx,SIZEOF_DCTELEM)], xmm3 movdqa XMMWORD [XMMBLOCK(0,0,edx,SIZEOF_DCTELEM)], xmm6 movdqa XMMWORD [XMMBLOCK(2,0,edx,SIZEOF_DCTELEM)], xmm2 ; -- Odd part movdqa xmm1, XMMWORD [wk(0)] ; xmm1=tmp6 movdqa xmm5, XMMWORD [wk(1)] ; xmm5=tmp7 paddw xmm7,xmm0 ; xmm7=tmp10 paddw xmm0,xmm1 ; xmm0=tmp11 paddw xmm1,xmm5 ; xmm1=tmp12, xmm5=tmp7 psllw xmm7,PRE_MULTIPLY_SCALE_BITS psllw xmm1,PRE_MULTIPLY_SCALE_BITS psllw xmm0,PRE_MULTIPLY_SCALE_BITS pmulhw xmm0,[GOTOFF(ebx,PW_F0707)] ; xmm0=z3 movdqa xmm4,xmm7 ; xmm4=tmp10 psubw xmm7,xmm1 pmulhw xmm7,[GOTOFF(ebx,PW_F0382)] ; xmm7=z5 pmulhw xmm4,[GOTOFF(ebx,PW_F0541)] ; xmm4=MULTIPLY(tmp10,FIX_0_541196) pmulhw xmm1,[GOTOFF(ebx,PW_F1306)] ; xmm1=MULTIPLY(tmp12,FIX_1_306562) paddw xmm4,xmm7 ; xmm4=z2 paddw xmm1,xmm7 ; xmm1=z4 movdqa xmm3,xmm5 psubw xmm5,xmm0 ; xmm5=z13 paddw xmm3,xmm0 ; xmm3=z11 movdqa xmm6,xmm5 movdqa xmm2,xmm3 psubw xmm5,xmm4 ; xmm5=data3 psubw xmm3,xmm1 ; xmm3=data7 paddw xmm6,xmm4 ; xmm6=data5 paddw xmm2,xmm1 ; xmm2=data1 movdqa XMMWORD [XMMBLOCK(3,0,edx,SIZEOF_DCTELEM)], xmm5 movdqa XMMWORD [XMMBLOCK(7,0,edx,SIZEOF_DCTELEM)], xmm3 movdqa XMMWORD [XMMBLOCK(5,0,edx,SIZEOF_DCTELEM)], xmm6 movdqa XMMWORD [XMMBLOCK(1,0,edx,SIZEOF_DCTELEM)], xmm2 ; pop edi ; unused ; pop esi ; unused ; pop edx ; need not be preserved ; pop ecx ; unused poppic ebx mov esp,ebp ; esp <- aligned ebp pop esp ; esp <- original ebp pop ebp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 16 libjpeg-turbo-1.4.2/simd/jfdctint-sse2-64.asm0000644000076500007650000006374512600050400015564 00000000000000; ; jfdctint.asm - accurate integer FDCT (64-bit SSE2) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; Copyright 2009 D. R. Commander ; ; Based on ; x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; This file contains a slow-but-accurate integer implementation of the ; forward DCT (Discrete Cosine Transform). The following code is based ; directly on the IJG's original jfdctint.c; see the jfdctint.c for ; more details. ; ; [TAB8] %include "jsimdext.inc" %include "jdct.inc" ; -------------------------------------------------------------------------- %define CONST_BITS 13 %define PASS1_BITS 2 %define DESCALE_P1 (CONST_BITS-PASS1_BITS) %define DESCALE_P2 (CONST_BITS+PASS1_BITS) %if CONST_BITS == 13 F_0_298 equ 2446 ; FIX(0.298631336) F_0_390 equ 3196 ; FIX(0.390180644) F_0_541 equ 4433 ; FIX(0.541196100) F_0_765 equ 6270 ; FIX(0.765366865) F_0_899 equ 7373 ; FIX(0.899976223) F_1_175 equ 9633 ; FIX(1.175875602) F_1_501 equ 12299 ; FIX(1.501321110) F_1_847 equ 15137 ; FIX(1.847759065) F_1_961 equ 16069 ; FIX(1.961570560) F_2_053 equ 16819 ; FIX(2.053119869) F_2_562 equ 20995 ; FIX(2.562915447) F_3_072 equ 25172 ; FIX(3.072711026) %else ; NASM cannot do compile-time arithmetic on floating-point constants. %define DESCALE(x,n) (((x)+(1<<((n)-1)))>>(n)) F_0_298 equ DESCALE( 320652955,30-CONST_BITS) ; FIX(0.298631336) F_0_390 equ DESCALE( 418953276,30-CONST_BITS) ; FIX(0.390180644) F_0_541 equ DESCALE( 581104887,30-CONST_BITS) ; FIX(0.541196100) F_0_765 equ DESCALE( 821806413,30-CONST_BITS) ; FIX(0.765366865) F_0_899 equ DESCALE( 966342111,30-CONST_BITS) ; FIX(0.899976223) F_1_175 equ DESCALE(1262586813,30-CONST_BITS) ; FIX(1.175875602) F_1_501 equ DESCALE(1612031267,30-CONST_BITS) ; FIX(1.501321110) F_1_847 equ DESCALE(1984016188,30-CONST_BITS) ; FIX(1.847759065) F_1_961 equ DESCALE(2106220350,30-CONST_BITS) ; FIX(1.961570560) F_2_053 equ DESCALE(2204520673,30-CONST_BITS) ; FIX(2.053119869) F_2_562 equ DESCALE(2751909506,30-CONST_BITS) ; FIX(2.562915447) F_3_072 equ DESCALE(3299298341,30-CONST_BITS) ; FIX(3.072711026) %endif ; -------------------------------------------------------------------------- SECTION SEG_CONST alignz 16 global EXTN(jconst_fdct_islow_sse2) EXTN(jconst_fdct_islow_sse2): PW_F130_F054 times 4 dw (F_0_541+F_0_765), F_0_541 PW_F054_MF130 times 4 dw F_0_541, (F_0_541-F_1_847) PW_MF078_F117 times 4 dw (F_1_175-F_1_961), F_1_175 PW_F117_F078 times 4 dw F_1_175, (F_1_175-F_0_390) PW_MF060_MF089 times 4 dw (F_0_298-F_0_899),-F_0_899 PW_MF089_F060 times 4 dw -F_0_899, (F_1_501-F_0_899) PW_MF050_MF256 times 4 dw (F_2_053-F_2_562),-F_2_562 PW_MF256_F050 times 4 dw -F_2_562, (F_3_072-F_2_562) PD_DESCALE_P1 times 4 dd 1 << (DESCALE_P1-1) PD_DESCALE_P2 times 4 dd 1 << (DESCALE_P2-1) PW_DESCALE_P2X times 8 dw 1 << (PASS1_BITS-1) alignz 16 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 64 ; ; Perform the forward DCT on one block of samples. ; ; GLOBAL(void) ; jsimd_fdct_islow_sse2 (DCTELEM * data) ; ; r10 = DCTELEM * data %define wk(i) rbp-(WK_NUM-(i))*SIZEOF_XMMWORD ; xmmword wk[WK_NUM] %define WK_NUM 6 align 16 global EXTN(jsimd_fdct_islow_sse2) EXTN(jsimd_fdct_islow_sse2): push rbp mov rax,rsp ; rax = original rbp sub rsp, byte 4 and rsp, byte (-SIZEOF_XMMWORD) ; align to 128 bits mov [rsp],rax mov rbp,rsp ; rbp = aligned rbp lea rsp, [wk(0)] collect_args ; ---- Pass 1: process rows. mov rdx, r10 ; (DCTELEM *) movdqa xmm0, XMMWORD [XMMBLOCK(0,0,rdx,SIZEOF_DCTELEM)] movdqa xmm1, XMMWORD [XMMBLOCK(1,0,rdx,SIZEOF_DCTELEM)] movdqa xmm2, XMMWORD [XMMBLOCK(2,0,rdx,SIZEOF_DCTELEM)] movdqa xmm3, XMMWORD [XMMBLOCK(3,0,rdx,SIZEOF_DCTELEM)] ; xmm0=(00 01 02 03 04 05 06 07), xmm2=(20 21 22 23 24 25 26 27) ; xmm1=(10 11 12 13 14 15 16 17), xmm3=(30 31 32 33 34 35 36 37) movdqa xmm4,xmm0 ; transpose coefficients(phase 1) punpcklwd xmm0,xmm1 ; xmm0=(00 10 01 11 02 12 03 13) punpckhwd xmm4,xmm1 ; xmm4=(04 14 05 15 06 16 07 17) movdqa xmm5,xmm2 ; transpose coefficients(phase 1) punpcklwd xmm2,xmm3 ; xmm2=(20 30 21 31 22 32 23 33) punpckhwd xmm5,xmm3 ; xmm5=(24 34 25 35 26 36 27 37) movdqa xmm6, XMMWORD [XMMBLOCK(4,0,rdx,SIZEOF_DCTELEM)] movdqa xmm7, XMMWORD [XMMBLOCK(5,0,rdx,SIZEOF_DCTELEM)] movdqa xmm1, XMMWORD [XMMBLOCK(6,0,rdx,SIZEOF_DCTELEM)] movdqa xmm3, XMMWORD [XMMBLOCK(7,0,rdx,SIZEOF_DCTELEM)] ; xmm6=( 4 12 20 28 36 44 52 60), xmm1=( 6 14 22 30 38 46 54 62) ; xmm7=( 5 13 21 29 37 45 53 61), xmm3=( 7 15 23 31 39 47 55 63) movdqa XMMWORD [wk(0)], xmm2 ; wk(0)=(20 30 21 31 22 32 23 33) movdqa XMMWORD [wk(1)], xmm5 ; wk(1)=(24 34 25 35 26 36 27 37) movdqa xmm2,xmm6 ; transpose coefficients(phase 1) punpcklwd xmm6,xmm7 ; xmm6=(40 50 41 51 42 52 43 53) punpckhwd xmm2,xmm7 ; xmm2=(44 54 45 55 46 56 47 57) movdqa xmm5,xmm1 ; transpose coefficients(phase 1) punpcklwd xmm1,xmm3 ; xmm1=(60 70 61 71 62 72 63 73) punpckhwd xmm5,xmm3 ; xmm5=(64 74 65 75 66 76 67 77) movdqa xmm7,xmm6 ; transpose coefficients(phase 2) punpckldq xmm6,xmm1 ; xmm6=(40 50 60 70 41 51 61 71) punpckhdq xmm7,xmm1 ; xmm7=(42 52 62 72 43 53 63 73) movdqa xmm3,xmm2 ; transpose coefficients(phase 2) punpckldq xmm2,xmm5 ; xmm2=(44 54 64 74 45 55 65 75) punpckhdq xmm3,xmm5 ; xmm3=(46 56 66 76 47 57 67 77) movdqa xmm1, XMMWORD [wk(0)] ; xmm1=(20 30 21 31 22 32 23 33) movdqa xmm5, XMMWORD [wk(1)] ; xmm5=(24 34 25 35 26 36 27 37) movdqa XMMWORD [wk(2)], xmm7 ; wk(2)=(42 52 62 72 43 53 63 73) movdqa XMMWORD [wk(3)], xmm2 ; wk(3)=(44 54 64 74 45 55 65 75) movdqa xmm7,xmm0 ; transpose coefficients(phase 2) punpckldq xmm0,xmm1 ; xmm0=(00 10 20 30 01 11 21 31) punpckhdq xmm7,xmm1 ; xmm7=(02 12 22 32 03 13 23 33) movdqa xmm2,xmm4 ; transpose coefficients(phase 2) punpckldq xmm4,xmm5 ; xmm4=(04 14 24 34 05 15 25 35) punpckhdq xmm2,xmm5 ; xmm2=(06 16 26 36 07 17 27 37) movdqa xmm1,xmm0 ; transpose coefficients(phase 3) punpcklqdq xmm0,xmm6 ; xmm0=(00 10 20 30 40 50 60 70)=data0 punpckhqdq xmm1,xmm6 ; xmm1=(01 11 21 31 41 51 61 71)=data1 movdqa xmm5,xmm2 ; transpose coefficients(phase 3) punpcklqdq xmm2,xmm3 ; xmm2=(06 16 26 36 46 56 66 76)=data6 punpckhqdq xmm5,xmm3 ; xmm5=(07 17 27 37 47 57 67 77)=data7 movdqa xmm6,xmm1 movdqa xmm3,xmm0 psubw xmm1,xmm2 ; xmm1=data1-data6=tmp6 psubw xmm0,xmm5 ; xmm0=data0-data7=tmp7 paddw xmm6,xmm2 ; xmm6=data1+data6=tmp1 paddw xmm3,xmm5 ; xmm3=data0+data7=tmp0 movdqa xmm2, XMMWORD [wk(2)] ; xmm2=(42 52 62 72 43 53 63 73) movdqa xmm5, XMMWORD [wk(3)] ; xmm5=(44 54 64 74 45 55 65 75) movdqa XMMWORD [wk(0)], xmm1 ; wk(0)=tmp6 movdqa XMMWORD [wk(1)], xmm0 ; wk(1)=tmp7 movdqa xmm1,xmm7 ; transpose coefficients(phase 3) punpcklqdq xmm7,xmm2 ; xmm7=(02 12 22 32 42 52 62 72)=data2 punpckhqdq xmm1,xmm2 ; xmm1=(03 13 23 33 43 53 63 73)=data3 movdqa xmm0,xmm4 ; transpose coefficients(phase 3) punpcklqdq xmm4,xmm5 ; xmm4=(04 14 24 34 44 54 64 74)=data4 punpckhqdq xmm0,xmm5 ; xmm0=(05 15 25 35 45 55 65 75)=data5 movdqa xmm2,xmm1 movdqa xmm5,xmm7 paddw xmm1,xmm4 ; xmm1=data3+data4=tmp3 paddw xmm7,xmm0 ; xmm7=data2+data5=tmp2 psubw xmm2,xmm4 ; xmm2=data3-data4=tmp4 psubw xmm5,xmm0 ; xmm5=data2-data5=tmp5 ; -- Even part movdqa xmm4,xmm3 movdqa xmm0,xmm6 paddw xmm3,xmm1 ; xmm3=tmp10 paddw xmm6,xmm7 ; xmm6=tmp11 psubw xmm4,xmm1 ; xmm4=tmp13 psubw xmm0,xmm7 ; xmm0=tmp12 movdqa xmm1,xmm3 paddw xmm3,xmm6 ; xmm3=tmp10+tmp11 psubw xmm1,xmm6 ; xmm1=tmp10-tmp11 psllw xmm3,PASS1_BITS ; xmm3=data0 psllw xmm1,PASS1_BITS ; xmm1=data4 movdqa XMMWORD [wk(2)], xmm3 ; wk(2)=data0 movdqa XMMWORD [wk(3)], xmm1 ; wk(3)=data4 ; (Original) ; z1 = (tmp12 + tmp13) * 0.541196100; ; data2 = z1 + tmp13 * 0.765366865; ; data6 = z1 + tmp12 * -1.847759065; ; ; (This implementation) ; data2 = tmp13 * (0.541196100 + 0.765366865) + tmp12 * 0.541196100; ; data6 = tmp13 * 0.541196100 + tmp12 * (0.541196100 - 1.847759065); movdqa xmm7,xmm4 ; xmm4=tmp13 movdqa xmm6,xmm4 punpcklwd xmm7,xmm0 ; xmm0=tmp12 punpckhwd xmm6,xmm0 movdqa xmm4,xmm7 movdqa xmm0,xmm6 pmaddwd xmm7,[rel PW_F130_F054] ; xmm7=data2L pmaddwd xmm6,[rel PW_F130_F054] ; xmm6=data2H pmaddwd xmm4,[rel PW_F054_MF130] ; xmm4=data6L pmaddwd xmm0,[rel PW_F054_MF130] ; xmm0=data6H paddd xmm7,[rel PD_DESCALE_P1] paddd xmm6,[rel PD_DESCALE_P1] psrad xmm7,DESCALE_P1 psrad xmm6,DESCALE_P1 paddd xmm4,[rel PD_DESCALE_P1] paddd xmm0,[rel PD_DESCALE_P1] psrad xmm4,DESCALE_P1 psrad xmm0,DESCALE_P1 packssdw xmm7,xmm6 ; xmm7=data2 packssdw xmm4,xmm0 ; xmm4=data6 movdqa XMMWORD [wk(4)], xmm7 ; wk(4)=data2 movdqa XMMWORD [wk(5)], xmm4 ; wk(5)=data6 ; -- Odd part movdqa xmm3, XMMWORD [wk(0)] ; xmm3=tmp6 movdqa xmm1, XMMWORD [wk(1)] ; xmm1=tmp7 movdqa xmm6,xmm2 ; xmm2=tmp4 movdqa xmm0,xmm5 ; xmm5=tmp5 paddw xmm6,xmm3 ; xmm6=z3 paddw xmm0,xmm1 ; xmm0=z4 ; (Original) ; z5 = (z3 + z4) * 1.175875602; ; z3 = z3 * -1.961570560; z4 = z4 * -0.390180644; ; z3 += z5; z4 += z5; ; ; (This implementation) ; z3 = z3 * (1.175875602 - 1.961570560) + z4 * 1.175875602; ; z4 = z3 * 1.175875602 + z4 * (1.175875602 - 0.390180644); movdqa xmm7,xmm6 movdqa xmm4,xmm6 punpcklwd xmm7,xmm0 punpckhwd xmm4,xmm0 movdqa xmm6,xmm7 movdqa xmm0,xmm4 pmaddwd xmm7,[rel PW_MF078_F117] ; xmm7=z3L pmaddwd xmm4,[rel PW_MF078_F117] ; xmm4=z3H pmaddwd xmm6,[rel PW_F117_F078] ; xmm6=z4L pmaddwd xmm0,[rel PW_F117_F078] ; xmm0=z4H movdqa XMMWORD [wk(0)], xmm7 ; wk(0)=z3L movdqa XMMWORD [wk(1)], xmm4 ; wk(1)=z3H ; (Original) ; z1 = tmp4 + tmp7; z2 = tmp5 + tmp6; ; tmp4 = tmp4 * 0.298631336; tmp5 = tmp5 * 2.053119869; ; tmp6 = tmp6 * 3.072711026; tmp7 = tmp7 * 1.501321110; ; z1 = z1 * -0.899976223; z2 = z2 * -2.562915447; ; data7 = tmp4 + z1 + z3; data5 = tmp5 + z2 + z4; ; data3 = tmp6 + z2 + z3; data1 = tmp7 + z1 + z4; ; ; (This implementation) ; tmp4 = tmp4 * (0.298631336 - 0.899976223) + tmp7 * -0.899976223; ; tmp5 = tmp5 * (2.053119869 - 2.562915447) + tmp6 * -2.562915447; ; tmp6 = tmp5 * -2.562915447 + tmp6 * (3.072711026 - 2.562915447); ; tmp7 = tmp4 * -0.899976223 + tmp7 * (1.501321110 - 0.899976223); ; data7 = tmp4 + z3; data5 = tmp5 + z4; ; data3 = tmp6 + z3; data1 = tmp7 + z4; movdqa xmm7,xmm2 movdqa xmm4,xmm2 punpcklwd xmm7,xmm1 punpckhwd xmm4,xmm1 movdqa xmm2,xmm7 movdqa xmm1,xmm4 pmaddwd xmm7,[rel PW_MF060_MF089] ; xmm7=tmp4L pmaddwd xmm4,[rel PW_MF060_MF089] ; xmm4=tmp4H pmaddwd xmm2,[rel PW_MF089_F060] ; xmm2=tmp7L pmaddwd xmm1,[rel PW_MF089_F060] ; xmm1=tmp7H paddd xmm7, XMMWORD [wk(0)] ; xmm7=data7L paddd xmm4, XMMWORD [wk(1)] ; xmm4=data7H paddd xmm2,xmm6 ; xmm2=data1L paddd xmm1,xmm0 ; xmm1=data1H paddd xmm7,[rel PD_DESCALE_P1] paddd xmm4,[rel PD_DESCALE_P1] psrad xmm7,DESCALE_P1 psrad xmm4,DESCALE_P1 paddd xmm2,[rel PD_DESCALE_P1] paddd xmm1,[rel PD_DESCALE_P1] psrad xmm2,DESCALE_P1 psrad xmm1,DESCALE_P1 packssdw xmm7,xmm4 ; xmm7=data7 packssdw xmm2,xmm1 ; xmm2=data1 movdqa xmm4,xmm5 movdqa xmm1,xmm5 punpcklwd xmm4,xmm3 punpckhwd xmm1,xmm3 movdqa xmm5,xmm4 movdqa xmm3,xmm1 pmaddwd xmm4,[rel PW_MF050_MF256] ; xmm4=tmp5L pmaddwd xmm1,[rel PW_MF050_MF256] ; xmm1=tmp5H pmaddwd xmm5,[rel PW_MF256_F050] ; xmm5=tmp6L pmaddwd xmm3,[rel PW_MF256_F050] ; xmm3=tmp6H paddd xmm4,xmm6 ; xmm4=data5L paddd xmm1,xmm0 ; xmm1=data5H paddd xmm5, XMMWORD [wk(0)] ; xmm5=data3L paddd xmm3, XMMWORD [wk(1)] ; xmm3=data3H paddd xmm4,[rel PD_DESCALE_P1] paddd xmm1,[rel PD_DESCALE_P1] psrad xmm4,DESCALE_P1 psrad xmm1,DESCALE_P1 paddd xmm5,[rel PD_DESCALE_P1] paddd xmm3,[rel PD_DESCALE_P1] psrad xmm5,DESCALE_P1 psrad xmm3,DESCALE_P1 packssdw xmm4,xmm1 ; xmm4=data5 packssdw xmm5,xmm3 ; xmm5=data3 ; ---- Pass 2: process columns. movdqa xmm6, XMMWORD [wk(2)] ; xmm6=col0 movdqa xmm0, XMMWORD [wk(4)] ; xmm0=col2 ; xmm6=(00 10 20 30 40 50 60 70), xmm0=(02 12 22 32 42 52 62 72) ; xmm2=(01 11 21 31 41 51 61 71), xmm5=(03 13 23 33 43 53 63 73) movdqa xmm1,xmm6 ; transpose coefficients(phase 1) punpcklwd xmm6,xmm2 ; xmm6=(00 01 10 11 20 21 30 31) punpckhwd xmm1,xmm2 ; xmm1=(40 41 50 51 60 61 70 71) movdqa xmm3,xmm0 ; transpose coefficients(phase 1) punpcklwd xmm0,xmm5 ; xmm0=(02 03 12 13 22 23 32 33) punpckhwd xmm3,xmm5 ; xmm3=(42 43 52 53 62 63 72 73) movdqa xmm2, XMMWORD [wk(3)] ; xmm2=col4 movdqa xmm5, XMMWORD [wk(5)] ; xmm5=col6 ; xmm2=(04 14 24 34 44 54 64 74), xmm5=(06 16 26 36 46 56 66 76) ; xmm4=(05 15 25 35 45 55 65 75), xmm7=(07 17 27 37 47 57 67 77) movdqa XMMWORD [wk(0)], xmm0 ; wk(0)=(02 03 12 13 22 23 32 33) movdqa XMMWORD [wk(1)], xmm3 ; wk(1)=(42 43 52 53 62 63 72 73) movdqa xmm0,xmm2 ; transpose coefficients(phase 1) punpcklwd xmm2,xmm4 ; xmm2=(04 05 14 15 24 25 34 35) punpckhwd xmm0,xmm4 ; xmm0=(44 45 54 55 64 65 74 75) movdqa xmm3,xmm5 ; transpose coefficients(phase 1) punpcklwd xmm5,xmm7 ; xmm5=(06 07 16 17 26 27 36 37) punpckhwd xmm3,xmm7 ; xmm3=(46 47 56 57 66 67 76 77) movdqa xmm4,xmm2 ; transpose coefficients(phase 2) punpckldq xmm2,xmm5 ; xmm2=(04 05 06 07 14 15 16 17) punpckhdq xmm4,xmm5 ; xmm4=(24 25 26 27 34 35 36 37) movdqa xmm7,xmm0 ; transpose coefficients(phase 2) punpckldq xmm0,xmm3 ; xmm0=(44 45 46 47 54 55 56 57) punpckhdq xmm7,xmm3 ; xmm7=(64 65 66 67 74 75 76 77) movdqa xmm5, XMMWORD [wk(0)] ; xmm5=(02 03 12 13 22 23 32 33) movdqa xmm3, XMMWORD [wk(1)] ; xmm3=(42 43 52 53 62 63 72 73) movdqa XMMWORD [wk(2)], xmm4 ; wk(2)=(24 25 26 27 34 35 36 37) movdqa XMMWORD [wk(3)], xmm0 ; wk(3)=(44 45 46 47 54 55 56 57) movdqa xmm4,xmm6 ; transpose coefficients(phase 2) punpckldq xmm6,xmm5 ; xmm6=(00 01 02 03 10 11 12 13) punpckhdq xmm4,xmm5 ; xmm4=(20 21 22 23 30 31 32 33) movdqa xmm0,xmm1 ; transpose coefficients(phase 2) punpckldq xmm1,xmm3 ; xmm1=(40 41 42 43 50 51 52 53) punpckhdq xmm0,xmm3 ; xmm0=(60 61 62 63 70 71 72 73) movdqa xmm5,xmm6 ; transpose coefficients(phase 3) punpcklqdq xmm6,xmm2 ; xmm6=(00 01 02 03 04 05 06 07)=data0 punpckhqdq xmm5,xmm2 ; xmm5=(10 11 12 13 14 15 16 17)=data1 movdqa xmm3,xmm0 ; transpose coefficients(phase 3) punpcklqdq xmm0,xmm7 ; xmm0=(60 61 62 63 64 65 66 67)=data6 punpckhqdq xmm3,xmm7 ; xmm3=(70 71 72 73 74 75 76 77)=data7 movdqa xmm2,xmm5 movdqa xmm7,xmm6 psubw xmm5,xmm0 ; xmm5=data1-data6=tmp6 psubw xmm6,xmm3 ; xmm6=data0-data7=tmp7 paddw xmm2,xmm0 ; xmm2=data1+data6=tmp1 paddw xmm7,xmm3 ; xmm7=data0+data7=tmp0 movdqa xmm0, XMMWORD [wk(2)] ; xmm0=(24 25 26 27 34 35 36 37) movdqa xmm3, XMMWORD [wk(3)] ; xmm3=(44 45 46 47 54 55 56 57) movdqa XMMWORD [wk(0)], xmm5 ; wk(0)=tmp6 movdqa XMMWORD [wk(1)], xmm6 ; wk(1)=tmp7 movdqa xmm5,xmm4 ; transpose coefficients(phase 3) punpcklqdq xmm4,xmm0 ; xmm4=(20 21 22 23 24 25 26 27)=data2 punpckhqdq xmm5,xmm0 ; xmm5=(30 31 32 33 34 35 36 37)=data3 movdqa xmm6,xmm1 ; transpose coefficients(phase 3) punpcklqdq xmm1,xmm3 ; xmm1=(40 41 42 43 44 45 46 47)=data4 punpckhqdq xmm6,xmm3 ; xmm6=(50 51 52 53 54 55 56 57)=data5 movdqa xmm0,xmm5 movdqa xmm3,xmm4 paddw xmm5,xmm1 ; xmm5=data3+data4=tmp3 paddw xmm4,xmm6 ; xmm4=data2+data5=tmp2 psubw xmm0,xmm1 ; xmm0=data3-data4=tmp4 psubw xmm3,xmm6 ; xmm3=data2-data5=tmp5 ; -- Even part movdqa xmm1,xmm7 movdqa xmm6,xmm2 paddw xmm7,xmm5 ; xmm7=tmp10 paddw xmm2,xmm4 ; xmm2=tmp11 psubw xmm1,xmm5 ; xmm1=tmp13 psubw xmm6,xmm4 ; xmm6=tmp12 movdqa xmm5,xmm7 paddw xmm7,xmm2 ; xmm7=tmp10+tmp11 psubw xmm5,xmm2 ; xmm5=tmp10-tmp11 paddw xmm7,[rel PW_DESCALE_P2X] paddw xmm5,[rel PW_DESCALE_P2X] psraw xmm7,PASS1_BITS ; xmm7=data0 psraw xmm5,PASS1_BITS ; xmm5=data4 movdqa XMMWORD [XMMBLOCK(0,0,rdx,SIZEOF_DCTELEM)], xmm7 movdqa XMMWORD [XMMBLOCK(4,0,rdx,SIZEOF_DCTELEM)], xmm5 ; (Original) ; z1 = (tmp12 + tmp13) * 0.541196100; ; data2 = z1 + tmp13 * 0.765366865; ; data6 = z1 + tmp12 * -1.847759065; ; ; (This implementation) ; data2 = tmp13 * (0.541196100 + 0.765366865) + tmp12 * 0.541196100; ; data6 = tmp13 * 0.541196100 + tmp12 * (0.541196100 - 1.847759065); movdqa xmm4,xmm1 ; xmm1=tmp13 movdqa xmm2,xmm1 punpcklwd xmm4,xmm6 ; xmm6=tmp12 punpckhwd xmm2,xmm6 movdqa xmm1,xmm4 movdqa xmm6,xmm2 pmaddwd xmm4,[rel PW_F130_F054] ; xmm4=data2L pmaddwd xmm2,[rel PW_F130_F054] ; xmm2=data2H pmaddwd xmm1,[rel PW_F054_MF130] ; xmm1=data6L pmaddwd xmm6,[rel PW_F054_MF130] ; xmm6=data6H paddd xmm4,[rel PD_DESCALE_P2] paddd xmm2,[rel PD_DESCALE_P2] psrad xmm4,DESCALE_P2 psrad xmm2,DESCALE_P2 paddd xmm1,[rel PD_DESCALE_P2] paddd xmm6,[rel PD_DESCALE_P2] psrad xmm1,DESCALE_P2 psrad xmm6,DESCALE_P2 packssdw xmm4,xmm2 ; xmm4=data2 packssdw xmm1,xmm6 ; xmm1=data6 movdqa XMMWORD [XMMBLOCK(2,0,rdx,SIZEOF_DCTELEM)], xmm4 movdqa XMMWORD [XMMBLOCK(6,0,rdx,SIZEOF_DCTELEM)], xmm1 ; -- Odd part movdqa xmm7, XMMWORD [wk(0)] ; xmm7=tmp6 movdqa xmm5, XMMWORD [wk(1)] ; xmm5=tmp7 movdqa xmm2,xmm0 ; xmm0=tmp4 movdqa xmm6,xmm3 ; xmm3=tmp5 paddw xmm2,xmm7 ; xmm2=z3 paddw xmm6,xmm5 ; xmm6=z4 ; (Original) ; z5 = (z3 + z4) * 1.175875602; ; z3 = z3 * -1.961570560; z4 = z4 * -0.390180644; ; z3 += z5; z4 += z5; ; ; (This implementation) ; z3 = z3 * (1.175875602 - 1.961570560) + z4 * 1.175875602; ; z4 = z3 * 1.175875602 + z4 * (1.175875602 - 0.390180644); movdqa xmm4,xmm2 movdqa xmm1,xmm2 punpcklwd xmm4,xmm6 punpckhwd xmm1,xmm6 movdqa xmm2,xmm4 movdqa xmm6,xmm1 pmaddwd xmm4,[rel PW_MF078_F117] ; xmm4=z3L pmaddwd xmm1,[rel PW_MF078_F117] ; xmm1=z3H pmaddwd xmm2,[rel PW_F117_F078] ; xmm2=z4L pmaddwd xmm6,[rel PW_F117_F078] ; xmm6=z4H movdqa XMMWORD [wk(0)], xmm4 ; wk(0)=z3L movdqa XMMWORD [wk(1)], xmm1 ; wk(1)=z3H ; (Original) ; z1 = tmp4 + tmp7; z2 = tmp5 + tmp6; ; tmp4 = tmp4 * 0.298631336; tmp5 = tmp5 * 2.053119869; ; tmp6 = tmp6 * 3.072711026; tmp7 = tmp7 * 1.501321110; ; z1 = z1 * -0.899976223; z2 = z2 * -2.562915447; ; data7 = tmp4 + z1 + z3; data5 = tmp5 + z2 + z4; ; data3 = tmp6 + z2 + z3; data1 = tmp7 + z1 + z4; ; ; (This implementation) ; tmp4 = tmp4 * (0.298631336 - 0.899976223) + tmp7 * -0.899976223; ; tmp5 = tmp5 * (2.053119869 - 2.562915447) + tmp6 * -2.562915447; ; tmp6 = tmp5 * -2.562915447 + tmp6 * (3.072711026 - 2.562915447); ; tmp7 = tmp4 * -0.899976223 + tmp7 * (1.501321110 - 0.899976223); ; data7 = tmp4 + z3; data5 = tmp5 + z4; ; data3 = tmp6 + z3; data1 = tmp7 + z4; movdqa xmm4,xmm0 movdqa xmm1,xmm0 punpcklwd xmm4,xmm5 punpckhwd xmm1,xmm5 movdqa xmm0,xmm4 movdqa xmm5,xmm1 pmaddwd xmm4,[rel PW_MF060_MF089] ; xmm4=tmp4L pmaddwd xmm1,[rel PW_MF060_MF089] ; xmm1=tmp4H pmaddwd xmm0,[rel PW_MF089_F060] ; xmm0=tmp7L pmaddwd xmm5,[rel PW_MF089_F060] ; xmm5=tmp7H paddd xmm4, XMMWORD [wk(0)] ; xmm4=data7L paddd xmm1, XMMWORD [wk(1)] ; xmm1=data7H paddd xmm0,xmm2 ; xmm0=data1L paddd xmm5,xmm6 ; xmm5=data1H paddd xmm4,[rel PD_DESCALE_P2] paddd xmm1,[rel PD_DESCALE_P2] psrad xmm4,DESCALE_P2 psrad xmm1,DESCALE_P2 paddd xmm0,[rel PD_DESCALE_P2] paddd xmm5,[rel PD_DESCALE_P2] psrad xmm0,DESCALE_P2 psrad xmm5,DESCALE_P2 packssdw xmm4,xmm1 ; xmm4=data7 packssdw xmm0,xmm5 ; xmm0=data1 movdqa XMMWORD [XMMBLOCK(7,0,rdx,SIZEOF_DCTELEM)], xmm4 movdqa XMMWORD [XMMBLOCK(1,0,rdx,SIZEOF_DCTELEM)], xmm0 movdqa xmm1,xmm3 movdqa xmm5,xmm3 punpcklwd xmm1,xmm7 punpckhwd xmm5,xmm7 movdqa xmm3,xmm1 movdqa xmm7,xmm5 pmaddwd xmm1,[rel PW_MF050_MF256] ; xmm1=tmp5L pmaddwd xmm5,[rel PW_MF050_MF256] ; xmm5=tmp5H pmaddwd xmm3,[rel PW_MF256_F050] ; xmm3=tmp6L pmaddwd xmm7,[rel PW_MF256_F050] ; xmm7=tmp6H paddd xmm1,xmm2 ; xmm1=data5L paddd xmm5,xmm6 ; xmm5=data5H paddd xmm3, XMMWORD [wk(0)] ; xmm3=data3L paddd xmm7, XMMWORD [wk(1)] ; xmm7=data3H paddd xmm1,[rel PD_DESCALE_P2] paddd xmm5,[rel PD_DESCALE_P2] psrad xmm1,DESCALE_P2 psrad xmm5,DESCALE_P2 paddd xmm3,[rel PD_DESCALE_P2] paddd xmm7,[rel PD_DESCALE_P2] psrad xmm3,DESCALE_P2 psrad xmm7,DESCALE_P2 packssdw xmm1,xmm5 ; xmm1=data5 packssdw xmm3,xmm7 ; xmm3=data3 movdqa XMMWORD [XMMBLOCK(5,0,rdx,SIZEOF_DCTELEM)], xmm1 movdqa XMMWORD [XMMBLOCK(3,0,rdx,SIZEOF_DCTELEM)], xmm3 uncollect_args mov rsp,rbp ; rsp <- aligned rbp pop rsp ; rsp <- original rbp pop rbp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 16 libjpeg-turbo-1.4.2/simd/jccolor-mmx.asm0000644000076500007650000000722612600050400015100 00000000000000; ; jccolor.asm - colorspace conversion (MMX) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; Copyright 2009 D. R. Commander ; ; Based on ; x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; [TAB8] %include "jsimdext.inc" ; -------------------------------------------------------------------------- %define SCALEBITS 16 F_0_081 equ 5329 ; FIX(0.08131) F_0_114 equ 7471 ; FIX(0.11400) F_0_168 equ 11059 ; FIX(0.16874) F_0_250 equ 16384 ; FIX(0.25000) F_0_299 equ 19595 ; FIX(0.29900) F_0_331 equ 21709 ; FIX(0.33126) F_0_418 equ 27439 ; FIX(0.41869) F_0_587 equ 38470 ; FIX(0.58700) F_0_337 equ (F_0_587 - F_0_250) ; FIX(0.58700) - FIX(0.25000) ; -------------------------------------------------------------------------- SECTION SEG_CONST alignz 16 global EXTN(jconst_rgb_ycc_convert_mmx) EXTN(jconst_rgb_ycc_convert_mmx): PW_F0299_F0337 times 2 dw F_0_299, F_0_337 PW_F0114_F0250 times 2 dw F_0_114, F_0_250 PW_MF016_MF033 times 2 dw -F_0_168,-F_0_331 PW_MF008_MF041 times 2 dw -F_0_081,-F_0_418 PD_ONEHALFM1_CJ times 2 dd (1 << (SCALEBITS-1)) - 1 + (CENTERJSAMPLE << SCALEBITS) PD_ONEHALF times 2 dd (1 << (SCALEBITS-1)) alignz 16 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 32 %include "jccolext-mmx.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_RGB_RED %define RGB_GREEN EXT_RGB_GREEN %define RGB_BLUE EXT_RGB_BLUE %define RGB_PIXELSIZE EXT_RGB_PIXELSIZE %define jsimd_rgb_ycc_convert_mmx jsimd_extrgb_ycc_convert_mmx %include "jccolext-mmx.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_RGBX_RED %define RGB_GREEN EXT_RGBX_GREEN %define RGB_BLUE EXT_RGBX_BLUE %define RGB_PIXELSIZE EXT_RGBX_PIXELSIZE %define jsimd_rgb_ycc_convert_mmx jsimd_extrgbx_ycc_convert_mmx %include "jccolext-mmx.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_BGR_RED %define RGB_GREEN EXT_BGR_GREEN %define RGB_BLUE EXT_BGR_BLUE %define RGB_PIXELSIZE EXT_BGR_PIXELSIZE %define jsimd_rgb_ycc_convert_mmx jsimd_extbgr_ycc_convert_mmx %include "jccolext-mmx.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_BGRX_RED %define RGB_GREEN EXT_BGRX_GREEN %define RGB_BLUE EXT_BGRX_BLUE %define RGB_PIXELSIZE EXT_BGRX_PIXELSIZE %define jsimd_rgb_ycc_convert_mmx jsimd_extbgrx_ycc_convert_mmx %include "jccolext-mmx.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_XBGR_RED %define RGB_GREEN EXT_XBGR_GREEN %define RGB_BLUE EXT_XBGR_BLUE %define RGB_PIXELSIZE EXT_XBGR_PIXELSIZE %define jsimd_rgb_ycc_convert_mmx jsimd_extxbgr_ycc_convert_mmx %include "jccolext-mmx.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_XRGB_RED %define RGB_GREEN EXT_XRGB_GREEN %define RGB_BLUE EXT_XRGB_BLUE %define RGB_PIXELSIZE EXT_XRGB_PIXELSIZE %define jsimd_rgb_ycc_convert_mmx jsimd_extxrgb_ycc_convert_mmx %include "jccolext-mmx.asm" libjpeg-turbo-1.4.2/simd/jccolor-sse2-64.asm0000644000076500007650000000720112600050400015373 00000000000000; ; jccolor.asm - colorspace conversion (64-bit SSE2) ; ; x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; Copyright (C) 2009, D. R. Commander. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; [TAB8] %include "jsimdext.inc" ; -------------------------------------------------------------------------- %define SCALEBITS 16 F_0_081 equ 5329 ; FIX(0.08131) F_0_114 equ 7471 ; FIX(0.11400) F_0_168 equ 11059 ; FIX(0.16874) F_0_250 equ 16384 ; FIX(0.25000) F_0_299 equ 19595 ; FIX(0.29900) F_0_331 equ 21709 ; FIX(0.33126) F_0_418 equ 27439 ; FIX(0.41869) F_0_587 equ 38470 ; FIX(0.58700) F_0_337 equ (F_0_587 - F_0_250) ; FIX(0.58700) - FIX(0.25000) ; -------------------------------------------------------------------------- SECTION SEG_CONST alignz 16 global EXTN(jconst_rgb_ycc_convert_sse2) EXTN(jconst_rgb_ycc_convert_sse2): PW_F0299_F0337 times 4 dw F_0_299, F_0_337 PW_F0114_F0250 times 4 dw F_0_114, F_0_250 PW_MF016_MF033 times 4 dw -F_0_168,-F_0_331 PW_MF008_MF041 times 4 dw -F_0_081,-F_0_418 PD_ONEHALFM1_CJ times 4 dd (1 << (SCALEBITS-1)) - 1 + (CENTERJSAMPLE << SCALEBITS) PD_ONEHALF times 4 dd (1 << (SCALEBITS-1)) alignz 16 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 64 %include "jccolext-sse2-64.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_RGB_RED %define RGB_GREEN EXT_RGB_GREEN %define RGB_BLUE EXT_RGB_BLUE %define RGB_PIXELSIZE EXT_RGB_PIXELSIZE %define jsimd_rgb_ycc_convert_sse2 jsimd_extrgb_ycc_convert_sse2 %include "jccolext-sse2-64.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_RGBX_RED %define RGB_GREEN EXT_RGBX_GREEN %define RGB_BLUE EXT_RGBX_BLUE %define RGB_PIXELSIZE EXT_RGBX_PIXELSIZE %define jsimd_rgb_ycc_convert_sse2 jsimd_extrgbx_ycc_convert_sse2 %include "jccolext-sse2-64.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_BGR_RED %define RGB_GREEN EXT_BGR_GREEN %define RGB_BLUE EXT_BGR_BLUE %define RGB_PIXELSIZE EXT_BGR_PIXELSIZE %define jsimd_rgb_ycc_convert_sse2 jsimd_extbgr_ycc_convert_sse2 %include "jccolext-sse2-64.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_BGRX_RED %define RGB_GREEN EXT_BGRX_GREEN %define RGB_BLUE EXT_BGRX_BLUE %define RGB_PIXELSIZE EXT_BGRX_PIXELSIZE %define jsimd_rgb_ycc_convert_sse2 jsimd_extbgrx_ycc_convert_sse2 %include "jccolext-sse2-64.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_XBGR_RED %define RGB_GREEN EXT_XBGR_GREEN %define RGB_BLUE EXT_XBGR_BLUE %define RGB_PIXELSIZE EXT_XBGR_PIXELSIZE %define jsimd_rgb_ycc_convert_sse2 jsimd_extxbgr_ycc_convert_sse2 %include "jccolext-sse2-64.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_XRGB_RED %define RGB_GREEN EXT_XRGB_GREEN %define RGB_BLUE EXT_XRGB_BLUE %define RGB_PIXELSIZE EXT_XRGB_PIXELSIZE %define jsimd_rgb_ycc_convert_sse2 jsimd_extxrgb_ycc_convert_sse2 %include "jccolext-sse2-64.asm" libjpeg-turbo-1.4.2/simd/Makefile.in0000644000076500007650000007144712600050415014225 00000000000000# Makefile.in generated by automake 1.15 from Makefile.am. # @configure_input@ # Copyright (C) 1994-2014 Free Software Foundation, Inc. # This Makefile.in is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY, to the extent permitted by law; without # even the implied warranty of MERCHANTABILITY or FITNESS FOR A # PARTICULAR PURPOSE. @SET_MAKE@ VPATH = @srcdir@ am__is_gnu_make = { \ if test -z '$(MAKELEVEL)'; then \ false; \ elif test -n '$(MAKE_HOST)'; then \ true; \ elif test -n '$(MAKE_VERSION)' && test -n '$(CURDIR)'; then \ true; \ else \ false; \ fi; \ } am__make_running_with_option = \ case $${target_option-} in \ ?) ;; \ *) echo "am__make_running_with_option: internal error: invalid" \ "target option '$${target_option-}' specified" >&2; \ exit 1;; \ esac; \ has_opt=no; \ sane_makeflags=$$MAKEFLAGS; \ if $(am__is_gnu_make); then \ sane_makeflags=$$MFLAGS; \ else \ case $$MAKEFLAGS in \ *\\[\ \ ]*) \ bs=\\; \ sane_makeflags=`printf '%s\n' "$$MAKEFLAGS" \ | sed "s/$$bs$$bs[$$bs $$bs ]*//g"`;; \ esac; \ fi; \ skip_next=no; \ strip_trailopt () \ { \ flg=`printf '%s\n' "$$flg" | sed "s/$$1.*$$//"`; \ }; \ for flg in $$sane_makeflags; do \ test $$skip_next = yes && { skip_next=no; continue; }; \ case $$flg in \ *=*|--*) continue;; \ -*I) strip_trailopt 'I'; skip_next=yes;; \ -*I?*) strip_trailopt 'I';; \ -*O) strip_trailopt 'O'; skip_next=yes;; \ -*O?*) strip_trailopt 'O';; \ -*l) strip_trailopt 'l'; skip_next=yes;; \ -*l?*) strip_trailopt 'l';; \ -[dEDm]) skip_next=yes;; \ -[JT]) skip_next=yes;; \ esac; \ case $$flg in \ *$$target_option*) has_opt=yes; break;; \ esac; \ done; \ test $$has_opt = yes am__make_dryrun = (target_option=n; $(am__make_running_with_option)) am__make_keepgoing = (target_option=k; $(am__make_running_with_option)) pkgdatadir = $(datadir)/@PACKAGE@ pkgincludedir = $(includedir)/@PACKAGE@ pkglibdir = $(libdir)/@PACKAGE@ pkglibexecdir = $(libexecdir)/@PACKAGE@ am__cd = CDPATH="$${ZSH_VERSION+.}$(PATH_SEPARATOR)" && cd install_sh_DATA = $(install_sh) -c -m 644 install_sh_PROGRAM = $(install_sh) -c install_sh_SCRIPT = $(install_sh) -c INSTALL_HEADER = $(INSTALL_DATA) transform = $(program_transform_name) NORMAL_INSTALL = : PRE_INSTALL = : POST_INSTALL = : NORMAL_UNINSTALL = : PRE_UNINSTALL = : POST_UNINSTALL = : build_triplet = @build@ host_triplet = @host@ subdir = simd ACLOCAL_M4 = $(top_srcdir)/aclocal.m4 am__aclocal_m4_deps = $(top_srcdir)/acinclude.m4 \ $(top_srcdir)/configure.ac am__configure_deps = $(am__aclocal_m4_deps) $(CONFIGURE_DEPENDENCIES) \ $(ACLOCAL_M4) DIST_COMMON = $(srcdir)/Makefile.am $(am__DIST_COMMON) mkinstalldirs = $(install_sh) -d CONFIG_HEADER = $(top_builddir)/config.h $(top_builddir)/jconfig.h \ $(top_builddir)/jconfigint.h CONFIG_CLEAN_FILES = CONFIG_CLEAN_VPATH_FILES = LTLIBRARIES = $(noinst_LTLIBRARIES) libsimd_la_LIBADD = am__libsimd_la_SOURCES_DIST = jsimd_arm64.c jsimd_arm64_neon.S \ jsimd_arm.c jsimd_arm_neon.S jsimd_i386.c jsimd.h \ jsimdcfg.inc.h jsimdext.inc jcolsamp.inc jdct.inc jsimdcpu.asm \ jfdctflt-3dn.asm jidctflt-3dn.asm jquant-3dn.asm \ jccolor-mmx.asm jcgray-mmx.asm jcsample-mmx.asm \ jdcolor-mmx.asm jdmerge-mmx.asm jdsample-mmx.asm \ jfdctfst-mmx.asm jfdctint-mmx.asm jidctfst-mmx.asm \ jidctint-mmx.asm jidctred-mmx.asm jquant-mmx.asm \ jfdctflt-sse.asm jidctflt-sse.asm jquant-sse.asm \ jccolor-sse2.asm jcgray-sse2.asm jcsample-sse2.asm \ jdcolor-sse2.asm jdmerge-sse2.asm jdsample-sse2.asm \ jfdctfst-sse2.asm jfdctint-sse2.asm jidctflt-sse2.asm \ jidctfst-sse2.asm jidctint-sse2.asm jidctred-sse2.asm \ jquantf-sse2.asm jquanti-sse2.asm jsimd_mips.c \ jsimd_mips_dspr2_asm.h jsimd_mips_dspr2.S jsimd_x86_64.c \ jfdctflt-sse-64.asm jccolor-sse2-64.asm jcgray-sse2-64.asm \ jcsample-sse2-64.asm jdcolor-sse2-64.asm jdmerge-sse2-64.asm \ jdsample-sse2-64.asm jfdctfst-sse2-64.asm jfdctint-sse2-64.asm \ jidctflt-sse2-64.asm jidctfst-sse2-64.asm jidctint-sse2-64.asm \ jidctred-sse2-64.asm jquantf-sse2-64.asm jquanti-sse2-64.asm @SIMD_ARM_64_FALSE@@SIMD_ARM_FALSE@@SIMD_I386_FALSE@@SIMD_MIPS_FALSE@@SIMD_X86_64_TRUE@am_libsimd_la_OBJECTS = jsimd_x86_64.lo \ @SIMD_ARM_64_FALSE@@SIMD_ARM_FALSE@@SIMD_I386_FALSE@@SIMD_MIPS_FALSE@@SIMD_X86_64_TRUE@ jfdctflt-sse-64.lo \ @SIMD_ARM_64_FALSE@@SIMD_ARM_FALSE@@SIMD_I386_FALSE@@SIMD_MIPS_FALSE@@SIMD_X86_64_TRUE@ jccolor-sse2-64.lo \ @SIMD_ARM_64_FALSE@@SIMD_ARM_FALSE@@SIMD_I386_FALSE@@SIMD_MIPS_FALSE@@SIMD_X86_64_TRUE@ jcgray-sse2-64.lo \ @SIMD_ARM_64_FALSE@@SIMD_ARM_FALSE@@SIMD_I386_FALSE@@SIMD_MIPS_FALSE@@SIMD_X86_64_TRUE@ jcsample-sse2-64.lo \ @SIMD_ARM_64_FALSE@@SIMD_ARM_FALSE@@SIMD_I386_FALSE@@SIMD_MIPS_FALSE@@SIMD_X86_64_TRUE@ jdcolor-sse2-64.lo \ @SIMD_ARM_64_FALSE@@SIMD_ARM_FALSE@@SIMD_I386_FALSE@@SIMD_MIPS_FALSE@@SIMD_X86_64_TRUE@ jdmerge-sse2-64.lo \ @SIMD_ARM_64_FALSE@@SIMD_ARM_FALSE@@SIMD_I386_FALSE@@SIMD_MIPS_FALSE@@SIMD_X86_64_TRUE@ jdsample-sse2-64.lo \ @SIMD_ARM_64_FALSE@@SIMD_ARM_FALSE@@SIMD_I386_FALSE@@SIMD_MIPS_FALSE@@SIMD_X86_64_TRUE@ jfdctfst-sse2-64.lo \ @SIMD_ARM_64_FALSE@@SIMD_ARM_FALSE@@SIMD_I386_FALSE@@SIMD_MIPS_FALSE@@SIMD_X86_64_TRUE@ jfdctint-sse2-64.lo \ @SIMD_ARM_64_FALSE@@SIMD_ARM_FALSE@@SIMD_I386_FALSE@@SIMD_MIPS_FALSE@@SIMD_X86_64_TRUE@ jidctflt-sse2-64.lo \ @SIMD_ARM_64_FALSE@@SIMD_ARM_FALSE@@SIMD_I386_FALSE@@SIMD_MIPS_FALSE@@SIMD_X86_64_TRUE@ jidctfst-sse2-64.lo \ @SIMD_ARM_64_FALSE@@SIMD_ARM_FALSE@@SIMD_I386_FALSE@@SIMD_MIPS_FALSE@@SIMD_X86_64_TRUE@ jidctint-sse2-64.lo \ @SIMD_ARM_64_FALSE@@SIMD_ARM_FALSE@@SIMD_I386_FALSE@@SIMD_MIPS_FALSE@@SIMD_X86_64_TRUE@ jidctred-sse2-64.lo \ @SIMD_ARM_64_FALSE@@SIMD_ARM_FALSE@@SIMD_I386_FALSE@@SIMD_MIPS_FALSE@@SIMD_X86_64_TRUE@ jquantf-sse2-64.lo \ @SIMD_ARM_64_FALSE@@SIMD_ARM_FALSE@@SIMD_I386_FALSE@@SIMD_MIPS_FALSE@@SIMD_X86_64_TRUE@ jquanti-sse2-64.lo @SIMD_ARM_64_FALSE@@SIMD_ARM_FALSE@@SIMD_I386_FALSE@@SIMD_MIPS_TRUE@am_libsimd_la_OBJECTS = jsimd_mips.lo \ @SIMD_ARM_64_FALSE@@SIMD_ARM_FALSE@@SIMD_I386_FALSE@@SIMD_MIPS_TRUE@ jsimd_mips_dspr2.lo @SIMD_ARM_64_FALSE@@SIMD_ARM_FALSE@@SIMD_I386_TRUE@am_libsimd_la_OBJECTS = jsimd_i386.lo \ @SIMD_ARM_64_FALSE@@SIMD_ARM_FALSE@@SIMD_I386_TRUE@ jsimdcpu.lo \ @SIMD_ARM_64_FALSE@@SIMD_ARM_FALSE@@SIMD_I386_TRUE@ jfdctflt-3dn.lo \ @SIMD_ARM_64_FALSE@@SIMD_ARM_FALSE@@SIMD_I386_TRUE@ jidctflt-3dn.lo \ @SIMD_ARM_64_FALSE@@SIMD_ARM_FALSE@@SIMD_I386_TRUE@ jquant-3dn.lo \ @SIMD_ARM_64_FALSE@@SIMD_ARM_FALSE@@SIMD_I386_TRUE@ jccolor-mmx.lo \ @SIMD_ARM_64_FALSE@@SIMD_ARM_FALSE@@SIMD_I386_TRUE@ jcgray-mmx.lo \ @SIMD_ARM_64_FALSE@@SIMD_ARM_FALSE@@SIMD_I386_TRUE@ jcsample-mmx.lo \ @SIMD_ARM_64_FALSE@@SIMD_ARM_FALSE@@SIMD_I386_TRUE@ jdcolor-mmx.lo \ @SIMD_ARM_64_FALSE@@SIMD_ARM_FALSE@@SIMD_I386_TRUE@ jdmerge-mmx.lo \ @SIMD_ARM_64_FALSE@@SIMD_ARM_FALSE@@SIMD_I386_TRUE@ jdsample-mmx.lo \ @SIMD_ARM_64_FALSE@@SIMD_ARM_FALSE@@SIMD_I386_TRUE@ jfdctfst-mmx.lo \ @SIMD_ARM_64_FALSE@@SIMD_ARM_FALSE@@SIMD_I386_TRUE@ jfdctint-mmx.lo \ @SIMD_ARM_64_FALSE@@SIMD_ARM_FALSE@@SIMD_I386_TRUE@ jidctfst-mmx.lo \ @SIMD_ARM_64_FALSE@@SIMD_ARM_FALSE@@SIMD_I386_TRUE@ jidctint-mmx.lo \ @SIMD_ARM_64_FALSE@@SIMD_ARM_FALSE@@SIMD_I386_TRUE@ jidctred-mmx.lo \ @SIMD_ARM_64_FALSE@@SIMD_ARM_FALSE@@SIMD_I386_TRUE@ jquant-mmx.lo \ @SIMD_ARM_64_FALSE@@SIMD_ARM_FALSE@@SIMD_I386_TRUE@ jfdctflt-sse.lo \ @SIMD_ARM_64_FALSE@@SIMD_ARM_FALSE@@SIMD_I386_TRUE@ jidctflt-sse.lo \ @SIMD_ARM_64_FALSE@@SIMD_ARM_FALSE@@SIMD_I386_TRUE@ jquant-sse.lo \ @SIMD_ARM_64_FALSE@@SIMD_ARM_FALSE@@SIMD_I386_TRUE@ jccolor-sse2.lo \ @SIMD_ARM_64_FALSE@@SIMD_ARM_FALSE@@SIMD_I386_TRUE@ jcgray-sse2.lo \ @SIMD_ARM_64_FALSE@@SIMD_ARM_FALSE@@SIMD_I386_TRUE@ jcsample-sse2.lo \ @SIMD_ARM_64_FALSE@@SIMD_ARM_FALSE@@SIMD_I386_TRUE@ jdcolor-sse2.lo \ @SIMD_ARM_64_FALSE@@SIMD_ARM_FALSE@@SIMD_I386_TRUE@ jdmerge-sse2.lo \ @SIMD_ARM_64_FALSE@@SIMD_ARM_FALSE@@SIMD_I386_TRUE@ jdsample-sse2.lo \ @SIMD_ARM_64_FALSE@@SIMD_ARM_FALSE@@SIMD_I386_TRUE@ jfdctfst-sse2.lo \ @SIMD_ARM_64_FALSE@@SIMD_ARM_FALSE@@SIMD_I386_TRUE@ jfdctint-sse2.lo \ @SIMD_ARM_64_FALSE@@SIMD_ARM_FALSE@@SIMD_I386_TRUE@ jidctflt-sse2.lo \ @SIMD_ARM_64_FALSE@@SIMD_ARM_FALSE@@SIMD_I386_TRUE@ jidctfst-sse2.lo \ @SIMD_ARM_64_FALSE@@SIMD_ARM_FALSE@@SIMD_I386_TRUE@ jidctint-sse2.lo \ @SIMD_ARM_64_FALSE@@SIMD_ARM_FALSE@@SIMD_I386_TRUE@ jidctred-sse2.lo \ @SIMD_ARM_64_FALSE@@SIMD_ARM_FALSE@@SIMD_I386_TRUE@ jquantf-sse2.lo \ @SIMD_ARM_64_FALSE@@SIMD_ARM_FALSE@@SIMD_I386_TRUE@ jquanti-sse2.lo @SIMD_ARM_64_FALSE@@SIMD_ARM_TRUE@am_libsimd_la_OBJECTS = \ @SIMD_ARM_64_FALSE@@SIMD_ARM_TRUE@ jsimd_arm.lo \ @SIMD_ARM_64_FALSE@@SIMD_ARM_TRUE@ jsimd_arm_neon.lo @SIMD_ARM_64_TRUE@am_libsimd_la_OBJECTS = jsimd_arm64.lo \ @SIMD_ARM_64_TRUE@ jsimd_arm64_neon.lo libsimd_la_OBJECTS = $(am_libsimd_la_OBJECTS) AM_V_lt = $(am__v_lt_@AM_V@) am__v_lt_ = $(am__v_lt_@AM_DEFAULT_V@) am__v_lt_0 = --silent am__v_lt_1 = AM_V_P = $(am__v_P_@AM_V@) am__v_P_ = $(am__v_P_@AM_DEFAULT_V@) am__v_P_0 = false am__v_P_1 = : AM_V_GEN = $(am__v_GEN_@AM_V@) am__v_GEN_ = $(am__v_GEN_@AM_DEFAULT_V@) am__v_GEN_0 = @echo " GEN " $@; am__v_GEN_1 = AM_V_at = $(am__v_at_@AM_V@) am__v_at_ = $(am__v_at_@AM_DEFAULT_V@) am__v_at_0 = @ am__v_at_1 = DEFAULT_INCLUDES = -I.@am__isrc@ -I$(top_builddir) depcomp = $(SHELL) $(top_srcdir)/depcomp am__depfiles_maybe = depfiles am__mv = mv -f CPPASCOMPILE = $(CCAS) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) \ $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CCASFLAGS) $(CCASFLAGS) LTCPPASCOMPILE = $(LIBTOOL) $(AM_V_lt) $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=compile $(CCAS) $(DEFS) \ $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) \ $(AM_CCASFLAGS) $(CCASFLAGS) AM_V_CPPAS = $(am__v_CPPAS_@AM_V@) am__v_CPPAS_ = $(am__v_CPPAS_@AM_DEFAULT_V@) am__v_CPPAS_0 = @echo " CPPAS " $@; am__v_CPPAS_1 = COMPILE = $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) \ $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) LTCOMPILE = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) \ $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) \ $(AM_CFLAGS) $(CFLAGS) AM_V_CC = $(am__v_CC_@AM_V@) am__v_CC_ = $(am__v_CC_@AM_DEFAULT_V@) am__v_CC_0 = @echo " CC " $@; am__v_CC_1 = CCLD = $(CC) LINK = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=link $(CCLD) $(AM_CFLAGS) $(CFLAGS) \ $(AM_LDFLAGS) $(LDFLAGS) -o $@ AM_V_CCLD = $(am__v_CCLD_@AM_V@) am__v_CCLD_ = $(am__v_CCLD_@AM_DEFAULT_V@) am__v_CCLD_0 = @echo " CCLD " $@; am__v_CCLD_1 = SOURCES = $(libsimd_la_SOURCES) DIST_SOURCES = $(am__libsimd_la_SOURCES_DIST) am__can_run_installinfo = \ case $$AM_UPDATE_INFO_DIR in \ n|no|NO) false;; \ *) (install-info --version) >/dev/null 2>&1;; \ esac am__tagged_files = $(HEADERS) $(SOURCES) $(TAGS_FILES) $(LISP) # Read a list of newline-separated strings from the standard input, # and print each of them once, without duplicates. Input order is # *not* preserved. am__uniquify_input = $(AWK) '\ BEGIN { nonempty = 0; } \ { items[$$0] = 1; nonempty = 1; } \ END { if (nonempty) { for (i in items) print i; }; } \ ' # Make sure the list of sources is unique. This is necessary because, # e.g., the same source file might be shared among _SOURCES variables # for different programs/libraries. am__define_uniq_tagged_files = \ list='$(am__tagged_files)'; \ unique=`for i in $$list; do \ if test -f "$$i"; then echo $$i; else echo $(srcdir)/$$i; fi; \ done | $(am__uniquify_input)` ETAGS = etags CTAGS = ctags am__DIST_COMMON = $(srcdir)/Makefile.in $(top_srcdir)/depcomp DISTFILES = $(DIST_COMMON) $(DIST_SOURCES) $(TEXINFOS) $(EXTRA_DIST) ACLOCAL = @ACLOCAL@ AMTAR = @AMTAR@ AM_DEFAULT_VERBOSITY = @AM_DEFAULT_VERBOSITY@ AR = @AR@ AUTOCONF = @AUTOCONF@ AUTOHEADER = @AUTOHEADER@ AUTOMAKE = @AUTOMAKE@ AWK = @AWK@ BUILD = @BUILD@ CC = @CC@ CCAS = @CCAS@ CCASDEPMODE = @CCASDEPMODE@ CCASFLAGS = @CCASFLAGS@ CCDEPMODE = @CCDEPMODE@ CFLAGS = @CFLAGS@ CPP = @CPP@ CPPFLAGS = @CPPFLAGS@ CYGPATH_W = @CYGPATH_W@ DEBARCH = @DEBARCH@ DEFS = @DEFS@ DEPDIR = @DEPDIR@ DLLTOOL = @DLLTOOL@ DSYMUTIL = @DSYMUTIL@ DUMPBIN = @DUMPBIN@ ECHO_C = @ECHO_C@ ECHO_N = @ECHO_N@ ECHO_T = @ECHO_T@ EGREP = @EGREP@ EXEEXT = @EXEEXT@ FGREP = @FGREP@ GREP = @GREP@ INSTALL = @INSTALL@ INSTALL_DATA = @INSTALL_DATA@ INSTALL_PROGRAM = @INSTALL_PROGRAM@ INSTALL_SCRIPT = @INSTALL_SCRIPT@ INSTALL_STRIP_PROGRAM = @INSTALL_STRIP_PROGRAM@ JAR = @JAR@ JAVA = @JAVA@ JAVAC = @JAVAC@ JAVACFLAGS = @JAVACFLAGS@ JAVA_RPM_CONTENTS_1 = @JAVA_RPM_CONTENTS_1@ JAVA_RPM_CONTENTS_2 = @JAVA_RPM_CONTENTS_2@ JNI_CFLAGS = @JNI_CFLAGS@ JPEG_LIB_VERSION = @JPEG_LIB_VERSION@ JPEG_LIB_VERSION_DECIMAL = @JPEG_LIB_VERSION_DECIMAL@ LD = @LD@ LDFLAGS = @LDFLAGS@ LIBOBJS = @LIBOBJS@ LIBS = @LIBS@ LIBTOOL = @LIBTOOL@ LIBTOOL_CURRENT = @LIBTOOL_CURRENT@ LIPO = @LIPO@ LN_S = @LN_S@ LTLIBOBJS = @LTLIBOBJS@ LT_SYS_LIBRARY_PATH = @LT_SYS_LIBRARY_PATH@ MAKEINFO = @MAKEINFO@ MANIFEST_TOOL = @MANIFEST_TOOL@ MEM_SRCDST_FUNCTIONS = @MEM_SRCDST_FUNCTIONS@ MKDIR_P = @MKDIR_P@ NAFLAGS = @NAFLAGS@ NASM = @NASM@ NM = @NM@ NMEDIT = @NMEDIT@ OBJDUMP = @OBJDUMP@ OBJEXT = @OBJEXT@ OTOOL = @OTOOL@ OTOOL64 = @OTOOL64@ PACKAGE = @PACKAGE@ PACKAGE_BUGREPORT = @PACKAGE_BUGREPORT@ PACKAGE_NAME = @PACKAGE_NAME@ PACKAGE_STRING = @PACKAGE_STRING@ PACKAGE_TARNAME = @PACKAGE_TARNAME@ PACKAGE_URL = @PACKAGE_URL@ PACKAGE_VERSION = @PACKAGE_VERSION@ PATH_SEPARATOR = @PATH_SEPARATOR@ PKGNAME = @PKGNAME@ RANLIB = @RANLIB@ RPMARCH = @RPMARCH@ RPM_CONFIG_ARGS = @RPM_CONFIG_ARGS@ SED = @SED@ SET_MAKE = @SET_MAKE@ SHELL = @SHELL@ SO_AGE = @SO_AGE@ SO_MAJOR_VERSION = @SO_MAJOR_VERSION@ SO_MINOR_VERSION = @SO_MINOR_VERSION@ STRIP = @STRIP@ VERSION = @VERSION@ VERSION_SCRIPT_FLAG = @VERSION_SCRIPT_FLAG@ WITH_JAVA = @WITH_JAVA@ abs_builddir = @abs_builddir@ abs_srcdir = @abs_srcdir@ abs_top_builddir = @abs_top_builddir@ abs_top_srcdir = @abs_top_srcdir@ ac_ct_AR = @ac_ct_AR@ ac_ct_CC = @ac_ct_CC@ ac_ct_DUMPBIN = @ac_ct_DUMPBIN@ am__include = @am__include@ am__leading_dot = @am__leading_dot@ am__quote = @am__quote@ am__tar = @am__tar@ am__untar = @am__untar@ bindir = @bindir@ build = @build@ build_alias = @build_alias@ build_cpu = @build_cpu@ build_os = @build_os@ build_vendor = @build_vendor@ builddir = @builddir@ datadir = @datadir@ datarootdir = @datarootdir@ docdir = @docdir@ dvidir = @dvidir@ exec_prefix = @exec_prefix@ host = @host@ host_alias = @host_alias@ host_cpu = @host_cpu@ host_os = @host_os@ host_vendor = @host_vendor@ htmldir = @htmldir@ includedir = @includedir@ infodir = @infodir@ install_sh = @install_sh@ libdir = @libdir@ libexecdir = @libexecdir@ localedir = @localedir@ localstatedir = @localstatedir@ mandir = @mandir@ mkdir_p = @mkdir_p@ oldincludedir = @oldincludedir@ pdfdir = @pdfdir@ prefix = @prefix@ program_transform_name = @program_transform_name@ psdir = @psdir@ sbindir = @sbindir@ sharedstatedir = @sharedstatedir@ srcdir = @srcdir@ sysconfdir = @sysconfdir@ target_alias = @target_alias@ top_build_prefix = @top_build_prefix@ top_builddir = @top_builddir@ top_srcdir = @top_srcdir@ noinst_LTLIBRARIES = libsimd.la BUILT_SOURCES = jsimdcfg.inc EXTRA_DIST = nasm_lt.sh CMakeLists.txt \ jccolext-mmx.asm jcgryext-mmx.asm jdcolext-mmx.asm jdmrgext-mmx.asm \ jccolext-sse2.asm jcgryext-sse2.asm jdcolext-sse2.asm jdmrgext-sse2.asm \ jccolext-sse2-64.asm jcgryext-sse2-64.asm jdcolext-sse2-64.asm \ jdmrgext-sse2-64.asm @SIMD_ARM_64_TRUE@libsimd_la_SOURCES = jsimd_arm64.c jsimd_arm64_neon.S @SIMD_ARM_TRUE@libsimd_la_SOURCES = jsimd_arm.c jsimd_arm_neon.S @SIMD_I386_TRUE@libsimd_la_SOURCES = jsimd_i386.c jsimd.h jsimdcfg.inc.h jsimdext.inc \ @SIMD_I386_TRUE@ jcolsamp.inc jdct.inc jsimdcpu.asm \ @SIMD_I386_TRUE@ jfdctflt-3dn.asm jidctflt-3dn.asm jquant-3dn.asm \ @SIMD_I386_TRUE@ jccolor-mmx.asm jcgray-mmx.asm jcsample-mmx.asm \ @SIMD_I386_TRUE@ jdcolor-mmx.asm jdmerge-mmx.asm jdsample-mmx.asm \ @SIMD_I386_TRUE@ jfdctfst-mmx.asm jfdctint-mmx.asm jidctfst-mmx.asm \ @SIMD_I386_TRUE@ jidctint-mmx.asm jidctred-mmx.asm jquant-mmx.asm \ @SIMD_I386_TRUE@ jfdctflt-sse.asm jidctflt-sse.asm jquant-sse.asm \ @SIMD_I386_TRUE@ jccolor-sse2.asm jcgray-sse2.asm jcsample-sse2.asm \ @SIMD_I386_TRUE@ jdcolor-sse2.asm jdmerge-sse2.asm jdsample-sse2.asm \ @SIMD_I386_TRUE@ jfdctfst-sse2.asm jfdctint-sse2.asm jidctflt-sse2.asm \ @SIMD_I386_TRUE@ jidctfst-sse2.asm jidctint-sse2.asm jidctred-sse2.asm \ @SIMD_I386_TRUE@ jquantf-sse2.asm jquanti-sse2.asm @SIMD_MIPS_TRUE@libsimd_la_SOURCES = jsimd_mips.c jsimd_mips_dspr2_asm.h jsimd_mips_dspr2.S @SIMD_X86_64_TRUE@libsimd_la_SOURCES = jsimd_x86_64.c jsimd.h jsimdcfg.inc.h jsimdext.inc \ @SIMD_X86_64_TRUE@ jcolsamp.inc jdct.inc jfdctflt-sse-64.asm \ @SIMD_X86_64_TRUE@ jccolor-sse2-64.asm jcgray-sse2-64.asm jcsample-sse2-64.asm \ @SIMD_X86_64_TRUE@ jdcolor-sse2-64.asm jdmerge-sse2-64.asm jdsample-sse2-64.asm \ @SIMD_X86_64_TRUE@ jfdctfst-sse2-64.asm jfdctint-sse2-64.asm jidctflt-sse2-64.asm \ @SIMD_X86_64_TRUE@ jidctfst-sse2-64.asm jidctint-sse2-64.asm jidctred-sse2-64.asm \ @SIMD_X86_64_TRUE@ jquantf-sse2-64.asm jquanti-sse2-64.asm AM_CPPFLAGS = -I$(top_srcdir) all: $(BUILT_SOURCES) $(MAKE) $(AM_MAKEFLAGS) all-am .SUFFIXES: .SUFFIXES: .S .asm .c .lo .o .obj $(srcdir)/Makefile.in: $(srcdir)/Makefile.am $(am__configure_deps) @for dep in $?; do \ case '$(am__configure_deps)' in \ *$$dep*) \ ( cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh ) \ && { if test -f $@; then exit 0; else break; fi; }; \ exit 1;; \ esac; \ done; \ echo ' cd $(top_srcdir) && $(AUTOMAKE) --foreign simd/Makefile'; \ $(am__cd) $(top_srcdir) && \ $(AUTOMAKE) --foreign simd/Makefile Makefile: $(srcdir)/Makefile.in $(top_builddir)/config.status @case '$?' in \ *config.status*) \ cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh;; \ *) \ echo ' cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe)'; \ cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe);; \ esac; $(top_builddir)/config.status: $(top_srcdir)/configure $(CONFIG_STATUS_DEPENDENCIES) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(top_srcdir)/configure: $(am__configure_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(ACLOCAL_M4): $(am__aclocal_m4_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(am__aclocal_m4_deps): clean-noinstLTLIBRARIES: -test -z "$(noinst_LTLIBRARIES)" || rm -f $(noinst_LTLIBRARIES) @list='$(noinst_LTLIBRARIES)'; \ locs=`for p in $$list; do echo $$p; done | \ sed 's|^[^/]*$$|.|; s|/[^/]*$$||; s|$$|/so_locations|' | \ sort -u`; \ test -z "$$locs" || { \ echo rm -f $${locs}; \ rm -f $${locs}; \ } libsimd.la: $(libsimd_la_OBJECTS) $(libsimd_la_DEPENDENCIES) $(EXTRA_libsimd_la_DEPENDENCIES) $(AM_V_CCLD)$(LINK) $(libsimd_la_OBJECTS) $(libsimd_la_LIBADD) $(LIBS) mostlyclean-compile: -rm -f *.$(OBJEXT) distclean-compile: -rm -f *.tab.c @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/jsimd_arm.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/jsimd_arm64.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/jsimd_arm64_neon.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/jsimd_arm_neon.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/jsimd_i386.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/jsimd_mips.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/jsimd_mips_dspr2.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/jsimd_x86_64.Plo@am__quote@ .S.o: @am__fastdepCCAS_TRUE@ $(AM_V_CPPAS)$(CPPASCOMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCCAS_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCCAS_FALSE@ $(AM_V_CPPAS)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCCAS_FALSE@ DEPDIR=$(DEPDIR) $(CCASDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCCAS_FALSE@ $(AM_V_CPPAS@am__nodep@)$(CPPASCOMPILE) -c -o $@ $< .S.obj: @am__fastdepCCAS_TRUE@ $(AM_V_CPPAS)$(CPPASCOMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ `$(CYGPATH_W) '$<'` @am__fastdepCCAS_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCCAS_FALSE@ $(AM_V_CPPAS)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCCAS_FALSE@ DEPDIR=$(DEPDIR) $(CCASDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCCAS_FALSE@ $(AM_V_CPPAS@am__nodep@)$(CPPASCOMPILE) -c -o $@ `$(CYGPATH_W) '$<'` .S.lo: @am__fastdepCCAS_TRUE@ $(AM_V_CPPAS)$(LTCPPASCOMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCCAS_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Plo @AMDEP_TRUE@@am__fastdepCCAS_FALSE@ $(AM_V_CPPAS)source='$<' object='$@' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCCAS_FALSE@ DEPDIR=$(DEPDIR) $(CCASDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCCAS_FALSE@ $(AM_V_CPPAS@am__nodep@)$(LTCPPASCOMPILE) -c -o $@ $< .c.o: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c -o $@ $< .c.obj: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ `$(CYGPATH_W) '$<'` @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c -o $@ `$(CYGPATH_W) '$<'` .c.lo: @am__fastdepCC_TRUE@ $(AM_V_CC)$(LTCOMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LTCOMPILE) -c -o $@ $< mostlyclean-libtool: -rm -f *.lo clean-libtool: -rm -rf .libs _libs ID: $(am__tagged_files) $(am__define_uniq_tagged_files); mkid -fID $$unique tags: tags-am TAGS: tags tags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) set x; \ here=`pwd`; \ $(am__define_uniq_tagged_files); \ shift; \ if test -z "$(ETAGS_ARGS)$$*$$unique"; then :; else \ test -n "$$unique" || unique=$$empty_fix; \ if test $$# -gt 0; then \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ "$$@" $$unique; \ else \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ $$unique; \ fi; \ fi ctags: ctags-am CTAGS: ctags ctags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) $(am__define_uniq_tagged_files); \ test -z "$(CTAGS_ARGS)$$unique" \ || $(CTAGS) $(CTAGSFLAGS) $(AM_CTAGSFLAGS) $(CTAGS_ARGS) \ $$unique GTAGS: here=`$(am__cd) $(top_builddir) && pwd` \ && $(am__cd) $(top_srcdir) \ && gtags -i $(GTAGS_ARGS) "$$here" cscopelist: cscopelist-am cscopelist-am: $(am__tagged_files) list='$(am__tagged_files)'; \ case "$(srcdir)" in \ [\\/]* | ?:[\\/]*) sdir="$(srcdir)" ;; \ *) sdir=$(subdir)/$(srcdir) ;; \ esac; \ for i in $$list; do \ if test -f "$$i"; then \ echo "$(subdir)/$$i"; \ else \ echo "$$sdir/$$i"; \ fi; \ done >> $(top_builddir)/cscope.files distclean-tags: -rm -f TAGS ID GTAGS GRTAGS GSYMS GPATH tags distdir: $(DISTFILES) @srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ topsrcdirstrip=`echo "$(top_srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ list='$(DISTFILES)'; \ dist_files=`for file in $$list; do echo $$file; done | \ sed -e "s|^$$srcdirstrip/||;t" \ -e "s|^$$topsrcdirstrip/|$(top_builddir)/|;t"`; \ case $$dist_files in \ */*) $(MKDIR_P) `echo "$$dist_files" | \ sed '/\//!d;s|^|$(distdir)/|;s,/[^/]*$$,,' | \ sort -u` ;; \ esac; \ for file in $$dist_files; do \ if test -f $$file || test -d $$file; then d=.; else d=$(srcdir); fi; \ if test -d $$d/$$file; then \ dir=`echo "/$$file" | sed -e 's,/[^/]*$$,,'`; \ if test -d "$(distdir)/$$file"; then \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ if test -d $(srcdir)/$$file && test $$d != $(srcdir); then \ cp -fpR $(srcdir)/$$file "$(distdir)$$dir" || exit 1; \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ cp -fpR $$d/$$file "$(distdir)$$dir" || exit 1; \ else \ test -f "$(distdir)/$$file" \ || cp -p $$d/$$file "$(distdir)/$$file" \ || exit 1; \ fi; \ done check-am: all-am check: $(BUILT_SOURCES) $(MAKE) $(AM_MAKEFLAGS) check-am all-am: Makefile $(LTLIBRARIES) installdirs: install: $(BUILT_SOURCES) $(MAKE) $(AM_MAKEFLAGS) install-am install-exec: install-exec-am install-data: install-data-am uninstall: uninstall-am install-am: all-am @$(MAKE) $(AM_MAKEFLAGS) install-exec-am install-data-am installcheck: installcheck-am install-strip: if test -z '$(STRIP)'; then \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ install; \ else \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ "INSTALL_PROGRAM_ENV=STRIPPROG='$(STRIP)'" install; \ fi mostlyclean-generic: clean-generic: distclean-generic: -test -z "$(CONFIG_CLEAN_FILES)" || rm -f $(CONFIG_CLEAN_FILES) -test . = "$(srcdir)" || test -z "$(CONFIG_CLEAN_VPATH_FILES)" || rm -f $(CONFIG_CLEAN_VPATH_FILES) maintainer-clean-generic: @echo "This command is intended for maintainers to use" @echo "it deletes files that may require special tools to rebuild." -test -z "$(BUILT_SOURCES)" || rm -f $(BUILT_SOURCES) clean: clean-am clean-am: clean-generic clean-libtool clean-noinstLTLIBRARIES \ mostlyclean-am distclean: distclean-am -rm -rf ./$(DEPDIR) -rm -f Makefile distclean-am: clean-am distclean-compile distclean-generic \ distclean-tags dvi: dvi-am dvi-am: html: html-am html-am: info: info-am info-am: install-data-am: install-dvi: install-dvi-am install-dvi-am: install-exec-am: install-html: install-html-am install-html-am: install-info: install-info-am install-info-am: install-man: install-pdf: install-pdf-am install-pdf-am: install-ps: install-ps-am install-ps-am: installcheck-am: maintainer-clean: maintainer-clean-am -rm -rf ./$(DEPDIR) -rm -f Makefile maintainer-clean-am: distclean-am maintainer-clean-generic mostlyclean: mostlyclean-am mostlyclean-am: mostlyclean-compile mostlyclean-generic \ mostlyclean-libtool pdf: pdf-am pdf-am: ps: ps-am ps-am: uninstall-am: .MAKE: all check install install-am install-strip .PHONY: CTAGS GTAGS TAGS all all-am check check-am clean clean-generic \ clean-libtool clean-noinstLTLIBRARIES cscopelist-am ctags \ ctags-am distclean distclean-compile distclean-generic \ distclean-libtool distclean-tags distdir dvi dvi-am html \ html-am info info-am install install-am install-data \ install-data-am install-dvi install-dvi-am install-exec \ install-exec-am install-html install-html-am install-info \ install-info-am install-man install-pdf install-pdf-am \ install-ps install-ps-am install-strip installcheck \ installcheck-am installdirs maintainer-clean \ maintainer-clean-generic mostlyclean mostlyclean-compile \ mostlyclean-generic mostlyclean-libtool pdf pdf-am ps ps-am \ tags tags-am uninstall uninstall-am .PRECIOUS: Makefile @SIMD_X86_64_TRUE@jccolor-sse2-64.lo: jccolext-sse2-64.asm @SIMD_X86_64_TRUE@jcgray-sse2-64.lo: jcgryext-sse2-64.asm @SIMD_X86_64_TRUE@jdcolor-sse2-64.lo: jdcolext-sse2-64.asm @SIMD_X86_64_TRUE@jdmerge-sse2-64.lo: jdmrgext-sse2-64.asm @SIMD_I386_TRUE@jccolor-mmx.lo: jccolext-mmx.asm @SIMD_I386_TRUE@jcgray.-mmx.lo: jcgryext-mmx.asm @SIMD_I386_TRUE@jdcolor-mmx.lo: jdcolext-mmx.asm @SIMD_I386_TRUE@jdmerge-mmx.lo: jdmrgext-mmx.asm @SIMD_I386_TRUE@jccolor-sse2.lo: jccolext-sse2.asm @SIMD_I386_TRUE@jcgray-sse2.lo: jcgryext-sse2.asm @SIMD_I386_TRUE@jdcolor-sse2.lo: jdcolext-sse2.asm @SIMD_I386_TRUE@jdmerge-sse2.lo: jdmrgext-sse2.asm .asm.lo: $(AM_V_GEN) $(LIBTOOL) $(AM_V_lt) --mode=compile --tag NASM $(srcdir)/nasm_lt.sh $(AM_V_lt) $(NASM) $(NAFLAGS) -I$(srcdir) -I. $< -o $@ jsimdcfg.inc: $(srcdir)/jsimdcfg.inc.h ../jpeglib.h ../jconfig.h ../jmorecfg.h $(AM_V_GEN) $(CPP) -I$(top_builddir) -I$(top_builddir)/simd $(srcdir)/jsimdcfg.inc.h | $(EGREP) "^[\;%]|^\ %" | sed 's%_cpp_protection_%%' | sed 's@% define@%define@g' > $@ # Tell versions [3.59,3.63) of GNU make to not export all variables. # Otherwise a system limit (for SysV at least) may be exceeded. .NOEXPORT: libjpeg-turbo-1.4.2/simd/jidctflt-sse2.asm0000644000076500007650000005236212600050400015324 00000000000000; ; jidctflt.asm - floating-point IDCT (SSE & SSE2) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; ; Based on ; x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; This file contains a floating-point implementation of the inverse DCT ; (Discrete Cosine Transform). The following code is based directly on ; the IJG's original jidctflt.c; see the jidctflt.c for more details. ; ; [TAB8] %include "jsimdext.inc" %include "jdct.inc" ; -------------------------------------------------------------------------- %macro unpcklps2 2 ; %1=(0 1 2 3) / %2=(4 5 6 7) => %1=(0 1 4 5) shufps %1,%2,0x44 %endmacro %macro unpckhps2 2 ; %1=(0 1 2 3) / %2=(4 5 6 7) => %1=(2 3 6 7) shufps %1,%2,0xEE %endmacro ; -------------------------------------------------------------------------- SECTION SEG_CONST alignz 16 global EXTN(jconst_idct_float_sse2) EXTN(jconst_idct_float_sse2): PD_1_414 times 4 dd 1.414213562373095048801689 PD_1_847 times 4 dd 1.847759065022573512256366 PD_1_082 times 4 dd 1.082392200292393968799446 PD_M2_613 times 4 dd -2.613125929752753055713286 PD_RNDINT_MAGIC times 4 dd 100663296.0 ; (float)(0x00C00000 << 3) PB_CENTERJSAMP times 16 db CENTERJSAMPLE alignz 16 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 32 ; ; Perform dequantization and inverse DCT on one block of coefficients. ; ; GLOBAL(void) ; jsimd_idct_float_sse2 (void * dct_table, JCOEFPTR coef_block, ; JSAMPARRAY output_buf, JDIMENSION output_col) ; %define dct_table(b) (b)+8 ; void * dct_table %define coef_block(b) (b)+12 ; JCOEFPTR coef_block %define output_buf(b) (b)+16 ; JSAMPARRAY output_buf %define output_col(b) (b)+20 ; JDIMENSION output_col %define original_ebp ebp+0 %define wk(i) ebp-(WK_NUM-(i))*SIZEOF_XMMWORD ; xmmword wk[WK_NUM] %define WK_NUM 2 %define workspace wk(0)-DCTSIZE2*SIZEOF_FAST_FLOAT ; FAST_FLOAT workspace[DCTSIZE2] align 16 global EXTN(jsimd_idct_float_sse2) EXTN(jsimd_idct_float_sse2): push ebp mov eax,esp ; eax = original ebp sub esp, byte 4 and esp, byte (-SIZEOF_XMMWORD) ; align to 128 bits mov [esp],eax mov ebp,esp ; ebp = aligned ebp lea esp, [workspace] push ebx ; push ecx ; need not be preserved ; push edx ; need not be preserved push esi push edi get_GOT ebx ; get GOT address ; ---- Pass 1: process columns from input, store into work array. ; mov eax, [original_ebp] mov edx, POINTER [dct_table(eax)] ; quantptr mov esi, JCOEFPTR [coef_block(eax)] ; inptr lea edi, [workspace] ; FAST_FLOAT * wsptr mov ecx, DCTSIZE/4 ; ctr alignx 16,7 .columnloop: %ifndef NO_ZERO_COLUMN_TEST_FLOAT_SSE mov eax, DWORD [DWBLOCK(1,0,esi,SIZEOF_JCOEF)] or eax, DWORD [DWBLOCK(2,0,esi,SIZEOF_JCOEF)] jnz near .columnDCT movq xmm1, XMM_MMWORD [MMBLOCK(1,0,esi,SIZEOF_JCOEF)] movq xmm2, XMM_MMWORD [MMBLOCK(2,0,esi,SIZEOF_JCOEF)] movq xmm3, XMM_MMWORD [MMBLOCK(3,0,esi,SIZEOF_JCOEF)] movq xmm4, XMM_MMWORD [MMBLOCK(4,0,esi,SIZEOF_JCOEF)] movq xmm5, XMM_MMWORD [MMBLOCK(5,0,esi,SIZEOF_JCOEF)] movq xmm6, XMM_MMWORD [MMBLOCK(6,0,esi,SIZEOF_JCOEF)] movq xmm7, XMM_MMWORD [MMBLOCK(7,0,esi,SIZEOF_JCOEF)] por xmm1,xmm2 por xmm3,xmm4 por xmm5,xmm6 por xmm1,xmm3 por xmm5,xmm7 por xmm1,xmm5 packsswb xmm1,xmm1 movd eax,xmm1 test eax,eax jnz short .columnDCT ; -- AC terms all zero movq xmm0, XMM_MMWORD [MMBLOCK(0,0,esi,SIZEOF_JCOEF)] punpcklwd xmm0,xmm0 ; xmm0=(00 00 01 01 02 02 03 03) psrad xmm0,(DWORD_BIT-WORD_BIT) ; xmm0=in0=(00 01 02 03) cvtdq2ps xmm0,xmm0 ; xmm0=in0=(00 01 02 03) mulps xmm0, XMMWORD [XMMBLOCK(0,0,edx,SIZEOF_FLOAT_MULT_TYPE)] movaps xmm1,xmm0 movaps xmm2,xmm0 movaps xmm3,xmm0 shufps xmm0,xmm0,0x00 ; xmm0=(00 00 00 00) shufps xmm1,xmm1,0x55 ; xmm1=(01 01 01 01) shufps xmm2,xmm2,0xAA ; xmm2=(02 02 02 02) shufps xmm3,xmm3,0xFF ; xmm3=(03 03 03 03) movaps XMMWORD [XMMBLOCK(0,0,edi,SIZEOF_FAST_FLOAT)], xmm0 movaps XMMWORD [XMMBLOCK(0,1,edi,SIZEOF_FAST_FLOAT)], xmm0 movaps XMMWORD [XMMBLOCK(1,0,edi,SIZEOF_FAST_FLOAT)], xmm1 movaps XMMWORD [XMMBLOCK(1,1,edi,SIZEOF_FAST_FLOAT)], xmm1 movaps XMMWORD [XMMBLOCK(2,0,edi,SIZEOF_FAST_FLOAT)], xmm2 movaps XMMWORD [XMMBLOCK(2,1,edi,SIZEOF_FAST_FLOAT)], xmm2 movaps XMMWORD [XMMBLOCK(3,0,edi,SIZEOF_FAST_FLOAT)], xmm3 movaps XMMWORD [XMMBLOCK(3,1,edi,SIZEOF_FAST_FLOAT)], xmm3 jmp near .nextcolumn alignx 16,7 %endif .columnDCT: ; -- Even part movq xmm0, XMM_MMWORD [MMBLOCK(0,0,esi,SIZEOF_JCOEF)] movq xmm1, XMM_MMWORD [MMBLOCK(2,0,esi,SIZEOF_JCOEF)] movq xmm2, XMM_MMWORD [MMBLOCK(4,0,esi,SIZEOF_JCOEF)] movq xmm3, XMM_MMWORD [MMBLOCK(6,0,esi,SIZEOF_JCOEF)] punpcklwd xmm0,xmm0 ; xmm0=(00 00 01 01 02 02 03 03) punpcklwd xmm1,xmm1 ; xmm1=(20 20 21 21 22 22 23 23) psrad xmm0,(DWORD_BIT-WORD_BIT) ; xmm0=in0=(00 01 02 03) psrad xmm1,(DWORD_BIT-WORD_BIT) ; xmm1=in2=(20 21 22 23) cvtdq2ps xmm0,xmm0 ; xmm0=in0=(00 01 02 03) cvtdq2ps xmm1,xmm1 ; xmm1=in2=(20 21 22 23) punpcklwd xmm2,xmm2 ; xmm2=(40 40 41 41 42 42 43 43) punpcklwd xmm3,xmm3 ; xmm3=(60 60 61 61 62 62 63 63) psrad xmm2,(DWORD_BIT-WORD_BIT) ; xmm2=in4=(40 41 42 43) psrad xmm3,(DWORD_BIT-WORD_BIT) ; xmm3=in6=(60 61 62 63) cvtdq2ps xmm2,xmm2 ; xmm2=in4=(40 41 42 43) cvtdq2ps xmm3,xmm3 ; xmm3=in6=(60 61 62 63) mulps xmm0, XMMWORD [XMMBLOCK(0,0,edx,SIZEOF_FLOAT_MULT_TYPE)] mulps xmm1, XMMWORD [XMMBLOCK(2,0,edx,SIZEOF_FLOAT_MULT_TYPE)] mulps xmm2, XMMWORD [XMMBLOCK(4,0,edx,SIZEOF_FLOAT_MULT_TYPE)] mulps xmm3, XMMWORD [XMMBLOCK(6,0,edx,SIZEOF_FLOAT_MULT_TYPE)] movaps xmm4,xmm0 movaps xmm5,xmm1 subps xmm0,xmm2 ; xmm0=tmp11 subps xmm1,xmm3 addps xmm4,xmm2 ; xmm4=tmp10 addps xmm5,xmm3 ; xmm5=tmp13 mulps xmm1,[GOTOFF(ebx,PD_1_414)] subps xmm1,xmm5 ; xmm1=tmp12 movaps xmm6,xmm4 movaps xmm7,xmm0 subps xmm4,xmm5 ; xmm4=tmp3 subps xmm0,xmm1 ; xmm0=tmp2 addps xmm6,xmm5 ; xmm6=tmp0 addps xmm7,xmm1 ; xmm7=tmp1 movaps XMMWORD [wk(1)], xmm4 ; tmp3 movaps XMMWORD [wk(0)], xmm0 ; tmp2 ; -- Odd part movq xmm2, XMM_MMWORD [MMBLOCK(1,0,esi,SIZEOF_JCOEF)] movq xmm3, XMM_MMWORD [MMBLOCK(3,0,esi,SIZEOF_JCOEF)] movq xmm5, XMM_MMWORD [MMBLOCK(5,0,esi,SIZEOF_JCOEF)] movq xmm1, XMM_MMWORD [MMBLOCK(7,0,esi,SIZEOF_JCOEF)] punpcklwd xmm2,xmm2 ; xmm2=(10 10 11 11 12 12 13 13) punpcklwd xmm3,xmm3 ; xmm3=(30 30 31 31 32 32 33 33) psrad xmm2,(DWORD_BIT-WORD_BIT) ; xmm2=in1=(10 11 12 13) psrad xmm3,(DWORD_BIT-WORD_BIT) ; xmm3=in3=(30 31 32 33) cvtdq2ps xmm2,xmm2 ; xmm2=in1=(10 11 12 13) cvtdq2ps xmm3,xmm3 ; xmm3=in3=(30 31 32 33) punpcklwd xmm5,xmm5 ; xmm5=(50 50 51 51 52 52 53 53) punpcklwd xmm1,xmm1 ; xmm1=(70 70 71 71 72 72 73 73) psrad xmm5,(DWORD_BIT-WORD_BIT) ; xmm5=in5=(50 51 52 53) psrad xmm1,(DWORD_BIT-WORD_BIT) ; xmm1=in7=(70 71 72 73) cvtdq2ps xmm5,xmm5 ; xmm5=in5=(50 51 52 53) cvtdq2ps xmm1,xmm1 ; xmm1=in7=(70 71 72 73) mulps xmm2, XMMWORD [XMMBLOCK(1,0,edx,SIZEOF_FLOAT_MULT_TYPE)] mulps xmm3, XMMWORD [XMMBLOCK(3,0,edx,SIZEOF_FLOAT_MULT_TYPE)] mulps xmm5, XMMWORD [XMMBLOCK(5,0,edx,SIZEOF_FLOAT_MULT_TYPE)] mulps xmm1, XMMWORD [XMMBLOCK(7,0,edx,SIZEOF_FLOAT_MULT_TYPE)] movaps xmm4,xmm2 movaps xmm0,xmm5 addps xmm2,xmm1 ; xmm2=z11 addps xmm5,xmm3 ; xmm5=z13 subps xmm4,xmm1 ; xmm4=z12 subps xmm0,xmm3 ; xmm0=z10 movaps xmm1,xmm2 subps xmm2,xmm5 addps xmm1,xmm5 ; xmm1=tmp7 mulps xmm2,[GOTOFF(ebx,PD_1_414)] ; xmm2=tmp11 movaps xmm3,xmm0 addps xmm0,xmm4 mulps xmm0,[GOTOFF(ebx,PD_1_847)] ; xmm0=z5 mulps xmm3,[GOTOFF(ebx,PD_M2_613)] ; xmm3=(z10 * -2.613125930) mulps xmm4,[GOTOFF(ebx,PD_1_082)] ; xmm4=(z12 * 1.082392200) addps xmm3,xmm0 ; xmm3=tmp12 subps xmm4,xmm0 ; xmm4=tmp10 ; -- Final output stage subps xmm3,xmm1 ; xmm3=tmp6 movaps xmm5,xmm6 movaps xmm0,xmm7 addps xmm6,xmm1 ; xmm6=data0=(00 01 02 03) addps xmm7,xmm3 ; xmm7=data1=(10 11 12 13) subps xmm5,xmm1 ; xmm5=data7=(70 71 72 73) subps xmm0,xmm3 ; xmm0=data6=(60 61 62 63) subps xmm2,xmm3 ; xmm2=tmp5 movaps xmm1,xmm6 ; transpose coefficients(phase 1) unpcklps xmm6,xmm7 ; xmm6=(00 10 01 11) unpckhps xmm1,xmm7 ; xmm1=(02 12 03 13) movaps xmm3,xmm0 ; transpose coefficients(phase 1) unpcklps xmm0,xmm5 ; xmm0=(60 70 61 71) unpckhps xmm3,xmm5 ; xmm3=(62 72 63 73) movaps xmm7, XMMWORD [wk(0)] ; xmm7=tmp2 movaps xmm5, XMMWORD [wk(1)] ; xmm5=tmp3 movaps XMMWORD [wk(0)], xmm0 ; wk(0)=(60 70 61 71) movaps XMMWORD [wk(1)], xmm3 ; wk(1)=(62 72 63 73) addps xmm4,xmm2 ; xmm4=tmp4 movaps xmm0,xmm7 movaps xmm3,xmm5 addps xmm7,xmm2 ; xmm7=data2=(20 21 22 23) addps xmm5,xmm4 ; xmm5=data4=(40 41 42 43) subps xmm0,xmm2 ; xmm0=data5=(50 51 52 53) subps xmm3,xmm4 ; xmm3=data3=(30 31 32 33) movaps xmm2,xmm7 ; transpose coefficients(phase 1) unpcklps xmm7,xmm3 ; xmm7=(20 30 21 31) unpckhps xmm2,xmm3 ; xmm2=(22 32 23 33) movaps xmm4,xmm5 ; transpose coefficients(phase 1) unpcklps xmm5,xmm0 ; xmm5=(40 50 41 51) unpckhps xmm4,xmm0 ; xmm4=(42 52 43 53) movaps xmm3,xmm6 ; transpose coefficients(phase 2) unpcklps2 xmm6,xmm7 ; xmm6=(00 10 20 30) unpckhps2 xmm3,xmm7 ; xmm3=(01 11 21 31) movaps xmm0,xmm1 ; transpose coefficients(phase 2) unpcklps2 xmm1,xmm2 ; xmm1=(02 12 22 32) unpckhps2 xmm0,xmm2 ; xmm0=(03 13 23 33) movaps xmm7, XMMWORD [wk(0)] ; xmm7=(60 70 61 71) movaps xmm2, XMMWORD [wk(1)] ; xmm2=(62 72 63 73) movaps XMMWORD [XMMBLOCK(0,0,edi,SIZEOF_FAST_FLOAT)], xmm6 movaps XMMWORD [XMMBLOCK(1,0,edi,SIZEOF_FAST_FLOAT)], xmm3 movaps XMMWORD [XMMBLOCK(2,0,edi,SIZEOF_FAST_FLOAT)], xmm1 movaps XMMWORD [XMMBLOCK(3,0,edi,SIZEOF_FAST_FLOAT)], xmm0 movaps xmm6,xmm5 ; transpose coefficients(phase 2) unpcklps2 xmm5,xmm7 ; xmm5=(40 50 60 70) unpckhps2 xmm6,xmm7 ; xmm6=(41 51 61 71) movaps xmm3,xmm4 ; transpose coefficients(phase 2) unpcklps2 xmm4,xmm2 ; xmm4=(42 52 62 72) unpckhps2 xmm3,xmm2 ; xmm3=(43 53 63 73) movaps XMMWORD [XMMBLOCK(0,1,edi,SIZEOF_FAST_FLOAT)], xmm5 movaps XMMWORD [XMMBLOCK(1,1,edi,SIZEOF_FAST_FLOAT)], xmm6 movaps XMMWORD [XMMBLOCK(2,1,edi,SIZEOF_FAST_FLOAT)], xmm4 movaps XMMWORD [XMMBLOCK(3,1,edi,SIZEOF_FAST_FLOAT)], xmm3 .nextcolumn: add esi, byte 4*SIZEOF_JCOEF ; coef_block add edx, byte 4*SIZEOF_FLOAT_MULT_TYPE ; quantptr add edi, 4*DCTSIZE*SIZEOF_FAST_FLOAT ; wsptr dec ecx ; ctr jnz near .columnloop ; -- Prefetch the next coefficient block prefetchnta [esi + (DCTSIZE2-8)*SIZEOF_JCOEF + 0*32] prefetchnta [esi + (DCTSIZE2-8)*SIZEOF_JCOEF + 1*32] prefetchnta [esi + (DCTSIZE2-8)*SIZEOF_JCOEF + 2*32] prefetchnta [esi + (DCTSIZE2-8)*SIZEOF_JCOEF + 3*32] ; ---- Pass 2: process rows from work array, store into output array. mov eax, [original_ebp] lea esi, [workspace] ; FAST_FLOAT * wsptr mov edi, JSAMPARRAY [output_buf(eax)] ; (JSAMPROW *) mov eax, JDIMENSION [output_col(eax)] mov ecx, DCTSIZE/4 ; ctr alignx 16,7 .rowloop: ; -- Even part movaps xmm0, XMMWORD [XMMBLOCK(0,0,esi,SIZEOF_FAST_FLOAT)] movaps xmm1, XMMWORD [XMMBLOCK(2,0,esi,SIZEOF_FAST_FLOAT)] movaps xmm2, XMMWORD [XMMBLOCK(4,0,esi,SIZEOF_FAST_FLOAT)] movaps xmm3, XMMWORD [XMMBLOCK(6,0,esi,SIZEOF_FAST_FLOAT)] movaps xmm4,xmm0 movaps xmm5,xmm1 subps xmm0,xmm2 ; xmm0=tmp11 subps xmm1,xmm3 addps xmm4,xmm2 ; xmm4=tmp10 addps xmm5,xmm3 ; xmm5=tmp13 mulps xmm1,[GOTOFF(ebx,PD_1_414)] subps xmm1,xmm5 ; xmm1=tmp12 movaps xmm6,xmm4 movaps xmm7,xmm0 subps xmm4,xmm5 ; xmm4=tmp3 subps xmm0,xmm1 ; xmm0=tmp2 addps xmm6,xmm5 ; xmm6=tmp0 addps xmm7,xmm1 ; xmm7=tmp1 movaps XMMWORD [wk(1)], xmm4 ; tmp3 movaps XMMWORD [wk(0)], xmm0 ; tmp2 ; -- Odd part movaps xmm2, XMMWORD [XMMBLOCK(1,0,esi,SIZEOF_FAST_FLOAT)] movaps xmm3, XMMWORD [XMMBLOCK(3,0,esi,SIZEOF_FAST_FLOAT)] movaps xmm5, XMMWORD [XMMBLOCK(5,0,esi,SIZEOF_FAST_FLOAT)] movaps xmm1, XMMWORD [XMMBLOCK(7,0,esi,SIZEOF_FAST_FLOAT)] movaps xmm4,xmm2 movaps xmm0,xmm5 addps xmm2,xmm1 ; xmm2=z11 addps xmm5,xmm3 ; xmm5=z13 subps xmm4,xmm1 ; xmm4=z12 subps xmm0,xmm3 ; xmm0=z10 movaps xmm1,xmm2 subps xmm2,xmm5 addps xmm1,xmm5 ; xmm1=tmp7 mulps xmm2,[GOTOFF(ebx,PD_1_414)] ; xmm2=tmp11 movaps xmm3,xmm0 addps xmm0,xmm4 mulps xmm0,[GOTOFF(ebx,PD_1_847)] ; xmm0=z5 mulps xmm3,[GOTOFF(ebx,PD_M2_613)] ; xmm3=(z10 * -2.613125930) mulps xmm4,[GOTOFF(ebx,PD_1_082)] ; xmm4=(z12 * 1.082392200) addps xmm3,xmm0 ; xmm3=tmp12 subps xmm4,xmm0 ; xmm4=tmp10 ; -- Final output stage subps xmm3,xmm1 ; xmm3=tmp6 movaps xmm5,xmm6 movaps xmm0,xmm7 addps xmm6,xmm1 ; xmm6=data0=(00 10 20 30) addps xmm7,xmm3 ; xmm7=data1=(01 11 21 31) subps xmm5,xmm1 ; xmm5=data7=(07 17 27 37) subps xmm0,xmm3 ; xmm0=data6=(06 16 26 36) subps xmm2,xmm3 ; xmm2=tmp5 movaps xmm1,[GOTOFF(ebx,PD_RNDINT_MAGIC)] ; xmm1=[PD_RNDINT_MAGIC] pcmpeqd xmm3,xmm3 psrld xmm3,WORD_BIT ; xmm3={0xFFFF 0x0000 0xFFFF 0x0000 ..} addps xmm6,xmm1 ; xmm6=roundint(data0/8)=(00 ** 10 ** 20 ** 30 **) addps xmm7,xmm1 ; xmm7=roundint(data1/8)=(01 ** 11 ** 21 ** 31 **) addps xmm0,xmm1 ; xmm0=roundint(data6/8)=(06 ** 16 ** 26 ** 36 **) addps xmm5,xmm1 ; xmm5=roundint(data7/8)=(07 ** 17 ** 27 ** 37 **) pand xmm6,xmm3 ; xmm6=(00 -- 10 -- 20 -- 30 --) pslld xmm7,WORD_BIT ; xmm7=(-- 01 -- 11 -- 21 -- 31) pand xmm0,xmm3 ; xmm0=(06 -- 16 -- 26 -- 36 --) pslld xmm5,WORD_BIT ; xmm5=(-- 07 -- 17 -- 27 -- 37) por xmm6,xmm7 ; xmm6=(00 01 10 11 20 21 30 31) por xmm0,xmm5 ; xmm0=(06 07 16 17 26 27 36 37) movaps xmm1, XMMWORD [wk(0)] ; xmm1=tmp2 movaps xmm3, XMMWORD [wk(1)] ; xmm3=tmp3 addps xmm4,xmm2 ; xmm4=tmp4 movaps xmm7,xmm1 movaps xmm5,xmm3 addps xmm1,xmm2 ; xmm1=data2=(02 12 22 32) addps xmm3,xmm4 ; xmm3=data4=(04 14 24 34) subps xmm7,xmm2 ; xmm7=data5=(05 15 25 35) subps xmm5,xmm4 ; xmm5=data3=(03 13 23 33) movaps xmm2,[GOTOFF(ebx,PD_RNDINT_MAGIC)] ; xmm2=[PD_RNDINT_MAGIC] pcmpeqd xmm4,xmm4 psrld xmm4,WORD_BIT ; xmm4={0xFFFF 0x0000 0xFFFF 0x0000 ..} addps xmm3,xmm2 ; xmm3=roundint(data4/8)=(04 ** 14 ** 24 ** 34 **) addps xmm7,xmm2 ; xmm7=roundint(data5/8)=(05 ** 15 ** 25 ** 35 **) addps xmm1,xmm2 ; xmm1=roundint(data2/8)=(02 ** 12 ** 22 ** 32 **) addps xmm5,xmm2 ; xmm5=roundint(data3/8)=(03 ** 13 ** 23 ** 33 **) pand xmm3,xmm4 ; xmm3=(04 -- 14 -- 24 -- 34 --) pslld xmm7,WORD_BIT ; xmm7=(-- 05 -- 15 -- 25 -- 35) pand xmm1,xmm4 ; xmm1=(02 -- 12 -- 22 -- 32 --) pslld xmm5,WORD_BIT ; xmm5=(-- 03 -- 13 -- 23 -- 33) por xmm3,xmm7 ; xmm3=(04 05 14 15 24 25 34 35) por xmm1,xmm5 ; xmm1=(02 03 12 13 22 23 32 33) movdqa xmm2,[GOTOFF(ebx,PB_CENTERJSAMP)] ; xmm2=[PB_CENTERJSAMP] packsswb xmm6,xmm3 ; xmm6=(00 01 10 11 20 21 30 31 04 05 14 15 24 25 34 35) packsswb xmm1,xmm0 ; xmm1=(02 03 12 13 22 23 32 33 06 07 16 17 26 27 36 37) paddb xmm6,xmm2 paddb xmm1,xmm2 movdqa xmm4,xmm6 ; transpose coefficients(phase 2) punpcklwd xmm6,xmm1 ; xmm6=(00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 33) punpckhwd xmm4,xmm1 ; xmm4=(04 05 06 07 14 15 16 17 24 25 26 27 34 35 36 37) movdqa xmm7,xmm6 ; transpose coefficients(phase 3) punpckldq xmm6,xmm4 ; xmm6=(00 01 02 03 04 05 06 07 10 11 12 13 14 15 16 17) punpckhdq xmm7,xmm4 ; xmm7=(20 21 22 23 24 25 26 27 30 31 32 33 34 35 36 37) pshufd xmm5,xmm6,0x4E ; xmm5=(10 11 12 13 14 15 16 17 00 01 02 03 04 05 06 07) pshufd xmm3,xmm7,0x4E ; xmm3=(30 31 32 33 34 35 36 37 20 21 22 23 24 25 26 27) pushpic ebx ; save GOT address mov edx, JSAMPROW [edi+0*SIZEOF_JSAMPROW] mov ebx, JSAMPROW [edi+2*SIZEOF_JSAMPROW] movq XMM_MMWORD [edx+eax*SIZEOF_JSAMPLE], xmm6 movq XMM_MMWORD [ebx+eax*SIZEOF_JSAMPLE], xmm7 mov edx, JSAMPROW [edi+1*SIZEOF_JSAMPROW] mov ebx, JSAMPROW [edi+3*SIZEOF_JSAMPROW] movq XMM_MMWORD [edx+eax*SIZEOF_JSAMPLE], xmm5 movq XMM_MMWORD [ebx+eax*SIZEOF_JSAMPLE], xmm3 poppic ebx ; restore GOT address add esi, byte 4*SIZEOF_FAST_FLOAT ; wsptr add edi, byte 4*SIZEOF_JSAMPROW dec ecx ; ctr jnz near .rowloop pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; need not be preserved pop ebx mov esp,ebp ; esp <- aligned ebp pop esp ; esp <- original ebp pop ebp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 16 libjpeg-turbo-1.4.2/simd/jdsample-mmx.asm0000644000076500007650000006242212600050400015243 00000000000000; ; jdsample.asm - upsampling (MMX) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; ; Based on ; x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; [TAB8] %include "jsimdext.inc" ; -------------------------------------------------------------------------- SECTION SEG_CONST alignz 16 global EXTN(jconst_fancy_upsample_mmx) EXTN(jconst_fancy_upsample_mmx): PW_ONE times 4 dw 1 PW_TWO times 4 dw 2 PW_THREE times 4 dw 3 PW_SEVEN times 4 dw 7 PW_EIGHT times 4 dw 8 alignz 16 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 32 ; ; Fancy processing for the common case of 2:1 horizontal and 1:1 vertical. ; ; The upsampling algorithm is linear interpolation between pixel centers, ; also known as a "triangle filter". This is a good compromise between ; speed and visual quality. The centers of the output pixels are 1/4 and 3/4 ; of the way between input pixel centers. ; ; GLOBAL(void) ; jsimd_h2v1_fancy_upsample_mmx (int max_v_samp_factor, ; JDIMENSION downsampled_width, ; JSAMPARRAY input_data, ; JSAMPARRAY * output_data_ptr); ; %define max_v_samp(b) (b)+8 ; int max_v_samp_factor %define downsamp_width(b) (b)+12 ; JDIMENSION downsampled_width %define input_data(b) (b)+16 ; JSAMPARRAY input_data %define output_data_ptr(b) (b)+20 ; JSAMPARRAY * output_data_ptr align 16 global EXTN(jsimd_h2v1_fancy_upsample_mmx) EXTN(jsimd_h2v1_fancy_upsample_mmx): push ebp mov ebp,esp pushpic ebx ; push ecx ; need not be preserved ; push edx ; need not be preserved push esi push edi get_GOT ebx ; get GOT address mov eax, JDIMENSION [downsamp_width(ebp)] ; colctr test eax,eax jz near .return mov ecx, INT [max_v_samp(ebp)] ; rowctr test ecx,ecx jz near .return mov esi, JSAMPARRAY [input_data(ebp)] ; input_data mov edi, POINTER [output_data_ptr(ebp)] mov edi, JSAMPARRAY [edi] ; output_data alignx 16,7 .rowloop: push eax ; colctr push edi push esi mov esi, JSAMPROW [esi] ; inptr mov edi, JSAMPROW [edi] ; outptr test eax, SIZEOF_MMWORD-1 jz short .skip mov dl, JSAMPLE [esi+(eax-1)*SIZEOF_JSAMPLE] mov JSAMPLE [esi+eax*SIZEOF_JSAMPLE], dl ; insert a dummy sample .skip: pxor mm0,mm0 ; mm0=(all 0's) pcmpeqb mm7,mm7 psrlq mm7,(SIZEOF_MMWORD-1)*BYTE_BIT pand mm7, MMWORD [esi+0*SIZEOF_MMWORD] add eax, byte SIZEOF_MMWORD-1 and eax, byte -SIZEOF_MMWORD cmp eax, byte SIZEOF_MMWORD ja short .columnloop alignx 16,7 .columnloop_last: pcmpeqb mm6,mm6 psllq mm6,(SIZEOF_MMWORD-1)*BYTE_BIT pand mm6, MMWORD [esi+0*SIZEOF_MMWORD] jmp short .upsample alignx 16,7 .columnloop: movq mm6, MMWORD [esi+1*SIZEOF_MMWORD] psllq mm6,(SIZEOF_MMWORD-1)*BYTE_BIT .upsample: movq mm1, MMWORD [esi+0*SIZEOF_MMWORD] movq mm2,mm1 movq mm3,mm1 ; mm1=( 0 1 2 3 4 5 6 7) psllq mm2,BYTE_BIT ; mm2=( - 0 1 2 3 4 5 6) psrlq mm3,BYTE_BIT ; mm3=( 1 2 3 4 5 6 7 -) por mm2,mm7 ; mm2=(-1 0 1 2 3 4 5 6) por mm3,mm6 ; mm3=( 1 2 3 4 5 6 7 8) movq mm7,mm1 psrlq mm7,(SIZEOF_MMWORD-1)*BYTE_BIT ; mm7=( 7 - - - - - - -) movq mm4,mm1 punpcklbw mm1,mm0 ; mm1=( 0 1 2 3) punpckhbw mm4,mm0 ; mm4=( 4 5 6 7) movq mm5,mm2 punpcklbw mm2,mm0 ; mm2=(-1 0 1 2) punpckhbw mm5,mm0 ; mm5=( 3 4 5 6) movq mm6,mm3 punpcklbw mm3,mm0 ; mm3=( 1 2 3 4) punpckhbw mm6,mm0 ; mm6=( 5 6 7 8) pmullw mm1,[GOTOFF(ebx,PW_THREE)] pmullw mm4,[GOTOFF(ebx,PW_THREE)] paddw mm2,[GOTOFF(ebx,PW_ONE)] paddw mm5,[GOTOFF(ebx,PW_ONE)] paddw mm3,[GOTOFF(ebx,PW_TWO)] paddw mm6,[GOTOFF(ebx,PW_TWO)] paddw mm2,mm1 paddw mm5,mm4 psrlw mm2,2 ; mm2=OutLE=( 0 2 4 6) psrlw mm5,2 ; mm5=OutHE=( 8 10 12 14) paddw mm3,mm1 paddw mm6,mm4 psrlw mm3,2 ; mm3=OutLO=( 1 3 5 7) psrlw mm6,2 ; mm6=OutHO=( 9 11 13 15) psllw mm3,BYTE_BIT psllw mm6,BYTE_BIT por mm2,mm3 ; mm2=OutL=( 0 1 2 3 4 5 6 7) por mm5,mm6 ; mm5=OutH=( 8 9 10 11 12 13 14 15) movq MMWORD [edi+0*SIZEOF_MMWORD], mm2 movq MMWORD [edi+1*SIZEOF_MMWORD], mm5 sub eax, byte SIZEOF_MMWORD add esi, byte 1*SIZEOF_MMWORD ; inptr add edi, byte 2*SIZEOF_MMWORD ; outptr cmp eax, byte SIZEOF_MMWORD ja near .columnloop test eax,eax jnz near .columnloop_last pop esi pop edi pop eax add esi, byte SIZEOF_JSAMPROW ; input_data add edi, byte SIZEOF_JSAMPROW ; output_data dec ecx ; rowctr jg near .rowloop emms ; empty MMX state .return: pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; need not be preserved poppic ebx pop ebp ret ; -------------------------------------------------------------------------- ; ; Fancy processing for the common case of 2:1 horizontal and 2:1 vertical. ; Again a triangle filter; see comments for h2v1 case, above. ; ; GLOBAL(void) ; jsimd_h2v2_fancy_upsample_mmx (int max_v_samp_factor, ; JDIMENSION downsampled_width, ; JSAMPARRAY input_data, ; JSAMPARRAY * output_data_ptr); ; %define max_v_samp(b) (b)+8 ; int max_v_samp_factor %define downsamp_width(b) (b)+12 ; JDIMENSION downsampled_width %define input_data(b) (b)+16 ; JSAMPARRAY input_data %define output_data_ptr(b) (b)+20 ; JSAMPARRAY * output_data_ptr %define original_ebp ebp+0 %define wk(i) ebp-(WK_NUM-(i))*SIZEOF_MMWORD ; mmword wk[WK_NUM] %define WK_NUM 4 %define gotptr wk(0)-SIZEOF_POINTER ; void * gotptr align 16 global EXTN(jsimd_h2v2_fancy_upsample_mmx) EXTN(jsimd_h2v2_fancy_upsample_mmx): push ebp mov eax,esp ; eax = original ebp sub esp, byte 4 and esp, byte (-SIZEOF_MMWORD) ; align to 64 bits mov [esp],eax mov ebp,esp ; ebp = aligned ebp lea esp, [wk(0)] pushpic eax ; make a room for GOT address push ebx ; push ecx ; need not be preserved ; push edx ; need not be preserved push esi push edi get_GOT ebx ; get GOT address movpic POINTER [gotptr], ebx ; save GOT address mov edx,eax ; edx = original ebp mov eax, JDIMENSION [downsamp_width(edx)] ; colctr test eax,eax jz near .return mov ecx, INT [max_v_samp(edx)] ; rowctr test ecx,ecx jz near .return mov esi, JSAMPARRAY [input_data(edx)] ; input_data mov edi, POINTER [output_data_ptr(edx)] mov edi, JSAMPARRAY [edi] ; output_data alignx 16,7 .rowloop: push eax ; colctr push ecx push edi push esi mov ecx, JSAMPROW [esi-1*SIZEOF_JSAMPROW] ; inptr1(above) mov ebx, JSAMPROW [esi+0*SIZEOF_JSAMPROW] ; inptr0 mov esi, JSAMPROW [esi+1*SIZEOF_JSAMPROW] ; inptr1(below) mov edx, JSAMPROW [edi+0*SIZEOF_JSAMPROW] ; outptr0 mov edi, JSAMPROW [edi+1*SIZEOF_JSAMPROW] ; outptr1 test eax, SIZEOF_MMWORD-1 jz short .skip push edx mov dl, JSAMPLE [ecx+(eax-1)*SIZEOF_JSAMPLE] mov JSAMPLE [ecx+eax*SIZEOF_JSAMPLE], dl mov dl, JSAMPLE [ebx+(eax-1)*SIZEOF_JSAMPLE] mov JSAMPLE [ebx+eax*SIZEOF_JSAMPLE], dl mov dl, JSAMPLE [esi+(eax-1)*SIZEOF_JSAMPLE] mov JSAMPLE [esi+eax*SIZEOF_JSAMPLE], dl ; insert a dummy sample pop edx .skip: ; -- process the first column block movq mm0, MMWORD [ebx+0*SIZEOF_MMWORD] ; mm0=row[ 0][0] movq mm1, MMWORD [ecx+0*SIZEOF_MMWORD] ; mm1=row[-1][0] movq mm2, MMWORD [esi+0*SIZEOF_MMWORD] ; mm2=row[+1][0] pushpic ebx movpic ebx, POINTER [gotptr] ; load GOT address pxor mm3,mm3 ; mm3=(all 0's) movq mm4,mm0 punpcklbw mm0,mm3 ; mm0=row[ 0][0]( 0 1 2 3) punpckhbw mm4,mm3 ; mm4=row[ 0][0]( 4 5 6 7) movq mm5,mm1 punpcklbw mm1,mm3 ; mm1=row[-1][0]( 0 1 2 3) punpckhbw mm5,mm3 ; mm5=row[-1][0]( 4 5 6 7) movq mm6,mm2 punpcklbw mm2,mm3 ; mm2=row[+1][0]( 0 1 2 3) punpckhbw mm6,mm3 ; mm6=row[+1][0]( 4 5 6 7) pmullw mm0,[GOTOFF(ebx,PW_THREE)] pmullw mm4,[GOTOFF(ebx,PW_THREE)] pcmpeqb mm7,mm7 psrlq mm7,(SIZEOF_MMWORD-2)*BYTE_BIT paddw mm1,mm0 ; mm1=Int0L=( 0 1 2 3) paddw mm5,mm4 ; mm5=Int0H=( 4 5 6 7) paddw mm2,mm0 ; mm2=Int1L=( 0 1 2 3) paddw mm6,mm4 ; mm6=Int1H=( 4 5 6 7) movq MMWORD [edx+0*SIZEOF_MMWORD], mm1 ; temporarily save movq MMWORD [edx+1*SIZEOF_MMWORD], mm5 ; the intermediate data movq MMWORD [edi+0*SIZEOF_MMWORD], mm2 movq MMWORD [edi+1*SIZEOF_MMWORD], mm6 pand mm1,mm7 ; mm1=( 0 - - -) pand mm2,mm7 ; mm2=( 0 - - -) movq MMWORD [wk(0)], mm1 movq MMWORD [wk(1)], mm2 poppic ebx add eax, byte SIZEOF_MMWORD-1 and eax, byte -SIZEOF_MMWORD cmp eax, byte SIZEOF_MMWORD ja short .columnloop alignx 16,7 .columnloop_last: ; -- process the last column block pushpic ebx movpic ebx, POINTER [gotptr] ; load GOT address pcmpeqb mm1,mm1 psllq mm1,(SIZEOF_MMWORD-2)*BYTE_BIT movq mm2,mm1 pand mm1, MMWORD [edx+1*SIZEOF_MMWORD] ; mm1=( - - - 7) pand mm2, MMWORD [edi+1*SIZEOF_MMWORD] ; mm2=( - - - 7) movq MMWORD [wk(2)], mm1 movq MMWORD [wk(3)], mm2 jmp short .upsample alignx 16,7 .columnloop: ; -- process the next column block movq mm0, MMWORD [ebx+1*SIZEOF_MMWORD] ; mm0=row[ 0][1] movq mm1, MMWORD [ecx+1*SIZEOF_MMWORD] ; mm1=row[-1][1] movq mm2, MMWORD [esi+1*SIZEOF_MMWORD] ; mm2=row[+1][1] pushpic ebx movpic ebx, POINTER [gotptr] ; load GOT address pxor mm3,mm3 ; mm3=(all 0's) movq mm4,mm0 punpcklbw mm0,mm3 ; mm0=row[ 0][1]( 0 1 2 3) punpckhbw mm4,mm3 ; mm4=row[ 0][1]( 4 5 6 7) movq mm5,mm1 punpcklbw mm1,mm3 ; mm1=row[-1][1]( 0 1 2 3) punpckhbw mm5,mm3 ; mm5=row[-1][1]( 4 5 6 7) movq mm6,mm2 punpcklbw mm2,mm3 ; mm2=row[+1][1]( 0 1 2 3) punpckhbw mm6,mm3 ; mm6=row[+1][1]( 4 5 6 7) pmullw mm0,[GOTOFF(ebx,PW_THREE)] pmullw mm4,[GOTOFF(ebx,PW_THREE)] paddw mm1,mm0 ; mm1=Int0L=( 0 1 2 3) paddw mm5,mm4 ; mm5=Int0H=( 4 5 6 7) paddw mm2,mm0 ; mm2=Int1L=( 0 1 2 3) paddw mm6,mm4 ; mm6=Int1H=( 4 5 6 7) movq MMWORD [edx+2*SIZEOF_MMWORD], mm1 ; temporarily save movq MMWORD [edx+3*SIZEOF_MMWORD], mm5 ; the intermediate data movq MMWORD [edi+2*SIZEOF_MMWORD], mm2 movq MMWORD [edi+3*SIZEOF_MMWORD], mm6 psllq mm1,(SIZEOF_MMWORD-2)*BYTE_BIT ; mm1=( - - - 0) psllq mm2,(SIZEOF_MMWORD-2)*BYTE_BIT ; mm2=( - - - 0) movq MMWORD [wk(2)], mm1 movq MMWORD [wk(3)], mm2 .upsample: ; -- process the upper row movq mm7, MMWORD [edx+0*SIZEOF_MMWORD] ; mm7=Int0L=( 0 1 2 3) movq mm3, MMWORD [edx+1*SIZEOF_MMWORD] ; mm3=Int0H=( 4 5 6 7) movq mm0,mm7 movq mm4,mm3 psrlq mm0,2*BYTE_BIT ; mm0=( 1 2 3 -) psllq mm4,(SIZEOF_MMWORD-2)*BYTE_BIT ; mm4=( - - - 4) movq mm5,mm7 movq mm6,mm3 psrlq mm5,(SIZEOF_MMWORD-2)*BYTE_BIT ; mm5=( 3 - - -) psllq mm6,2*BYTE_BIT ; mm6=( - 4 5 6) por mm0,mm4 ; mm0=( 1 2 3 4) por mm5,mm6 ; mm5=( 3 4 5 6) movq mm1,mm7 movq mm2,mm3 psllq mm1,2*BYTE_BIT ; mm1=( - 0 1 2) psrlq mm2,2*BYTE_BIT ; mm2=( 5 6 7 -) movq mm4,mm3 psrlq mm4,(SIZEOF_MMWORD-2)*BYTE_BIT ; mm4=( 7 - - -) por mm1, MMWORD [wk(0)] ; mm1=(-1 0 1 2) por mm2, MMWORD [wk(2)] ; mm2=( 5 6 7 8) movq MMWORD [wk(0)], mm4 pmullw mm7,[GOTOFF(ebx,PW_THREE)] pmullw mm3,[GOTOFF(ebx,PW_THREE)] paddw mm1,[GOTOFF(ebx,PW_EIGHT)] paddw mm5,[GOTOFF(ebx,PW_EIGHT)] paddw mm0,[GOTOFF(ebx,PW_SEVEN)] paddw mm2,[GOTOFF(ebx,PW_SEVEN)] paddw mm1,mm7 paddw mm5,mm3 psrlw mm1,4 ; mm1=Out0LE=( 0 2 4 6) psrlw mm5,4 ; mm5=Out0HE=( 8 10 12 14) paddw mm0,mm7 paddw mm2,mm3 psrlw mm0,4 ; mm0=Out0LO=( 1 3 5 7) psrlw mm2,4 ; mm2=Out0HO=( 9 11 13 15) psllw mm0,BYTE_BIT psllw mm2,BYTE_BIT por mm1,mm0 ; mm1=Out0L=( 0 1 2 3 4 5 6 7) por mm5,mm2 ; mm5=Out0H=( 8 9 10 11 12 13 14 15) movq MMWORD [edx+0*SIZEOF_MMWORD], mm1 movq MMWORD [edx+1*SIZEOF_MMWORD], mm5 ; -- process the lower row movq mm6, MMWORD [edi+0*SIZEOF_MMWORD] ; mm6=Int1L=( 0 1 2 3) movq mm4, MMWORD [edi+1*SIZEOF_MMWORD] ; mm4=Int1H=( 4 5 6 7) movq mm7,mm6 movq mm3,mm4 psrlq mm7,2*BYTE_BIT ; mm7=( 1 2 3 -) psllq mm3,(SIZEOF_MMWORD-2)*BYTE_BIT ; mm3=( - - - 4) movq mm0,mm6 movq mm2,mm4 psrlq mm0,(SIZEOF_MMWORD-2)*BYTE_BIT ; mm0=( 3 - - -) psllq mm2,2*BYTE_BIT ; mm2=( - 4 5 6) por mm7,mm3 ; mm7=( 1 2 3 4) por mm0,mm2 ; mm0=( 3 4 5 6) movq mm1,mm6 movq mm5,mm4 psllq mm1,2*BYTE_BIT ; mm1=( - 0 1 2) psrlq mm5,2*BYTE_BIT ; mm5=( 5 6 7 -) movq mm3,mm4 psrlq mm3,(SIZEOF_MMWORD-2)*BYTE_BIT ; mm3=( 7 - - -) por mm1, MMWORD [wk(1)] ; mm1=(-1 0 1 2) por mm5, MMWORD [wk(3)] ; mm5=( 5 6 7 8) movq MMWORD [wk(1)], mm3 pmullw mm6,[GOTOFF(ebx,PW_THREE)] pmullw mm4,[GOTOFF(ebx,PW_THREE)] paddw mm1,[GOTOFF(ebx,PW_EIGHT)] paddw mm0,[GOTOFF(ebx,PW_EIGHT)] paddw mm7,[GOTOFF(ebx,PW_SEVEN)] paddw mm5,[GOTOFF(ebx,PW_SEVEN)] paddw mm1,mm6 paddw mm0,mm4 psrlw mm1,4 ; mm1=Out1LE=( 0 2 4 6) psrlw mm0,4 ; mm0=Out1HE=( 8 10 12 14) paddw mm7,mm6 paddw mm5,mm4 psrlw mm7,4 ; mm7=Out1LO=( 1 3 5 7) psrlw mm5,4 ; mm5=Out1HO=( 9 11 13 15) psllw mm7,BYTE_BIT psllw mm5,BYTE_BIT por mm1,mm7 ; mm1=Out1L=( 0 1 2 3 4 5 6 7) por mm0,mm5 ; mm0=Out1H=( 8 9 10 11 12 13 14 15) movq MMWORD [edi+0*SIZEOF_MMWORD], mm1 movq MMWORD [edi+1*SIZEOF_MMWORD], mm0 poppic ebx sub eax, byte SIZEOF_MMWORD add ecx, byte 1*SIZEOF_MMWORD ; inptr1(above) add ebx, byte 1*SIZEOF_MMWORD ; inptr0 add esi, byte 1*SIZEOF_MMWORD ; inptr1(below) add edx, byte 2*SIZEOF_MMWORD ; outptr0 add edi, byte 2*SIZEOF_MMWORD ; outptr1 cmp eax, byte SIZEOF_MMWORD ja near .columnloop test eax,eax jnz near .columnloop_last pop esi pop edi pop ecx pop eax add esi, byte 1*SIZEOF_JSAMPROW ; input_data add edi, byte 2*SIZEOF_JSAMPROW ; output_data sub ecx, byte 2 ; rowctr jg near .rowloop emms ; empty MMX state .return: pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; need not be preserved pop ebx mov esp,ebp ; esp <- aligned ebp pop esp ; esp <- original ebp pop ebp ret ; -------------------------------------------------------------------------- ; ; Fast processing for the common case of 2:1 horizontal and 1:1 vertical. ; It's still a box filter. ; ; GLOBAL(void) ; jsimd_h2v1_upsample_mmx (int max_v_samp_factor, ; JDIMENSION output_width, ; JSAMPARRAY input_data, ; JSAMPARRAY * output_data_ptr); ; %define max_v_samp(b) (b)+8 ; int max_v_samp_factor %define output_width(b) (b)+12 ; JDIMENSION output_width %define input_data(b) (b)+16 ; JSAMPARRAY input_data %define output_data_ptr(b) (b)+20 ; JSAMPARRAY * output_data_ptr align 16 global EXTN(jsimd_h2v1_upsample_mmx) EXTN(jsimd_h2v1_upsample_mmx): push ebp mov ebp,esp ; push ebx ; unused ; push ecx ; need not be preserved ; push edx ; need not be preserved push esi push edi mov edx, JDIMENSION [output_width(ebp)] add edx, byte (2*SIZEOF_MMWORD)-1 and edx, byte -(2*SIZEOF_MMWORD) jz short .return mov ecx, INT [max_v_samp(ebp)] ; rowctr test ecx,ecx jz short .return mov esi, JSAMPARRAY [input_data(ebp)] ; input_data mov edi, POINTER [output_data_ptr(ebp)] mov edi, JSAMPARRAY [edi] ; output_data alignx 16,7 .rowloop: push edi push esi mov esi, JSAMPROW [esi] ; inptr mov edi, JSAMPROW [edi] ; outptr mov eax,edx ; colctr alignx 16,7 .columnloop: movq mm0, MMWORD [esi+0*SIZEOF_MMWORD] movq mm1,mm0 punpcklbw mm0,mm0 punpckhbw mm1,mm1 movq MMWORD [edi+0*SIZEOF_MMWORD], mm0 movq MMWORD [edi+1*SIZEOF_MMWORD], mm1 sub eax, byte 2*SIZEOF_MMWORD jz short .nextrow movq mm2, MMWORD [esi+1*SIZEOF_MMWORD] movq mm3,mm2 punpcklbw mm2,mm2 punpckhbw mm3,mm3 movq MMWORD [edi+2*SIZEOF_MMWORD], mm2 movq MMWORD [edi+3*SIZEOF_MMWORD], mm3 sub eax, byte 2*SIZEOF_MMWORD jz short .nextrow add esi, byte 2*SIZEOF_MMWORD ; inptr add edi, byte 4*SIZEOF_MMWORD ; outptr jmp short .columnloop alignx 16,7 .nextrow: pop esi pop edi add esi, byte SIZEOF_JSAMPROW ; input_data add edi, byte SIZEOF_JSAMPROW ; output_data dec ecx ; rowctr jg short .rowloop emms ; empty MMX state .return: pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; need not be preserved ; pop ebx ; unused pop ebp ret ; -------------------------------------------------------------------------- ; ; Fast processing for the common case of 2:1 horizontal and 2:1 vertical. ; It's still a box filter. ; ; GLOBAL(void) ; jsimd_h2v2_upsample_mmx (int max_v_samp_factor, ; JDIMENSION output_width, ; JSAMPARRAY input_data, ; JSAMPARRAY * output_data_ptr); ; %define max_v_samp(b) (b)+8 ; int max_v_samp_factor %define output_width(b) (b)+12 ; JDIMENSION output_width %define input_data(b) (b)+16 ; JSAMPARRAY input_data %define output_data_ptr(b) (b)+20 ; JSAMPARRAY * output_data_ptr align 16 global EXTN(jsimd_h2v2_upsample_mmx) EXTN(jsimd_h2v2_upsample_mmx): push ebp mov ebp,esp push ebx ; push ecx ; need not be preserved ; push edx ; need not be preserved push esi push edi mov edx, JDIMENSION [output_width(ebp)] add edx, byte (2*SIZEOF_MMWORD)-1 and edx, byte -(2*SIZEOF_MMWORD) jz near .return mov ecx, INT [max_v_samp(ebp)] ; rowctr test ecx,ecx jz short .return mov esi, JSAMPARRAY [input_data(ebp)] ; input_data mov edi, POINTER [output_data_ptr(ebp)] mov edi, JSAMPARRAY [edi] ; output_data alignx 16,7 .rowloop: push edi push esi mov esi, JSAMPROW [esi] ; inptr mov ebx, JSAMPROW [edi+0*SIZEOF_JSAMPROW] ; outptr0 mov edi, JSAMPROW [edi+1*SIZEOF_JSAMPROW] ; outptr1 mov eax,edx ; colctr alignx 16,7 .columnloop: movq mm0, MMWORD [esi+0*SIZEOF_MMWORD] movq mm1,mm0 punpcklbw mm0,mm0 punpckhbw mm1,mm1 movq MMWORD [ebx+0*SIZEOF_MMWORD], mm0 movq MMWORD [ebx+1*SIZEOF_MMWORD], mm1 movq MMWORD [edi+0*SIZEOF_MMWORD], mm0 movq MMWORD [edi+1*SIZEOF_MMWORD], mm1 sub eax, byte 2*SIZEOF_MMWORD jz short .nextrow movq mm2, MMWORD [esi+1*SIZEOF_MMWORD] movq mm3,mm2 punpcklbw mm2,mm2 punpckhbw mm3,mm3 movq MMWORD [ebx+2*SIZEOF_MMWORD], mm2 movq MMWORD [ebx+3*SIZEOF_MMWORD], mm3 movq MMWORD [edi+2*SIZEOF_MMWORD], mm2 movq MMWORD [edi+3*SIZEOF_MMWORD], mm3 sub eax, byte 2*SIZEOF_MMWORD jz short .nextrow add esi, byte 2*SIZEOF_MMWORD ; inptr add ebx, byte 4*SIZEOF_MMWORD ; outptr0 add edi, byte 4*SIZEOF_MMWORD ; outptr1 jmp short .columnloop alignx 16,7 .nextrow: pop esi pop edi add esi, byte 1*SIZEOF_JSAMPROW ; input_data add edi, byte 2*SIZEOF_JSAMPROW ; output_data sub ecx, byte 2 ; rowctr jg short .rowloop emms ; empty MMX state .return: pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; need not be preserved pop ebx pop ebp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 16 libjpeg-turbo-1.4.2/simd/jquantf-sse2-64.asm0000644000076500007650000001227312600050400015415 00000000000000; ; jquantf.asm - sample data conversion and quantization (64-bit SSE & SSE2) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; Copyright 2009 D. R. Commander ; ; Based on ; x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; [TAB8] %include "jsimdext.inc" %include "jdct.inc" ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 64 ; ; Load data into workspace, applying unsigned->signed conversion ; ; GLOBAL(void) ; jsimd_convsamp_float_sse2 (JSAMPARRAY sample_data, JDIMENSION start_col, ; FAST_FLOAT * workspace); ; ; r10 = JSAMPARRAY sample_data ; r11 = JDIMENSION start_col ; r12 = FAST_FLOAT * workspace align 16 global EXTN(jsimd_convsamp_float_sse2) EXTN(jsimd_convsamp_float_sse2): push rbp mov rax,rsp mov rbp,rsp collect_args push rbx pcmpeqw xmm7,xmm7 psllw xmm7,7 packsswb xmm7,xmm7 ; xmm7 = PB_CENTERJSAMPLE (0x808080..) mov rsi, r10 mov eax, r11d mov rdi, r12 mov rcx, DCTSIZE/2 .convloop: mov rbx, JSAMPROW [rsi+0*SIZEOF_JSAMPROW] ; (JSAMPLE *) mov rdx, JSAMPROW [rsi+1*SIZEOF_JSAMPROW] ; (JSAMPLE *) movq xmm0, XMM_MMWORD [rbx+rax*SIZEOF_JSAMPLE] movq xmm1, XMM_MMWORD [rdx+rax*SIZEOF_JSAMPLE] psubb xmm0,xmm7 ; xmm0=(01234567) psubb xmm1,xmm7 ; xmm1=(89ABCDEF) punpcklbw xmm0,xmm0 ; xmm0=(*0*1*2*3*4*5*6*7) punpcklbw xmm1,xmm1 ; xmm1=(*8*9*A*B*C*D*E*F) punpcklwd xmm2,xmm0 ; xmm2=(***0***1***2***3) punpckhwd xmm0,xmm0 ; xmm0=(***4***5***6***7) punpcklwd xmm3,xmm1 ; xmm3=(***8***9***A***B) punpckhwd xmm1,xmm1 ; xmm1=(***C***D***E***F) psrad xmm2,(DWORD_BIT-BYTE_BIT) ; xmm2=(0123) psrad xmm0,(DWORD_BIT-BYTE_BIT) ; xmm0=(4567) cvtdq2ps xmm2,xmm2 ; xmm2=(0123) cvtdq2ps xmm0,xmm0 ; xmm0=(4567) psrad xmm3,(DWORD_BIT-BYTE_BIT) ; xmm3=(89AB) psrad xmm1,(DWORD_BIT-BYTE_BIT) ; xmm1=(CDEF) cvtdq2ps xmm3,xmm3 ; xmm3=(89AB) cvtdq2ps xmm1,xmm1 ; xmm1=(CDEF) movaps XMMWORD [XMMBLOCK(0,0,rdi,SIZEOF_FAST_FLOAT)], xmm2 movaps XMMWORD [XMMBLOCK(0,1,rdi,SIZEOF_FAST_FLOAT)], xmm0 movaps XMMWORD [XMMBLOCK(1,0,rdi,SIZEOF_FAST_FLOAT)], xmm3 movaps XMMWORD [XMMBLOCK(1,1,rdi,SIZEOF_FAST_FLOAT)], xmm1 add rsi, byte 2*SIZEOF_JSAMPROW add rdi, byte 2*DCTSIZE*SIZEOF_FAST_FLOAT dec rcx jnz short .convloop pop rbx uncollect_args pop rbp ret ; -------------------------------------------------------------------------- ; ; Quantize/descale the coefficients, and store into coef_block ; ; GLOBAL(void) ; jsimd_quantize_float_sse2 (JCOEFPTR coef_block, FAST_FLOAT * divisors, ; FAST_FLOAT * workspace); ; ; r10 = JCOEFPTR coef_block ; r11 = FAST_FLOAT * divisors ; r12 = FAST_FLOAT * workspace align 16 global EXTN(jsimd_quantize_float_sse2) EXTN(jsimd_quantize_float_sse2): push rbp mov rax,rsp mov rbp,rsp collect_args mov rsi, r12 mov rdx, r11 mov rdi, r10 mov rax, DCTSIZE2/16 .quantloop: movaps xmm0, XMMWORD [XMMBLOCK(0,0,rsi,SIZEOF_FAST_FLOAT)] movaps xmm1, XMMWORD [XMMBLOCK(0,1,rsi,SIZEOF_FAST_FLOAT)] mulps xmm0, XMMWORD [XMMBLOCK(0,0,rdx,SIZEOF_FAST_FLOAT)] mulps xmm1, XMMWORD [XMMBLOCK(0,1,rdx,SIZEOF_FAST_FLOAT)] movaps xmm2, XMMWORD [XMMBLOCK(1,0,rsi,SIZEOF_FAST_FLOAT)] movaps xmm3, XMMWORD [XMMBLOCK(1,1,rsi,SIZEOF_FAST_FLOAT)] mulps xmm2, XMMWORD [XMMBLOCK(1,0,rdx,SIZEOF_FAST_FLOAT)] mulps xmm3, XMMWORD [XMMBLOCK(1,1,rdx,SIZEOF_FAST_FLOAT)] cvtps2dq xmm0,xmm0 cvtps2dq xmm1,xmm1 cvtps2dq xmm2,xmm2 cvtps2dq xmm3,xmm3 packssdw xmm0,xmm1 packssdw xmm2,xmm3 movdqa XMMWORD [XMMBLOCK(0,0,rdi,SIZEOF_JCOEF)], xmm0 movdqa XMMWORD [XMMBLOCK(1,0,rdi,SIZEOF_JCOEF)], xmm2 add rsi, byte 16*SIZEOF_FAST_FLOAT add rdx, byte 16*SIZEOF_FAST_FLOAT add rdi, byte 16*SIZEOF_JCOEF dec rax jnz short .quantloop uncollect_args pop rbp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 16 libjpeg-turbo-1.4.2/simd/jcsample-mmx.asm0000644000076500007650000002262012600050400015236 00000000000000; ; jcsample.asm - downsampling (MMX) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; ; Based on ; x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; [TAB8] %include "jsimdext.inc" ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 32 ; ; Downsample pixel values of a single component. ; This version handles the common case of 2:1 horizontal and 1:1 vertical, ; without smoothing. ; ; GLOBAL(void) ; jsimd_h2v1_downsample_mmx (JDIMENSION image_width, int max_v_samp_factor, ; JDIMENSION v_samp_factor, JDIMENSION width_blocks, ; JSAMPARRAY input_data, JSAMPARRAY output_data); ; %define img_width(b) (b)+8 ; JDIMENSION image_width %define max_v_samp(b) (b)+12 ; int max_v_samp_factor %define v_samp(b) (b)+16 ; JDIMENSION v_samp_factor %define width_blks(b) (b)+20 ; JDIMENSION width_blocks %define input_data(b) (b)+24 ; JSAMPARRAY input_data %define output_data(b) (b)+28 ; JSAMPARRAY output_data align 16 global EXTN(jsimd_h2v1_downsample_mmx) EXTN(jsimd_h2v1_downsample_mmx): push ebp mov ebp,esp ; push ebx ; unused ; push ecx ; need not be preserved ; push edx ; need not be preserved push esi push edi mov ecx, JDIMENSION [width_blks(ebp)] shl ecx,3 ; imul ecx,DCTSIZE (ecx = output_cols) jz near .return mov edx, JDIMENSION [img_width(ebp)] ; -- expand_right_edge push ecx shl ecx,1 ; output_cols * 2 sub ecx,edx jle short .expand_end mov eax, INT [max_v_samp(ebp)] test eax,eax jle short .expand_end cld mov esi, JSAMPARRAY [input_data(ebp)] ; input_data alignx 16,7 .expandloop: push eax push ecx mov edi, JSAMPROW [esi] add edi,edx mov al, JSAMPLE [edi-1] rep stosb pop ecx pop eax add esi, byte SIZEOF_JSAMPROW dec eax jg short .expandloop .expand_end: pop ecx ; output_cols ; -- h2v1_downsample mov eax, JDIMENSION [v_samp(ebp)] ; rowctr test eax,eax jle near .return mov edx, 0x00010000 ; bias pattern movd mm7,edx pcmpeqw mm6,mm6 punpckldq mm7,mm7 ; mm7={0, 1, 0, 1} psrlw mm6,BYTE_BIT ; mm6={0xFF 0x00 0xFF 0x00 ..} mov esi, JSAMPARRAY [input_data(ebp)] ; input_data mov edi, JSAMPARRAY [output_data(ebp)] ; output_data alignx 16,7 .rowloop: push ecx push edi push esi mov esi, JSAMPROW [esi] ; inptr mov edi, JSAMPROW [edi] ; outptr alignx 16,7 .columnloop: movq mm0, MMWORD [esi+0*SIZEOF_MMWORD] movq mm1, MMWORD [esi+1*SIZEOF_MMWORD] movq mm2,mm0 movq mm3,mm1 pand mm0,mm6 psrlw mm2,BYTE_BIT pand mm1,mm6 psrlw mm3,BYTE_BIT paddw mm0,mm2 paddw mm1,mm3 paddw mm0,mm7 paddw mm1,mm7 psrlw mm0,1 psrlw mm1,1 packuswb mm0,mm1 movq MMWORD [edi+0*SIZEOF_MMWORD], mm0 add esi, byte 2*SIZEOF_MMWORD ; inptr add edi, byte 1*SIZEOF_MMWORD ; outptr sub ecx, byte SIZEOF_MMWORD ; outcol jnz short .columnloop pop esi pop edi pop ecx add esi, byte SIZEOF_JSAMPROW ; input_data add edi, byte SIZEOF_JSAMPROW ; output_data dec eax ; rowctr jg short .rowloop emms ; empty MMX state .return: pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; need not be preserved ; pop ebx ; unused pop ebp ret ; -------------------------------------------------------------------------- ; ; Downsample pixel values of a single component. ; This version handles the standard case of 2:1 horizontal and 2:1 vertical, ; without smoothing. ; ; GLOBAL(void) ; jsimd_h2v2_downsample_mmx (JDIMENSION image_width, int max_v_samp_factor, ; JDIMENSION v_samp_factor, JDIMENSION width_blocks, ; JSAMPARRAY input_data, JSAMPARRAY output_data); ; %define img_width(b) (b)+8 ; JDIMENSION image_width %define max_v_samp(b) (b)+12 ; int max_v_samp_factor %define v_samp(b) (b)+16 ; JDIMENSION v_samp_factor %define width_blks(b) (b)+20 ; JDIMENSION width_blocks %define input_data(b) (b)+24 ; JSAMPARRAY input_data %define output_data(b) (b)+28 ; JSAMPARRAY output_data align 16 global EXTN(jsimd_h2v2_downsample_mmx) EXTN(jsimd_h2v2_downsample_mmx): push ebp mov ebp,esp ; push ebx ; unused ; push ecx ; need not be preserved ; push edx ; need not be preserved push esi push edi mov ecx, JDIMENSION [width_blks(ebp)] shl ecx,3 ; imul ecx,DCTSIZE (ecx = output_cols) jz near .return mov edx, JDIMENSION [img_width(ebp)] ; -- expand_right_edge push ecx shl ecx,1 ; output_cols * 2 sub ecx,edx jle short .expand_end mov eax, INT [max_v_samp(ebp)] test eax,eax jle short .expand_end cld mov esi, JSAMPARRAY [input_data(ebp)] ; input_data alignx 16,7 .expandloop: push eax push ecx mov edi, JSAMPROW [esi] add edi,edx mov al, JSAMPLE [edi-1] rep stosb pop ecx pop eax add esi, byte SIZEOF_JSAMPROW dec eax jg short .expandloop .expand_end: pop ecx ; output_cols ; -- h2v2_downsample mov eax, JDIMENSION [v_samp(ebp)] ; rowctr test eax,eax jle near .return mov edx, 0x00020001 ; bias pattern movd mm7,edx pcmpeqw mm6,mm6 punpckldq mm7,mm7 ; mm7={1, 2, 1, 2} psrlw mm6,BYTE_BIT ; mm6={0xFF 0x00 0xFF 0x00 ..} mov esi, JSAMPARRAY [input_data(ebp)] ; input_data mov edi, JSAMPARRAY [output_data(ebp)] ; output_data alignx 16,7 .rowloop: push ecx push edi push esi mov edx, JSAMPROW [esi+0*SIZEOF_JSAMPROW] ; inptr0 mov esi, JSAMPROW [esi+1*SIZEOF_JSAMPROW] ; inptr1 mov edi, JSAMPROW [edi] ; outptr alignx 16,7 .columnloop: movq mm0, MMWORD [edx+0*SIZEOF_MMWORD] movq mm1, MMWORD [esi+0*SIZEOF_MMWORD] movq mm2, MMWORD [edx+1*SIZEOF_MMWORD] movq mm3, MMWORD [esi+1*SIZEOF_MMWORD] movq mm4,mm0 movq mm5,mm1 pand mm0,mm6 psrlw mm4,BYTE_BIT pand mm1,mm6 psrlw mm5,BYTE_BIT paddw mm0,mm4 paddw mm1,mm5 movq mm4,mm2 movq mm5,mm3 pand mm2,mm6 psrlw mm4,BYTE_BIT pand mm3,mm6 psrlw mm5,BYTE_BIT paddw mm2,mm4 paddw mm3,mm5 paddw mm0,mm1 paddw mm2,mm3 paddw mm0,mm7 paddw mm2,mm7 psrlw mm0,2 psrlw mm2,2 packuswb mm0,mm2 movq MMWORD [edi+0*SIZEOF_MMWORD], mm0 add edx, byte 2*SIZEOF_MMWORD ; inptr0 add esi, byte 2*SIZEOF_MMWORD ; inptr1 add edi, byte 1*SIZEOF_MMWORD ; outptr sub ecx, byte SIZEOF_MMWORD ; outcol jnz near .columnloop pop esi pop edi pop ecx add esi, byte 2*SIZEOF_JSAMPROW ; input_data add edi, byte 1*SIZEOF_JSAMPROW ; output_data dec eax ; rowctr jg near .rowloop emms ; empty MMX state .return: pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; need not be preserved ; pop ebx ; unused pop ebp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 16 libjpeg-turbo-1.4.2/simd/jcgray-sse2.asm0000644000076500007650000000636212600050400014777 00000000000000; ; jcgray.asm - grayscale colorspace conversion (SSE2) ; ; x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; Copyright (C) 2011, D. R. Commander. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; [TAB8] %include "jsimdext.inc" ; -------------------------------------------------------------------------- %define SCALEBITS 16 F_0_114 equ 7471 ; FIX(0.11400) F_0_250 equ 16384 ; FIX(0.25000) F_0_299 equ 19595 ; FIX(0.29900) F_0_587 equ 38470 ; FIX(0.58700) F_0_337 equ (F_0_587 - F_0_250) ; FIX(0.58700) - FIX(0.25000) ; -------------------------------------------------------------------------- SECTION SEG_CONST alignz 16 global EXTN(jconst_rgb_gray_convert_sse2) EXTN(jconst_rgb_gray_convert_sse2): PW_F0299_F0337 times 4 dw F_0_299, F_0_337 PW_F0114_F0250 times 4 dw F_0_114, F_0_250 PD_ONEHALF times 4 dd (1 << (SCALEBITS-1)) alignz 16 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 32 %include "jcgryext-sse2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_RGB_RED %define RGB_GREEN EXT_RGB_GREEN %define RGB_BLUE EXT_RGB_BLUE %define RGB_PIXELSIZE EXT_RGB_PIXELSIZE %define jsimd_rgb_gray_convert_sse2 jsimd_extrgb_gray_convert_sse2 %include "jcgryext-sse2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_RGBX_RED %define RGB_GREEN EXT_RGBX_GREEN %define RGB_BLUE EXT_RGBX_BLUE %define RGB_PIXELSIZE EXT_RGBX_PIXELSIZE %define jsimd_rgb_gray_convert_sse2 jsimd_extrgbx_gray_convert_sse2 %include "jcgryext-sse2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_BGR_RED %define RGB_GREEN EXT_BGR_GREEN %define RGB_BLUE EXT_BGR_BLUE %define RGB_PIXELSIZE EXT_BGR_PIXELSIZE %define jsimd_rgb_gray_convert_sse2 jsimd_extbgr_gray_convert_sse2 %include "jcgryext-sse2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_BGRX_RED %define RGB_GREEN EXT_BGRX_GREEN %define RGB_BLUE EXT_BGRX_BLUE %define RGB_PIXELSIZE EXT_BGRX_PIXELSIZE %define jsimd_rgb_gray_convert_sse2 jsimd_extbgrx_gray_convert_sse2 %include "jcgryext-sse2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_XBGR_RED %define RGB_GREEN EXT_XBGR_GREEN %define RGB_BLUE EXT_XBGR_BLUE %define RGB_PIXELSIZE EXT_XBGR_PIXELSIZE %define jsimd_rgb_gray_convert_sse2 jsimd_extxbgr_gray_convert_sse2 %include "jcgryext-sse2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_XRGB_RED %define RGB_GREEN EXT_XRGB_GREEN %define RGB_BLUE EXT_XRGB_BLUE %define RGB_PIXELSIZE EXT_XRGB_PIXELSIZE %define jsimd_rgb_gray_convert_sse2 jsimd_extxrgb_gray_convert_sse2 %include "jcgryext-sse2.asm" libjpeg-turbo-1.4.2/simd/jidctflt-3dn.asm0000644000076500007650000004233612600050400015134 00000000000000; ; jidctflt.asm - floating-point IDCT (3DNow! & MMX) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; ; Based on ; x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; This file contains a floating-point implementation of the inverse DCT ; (Discrete Cosine Transform). The following code is based directly on ; the IJG's original jidctflt.c; see the jidctflt.c for more details. ; ; [TAB8] %include "jsimdext.inc" %include "jdct.inc" ; -------------------------------------------------------------------------- SECTION SEG_CONST alignz 16 global EXTN(jconst_idct_float_3dnow) EXTN(jconst_idct_float_3dnow): PD_1_414 times 2 dd 1.414213562373095048801689 PD_1_847 times 2 dd 1.847759065022573512256366 PD_1_082 times 2 dd 1.082392200292393968799446 PD_2_613 times 2 dd 2.613125929752753055713286 PD_RNDINT_MAGIC times 2 dd 100663296.0 ; (float)(0x00C00000 << 3) PB_CENTERJSAMP times 8 db CENTERJSAMPLE alignz 16 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 32 ; ; Perform dequantization and inverse DCT on one block of coefficients. ; ; GLOBAL(void) ; jsimd_idct_float_3dnow (void * dct_table, JCOEFPTR coef_block, ; JSAMPARRAY output_buf, JDIMENSION output_col) ; %define dct_table(b) (b)+8 ; void * dct_table %define coef_block(b) (b)+12 ; JCOEFPTR coef_block %define output_buf(b) (b)+16 ; JSAMPARRAY output_buf %define output_col(b) (b)+20 ; JDIMENSION output_col %define original_ebp ebp+0 %define wk(i) ebp-(WK_NUM-(i))*SIZEOF_MMWORD ; mmword wk[WK_NUM] %define WK_NUM 2 %define workspace wk(0)-DCTSIZE2*SIZEOF_FAST_FLOAT ; FAST_FLOAT workspace[DCTSIZE2] align 16 global EXTN(jsimd_idct_float_3dnow) EXTN(jsimd_idct_float_3dnow): push ebp mov eax,esp ; eax = original ebp sub esp, byte 4 and esp, byte (-SIZEOF_MMWORD) ; align to 64 bits mov [esp],eax mov ebp,esp ; ebp = aligned ebp lea esp, [workspace] push ebx ; push ecx ; need not be preserved ; push edx ; need not be preserved push esi push edi get_GOT ebx ; get GOT address ; ---- Pass 1: process columns from input, store into work array. ; mov eax, [original_ebp] mov edx, POINTER [dct_table(eax)] ; quantptr mov esi, JCOEFPTR [coef_block(eax)] ; inptr lea edi, [workspace] ; FAST_FLOAT * wsptr mov ecx, DCTSIZE/2 ; ctr alignx 16,7 .columnloop: %ifndef NO_ZERO_COLUMN_TEST_FLOAT_3DNOW mov eax, DWORD [DWBLOCK(1,0,esi,SIZEOF_JCOEF)] or eax, DWORD [DWBLOCK(2,0,esi,SIZEOF_JCOEF)] jnz short .columnDCT pushpic ebx ; save GOT address mov ebx, DWORD [DWBLOCK(3,0,esi,SIZEOF_JCOEF)] mov eax, DWORD [DWBLOCK(4,0,esi,SIZEOF_JCOEF)] or ebx, DWORD [DWBLOCK(5,0,esi,SIZEOF_JCOEF)] or eax, DWORD [DWBLOCK(6,0,esi,SIZEOF_JCOEF)] or ebx, DWORD [DWBLOCK(7,0,esi,SIZEOF_JCOEF)] or eax,ebx poppic ebx ; restore GOT address jnz short .columnDCT ; -- AC terms all zero movd mm0, DWORD [DWBLOCK(0,0,esi,SIZEOF_JCOEF)] punpcklwd mm0,mm0 psrad mm0,(DWORD_BIT-WORD_BIT) pi2fd mm0,mm0 pfmul mm0, MMWORD [MMBLOCK(0,0,edx,SIZEOF_FLOAT_MULT_TYPE)] movq mm1,mm0 punpckldq mm0,mm0 punpckhdq mm1,mm1 movq MMWORD [MMBLOCK(0,0,edi,SIZEOF_FAST_FLOAT)], mm0 movq MMWORD [MMBLOCK(0,1,edi,SIZEOF_FAST_FLOAT)], mm0 movq MMWORD [MMBLOCK(0,2,edi,SIZEOF_FAST_FLOAT)], mm0 movq MMWORD [MMBLOCK(0,3,edi,SIZEOF_FAST_FLOAT)], mm0 movq MMWORD [MMBLOCK(1,0,edi,SIZEOF_FAST_FLOAT)], mm1 movq MMWORD [MMBLOCK(1,1,edi,SIZEOF_FAST_FLOAT)], mm1 movq MMWORD [MMBLOCK(1,2,edi,SIZEOF_FAST_FLOAT)], mm1 movq MMWORD [MMBLOCK(1,3,edi,SIZEOF_FAST_FLOAT)], mm1 jmp near .nextcolumn alignx 16,7 %endif .columnDCT: ; -- Even part movd mm0, DWORD [DWBLOCK(0,0,esi,SIZEOF_JCOEF)] movd mm1, DWORD [DWBLOCK(2,0,esi,SIZEOF_JCOEF)] movd mm2, DWORD [DWBLOCK(4,0,esi,SIZEOF_JCOEF)] movd mm3, DWORD [DWBLOCK(6,0,esi,SIZEOF_JCOEF)] punpcklwd mm0,mm0 punpcklwd mm1,mm1 psrad mm0,(DWORD_BIT-WORD_BIT) psrad mm1,(DWORD_BIT-WORD_BIT) pi2fd mm0,mm0 pi2fd mm1,mm1 pfmul mm0, MMWORD [MMBLOCK(0,0,edx,SIZEOF_FLOAT_MULT_TYPE)] pfmul mm1, MMWORD [MMBLOCK(2,0,edx,SIZEOF_FLOAT_MULT_TYPE)] punpcklwd mm2,mm2 punpcklwd mm3,mm3 psrad mm2,(DWORD_BIT-WORD_BIT) psrad mm3,(DWORD_BIT-WORD_BIT) pi2fd mm2,mm2 pi2fd mm3,mm3 pfmul mm2, MMWORD [MMBLOCK(4,0,edx,SIZEOF_FLOAT_MULT_TYPE)] pfmul mm3, MMWORD [MMBLOCK(6,0,edx,SIZEOF_FLOAT_MULT_TYPE)] movq mm4,mm0 movq mm5,mm1 pfsub mm0,mm2 ; mm0=tmp11 pfsub mm1,mm3 pfadd mm4,mm2 ; mm4=tmp10 pfadd mm5,mm3 ; mm5=tmp13 pfmul mm1,[GOTOFF(ebx,PD_1_414)] pfsub mm1,mm5 ; mm1=tmp12 movq mm6,mm4 movq mm7,mm0 pfsub mm4,mm5 ; mm4=tmp3 pfsub mm0,mm1 ; mm0=tmp2 pfadd mm6,mm5 ; mm6=tmp0 pfadd mm7,mm1 ; mm7=tmp1 movq MMWORD [wk(1)], mm4 ; tmp3 movq MMWORD [wk(0)], mm0 ; tmp2 ; -- Odd part movd mm2, DWORD [DWBLOCK(1,0,esi,SIZEOF_JCOEF)] movd mm3, DWORD [DWBLOCK(3,0,esi,SIZEOF_JCOEF)] movd mm5, DWORD [DWBLOCK(5,0,esi,SIZEOF_JCOEF)] movd mm1, DWORD [DWBLOCK(7,0,esi,SIZEOF_JCOEF)] punpcklwd mm2,mm2 punpcklwd mm3,mm3 psrad mm2,(DWORD_BIT-WORD_BIT) psrad mm3,(DWORD_BIT-WORD_BIT) pi2fd mm2,mm2 pi2fd mm3,mm3 pfmul mm2, MMWORD [MMBLOCK(1,0,edx,SIZEOF_FLOAT_MULT_TYPE)] pfmul mm3, MMWORD [MMBLOCK(3,0,edx,SIZEOF_FLOAT_MULT_TYPE)] punpcklwd mm5,mm5 punpcklwd mm1,mm1 psrad mm5,(DWORD_BIT-WORD_BIT) psrad mm1,(DWORD_BIT-WORD_BIT) pi2fd mm5,mm5 pi2fd mm1,mm1 pfmul mm5, MMWORD [MMBLOCK(5,0,edx,SIZEOF_FLOAT_MULT_TYPE)] pfmul mm1, MMWORD [MMBLOCK(7,0,edx,SIZEOF_FLOAT_MULT_TYPE)] movq mm4,mm2 movq mm0,mm5 pfadd mm2,mm1 ; mm2=z11 pfadd mm5,mm3 ; mm5=z13 pfsub mm4,mm1 ; mm4=z12 pfsub mm0,mm3 ; mm0=z10 movq mm1,mm2 pfsub mm2,mm5 pfadd mm1,mm5 ; mm1=tmp7 pfmul mm2,[GOTOFF(ebx,PD_1_414)] ; mm2=tmp11 movq mm3,mm0 pfadd mm0,mm4 pfmul mm0,[GOTOFF(ebx,PD_1_847)] ; mm0=z5 pfmul mm3,[GOTOFF(ebx,PD_2_613)] ; mm3=(z10 * 2.613125930) pfmul mm4,[GOTOFF(ebx,PD_1_082)] ; mm4=(z12 * 1.082392200) pfsubr mm3,mm0 ; mm3=tmp12 pfsub mm4,mm0 ; mm4=tmp10 ; -- Final output stage pfsub mm3,mm1 ; mm3=tmp6 movq mm5,mm6 movq mm0,mm7 pfadd mm6,mm1 ; mm6=data0=(00 01) pfadd mm7,mm3 ; mm7=data1=(10 11) pfsub mm5,mm1 ; mm5=data7=(70 71) pfsub mm0,mm3 ; mm0=data6=(60 61) pfsub mm2,mm3 ; mm2=tmp5 movq mm1,mm6 ; transpose coefficients punpckldq mm6,mm7 ; mm6=(00 10) punpckhdq mm1,mm7 ; mm1=(01 11) movq mm3,mm0 ; transpose coefficients punpckldq mm0,mm5 ; mm0=(60 70) punpckhdq mm3,mm5 ; mm3=(61 71) movq MMWORD [MMBLOCK(0,0,edi,SIZEOF_FAST_FLOAT)], mm6 movq MMWORD [MMBLOCK(1,0,edi,SIZEOF_FAST_FLOAT)], mm1 movq MMWORD [MMBLOCK(0,3,edi,SIZEOF_FAST_FLOAT)], mm0 movq MMWORD [MMBLOCK(1,3,edi,SIZEOF_FAST_FLOAT)], mm3 movq mm7, MMWORD [wk(0)] ; mm7=tmp2 movq mm5, MMWORD [wk(1)] ; mm5=tmp3 pfadd mm4,mm2 ; mm4=tmp4 movq mm6,mm7 movq mm1,mm5 pfadd mm7,mm2 ; mm7=data2=(20 21) pfadd mm5,mm4 ; mm5=data4=(40 41) pfsub mm6,mm2 ; mm6=data5=(50 51) pfsub mm1,mm4 ; mm1=data3=(30 31) movq mm0,mm7 ; transpose coefficients punpckldq mm7,mm1 ; mm7=(20 30) punpckhdq mm0,mm1 ; mm0=(21 31) movq mm3,mm5 ; transpose coefficients punpckldq mm5,mm6 ; mm5=(40 50) punpckhdq mm3,mm6 ; mm3=(41 51) movq MMWORD [MMBLOCK(0,1,edi,SIZEOF_FAST_FLOAT)], mm7 movq MMWORD [MMBLOCK(1,1,edi,SIZEOF_FAST_FLOAT)], mm0 movq MMWORD [MMBLOCK(0,2,edi,SIZEOF_FAST_FLOAT)], mm5 movq MMWORD [MMBLOCK(1,2,edi,SIZEOF_FAST_FLOAT)], mm3 .nextcolumn: add esi, byte 2*SIZEOF_JCOEF ; coef_block add edx, byte 2*SIZEOF_FLOAT_MULT_TYPE ; quantptr add edi, byte 2*DCTSIZE*SIZEOF_FAST_FLOAT ; wsptr dec ecx ; ctr jnz near .columnloop ; -- Prefetch the next coefficient block prefetch [esi + (DCTSIZE2-8)*SIZEOF_JCOEF + 0*32] prefetch [esi + (DCTSIZE2-8)*SIZEOF_JCOEF + 1*32] prefetch [esi + (DCTSIZE2-8)*SIZEOF_JCOEF + 2*32] prefetch [esi + (DCTSIZE2-8)*SIZEOF_JCOEF + 3*32] ; ---- Pass 2: process rows from work array, store into output array. mov eax, [original_ebp] lea esi, [workspace] ; FAST_FLOAT * wsptr mov edi, JSAMPARRAY [output_buf(eax)] ; (JSAMPROW *) mov eax, JDIMENSION [output_col(eax)] mov ecx, DCTSIZE/2 ; ctr alignx 16,7 .rowloop: ; -- Even part movq mm0, MMWORD [MMBLOCK(0,0,esi,SIZEOF_FAST_FLOAT)] movq mm1, MMWORD [MMBLOCK(2,0,esi,SIZEOF_FAST_FLOAT)] movq mm2, MMWORD [MMBLOCK(4,0,esi,SIZEOF_FAST_FLOAT)] movq mm3, MMWORD [MMBLOCK(6,0,esi,SIZEOF_FAST_FLOAT)] movq mm4,mm0 movq mm5,mm1 pfsub mm0,mm2 ; mm0=tmp11 pfsub mm1,mm3 pfadd mm4,mm2 ; mm4=tmp10 pfadd mm5,mm3 ; mm5=tmp13 pfmul mm1,[GOTOFF(ebx,PD_1_414)] pfsub mm1,mm5 ; mm1=tmp12 movq mm6,mm4 movq mm7,mm0 pfsub mm4,mm5 ; mm4=tmp3 pfsub mm0,mm1 ; mm0=tmp2 pfadd mm6,mm5 ; mm6=tmp0 pfadd mm7,mm1 ; mm7=tmp1 movq MMWORD [wk(1)], mm4 ; tmp3 movq MMWORD [wk(0)], mm0 ; tmp2 ; -- Odd part movq mm2, MMWORD [MMBLOCK(1,0,esi,SIZEOF_FAST_FLOAT)] movq mm3, MMWORD [MMBLOCK(3,0,esi,SIZEOF_FAST_FLOAT)] movq mm5, MMWORD [MMBLOCK(5,0,esi,SIZEOF_FAST_FLOAT)] movq mm1, MMWORD [MMBLOCK(7,0,esi,SIZEOF_FAST_FLOAT)] movq mm4,mm2 movq mm0,mm5 pfadd mm2,mm1 ; mm2=z11 pfadd mm5,mm3 ; mm5=z13 pfsub mm4,mm1 ; mm4=z12 pfsub mm0,mm3 ; mm0=z10 movq mm1,mm2 pfsub mm2,mm5 pfadd mm1,mm5 ; mm1=tmp7 pfmul mm2,[GOTOFF(ebx,PD_1_414)] ; mm2=tmp11 movq mm3,mm0 pfadd mm0,mm4 pfmul mm0,[GOTOFF(ebx,PD_1_847)] ; mm0=z5 pfmul mm3,[GOTOFF(ebx,PD_2_613)] ; mm3=(z10 * 2.613125930) pfmul mm4,[GOTOFF(ebx,PD_1_082)] ; mm4=(z12 * 1.082392200) pfsubr mm3,mm0 ; mm3=tmp12 pfsub mm4,mm0 ; mm4=tmp10 ; -- Final output stage pfsub mm3,mm1 ; mm3=tmp6 movq mm5,mm6 movq mm0,mm7 pfadd mm6,mm1 ; mm6=data0=(00 10) pfadd mm7,mm3 ; mm7=data1=(01 11) pfsub mm5,mm1 ; mm5=data7=(07 17) pfsub mm0,mm3 ; mm0=data6=(06 16) pfsub mm2,mm3 ; mm2=tmp5 movq mm1,[GOTOFF(ebx,PD_RNDINT_MAGIC)] ; mm1=[PD_RNDINT_MAGIC] pcmpeqd mm3,mm3 psrld mm3,WORD_BIT ; mm3={0xFFFF 0x0000 0xFFFF 0x0000} pfadd mm6,mm1 ; mm6=roundint(data0/8)=(00 ** 10 **) pfadd mm7,mm1 ; mm7=roundint(data1/8)=(01 ** 11 **) pfadd mm0,mm1 ; mm0=roundint(data6/8)=(06 ** 16 **) pfadd mm5,mm1 ; mm5=roundint(data7/8)=(07 ** 17 **) pand mm6,mm3 ; mm6=(00 -- 10 --) pslld mm7,WORD_BIT ; mm7=(-- 01 -- 11) pand mm0,mm3 ; mm0=(06 -- 16 --) pslld mm5,WORD_BIT ; mm5=(-- 07 -- 17) por mm6,mm7 ; mm6=(00 01 10 11) por mm0,mm5 ; mm0=(06 07 16 17) movq mm1, MMWORD [wk(0)] ; mm1=tmp2 movq mm3, MMWORD [wk(1)] ; mm3=tmp3 pfadd mm4,mm2 ; mm4=tmp4 movq mm7,mm1 movq mm5,mm3 pfadd mm1,mm2 ; mm1=data2=(02 12) pfadd mm3,mm4 ; mm3=data4=(04 14) pfsub mm7,mm2 ; mm7=data5=(05 15) pfsub mm5,mm4 ; mm5=data3=(03 13) movq mm2,[GOTOFF(ebx,PD_RNDINT_MAGIC)] ; mm2=[PD_RNDINT_MAGIC] pcmpeqd mm4,mm4 psrld mm4,WORD_BIT ; mm4={0xFFFF 0x0000 0xFFFF 0x0000} pfadd mm3,mm2 ; mm3=roundint(data4/8)=(04 ** 14 **) pfadd mm7,mm2 ; mm7=roundint(data5/8)=(05 ** 15 **) pfadd mm1,mm2 ; mm1=roundint(data2/8)=(02 ** 12 **) pfadd mm5,mm2 ; mm5=roundint(data3/8)=(03 ** 13 **) pand mm3,mm4 ; mm3=(04 -- 14 --) pslld mm7,WORD_BIT ; mm7=(-- 05 -- 15) pand mm1,mm4 ; mm1=(02 -- 12 --) pslld mm5,WORD_BIT ; mm5=(-- 03 -- 13) por mm3,mm7 ; mm3=(04 05 14 15) por mm1,mm5 ; mm1=(02 03 12 13) movq mm2,[GOTOFF(ebx,PB_CENTERJSAMP)] ; mm2=[PB_CENTERJSAMP] packsswb mm6,mm3 ; mm6=(00 01 10 11 04 05 14 15) packsswb mm1,mm0 ; mm1=(02 03 12 13 06 07 16 17) paddb mm6,mm2 paddb mm1,mm2 movq mm4,mm6 ; transpose coefficients(phase 2) punpcklwd mm6,mm1 ; mm6=(00 01 02 03 10 11 12 13) punpckhwd mm4,mm1 ; mm4=(04 05 06 07 14 15 16 17) movq mm7,mm6 ; transpose coefficients(phase 3) punpckldq mm6,mm4 ; mm6=(00 01 02 03 04 05 06 07) punpckhdq mm7,mm4 ; mm7=(10 11 12 13 14 15 16 17) pushpic ebx ; save GOT address mov edx, JSAMPROW [edi+0*SIZEOF_JSAMPROW] mov ebx, JSAMPROW [edi+1*SIZEOF_JSAMPROW] movq MMWORD [edx+eax*SIZEOF_JSAMPLE], mm6 movq MMWORD [ebx+eax*SIZEOF_JSAMPLE], mm7 poppic ebx ; restore GOT address add esi, byte 2*SIZEOF_FAST_FLOAT ; wsptr add edi, byte 2*SIZEOF_JSAMPROW dec ecx ; ctr jnz near .rowloop femms ; empty MMX/3DNow! state pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; need not be preserved pop ebx mov esp,ebp ; esp <- aligned ebp pop esp ; esp <- original ebp pop ebp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 16 libjpeg-turbo-1.4.2/simd/jquanti-sse2.asm0000644000076500007650000001622612600050400015173 00000000000000; ; jquanti.asm - sample data conversion and quantization (SSE2) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; ; Based on ; x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; [TAB8] %include "jsimdext.inc" %include "jdct.inc" ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 32 ; ; Load data into workspace, applying unsigned->signed conversion ; ; GLOBAL(void) ; jsimd_convsamp_sse2 (JSAMPARRAY sample_data, JDIMENSION start_col, ; DCTELEM * workspace); ; %define sample_data ebp+8 ; JSAMPARRAY sample_data %define start_col ebp+12 ; JDIMENSION start_col %define workspace ebp+16 ; DCTELEM * workspace align 16 global EXTN(jsimd_convsamp_sse2) EXTN(jsimd_convsamp_sse2): push ebp mov ebp,esp push ebx ; push ecx ; need not be preserved ; push edx ; need not be preserved push esi push edi pxor xmm6,xmm6 ; xmm6=(all 0's) pcmpeqw xmm7,xmm7 psllw xmm7,7 ; xmm7={0xFF80 0xFF80 0xFF80 0xFF80 ..} mov esi, JSAMPARRAY [sample_data] ; (JSAMPROW *) mov eax, JDIMENSION [start_col] mov edi, POINTER [workspace] ; (DCTELEM *) mov ecx, DCTSIZE/4 alignx 16,7 .convloop: mov ebx, JSAMPROW [esi+0*SIZEOF_JSAMPROW] ; (JSAMPLE *) mov edx, JSAMPROW [esi+1*SIZEOF_JSAMPROW] ; (JSAMPLE *) movq xmm0, XMM_MMWORD [ebx+eax*SIZEOF_JSAMPLE] ; xmm0=(01234567) movq xmm1, XMM_MMWORD [edx+eax*SIZEOF_JSAMPLE] ; xmm1=(89ABCDEF) mov ebx, JSAMPROW [esi+2*SIZEOF_JSAMPROW] ; (JSAMPLE *) mov edx, JSAMPROW [esi+3*SIZEOF_JSAMPROW] ; (JSAMPLE *) movq xmm2, XMM_MMWORD [ebx+eax*SIZEOF_JSAMPLE] ; xmm2=(GHIJKLMN) movq xmm3, XMM_MMWORD [edx+eax*SIZEOF_JSAMPLE] ; xmm3=(OPQRSTUV) punpcklbw xmm0,xmm6 ; xmm0=(01234567) punpcklbw xmm1,xmm6 ; xmm1=(89ABCDEF) paddw xmm0,xmm7 paddw xmm1,xmm7 punpcklbw xmm2,xmm6 ; xmm2=(GHIJKLMN) punpcklbw xmm3,xmm6 ; xmm3=(OPQRSTUV) paddw xmm2,xmm7 paddw xmm3,xmm7 movdqa XMMWORD [XMMBLOCK(0,0,edi,SIZEOF_DCTELEM)], xmm0 movdqa XMMWORD [XMMBLOCK(1,0,edi,SIZEOF_DCTELEM)], xmm1 movdqa XMMWORD [XMMBLOCK(2,0,edi,SIZEOF_DCTELEM)], xmm2 movdqa XMMWORD [XMMBLOCK(3,0,edi,SIZEOF_DCTELEM)], xmm3 add esi, byte 4*SIZEOF_JSAMPROW add edi, byte 4*DCTSIZE*SIZEOF_DCTELEM dec ecx jnz short .convloop pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; need not be preserved pop ebx pop ebp ret ; -------------------------------------------------------------------------- ; ; Quantize/descale the coefficients, and store into coef_block ; ; This implementation is based on an algorithm described in ; "How to optimize for the Pentium family of microprocessors" ; (http://www.agner.org/assem/). ; ; GLOBAL(void) ; jsimd_quantize_sse2 (JCOEFPTR coef_block, DCTELEM * divisors, ; DCTELEM * workspace); ; %define RECIPROCAL(m,n,b) XMMBLOCK(DCTSIZE*0+(m),(n),(b),SIZEOF_DCTELEM) %define CORRECTION(m,n,b) XMMBLOCK(DCTSIZE*1+(m),(n),(b),SIZEOF_DCTELEM) %define SCALE(m,n,b) XMMBLOCK(DCTSIZE*2+(m),(n),(b),SIZEOF_DCTELEM) %define coef_block ebp+8 ; JCOEFPTR coef_block %define divisors ebp+12 ; DCTELEM * divisors %define workspace ebp+16 ; DCTELEM * workspace align 16 global EXTN(jsimd_quantize_sse2) EXTN(jsimd_quantize_sse2): push ebp mov ebp,esp ; push ebx ; unused ; push ecx ; unused ; push edx ; need not be preserved push esi push edi mov esi, POINTER [workspace] mov edx, POINTER [divisors] mov edi, JCOEFPTR [coef_block] mov eax, DCTSIZE2/32 alignx 16,7 .quantloop: movdqa xmm4, XMMWORD [XMMBLOCK(0,0,esi,SIZEOF_DCTELEM)] movdqa xmm5, XMMWORD [XMMBLOCK(1,0,esi,SIZEOF_DCTELEM)] movdqa xmm6, XMMWORD [XMMBLOCK(2,0,esi,SIZEOF_DCTELEM)] movdqa xmm7, XMMWORD [XMMBLOCK(3,0,esi,SIZEOF_DCTELEM)] movdqa xmm0,xmm4 movdqa xmm1,xmm5 movdqa xmm2,xmm6 movdqa xmm3,xmm7 psraw xmm4,(WORD_BIT-1) psraw xmm5,(WORD_BIT-1) psraw xmm6,(WORD_BIT-1) psraw xmm7,(WORD_BIT-1) pxor xmm0,xmm4 pxor xmm1,xmm5 pxor xmm2,xmm6 pxor xmm3,xmm7 psubw xmm0,xmm4 ; if (xmm0 < 0) xmm0 = -xmm0; psubw xmm1,xmm5 ; if (xmm1 < 0) xmm1 = -xmm1; psubw xmm2,xmm6 ; if (xmm2 < 0) xmm2 = -xmm2; psubw xmm3,xmm7 ; if (xmm3 < 0) xmm3 = -xmm3; paddw xmm0, XMMWORD [CORRECTION(0,0,edx)] ; correction + roundfactor paddw xmm1, XMMWORD [CORRECTION(1,0,edx)] paddw xmm2, XMMWORD [CORRECTION(2,0,edx)] paddw xmm3, XMMWORD [CORRECTION(3,0,edx)] pmulhuw xmm0, XMMWORD [RECIPROCAL(0,0,edx)] ; reciprocal pmulhuw xmm1, XMMWORD [RECIPROCAL(1,0,edx)] pmulhuw xmm2, XMMWORD [RECIPROCAL(2,0,edx)] pmulhuw xmm3, XMMWORD [RECIPROCAL(3,0,edx)] pmulhuw xmm0, XMMWORD [SCALE(0,0,edx)] ; scale pmulhuw xmm1, XMMWORD [SCALE(1,0,edx)] pmulhuw xmm2, XMMWORD [SCALE(2,0,edx)] pmulhuw xmm3, XMMWORD [SCALE(3,0,edx)] pxor xmm0,xmm4 pxor xmm1,xmm5 pxor xmm2,xmm6 pxor xmm3,xmm7 psubw xmm0,xmm4 psubw xmm1,xmm5 psubw xmm2,xmm6 psubw xmm3,xmm7 movdqa XMMWORD [XMMBLOCK(0,0,edi,SIZEOF_DCTELEM)], xmm0 movdqa XMMWORD [XMMBLOCK(1,0,edi,SIZEOF_DCTELEM)], xmm1 movdqa XMMWORD [XMMBLOCK(2,0,edi,SIZEOF_DCTELEM)], xmm2 movdqa XMMWORD [XMMBLOCK(3,0,edi,SIZEOF_DCTELEM)], xmm3 add esi, byte 32*SIZEOF_DCTELEM add edx, byte 32*SIZEOF_DCTELEM add edi, byte 32*SIZEOF_JCOEF dec eax jnz near .quantloop pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; unused ; pop ebx ; unused pop ebp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 16 libjpeg-turbo-1.4.2/simd/jdmrgext-sse2-64.asm0000644000076500007650000004753012600050400015575 00000000000000; ; jdmrgext.asm - merged upsampling/color conversion (64-bit SSE2) ; ; Copyright 2009, 2012 Pierre Ossman for Cendio AB ; Copyright 2009, 2012 D. R. Commander ; ; Based on ; x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; [TAB8] %include "jcolsamp.inc" ; -------------------------------------------------------------------------- ; ; Upsample and color convert for the case of 2:1 horizontal and 1:1 vertical. ; ; GLOBAL(void) ; jsimd_h2v1_merged_upsample_sse2 (JDIMENSION output_width, ; JSAMPIMAGE input_buf, ; JDIMENSION in_row_group_ctr, ; JSAMPARRAY output_buf); ; ; r10 = JDIMENSION output_width ; r11 = JSAMPIMAGE input_buf ; r12 = JDIMENSION in_row_group_ctr ; r13 = JSAMPARRAY output_buf %define wk(i) rbp-(WK_NUM-(i))*SIZEOF_XMMWORD ; xmmword wk[WK_NUM] %define WK_NUM 3 align 16 global EXTN(jsimd_h2v1_merged_upsample_sse2) EXTN(jsimd_h2v1_merged_upsample_sse2): push rbp mov rax,rsp ; rax = original rbp sub rsp, byte 4 and rsp, byte (-SIZEOF_XMMWORD) ; align to 128 bits mov [rsp],rax mov rbp,rsp ; rbp = aligned rbp lea rsp, [wk(0)] collect_args push rbx mov ecx, r10d ; col test rcx,rcx jz near .return push rcx mov rdi, r11 mov ecx, r12d mov rsi, JSAMPARRAY [rdi+0*SIZEOF_JSAMPARRAY] mov rbx, JSAMPARRAY [rdi+1*SIZEOF_JSAMPARRAY] mov rdx, JSAMPARRAY [rdi+2*SIZEOF_JSAMPARRAY] mov rdi, r13 mov rsi, JSAMPROW [rsi+rcx*SIZEOF_JSAMPROW] ; inptr0 mov rbx, JSAMPROW [rbx+rcx*SIZEOF_JSAMPROW] ; inptr1 mov rdx, JSAMPROW [rdx+rcx*SIZEOF_JSAMPROW] ; inptr2 mov rdi, JSAMPROW [rdi] ; outptr pop rcx ; col .columnloop: movdqa xmm6, XMMWORD [rbx] ; xmm6=Cb(0123456789ABCDEF) movdqa xmm7, XMMWORD [rdx] ; xmm7=Cr(0123456789ABCDEF) pxor xmm1,xmm1 ; xmm1=(all 0's) pcmpeqw xmm3,xmm3 psllw xmm3,7 ; xmm3={0xFF80 0xFF80 0xFF80 0xFF80 ..} movdqa xmm4,xmm6 punpckhbw xmm6,xmm1 ; xmm6=Cb(89ABCDEF)=CbH punpcklbw xmm4,xmm1 ; xmm4=Cb(01234567)=CbL movdqa xmm0,xmm7 punpckhbw xmm7,xmm1 ; xmm7=Cr(89ABCDEF)=CrH punpcklbw xmm0,xmm1 ; xmm0=Cr(01234567)=CrL paddw xmm6,xmm3 paddw xmm4,xmm3 paddw xmm7,xmm3 paddw xmm0,xmm3 ; (Original) ; R = Y + 1.40200 * Cr ; G = Y - 0.34414 * Cb - 0.71414 * Cr ; B = Y + 1.77200 * Cb ; ; (This implementation) ; R = Y + 0.40200 * Cr + Cr ; G = Y - 0.34414 * Cb + 0.28586 * Cr - Cr ; B = Y - 0.22800 * Cb + Cb + Cb movdqa xmm5,xmm6 ; xmm5=CbH movdqa xmm2,xmm4 ; xmm2=CbL paddw xmm6,xmm6 ; xmm6=2*CbH paddw xmm4,xmm4 ; xmm4=2*CbL movdqa xmm1,xmm7 ; xmm1=CrH movdqa xmm3,xmm0 ; xmm3=CrL paddw xmm7,xmm7 ; xmm7=2*CrH paddw xmm0,xmm0 ; xmm0=2*CrL pmulhw xmm6,[rel PW_MF0228] ; xmm6=(2*CbH * -FIX(0.22800)) pmulhw xmm4,[rel PW_MF0228] ; xmm4=(2*CbL * -FIX(0.22800)) pmulhw xmm7,[rel PW_F0402] ; xmm7=(2*CrH * FIX(0.40200)) pmulhw xmm0,[rel PW_F0402] ; xmm0=(2*CrL * FIX(0.40200)) paddw xmm6,[rel PW_ONE] paddw xmm4,[rel PW_ONE] psraw xmm6,1 ; xmm6=(CbH * -FIX(0.22800)) psraw xmm4,1 ; xmm4=(CbL * -FIX(0.22800)) paddw xmm7,[rel PW_ONE] paddw xmm0,[rel PW_ONE] psraw xmm7,1 ; xmm7=(CrH * FIX(0.40200)) psraw xmm0,1 ; xmm0=(CrL * FIX(0.40200)) paddw xmm6,xmm5 paddw xmm4,xmm2 paddw xmm6,xmm5 ; xmm6=(CbH * FIX(1.77200))=(B-Y)H paddw xmm4,xmm2 ; xmm4=(CbL * FIX(1.77200))=(B-Y)L paddw xmm7,xmm1 ; xmm7=(CrH * FIX(1.40200))=(R-Y)H paddw xmm0,xmm3 ; xmm0=(CrL * FIX(1.40200))=(R-Y)L movdqa XMMWORD [wk(0)], xmm6 ; wk(0)=(B-Y)H movdqa XMMWORD [wk(1)], xmm7 ; wk(1)=(R-Y)H movdqa xmm6,xmm5 movdqa xmm7,xmm2 punpcklwd xmm5,xmm1 punpckhwd xmm6,xmm1 pmaddwd xmm5,[rel PW_MF0344_F0285] pmaddwd xmm6,[rel PW_MF0344_F0285] punpcklwd xmm2,xmm3 punpckhwd xmm7,xmm3 pmaddwd xmm2,[rel PW_MF0344_F0285] pmaddwd xmm7,[rel PW_MF0344_F0285] paddd xmm5,[rel PD_ONEHALF] paddd xmm6,[rel PD_ONEHALF] psrad xmm5,SCALEBITS psrad xmm6,SCALEBITS paddd xmm2,[rel PD_ONEHALF] paddd xmm7,[rel PD_ONEHALF] psrad xmm2,SCALEBITS psrad xmm7,SCALEBITS packssdw xmm5,xmm6 ; xmm5=CbH*-FIX(0.344)+CrH*FIX(0.285) packssdw xmm2,xmm7 ; xmm2=CbL*-FIX(0.344)+CrL*FIX(0.285) psubw xmm5,xmm1 ; xmm5=CbH*-FIX(0.344)+CrH*-FIX(0.714)=(G-Y)H psubw xmm2,xmm3 ; xmm2=CbL*-FIX(0.344)+CrL*-FIX(0.714)=(G-Y)L movdqa XMMWORD [wk(2)], xmm5 ; wk(2)=(G-Y)H mov al,2 ; Yctr jmp short .Yloop_1st .Yloop_2nd: movdqa xmm0, XMMWORD [wk(1)] ; xmm0=(R-Y)H movdqa xmm2, XMMWORD [wk(2)] ; xmm2=(G-Y)H movdqa xmm4, XMMWORD [wk(0)] ; xmm4=(B-Y)H .Yloop_1st: movdqa xmm7, XMMWORD [rsi] ; xmm7=Y(0123456789ABCDEF) pcmpeqw xmm6,xmm6 psrlw xmm6,BYTE_BIT ; xmm6={0xFF 0x00 0xFF 0x00 ..} pand xmm6,xmm7 ; xmm6=Y(02468ACE)=YE psrlw xmm7,BYTE_BIT ; xmm7=Y(13579BDF)=YO movdqa xmm1,xmm0 ; xmm1=xmm0=(R-Y)(L/H) movdqa xmm3,xmm2 ; xmm3=xmm2=(G-Y)(L/H) movdqa xmm5,xmm4 ; xmm5=xmm4=(B-Y)(L/H) paddw xmm0,xmm6 ; xmm0=((R-Y)+YE)=RE=R(02468ACE) paddw xmm1,xmm7 ; xmm1=((R-Y)+YO)=RO=R(13579BDF) packuswb xmm0,xmm0 ; xmm0=R(02468ACE********) packuswb xmm1,xmm1 ; xmm1=R(13579BDF********) paddw xmm2,xmm6 ; xmm2=((G-Y)+YE)=GE=G(02468ACE) paddw xmm3,xmm7 ; xmm3=((G-Y)+YO)=GO=G(13579BDF) packuswb xmm2,xmm2 ; xmm2=G(02468ACE********) packuswb xmm3,xmm3 ; xmm3=G(13579BDF********) paddw xmm4,xmm6 ; xmm4=((B-Y)+YE)=BE=B(02468ACE) paddw xmm5,xmm7 ; xmm5=((B-Y)+YO)=BO=B(13579BDF) packuswb xmm4,xmm4 ; xmm4=B(02468ACE********) packuswb xmm5,xmm5 ; xmm5=B(13579BDF********) %if RGB_PIXELSIZE == 3 ; --------------- ; xmmA=(00 02 04 06 08 0A 0C 0E **), xmmB=(01 03 05 07 09 0B 0D 0F **) ; xmmC=(10 12 14 16 18 1A 1C 1E **), xmmD=(11 13 15 17 19 1B 1D 1F **) ; xmmE=(20 22 24 26 28 2A 2C 2E **), xmmF=(21 23 25 27 29 2B 2D 2F **) ; xmmG=(** ** ** ** ** ** ** ** **), xmmH=(** ** ** ** ** ** ** ** **) punpcklbw xmmA,xmmC ; xmmA=(00 10 02 12 04 14 06 16 08 18 0A 1A 0C 1C 0E 1E) punpcklbw xmmE,xmmB ; xmmE=(20 01 22 03 24 05 26 07 28 09 2A 0B 2C 0D 2E 0F) punpcklbw xmmD,xmmF ; xmmD=(11 21 13 23 15 25 17 27 19 29 1B 2B 1D 2D 1F 2F) movdqa xmmG,xmmA movdqa xmmH,xmmA punpcklwd xmmA,xmmE ; xmmA=(00 10 20 01 02 12 22 03 04 14 24 05 06 16 26 07) punpckhwd xmmG,xmmE ; xmmG=(08 18 28 09 0A 1A 2A 0B 0C 1C 2C 0D 0E 1E 2E 0F) psrldq xmmH,2 ; xmmH=(02 12 04 14 06 16 08 18 0A 1A 0C 1C 0E 1E -- --) psrldq xmmE,2 ; xmmE=(22 03 24 05 26 07 28 09 2A 0B 2C 0D 2E 0F -- --) movdqa xmmC,xmmD movdqa xmmB,xmmD punpcklwd xmmD,xmmH ; xmmD=(11 21 02 12 13 23 04 14 15 25 06 16 17 27 08 18) punpckhwd xmmC,xmmH ; xmmC=(19 29 0A 1A 1B 2B 0C 1C 1D 2D 0E 1E 1F 2F -- --) psrldq xmmB,2 ; xmmB=(13 23 15 25 17 27 19 29 1B 2B 1D 2D 1F 2F -- --) movdqa xmmF,xmmE punpcklwd xmmE,xmmB ; xmmE=(22 03 13 23 24 05 15 25 26 07 17 27 28 09 19 29) punpckhwd xmmF,xmmB ; xmmF=(2A 0B 1B 2B 2C 0D 1D 2D 2E 0F 1F 2F -- -- -- --) pshufd xmmH,xmmA,0x4E; xmmH=(04 14 24 05 06 16 26 07 00 10 20 01 02 12 22 03) movdqa xmmB,xmmE punpckldq xmmA,xmmD ; xmmA=(00 10 20 01 11 21 02 12 02 12 22 03 13 23 04 14) punpckldq xmmE,xmmH ; xmmE=(22 03 13 23 04 14 24 05 24 05 15 25 06 16 26 07) punpckhdq xmmD,xmmB ; xmmD=(15 25 06 16 26 07 17 27 17 27 08 18 28 09 19 29) pshufd xmmH,xmmG,0x4E; xmmH=(0C 1C 2C 0D 0E 1E 2E 0F 08 18 28 09 0A 1A 2A 0B) movdqa xmmB,xmmF punpckldq xmmG,xmmC ; xmmG=(08 18 28 09 19 29 0A 1A 0A 1A 2A 0B 1B 2B 0C 1C) punpckldq xmmF,xmmH ; xmmF=(2A 0B 1B 2B 0C 1C 2C 0D 2C 0D 1D 2D 0E 1E 2E 0F) punpckhdq xmmC,xmmB ; xmmC=(1D 2D 0E 1E 2E 0F 1F 2F 1F 2F -- -- -- -- -- --) punpcklqdq xmmA,xmmE ; xmmA=(00 10 20 01 11 21 02 12 22 03 13 23 04 14 24 05) punpcklqdq xmmD,xmmG ; xmmD=(15 25 06 16 26 07 17 27 08 18 28 09 19 29 0A 1A) punpcklqdq xmmF,xmmC ; xmmF=(2A 0B 1B 2B 0C 1C 2C 0D 1D 2D 0E 1E 2E 0F 1F 2F) cmp rcx, byte SIZEOF_XMMWORD jb short .column_st32 test rdi, SIZEOF_XMMWORD-1 jnz short .out1 ; --(aligned)------------------- movntdq XMMWORD [rdi+0*SIZEOF_XMMWORD], xmmA movntdq XMMWORD [rdi+1*SIZEOF_XMMWORD], xmmD movntdq XMMWORD [rdi+2*SIZEOF_XMMWORD], xmmF jmp short .out0 .out1: ; --(unaligned)----------------- movdqu XMMWORD [rdi+0*SIZEOF_XMMWORD], xmmA movdqu XMMWORD [rdi+1*SIZEOF_XMMWORD], xmmD movdqu XMMWORD [rdi+2*SIZEOF_XMMWORD], xmmF .out0: add rdi, byte RGB_PIXELSIZE*SIZEOF_XMMWORD ; outptr sub rcx, byte SIZEOF_XMMWORD jz near .endcolumn add rsi, byte SIZEOF_XMMWORD ; inptr0 dec al ; Yctr jnz near .Yloop_2nd add rbx, byte SIZEOF_XMMWORD ; inptr1 add rdx, byte SIZEOF_XMMWORD ; inptr2 jmp near .columnloop .column_st32: lea rcx, [rcx+rcx*2] ; imul ecx, RGB_PIXELSIZE cmp rcx, byte 2*SIZEOF_XMMWORD jb short .column_st16 movdqu XMMWORD [rdi+0*SIZEOF_XMMWORD], xmmA movdqu XMMWORD [rdi+1*SIZEOF_XMMWORD], xmmD add rdi, byte 2*SIZEOF_XMMWORD ; outptr movdqa xmmA,xmmF sub rcx, byte 2*SIZEOF_XMMWORD jmp short .column_st15 .column_st16: cmp rcx, byte SIZEOF_XMMWORD jb short .column_st15 movdqu XMMWORD [rdi+0*SIZEOF_XMMWORD], xmmA add rdi, byte SIZEOF_XMMWORD ; outptr movdqa xmmA,xmmD sub rcx, byte SIZEOF_XMMWORD .column_st15: ; Store the lower 8 bytes of xmmA to the output when it has enough ; space. cmp rcx, byte SIZEOF_MMWORD jb short .column_st7 movq XMM_MMWORD [rdi], xmmA add rdi, byte SIZEOF_MMWORD sub rcx, byte SIZEOF_MMWORD psrldq xmmA, SIZEOF_MMWORD .column_st7: ; Store the lower 4 bytes of xmmA to the output when it has enough ; space. cmp rcx, byte SIZEOF_DWORD jb short .column_st3 movd XMM_DWORD [rdi], xmmA add rdi, byte SIZEOF_DWORD sub rcx, byte SIZEOF_DWORD psrldq xmmA, SIZEOF_DWORD .column_st3: ; Store the lower 2 bytes of rax to the output when it has enough ; space. movd eax, xmmA cmp rcx, byte SIZEOF_WORD jb short .column_st1 mov WORD [rdi], ax add rdi, byte SIZEOF_WORD sub rcx, byte SIZEOF_WORD shr rax, 16 .column_st1: ; Store the lower 1 byte of rax to the output when it has enough ; space. test rcx, rcx jz short .endcolumn mov BYTE [rdi], al %else ; RGB_PIXELSIZE == 4 ; ----------- %ifdef RGBX_FILLER_0XFF pcmpeqb xmm6,xmm6 ; xmm6=XE=X(02468ACE********) pcmpeqb xmm7,xmm7 ; xmm7=XO=X(13579BDF********) %else pxor xmm6,xmm6 ; xmm6=XE=X(02468ACE********) pxor xmm7,xmm7 ; xmm7=XO=X(13579BDF********) %endif ; xmmA=(00 02 04 06 08 0A 0C 0E **), xmmB=(01 03 05 07 09 0B 0D 0F **) ; xmmC=(10 12 14 16 18 1A 1C 1E **), xmmD=(11 13 15 17 19 1B 1D 1F **) ; xmmE=(20 22 24 26 28 2A 2C 2E **), xmmF=(21 23 25 27 29 2B 2D 2F **) ; xmmG=(30 32 34 36 38 3A 3C 3E **), xmmH=(31 33 35 37 39 3B 3D 3F **) punpcklbw xmmA,xmmC ; xmmA=(00 10 02 12 04 14 06 16 08 18 0A 1A 0C 1C 0E 1E) punpcklbw xmmE,xmmG ; xmmE=(20 30 22 32 24 34 26 36 28 38 2A 3A 2C 3C 2E 3E) punpcklbw xmmB,xmmD ; xmmB=(01 11 03 13 05 15 07 17 09 19 0B 1B 0D 1D 0F 1F) punpcklbw xmmF,xmmH ; xmmF=(21 31 23 33 25 35 27 37 29 39 2B 3B 2D 3D 2F 3F) movdqa xmmC,xmmA punpcklwd xmmA,xmmE ; xmmA=(00 10 20 30 02 12 22 32 04 14 24 34 06 16 26 36) punpckhwd xmmC,xmmE ; xmmC=(08 18 28 38 0A 1A 2A 3A 0C 1C 2C 3C 0E 1E 2E 3E) movdqa xmmG,xmmB punpcklwd xmmB,xmmF ; xmmB=(01 11 21 31 03 13 23 33 05 15 25 35 07 17 27 37) punpckhwd xmmG,xmmF ; xmmG=(09 19 29 39 0B 1B 2B 3B 0D 1D 2D 3D 0F 1F 2F 3F) movdqa xmmD,xmmA punpckldq xmmA,xmmB ; xmmA=(00 10 20 30 01 11 21 31 02 12 22 32 03 13 23 33) punpckhdq xmmD,xmmB ; xmmD=(04 14 24 34 05 15 25 35 06 16 26 36 07 17 27 37) movdqa xmmH,xmmC punpckldq xmmC,xmmG ; xmmC=(08 18 28 38 09 19 29 39 0A 1A 2A 3A 0B 1B 2B 3B) punpckhdq xmmH,xmmG ; xmmH=(0C 1C 2C 3C 0D 1D 2D 3D 0E 1E 2E 3E 0F 1F 2F 3F) cmp rcx, byte SIZEOF_XMMWORD jb short .column_st32 test rdi, SIZEOF_XMMWORD-1 jnz short .out1 ; --(aligned)------------------- movntdq XMMWORD [rdi+0*SIZEOF_XMMWORD], xmmA movntdq XMMWORD [rdi+1*SIZEOF_XMMWORD], xmmD movntdq XMMWORD [rdi+2*SIZEOF_XMMWORD], xmmC movntdq XMMWORD [rdi+3*SIZEOF_XMMWORD], xmmH jmp short .out0 .out1: ; --(unaligned)----------------- movdqu XMMWORD [rdi+0*SIZEOF_XMMWORD], xmmA movdqu XMMWORD [rdi+1*SIZEOF_XMMWORD], xmmD movdqu XMMWORD [rdi+2*SIZEOF_XMMWORD], xmmC movdqu XMMWORD [rdi+3*SIZEOF_XMMWORD], xmmH .out0: add rdi, byte RGB_PIXELSIZE*SIZEOF_XMMWORD ; outptr sub rcx, byte SIZEOF_XMMWORD jz near .endcolumn add rsi, byte SIZEOF_XMMWORD ; inptr0 dec al ; Yctr jnz near .Yloop_2nd add rbx, byte SIZEOF_XMMWORD ; inptr1 add rdx, byte SIZEOF_XMMWORD ; inptr2 jmp near .columnloop .column_st32: cmp rcx, byte SIZEOF_XMMWORD/2 jb short .column_st16 movdqu XMMWORD [rdi+0*SIZEOF_XMMWORD], xmmA movdqu XMMWORD [rdi+1*SIZEOF_XMMWORD], xmmD add rdi, byte 2*SIZEOF_XMMWORD ; outptr movdqa xmmA,xmmC movdqa xmmD,xmmH sub rcx, byte SIZEOF_XMMWORD/2 .column_st16: cmp rcx, byte SIZEOF_XMMWORD/4 jb short .column_st15 movdqu XMMWORD [rdi+0*SIZEOF_XMMWORD], xmmA add rdi, byte SIZEOF_XMMWORD ; outptr movdqa xmmA,xmmD sub rcx, byte SIZEOF_XMMWORD/4 .column_st15: ; Store two pixels (8 bytes) of xmmA to the output when it has enough ; space. cmp rcx, byte SIZEOF_XMMWORD/8 jb short .column_st7 movq XMM_MMWORD [rdi], xmmA add rdi, byte SIZEOF_XMMWORD/8*4 sub rcx, byte SIZEOF_XMMWORD/8 psrldq xmmA, SIZEOF_XMMWORD/8*4 .column_st7: ; Store one pixel (4 bytes) of xmmA to the output when it has enough ; space. test rcx, rcx jz short .endcolumn movd XMM_DWORD [rdi], xmmA %endif ; RGB_PIXELSIZE ; --------------- .endcolumn: sfence ; flush the write buffer .return: pop rbx uncollect_args mov rsp,rbp ; rsp <- aligned rbp pop rsp ; rsp <- original rbp pop rbp ret ; -------------------------------------------------------------------------- ; ; Upsample and color convert for the case of 2:1 horizontal and 2:1 vertical. ; ; GLOBAL(void) ; jsimd_h2v2_merged_upsample_sse2 (JDIMENSION output_width, ; JSAMPIMAGE input_buf, ; JDIMENSION in_row_group_ctr, ; JSAMPARRAY output_buf); ; ; r10 = JDIMENSION output_width ; r11 = JSAMPIMAGE input_buf ; r12 = JDIMENSION in_row_group_ctr ; r13 = JSAMPARRAY output_buf align 16 global EXTN(jsimd_h2v2_merged_upsample_sse2) EXTN(jsimd_h2v2_merged_upsample_sse2): push rbp mov rax,rsp mov rbp,rsp collect_args push rbx mov eax, r10d mov rdi, r11 mov ecx, r12d mov rsi, JSAMPARRAY [rdi+0*SIZEOF_JSAMPARRAY] mov rbx, JSAMPARRAY [rdi+1*SIZEOF_JSAMPARRAY] mov rdx, JSAMPARRAY [rdi+2*SIZEOF_JSAMPARRAY] mov rdi, r13 lea rsi, [rsi+rcx*SIZEOF_JSAMPROW] push rdx ; inptr2 push rbx ; inptr1 push rsi ; inptr00 mov rbx,rsp push rdi push rcx push rax %ifdef WIN64 mov r8, rcx mov r9, rdi mov rcx, rax mov rdx, rbx %else mov rdx, rcx mov rcx, rdi mov rdi, rax mov rsi, rbx %endif call EXTN(jsimd_h2v1_merged_upsample_sse2) pop rax pop rcx pop rdi pop rsi pop rbx pop rdx add rdi, byte SIZEOF_JSAMPROW ; outptr1 add rsi, byte SIZEOF_JSAMPROW ; inptr01 push rdx ; inptr2 push rbx ; inptr1 push rsi ; inptr00 mov rbx,rsp push rdi push rcx push rax %ifdef WIN64 mov r8, rcx mov r9, rdi mov rcx, rax mov rdx, rbx %else mov rdx, rcx mov rcx, rdi mov rdi, rax mov rsi, rbx %endif call EXTN(jsimd_h2v1_merged_upsample_sse2) pop rax pop rcx pop rdi pop rsi pop rbx pop rdx pop rbx uncollect_args pop rbp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 16 libjpeg-turbo-1.4.2/simd/jdcolor-sse2.asm0000644000076500007650000000672312600050400015155 00000000000000; ; jdcolor.asm - colorspace conversion (SSE2) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; Copyright 2009 D. R. Commander ; ; Based on ; x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; [TAB8] %include "jsimdext.inc" ; -------------------------------------------------------------------------- %define SCALEBITS 16 F_0_344 equ 22554 ; FIX(0.34414) F_0_714 equ 46802 ; FIX(0.71414) F_1_402 equ 91881 ; FIX(1.40200) F_1_772 equ 116130 ; FIX(1.77200) F_0_402 equ (F_1_402 - 65536) ; FIX(1.40200) - FIX(1) F_0_285 equ ( 65536 - F_0_714) ; FIX(1) - FIX(0.71414) F_0_228 equ (131072 - F_1_772) ; FIX(2) - FIX(1.77200) ; -------------------------------------------------------------------------- SECTION SEG_CONST alignz 16 global EXTN(jconst_ycc_rgb_convert_sse2) EXTN(jconst_ycc_rgb_convert_sse2): PW_F0402 times 8 dw F_0_402 PW_MF0228 times 8 dw -F_0_228 PW_MF0344_F0285 times 4 dw -F_0_344, F_0_285 PW_ONE times 8 dw 1 PD_ONEHALF times 4 dd 1 << (SCALEBITS-1) alignz 16 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 32 %include "jdcolext-sse2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_RGB_RED %define RGB_GREEN EXT_RGB_GREEN %define RGB_BLUE EXT_RGB_BLUE %define RGB_PIXELSIZE EXT_RGB_PIXELSIZE %define jsimd_ycc_rgb_convert_sse2 jsimd_ycc_extrgb_convert_sse2 %include "jdcolext-sse2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_RGBX_RED %define RGB_GREEN EXT_RGBX_GREEN %define RGB_BLUE EXT_RGBX_BLUE %define RGB_PIXELSIZE EXT_RGBX_PIXELSIZE %define jsimd_ycc_rgb_convert_sse2 jsimd_ycc_extrgbx_convert_sse2 %include "jdcolext-sse2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_BGR_RED %define RGB_GREEN EXT_BGR_GREEN %define RGB_BLUE EXT_BGR_BLUE %define RGB_PIXELSIZE EXT_BGR_PIXELSIZE %define jsimd_ycc_rgb_convert_sse2 jsimd_ycc_extbgr_convert_sse2 %include "jdcolext-sse2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_BGRX_RED %define RGB_GREEN EXT_BGRX_GREEN %define RGB_BLUE EXT_BGRX_BLUE %define RGB_PIXELSIZE EXT_BGRX_PIXELSIZE %define jsimd_ycc_rgb_convert_sse2 jsimd_ycc_extbgrx_convert_sse2 %include "jdcolext-sse2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_XBGR_RED %define RGB_GREEN EXT_XBGR_GREEN %define RGB_BLUE EXT_XBGR_BLUE %define RGB_PIXELSIZE EXT_XBGR_PIXELSIZE %define jsimd_ycc_rgb_convert_sse2 jsimd_ycc_extxbgr_convert_sse2 %include "jdcolext-sse2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_XRGB_RED %define RGB_GREEN EXT_XRGB_GREEN %define RGB_BLUE EXT_XRGB_BLUE %define RGB_PIXELSIZE EXT_XRGB_PIXELSIZE %define jsimd_ycc_rgb_convert_sse2 jsimd_ycc_extxrgb_convert_sse2 %include "jdcolext-sse2.asm" libjpeg-turbo-1.4.2/simd/jccolext-sse2.asm0000644000076500007650000004570312600050400015335 00000000000000; ; jccolext.asm - colorspace conversion (SSE2) ; ; x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; [TAB8] %include "jcolsamp.inc" ; -------------------------------------------------------------------------- ; ; Convert some rows of samples to the output colorspace. ; ; GLOBAL(void) ; jsimd_rgb_ycc_convert_sse2 (JDIMENSION img_width, ; JSAMPARRAY input_buf, JSAMPIMAGE output_buf, ; JDIMENSION output_row, int num_rows); ; %define img_width(b) (b)+8 ; JDIMENSION img_width %define input_buf(b) (b)+12 ; JSAMPARRAY input_buf %define output_buf(b) (b)+16 ; JSAMPIMAGE output_buf %define output_row(b) (b)+20 ; JDIMENSION output_row %define num_rows(b) (b)+24 ; int num_rows %define original_ebp ebp+0 %define wk(i) ebp-(WK_NUM-(i))*SIZEOF_XMMWORD ; xmmword wk[WK_NUM] %define WK_NUM 8 %define gotptr wk(0)-SIZEOF_POINTER ; void * gotptr align 16 global EXTN(jsimd_rgb_ycc_convert_sse2) EXTN(jsimd_rgb_ycc_convert_sse2): push ebp mov eax,esp ; eax = original ebp sub esp, byte 4 and esp, byte (-SIZEOF_XMMWORD) ; align to 128 bits mov [esp],eax mov ebp,esp ; ebp = aligned ebp lea esp, [wk(0)] pushpic eax ; make a room for GOT address push ebx ; push ecx ; need not be preserved ; push edx ; need not be preserved push esi push edi get_GOT ebx ; get GOT address movpic POINTER [gotptr], ebx ; save GOT address mov ecx, JDIMENSION [img_width(eax)] test ecx,ecx jz near .return push ecx mov esi, JSAMPIMAGE [output_buf(eax)] mov ecx, JDIMENSION [output_row(eax)] mov edi, JSAMPARRAY [esi+0*SIZEOF_JSAMPARRAY] mov ebx, JSAMPARRAY [esi+1*SIZEOF_JSAMPARRAY] mov edx, JSAMPARRAY [esi+2*SIZEOF_JSAMPARRAY] lea edi, [edi+ecx*SIZEOF_JSAMPROW] lea ebx, [ebx+ecx*SIZEOF_JSAMPROW] lea edx, [edx+ecx*SIZEOF_JSAMPROW] pop ecx mov esi, JSAMPARRAY [input_buf(eax)] mov eax, INT [num_rows(eax)] test eax,eax jle near .return alignx 16,7 .rowloop: pushpic eax push edx push ebx push edi push esi push ecx ; col mov esi, JSAMPROW [esi] ; inptr mov edi, JSAMPROW [edi] ; outptr0 mov ebx, JSAMPROW [ebx] ; outptr1 mov edx, JSAMPROW [edx] ; outptr2 movpic eax, POINTER [gotptr] ; load GOT address (eax) cmp ecx, byte SIZEOF_XMMWORD jae near .columnloop alignx 16,7 %if RGB_PIXELSIZE == 3 ; --------------- .column_ld1: push eax push edx lea ecx,[ecx+ecx*2] ; imul ecx,RGB_PIXELSIZE test cl, SIZEOF_BYTE jz short .column_ld2 sub ecx, byte SIZEOF_BYTE movzx eax, BYTE [esi+ecx] .column_ld2: test cl, SIZEOF_WORD jz short .column_ld4 sub ecx, byte SIZEOF_WORD movzx edx, WORD [esi+ecx] shl eax, WORD_BIT or eax,edx .column_ld4: movd xmmA,eax pop edx pop eax test cl, SIZEOF_DWORD jz short .column_ld8 sub ecx, byte SIZEOF_DWORD movd xmmF, XMM_DWORD [esi+ecx] pslldq xmmA, SIZEOF_DWORD por xmmA,xmmF .column_ld8: test cl, SIZEOF_MMWORD jz short .column_ld16 sub ecx, byte SIZEOF_MMWORD movq xmmB, XMM_MMWORD [esi+ecx] pslldq xmmA, SIZEOF_MMWORD por xmmA,xmmB .column_ld16: test cl, SIZEOF_XMMWORD jz short .column_ld32 movdqa xmmF,xmmA movdqu xmmA, XMMWORD [esi+0*SIZEOF_XMMWORD] mov ecx, SIZEOF_XMMWORD jmp short .rgb_ycc_cnv .column_ld32: test cl, 2*SIZEOF_XMMWORD mov ecx, SIZEOF_XMMWORD jz short .rgb_ycc_cnv movdqa xmmB,xmmA movdqu xmmA, XMMWORD [esi+0*SIZEOF_XMMWORD] movdqu xmmF, XMMWORD [esi+1*SIZEOF_XMMWORD] jmp short .rgb_ycc_cnv alignx 16,7 .columnloop: movdqu xmmA, XMMWORD [esi+0*SIZEOF_XMMWORD] movdqu xmmF, XMMWORD [esi+1*SIZEOF_XMMWORD] movdqu xmmB, XMMWORD [esi+2*SIZEOF_XMMWORD] .rgb_ycc_cnv: ; xmmA=(00 10 20 01 11 21 02 12 22 03 13 23 04 14 24 05) ; xmmF=(15 25 06 16 26 07 17 27 08 18 28 09 19 29 0A 1A) ; xmmB=(2A 0B 1B 2B 0C 1C 2C 0D 1D 2D 0E 1E 2E 0F 1F 2F) movdqa xmmG,xmmA pslldq xmmA,8 ; xmmA=(-- -- -- -- -- -- -- -- 00 10 20 01 11 21 02 12) psrldq xmmG,8 ; xmmG=(22 03 13 23 04 14 24 05 -- -- -- -- -- -- -- --) punpckhbw xmmA,xmmF ; xmmA=(00 08 10 18 20 28 01 09 11 19 21 29 02 0A 12 1A) pslldq xmmF,8 ; xmmF=(-- -- -- -- -- -- -- -- 15 25 06 16 26 07 17 27) punpcklbw xmmG,xmmB ; xmmG=(22 2A 03 0B 13 1B 23 2B 04 0C 14 1C 24 2C 05 0D) punpckhbw xmmF,xmmB ; xmmF=(15 1D 25 2D 06 0E 16 1E 26 2E 07 0F 17 1F 27 2F) movdqa xmmD,xmmA pslldq xmmA,8 ; xmmA=(-- -- -- -- -- -- -- -- 00 08 10 18 20 28 01 09) psrldq xmmD,8 ; xmmD=(11 19 21 29 02 0A 12 1A -- -- -- -- -- -- -- --) punpckhbw xmmA,xmmG ; xmmA=(00 04 08 0C 10 14 18 1C 20 24 28 2C 01 05 09 0D) pslldq xmmG,8 ; xmmG=(-- -- -- -- -- -- -- -- 22 2A 03 0B 13 1B 23 2B) punpcklbw xmmD,xmmF ; xmmD=(11 15 19 1D 21 25 29 2D 02 06 0A 0E 12 16 1A 1E) punpckhbw xmmG,xmmF ; xmmG=(22 26 2A 2E 03 07 0B 0F 13 17 1B 1F 23 27 2B 2F) movdqa xmmE,xmmA pslldq xmmA,8 ; xmmA=(-- -- -- -- -- -- -- -- 00 04 08 0C 10 14 18 1C) psrldq xmmE,8 ; xmmE=(20 24 28 2C 01 05 09 0D -- -- -- -- -- -- -- --) punpckhbw xmmA,xmmD ; xmmA=(00 02 04 06 08 0A 0C 0E 10 12 14 16 18 1A 1C 1E) pslldq xmmD,8 ; xmmD=(-- -- -- -- -- -- -- -- 11 15 19 1D 21 25 29 2D) punpcklbw xmmE,xmmG ; xmmE=(20 22 24 26 28 2A 2C 2E 01 03 05 07 09 0B 0D 0F) punpckhbw xmmD,xmmG ; xmmD=(11 13 15 17 19 1B 1D 1F 21 23 25 27 29 2B 2D 2F) pxor xmmH,xmmH movdqa xmmC,xmmA punpcklbw xmmA,xmmH ; xmmA=(00 02 04 06 08 0A 0C 0E) punpckhbw xmmC,xmmH ; xmmC=(10 12 14 16 18 1A 1C 1E) movdqa xmmB,xmmE punpcklbw xmmE,xmmH ; xmmE=(20 22 24 26 28 2A 2C 2E) punpckhbw xmmB,xmmH ; xmmB=(01 03 05 07 09 0B 0D 0F) movdqa xmmF,xmmD punpcklbw xmmD,xmmH ; xmmD=(11 13 15 17 19 1B 1D 1F) punpckhbw xmmF,xmmH ; xmmF=(21 23 25 27 29 2B 2D 2F) %else ; RGB_PIXELSIZE == 4 ; ----------- .column_ld1: test cl, SIZEOF_XMMWORD/16 jz short .column_ld2 sub ecx, byte SIZEOF_XMMWORD/16 movd xmmA, XMM_DWORD [esi+ecx*RGB_PIXELSIZE] .column_ld2: test cl, SIZEOF_XMMWORD/8 jz short .column_ld4 sub ecx, byte SIZEOF_XMMWORD/8 movq xmmE, XMM_MMWORD [esi+ecx*RGB_PIXELSIZE] pslldq xmmA, SIZEOF_MMWORD por xmmA,xmmE .column_ld4: test cl, SIZEOF_XMMWORD/4 jz short .column_ld8 sub ecx, byte SIZEOF_XMMWORD/4 movdqa xmmE,xmmA movdqu xmmA, XMMWORD [esi+ecx*RGB_PIXELSIZE] .column_ld8: test cl, SIZEOF_XMMWORD/2 mov ecx, SIZEOF_XMMWORD jz short .rgb_ycc_cnv movdqa xmmF,xmmA movdqa xmmH,xmmE movdqu xmmA, XMMWORD [esi+0*SIZEOF_XMMWORD] movdqu xmmE, XMMWORD [esi+1*SIZEOF_XMMWORD] jmp short .rgb_ycc_cnv alignx 16,7 .columnloop: movdqu xmmA, XMMWORD [esi+0*SIZEOF_XMMWORD] movdqu xmmE, XMMWORD [esi+1*SIZEOF_XMMWORD] movdqu xmmF, XMMWORD [esi+2*SIZEOF_XMMWORD] movdqu xmmH, XMMWORD [esi+3*SIZEOF_XMMWORD] .rgb_ycc_cnv: ; xmmA=(00 10 20 30 01 11 21 31 02 12 22 32 03 13 23 33) ; xmmE=(04 14 24 34 05 15 25 35 06 16 26 36 07 17 27 37) ; xmmF=(08 18 28 38 09 19 29 39 0A 1A 2A 3A 0B 1B 2B 3B) ; xmmH=(0C 1C 2C 3C 0D 1D 2D 3D 0E 1E 2E 3E 0F 1F 2F 3F) movdqa xmmD,xmmA punpcklbw xmmA,xmmE ; xmmA=(00 04 10 14 20 24 30 34 01 05 11 15 21 25 31 35) punpckhbw xmmD,xmmE ; xmmD=(02 06 12 16 22 26 32 36 03 07 13 17 23 27 33 37) movdqa xmmC,xmmF punpcklbw xmmF,xmmH ; xmmF=(08 0C 18 1C 28 2C 38 3C 09 0D 19 1D 29 2D 39 3D) punpckhbw xmmC,xmmH ; xmmC=(0A 0E 1A 1E 2A 2E 3A 3E 0B 0F 1B 1F 2B 2F 3B 3F) movdqa xmmB,xmmA punpcklwd xmmA,xmmF ; xmmA=(00 04 08 0C 10 14 18 1C 20 24 28 2C 30 34 38 3C) punpckhwd xmmB,xmmF ; xmmB=(01 05 09 0D 11 15 19 1D 21 25 29 2D 31 35 39 3D) movdqa xmmG,xmmD punpcklwd xmmD,xmmC ; xmmD=(02 06 0A 0E 12 16 1A 1E 22 26 2A 2E 32 36 3A 3E) punpckhwd xmmG,xmmC ; xmmG=(03 07 0B 0F 13 17 1B 1F 23 27 2B 2F 33 37 3B 3F) movdqa xmmE,xmmA punpcklbw xmmA,xmmD ; xmmA=(00 02 04 06 08 0A 0C 0E 10 12 14 16 18 1A 1C 1E) punpckhbw xmmE,xmmD ; xmmE=(20 22 24 26 28 2A 2C 2E 30 32 34 36 38 3A 3C 3E) movdqa xmmH,xmmB punpcklbw xmmB,xmmG ; xmmB=(01 03 05 07 09 0B 0D 0F 11 13 15 17 19 1B 1D 1F) punpckhbw xmmH,xmmG ; xmmH=(21 23 25 27 29 2B 2D 2F 31 33 35 37 39 3B 3D 3F) pxor xmmF,xmmF movdqa xmmC,xmmA punpcklbw xmmA,xmmF ; xmmA=(00 02 04 06 08 0A 0C 0E) punpckhbw xmmC,xmmF ; xmmC=(10 12 14 16 18 1A 1C 1E) movdqa xmmD,xmmB punpcklbw xmmB,xmmF ; xmmB=(01 03 05 07 09 0B 0D 0F) punpckhbw xmmD,xmmF ; xmmD=(11 13 15 17 19 1B 1D 1F) movdqa xmmG,xmmE punpcklbw xmmE,xmmF ; xmmE=(20 22 24 26 28 2A 2C 2E) punpckhbw xmmG,xmmF ; xmmG=(30 32 34 36 38 3A 3C 3E) punpcklbw xmmF,xmmH punpckhbw xmmH,xmmH psrlw xmmF,BYTE_BIT ; xmmF=(21 23 25 27 29 2B 2D 2F) psrlw xmmH,BYTE_BIT ; xmmH=(31 33 35 37 39 3B 3D 3F) %endif ; RGB_PIXELSIZE ; --------------- ; xmm0=R(02468ACE)=RE, xmm2=G(02468ACE)=GE, xmm4=B(02468ACE)=BE ; xmm1=R(13579BDF)=RO, xmm3=G(13579BDF)=GO, xmm5=B(13579BDF)=BO ; (Original) ; Y = 0.29900 * R + 0.58700 * G + 0.11400 * B ; Cb = -0.16874 * R - 0.33126 * G + 0.50000 * B + CENTERJSAMPLE ; Cr = 0.50000 * R - 0.41869 * G - 0.08131 * B + CENTERJSAMPLE ; ; (This implementation) ; Y = 0.29900 * R + 0.33700 * G + 0.11400 * B + 0.25000 * G ; Cb = -0.16874 * R - 0.33126 * G + 0.50000 * B + CENTERJSAMPLE ; Cr = 0.50000 * R - 0.41869 * G - 0.08131 * B + CENTERJSAMPLE movdqa XMMWORD [wk(0)], xmm0 ; wk(0)=RE movdqa XMMWORD [wk(1)], xmm1 ; wk(1)=RO movdqa XMMWORD [wk(2)], xmm4 ; wk(2)=BE movdqa XMMWORD [wk(3)], xmm5 ; wk(3)=BO movdqa xmm6,xmm1 punpcklwd xmm1,xmm3 punpckhwd xmm6,xmm3 movdqa xmm7,xmm1 movdqa xmm4,xmm6 pmaddwd xmm1,[GOTOFF(eax,PW_F0299_F0337)] ; xmm1=ROL*FIX(0.299)+GOL*FIX(0.337) pmaddwd xmm6,[GOTOFF(eax,PW_F0299_F0337)] ; xmm6=ROH*FIX(0.299)+GOH*FIX(0.337) pmaddwd xmm7,[GOTOFF(eax,PW_MF016_MF033)] ; xmm7=ROL*-FIX(0.168)+GOL*-FIX(0.331) pmaddwd xmm4,[GOTOFF(eax,PW_MF016_MF033)] ; xmm4=ROH*-FIX(0.168)+GOH*-FIX(0.331) movdqa XMMWORD [wk(4)], xmm1 ; wk(4)=ROL*FIX(0.299)+GOL*FIX(0.337) movdqa XMMWORD [wk(5)], xmm6 ; wk(5)=ROH*FIX(0.299)+GOH*FIX(0.337) pxor xmm1,xmm1 pxor xmm6,xmm6 punpcklwd xmm1,xmm5 ; xmm1=BOL punpckhwd xmm6,xmm5 ; xmm6=BOH psrld xmm1,1 ; xmm1=BOL*FIX(0.500) psrld xmm6,1 ; xmm6=BOH*FIX(0.500) movdqa xmm5,[GOTOFF(eax,PD_ONEHALFM1_CJ)] ; xmm5=[PD_ONEHALFM1_CJ] paddd xmm7,xmm1 paddd xmm4,xmm6 paddd xmm7,xmm5 paddd xmm4,xmm5 psrld xmm7,SCALEBITS ; xmm7=CbOL psrld xmm4,SCALEBITS ; xmm4=CbOH packssdw xmm7,xmm4 ; xmm7=CbO movdqa xmm1, XMMWORD [wk(2)] ; xmm1=BE movdqa xmm6,xmm0 punpcklwd xmm0,xmm2 punpckhwd xmm6,xmm2 movdqa xmm5,xmm0 movdqa xmm4,xmm6 pmaddwd xmm0,[GOTOFF(eax,PW_F0299_F0337)] ; xmm0=REL*FIX(0.299)+GEL*FIX(0.337) pmaddwd xmm6,[GOTOFF(eax,PW_F0299_F0337)] ; xmm6=REH*FIX(0.299)+GEH*FIX(0.337) pmaddwd xmm5,[GOTOFF(eax,PW_MF016_MF033)] ; xmm5=REL*-FIX(0.168)+GEL*-FIX(0.331) pmaddwd xmm4,[GOTOFF(eax,PW_MF016_MF033)] ; xmm4=REH*-FIX(0.168)+GEH*-FIX(0.331) movdqa XMMWORD [wk(6)], xmm0 ; wk(6)=REL*FIX(0.299)+GEL*FIX(0.337) movdqa XMMWORD [wk(7)], xmm6 ; wk(7)=REH*FIX(0.299)+GEH*FIX(0.337) pxor xmm0,xmm0 pxor xmm6,xmm6 punpcklwd xmm0,xmm1 ; xmm0=BEL punpckhwd xmm6,xmm1 ; xmm6=BEH psrld xmm0,1 ; xmm0=BEL*FIX(0.500) psrld xmm6,1 ; xmm6=BEH*FIX(0.500) movdqa xmm1,[GOTOFF(eax,PD_ONEHALFM1_CJ)] ; xmm1=[PD_ONEHALFM1_CJ] paddd xmm5,xmm0 paddd xmm4,xmm6 paddd xmm5,xmm1 paddd xmm4,xmm1 psrld xmm5,SCALEBITS ; xmm5=CbEL psrld xmm4,SCALEBITS ; xmm4=CbEH packssdw xmm5,xmm4 ; xmm5=CbE psllw xmm7,BYTE_BIT por xmm5,xmm7 ; xmm5=Cb movdqa XMMWORD [ebx], xmm5 ; Save Cb movdqa xmm0, XMMWORD [wk(3)] ; xmm0=BO movdqa xmm6, XMMWORD [wk(2)] ; xmm6=BE movdqa xmm1, XMMWORD [wk(1)] ; xmm1=RO movdqa xmm4,xmm0 punpcklwd xmm0,xmm3 punpckhwd xmm4,xmm3 movdqa xmm7,xmm0 movdqa xmm5,xmm4 pmaddwd xmm0,[GOTOFF(eax,PW_F0114_F0250)] ; xmm0=BOL*FIX(0.114)+GOL*FIX(0.250) pmaddwd xmm4,[GOTOFF(eax,PW_F0114_F0250)] ; xmm4=BOH*FIX(0.114)+GOH*FIX(0.250) pmaddwd xmm7,[GOTOFF(eax,PW_MF008_MF041)] ; xmm7=BOL*-FIX(0.081)+GOL*-FIX(0.418) pmaddwd xmm5,[GOTOFF(eax,PW_MF008_MF041)] ; xmm5=BOH*-FIX(0.081)+GOH*-FIX(0.418) movdqa xmm3,[GOTOFF(eax,PD_ONEHALF)] ; xmm3=[PD_ONEHALF] paddd xmm0, XMMWORD [wk(4)] paddd xmm4, XMMWORD [wk(5)] paddd xmm0,xmm3 paddd xmm4,xmm3 psrld xmm0,SCALEBITS ; xmm0=YOL psrld xmm4,SCALEBITS ; xmm4=YOH packssdw xmm0,xmm4 ; xmm0=YO pxor xmm3,xmm3 pxor xmm4,xmm4 punpcklwd xmm3,xmm1 ; xmm3=ROL punpckhwd xmm4,xmm1 ; xmm4=ROH psrld xmm3,1 ; xmm3=ROL*FIX(0.500) psrld xmm4,1 ; xmm4=ROH*FIX(0.500) movdqa xmm1,[GOTOFF(eax,PD_ONEHALFM1_CJ)] ; xmm1=[PD_ONEHALFM1_CJ] paddd xmm7,xmm3 paddd xmm5,xmm4 paddd xmm7,xmm1 paddd xmm5,xmm1 psrld xmm7,SCALEBITS ; xmm7=CrOL psrld xmm5,SCALEBITS ; xmm5=CrOH packssdw xmm7,xmm5 ; xmm7=CrO movdqa xmm3, XMMWORD [wk(0)] ; xmm3=RE movdqa xmm4,xmm6 punpcklwd xmm6,xmm2 punpckhwd xmm4,xmm2 movdqa xmm1,xmm6 movdqa xmm5,xmm4 pmaddwd xmm6,[GOTOFF(eax,PW_F0114_F0250)] ; xmm6=BEL*FIX(0.114)+GEL*FIX(0.250) pmaddwd xmm4,[GOTOFF(eax,PW_F0114_F0250)] ; xmm4=BEH*FIX(0.114)+GEH*FIX(0.250) pmaddwd xmm1,[GOTOFF(eax,PW_MF008_MF041)] ; xmm1=BEL*-FIX(0.081)+GEL*-FIX(0.418) pmaddwd xmm5,[GOTOFF(eax,PW_MF008_MF041)] ; xmm5=BEH*-FIX(0.081)+GEH*-FIX(0.418) movdqa xmm2,[GOTOFF(eax,PD_ONEHALF)] ; xmm2=[PD_ONEHALF] paddd xmm6, XMMWORD [wk(6)] paddd xmm4, XMMWORD [wk(7)] paddd xmm6,xmm2 paddd xmm4,xmm2 psrld xmm6,SCALEBITS ; xmm6=YEL psrld xmm4,SCALEBITS ; xmm4=YEH packssdw xmm6,xmm4 ; xmm6=YE psllw xmm0,BYTE_BIT por xmm6,xmm0 ; xmm6=Y movdqa XMMWORD [edi], xmm6 ; Save Y pxor xmm2,xmm2 pxor xmm4,xmm4 punpcklwd xmm2,xmm3 ; xmm2=REL punpckhwd xmm4,xmm3 ; xmm4=REH psrld xmm2,1 ; xmm2=REL*FIX(0.500) psrld xmm4,1 ; xmm4=REH*FIX(0.500) movdqa xmm0,[GOTOFF(eax,PD_ONEHALFM1_CJ)] ; xmm0=[PD_ONEHALFM1_CJ] paddd xmm1,xmm2 paddd xmm5,xmm4 paddd xmm1,xmm0 paddd xmm5,xmm0 psrld xmm1,SCALEBITS ; xmm1=CrEL psrld xmm5,SCALEBITS ; xmm5=CrEH packssdw xmm1,xmm5 ; xmm1=CrE psllw xmm7,BYTE_BIT por xmm1,xmm7 ; xmm1=Cr movdqa XMMWORD [edx], xmm1 ; Save Cr sub ecx, byte SIZEOF_XMMWORD add esi, byte RGB_PIXELSIZE*SIZEOF_XMMWORD ; inptr add edi, byte SIZEOF_XMMWORD ; outptr0 add ebx, byte SIZEOF_XMMWORD ; outptr1 add edx, byte SIZEOF_XMMWORD ; outptr2 cmp ecx, byte SIZEOF_XMMWORD jae near .columnloop test ecx,ecx jnz near .column_ld1 pop ecx ; col pop esi pop edi pop ebx pop edx poppic eax add esi, byte SIZEOF_JSAMPROW ; input_buf add edi, byte SIZEOF_JSAMPROW add ebx, byte SIZEOF_JSAMPROW add edx, byte SIZEOF_JSAMPROW dec eax ; num_rows jg near .rowloop .return: pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; need not be preserved pop ebx mov esp,ebp ; esp <- aligned ebp pop esp ; esp <- original ebp pop ebp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 16 libjpeg-turbo-1.4.2/simd/jdcolor-sse2-64.asm0000644000076500007650000000675712600050400015413 00000000000000; ; jdcolor.asm - colorspace conversion (64-bit SSE2) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; Copyright 2009 D. R. Commander ; ; Based on ; x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; [TAB8] %include "jsimdext.inc" ; -------------------------------------------------------------------------- %define SCALEBITS 16 F_0_344 equ 22554 ; FIX(0.34414) F_0_714 equ 46802 ; FIX(0.71414) F_1_402 equ 91881 ; FIX(1.40200) F_1_772 equ 116130 ; FIX(1.77200) F_0_402 equ (F_1_402 - 65536) ; FIX(1.40200) - FIX(1) F_0_285 equ ( 65536 - F_0_714) ; FIX(1) - FIX(0.71414) F_0_228 equ (131072 - F_1_772) ; FIX(2) - FIX(1.77200) ; -------------------------------------------------------------------------- SECTION SEG_CONST alignz 16 global EXTN(jconst_ycc_rgb_convert_sse2) EXTN(jconst_ycc_rgb_convert_sse2): PW_F0402 times 8 dw F_0_402 PW_MF0228 times 8 dw -F_0_228 PW_MF0344_F0285 times 4 dw -F_0_344, F_0_285 PW_ONE times 8 dw 1 PD_ONEHALF times 4 dd 1 << (SCALEBITS-1) alignz 16 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 64 %include "jdcolext-sse2-64.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_RGB_RED %define RGB_GREEN EXT_RGB_GREEN %define RGB_BLUE EXT_RGB_BLUE %define RGB_PIXELSIZE EXT_RGB_PIXELSIZE %define jsimd_ycc_rgb_convert_sse2 jsimd_ycc_extrgb_convert_sse2 %include "jdcolext-sse2-64.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_RGBX_RED %define RGB_GREEN EXT_RGBX_GREEN %define RGB_BLUE EXT_RGBX_BLUE %define RGB_PIXELSIZE EXT_RGBX_PIXELSIZE %define jsimd_ycc_rgb_convert_sse2 jsimd_ycc_extrgbx_convert_sse2 %include "jdcolext-sse2-64.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_BGR_RED %define RGB_GREEN EXT_BGR_GREEN %define RGB_BLUE EXT_BGR_BLUE %define RGB_PIXELSIZE EXT_BGR_PIXELSIZE %define jsimd_ycc_rgb_convert_sse2 jsimd_ycc_extbgr_convert_sse2 %include "jdcolext-sse2-64.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_BGRX_RED %define RGB_GREEN EXT_BGRX_GREEN %define RGB_BLUE EXT_BGRX_BLUE %define RGB_PIXELSIZE EXT_BGRX_PIXELSIZE %define jsimd_ycc_rgb_convert_sse2 jsimd_ycc_extbgrx_convert_sse2 %include "jdcolext-sse2-64.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_XBGR_RED %define RGB_GREEN EXT_XBGR_GREEN %define RGB_BLUE EXT_XBGR_BLUE %define RGB_PIXELSIZE EXT_XBGR_PIXELSIZE %define jsimd_ycc_rgb_convert_sse2 jsimd_ycc_extxbgr_convert_sse2 %include "jdcolext-sse2-64.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_XRGB_RED %define RGB_GREEN EXT_XRGB_GREEN %define RGB_BLUE EXT_XRGB_BLUE %define RGB_PIXELSIZE EXT_XRGB_PIXELSIZE %define jsimd_ycc_rgb_convert_sse2 jsimd_ycc_extxrgb_convert_sse2 %include "jdcolext-sse2-64.asm" libjpeg-turbo-1.4.2/simd/jdsample-sse2-64.asm0000644000076500007650000005617112600050400015551 00000000000000; ; jdsample.asm - upsampling (64-bit SSE2) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; Copyright 2009 D. R. Commander ; ; Based on ; x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; [TAB8] %include "jsimdext.inc" ; -------------------------------------------------------------------------- SECTION SEG_CONST alignz 16 global EXTN(jconst_fancy_upsample_sse2) EXTN(jconst_fancy_upsample_sse2): PW_ONE times 8 dw 1 PW_TWO times 8 dw 2 PW_THREE times 8 dw 3 PW_SEVEN times 8 dw 7 PW_EIGHT times 8 dw 8 alignz 16 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 64 ; ; Fancy processing for the common case of 2:1 horizontal and 1:1 vertical. ; ; The upsampling algorithm is linear interpolation between pixel centers, ; also known as a "triangle filter". This is a good compromise between ; speed and visual quality. The centers of the output pixels are 1/4 and 3/4 ; of the way between input pixel centers. ; ; GLOBAL(void) ; jsimd_h2v1_fancy_upsample_sse2 (int max_v_samp_factor, ; JDIMENSION downsampled_width, ; JSAMPARRAY input_data, ; JSAMPARRAY * output_data_ptr); ; ; r10 = int max_v_samp_factor ; r11 = JDIMENSION downsampled_width ; r12 = JSAMPARRAY input_data ; r13 = JSAMPARRAY * output_data_ptr align 16 global EXTN(jsimd_h2v1_fancy_upsample_sse2) EXTN(jsimd_h2v1_fancy_upsample_sse2): push rbp mov rax,rsp mov rbp,rsp collect_args mov eax, r11d ; colctr test rax,rax jz near .return mov rcx, r10 ; rowctr test rcx,rcx jz near .return mov rsi, r12 ; input_data mov rdi, r13 mov rdi, JSAMPARRAY [rdi] ; output_data .rowloop: push rax ; colctr push rdi push rsi mov rsi, JSAMPROW [rsi] ; inptr mov rdi, JSAMPROW [rdi] ; outptr test rax, SIZEOF_XMMWORD-1 jz short .skip mov dl, JSAMPLE [rsi+(rax-1)*SIZEOF_JSAMPLE] mov JSAMPLE [rsi+rax*SIZEOF_JSAMPLE], dl ; insert a dummy sample .skip: pxor xmm0,xmm0 ; xmm0=(all 0's) pcmpeqb xmm7,xmm7 psrldq xmm7,(SIZEOF_XMMWORD-1) pand xmm7, XMMWORD [rsi+0*SIZEOF_XMMWORD] add rax, byte SIZEOF_XMMWORD-1 and rax, byte -SIZEOF_XMMWORD cmp rax, byte SIZEOF_XMMWORD ja short .columnloop .columnloop_last: pcmpeqb xmm6,xmm6 pslldq xmm6,(SIZEOF_XMMWORD-1) pand xmm6, XMMWORD [rsi+0*SIZEOF_XMMWORD] jmp short .upsample .columnloop: movdqa xmm6, XMMWORD [rsi+1*SIZEOF_XMMWORD] pslldq xmm6,(SIZEOF_XMMWORD-1) .upsample: movdqa xmm1, XMMWORD [rsi+0*SIZEOF_XMMWORD] movdqa xmm2,xmm1 movdqa xmm3,xmm1 ; xmm1=( 0 1 2 ... 13 14 15) pslldq xmm2,1 ; xmm2=(-- 0 1 ... 12 13 14) psrldq xmm3,1 ; xmm3=( 1 2 3 ... 14 15 --) por xmm2,xmm7 ; xmm2=(-1 0 1 ... 12 13 14) por xmm3,xmm6 ; xmm3=( 1 2 3 ... 14 15 16) movdqa xmm7,xmm1 psrldq xmm7,(SIZEOF_XMMWORD-1) ; xmm7=(15 -- -- ... -- -- --) movdqa xmm4,xmm1 punpcklbw xmm1,xmm0 ; xmm1=( 0 1 2 3 4 5 6 7) punpckhbw xmm4,xmm0 ; xmm4=( 8 9 10 11 12 13 14 15) movdqa xmm5,xmm2 punpcklbw xmm2,xmm0 ; xmm2=(-1 0 1 2 3 4 5 6) punpckhbw xmm5,xmm0 ; xmm5=( 7 8 9 10 11 12 13 14) movdqa xmm6,xmm3 punpcklbw xmm3,xmm0 ; xmm3=( 1 2 3 4 5 6 7 8) punpckhbw xmm6,xmm0 ; xmm6=( 9 10 11 12 13 14 15 16) pmullw xmm1,[rel PW_THREE] pmullw xmm4,[rel PW_THREE] paddw xmm2,[rel PW_ONE] paddw xmm5,[rel PW_ONE] paddw xmm3,[rel PW_TWO] paddw xmm6,[rel PW_TWO] paddw xmm2,xmm1 paddw xmm5,xmm4 psrlw xmm2,2 ; xmm2=OutLE=( 0 2 4 6 8 10 12 14) psrlw xmm5,2 ; xmm5=OutHE=(16 18 20 22 24 26 28 30) paddw xmm3,xmm1 paddw xmm6,xmm4 psrlw xmm3,2 ; xmm3=OutLO=( 1 3 5 7 9 11 13 15) psrlw xmm6,2 ; xmm6=OutHO=(17 19 21 23 25 27 29 31) psllw xmm3,BYTE_BIT psllw xmm6,BYTE_BIT por xmm2,xmm3 ; xmm2=OutL=( 0 1 2 ... 13 14 15) por xmm5,xmm6 ; xmm5=OutH=(16 17 18 ... 29 30 31) movdqa XMMWORD [rdi+0*SIZEOF_XMMWORD], xmm2 movdqa XMMWORD [rdi+1*SIZEOF_XMMWORD], xmm5 sub rax, byte SIZEOF_XMMWORD add rsi, byte 1*SIZEOF_XMMWORD ; inptr add rdi, byte 2*SIZEOF_XMMWORD ; outptr cmp rax, byte SIZEOF_XMMWORD ja near .columnloop test eax,eax jnz near .columnloop_last pop rsi pop rdi pop rax add rsi, byte SIZEOF_JSAMPROW ; input_data add rdi, byte SIZEOF_JSAMPROW ; output_data dec rcx ; rowctr jg near .rowloop .return: uncollect_args pop rbp ret ; -------------------------------------------------------------------------- ; ; Fancy processing for the common case of 2:1 horizontal and 2:1 vertical. ; Again a triangle filter; see comments for h2v1 case, above. ; ; GLOBAL(void) ; jsimd_h2v2_fancy_upsample_sse2 (int max_v_samp_factor, ; JDIMENSION downsampled_width, ; JSAMPARRAY input_data, ; JSAMPARRAY * output_data_ptr); ; ; r10 = int max_v_samp_factor ; r11 = JDIMENSION downsampled_width ; r12 = JSAMPARRAY input_data ; r13 = JSAMPARRAY * output_data_ptr %define wk(i) rbp-(WK_NUM-(i))*SIZEOF_XMMWORD ; xmmword wk[WK_NUM] %define WK_NUM 4 align 16 global EXTN(jsimd_h2v2_fancy_upsample_sse2) EXTN(jsimd_h2v2_fancy_upsample_sse2): push rbp mov rax,rsp ; rax = original rbp sub rsp, byte 4 and rsp, byte (-SIZEOF_XMMWORD) ; align to 128 bits mov [rsp],rax mov rbp,rsp ; rbp = aligned rbp lea rsp, [wk(0)] collect_args push rbx mov eax, r11d ; colctr test rax,rax jz near .return mov rcx, r10 ; rowctr test rcx,rcx jz near .return mov rsi, r12 ; input_data mov rdi, r13 mov rdi, JSAMPARRAY [rdi] ; output_data .rowloop: push rax ; colctr push rcx push rdi push rsi mov rcx, JSAMPROW [rsi-1*SIZEOF_JSAMPROW] ; inptr1(above) mov rbx, JSAMPROW [rsi+0*SIZEOF_JSAMPROW] ; inptr0 mov rsi, JSAMPROW [rsi+1*SIZEOF_JSAMPROW] ; inptr1(below) mov rdx, JSAMPROW [rdi+0*SIZEOF_JSAMPROW] ; outptr0 mov rdi, JSAMPROW [rdi+1*SIZEOF_JSAMPROW] ; outptr1 test rax, SIZEOF_XMMWORD-1 jz short .skip push rdx mov dl, JSAMPLE [rcx+(rax-1)*SIZEOF_JSAMPLE] mov JSAMPLE [rcx+rax*SIZEOF_JSAMPLE], dl mov dl, JSAMPLE [rbx+(rax-1)*SIZEOF_JSAMPLE] mov JSAMPLE [rbx+rax*SIZEOF_JSAMPLE], dl mov dl, JSAMPLE [rsi+(rax-1)*SIZEOF_JSAMPLE] mov JSAMPLE [rsi+rax*SIZEOF_JSAMPLE], dl ; insert a dummy sample pop rdx .skip: ; -- process the first column block movdqa xmm0, XMMWORD [rbx+0*SIZEOF_XMMWORD] ; xmm0=row[ 0][0] movdqa xmm1, XMMWORD [rcx+0*SIZEOF_XMMWORD] ; xmm1=row[-1][0] movdqa xmm2, XMMWORD [rsi+0*SIZEOF_XMMWORD] ; xmm2=row[+1][0] pxor xmm3,xmm3 ; xmm3=(all 0's) movdqa xmm4,xmm0 punpcklbw xmm0,xmm3 ; xmm0=row[ 0]( 0 1 2 3 4 5 6 7) punpckhbw xmm4,xmm3 ; xmm4=row[ 0]( 8 9 10 11 12 13 14 15) movdqa xmm5,xmm1 punpcklbw xmm1,xmm3 ; xmm1=row[-1]( 0 1 2 3 4 5 6 7) punpckhbw xmm5,xmm3 ; xmm5=row[-1]( 8 9 10 11 12 13 14 15) movdqa xmm6,xmm2 punpcklbw xmm2,xmm3 ; xmm2=row[+1]( 0 1 2 3 4 5 6 7) punpckhbw xmm6,xmm3 ; xmm6=row[+1]( 8 9 10 11 12 13 14 15) pmullw xmm0,[rel PW_THREE] pmullw xmm4,[rel PW_THREE] pcmpeqb xmm7,xmm7 psrldq xmm7,(SIZEOF_XMMWORD-2) paddw xmm1,xmm0 ; xmm1=Int0L=( 0 1 2 3 4 5 6 7) paddw xmm5,xmm4 ; xmm5=Int0H=( 8 9 10 11 12 13 14 15) paddw xmm2,xmm0 ; xmm2=Int1L=( 0 1 2 3 4 5 6 7) paddw xmm6,xmm4 ; xmm6=Int1H=( 8 9 10 11 12 13 14 15) movdqa XMMWORD [rdx+0*SIZEOF_XMMWORD], xmm1 ; temporarily save movdqa XMMWORD [rdx+1*SIZEOF_XMMWORD], xmm5 ; the intermediate data movdqa XMMWORD [rdi+0*SIZEOF_XMMWORD], xmm2 movdqa XMMWORD [rdi+1*SIZEOF_XMMWORD], xmm6 pand xmm1,xmm7 ; xmm1=( 0 -- -- -- -- -- -- --) pand xmm2,xmm7 ; xmm2=( 0 -- -- -- -- -- -- --) movdqa XMMWORD [wk(0)], xmm1 movdqa XMMWORD [wk(1)], xmm2 add rax, byte SIZEOF_XMMWORD-1 and rax, byte -SIZEOF_XMMWORD cmp rax, byte SIZEOF_XMMWORD ja short .columnloop .columnloop_last: ; -- process the last column block pcmpeqb xmm1,xmm1 pslldq xmm1,(SIZEOF_XMMWORD-2) movdqa xmm2,xmm1 pand xmm1, XMMWORD [rdx+1*SIZEOF_XMMWORD] pand xmm2, XMMWORD [rdi+1*SIZEOF_XMMWORD] movdqa XMMWORD [wk(2)], xmm1 ; xmm1=(-- -- -- -- -- -- -- 15) movdqa XMMWORD [wk(3)], xmm2 ; xmm2=(-- -- -- -- -- -- -- 15) jmp near .upsample .columnloop: ; -- process the next column block movdqa xmm0, XMMWORD [rbx+1*SIZEOF_XMMWORD] ; xmm0=row[ 0][1] movdqa xmm1, XMMWORD [rcx+1*SIZEOF_XMMWORD] ; xmm1=row[-1][1] movdqa xmm2, XMMWORD [rsi+1*SIZEOF_XMMWORD] ; xmm2=row[+1][1] pxor xmm3,xmm3 ; xmm3=(all 0's) movdqa xmm4,xmm0 punpcklbw xmm0,xmm3 ; xmm0=row[ 0]( 0 1 2 3 4 5 6 7) punpckhbw xmm4,xmm3 ; xmm4=row[ 0]( 8 9 10 11 12 13 14 15) movdqa xmm5,xmm1 punpcklbw xmm1,xmm3 ; xmm1=row[-1]( 0 1 2 3 4 5 6 7) punpckhbw xmm5,xmm3 ; xmm5=row[-1]( 8 9 10 11 12 13 14 15) movdqa xmm6,xmm2 punpcklbw xmm2,xmm3 ; xmm2=row[+1]( 0 1 2 3 4 5 6 7) punpckhbw xmm6,xmm3 ; xmm6=row[+1]( 8 9 10 11 12 13 14 15) pmullw xmm0,[rel PW_THREE] pmullw xmm4,[rel PW_THREE] paddw xmm1,xmm0 ; xmm1=Int0L=( 0 1 2 3 4 5 6 7) paddw xmm5,xmm4 ; xmm5=Int0H=( 8 9 10 11 12 13 14 15) paddw xmm2,xmm0 ; xmm2=Int1L=( 0 1 2 3 4 5 6 7) paddw xmm6,xmm4 ; xmm6=Int1H=( 8 9 10 11 12 13 14 15) movdqa XMMWORD [rdx+2*SIZEOF_XMMWORD], xmm1 ; temporarily save movdqa XMMWORD [rdx+3*SIZEOF_XMMWORD], xmm5 ; the intermediate data movdqa XMMWORD [rdi+2*SIZEOF_XMMWORD], xmm2 movdqa XMMWORD [rdi+3*SIZEOF_XMMWORD], xmm6 pslldq xmm1,(SIZEOF_XMMWORD-2) ; xmm1=(-- -- -- -- -- -- -- 0) pslldq xmm2,(SIZEOF_XMMWORD-2) ; xmm2=(-- -- -- -- -- -- -- 0) movdqa XMMWORD [wk(2)], xmm1 movdqa XMMWORD [wk(3)], xmm2 .upsample: ; -- process the upper row movdqa xmm7, XMMWORD [rdx+0*SIZEOF_XMMWORD] movdqa xmm3, XMMWORD [rdx+1*SIZEOF_XMMWORD] movdqa xmm0,xmm7 ; xmm7=Int0L=( 0 1 2 3 4 5 6 7) movdqa xmm4,xmm3 ; xmm3=Int0H=( 8 9 10 11 12 13 14 15) psrldq xmm0,2 ; xmm0=( 1 2 3 4 5 6 7 --) pslldq xmm4,(SIZEOF_XMMWORD-2) ; xmm4=(-- -- -- -- -- -- -- 8) movdqa xmm5,xmm7 movdqa xmm6,xmm3 psrldq xmm5,(SIZEOF_XMMWORD-2) ; xmm5=( 7 -- -- -- -- -- -- --) pslldq xmm6,2 ; xmm6=(-- 8 9 10 11 12 13 14) por xmm0,xmm4 ; xmm0=( 1 2 3 4 5 6 7 8) por xmm5,xmm6 ; xmm5=( 7 8 9 10 11 12 13 14) movdqa xmm1,xmm7 movdqa xmm2,xmm3 pslldq xmm1,2 ; xmm1=(-- 0 1 2 3 4 5 6) psrldq xmm2,2 ; xmm2=( 9 10 11 12 13 14 15 --) movdqa xmm4,xmm3 psrldq xmm4,(SIZEOF_XMMWORD-2) ; xmm4=(15 -- -- -- -- -- -- --) por xmm1, XMMWORD [wk(0)] ; xmm1=(-1 0 1 2 3 4 5 6) por xmm2, XMMWORD [wk(2)] ; xmm2=( 9 10 11 12 13 14 15 16) movdqa XMMWORD [wk(0)], xmm4 pmullw xmm7,[rel PW_THREE] pmullw xmm3,[rel PW_THREE] paddw xmm1,[rel PW_EIGHT] paddw xmm5,[rel PW_EIGHT] paddw xmm0,[rel PW_SEVEN] paddw xmm2,[rel PW_SEVEN] paddw xmm1,xmm7 paddw xmm5,xmm3 psrlw xmm1,4 ; xmm1=Out0LE=( 0 2 4 6 8 10 12 14) psrlw xmm5,4 ; xmm5=Out0HE=(16 18 20 22 24 26 28 30) paddw xmm0,xmm7 paddw xmm2,xmm3 psrlw xmm0,4 ; xmm0=Out0LO=( 1 3 5 7 9 11 13 15) psrlw xmm2,4 ; xmm2=Out0HO=(17 19 21 23 25 27 29 31) psllw xmm0,BYTE_BIT psllw xmm2,BYTE_BIT por xmm1,xmm0 ; xmm1=Out0L=( 0 1 2 ... 13 14 15) por xmm5,xmm2 ; xmm5=Out0H=(16 17 18 ... 29 30 31) movdqa XMMWORD [rdx+0*SIZEOF_XMMWORD], xmm1 movdqa XMMWORD [rdx+1*SIZEOF_XMMWORD], xmm5 ; -- process the lower row movdqa xmm6, XMMWORD [rdi+0*SIZEOF_XMMWORD] movdqa xmm4, XMMWORD [rdi+1*SIZEOF_XMMWORD] movdqa xmm7,xmm6 ; xmm6=Int1L=( 0 1 2 3 4 5 6 7) movdqa xmm3,xmm4 ; xmm4=Int1H=( 8 9 10 11 12 13 14 15) psrldq xmm7,2 ; xmm7=( 1 2 3 4 5 6 7 --) pslldq xmm3,(SIZEOF_XMMWORD-2) ; xmm3=(-- -- -- -- -- -- -- 8) movdqa xmm0,xmm6 movdqa xmm2,xmm4 psrldq xmm0,(SIZEOF_XMMWORD-2) ; xmm0=( 7 -- -- -- -- -- -- --) pslldq xmm2,2 ; xmm2=(-- 8 9 10 11 12 13 14) por xmm7,xmm3 ; xmm7=( 1 2 3 4 5 6 7 8) por xmm0,xmm2 ; xmm0=( 7 8 9 10 11 12 13 14) movdqa xmm1,xmm6 movdqa xmm5,xmm4 pslldq xmm1,2 ; xmm1=(-- 0 1 2 3 4 5 6) psrldq xmm5,2 ; xmm5=( 9 10 11 12 13 14 15 --) movdqa xmm3,xmm4 psrldq xmm3,(SIZEOF_XMMWORD-2) ; xmm3=(15 -- -- -- -- -- -- --) por xmm1, XMMWORD [wk(1)] ; xmm1=(-1 0 1 2 3 4 5 6) por xmm5, XMMWORD [wk(3)] ; xmm5=( 9 10 11 12 13 14 15 16) movdqa XMMWORD [wk(1)], xmm3 pmullw xmm6,[rel PW_THREE] pmullw xmm4,[rel PW_THREE] paddw xmm1,[rel PW_EIGHT] paddw xmm0,[rel PW_EIGHT] paddw xmm7,[rel PW_SEVEN] paddw xmm5,[rel PW_SEVEN] paddw xmm1,xmm6 paddw xmm0,xmm4 psrlw xmm1,4 ; xmm1=Out1LE=( 0 2 4 6 8 10 12 14) psrlw xmm0,4 ; xmm0=Out1HE=(16 18 20 22 24 26 28 30) paddw xmm7,xmm6 paddw xmm5,xmm4 psrlw xmm7,4 ; xmm7=Out1LO=( 1 3 5 7 9 11 13 15) psrlw xmm5,4 ; xmm5=Out1HO=(17 19 21 23 25 27 29 31) psllw xmm7,BYTE_BIT psllw xmm5,BYTE_BIT por xmm1,xmm7 ; xmm1=Out1L=( 0 1 2 ... 13 14 15) por xmm0,xmm5 ; xmm0=Out1H=(16 17 18 ... 29 30 31) movdqa XMMWORD [rdi+0*SIZEOF_XMMWORD], xmm1 movdqa XMMWORD [rdi+1*SIZEOF_XMMWORD], xmm0 sub rax, byte SIZEOF_XMMWORD add rcx, byte 1*SIZEOF_XMMWORD ; inptr1(above) add rbx, byte 1*SIZEOF_XMMWORD ; inptr0 add rsi, byte 1*SIZEOF_XMMWORD ; inptr1(below) add rdx, byte 2*SIZEOF_XMMWORD ; outptr0 add rdi, byte 2*SIZEOF_XMMWORD ; outptr1 cmp rax, byte SIZEOF_XMMWORD ja near .columnloop test rax,rax jnz near .columnloop_last pop rsi pop rdi pop rcx pop rax add rsi, byte 1*SIZEOF_JSAMPROW ; input_data add rdi, byte 2*SIZEOF_JSAMPROW ; output_data sub rcx, byte 2 ; rowctr jg near .rowloop .return: pop rbx uncollect_args mov rsp,rbp ; rsp <- aligned rbp pop rsp ; rsp <- original rbp pop rbp ret ; -------------------------------------------------------------------------- ; ; Fast processing for the common case of 2:1 horizontal and 1:1 vertical. ; It's still a box filter. ; ; GLOBAL(void) ; jsimd_h2v1_upsample_sse2 (int max_v_samp_factor, ; JDIMENSION output_width, ; JSAMPARRAY input_data, ; JSAMPARRAY * output_data_ptr); ; ; r10 = int max_v_samp_factor ; r11 = JDIMENSION output_width ; r12 = JSAMPARRAY input_data ; r13 = JSAMPARRAY * output_data_ptr align 16 global EXTN(jsimd_h2v1_upsample_sse2) EXTN(jsimd_h2v1_upsample_sse2): push rbp mov rax,rsp mov rbp,rsp collect_args mov edx, r11d add rdx, byte (2*SIZEOF_XMMWORD)-1 and rdx, byte -(2*SIZEOF_XMMWORD) jz near .return mov rcx, r10 ; rowctr test rcx,rcx jz short .return mov rsi, r12 ; input_data mov rdi, r13 mov rdi, JSAMPARRAY [rdi] ; output_data .rowloop: push rdi push rsi mov rsi, JSAMPROW [rsi] ; inptr mov rdi, JSAMPROW [rdi] ; outptr mov rax,rdx ; colctr .columnloop: movdqa xmm0, XMMWORD [rsi+0*SIZEOF_XMMWORD] movdqa xmm1,xmm0 punpcklbw xmm0,xmm0 punpckhbw xmm1,xmm1 movdqa XMMWORD [rdi+0*SIZEOF_XMMWORD], xmm0 movdqa XMMWORD [rdi+1*SIZEOF_XMMWORD], xmm1 sub rax, byte 2*SIZEOF_XMMWORD jz short .nextrow movdqa xmm2, XMMWORD [rsi+1*SIZEOF_XMMWORD] movdqa xmm3,xmm2 punpcklbw xmm2,xmm2 punpckhbw xmm3,xmm3 movdqa XMMWORD [rdi+2*SIZEOF_XMMWORD], xmm2 movdqa XMMWORD [rdi+3*SIZEOF_XMMWORD], xmm3 sub rax, byte 2*SIZEOF_XMMWORD jz short .nextrow add rsi, byte 2*SIZEOF_XMMWORD ; inptr add rdi, byte 4*SIZEOF_XMMWORD ; outptr jmp short .columnloop .nextrow: pop rsi pop rdi add rsi, byte SIZEOF_JSAMPROW ; input_data add rdi, byte SIZEOF_JSAMPROW ; output_data dec rcx ; rowctr jg short .rowloop .return: uncollect_args pop rbp ret ; -------------------------------------------------------------------------- ; ; Fast processing for the common case of 2:1 horizontal and 2:1 vertical. ; It's still a box filter. ; ; GLOBAL(void) ; jsimd_h2v2_upsample_sse2 (nt max_v_samp_factor, ; JDIMENSION output_width, ; JSAMPARRAY input_data, ; JSAMPARRAY * output_data_ptr); ; ; r10 = int max_v_samp_factor ; r11 = JDIMENSION output_width ; r12 = JSAMPARRAY input_data ; r13 = JSAMPARRAY * output_data_ptr align 16 global EXTN(jsimd_h2v2_upsample_sse2) EXTN(jsimd_h2v2_upsample_sse2): push rbp mov rax,rsp mov rbp,rsp collect_args push rbx mov edx, r11d add rdx, byte (2*SIZEOF_XMMWORD)-1 and rdx, byte -(2*SIZEOF_XMMWORD) jz near .return mov rcx, r10 ; rowctr test rcx,rcx jz near .return mov rsi, r12 ; input_data mov rdi, r13 mov rdi, JSAMPARRAY [rdi] ; output_data .rowloop: push rdi push rsi mov rsi, JSAMPROW [rsi] ; inptr mov rbx, JSAMPROW [rdi+0*SIZEOF_JSAMPROW] ; outptr0 mov rdi, JSAMPROW [rdi+1*SIZEOF_JSAMPROW] ; outptr1 mov rax,rdx ; colctr .columnloop: movdqa xmm0, XMMWORD [rsi+0*SIZEOF_XMMWORD] movdqa xmm1,xmm0 punpcklbw xmm0,xmm0 punpckhbw xmm1,xmm1 movdqa XMMWORD [rbx+0*SIZEOF_XMMWORD], xmm0 movdqa XMMWORD [rbx+1*SIZEOF_XMMWORD], xmm1 movdqa XMMWORD [rdi+0*SIZEOF_XMMWORD], xmm0 movdqa XMMWORD [rdi+1*SIZEOF_XMMWORD], xmm1 sub rax, byte 2*SIZEOF_XMMWORD jz short .nextrow movdqa xmm2, XMMWORD [rsi+1*SIZEOF_XMMWORD] movdqa xmm3,xmm2 punpcklbw xmm2,xmm2 punpckhbw xmm3,xmm3 movdqa XMMWORD [rbx+2*SIZEOF_XMMWORD], xmm2 movdqa XMMWORD [rbx+3*SIZEOF_XMMWORD], xmm3 movdqa XMMWORD [rdi+2*SIZEOF_XMMWORD], xmm2 movdqa XMMWORD [rdi+3*SIZEOF_XMMWORD], xmm3 sub rax, byte 2*SIZEOF_XMMWORD jz short .nextrow add rsi, byte 2*SIZEOF_XMMWORD ; inptr add rbx, byte 4*SIZEOF_XMMWORD ; outptr0 add rdi, byte 4*SIZEOF_XMMWORD ; outptr1 jmp short .columnloop .nextrow: pop rsi pop rdi add rsi, byte 1*SIZEOF_JSAMPROW ; input_data add rdi, byte 2*SIZEOF_JSAMPROW ; output_data sub rcx, byte 2 ; rowctr jg near .rowloop .return: pop rbx uncollect_args pop rbp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 16 libjpeg-turbo-1.4.2/simd/jcsample-sse2-64.asm0000644000076500007650000002144312600050400015542 00000000000000; ; jcsample.asm - downsampling (64-bit SSE2) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; Copyright 2009 D. R. Commander ; ; Based on ; x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; [TAB8] %include "jsimdext.inc" ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 64 ; ; Downsample pixel values of a single component. ; This version handles the common case of 2:1 horizontal and 1:1 vertical, ; without smoothing. ; ; GLOBAL(void) ; jsimd_h2v1_downsample_sse2 (JDIMENSION image_width, int max_v_samp_factor, ; JDIMENSION v_samp_factor, JDIMENSION width_blocks, ; JSAMPARRAY input_data, JSAMPARRAY output_data); ; ; r10 = JDIMENSION image_width ; r11 = int max_v_samp_factor ; r12 = JDIMENSION v_samp_factor ; r13 = JDIMENSION width_blocks ; r14 = JSAMPARRAY input_data ; r15 = JSAMPARRAY output_data align 16 global EXTN(jsimd_h2v1_downsample_sse2) EXTN(jsimd_h2v1_downsample_sse2): push rbp mov rax,rsp mov rbp,rsp collect_args mov ecx, r13d shl rcx,3 ; imul rcx,DCTSIZE (rcx = output_cols) jz near .return mov edx, r10d ; -- expand_right_edge push rcx shl rcx,1 ; output_cols * 2 sub rcx,rdx jle short .expand_end mov rax, r11 test rax,rax jle short .expand_end cld mov rsi, r14 ; input_data .expandloop: push rax push rcx mov rdi, JSAMPROW [rsi] add rdi,rdx mov al, JSAMPLE [rdi-1] rep stosb pop rcx pop rax add rsi, byte SIZEOF_JSAMPROW dec rax jg short .expandloop .expand_end: pop rcx ; output_cols ; -- h2v1_downsample mov eax, r12d ; rowctr test eax,eax jle near .return mov rdx, 0x00010000 ; bias pattern movd xmm7,edx pcmpeqw xmm6,xmm6 pshufd xmm7,xmm7,0x00 ; xmm7={0, 1, 0, 1, 0, 1, 0, 1} psrlw xmm6,BYTE_BIT ; xmm6={0xFF 0x00 0xFF 0x00 ..} mov rsi, r14 ; input_data mov rdi, r15 ; output_data .rowloop: push rcx push rdi push rsi mov rsi, JSAMPROW [rsi] ; inptr mov rdi, JSAMPROW [rdi] ; outptr cmp rcx, byte SIZEOF_XMMWORD jae short .columnloop .columnloop_r8: movdqa xmm0, XMMWORD [rsi+0*SIZEOF_XMMWORD] pxor xmm1,xmm1 mov rcx, SIZEOF_XMMWORD jmp short .downsample .columnloop: movdqa xmm0, XMMWORD [rsi+0*SIZEOF_XMMWORD] movdqa xmm1, XMMWORD [rsi+1*SIZEOF_XMMWORD] .downsample: movdqa xmm2,xmm0 movdqa xmm3,xmm1 pand xmm0,xmm6 psrlw xmm2,BYTE_BIT pand xmm1,xmm6 psrlw xmm3,BYTE_BIT paddw xmm0,xmm2 paddw xmm1,xmm3 paddw xmm0,xmm7 paddw xmm1,xmm7 psrlw xmm0,1 psrlw xmm1,1 packuswb xmm0,xmm1 movdqa XMMWORD [rdi+0*SIZEOF_XMMWORD], xmm0 sub rcx, byte SIZEOF_XMMWORD ; outcol add rsi, byte 2*SIZEOF_XMMWORD ; inptr add rdi, byte 1*SIZEOF_XMMWORD ; outptr cmp rcx, byte SIZEOF_XMMWORD jae short .columnloop test rcx,rcx jnz short .columnloop_r8 pop rsi pop rdi pop rcx add rsi, byte SIZEOF_JSAMPROW ; input_data add rdi, byte SIZEOF_JSAMPROW ; output_data dec rax ; rowctr jg near .rowloop .return: uncollect_args pop rbp ret ; -------------------------------------------------------------------------- ; ; Downsample pixel values of a single component. ; This version handles the standard case of 2:1 horizontal and 2:1 vertical, ; without smoothing. ; ; GLOBAL(void) ; jsimd_h2v2_downsample_sse2 (JDIMENSION image_width, int max_v_samp_factor, ; JDIMENSION v_samp_factor, JDIMENSION width_blocks, ; JSAMPARRAY input_data, JSAMPARRAY output_data); ; ; r10 = JDIMENSION image_width ; r11 = int max_v_samp_factor ; r12 = JDIMENSION v_samp_factor ; r13 = JDIMENSION width_blocks ; r14 = JSAMPARRAY input_data ; r15 = JSAMPARRAY output_data align 16 global EXTN(jsimd_h2v2_downsample_sse2) EXTN(jsimd_h2v2_downsample_sse2): push rbp mov rax,rsp mov rbp,rsp collect_args mov ecx, r13d shl rcx,3 ; imul rcx,DCTSIZE (rcx = output_cols) jz near .return mov edx, r10d ; -- expand_right_edge push rcx shl rcx,1 ; output_cols * 2 sub rcx,rdx jle short .expand_end mov rax, r11 test rax,rax jle short .expand_end cld mov rsi, r14 ; input_data .expandloop: push rax push rcx mov rdi, JSAMPROW [rsi] add rdi,rdx mov al, JSAMPLE [rdi-1] rep stosb pop rcx pop rax add rsi, byte SIZEOF_JSAMPROW dec rax jg short .expandloop .expand_end: pop rcx ; output_cols ; -- h2v2_downsample mov eax, r12d ; rowctr test rax,rax jle near .return mov rdx, 0x00020001 ; bias pattern movd xmm7,edx pcmpeqw xmm6,xmm6 pshufd xmm7,xmm7,0x00 ; xmm7={1, 2, 1, 2, 1, 2, 1, 2} psrlw xmm6,BYTE_BIT ; xmm6={0xFF 0x00 0xFF 0x00 ..} mov rsi, r14 ; input_data mov rdi, r15 ; output_data .rowloop: push rcx push rdi push rsi mov rdx, JSAMPROW [rsi+0*SIZEOF_JSAMPROW] ; inptr0 mov rsi, JSAMPROW [rsi+1*SIZEOF_JSAMPROW] ; inptr1 mov rdi, JSAMPROW [rdi] ; outptr cmp rcx, byte SIZEOF_XMMWORD jae short .columnloop .columnloop_r8: movdqa xmm0, XMMWORD [rdx+0*SIZEOF_XMMWORD] movdqa xmm1, XMMWORD [rsi+0*SIZEOF_XMMWORD] pxor xmm2,xmm2 pxor xmm3,xmm3 mov rcx, SIZEOF_XMMWORD jmp short .downsample .columnloop: movdqa xmm0, XMMWORD [rdx+0*SIZEOF_XMMWORD] movdqa xmm1, XMMWORD [rsi+0*SIZEOF_XMMWORD] movdqa xmm2, XMMWORD [rdx+1*SIZEOF_XMMWORD] movdqa xmm3, XMMWORD [rsi+1*SIZEOF_XMMWORD] .downsample: movdqa xmm4,xmm0 movdqa xmm5,xmm1 pand xmm0,xmm6 psrlw xmm4,BYTE_BIT pand xmm1,xmm6 psrlw xmm5,BYTE_BIT paddw xmm0,xmm4 paddw xmm1,xmm5 movdqa xmm4,xmm2 movdqa xmm5,xmm3 pand xmm2,xmm6 psrlw xmm4,BYTE_BIT pand xmm3,xmm6 psrlw xmm5,BYTE_BIT paddw xmm2,xmm4 paddw xmm3,xmm5 paddw xmm0,xmm1 paddw xmm2,xmm3 paddw xmm0,xmm7 paddw xmm2,xmm7 psrlw xmm0,2 psrlw xmm2,2 packuswb xmm0,xmm2 movdqa XMMWORD [rdi+0*SIZEOF_XMMWORD], xmm0 sub rcx, byte SIZEOF_XMMWORD ; outcol add rdx, byte 2*SIZEOF_XMMWORD ; inptr0 add rsi, byte 2*SIZEOF_XMMWORD ; inptr1 add rdi, byte 1*SIZEOF_XMMWORD ; outptr cmp rcx, byte SIZEOF_XMMWORD jae near .columnloop test rcx,rcx jnz near .columnloop_r8 pop rsi pop rdi pop rcx add rsi, byte 2*SIZEOF_JSAMPROW ; input_data add rdi, byte 1*SIZEOF_JSAMPROW ; output_data dec rax ; rowctr jg near .rowloop .return: uncollect_args pop rbp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 16 libjpeg-turbo-1.4.2/simd/jcgryext-sse2-64.asm0000644000076500007650000003170512600050400015605 00000000000000; ; jcgryext.asm - grayscale colorspace conversion (64-bit SSE2) ; ; x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; Copyright (C) 2011, D. R. Commander. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; [TAB8] %include "jcolsamp.inc" ; -------------------------------------------------------------------------- ; ; Convert some rows of samples to the output colorspace. ; ; GLOBAL(void) ; jsimd_rgb_gray_convert_sse2 (JDIMENSION img_width, ; JSAMPARRAY input_buf, JSAMPIMAGE output_buf, ; JDIMENSION output_row, int num_rows); ; ; r10 = JDIMENSION img_width ; r11 = JSAMPARRAY input_buf ; r12 = JSAMPIMAGE output_buf ; r13 = JDIMENSION output_row ; r14 = int num_rows %define wk(i) rbp-(WK_NUM-(i))*SIZEOF_XMMWORD ; xmmword wk[WK_NUM] %define WK_NUM 2 align 16 global EXTN(jsimd_rgb_gray_convert_sse2) EXTN(jsimd_rgb_gray_convert_sse2): push rbp mov rax,rsp ; rax = original rbp sub rsp, byte 4 and rsp, byte (-SIZEOF_XMMWORD) ; align to 128 bits mov [rsp],rax mov rbp,rsp ; rbp = aligned rbp lea rsp, [wk(0)] collect_args push rbx mov ecx, r10d test rcx,rcx jz near .return push rcx mov rsi, r12 mov ecx, r13d mov rdi, JSAMPARRAY [rsi+0*SIZEOF_JSAMPARRAY] lea rdi, [rdi+rcx*SIZEOF_JSAMPROW] pop rcx mov rsi, r11 mov eax, r14d test rax,rax jle near .return .rowloop: push rdi push rsi push rcx ; col mov rsi, JSAMPROW [rsi] ; inptr mov rdi, JSAMPROW [rdi] ; outptr0 cmp rcx, byte SIZEOF_XMMWORD jae near .columnloop %if RGB_PIXELSIZE == 3 ; --------------- .column_ld1: push rax push rdx lea rcx,[rcx+rcx*2] ; imul ecx,RGB_PIXELSIZE test cl, SIZEOF_BYTE jz short .column_ld2 sub rcx, byte SIZEOF_BYTE movzx rax, BYTE [rsi+rcx] .column_ld2: test cl, SIZEOF_WORD jz short .column_ld4 sub rcx, byte SIZEOF_WORD movzx rdx, WORD [rsi+rcx] shl rax, WORD_BIT or rax,rdx .column_ld4: movd xmmA,eax pop rdx pop rax test cl, SIZEOF_DWORD jz short .column_ld8 sub rcx, byte SIZEOF_DWORD movd xmmF, XMM_DWORD [rsi+rcx] pslldq xmmA, SIZEOF_DWORD por xmmA,xmmF .column_ld8: test cl, SIZEOF_MMWORD jz short .column_ld16 sub rcx, byte SIZEOF_MMWORD movq xmmB, XMM_MMWORD [rsi+rcx] pslldq xmmA, SIZEOF_MMWORD por xmmA,xmmB .column_ld16: test cl, SIZEOF_XMMWORD jz short .column_ld32 movdqa xmmF,xmmA movdqu xmmA, XMMWORD [rsi+0*SIZEOF_XMMWORD] mov rcx, SIZEOF_XMMWORD jmp short .rgb_gray_cnv .column_ld32: test cl, 2*SIZEOF_XMMWORD mov rcx, SIZEOF_XMMWORD jz short .rgb_gray_cnv movdqa xmmB,xmmA movdqu xmmA, XMMWORD [rsi+0*SIZEOF_XMMWORD] movdqu xmmF, XMMWORD [rsi+1*SIZEOF_XMMWORD] jmp short .rgb_gray_cnv .columnloop: movdqu xmmA, XMMWORD [rsi+0*SIZEOF_XMMWORD] movdqu xmmF, XMMWORD [rsi+1*SIZEOF_XMMWORD] movdqu xmmB, XMMWORD [rsi+2*SIZEOF_XMMWORD] .rgb_gray_cnv: ; xmmA=(00 10 20 01 11 21 02 12 22 03 13 23 04 14 24 05) ; xmmF=(15 25 06 16 26 07 17 27 08 18 28 09 19 29 0A 1A) ; xmmB=(2A 0B 1B 2B 0C 1C 2C 0D 1D 2D 0E 1E 2E 0F 1F 2F) movdqa xmmG,xmmA pslldq xmmA,8 ; xmmA=(-- -- -- -- -- -- -- -- 00 10 20 01 11 21 02 12) psrldq xmmG,8 ; xmmG=(22 03 13 23 04 14 24 05 -- -- -- -- -- -- -- --) punpckhbw xmmA,xmmF ; xmmA=(00 08 10 18 20 28 01 09 11 19 21 29 02 0A 12 1A) pslldq xmmF,8 ; xmmF=(-- -- -- -- -- -- -- -- 15 25 06 16 26 07 17 27) punpcklbw xmmG,xmmB ; xmmG=(22 2A 03 0B 13 1B 23 2B 04 0C 14 1C 24 2C 05 0D) punpckhbw xmmF,xmmB ; xmmF=(15 1D 25 2D 06 0E 16 1E 26 2E 07 0F 17 1F 27 2F) movdqa xmmD,xmmA pslldq xmmA,8 ; xmmA=(-- -- -- -- -- -- -- -- 00 08 10 18 20 28 01 09) psrldq xmmD,8 ; xmmD=(11 19 21 29 02 0A 12 1A -- -- -- -- -- -- -- --) punpckhbw xmmA,xmmG ; xmmA=(00 04 08 0C 10 14 18 1C 20 24 28 2C 01 05 09 0D) pslldq xmmG,8 ; xmmG=(-- -- -- -- -- -- -- -- 22 2A 03 0B 13 1B 23 2B) punpcklbw xmmD,xmmF ; xmmD=(11 15 19 1D 21 25 29 2D 02 06 0A 0E 12 16 1A 1E) punpckhbw xmmG,xmmF ; xmmG=(22 26 2A 2E 03 07 0B 0F 13 17 1B 1F 23 27 2B 2F) movdqa xmmE,xmmA pslldq xmmA,8 ; xmmA=(-- -- -- -- -- -- -- -- 00 04 08 0C 10 14 18 1C) psrldq xmmE,8 ; xmmE=(20 24 28 2C 01 05 09 0D -- -- -- -- -- -- -- --) punpckhbw xmmA,xmmD ; xmmA=(00 02 04 06 08 0A 0C 0E 10 12 14 16 18 1A 1C 1E) pslldq xmmD,8 ; xmmD=(-- -- -- -- -- -- -- -- 11 15 19 1D 21 25 29 2D) punpcklbw xmmE,xmmG ; xmmE=(20 22 24 26 28 2A 2C 2E 01 03 05 07 09 0B 0D 0F) punpckhbw xmmD,xmmG ; xmmD=(11 13 15 17 19 1B 1D 1F 21 23 25 27 29 2B 2D 2F) pxor xmmH,xmmH movdqa xmmC,xmmA punpcklbw xmmA,xmmH ; xmmA=(00 02 04 06 08 0A 0C 0E) punpckhbw xmmC,xmmH ; xmmC=(10 12 14 16 18 1A 1C 1E) movdqa xmmB,xmmE punpcklbw xmmE,xmmH ; xmmE=(20 22 24 26 28 2A 2C 2E) punpckhbw xmmB,xmmH ; xmmB=(01 03 05 07 09 0B 0D 0F) movdqa xmmF,xmmD punpcklbw xmmD,xmmH ; xmmD=(11 13 15 17 19 1B 1D 1F) punpckhbw xmmF,xmmH ; xmmF=(21 23 25 27 29 2B 2D 2F) %else ; RGB_PIXELSIZE == 4 ; ----------- .column_ld1: test cl, SIZEOF_XMMWORD/16 jz short .column_ld2 sub rcx, byte SIZEOF_XMMWORD/16 movd xmmA, XMM_DWORD [rsi+rcx*RGB_PIXELSIZE] .column_ld2: test cl, SIZEOF_XMMWORD/8 jz short .column_ld4 sub rcx, byte SIZEOF_XMMWORD/8 movq xmmE, XMM_MMWORD [rsi+rcx*RGB_PIXELSIZE] pslldq xmmA, SIZEOF_MMWORD por xmmA,xmmE .column_ld4: test cl, SIZEOF_XMMWORD/4 jz short .column_ld8 sub rcx, byte SIZEOF_XMMWORD/4 movdqa xmmE,xmmA movdqu xmmA, XMMWORD [rsi+rcx*RGB_PIXELSIZE] .column_ld8: test cl, SIZEOF_XMMWORD/2 mov rcx, SIZEOF_XMMWORD jz short .rgb_gray_cnv movdqa xmmF,xmmA movdqa xmmH,xmmE movdqu xmmA, XMMWORD [rsi+0*SIZEOF_XMMWORD] movdqu xmmE, XMMWORD [rsi+1*SIZEOF_XMMWORD] jmp short .rgb_gray_cnv .columnloop: movdqu xmmA, XMMWORD [rsi+0*SIZEOF_XMMWORD] movdqu xmmE, XMMWORD [rsi+1*SIZEOF_XMMWORD] movdqu xmmF, XMMWORD [rsi+2*SIZEOF_XMMWORD] movdqu xmmH, XMMWORD [rsi+3*SIZEOF_XMMWORD] .rgb_gray_cnv: ; xmmA=(00 10 20 30 01 11 21 31 02 12 22 32 03 13 23 33) ; xmmE=(04 14 24 34 05 15 25 35 06 16 26 36 07 17 27 37) ; xmmF=(08 18 28 38 09 19 29 39 0A 1A 2A 3A 0B 1B 2B 3B) ; xmmH=(0C 1C 2C 3C 0D 1D 2D 3D 0E 1E 2E 3E 0F 1F 2F 3F) movdqa xmmD,xmmA punpcklbw xmmA,xmmE ; xmmA=(00 04 10 14 20 24 30 34 01 05 11 15 21 25 31 35) punpckhbw xmmD,xmmE ; xmmD=(02 06 12 16 22 26 32 36 03 07 13 17 23 27 33 37) movdqa xmmC,xmmF punpcklbw xmmF,xmmH ; xmmF=(08 0C 18 1C 28 2C 38 3C 09 0D 19 1D 29 2D 39 3D) punpckhbw xmmC,xmmH ; xmmC=(0A 0E 1A 1E 2A 2E 3A 3E 0B 0F 1B 1F 2B 2F 3B 3F) movdqa xmmB,xmmA punpcklwd xmmA,xmmF ; xmmA=(00 04 08 0C 10 14 18 1C 20 24 28 2C 30 34 38 3C) punpckhwd xmmB,xmmF ; xmmB=(01 05 09 0D 11 15 19 1D 21 25 29 2D 31 35 39 3D) movdqa xmmG,xmmD punpcklwd xmmD,xmmC ; xmmD=(02 06 0A 0E 12 16 1A 1E 22 26 2A 2E 32 36 3A 3E) punpckhwd xmmG,xmmC ; xmmG=(03 07 0B 0F 13 17 1B 1F 23 27 2B 2F 33 37 3B 3F) movdqa xmmE,xmmA punpcklbw xmmA,xmmD ; xmmA=(00 02 04 06 08 0A 0C 0E 10 12 14 16 18 1A 1C 1E) punpckhbw xmmE,xmmD ; xmmE=(20 22 24 26 28 2A 2C 2E 30 32 34 36 38 3A 3C 3E) movdqa xmmH,xmmB punpcklbw xmmB,xmmG ; xmmB=(01 03 05 07 09 0B 0D 0F 11 13 15 17 19 1B 1D 1F) punpckhbw xmmH,xmmG ; xmmH=(21 23 25 27 29 2B 2D 2F 31 33 35 37 39 3B 3D 3F) pxor xmmF,xmmF movdqa xmmC,xmmA punpcklbw xmmA,xmmF ; xmmA=(00 02 04 06 08 0A 0C 0E) punpckhbw xmmC,xmmF ; xmmC=(10 12 14 16 18 1A 1C 1E) movdqa xmmD,xmmB punpcklbw xmmB,xmmF ; xmmB=(01 03 05 07 09 0B 0D 0F) punpckhbw xmmD,xmmF ; xmmD=(11 13 15 17 19 1B 1D 1F) movdqa xmmG,xmmE punpcklbw xmmE,xmmF ; xmmE=(20 22 24 26 28 2A 2C 2E) punpckhbw xmmG,xmmF ; xmmG=(30 32 34 36 38 3A 3C 3E) punpcklbw xmmF,xmmH punpckhbw xmmH,xmmH psrlw xmmF,BYTE_BIT ; xmmF=(21 23 25 27 29 2B 2D 2F) psrlw xmmH,BYTE_BIT ; xmmH=(31 33 35 37 39 3B 3D 3F) %endif ; RGB_PIXELSIZE ; --------------- ; xmm0=R(02468ACE)=RE, xmm2=G(02468ACE)=GE, xmm4=B(02468ACE)=BE ; xmm1=R(13579BDF)=RO, xmm3=G(13579BDF)=GO, xmm5=B(13579BDF)=BO ; (Original) ; Y = 0.29900 * R + 0.58700 * G + 0.11400 * B ; ; (This implementation) ; Y = 0.29900 * R + 0.33700 * G + 0.11400 * B + 0.25000 * G movdqa xmm6,xmm1 punpcklwd xmm1,xmm3 punpckhwd xmm6,xmm3 pmaddwd xmm1,[rel PW_F0299_F0337] ; xmm1=ROL*FIX(0.299)+GOL*FIX(0.337) pmaddwd xmm6,[rel PW_F0299_F0337] ; xmm6=ROH*FIX(0.299)+GOH*FIX(0.337) movdqa xmm7, xmm6 ; xmm7=ROH*FIX(0.299)+GOH*FIX(0.337) movdqa xmm6,xmm0 punpcklwd xmm0,xmm2 punpckhwd xmm6,xmm2 pmaddwd xmm0,[rel PW_F0299_F0337] ; xmm0=REL*FIX(0.299)+GEL*FIX(0.337) pmaddwd xmm6,[rel PW_F0299_F0337] ; xmm6=REH*FIX(0.299)+GEH*FIX(0.337) movdqa XMMWORD [wk(0)], xmm0 ; wk(0)=REL*FIX(0.299)+GEL*FIX(0.337) movdqa XMMWORD [wk(1)], xmm6 ; wk(1)=REH*FIX(0.299)+GEH*FIX(0.337) movdqa xmm0, xmm5 ; xmm0=BO movdqa xmm6, xmm4 ; xmm6=BE movdqa xmm4,xmm0 punpcklwd xmm0,xmm3 punpckhwd xmm4,xmm3 pmaddwd xmm0,[rel PW_F0114_F0250] ; xmm0=BOL*FIX(0.114)+GOL*FIX(0.250) pmaddwd xmm4,[rel PW_F0114_F0250] ; xmm4=BOH*FIX(0.114)+GOH*FIX(0.250) movdqa xmm3,[rel PD_ONEHALF] ; xmm3=[PD_ONEHALF] paddd xmm0, xmm1 paddd xmm4, xmm7 paddd xmm0,xmm3 paddd xmm4,xmm3 psrld xmm0,SCALEBITS ; xmm0=YOL psrld xmm4,SCALEBITS ; xmm4=YOH packssdw xmm0,xmm4 ; xmm0=YO movdqa xmm4,xmm6 punpcklwd xmm6,xmm2 punpckhwd xmm4,xmm2 pmaddwd xmm6,[rel PW_F0114_F0250] ; xmm6=BEL*FIX(0.114)+GEL*FIX(0.250) pmaddwd xmm4,[rel PW_F0114_F0250] ; xmm4=BEH*FIX(0.114)+GEH*FIX(0.250) movdqa xmm2,[rel PD_ONEHALF] ; xmm2=[PD_ONEHALF] paddd xmm6, XMMWORD [wk(0)] paddd xmm4, XMMWORD [wk(1)] paddd xmm6,xmm2 paddd xmm4,xmm2 psrld xmm6,SCALEBITS ; xmm6=YEL psrld xmm4,SCALEBITS ; xmm4=YEH packssdw xmm6,xmm4 ; xmm6=YE psllw xmm0,BYTE_BIT por xmm6,xmm0 ; xmm6=Y movdqa XMMWORD [rdi], xmm6 ; Save Y sub rcx, byte SIZEOF_XMMWORD add rsi, byte RGB_PIXELSIZE*SIZEOF_XMMWORD ; inptr add rdi, byte SIZEOF_XMMWORD ; outptr0 cmp rcx, byte SIZEOF_XMMWORD jae near .columnloop test rcx,rcx jnz near .column_ld1 pop rcx ; col pop rsi pop rdi add rsi, byte SIZEOF_JSAMPROW ; input_buf add rdi, byte SIZEOF_JSAMPROW dec rax ; num_rows jg near .rowloop .return: pop rbx uncollect_args mov rsp,rbp ; rsp <- aligned rbp pop rsp ; rsp <- original rbp pop rbp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 16 libjpeg-turbo-1.4.2/simd/jdmrgext-sse2.asm0000644000076500007650000005156212600050400015346 00000000000000; ; jdmrgext.asm - merged upsampling/color conversion (SSE2) ; ; Copyright 2009, 2012 Pierre Ossman for Cendio AB ; Copyright 2012 D. R. Commander ; ; Based on ; x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; [TAB8] %include "jcolsamp.inc" ; -------------------------------------------------------------------------- ; ; Upsample and color convert for the case of 2:1 horizontal and 1:1 vertical. ; ; GLOBAL(void) ; jsimd_h2v1_merged_upsample_sse2 (JDIMENSION output_width, ; JSAMPIMAGE input_buf, ; JDIMENSION in_row_group_ctr, ; JSAMPARRAY output_buf); ; %define output_width(b) (b)+8 ; JDIMENSION output_width %define input_buf(b) (b)+12 ; JSAMPIMAGE input_buf %define in_row_group_ctr(b) (b)+16 ; JDIMENSION in_row_group_ctr %define output_buf(b) (b)+20 ; JSAMPARRAY output_buf %define original_ebp ebp+0 %define wk(i) ebp-(WK_NUM-(i))*SIZEOF_XMMWORD ; xmmword wk[WK_NUM] %define WK_NUM 3 %define gotptr wk(0)-SIZEOF_POINTER ; void * gotptr align 16 global EXTN(jsimd_h2v1_merged_upsample_sse2) EXTN(jsimd_h2v1_merged_upsample_sse2): push ebp mov eax,esp ; eax = original ebp sub esp, byte 4 and esp, byte (-SIZEOF_XMMWORD) ; align to 128 bits mov [esp],eax mov ebp,esp ; ebp = aligned ebp lea esp, [wk(0)] pushpic eax ; make a room for GOT address push ebx ; push ecx ; need not be preserved ; push edx ; need not be preserved push esi push edi get_GOT ebx ; get GOT address movpic POINTER [gotptr], ebx ; save GOT address mov ecx, JDIMENSION [output_width(eax)] ; col test ecx,ecx jz near .return push ecx mov edi, JSAMPIMAGE [input_buf(eax)] mov ecx, JDIMENSION [in_row_group_ctr(eax)] mov esi, JSAMPARRAY [edi+0*SIZEOF_JSAMPARRAY] mov ebx, JSAMPARRAY [edi+1*SIZEOF_JSAMPARRAY] mov edx, JSAMPARRAY [edi+2*SIZEOF_JSAMPARRAY] mov edi, JSAMPARRAY [output_buf(eax)] mov esi, JSAMPROW [esi+ecx*SIZEOF_JSAMPROW] ; inptr0 mov ebx, JSAMPROW [ebx+ecx*SIZEOF_JSAMPROW] ; inptr1 mov edx, JSAMPROW [edx+ecx*SIZEOF_JSAMPROW] ; inptr2 mov edi, JSAMPROW [edi] ; outptr pop ecx ; col alignx 16,7 .columnloop: movpic eax, POINTER [gotptr] ; load GOT address (eax) movdqa xmm6, XMMWORD [ebx] ; xmm6=Cb(0123456789ABCDEF) movdqa xmm7, XMMWORD [edx] ; xmm7=Cr(0123456789ABCDEF) pxor xmm1,xmm1 ; xmm1=(all 0's) pcmpeqw xmm3,xmm3 psllw xmm3,7 ; xmm3={0xFF80 0xFF80 0xFF80 0xFF80 ..} movdqa xmm4,xmm6 punpckhbw xmm6,xmm1 ; xmm6=Cb(89ABCDEF)=CbH punpcklbw xmm4,xmm1 ; xmm4=Cb(01234567)=CbL movdqa xmm0,xmm7 punpckhbw xmm7,xmm1 ; xmm7=Cr(89ABCDEF)=CrH punpcklbw xmm0,xmm1 ; xmm0=Cr(01234567)=CrL paddw xmm6,xmm3 paddw xmm4,xmm3 paddw xmm7,xmm3 paddw xmm0,xmm3 ; (Original) ; R = Y + 1.40200 * Cr ; G = Y - 0.34414 * Cb - 0.71414 * Cr ; B = Y + 1.77200 * Cb ; ; (This implementation) ; R = Y + 0.40200 * Cr + Cr ; G = Y - 0.34414 * Cb + 0.28586 * Cr - Cr ; B = Y - 0.22800 * Cb + Cb + Cb movdqa xmm5,xmm6 ; xmm5=CbH movdqa xmm2,xmm4 ; xmm2=CbL paddw xmm6,xmm6 ; xmm6=2*CbH paddw xmm4,xmm4 ; xmm4=2*CbL movdqa xmm1,xmm7 ; xmm1=CrH movdqa xmm3,xmm0 ; xmm3=CrL paddw xmm7,xmm7 ; xmm7=2*CrH paddw xmm0,xmm0 ; xmm0=2*CrL pmulhw xmm6,[GOTOFF(eax,PW_MF0228)] ; xmm6=(2*CbH * -FIX(0.22800)) pmulhw xmm4,[GOTOFF(eax,PW_MF0228)] ; xmm4=(2*CbL * -FIX(0.22800)) pmulhw xmm7,[GOTOFF(eax,PW_F0402)] ; xmm7=(2*CrH * FIX(0.40200)) pmulhw xmm0,[GOTOFF(eax,PW_F0402)] ; xmm0=(2*CrL * FIX(0.40200)) paddw xmm6,[GOTOFF(eax,PW_ONE)] paddw xmm4,[GOTOFF(eax,PW_ONE)] psraw xmm6,1 ; xmm6=(CbH * -FIX(0.22800)) psraw xmm4,1 ; xmm4=(CbL * -FIX(0.22800)) paddw xmm7,[GOTOFF(eax,PW_ONE)] paddw xmm0,[GOTOFF(eax,PW_ONE)] psraw xmm7,1 ; xmm7=(CrH * FIX(0.40200)) psraw xmm0,1 ; xmm0=(CrL * FIX(0.40200)) paddw xmm6,xmm5 paddw xmm4,xmm2 paddw xmm6,xmm5 ; xmm6=(CbH * FIX(1.77200))=(B-Y)H paddw xmm4,xmm2 ; xmm4=(CbL * FIX(1.77200))=(B-Y)L paddw xmm7,xmm1 ; xmm7=(CrH * FIX(1.40200))=(R-Y)H paddw xmm0,xmm3 ; xmm0=(CrL * FIX(1.40200))=(R-Y)L movdqa XMMWORD [wk(0)], xmm6 ; wk(0)=(B-Y)H movdqa XMMWORD [wk(1)], xmm7 ; wk(1)=(R-Y)H movdqa xmm6,xmm5 movdqa xmm7,xmm2 punpcklwd xmm5,xmm1 punpckhwd xmm6,xmm1 pmaddwd xmm5,[GOTOFF(eax,PW_MF0344_F0285)] pmaddwd xmm6,[GOTOFF(eax,PW_MF0344_F0285)] punpcklwd xmm2,xmm3 punpckhwd xmm7,xmm3 pmaddwd xmm2,[GOTOFF(eax,PW_MF0344_F0285)] pmaddwd xmm7,[GOTOFF(eax,PW_MF0344_F0285)] paddd xmm5,[GOTOFF(eax,PD_ONEHALF)] paddd xmm6,[GOTOFF(eax,PD_ONEHALF)] psrad xmm5,SCALEBITS psrad xmm6,SCALEBITS paddd xmm2,[GOTOFF(eax,PD_ONEHALF)] paddd xmm7,[GOTOFF(eax,PD_ONEHALF)] psrad xmm2,SCALEBITS psrad xmm7,SCALEBITS packssdw xmm5,xmm6 ; xmm5=CbH*-FIX(0.344)+CrH*FIX(0.285) packssdw xmm2,xmm7 ; xmm2=CbL*-FIX(0.344)+CrL*FIX(0.285) psubw xmm5,xmm1 ; xmm5=CbH*-FIX(0.344)+CrH*-FIX(0.714)=(G-Y)H psubw xmm2,xmm3 ; xmm2=CbL*-FIX(0.344)+CrL*-FIX(0.714)=(G-Y)L movdqa XMMWORD [wk(2)], xmm5 ; wk(2)=(G-Y)H mov al,2 ; Yctr jmp short .Yloop_1st alignx 16,7 .Yloop_2nd: movdqa xmm0, XMMWORD [wk(1)] ; xmm0=(R-Y)H movdqa xmm2, XMMWORD [wk(2)] ; xmm2=(G-Y)H movdqa xmm4, XMMWORD [wk(0)] ; xmm4=(B-Y)H alignx 16,7 .Yloop_1st: movdqa xmm7, XMMWORD [esi] ; xmm7=Y(0123456789ABCDEF) pcmpeqw xmm6,xmm6 psrlw xmm6,BYTE_BIT ; xmm6={0xFF 0x00 0xFF 0x00 ..} pand xmm6,xmm7 ; xmm6=Y(02468ACE)=YE psrlw xmm7,BYTE_BIT ; xmm7=Y(13579BDF)=YO movdqa xmm1,xmm0 ; xmm1=xmm0=(R-Y)(L/H) movdqa xmm3,xmm2 ; xmm3=xmm2=(G-Y)(L/H) movdqa xmm5,xmm4 ; xmm5=xmm4=(B-Y)(L/H) paddw xmm0,xmm6 ; xmm0=((R-Y)+YE)=RE=R(02468ACE) paddw xmm1,xmm7 ; xmm1=((R-Y)+YO)=RO=R(13579BDF) packuswb xmm0,xmm0 ; xmm0=R(02468ACE********) packuswb xmm1,xmm1 ; xmm1=R(13579BDF********) paddw xmm2,xmm6 ; xmm2=((G-Y)+YE)=GE=G(02468ACE) paddw xmm3,xmm7 ; xmm3=((G-Y)+YO)=GO=G(13579BDF) packuswb xmm2,xmm2 ; xmm2=G(02468ACE********) packuswb xmm3,xmm3 ; xmm3=G(13579BDF********) paddw xmm4,xmm6 ; xmm4=((B-Y)+YE)=BE=B(02468ACE) paddw xmm5,xmm7 ; xmm5=((B-Y)+YO)=BO=B(13579BDF) packuswb xmm4,xmm4 ; xmm4=B(02468ACE********) packuswb xmm5,xmm5 ; xmm5=B(13579BDF********) %if RGB_PIXELSIZE == 3 ; --------------- ; xmmA=(00 02 04 06 08 0A 0C 0E **), xmmB=(01 03 05 07 09 0B 0D 0F **) ; xmmC=(10 12 14 16 18 1A 1C 1E **), xmmD=(11 13 15 17 19 1B 1D 1F **) ; xmmE=(20 22 24 26 28 2A 2C 2E **), xmmF=(21 23 25 27 29 2B 2D 2F **) ; xmmG=(** ** ** ** ** ** ** ** **), xmmH=(** ** ** ** ** ** ** ** **) punpcklbw xmmA,xmmC ; xmmA=(00 10 02 12 04 14 06 16 08 18 0A 1A 0C 1C 0E 1E) punpcklbw xmmE,xmmB ; xmmE=(20 01 22 03 24 05 26 07 28 09 2A 0B 2C 0D 2E 0F) punpcklbw xmmD,xmmF ; xmmD=(11 21 13 23 15 25 17 27 19 29 1B 2B 1D 2D 1F 2F) movdqa xmmG,xmmA movdqa xmmH,xmmA punpcklwd xmmA,xmmE ; xmmA=(00 10 20 01 02 12 22 03 04 14 24 05 06 16 26 07) punpckhwd xmmG,xmmE ; xmmG=(08 18 28 09 0A 1A 2A 0B 0C 1C 2C 0D 0E 1E 2E 0F) psrldq xmmH,2 ; xmmH=(02 12 04 14 06 16 08 18 0A 1A 0C 1C 0E 1E -- --) psrldq xmmE,2 ; xmmE=(22 03 24 05 26 07 28 09 2A 0B 2C 0D 2E 0F -- --) movdqa xmmC,xmmD movdqa xmmB,xmmD punpcklwd xmmD,xmmH ; xmmD=(11 21 02 12 13 23 04 14 15 25 06 16 17 27 08 18) punpckhwd xmmC,xmmH ; xmmC=(19 29 0A 1A 1B 2B 0C 1C 1D 2D 0E 1E 1F 2F -- --) psrldq xmmB,2 ; xmmB=(13 23 15 25 17 27 19 29 1B 2B 1D 2D 1F 2F -- --) movdqa xmmF,xmmE punpcklwd xmmE,xmmB ; xmmE=(22 03 13 23 24 05 15 25 26 07 17 27 28 09 19 29) punpckhwd xmmF,xmmB ; xmmF=(2A 0B 1B 2B 2C 0D 1D 2D 2E 0F 1F 2F -- -- -- --) pshufd xmmH,xmmA,0x4E; xmmH=(04 14 24 05 06 16 26 07 00 10 20 01 02 12 22 03) movdqa xmmB,xmmE punpckldq xmmA,xmmD ; xmmA=(00 10 20 01 11 21 02 12 02 12 22 03 13 23 04 14) punpckldq xmmE,xmmH ; xmmE=(22 03 13 23 04 14 24 05 24 05 15 25 06 16 26 07) punpckhdq xmmD,xmmB ; xmmD=(15 25 06 16 26 07 17 27 17 27 08 18 28 09 19 29) pshufd xmmH,xmmG,0x4E; xmmH=(0C 1C 2C 0D 0E 1E 2E 0F 08 18 28 09 0A 1A 2A 0B) movdqa xmmB,xmmF punpckldq xmmG,xmmC ; xmmG=(08 18 28 09 19 29 0A 1A 0A 1A 2A 0B 1B 2B 0C 1C) punpckldq xmmF,xmmH ; xmmF=(2A 0B 1B 2B 0C 1C 2C 0D 2C 0D 1D 2D 0E 1E 2E 0F) punpckhdq xmmC,xmmB ; xmmC=(1D 2D 0E 1E 2E 0F 1F 2F 1F 2F -- -- -- -- -- --) punpcklqdq xmmA,xmmE ; xmmA=(00 10 20 01 11 21 02 12 22 03 13 23 04 14 24 05) punpcklqdq xmmD,xmmG ; xmmD=(15 25 06 16 26 07 17 27 08 18 28 09 19 29 0A 1A) punpcklqdq xmmF,xmmC ; xmmF=(2A 0B 1B 2B 0C 1C 2C 0D 1D 2D 0E 1E 2E 0F 1F 2F) cmp ecx, byte SIZEOF_XMMWORD jb short .column_st32 test edi, SIZEOF_XMMWORD-1 jnz short .out1 ; --(aligned)------------------- movntdq XMMWORD [edi+0*SIZEOF_XMMWORD], xmmA movntdq XMMWORD [edi+1*SIZEOF_XMMWORD], xmmD movntdq XMMWORD [edi+2*SIZEOF_XMMWORD], xmmF jmp short .out0 .out1: ; --(unaligned)----------------- movdqu XMMWORD [edi+0*SIZEOF_XMMWORD], xmmA movdqu XMMWORD [edi+1*SIZEOF_XMMWORD], xmmD movdqu XMMWORD [edi+2*SIZEOF_XMMWORD], xmmF .out0: add edi, byte RGB_PIXELSIZE*SIZEOF_XMMWORD ; outptr sub ecx, byte SIZEOF_XMMWORD jz near .endcolumn add esi, byte SIZEOF_XMMWORD ; inptr0 dec al ; Yctr jnz near .Yloop_2nd add ebx, byte SIZEOF_XMMWORD ; inptr1 add edx, byte SIZEOF_XMMWORD ; inptr2 jmp near .columnloop alignx 16,7 .column_st32: lea ecx, [ecx+ecx*2] ; imul ecx, RGB_PIXELSIZE cmp ecx, byte 2*SIZEOF_XMMWORD jb short .column_st16 movdqu XMMWORD [edi+0*SIZEOF_XMMWORD], xmmA movdqu XMMWORD [edi+1*SIZEOF_XMMWORD], xmmD add edi, byte 2*SIZEOF_XMMWORD ; outptr movdqa xmmA,xmmF sub ecx, byte 2*SIZEOF_XMMWORD jmp short .column_st15 .column_st16: cmp ecx, byte SIZEOF_XMMWORD jb short .column_st15 movdqu XMMWORD [edi+0*SIZEOF_XMMWORD], xmmA add edi, byte SIZEOF_XMMWORD ; outptr movdqa xmmA,xmmD sub ecx, byte SIZEOF_XMMWORD .column_st15: ; Store the lower 8 bytes of xmmA to the output when it has enough ; space. cmp ecx, byte SIZEOF_MMWORD jb short .column_st7 movq XMM_MMWORD [edi], xmmA add edi, byte SIZEOF_MMWORD sub ecx, byte SIZEOF_MMWORD psrldq xmmA, SIZEOF_MMWORD .column_st7: ; Store the lower 4 bytes of xmmA to the output when it has enough ; space. cmp ecx, byte SIZEOF_DWORD jb short .column_st3 movd XMM_DWORD [edi], xmmA add edi, byte SIZEOF_DWORD sub ecx, byte SIZEOF_DWORD psrldq xmmA, SIZEOF_DWORD .column_st3: ; Store the lower 2 bytes of eax to the output when it has enough ; space. movd eax, xmmA cmp ecx, byte SIZEOF_WORD jb short .column_st1 mov WORD [edi], ax add edi, byte SIZEOF_WORD sub ecx, byte SIZEOF_WORD shr eax, 16 .column_st1: ; Store the lower 1 byte of eax to the output when it has enough ; space. test ecx, ecx jz short .endcolumn mov BYTE [edi], al %else ; RGB_PIXELSIZE == 4 ; ----------- %ifdef RGBX_FILLER_0XFF pcmpeqb xmm6,xmm6 ; xmm6=XE=X(02468ACE********) pcmpeqb xmm7,xmm7 ; xmm7=XO=X(13579BDF********) %else pxor xmm6,xmm6 ; xmm6=XE=X(02468ACE********) pxor xmm7,xmm7 ; xmm7=XO=X(13579BDF********) %endif ; xmmA=(00 02 04 06 08 0A 0C 0E **), xmmB=(01 03 05 07 09 0B 0D 0F **) ; xmmC=(10 12 14 16 18 1A 1C 1E **), xmmD=(11 13 15 17 19 1B 1D 1F **) ; xmmE=(20 22 24 26 28 2A 2C 2E **), xmmF=(21 23 25 27 29 2B 2D 2F **) ; xmmG=(30 32 34 36 38 3A 3C 3E **), xmmH=(31 33 35 37 39 3B 3D 3F **) punpcklbw xmmA,xmmC ; xmmA=(00 10 02 12 04 14 06 16 08 18 0A 1A 0C 1C 0E 1E) punpcklbw xmmE,xmmG ; xmmE=(20 30 22 32 24 34 26 36 28 38 2A 3A 2C 3C 2E 3E) punpcklbw xmmB,xmmD ; xmmB=(01 11 03 13 05 15 07 17 09 19 0B 1B 0D 1D 0F 1F) punpcklbw xmmF,xmmH ; xmmF=(21 31 23 33 25 35 27 37 29 39 2B 3B 2D 3D 2F 3F) movdqa xmmC,xmmA punpcklwd xmmA,xmmE ; xmmA=(00 10 20 30 02 12 22 32 04 14 24 34 06 16 26 36) punpckhwd xmmC,xmmE ; xmmC=(08 18 28 38 0A 1A 2A 3A 0C 1C 2C 3C 0E 1E 2E 3E) movdqa xmmG,xmmB punpcklwd xmmB,xmmF ; xmmB=(01 11 21 31 03 13 23 33 05 15 25 35 07 17 27 37) punpckhwd xmmG,xmmF ; xmmG=(09 19 29 39 0B 1B 2B 3B 0D 1D 2D 3D 0F 1F 2F 3F) movdqa xmmD,xmmA punpckldq xmmA,xmmB ; xmmA=(00 10 20 30 01 11 21 31 02 12 22 32 03 13 23 33) punpckhdq xmmD,xmmB ; xmmD=(04 14 24 34 05 15 25 35 06 16 26 36 07 17 27 37) movdqa xmmH,xmmC punpckldq xmmC,xmmG ; xmmC=(08 18 28 38 09 19 29 39 0A 1A 2A 3A 0B 1B 2B 3B) punpckhdq xmmH,xmmG ; xmmH=(0C 1C 2C 3C 0D 1D 2D 3D 0E 1E 2E 3E 0F 1F 2F 3F) cmp ecx, byte SIZEOF_XMMWORD jb short .column_st32 test edi, SIZEOF_XMMWORD-1 jnz short .out1 ; --(aligned)------------------- movntdq XMMWORD [edi+0*SIZEOF_XMMWORD], xmmA movntdq XMMWORD [edi+1*SIZEOF_XMMWORD], xmmD movntdq XMMWORD [edi+2*SIZEOF_XMMWORD], xmmC movntdq XMMWORD [edi+3*SIZEOF_XMMWORD], xmmH jmp short .out0 .out1: ; --(unaligned)----------------- movdqu XMMWORD [edi+0*SIZEOF_XMMWORD], xmmA movdqu XMMWORD [edi+1*SIZEOF_XMMWORD], xmmD movdqu XMMWORD [edi+2*SIZEOF_XMMWORD], xmmC movdqu XMMWORD [edi+3*SIZEOF_XMMWORD], xmmH .out0: add edi, byte RGB_PIXELSIZE*SIZEOF_XMMWORD ; outptr sub ecx, byte SIZEOF_XMMWORD jz near .endcolumn add esi, byte SIZEOF_XMMWORD ; inptr0 dec al ; Yctr jnz near .Yloop_2nd add ebx, byte SIZEOF_XMMWORD ; inptr1 add edx, byte SIZEOF_XMMWORD ; inptr2 jmp near .columnloop alignx 16,7 .column_st32: cmp ecx, byte SIZEOF_XMMWORD/2 jb short .column_st16 movdqu XMMWORD [edi+0*SIZEOF_XMMWORD], xmmA movdqu XMMWORD [edi+1*SIZEOF_XMMWORD], xmmD add edi, byte 2*SIZEOF_XMMWORD ; outptr movdqa xmmA,xmmC movdqa xmmD,xmmH sub ecx, byte SIZEOF_XMMWORD/2 .column_st16: cmp ecx, byte SIZEOF_XMMWORD/4 jb short .column_st15 movdqu XMMWORD [edi+0*SIZEOF_XMMWORD], xmmA add edi, byte SIZEOF_XMMWORD ; outptr movdqa xmmA,xmmD sub ecx, byte SIZEOF_XMMWORD/4 .column_st15: ; Store two pixels (8 bytes) of xmmA to the output when it has enough ; space. cmp ecx, byte SIZEOF_XMMWORD/8 jb short .column_st7 movq XMM_MMWORD [edi], xmmA add edi, byte SIZEOF_XMMWORD/8*4 sub ecx, byte SIZEOF_XMMWORD/8 psrldq xmmA, SIZEOF_XMMWORD/8*4 .column_st7: ; Store one pixel (4 bytes) of xmmA to the output when it has enough ; space. test ecx, ecx jz short .endcolumn movd XMM_DWORD [edi], xmmA %endif ; RGB_PIXELSIZE ; --------------- .endcolumn: sfence ; flush the write buffer .return: pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; need not be preserved pop ebx mov esp,ebp ; esp <- aligned ebp pop esp ; esp <- original ebp pop ebp ret ; -------------------------------------------------------------------------- ; ; Upsample and color convert for the case of 2:1 horizontal and 2:1 vertical. ; ; GLOBAL(void) ; jsimd_h2v2_merged_upsample_sse2 (JDIMENSION output_width, ; JSAMPIMAGE input_buf, ; JDIMENSION in_row_group_ctr, ; JSAMPARRAY output_buf); ; %define output_width(b) (b)+8 ; JDIMENSION output_width %define input_buf(b) (b)+12 ; JSAMPIMAGE input_buf %define in_row_group_ctr(b) (b)+16 ; JDIMENSION in_row_group_ctr %define output_buf(b) (b)+20 ; JSAMPARRAY output_buf align 16 global EXTN(jsimd_h2v2_merged_upsample_sse2) EXTN(jsimd_h2v2_merged_upsample_sse2): push ebp mov ebp,esp push ebx ; push ecx ; need not be preserved ; push edx ; need not be preserved push esi push edi mov eax, POINTER [output_width(ebp)] mov edi, JSAMPIMAGE [input_buf(ebp)] mov ecx, JDIMENSION [in_row_group_ctr(ebp)] mov esi, JSAMPARRAY [edi+0*SIZEOF_JSAMPARRAY] mov ebx, JSAMPARRAY [edi+1*SIZEOF_JSAMPARRAY] mov edx, JSAMPARRAY [edi+2*SIZEOF_JSAMPARRAY] mov edi, JSAMPARRAY [output_buf(ebp)] lea esi, [esi+ecx*SIZEOF_JSAMPROW] push edx ; inptr2 push ebx ; inptr1 push esi ; inptr00 mov ebx,esp push edi ; output_buf (outptr0) push ecx ; in_row_group_ctr push ebx ; input_buf push eax ; output_width call near EXTN(jsimd_h2v1_merged_upsample_sse2) add esi, byte SIZEOF_JSAMPROW ; inptr01 add edi, byte SIZEOF_JSAMPROW ; outptr1 mov POINTER [ebx+0*SIZEOF_POINTER], esi mov POINTER [ebx-1*SIZEOF_POINTER], edi call near EXTN(jsimd_h2v1_merged_upsample_sse2) add esp, byte 7*SIZEOF_DWORD pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; need not be preserved pop ebx pop ebp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 16 libjpeg-turbo-1.4.2/simd/jsimdcfg.inc.h0000644000076500007650000001100012600050400014634 00000000000000// This file generates the include file for the assembly // implementations by abusing the C preprocessor. // // Note: Some things are manually defined as they need to // be mapped to NASM types. ; ; Automatically generated include file from jsimdcfg.inc.h ; #define JPEG_INTERNALS #include "../jpeglib.h" #include "../jconfig.h" #include "../jmorecfg.h" #include "jsimd.h" ; ; -- jpeglib.h ; %define _cpp_protection_DCTSIZE DCTSIZE %define _cpp_protection_DCTSIZE2 DCTSIZE2 ; ; -- jmorecfg.h ; %define _cpp_protection_RGB_RED RGB_RED %define _cpp_protection_RGB_GREEN RGB_GREEN %define _cpp_protection_RGB_BLUE RGB_BLUE %define _cpp_protection_RGB_PIXELSIZE RGB_PIXELSIZE %define _cpp_protection_EXT_RGB_RED EXT_RGB_RED %define _cpp_protection_EXT_RGB_GREEN EXT_RGB_GREEN %define _cpp_protection_EXT_RGB_BLUE EXT_RGB_BLUE %define _cpp_protection_EXT_RGB_PIXELSIZE EXT_RGB_PIXELSIZE %define _cpp_protection_EXT_RGBX_RED EXT_RGBX_RED %define _cpp_protection_EXT_RGBX_GREEN EXT_RGBX_GREEN %define _cpp_protection_EXT_RGBX_BLUE EXT_RGBX_BLUE %define _cpp_protection_EXT_RGBX_PIXELSIZE EXT_RGBX_PIXELSIZE %define _cpp_protection_EXT_BGR_RED EXT_BGR_RED %define _cpp_protection_EXT_BGR_GREEN EXT_BGR_GREEN %define _cpp_protection_EXT_BGR_BLUE EXT_BGR_BLUE %define _cpp_protection_EXT_BGR_PIXELSIZE EXT_BGR_PIXELSIZE %define _cpp_protection_EXT_BGRX_RED EXT_BGRX_RED %define _cpp_protection_EXT_BGRX_GREEN EXT_BGRX_GREEN %define _cpp_protection_EXT_BGRX_BLUE EXT_BGRX_BLUE %define _cpp_protection_EXT_BGRX_PIXELSIZE EXT_BGRX_PIXELSIZE %define _cpp_protection_EXT_XBGR_RED EXT_XBGR_RED %define _cpp_protection_EXT_XBGR_GREEN EXT_XBGR_GREEN %define _cpp_protection_EXT_XBGR_BLUE EXT_XBGR_BLUE %define _cpp_protection_EXT_XBGR_PIXELSIZE EXT_XBGR_PIXELSIZE %define _cpp_protection_EXT_XRGB_RED EXT_XRGB_RED %define _cpp_protection_EXT_XRGB_GREEN EXT_XRGB_GREEN %define _cpp_protection_EXT_XRGB_BLUE EXT_XRGB_BLUE %define _cpp_protection_EXT_XRGB_PIXELSIZE EXT_XRGB_PIXELSIZE %define RGBX_FILLER_0XFF 1 ; Representation of a single sample (pixel element value). ; On this SIMD implementation, this must be 'unsigned char'. ; %define JSAMPLE byte ; unsigned char %define SIZEOF_JSAMPLE SIZEOF_BYTE ; sizeof(JSAMPLE) %define _cpp_protection_CENTERJSAMPLE CENTERJSAMPLE ; Representation of a DCT frequency coefficient. ; On this SIMD implementation, this must be 'short'. ; %define JCOEF word ; short %define SIZEOF_JCOEF SIZEOF_WORD ; sizeof(JCOEF) ; Datatype used for image dimensions. ; On this SIMD implementation, this must be 'unsigned int'. ; %define JDIMENSION dword ; unsigned int %define SIZEOF_JDIMENSION SIZEOF_DWORD ; sizeof(JDIMENSION) %define JSAMPROW POINTER ; JSAMPLE * (jpeglib.h) %define JSAMPARRAY POINTER ; JSAMPROW * (jpeglib.h) %define JSAMPIMAGE POINTER ; JSAMPARRAY * (jpeglib.h) %define JCOEFPTR POINTER ; JCOEF * (jpeglib.h) %define SIZEOF_JSAMPROW SIZEOF_POINTER ; sizeof(JSAMPROW) %define SIZEOF_JSAMPARRAY SIZEOF_POINTER ; sizeof(JSAMPARRAY) %define SIZEOF_JSAMPIMAGE SIZEOF_POINTER ; sizeof(JSAMPIMAGE) %define SIZEOF_JCOEFPTR SIZEOF_POINTER ; sizeof(JCOEFPTR) ; ; -- jdct.h ; ; A forward DCT routine is given a pointer to a work area of type DCTELEM[]; ; the DCT is to be performed in-place in that buffer. ; To maximize parallelism, Type DCTELEM is changed to short (originally, int). ; %define DCTELEM word ; short %define SIZEOF_DCTELEM SIZEOF_WORD ; sizeof(DCTELEM) %define FAST_FLOAT FP32 ; float %define SIZEOF_FAST_FLOAT SIZEOF_FP32 ; sizeof(FAST_FLOAT) ; To maximize parallelism, Type MULTIPLIER is changed to short. ; %define ISLOW_MULT_TYPE word ; must be short %define SIZEOF_ISLOW_MULT_TYPE SIZEOF_WORD ; sizeof(ISLOW_MULT_TYPE) %define IFAST_MULT_TYPE word ; must be short %define SIZEOF_IFAST_MULT_TYPE SIZEOF_WORD ; sizeof(IFAST_MULT_TYPE) %define IFAST_SCALE_BITS 2 ; fractional bits in scale factors %define FLOAT_MULT_TYPE FP32 ; must be float %define SIZEOF_FLOAT_MULT_TYPE SIZEOF_FP32 ; sizeof(FLOAT_MULT_TYPE) ; ; -- jsimd.h ; %define _cpp_protection_JSIMD_NONE JSIMD_NONE %define _cpp_protection_JSIMD_MMX JSIMD_MMX %define _cpp_protection_JSIMD_3DNOW JSIMD_3DNOW %define _cpp_protection_JSIMD_SSE JSIMD_SSE %define _cpp_protection_JSIMD_SSE2 JSIMD_SSE2 libjpeg-turbo-1.4.2/simd/jfdctflt-3dn.asm0000644000076500007650000002761712600050400015136 00000000000000; ; jfdctflt.asm - floating-point FDCT (3DNow!) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; ; Based on ; x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; This file contains a floating-point implementation of the forward DCT ; (Discrete Cosine Transform). The following code is based directly on ; the IJG's original jfdctflt.c; see the jfdctflt.c for more details. ; ; [TAB8] %include "jsimdext.inc" %include "jdct.inc" ; -------------------------------------------------------------------------- SECTION SEG_CONST alignz 16 global EXTN(jconst_fdct_float_3dnow) EXTN(jconst_fdct_float_3dnow): PD_0_382 times 2 dd 0.382683432365089771728460 PD_0_707 times 2 dd 0.707106781186547524400844 PD_0_541 times 2 dd 0.541196100146196984399723 PD_1_306 times 2 dd 1.306562964876376527856643 alignz 16 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 32 ; ; Perform the forward DCT on one block of samples. ; ; GLOBAL(void) ; jsimd_fdct_float_3dnow (FAST_FLOAT * data) ; %define data(b) (b)+8 ; FAST_FLOAT * data %define original_ebp ebp+0 %define wk(i) ebp-(WK_NUM-(i))*SIZEOF_MMWORD ; mmword wk[WK_NUM] %define WK_NUM 2 align 16 global EXTN(jsimd_fdct_float_3dnow) EXTN(jsimd_fdct_float_3dnow): push ebp mov eax,esp ; eax = original ebp sub esp, byte 4 and esp, byte (-SIZEOF_MMWORD) ; align to 64 bits mov [esp],eax mov ebp,esp ; ebp = aligned ebp lea esp, [wk(0)] pushpic ebx ; push ecx ; need not be preserved ; push edx ; need not be preserved ; push esi ; unused ; push edi ; unused get_GOT ebx ; get GOT address ; ---- Pass 1: process rows. mov edx, POINTER [data(eax)] ; (FAST_FLOAT *) mov ecx, DCTSIZE/2 alignx 16,7 .rowloop: movq mm0, MMWORD [MMBLOCK(0,0,edx,SIZEOF_FAST_FLOAT)] movq mm1, MMWORD [MMBLOCK(1,0,edx,SIZEOF_FAST_FLOAT)] movq mm2, MMWORD [MMBLOCK(0,3,edx,SIZEOF_FAST_FLOAT)] movq mm3, MMWORD [MMBLOCK(1,3,edx,SIZEOF_FAST_FLOAT)] ; mm0=(00 01), mm1=(10 11), mm2=(06 07), mm3=(16 17) movq mm4,mm0 ; transpose coefficients punpckldq mm0,mm1 ; mm0=(00 10)=data0 punpckhdq mm4,mm1 ; mm4=(01 11)=data1 movq mm5,mm2 ; transpose coefficients punpckldq mm2,mm3 ; mm2=(06 16)=data6 punpckhdq mm5,mm3 ; mm5=(07 17)=data7 movq mm6,mm4 movq mm7,mm0 pfsub mm4,mm2 ; mm4=data1-data6=tmp6 pfsub mm0,mm5 ; mm0=data0-data7=tmp7 pfadd mm6,mm2 ; mm6=data1+data6=tmp1 pfadd mm7,mm5 ; mm7=data0+data7=tmp0 movq mm1, MMWORD [MMBLOCK(0,1,edx,SIZEOF_FAST_FLOAT)] movq mm3, MMWORD [MMBLOCK(1,1,edx,SIZEOF_FAST_FLOAT)] movq mm2, MMWORD [MMBLOCK(0,2,edx,SIZEOF_FAST_FLOAT)] movq mm5, MMWORD [MMBLOCK(1,2,edx,SIZEOF_FAST_FLOAT)] ; mm1=(02 03), mm3=(12 13), mm2=(04 05), mm5=(14 15) movq MMWORD [wk(0)], mm4 ; wk(0)=tmp6 movq MMWORD [wk(1)], mm0 ; wk(1)=tmp7 movq mm4,mm1 ; transpose coefficients punpckldq mm1,mm3 ; mm1=(02 12)=data2 punpckhdq mm4,mm3 ; mm4=(03 13)=data3 movq mm0,mm2 ; transpose coefficients punpckldq mm2,mm5 ; mm2=(04 14)=data4 punpckhdq mm0,mm5 ; mm0=(05 15)=data5 movq mm3,mm4 movq mm5,mm1 pfadd mm4,mm2 ; mm4=data3+data4=tmp3 pfadd mm1,mm0 ; mm1=data2+data5=tmp2 pfsub mm3,mm2 ; mm3=data3-data4=tmp4 pfsub mm5,mm0 ; mm5=data2-data5=tmp5 ; -- Even part movq mm2,mm7 movq mm0,mm6 pfsub mm7,mm4 ; mm7=tmp13 pfsub mm6,mm1 ; mm6=tmp12 pfadd mm2,mm4 ; mm2=tmp10 pfadd mm0,mm1 ; mm0=tmp11 pfadd mm6,mm7 pfmul mm6,[GOTOFF(ebx,PD_0_707)] ; mm6=z1 movq mm4,mm2 movq mm1,mm7 pfsub mm2,mm0 ; mm2=data4 pfsub mm7,mm6 ; mm7=data6 pfadd mm4,mm0 ; mm4=data0 pfadd mm1,mm6 ; mm1=data2 movq MMWORD [MMBLOCK(0,2,edx,SIZEOF_FAST_FLOAT)], mm2 movq MMWORD [MMBLOCK(0,3,edx,SIZEOF_FAST_FLOAT)], mm7 movq MMWORD [MMBLOCK(0,0,edx,SIZEOF_FAST_FLOAT)], mm4 movq MMWORD [MMBLOCK(0,1,edx,SIZEOF_FAST_FLOAT)], mm1 ; -- Odd part movq mm0, MMWORD [wk(0)] ; mm0=tmp6 movq mm6, MMWORD [wk(1)] ; mm6=tmp7 pfadd mm3,mm5 ; mm3=tmp10 pfadd mm5,mm0 ; mm5=tmp11 pfadd mm0,mm6 ; mm0=tmp12, mm6=tmp7 pfmul mm5,[GOTOFF(ebx,PD_0_707)] ; mm5=z3 movq mm2,mm3 ; mm2=tmp10 pfsub mm3,mm0 pfmul mm3,[GOTOFF(ebx,PD_0_382)] ; mm3=z5 pfmul mm2,[GOTOFF(ebx,PD_0_541)] ; mm2=MULTIPLY(tmp10,FIX_0_54119610) pfmul mm0,[GOTOFF(ebx,PD_1_306)] ; mm0=MULTIPLY(tmp12,FIX_1_30656296) pfadd mm2,mm3 ; mm2=z2 pfadd mm0,mm3 ; mm0=z4 movq mm7,mm6 pfsub mm6,mm5 ; mm6=z13 pfadd mm7,mm5 ; mm7=z11 movq mm4,mm6 movq mm1,mm7 pfsub mm6,mm2 ; mm6=data3 pfsub mm7,mm0 ; mm7=data7 pfadd mm4,mm2 ; mm4=data5 pfadd mm1,mm0 ; mm1=data1 movq MMWORD [MMBLOCK(1,1,edx,SIZEOF_FAST_FLOAT)], mm6 movq MMWORD [MMBLOCK(1,3,edx,SIZEOF_FAST_FLOAT)], mm7 movq MMWORD [MMBLOCK(1,2,edx,SIZEOF_FAST_FLOAT)], mm4 movq MMWORD [MMBLOCK(1,0,edx,SIZEOF_FAST_FLOAT)], mm1 add edx, byte 2*DCTSIZE*SIZEOF_FAST_FLOAT dec ecx jnz near .rowloop ; ---- Pass 2: process columns. mov edx, POINTER [data(eax)] ; (FAST_FLOAT *) mov ecx, DCTSIZE/2 alignx 16,7 .columnloop: movq mm0, MMWORD [MMBLOCK(0,0,edx,SIZEOF_FAST_FLOAT)] movq mm1, MMWORD [MMBLOCK(1,0,edx,SIZEOF_FAST_FLOAT)] movq mm2, MMWORD [MMBLOCK(6,0,edx,SIZEOF_FAST_FLOAT)] movq mm3, MMWORD [MMBLOCK(7,0,edx,SIZEOF_FAST_FLOAT)] ; mm0=(00 10), mm1=(01 11), mm2=(60 70), mm3=(61 71) movq mm4,mm0 ; transpose coefficients punpckldq mm0,mm1 ; mm0=(00 01)=data0 punpckhdq mm4,mm1 ; mm4=(10 11)=data1 movq mm5,mm2 ; transpose coefficients punpckldq mm2,mm3 ; mm2=(60 61)=data6 punpckhdq mm5,mm3 ; mm5=(70 71)=data7 movq mm6,mm4 movq mm7,mm0 pfsub mm4,mm2 ; mm4=data1-data6=tmp6 pfsub mm0,mm5 ; mm0=data0-data7=tmp7 pfadd mm6,mm2 ; mm6=data1+data6=tmp1 pfadd mm7,mm5 ; mm7=data0+data7=tmp0 movq mm1, MMWORD [MMBLOCK(2,0,edx,SIZEOF_FAST_FLOAT)] movq mm3, MMWORD [MMBLOCK(3,0,edx,SIZEOF_FAST_FLOAT)] movq mm2, MMWORD [MMBLOCK(4,0,edx,SIZEOF_FAST_FLOAT)] movq mm5, MMWORD [MMBLOCK(5,0,edx,SIZEOF_FAST_FLOAT)] ; mm1=(20 30), mm3=(21 31), mm2=(40 50), mm5=(41 51) movq MMWORD [wk(0)], mm4 ; wk(0)=tmp6 movq MMWORD [wk(1)], mm0 ; wk(1)=tmp7 movq mm4,mm1 ; transpose coefficients punpckldq mm1,mm3 ; mm1=(20 21)=data2 punpckhdq mm4,mm3 ; mm4=(30 31)=data3 movq mm0,mm2 ; transpose coefficients punpckldq mm2,mm5 ; mm2=(40 41)=data4 punpckhdq mm0,mm5 ; mm0=(50 51)=data5 movq mm3,mm4 movq mm5,mm1 pfadd mm4,mm2 ; mm4=data3+data4=tmp3 pfadd mm1,mm0 ; mm1=data2+data5=tmp2 pfsub mm3,mm2 ; mm3=data3-data4=tmp4 pfsub mm5,mm0 ; mm5=data2-data5=tmp5 ; -- Even part movq mm2,mm7 movq mm0,mm6 pfsub mm7,mm4 ; mm7=tmp13 pfsub mm6,mm1 ; mm6=tmp12 pfadd mm2,mm4 ; mm2=tmp10 pfadd mm0,mm1 ; mm0=tmp11 pfadd mm6,mm7 pfmul mm6,[GOTOFF(ebx,PD_0_707)] ; mm6=z1 movq mm4,mm2 movq mm1,mm7 pfsub mm2,mm0 ; mm2=data4 pfsub mm7,mm6 ; mm7=data6 pfadd mm4,mm0 ; mm4=data0 pfadd mm1,mm6 ; mm1=data2 movq MMWORD [MMBLOCK(4,0,edx,SIZEOF_FAST_FLOAT)], mm2 movq MMWORD [MMBLOCK(6,0,edx,SIZEOF_FAST_FLOAT)], mm7 movq MMWORD [MMBLOCK(0,0,edx,SIZEOF_FAST_FLOAT)], mm4 movq MMWORD [MMBLOCK(2,0,edx,SIZEOF_FAST_FLOAT)], mm1 ; -- Odd part movq mm0, MMWORD [wk(0)] ; mm0=tmp6 movq mm6, MMWORD [wk(1)] ; mm6=tmp7 pfadd mm3,mm5 ; mm3=tmp10 pfadd mm5,mm0 ; mm5=tmp11 pfadd mm0,mm6 ; mm0=tmp12, mm6=tmp7 pfmul mm5,[GOTOFF(ebx,PD_0_707)] ; mm5=z3 movq mm2,mm3 ; mm2=tmp10 pfsub mm3,mm0 pfmul mm3,[GOTOFF(ebx,PD_0_382)] ; mm3=z5 pfmul mm2,[GOTOFF(ebx,PD_0_541)] ; mm2=MULTIPLY(tmp10,FIX_0_54119610) pfmul mm0,[GOTOFF(ebx,PD_1_306)] ; mm0=MULTIPLY(tmp12,FIX_1_30656296) pfadd mm2,mm3 ; mm2=z2 pfadd mm0,mm3 ; mm0=z4 movq mm7,mm6 pfsub mm6,mm5 ; mm6=z13 pfadd mm7,mm5 ; mm7=z11 movq mm4,mm6 movq mm1,mm7 pfsub mm6,mm2 ; mm6=data3 pfsub mm7,mm0 ; mm7=data7 pfadd mm4,mm2 ; mm4=data5 pfadd mm1,mm0 ; mm1=data1 movq MMWORD [MMBLOCK(3,0,edx,SIZEOF_FAST_FLOAT)], mm6 movq MMWORD [MMBLOCK(7,0,edx,SIZEOF_FAST_FLOAT)], mm7 movq MMWORD [MMBLOCK(5,0,edx,SIZEOF_FAST_FLOAT)], mm4 movq MMWORD [MMBLOCK(1,0,edx,SIZEOF_FAST_FLOAT)], mm1 add edx, byte 2*SIZEOF_FAST_FLOAT dec ecx jnz near .columnloop femms ; empty MMX/3DNow! state ; pop edi ; unused ; pop esi ; unused ; pop edx ; need not be preserved ; pop ecx ; need not be preserved poppic ebx mov esp,ebp ; esp <- aligned ebp pop esp ; esp <- original ebp pop ebp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 16 libjpeg-turbo-1.4.2/simd/jcgray-sse2-64.asm0000644000076500007650000000641612600050400015226 00000000000000; ; jcgray.asm - grayscale colorspace conversion (64-bit SSE2) ; ; x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; Copyright (C) 2011, D. R. Commander. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; [TAB8] %include "jsimdext.inc" ; -------------------------------------------------------------------------- %define SCALEBITS 16 F_0_114 equ 7471 ; FIX(0.11400) F_0_250 equ 16384 ; FIX(0.25000) F_0_299 equ 19595 ; FIX(0.29900) F_0_587 equ 38470 ; FIX(0.58700) F_0_337 equ (F_0_587 - F_0_250) ; FIX(0.58700) - FIX(0.25000) ; -------------------------------------------------------------------------- SECTION SEG_CONST alignz 16 global EXTN(jconst_rgb_gray_convert_sse2) EXTN(jconst_rgb_gray_convert_sse2): PW_F0299_F0337 times 4 dw F_0_299, F_0_337 PW_F0114_F0250 times 4 dw F_0_114, F_0_250 PD_ONEHALF times 4 dd (1 << (SCALEBITS-1)) alignz 16 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 64 %include "jcgryext-sse2-64.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_RGB_RED %define RGB_GREEN EXT_RGB_GREEN %define RGB_BLUE EXT_RGB_BLUE %define RGB_PIXELSIZE EXT_RGB_PIXELSIZE %define jsimd_rgb_gray_convert_sse2 jsimd_extrgb_gray_convert_sse2 %include "jcgryext-sse2-64.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_RGBX_RED %define RGB_GREEN EXT_RGBX_GREEN %define RGB_BLUE EXT_RGBX_BLUE %define RGB_PIXELSIZE EXT_RGBX_PIXELSIZE %define jsimd_rgb_gray_convert_sse2 jsimd_extrgbx_gray_convert_sse2 %include "jcgryext-sse2-64.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_BGR_RED %define RGB_GREEN EXT_BGR_GREEN %define RGB_BLUE EXT_BGR_BLUE %define RGB_PIXELSIZE EXT_BGR_PIXELSIZE %define jsimd_rgb_gray_convert_sse2 jsimd_extbgr_gray_convert_sse2 %include "jcgryext-sse2-64.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_BGRX_RED %define RGB_GREEN EXT_BGRX_GREEN %define RGB_BLUE EXT_BGRX_BLUE %define RGB_PIXELSIZE EXT_BGRX_PIXELSIZE %define jsimd_rgb_gray_convert_sse2 jsimd_extbgrx_gray_convert_sse2 %include "jcgryext-sse2-64.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_XBGR_RED %define RGB_GREEN EXT_XBGR_GREEN %define RGB_BLUE EXT_XBGR_BLUE %define RGB_PIXELSIZE EXT_XBGR_PIXELSIZE %define jsimd_rgb_gray_convert_sse2 jsimd_extxbgr_gray_convert_sse2 %include "jcgryext-sse2-64.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_XRGB_RED %define RGB_GREEN EXT_XRGB_GREEN %define RGB_BLUE EXT_XRGB_BLUE %define RGB_PIXELSIZE EXT_XRGB_PIXELSIZE %define jsimd_rgb_gray_convert_sse2 jsimd_extxrgb_gray_convert_sse2 %include "jcgryext-sse2-64.asm" libjpeg-turbo-1.4.2/simd/jidctflt-sse.asm0000644000076500007650000006137012600050400015241 00000000000000; ; jidctflt.asm - floating-point IDCT (SSE & MMX) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; ; Based on ; x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; This file contains a floating-point implementation of the inverse DCT ; (Discrete Cosine Transform). The following code is based directly on ; the IJG's original jidctflt.c; see the jidctflt.c for more details. ; ; [TAB8] %include "jsimdext.inc" %include "jdct.inc" ; -------------------------------------------------------------------------- %macro unpcklps2 2 ; %1=(0 1 2 3) / %2=(4 5 6 7) => %1=(0 1 4 5) shufps %1,%2,0x44 %endmacro %macro unpckhps2 2 ; %1=(0 1 2 3) / %2=(4 5 6 7) => %1=(2 3 6 7) shufps %1,%2,0xEE %endmacro ; -------------------------------------------------------------------------- SECTION SEG_CONST alignz 16 global EXTN(jconst_idct_float_sse) EXTN(jconst_idct_float_sse): PD_1_414 times 4 dd 1.414213562373095048801689 PD_1_847 times 4 dd 1.847759065022573512256366 PD_1_082 times 4 dd 1.082392200292393968799446 PD_M2_613 times 4 dd -2.613125929752753055713286 PD_0_125 times 4 dd 0.125 ; 1/8 PB_CENTERJSAMP times 8 db CENTERJSAMPLE alignz 16 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 32 ; ; Perform dequantization and inverse DCT on one block of coefficients. ; ; GLOBAL(void) ; jsimd_idct_float_sse (void * dct_table, JCOEFPTR coef_block, ; JSAMPARRAY output_buf, JDIMENSION output_col) ; %define dct_table(b) (b)+8 ; void * dct_table %define coef_block(b) (b)+12 ; JCOEFPTR coef_block %define output_buf(b) (b)+16 ; JSAMPARRAY output_buf %define output_col(b) (b)+20 ; JDIMENSION output_col %define original_ebp ebp+0 %define wk(i) ebp-(WK_NUM-(i))*SIZEOF_XMMWORD ; xmmword wk[WK_NUM] %define WK_NUM 2 %define workspace wk(0)-DCTSIZE2*SIZEOF_FAST_FLOAT ; FAST_FLOAT workspace[DCTSIZE2] align 16 global EXTN(jsimd_idct_float_sse) EXTN(jsimd_idct_float_sse): push ebp mov eax,esp ; eax = original ebp sub esp, byte 4 and esp, byte (-SIZEOF_XMMWORD) ; align to 128 bits mov [esp],eax mov ebp,esp ; ebp = aligned ebp lea esp, [workspace] push ebx ; push ecx ; need not be preserved ; push edx ; need not be preserved push esi push edi get_GOT ebx ; get GOT address ; ---- Pass 1: process columns from input, store into work array. ; mov eax, [original_ebp] mov edx, POINTER [dct_table(eax)] ; quantptr mov esi, JCOEFPTR [coef_block(eax)] ; inptr lea edi, [workspace] ; FAST_FLOAT * wsptr mov ecx, DCTSIZE/4 ; ctr alignx 16,7 .columnloop: %ifndef NO_ZERO_COLUMN_TEST_FLOAT_SSE mov eax, DWORD [DWBLOCK(1,0,esi,SIZEOF_JCOEF)] or eax, DWORD [DWBLOCK(2,0,esi,SIZEOF_JCOEF)] jnz near .columnDCT movq mm0, MMWORD [MMBLOCK(1,0,esi,SIZEOF_JCOEF)] movq mm1, MMWORD [MMBLOCK(2,0,esi,SIZEOF_JCOEF)] por mm0, MMWORD [MMBLOCK(3,0,esi,SIZEOF_JCOEF)] por mm1, MMWORD [MMBLOCK(4,0,esi,SIZEOF_JCOEF)] por mm0, MMWORD [MMBLOCK(5,0,esi,SIZEOF_JCOEF)] por mm1, MMWORD [MMBLOCK(6,0,esi,SIZEOF_JCOEF)] por mm0, MMWORD [MMBLOCK(7,0,esi,SIZEOF_JCOEF)] por mm1,mm0 packsswb mm1,mm1 movd eax,mm1 test eax,eax jnz short .columnDCT ; -- AC terms all zero movq mm0, MMWORD [MMBLOCK(0,0,esi,SIZEOF_JCOEF)] punpckhwd mm1,mm0 ; mm1=(** 02 ** 03) punpcklwd mm0,mm0 ; mm0=(00 00 01 01) psrad mm1,(DWORD_BIT-WORD_BIT) ; mm1=in0H=(02 03) psrad mm0,(DWORD_BIT-WORD_BIT) ; mm0=in0L=(00 01) cvtpi2ps xmm3,mm1 ; xmm3=(02 03 ** **) cvtpi2ps xmm0,mm0 ; xmm0=(00 01 ** **) movlhps xmm0,xmm3 ; xmm0=in0=(00 01 02 03) mulps xmm0, XMMWORD [XMMBLOCK(0,0,edx,SIZEOF_FLOAT_MULT_TYPE)] movaps xmm1,xmm0 movaps xmm2,xmm0 movaps xmm3,xmm0 shufps xmm0,xmm0,0x00 ; xmm0=(00 00 00 00) shufps xmm1,xmm1,0x55 ; xmm1=(01 01 01 01) shufps xmm2,xmm2,0xAA ; xmm2=(02 02 02 02) shufps xmm3,xmm3,0xFF ; xmm3=(03 03 03 03) movaps XMMWORD [XMMBLOCK(0,0,edi,SIZEOF_FAST_FLOAT)], xmm0 movaps XMMWORD [XMMBLOCK(0,1,edi,SIZEOF_FAST_FLOAT)], xmm0 movaps XMMWORD [XMMBLOCK(1,0,edi,SIZEOF_FAST_FLOAT)], xmm1 movaps XMMWORD [XMMBLOCK(1,1,edi,SIZEOF_FAST_FLOAT)], xmm1 movaps XMMWORD [XMMBLOCK(2,0,edi,SIZEOF_FAST_FLOAT)], xmm2 movaps XMMWORD [XMMBLOCK(2,1,edi,SIZEOF_FAST_FLOAT)], xmm2 movaps XMMWORD [XMMBLOCK(3,0,edi,SIZEOF_FAST_FLOAT)], xmm3 movaps XMMWORD [XMMBLOCK(3,1,edi,SIZEOF_FAST_FLOAT)], xmm3 jmp near .nextcolumn alignx 16,7 %endif .columnDCT: ; -- Even part movq mm0, MMWORD [MMBLOCK(0,0,esi,SIZEOF_JCOEF)] movq mm1, MMWORD [MMBLOCK(2,0,esi,SIZEOF_JCOEF)] movq mm2, MMWORD [MMBLOCK(4,0,esi,SIZEOF_JCOEF)] movq mm3, MMWORD [MMBLOCK(6,0,esi,SIZEOF_JCOEF)] punpckhwd mm4,mm0 ; mm4=(** 02 ** 03) punpcklwd mm0,mm0 ; mm0=(00 00 01 01) punpckhwd mm5,mm1 ; mm5=(** 22 ** 23) punpcklwd mm1,mm1 ; mm1=(20 20 21 21) psrad mm4,(DWORD_BIT-WORD_BIT) ; mm4=in0H=(02 03) psrad mm0,(DWORD_BIT-WORD_BIT) ; mm0=in0L=(00 01) cvtpi2ps xmm4,mm4 ; xmm4=(02 03 ** **) cvtpi2ps xmm0,mm0 ; xmm0=(00 01 ** **) psrad mm5,(DWORD_BIT-WORD_BIT) ; mm5=in2H=(22 23) psrad mm1,(DWORD_BIT-WORD_BIT) ; mm1=in2L=(20 21) cvtpi2ps xmm5,mm5 ; xmm5=(22 23 ** **) cvtpi2ps xmm1,mm1 ; xmm1=(20 21 ** **) punpckhwd mm6,mm2 ; mm6=(** 42 ** 43) punpcklwd mm2,mm2 ; mm2=(40 40 41 41) punpckhwd mm7,mm3 ; mm7=(** 62 ** 63) punpcklwd mm3,mm3 ; mm3=(60 60 61 61) psrad mm6,(DWORD_BIT-WORD_BIT) ; mm6=in4H=(42 43) psrad mm2,(DWORD_BIT-WORD_BIT) ; mm2=in4L=(40 41) cvtpi2ps xmm6,mm6 ; xmm6=(42 43 ** **) cvtpi2ps xmm2,mm2 ; xmm2=(40 41 ** **) psrad mm7,(DWORD_BIT-WORD_BIT) ; mm7=in6H=(62 63) psrad mm3,(DWORD_BIT-WORD_BIT) ; mm3=in6L=(60 61) cvtpi2ps xmm7,mm7 ; xmm7=(62 63 ** **) cvtpi2ps xmm3,mm3 ; xmm3=(60 61 ** **) movlhps xmm0,xmm4 ; xmm0=in0=(00 01 02 03) movlhps xmm1,xmm5 ; xmm1=in2=(20 21 22 23) mulps xmm0, XMMWORD [XMMBLOCK(0,0,edx,SIZEOF_FLOAT_MULT_TYPE)] mulps xmm1, XMMWORD [XMMBLOCK(2,0,edx,SIZEOF_FLOAT_MULT_TYPE)] movlhps xmm2,xmm6 ; xmm2=in4=(40 41 42 43) movlhps xmm3,xmm7 ; xmm3=in6=(60 61 62 63) mulps xmm2, XMMWORD [XMMBLOCK(4,0,edx,SIZEOF_FLOAT_MULT_TYPE)] mulps xmm3, XMMWORD [XMMBLOCK(6,0,edx,SIZEOF_FLOAT_MULT_TYPE)] movaps xmm4,xmm0 movaps xmm5,xmm1 subps xmm0,xmm2 ; xmm0=tmp11 subps xmm1,xmm3 addps xmm4,xmm2 ; xmm4=tmp10 addps xmm5,xmm3 ; xmm5=tmp13 mulps xmm1,[GOTOFF(ebx,PD_1_414)] subps xmm1,xmm5 ; xmm1=tmp12 movaps xmm6,xmm4 movaps xmm7,xmm0 subps xmm4,xmm5 ; xmm4=tmp3 subps xmm0,xmm1 ; xmm0=tmp2 addps xmm6,xmm5 ; xmm6=tmp0 addps xmm7,xmm1 ; xmm7=tmp1 movaps XMMWORD [wk(1)], xmm4 ; tmp3 movaps XMMWORD [wk(0)], xmm0 ; tmp2 ; -- Odd part movq mm4, MMWORD [MMBLOCK(1,0,esi,SIZEOF_JCOEF)] movq mm0, MMWORD [MMBLOCK(3,0,esi,SIZEOF_JCOEF)] movq mm5, MMWORD [MMBLOCK(5,0,esi,SIZEOF_JCOEF)] movq mm1, MMWORD [MMBLOCK(7,0,esi,SIZEOF_JCOEF)] punpckhwd mm6,mm4 ; mm6=(** 12 ** 13) punpcklwd mm4,mm4 ; mm4=(10 10 11 11) punpckhwd mm2,mm0 ; mm2=(** 32 ** 33) punpcklwd mm0,mm0 ; mm0=(30 30 31 31) psrad mm6,(DWORD_BIT-WORD_BIT) ; mm6=in1H=(12 13) psrad mm4,(DWORD_BIT-WORD_BIT) ; mm4=in1L=(10 11) cvtpi2ps xmm4,mm6 ; xmm4=(12 13 ** **) cvtpi2ps xmm2,mm4 ; xmm2=(10 11 ** **) psrad mm2,(DWORD_BIT-WORD_BIT) ; mm2=in3H=(32 33) psrad mm0,(DWORD_BIT-WORD_BIT) ; mm0=in3L=(30 31) cvtpi2ps xmm0,mm2 ; xmm0=(32 33 ** **) cvtpi2ps xmm3,mm0 ; xmm3=(30 31 ** **) punpckhwd mm7,mm5 ; mm7=(** 52 ** 53) punpcklwd mm5,mm5 ; mm5=(50 50 51 51) punpckhwd mm3,mm1 ; mm3=(** 72 ** 73) punpcklwd mm1,mm1 ; mm1=(70 70 71 71) movlhps xmm2,xmm4 ; xmm2=in1=(10 11 12 13) movlhps xmm3,xmm0 ; xmm3=in3=(30 31 32 33) psrad mm7,(DWORD_BIT-WORD_BIT) ; mm7=in5H=(52 53) psrad mm5,(DWORD_BIT-WORD_BIT) ; mm5=in5L=(50 51) cvtpi2ps xmm4,mm7 ; xmm4=(52 53 ** **) cvtpi2ps xmm5,mm5 ; xmm5=(50 51 ** **) psrad mm3,(DWORD_BIT-WORD_BIT) ; mm3=in7H=(72 73) psrad mm1,(DWORD_BIT-WORD_BIT) ; mm1=in7L=(70 71) cvtpi2ps xmm0,mm3 ; xmm0=(72 73 ** **) cvtpi2ps xmm1,mm1 ; xmm1=(70 71 ** **) mulps xmm2, XMMWORD [XMMBLOCK(1,0,edx,SIZEOF_FLOAT_MULT_TYPE)] mulps xmm3, XMMWORD [XMMBLOCK(3,0,edx,SIZEOF_FLOAT_MULT_TYPE)] movlhps xmm5,xmm4 ; xmm5=in5=(50 51 52 53) movlhps xmm1,xmm0 ; xmm1=in7=(70 71 72 73) mulps xmm5, XMMWORD [XMMBLOCK(5,0,edx,SIZEOF_FLOAT_MULT_TYPE)] mulps xmm1, XMMWORD [XMMBLOCK(7,0,edx,SIZEOF_FLOAT_MULT_TYPE)] movaps xmm4,xmm2 movaps xmm0,xmm5 addps xmm2,xmm1 ; xmm2=z11 addps xmm5,xmm3 ; xmm5=z13 subps xmm4,xmm1 ; xmm4=z12 subps xmm0,xmm3 ; xmm0=z10 movaps xmm1,xmm2 subps xmm2,xmm5 addps xmm1,xmm5 ; xmm1=tmp7 mulps xmm2,[GOTOFF(ebx,PD_1_414)] ; xmm2=tmp11 movaps xmm3,xmm0 addps xmm0,xmm4 mulps xmm0,[GOTOFF(ebx,PD_1_847)] ; xmm0=z5 mulps xmm3,[GOTOFF(ebx,PD_M2_613)] ; xmm3=(z10 * -2.613125930) mulps xmm4,[GOTOFF(ebx,PD_1_082)] ; xmm4=(z12 * 1.082392200) addps xmm3,xmm0 ; xmm3=tmp12 subps xmm4,xmm0 ; xmm4=tmp10 ; -- Final output stage subps xmm3,xmm1 ; xmm3=tmp6 movaps xmm5,xmm6 movaps xmm0,xmm7 addps xmm6,xmm1 ; xmm6=data0=(00 01 02 03) addps xmm7,xmm3 ; xmm7=data1=(10 11 12 13) subps xmm5,xmm1 ; xmm5=data7=(70 71 72 73) subps xmm0,xmm3 ; xmm0=data6=(60 61 62 63) subps xmm2,xmm3 ; xmm2=tmp5 movaps xmm1,xmm6 ; transpose coefficients(phase 1) unpcklps xmm6,xmm7 ; xmm6=(00 10 01 11) unpckhps xmm1,xmm7 ; xmm1=(02 12 03 13) movaps xmm3,xmm0 ; transpose coefficients(phase 1) unpcklps xmm0,xmm5 ; xmm0=(60 70 61 71) unpckhps xmm3,xmm5 ; xmm3=(62 72 63 73) movaps xmm7, XMMWORD [wk(0)] ; xmm7=tmp2 movaps xmm5, XMMWORD [wk(1)] ; xmm5=tmp3 movaps XMMWORD [wk(0)], xmm0 ; wk(0)=(60 70 61 71) movaps XMMWORD [wk(1)], xmm3 ; wk(1)=(62 72 63 73) addps xmm4,xmm2 ; xmm4=tmp4 movaps xmm0,xmm7 movaps xmm3,xmm5 addps xmm7,xmm2 ; xmm7=data2=(20 21 22 23) addps xmm5,xmm4 ; xmm5=data4=(40 41 42 43) subps xmm0,xmm2 ; xmm0=data5=(50 51 52 53) subps xmm3,xmm4 ; xmm3=data3=(30 31 32 33) movaps xmm2,xmm7 ; transpose coefficients(phase 1) unpcklps xmm7,xmm3 ; xmm7=(20 30 21 31) unpckhps xmm2,xmm3 ; xmm2=(22 32 23 33) movaps xmm4,xmm5 ; transpose coefficients(phase 1) unpcklps xmm5,xmm0 ; xmm5=(40 50 41 51) unpckhps xmm4,xmm0 ; xmm4=(42 52 43 53) movaps xmm3,xmm6 ; transpose coefficients(phase 2) unpcklps2 xmm6,xmm7 ; xmm6=(00 10 20 30) unpckhps2 xmm3,xmm7 ; xmm3=(01 11 21 31) movaps xmm0,xmm1 ; transpose coefficients(phase 2) unpcklps2 xmm1,xmm2 ; xmm1=(02 12 22 32) unpckhps2 xmm0,xmm2 ; xmm0=(03 13 23 33) movaps xmm7, XMMWORD [wk(0)] ; xmm7=(60 70 61 71) movaps xmm2, XMMWORD [wk(1)] ; xmm2=(62 72 63 73) movaps XMMWORD [XMMBLOCK(0,0,edi,SIZEOF_FAST_FLOAT)], xmm6 movaps XMMWORD [XMMBLOCK(1,0,edi,SIZEOF_FAST_FLOAT)], xmm3 movaps XMMWORD [XMMBLOCK(2,0,edi,SIZEOF_FAST_FLOAT)], xmm1 movaps XMMWORD [XMMBLOCK(3,0,edi,SIZEOF_FAST_FLOAT)], xmm0 movaps xmm6,xmm5 ; transpose coefficients(phase 2) unpcklps2 xmm5,xmm7 ; xmm5=(40 50 60 70) unpckhps2 xmm6,xmm7 ; xmm6=(41 51 61 71) movaps xmm3,xmm4 ; transpose coefficients(phase 2) unpcklps2 xmm4,xmm2 ; xmm4=(42 52 62 72) unpckhps2 xmm3,xmm2 ; xmm3=(43 53 63 73) movaps XMMWORD [XMMBLOCK(0,1,edi,SIZEOF_FAST_FLOAT)], xmm5 movaps XMMWORD [XMMBLOCK(1,1,edi,SIZEOF_FAST_FLOAT)], xmm6 movaps XMMWORD [XMMBLOCK(2,1,edi,SIZEOF_FAST_FLOAT)], xmm4 movaps XMMWORD [XMMBLOCK(3,1,edi,SIZEOF_FAST_FLOAT)], xmm3 .nextcolumn: add esi, byte 4*SIZEOF_JCOEF ; coef_block add edx, byte 4*SIZEOF_FLOAT_MULT_TYPE ; quantptr add edi, 4*DCTSIZE*SIZEOF_FAST_FLOAT ; wsptr dec ecx ; ctr jnz near .columnloop ; -- Prefetch the next coefficient block prefetchnta [esi + (DCTSIZE2-8)*SIZEOF_JCOEF + 0*32] prefetchnta [esi + (DCTSIZE2-8)*SIZEOF_JCOEF + 1*32] prefetchnta [esi + (DCTSIZE2-8)*SIZEOF_JCOEF + 2*32] prefetchnta [esi + (DCTSIZE2-8)*SIZEOF_JCOEF + 3*32] ; ---- Pass 2: process rows from work array, store into output array. mov eax, [original_ebp] lea esi, [workspace] ; FAST_FLOAT * wsptr mov edi, JSAMPARRAY [output_buf(eax)] ; (JSAMPROW *) mov eax, JDIMENSION [output_col(eax)] mov ecx, DCTSIZE/4 ; ctr alignx 16,7 .rowloop: ; -- Even part movaps xmm0, XMMWORD [XMMBLOCK(0,0,esi,SIZEOF_FAST_FLOAT)] movaps xmm1, XMMWORD [XMMBLOCK(2,0,esi,SIZEOF_FAST_FLOAT)] movaps xmm2, XMMWORD [XMMBLOCK(4,0,esi,SIZEOF_FAST_FLOAT)] movaps xmm3, XMMWORD [XMMBLOCK(6,0,esi,SIZEOF_FAST_FLOAT)] movaps xmm4,xmm0 movaps xmm5,xmm1 subps xmm0,xmm2 ; xmm0=tmp11 subps xmm1,xmm3 addps xmm4,xmm2 ; xmm4=tmp10 addps xmm5,xmm3 ; xmm5=tmp13 mulps xmm1,[GOTOFF(ebx,PD_1_414)] subps xmm1,xmm5 ; xmm1=tmp12 movaps xmm6,xmm4 movaps xmm7,xmm0 subps xmm4,xmm5 ; xmm4=tmp3 subps xmm0,xmm1 ; xmm0=tmp2 addps xmm6,xmm5 ; xmm6=tmp0 addps xmm7,xmm1 ; xmm7=tmp1 movaps XMMWORD [wk(1)], xmm4 ; tmp3 movaps XMMWORD [wk(0)], xmm0 ; tmp2 ; -- Odd part movaps xmm2, XMMWORD [XMMBLOCK(1,0,esi,SIZEOF_FAST_FLOAT)] movaps xmm3, XMMWORD [XMMBLOCK(3,0,esi,SIZEOF_FAST_FLOAT)] movaps xmm5, XMMWORD [XMMBLOCK(5,0,esi,SIZEOF_FAST_FLOAT)] movaps xmm1, XMMWORD [XMMBLOCK(7,0,esi,SIZEOF_FAST_FLOAT)] movaps xmm4,xmm2 movaps xmm0,xmm5 addps xmm2,xmm1 ; xmm2=z11 addps xmm5,xmm3 ; xmm5=z13 subps xmm4,xmm1 ; xmm4=z12 subps xmm0,xmm3 ; xmm0=z10 movaps xmm1,xmm2 subps xmm2,xmm5 addps xmm1,xmm5 ; xmm1=tmp7 mulps xmm2,[GOTOFF(ebx,PD_1_414)] ; xmm2=tmp11 movaps xmm3,xmm0 addps xmm0,xmm4 mulps xmm0,[GOTOFF(ebx,PD_1_847)] ; xmm0=z5 mulps xmm3,[GOTOFF(ebx,PD_M2_613)] ; xmm3=(z10 * -2.613125930) mulps xmm4,[GOTOFF(ebx,PD_1_082)] ; xmm4=(z12 * 1.082392200) addps xmm3,xmm0 ; xmm3=tmp12 subps xmm4,xmm0 ; xmm4=tmp10 ; -- Final output stage subps xmm3,xmm1 ; xmm3=tmp6 movaps xmm5,xmm6 movaps xmm0,xmm7 addps xmm6,xmm1 ; xmm6=data0=(00 10 20 30) addps xmm7,xmm3 ; xmm7=data1=(01 11 21 31) subps xmm5,xmm1 ; xmm5=data7=(07 17 27 37) subps xmm0,xmm3 ; xmm0=data6=(06 16 26 36) subps xmm2,xmm3 ; xmm2=tmp5 movaps xmm1,[GOTOFF(ebx,PD_0_125)] ; xmm1=[PD_0_125] mulps xmm6,xmm1 ; descale(1/8) mulps xmm7,xmm1 ; descale(1/8) mulps xmm5,xmm1 ; descale(1/8) mulps xmm0,xmm1 ; descale(1/8) movhlps xmm3,xmm6 movhlps xmm1,xmm7 cvtps2pi mm0,xmm6 ; round to int32, mm0=data0L=(00 10) cvtps2pi mm1,xmm7 ; round to int32, mm1=data1L=(01 11) cvtps2pi mm2,xmm3 ; round to int32, mm2=data0H=(20 30) cvtps2pi mm3,xmm1 ; round to int32, mm3=data1H=(21 31) packssdw mm0,mm2 ; mm0=data0=(00 10 20 30) packssdw mm1,mm3 ; mm1=data1=(01 11 21 31) movhlps xmm6,xmm5 movhlps xmm7,xmm0 cvtps2pi mm4,xmm5 ; round to int32, mm4=data7L=(07 17) cvtps2pi mm5,xmm0 ; round to int32, mm5=data6L=(06 16) cvtps2pi mm6,xmm6 ; round to int32, mm6=data7H=(27 37) cvtps2pi mm7,xmm7 ; round to int32, mm7=data6H=(26 36) packssdw mm4,mm6 ; mm4=data7=(07 17 27 37) packssdw mm5,mm7 ; mm5=data6=(06 16 26 36) packsswb mm0,mm5 ; mm0=(00 10 20 30 06 16 26 36) packsswb mm1,mm4 ; mm1=(01 11 21 31 07 17 27 37) movaps xmm3, XMMWORD [wk(0)] ; xmm3=tmp2 movaps xmm1, XMMWORD [wk(1)] ; xmm1=tmp3 movaps xmm6,[GOTOFF(ebx,PD_0_125)] ; xmm6=[PD_0_125] addps xmm4,xmm2 ; xmm4=tmp4 movaps xmm5,xmm3 movaps xmm0,xmm1 addps xmm3,xmm2 ; xmm3=data2=(02 12 22 32) addps xmm1,xmm4 ; xmm1=data4=(04 14 24 34) subps xmm5,xmm2 ; xmm5=data5=(05 15 25 35) subps xmm0,xmm4 ; xmm0=data3=(03 13 23 33) mulps xmm3,xmm6 ; descale(1/8) mulps xmm1,xmm6 ; descale(1/8) mulps xmm5,xmm6 ; descale(1/8) mulps xmm0,xmm6 ; descale(1/8) movhlps xmm7,xmm3 movhlps xmm2,xmm1 cvtps2pi mm2,xmm3 ; round to int32, mm2=data2L=(02 12) cvtps2pi mm3,xmm1 ; round to int32, mm3=data4L=(04 14) cvtps2pi mm6,xmm7 ; round to int32, mm6=data2H=(22 32) cvtps2pi mm7,xmm2 ; round to int32, mm7=data4H=(24 34) packssdw mm2,mm6 ; mm2=data2=(02 12 22 32) packssdw mm3,mm7 ; mm3=data4=(04 14 24 34) movhlps xmm4,xmm5 movhlps xmm6,xmm0 cvtps2pi mm5,xmm5 ; round to int32, mm5=data5L=(05 15) cvtps2pi mm4,xmm0 ; round to int32, mm4=data3L=(03 13) cvtps2pi mm6,xmm4 ; round to int32, mm6=data5H=(25 35) cvtps2pi mm7,xmm6 ; round to int32, mm7=data3H=(23 33) packssdw mm5,mm6 ; mm5=data5=(05 15 25 35) packssdw mm4,mm7 ; mm4=data3=(03 13 23 33) movq mm6,[GOTOFF(ebx,PB_CENTERJSAMP)] ; mm6=[PB_CENTERJSAMP] packsswb mm2,mm3 ; mm2=(02 12 22 32 04 14 24 34) packsswb mm4,mm5 ; mm4=(03 13 23 33 05 15 25 35) paddb mm0,mm6 paddb mm1,mm6 paddb mm2,mm6 paddb mm4,mm6 movq mm7,mm0 ; transpose coefficients(phase 1) punpcklbw mm0,mm1 ; mm0=(00 01 10 11 20 21 30 31) punpckhbw mm7,mm1 ; mm7=(06 07 16 17 26 27 36 37) movq mm3,mm2 ; transpose coefficients(phase 1) punpcklbw mm2,mm4 ; mm2=(02 03 12 13 22 23 32 33) punpckhbw mm3,mm4 ; mm3=(04 05 14 15 24 25 34 35) movq mm5,mm0 ; transpose coefficients(phase 2) punpcklwd mm0,mm2 ; mm0=(00 01 02 03 10 11 12 13) punpckhwd mm5,mm2 ; mm5=(20 21 22 23 30 31 32 33) movq mm6,mm3 ; transpose coefficients(phase 2) punpcklwd mm3,mm7 ; mm3=(04 05 06 07 14 15 16 17) punpckhwd mm6,mm7 ; mm6=(24 25 26 27 34 35 36 37) movq mm1,mm0 ; transpose coefficients(phase 3) punpckldq mm0,mm3 ; mm0=(00 01 02 03 04 05 06 07) punpckhdq mm1,mm3 ; mm1=(10 11 12 13 14 15 16 17) movq mm4,mm5 ; transpose coefficients(phase 3) punpckldq mm5,mm6 ; mm5=(20 21 22 23 24 25 26 27) punpckhdq mm4,mm6 ; mm4=(30 31 32 33 34 35 36 37) pushpic ebx ; save GOT address mov edx, JSAMPROW [edi+0*SIZEOF_JSAMPROW] mov ebx, JSAMPROW [edi+1*SIZEOF_JSAMPROW] movq MMWORD [edx+eax*SIZEOF_JSAMPLE], mm0 movq MMWORD [ebx+eax*SIZEOF_JSAMPLE], mm1 mov edx, JSAMPROW [edi+2*SIZEOF_JSAMPROW] mov ebx, JSAMPROW [edi+3*SIZEOF_JSAMPROW] movq MMWORD [edx+eax*SIZEOF_JSAMPLE], mm5 movq MMWORD [ebx+eax*SIZEOF_JSAMPLE], mm4 poppic ebx ; restore GOT address add esi, byte 4*SIZEOF_FAST_FLOAT ; wsptr add edi, byte 4*SIZEOF_JSAMPROW dec ecx ; ctr jnz near .rowloop emms ; empty MMX state pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; need not be preserved pop ebx mov esp,ebp ; esp <- aligned ebp pop esp ; esp <- original ebp pop ebp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 16 libjpeg-turbo-1.4.2/simd/jidctflt-sse2-64.asm0000644000076500007650000005072112600050400015550 00000000000000; ; jidctflt.asm - floating-point IDCT (64-bit SSE & SSE2) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; Copyright 2009 D. R. Commander ; ; Based on ; x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; This file contains a floating-point implementation of the inverse DCT ; (Discrete Cosine Transform). The following code is based directly on ; the IJG's original jidctflt.c; see the jidctflt.c for more details. ; ; [TAB8] %include "jsimdext.inc" %include "jdct.inc" ; -------------------------------------------------------------------------- %macro unpcklps2 2 ; %1=(0 1 2 3) / %2=(4 5 6 7) => %1=(0 1 4 5) shufps %1,%2,0x44 %endmacro %macro unpckhps2 2 ; %1=(0 1 2 3) / %2=(4 5 6 7) => %1=(2 3 6 7) shufps %1,%2,0xEE %endmacro ; -------------------------------------------------------------------------- SECTION SEG_CONST alignz 16 global EXTN(jconst_idct_float_sse2) EXTN(jconst_idct_float_sse2): PD_1_414 times 4 dd 1.414213562373095048801689 PD_1_847 times 4 dd 1.847759065022573512256366 PD_1_082 times 4 dd 1.082392200292393968799446 PD_M2_613 times 4 dd -2.613125929752753055713286 PD_RNDINT_MAGIC times 4 dd 100663296.0 ; (float)(0x00C00000 << 3) PB_CENTERJSAMP times 16 db CENTERJSAMPLE alignz 16 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 64 ; ; Perform dequantization and inverse DCT on one block of coefficients. ; ; GLOBAL(void) ; jsimd_idct_float_sse2 (void * dct_table, JCOEFPTR coef_block, ; JSAMPARRAY output_buf, JDIMENSION output_col) ; ; r10 = void * dct_table ; r11 = JCOEFPTR coef_block ; r12 = JSAMPARRAY output_buf ; r13 = JDIMENSION output_col %define original_rbp rbp+0 %define wk(i) rbp-(WK_NUM-(i))*SIZEOF_XMMWORD ; xmmword wk[WK_NUM] %define WK_NUM 2 %define workspace wk(0)-DCTSIZE2*SIZEOF_FAST_FLOAT ; FAST_FLOAT workspace[DCTSIZE2] align 16 global EXTN(jsimd_idct_float_sse2) EXTN(jsimd_idct_float_sse2): push rbp mov rax,rsp ; rax = original rbp sub rsp, byte 4 and rsp, byte (-SIZEOF_XMMWORD) ; align to 128 bits mov [rsp],rax mov rbp,rsp ; rbp = aligned rbp lea rsp, [workspace] collect_args push rbx ; ---- Pass 1: process columns from input, store into work array. mov rdx, r10 ; quantptr mov rsi, r11 ; inptr lea rdi, [workspace] ; FAST_FLOAT * wsptr mov rcx, DCTSIZE/4 ; ctr .columnloop: %ifndef NO_ZERO_COLUMN_TEST_FLOAT_SSE mov eax, DWORD [DWBLOCK(1,0,rsi,SIZEOF_JCOEF)] or eax, DWORD [DWBLOCK(2,0,rsi,SIZEOF_JCOEF)] jnz near .columnDCT movq xmm1, XMM_MMWORD [MMBLOCK(1,0,rsi,SIZEOF_JCOEF)] movq xmm2, XMM_MMWORD [MMBLOCK(2,0,rsi,SIZEOF_JCOEF)] movq xmm3, XMM_MMWORD [MMBLOCK(3,0,rsi,SIZEOF_JCOEF)] movq xmm4, XMM_MMWORD [MMBLOCK(4,0,rsi,SIZEOF_JCOEF)] movq xmm5, XMM_MMWORD [MMBLOCK(5,0,rsi,SIZEOF_JCOEF)] movq xmm6, XMM_MMWORD [MMBLOCK(6,0,rsi,SIZEOF_JCOEF)] movq xmm7, XMM_MMWORD [MMBLOCK(7,0,rsi,SIZEOF_JCOEF)] por xmm1,xmm2 por xmm3,xmm4 por xmm5,xmm6 por xmm1,xmm3 por xmm5,xmm7 por xmm1,xmm5 packsswb xmm1,xmm1 movd eax,xmm1 test rax,rax jnz short .columnDCT ; -- AC terms all zero movq xmm0, XMM_MMWORD [MMBLOCK(0,0,rsi,SIZEOF_JCOEF)] punpcklwd xmm0,xmm0 ; xmm0=(00 00 01 01 02 02 03 03) psrad xmm0,(DWORD_BIT-WORD_BIT) ; xmm0=in0=(00 01 02 03) cvtdq2ps xmm0,xmm0 ; xmm0=in0=(00 01 02 03) mulps xmm0, XMMWORD [XMMBLOCK(0,0,rdx,SIZEOF_FLOAT_MULT_TYPE)] movaps xmm1,xmm0 movaps xmm2,xmm0 movaps xmm3,xmm0 shufps xmm0,xmm0,0x00 ; xmm0=(00 00 00 00) shufps xmm1,xmm1,0x55 ; xmm1=(01 01 01 01) shufps xmm2,xmm2,0xAA ; xmm2=(02 02 02 02) shufps xmm3,xmm3,0xFF ; xmm3=(03 03 03 03) movaps XMMWORD [XMMBLOCK(0,0,rdi,SIZEOF_FAST_FLOAT)], xmm0 movaps XMMWORD [XMMBLOCK(0,1,rdi,SIZEOF_FAST_FLOAT)], xmm0 movaps XMMWORD [XMMBLOCK(1,0,rdi,SIZEOF_FAST_FLOAT)], xmm1 movaps XMMWORD [XMMBLOCK(1,1,rdi,SIZEOF_FAST_FLOAT)], xmm1 movaps XMMWORD [XMMBLOCK(2,0,rdi,SIZEOF_FAST_FLOAT)], xmm2 movaps XMMWORD [XMMBLOCK(2,1,rdi,SIZEOF_FAST_FLOAT)], xmm2 movaps XMMWORD [XMMBLOCK(3,0,rdi,SIZEOF_FAST_FLOAT)], xmm3 movaps XMMWORD [XMMBLOCK(3,1,rdi,SIZEOF_FAST_FLOAT)], xmm3 jmp near .nextcolumn %endif .columnDCT: ; -- Even part movq xmm0, XMM_MMWORD [MMBLOCK(0,0,rsi,SIZEOF_JCOEF)] movq xmm1, XMM_MMWORD [MMBLOCK(2,0,rsi,SIZEOF_JCOEF)] movq xmm2, XMM_MMWORD [MMBLOCK(4,0,rsi,SIZEOF_JCOEF)] movq xmm3, XMM_MMWORD [MMBLOCK(6,0,rsi,SIZEOF_JCOEF)] punpcklwd xmm0,xmm0 ; xmm0=(00 00 01 01 02 02 03 03) punpcklwd xmm1,xmm1 ; xmm1=(20 20 21 21 22 22 23 23) psrad xmm0,(DWORD_BIT-WORD_BIT) ; xmm0=in0=(00 01 02 03) psrad xmm1,(DWORD_BIT-WORD_BIT) ; xmm1=in2=(20 21 22 23) cvtdq2ps xmm0,xmm0 ; xmm0=in0=(00 01 02 03) cvtdq2ps xmm1,xmm1 ; xmm1=in2=(20 21 22 23) punpcklwd xmm2,xmm2 ; xmm2=(40 40 41 41 42 42 43 43) punpcklwd xmm3,xmm3 ; xmm3=(60 60 61 61 62 62 63 63) psrad xmm2,(DWORD_BIT-WORD_BIT) ; xmm2=in4=(40 41 42 43) psrad xmm3,(DWORD_BIT-WORD_BIT) ; xmm3=in6=(60 61 62 63) cvtdq2ps xmm2,xmm2 ; xmm2=in4=(40 41 42 43) cvtdq2ps xmm3,xmm3 ; xmm3=in6=(60 61 62 63) mulps xmm0, XMMWORD [XMMBLOCK(0,0,rdx,SIZEOF_FLOAT_MULT_TYPE)] mulps xmm1, XMMWORD [XMMBLOCK(2,0,rdx,SIZEOF_FLOAT_MULT_TYPE)] mulps xmm2, XMMWORD [XMMBLOCK(4,0,rdx,SIZEOF_FLOAT_MULT_TYPE)] mulps xmm3, XMMWORD [XMMBLOCK(6,0,rdx,SIZEOF_FLOAT_MULT_TYPE)] movaps xmm4,xmm0 movaps xmm5,xmm1 subps xmm0,xmm2 ; xmm0=tmp11 subps xmm1,xmm3 addps xmm4,xmm2 ; xmm4=tmp10 addps xmm5,xmm3 ; xmm5=tmp13 mulps xmm1,[rel PD_1_414] subps xmm1,xmm5 ; xmm1=tmp12 movaps xmm6,xmm4 movaps xmm7,xmm0 subps xmm4,xmm5 ; xmm4=tmp3 subps xmm0,xmm1 ; xmm0=tmp2 addps xmm6,xmm5 ; xmm6=tmp0 addps xmm7,xmm1 ; xmm7=tmp1 movaps XMMWORD [wk(1)], xmm4 ; tmp3 movaps XMMWORD [wk(0)], xmm0 ; tmp2 ; -- Odd part movq xmm2, XMM_MMWORD [MMBLOCK(1,0,rsi,SIZEOF_JCOEF)] movq xmm3, XMM_MMWORD [MMBLOCK(3,0,rsi,SIZEOF_JCOEF)] movq xmm5, XMM_MMWORD [MMBLOCK(5,0,rsi,SIZEOF_JCOEF)] movq xmm1, XMM_MMWORD [MMBLOCK(7,0,rsi,SIZEOF_JCOEF)] punpcklwd xmm2,xmm2 ; xmm2=(10 10 11 11 12 12 13 13) punpcklwd xmm3,xmm3 ; xmm3=(30 30 31 31 32 32 33 33) psrad xmm2,(DWORD_BIT-WORD_BIT) ; xmm2=in1=(10 11 12 13) psrad xmm3,(DWORD_BIT-WORD_BIT) ; xmm3=in3=(30 31 32 33) cvtdq2ps xmm2,xmm2 ; xmm2=in1=(10 11 12 13) cvtdq2ps xmm3,xmm3 ; xmm3=in3=(30 31 32 33) punpcklwd xmm5,xmm5 ; xmm5=(50 50 51 51 52 52 53 53) punpcklwd xmm1,xmm1 ; xmm1=(70 70 71 71 72 72 73 73) psrad xmm5,(DWORD_BIT-WORD_BIT) ; xmm5=in5=(50 51 52 53) psrad xmm1,(DWORD_BIT-WORD_BIT) ; xmm1=in7=(70 71 72 73) cvtdq2ps xmm5,xmm5 ; xmm5=in5=(50 51 52 53) cvtdq2ps xmm1,xmm1 ; xmm1=in7=(70 71 72 73) mulps xmm2, XMMWORD [XMMBLOCK(1,0,rdx,SIZEOF_FLOAT_MULT_TYPE)] mulps xmm3, XMMWORD [XMMBLOCK(3,0,rdx,SIZEOF_FLOAT_MULT_TYPE)] mulps xmm5, XMMWORD [XMMBLOCK(5,0,rdx,SIZEOF_FLOAT_MULT_TYPE)] mulps xmm1, XMMWORD [XMMBLOCK(7,0,rdx,SIZEOF_FLOAT_MULT_TYPE)] movaps xmm4,xmm2 movaps xmm0,xmm5 addps xmm2,xmm1 ; xmm2=z11 addps xmm5,xmm3 ; xmm5=z13 subps xmm4,xmm1 ; xmm4=z12 subps xmm0,xmm3 ; xmm0=z10 movaps xmm1,xmm2 subps xmm2,xmm5 addps xmm1,xmm5 ; xmm1=tmp7 mulps xmm2,[rel PD_1_414] ; xmm2=tmp11 movaps xmm3,xmm0 addps xmm0,xmm4 mulps xmm0,[rel PD_1_847] ; xmm0=z5 mulps xmm3,[rel PD_M2_613] ; xmm3=(z10 * -2.613125930) mulps xmm4,[rel PD_1_082] ; xmm4=(z12 * 1.082392200) addps xmm3,xmm0 ; xmm3=tmp12 subps xmm4,xmm0 ; xmm4=tmp10 ; -- Final output stage subps xmm3,xmm1 ; xmm3=tmp6 movaps xmm5,xmm6 movaps xmm0,xmm7 addps xmm6,xmm1 ; xmm6=data0=(00 01 02 03) addps xmm7,xmm3 ; xmm7=data1=(10 11 12 13) subps xmm5,xmm1 ; xmm5=data7=(70 71 72 73) subps xmm0,xmm3 ; xmm0=data6=(60 61 62 63) subps xmm2,xmm3 ; xmm2=tmp5 movaps xmm1,xmm6 ; transpose coefficients(phase 1) unpcklps xmm6,xmm7 ; xmm6=(00 10 01 11) unpckhps xmm1,xmm7 ; xmm1=(02 12 03 13) movaps xmm3,xmm0 ; transpose coefficients(phase 1) unpcklps xmm0,xmm5 ; xmm0=(60 70 61 71) unpckhps xmm3,xmm5 ; xmm3=(62 72 63 73) movaps xmm7, XMMWORD [wk(0)] ; xmm7=tmp2 movaps xmm5, XMMWORD [wk(1)] ; xmm5=tmp3 movaps XMMWORD [wk(0)], xmm0 ; wk(0)=(60 70 61 71) movaps XMMWORD [wk(1)], xmm3 ; wk(1)=(62 72 63 73) addps xmm4,xmm2 ; xmm4=tmp4 movaps xmm0,xmm7 movaps xmm3,xmm5 addps xmm7,xmm2 ; xmm7=data2=(20 21 22 23) addps xmm5,xmm4 ; xmm5=data4=(40 41 42 43) subps xmm0,xmm2 ; xmm0=data5=(50 51 52 53) subps xmm3,xmm4 ; xmm3=data3=(30 31 32 33) movaps xmm2,xmm7 ; transpose coefficients(phase 1) unpcklps xmm7,xmm3 ; xmm7=(20 30 21 31) unpckhps xmm2,xmm3 ; xmm2=(22 32 23 33) movaps xmm4,xmm5 ; transpose coefficients(phase 1) unpcklps xmm5,xmm0 ; xmm5=(40 50 41 51) unpckhps xmm4,xmm0 ; xmm4=(42 52 43 53) movaps xmm3,xmm6 ; transpose coefficients(phase 2) unpcklps2 xmm6,xmm7 ; xmm6=(00 10 20 30) unpckhps2 xmm3,xmm7 ; xmm3=(01 11 21 31) movaps xmm0,xmm1 ; transpose coefficients(phase 2) unpcklps2 xmm1,xmm2 ; xmm1=(02 12 22 32) unpckhps2 xmm0,xmm2 ; xmm0=(03 13 23 33) movaps xmm7, XMMWORD [wk(0)] ; xmm7=(60 70 61 71) movaps xmm2, XMMWORD [wk(1)] ; xmm2=(62 72 63 73) movaps XMMWORD [XMMBLOCK(0,0,rdi,SIZEOF_FAST_FLOAT)], xmm6 movaps XMMWORD [XMMBLOCK(1,0,rdi,SIZEOF_FAST_FLOAT)], xmm3 movaps XMMWORD [XMMBLOCK(2,0,rdi,SIZEOF_FAST_FLOAT)], xmm1 movaps XMMWORD [XMMBLOCK(3,0,rdi,SIZEOF_FAST_FLOAT)], xmm0 movaps xmm6,xmm5 ; transpose coefficients(phase 2) unpcklps2 xmm5,xmm7 ; xmm5=(40 50 60 70) unpckhps2 xmm6,xmm7 ; xmm6=(41 51 61 71) movaps xmm3,xmm4 ; transpose coefficients(phase 2) unpcklps2 xmm4,xmm2 ; xmm4=(42 52 62 72) unpckhps2 xmm3,xmm2 ; xmm3=(43 53 63 73) movaps XMMWORD [XMMBLOCK(0,1,rdi,SIZEOF_FAST_FLOAT)], xmm5 movaps XMMWORD [XMMBLOCK(1,1,rdi,SIZEOF_FAST_FLOAT)], xmm6 movaps XMMWORD [XMMBLOCK(2,1,rdi,SIZEOF_FAST_FLOAT)], xmm4 movaps XMMWORD [XMMBLOCK(3,1,rdi,SIZEOF_FAST_FLOAT)], xmm3 .nextcolumn: add rsi, byte 4*SIZEOF_JCOEF ; coef_block add rdx, byte 4*SIZEOF_FLOAT_MULT_TYPE ; quantptr add rdi, 4*DCTSIZE*SIZEOF_FAST_FLOAT ; wsptr dec rcx ; ctr jnz near .columnloop ; -- Prefetch the next coefficient block prefetchnta [rsi + (DCTSIZE2-8)*SIZEOF_JCOEF + 0*32] prefetchnta [rsi + (DCTSIZE2-8)*SIZEOF_JCOEF + 1*32] prefetchnta [rsi + (DCTSIZE2-8)*SIZEOF_JCOEF + 2*32] prefetchnta [rsi + (DCTSIZE2-8)*SIZEOF_JCOEF + 3*32] ; ---- Pass 2: process rows from work array, store into output array. mov rax, [original_rbp] lea rsi, [workspace] ; FAST_FLOAT * wsptr mov rdi, r12 ; (JSAMPROW *) mov eax, r13d mov rcx, DCTSIZE/4 ; ctr .rowloop: ; -- Even part movaps xmm0, XMMWORD [XMMBLOCK(0,0,rsi,SIZEOF_FAST_FLOAT)] movaps xmm1, XMMWORD [XMMBLOCK(2,0,rsi,SIZEOF_FAST_FLOAT)] movaps xmm2, XMMWORD [XMMBLOCK(4,0,rsi,SIZEOF_FAST_FLOAT)] movaps xmm3, XMMWORD [XMMBLOCK(6,0,rsi,SIZEOF_FAST_FLOAT)] movaps xmm4,xmm0 movaps xmm5,xmm1 subps xmm0,xmm2 ; xmm0=tmp11 subps xmm1,xmm3 addps xmm4,xmm2 ; xmm4=tmp10 addps xmm5,xmm3 ; xmm5=tmp13 mulps xmm1,[rel PD_1_414] subps xmm1,xmm5 ; xmm1=tmp12 movaps xmm6,xmm4 movaps xmm7,xmm0 subps xmm4,xmm5 ; xmm4=tmp3 subps xmm0,xmm1 ; xmm0=tmp2 addps xmm6,xmm5 ; xmm6=tmp0 addps xmm7,xmm1 ; xmm7=tmp1 movaps XMMWORD [wk(1)], xmm4 ; tmp3 movaps XMMWORD [wk(0)], xmm0 ; tmp2 ; -- Odd part movaps xmm2, XMMWORD [XMMBLOCK(1,0,rsi,SIZEOF_FAST_FLOAT)] movaps xmm3, XMMWORD [XMMBLOCK(3,0,rsi,SIZEOF_FAST_FLOAT)] movaps xmm5, XMMWORD [XMMBLOCK(5,0,rsi,SIZEOF_FAST_FLOAT)] movaps xmm1, XMMWORD [XMMBLOCK(7,0,rsi,SIZEOF_FAST_FLOAT)] movaps xmm4,xmm2 movaps xmm0,xmm5 addps xmm2,xmm1 ; xmm2=z11 addps xmm5,xmm3 ; xmm5=z13 subps xmm4,xmm1 ; xmm4=z12 subps xmm0,xmm3 ; xmm0=z10 movaps xmm1,xmm2 subps xmm2,xmm5 addps xmm1,xmm5 ; xmm1=tmp7 mulps xmm2,[rel PD_1_414] ; xmm2=tmp11 movaps xmm3,xmm0 addps xmm0,xmm4 mulps xmm0,[rel PD_1_847] ; xmm0=z5 mulps xmm3,[rel PD_M2_613] ; xmm3=(z10 * -2.613125930) mulps xmm4,[rel PD_1_082] ; xmm4=(z12 * 1.082392200) addps xmm3,xmm0 ; xmm3=tmp12 subps xmm4,xmm0 ; xmm4=tmp10 ; -- Final output stage subps xmm3,xmm1 ; xmm3=tmp6 movaps xmm5,xmm6 movaps xmm0,xmm7 addps xmm6,xmm1 ; xmm6=data0=(00 10 20 30) addps xmm7,xmm3 ; xmm7=data1=(01 11 21 31) subps xmm5,xmm1 ; xmm5=data7=(07 17 27 37) subps xmm0,xmm3 ; xmm0=data6=(06 16 26 36) subps xmm2,xmm3 ; xmm2=tmp5 movaps xmm1,[rel PD_RNDINT_MAGIC] ; xmm1=[rel PD_RNDINT_MAGIC] pcmpeqd xmm3,xmm3 psrld xmm3,WORD_BIT ; xmm3={0xFFFF 0x0000 0xFFFF 0x0000 ..} addps xmm6,xmm1 ; xmm6=roundint(data0/8)=(00 ** 10 ** 20 ** 30 **) addps xmm7,xmm1 ; xmm7=roundint(data1/8)=(01 ** 11 ** 21 ** 31 **) addps xmm0,xmm1 ; xmm0=roundint(data6/8)=(06 ** 16 ** 26 ** 36 **) addps xmm5,xmm1 ; xmm5=roundint(data7/8)=(07 ** 17 ** 27 ** 37 **) pand xmm6,xmm3 ; xmm6=(00 -- 10 -- 20 -- 30 --) pslld xmm7,WORD_BIT ; xmm7=(-- 01 -- 11 -- 21 -- 31) pand xmm0,xmm3 ; xmm0=(06 -- 16 -- 26 -- 36 --) pslld xmm5,WORD_BIT ; xmm5=(-- 07 -- 17 -- 27 -- 37) por xmm6,xmm7 ; xmm6=(00 01 10 11 20 21 30 31) por xmm0,xmm5 ; xmm0=(06 07 16 17 26 27 36 37) movaps xmm1, XMMWORD [wk(0)] ; xmm1=tmp2 movaps xmm3, XMMWORD [wk(1)] ; xmm3=tmp3 addps xmm4,xmm2 ; xmm4=tmp4 movaps xmm7,xmm1 movaps xmm5,xmm3 addps xmm1,xmm2 ; xmm1=data2=(02 12 22 32) addps xmm3,xmm4 ; xmm3=data4=(04 14 24 34) subps xmm7,xmm2 ; xmm7=data5=(05 15 25 35) subps xmm5,xmm4 ; xmm5=data3=(03 13 23 33) movaps xmm2,[rel PD_RNDINT_MAGIC] ; xmm2=[rel PD_RNDINT_MAGIC] pcmpeqd xmm4,xmm4 psrld xmm4,WORD_BIT ; xmm4={0xFFFF 0x0000 0xFFFF 0x0000 ..} addps xmm3,xmm2 ; xmm3=roundint(data4/8)=(04 ** 14 ** 24 ** 34 **) addps xmm7,xmm2 ; xmm7=roundint(data5/8)=(05 ** 15 ** 25 ** 35 **) addps xmm1,xmm2 ; xmm1=roundint(data2/8)=(02 ** 12 ** 22 ** 32 **) addps xmm5,xmm2 ; xmm5=roundint(data3/8)=(03 ** 13 ** 23 ** 33 **) pand xmm3,xmm4 ; xmm3=(04 -- 14 -- 24 -- 34 --) pslld xmm7,WORD_BIT ; xmm7=(-- 05 -- 15 -- 25 -- 35) pand xmm1,xmm4 ; xmm1=(02 -- 12 -- 22 -- 32 --) pslld xmm5,WORD_BIT ; xmm5=(-- 03 -- 13 -- 23 -- 33) por xmm3,xmm7 ; xmm3=(04 05 14 15 24 25 34 35) por xmm1,xmm5 ; xmm1=(02 03 12 13 22 23 32 33) movdqa xmm2,[rel PB_CENTERJSAMP] ; xmm2=[rel PB_CENTERJSAMP] packsswb xmm6,xmm3 ; xmm6=(00 01 10 11 20 21 30 31 04 05 14 15 24 25 34 35) packsswb xmm1,xmm0 ; xmm1=(02 03 12 13 22 23 32 33 06 07 16 17 26 27 36 37) paddb xmm6,xmm2 paddb xmm1,xmm2 movdqa xmm4,xmm6 ; transpose coefficients(phase 2) punpcklwd xmm6,xmm1 ; xmm6=(00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 33) punpckhwd xmm4,xmm1 ; xmm4=(04 05 06 07 14 15 16 17 24 25 26 27 34 35 36 37) movdqa xmm7,xmm6 ; transpose coefficients(phase 3) punpckldq xmm6,xmm4 ; xmm6=(00 01 02 03 04 05 06 07 10 11 12 13 14 15 16 17) punpckhdq xmm7,xmm4 ; xmm7=(20 21 22 23 24 25 26 27 30 31 32 33 34 35 36 37) pshufd xmm5,xmm6,0x4E ; xmm5=(10 11 12 13 14 15 16 17 00 01 02 03 04 05 06 07) pshufd xmm3,xmm7,0x4E ; xmm3=(30 31 32 33 34 35 36 37 20 21 22 23 24 25 26 27) mov rdx, JSAMPROW [rdi+0*SIZEOF_JSAMPROW] mov rbx, JSAMPROW [rdi+2*SIZEOF_JSAMPROW] movq XMM_MMWORD [rdx+rax*SIZEOF_JSAMPLE], xmm6 movq XMM_MMWORD [rbx+rax*SIZEOF_JSAMPLE], xmm7 mov rdx, JSAMPROW [rdi+1*SIZEOF_JSAMPROW] mov rbx, JSAMPROW [rdi+3*SIZEOF_JSAMPROW] movq XMM_MMWORD [rdx+rax*SIZEOF_JSAMPLE], xmm5 movq XMM_MMWORD [rbx+rax*SIZEOF_JSAMPLE], xmm3 add rsi, byte 4*SIZEOF_FAST_FLOAT ; wsptr add rdi, byte 4*SIZEOF_JSAMPROW dec rcx ; ctr jnz near .rowloop pop rbx uncollect_args mov rsp,rbp ; rsp <- aligned rbp pop rsp ; rsp <- original rbp pop rbp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 16 libjpeg-turbo-1.4.2/simd/jquant-sse.asm0000644000076500007650000001701312600050400014733 00000000000000; ; jquant.asm - sample data conversion and quantization (SSE & MMX) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; ; Based on ; x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; [TAB8] %include "jsimdext.inc" %include "jdct.inc" ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 32 ; ; Load data into workspace, applying unsigned->signed conversion ; ; GLOBAL(void) ; jsimd_convsamp_float_sse (JSAMPARRAY sample_data, JDIMENSION start_col, ; FAST_FLOAT * workspace); ; %define sample_data ebp+8 ; JSAMPARRAY sample_data %define start_col ebp+12 ; JDIMENSION start_col %define workspace ebp+16 ; FAST_FLOAT * workspace align 16 global EXTN(jsimd_convsamp_float_sse) EXTN(jsimd_convsamp_float_sse): push ebp mov ebp,esp push ebx ; push ecx ; need not be preserved ; push edx ; need not be preserved push esi push edi pcmpeqw mm7,mm7 psllw mm7,7 packsswb mm7,mm7 ; mm7 = PB_CENTERJSAMPLE (0x808080..) mov esi, JSAMPARRAY [sample_data] ; (JSAMPROW *) mov eax, JDIMENSION [start_col] mov edi, POINTER [workspace] ; (DCTELEM *) mov ecx, DCTSIZE/2 alignx 16,7 .convloop: mov ebx, JSAMPROW [esi+0*SIZEOF_JSAMPROW] ; (JSAMPLE *) mov edx, JSAMPROW [esi+1*SIZEOF_JSAMPROW] ; (JSAMPLE *) movq mm0, MMWORD [ebx+eax*SIZEOF_JSAMPLE] movq mm1, MMWORD [edx+eax*SIZEOF_JSAMPLE] psubb mm0,mm7 ; mm0=(01234567) psubb mm1,mm7 ; mm1=(89ABCDEF) punpcklbw mm2,mm0 ; mm2=(*0*1*2*3) punpckhbw mm0,mm0 ; mm0=(*4*5*6*7) punpcklbw mm3,mm1 ; mm3=(*8*9*A*B) punpckhbw mm1,mm1 ; mm1=(*C*D*E*F) punpcklwd mm4,mm2 ; mm4=(***0***1) punpckhwd mm2,mm2 ; mm2=(***2***3) punpcklwd mm5,mm0 ; mm5=(***4***5) punpckhwd mm0,mm0 ; mm0=(***6***7) psrad mm4,(DWORD_BIT-BYTE_BIT) ; mm4=(01) psrad mm2,(DWORD_BIT-BYTE_BIT) ; mm2=(23) cvtpi2ps xmm0,mm4 ; xmm0=(01**) cvtpi2ps xmm1,mm2 ; xmm1=(23**) psrad mm5,(DWORD_BIT-BYTE_BIT) ; mm5=(45) psrad mm0,(DWORD_BIT-BYTE_BIT) ; mm0=(67) cvtpi2ps xmm2,mm5 ; xmm2=(45**) cvtpi2ps xmm3,mm0 ; xmm3=(67**) punpcklwd mm6,mm3 ; mm6=(***8***9) punpckhwd mm3,mm3 ; mm3=(***A***B) punpcklwd mm4,mm1 ; mm4=(***C***D) punpckhwd mm1,mm1 ; mm1=(***E***F) psrad mm6,(DWORD_BIT-BYTE_BIT) ; mm6=(89) psrad mm3,(DWORD_BIT-BYTE_BIT) ; mm3=(AB) cvtpi2ps xmm4,mm6 ; xmm4=(89**) cvtpi2ps xmm5,mm3 ; xmm5=(AB**) psrad mm4,(DWORD_BIT-BYTE_BIT) ; mm4=(CD) psrad mm1,(DWORD_BIT-BYTE_BIT) ; mm1=(EF) cvtpi2ps xmm6,mm4 ; xmm6=(CD**) cvtpi2ps xmm7,mm1 ; xmm7=(EF**) movlhps xmm0,xmm1 ; xmm0=(0123) movlhps xmm2,xmm3 ; xmm2=(4567) movlhps xmm4,xmm5 ; xmm4=(89AB) movlhps xmm6,xmm7 ; xmm6=(CDEF) movaps XMMWORD [XMMBLOCK(0,0,edi,SIZEOF_FAST_FLOAT)], xmm0 movaps XMMWORD [XMMBLOCK(0,1,edi,SIZEOF_FAST_FLOAT)], xmm2 movaps XMMWORD [XMMBLOCK(1,0,edi,SIZEOF_FAST_FLOAT)], xmm4 movaps XMMWORD [XMMBLOCK(1,1,edi,SIZEOF_FAST_FLOAT)], xmm6 add esi, byte 2*SIZEOF_JSAMPROW add edi, byte 2*DCTSIZE*SIZEOF_FAST_FLOAT dec ecx jnz near .convloop emms ; empty MMX state pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; need not be preserved pop ebx pop ebp ret ; -------------------------------------------------------------------------- ; ; Quantize/descale the coefficients, and store into coef_block ; ; GLOBAL(void) ; jsimd_quantize_float_sse (JCOEFPTR coef_block, FAST_FLOAT * divisors, ; FAST_FLOAT * workspace); ; %define coef_block ebp+8 ; JCOEFPTR coef_block %define divisors ebp+12 ; FAST_FLOAT * divisors %define workspace ebp+16 ; FAST_FLOAT * workspace align 16 global EXTN(jsimd_quantize_float_sse) EXTN(jsimd_quantize_float_sse): push ebp mov ebp,esp ; push ebx ; unused ; push ecx ; unused ; push edx ; need not be preserved push esi push edi mov esi, POINTER [workspace] mov edx, POINTER [divisors] mov edi, JCOEFPTR [coef_block] mov eax, DCTSIZE2/16 alignx 16,7 .quantloop: movaps xmm0, XMMWORD [XMMBLOCK(0,0,esi,SIZEOF_FAST_FLOAT)] movaps xmm1, XMMWORD [XMMBLOCK(0,1,esi,SIZEOF_FAST_FLOAT)] mulps xmm0, XMMWORD [XMMBLOCK(0,0,edx,SIZEOF_FAST_FLOAT)] mulps xmm1, XMMWORD [XMMBLOCK(0,1,edx,SIZEOF_FAST_FLOAT)] movaps xmm2, XMMWORD [XMMBLOCK(1,0,esi,SIZEOF_FAST_FLOAT)] movaps xmm3, XMMWORD [XMMBLOCK(1,1,esi,SIZEOF_FAST_FLOAT)] mulps xmm2, XMMWORD [XMMBLOCK(1,0,edx,SIZEOF_FAST_FLOAT)] mulps xmm3, XMMWORD [XMMBLOCK(1,1,edx,SIZEOF_FAST_FLOAT)] movhlps xmm4,xmm0 movhlps xmm5,xmm1 cvtps2pi mm0,xmm0 cvtps2pi mm1,xmm1 cvtps2pi mm4,xmm4 cvtps2pi mm5,xmm5 movhlps xmm6,xmm2 movhlps xmm7,xmm3 cvtps2pi mm2,xmm2 cvtps2pi mm3,xmm3 cvtps2pi mm6,xmm6 cvtps2pi mm7,xmm7 packssdw mm0,mm4 packssdw mm1,mm5 packssdw mm2,mm6 packssdw mm3,mm7 movq MMWORD [MMBLOCK(0,0,edi,SIZEOF_JCOEF)], mm0 movq MMWORD [MMBLOCK(0,1,edi,SIZEOF_JCOEF)], mm1 movq MMWORD [MMBLOCK(1,0,edi,SIZEOF_JCOEF)], mm2 movq MMWORD [MMBLOCK(1,1,edi,SIZEOF_JCOEF)], mm3 add esi, byte 16*SIZEOF_FAST_FLOAT add edx, byte 16*SIZEOF_FAST_FLOAT add edi, byte 16*SIZEOF_JCOEF dec eax jnz short .quantloop emms ; empty MMX state pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; unused ; pop ebx ; unused pop ebp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 16 libjpeg-turbo-1.4.2/simd/jdsample-sse2.asm0000644000076500007650000006440412600050400015320 00000000000000; ; jdsample.asm - upsampling (SSE2) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; ; Based on ; x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; [TAB8] %include "jsimdext.inc" ; -------------------------------------------------------------------------- SECTION SEG_CONST alignz 16 global EXTN(jconst_fancy_upsample_sse2) EXTN(jconst_fancy_upsample_sse2): PW_ONE times 8 dw 1 PW_TWO times 8 dw 2 PW_THREE times 8 dw 3 PW_SEVEN times 8 dw 7 PW_EIGHT times 8 dw 8 alignz 16 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 32 ; ; Fancy processing for the common case of 2:1 horizontal and 1:1 vertical. ; ; The upsampling algorithm is linear interpolation between pixel centers, ; also known as a "triangle filter". This is a good compromise between ; speed and visual quality. The centers of the output pixels are 1/4 and 3/4 ; of the way between input pixel centers. ; ; GLOBAL(void) ; jsimd_h2v1_fancy_upsample_sse2 (int max_v_samp_factor, ; JDIMENSION downsampled_width, ; JSAMPARRAY input_data, ; JSAMPARRAY * output_data_ptr); ; %define max_v_samp(b) (b)+8 ; int max_v_samp_factor %define downsamp_width(b) (b)+12 ; JDIMENSION downsampled_width %define input_data(b) (b)+16 ; JSAMPARRAY input_data %define output_data_ptr(b) (b)+20 ; JSAMPARRAY * output_data_ptr align 16 global EXTN(jsimd_h2v1_fancy_upsample_sse2) EXTN(jsimd_h2v1_fancy_upsample_sse2): push ebp mov ebp,esp pushpic ebx ; push ecx ; need not be preserved ; push edx ; need not be preserved push esi push edi get_GOT ebx ; get GOT address mov eax, JDIMENSION [downsamp_width(ebp)] ; colctr test eax,eax jz near .return mov ecx, INT [max_v_samp(ebp)] ; rowctr test ecx,ecx jz near .return mov esi, JSAMPARRAY [input_data(ebp)] ; input_data mov edi, POINTER [output_data_ptr(ebp)] mov edi, JSAMPARRAY [edi] ; output_data alignx 16,7 .rowloop: push eax ; colctr push edi push esi mov esi, JSAMPROW [esi] ; inptr mov edi, JSAMPROW [edi] ; outptr test eax, SIZEOF_XMMWORD-1 jz short .skip mov dl, JSAMPLE [esi+(eax-1)*SIZEOF_JSAMPLE] mov JSAMPLE [esi+eax*SIZEOF_JSAMPLE], dl ; insert a dummy sample .skip: pxor xmm0,xmm0 ; xmm0=(all 0's) pcmpeqb xmm7,xmm7 psrldq xmm7,(SIZEOF_XMMWORD-1) pand xmm7, XMMWORD [esi+0*SIZEOF_XMMWORD] add eax, byte SIZEOF_XMMWORD-1 and eax, byte -SIZEOF_XMMWORD cmp eax, byte SIZEOF_XMMWORD ja short .columnloop alignx 16,7 .columnloop_last: pcmpeqb xmm6,xmm6 pslldq xmm6,(SIZEOF_XMMWORD-1) pand xmm6, XMMWORD [esi+0*SIZEOF_XMMWORD] jmp short .upsample alignx 16,7 .columnloop: movdqa xmm6, XMMWORD [esi+1*SIZEOF_XMMWORD] pslldq xmm6,(SIZEOF_XMMWORD-1) .upsample: movdqa xmm1, XMMWORD [esi+0*SIZEOF_XMMWORD] movdqa xmm2,xmm1 movdqa xmm3,xmm1 ; xmm1=( 0 1 2 ... 13 14 15) pslldq xmm2,1 ; xmm2=(-- 0 1 ... 12 13 14) psrldq xmm3,1 ; xmm3=( 1 2 3 ... 14 15 --) por xmm2,xmm7 ; xmm2=(-1 0 1 ... 12 13 14) por xmm3,xmm6 ; xmm3=( 1 2 3 ... 14 15 16) movdqa xmm7,xmm1 psrldq xmm7,(SIZEOF_XMMWORD-1) ; xmm7=(15 -- -- ... -- -- --) movdqa xmm4,xmm1 punpcklbw xmm1,xmm0 ; xmm1=( 0 1 2 3 4 5 6 7) punpckhbw xmm4,xmm0 ; xmm4=( 8 9 10 11 12 13 14 15) movdqa xmm5,xmm2 punpcklbw xmm2,xmm0 ; xmm2=(-1 0 1 2 3 4 5 6) punpckhbw xmm5,xmm0 ; xmm5=( 7 8 9 10 11 12 13 14) movdqa xmm6,xmm3 punpcklbw xmm3,xmm0 ; xmm3=( 1 2 3 4 5 6 7 8) punpckhbw xmm6,xmm0 ; xmm6=( 9 10 11 12 13 14 15 16) pmullw xmm1,[GOTOFF(ebx,PW_THREE)] pmullw xmm4,[GOTOFF(ebx,PW_THREE)] paddw xmm2,[GOTOFF(ebx,PW_ONE)] paddw xmm5,[GOTOFF(ebx,PW_ONE)] paddw xmm3,[GOTOFF(ebx,PW_TWO)] paddw xmm6,[GOTOFF(ebx,PW_TWO)] paddw xmm2,xmm1 paddw xmm5,xmm4 psrlw xmm2,2 ; xmm2=OutLE=( 0 2 4 6 8 10 12 14) psrlw xmm5,2 ; xmm5=OutHE=(16 18 20 22 24 26 28 30) paddw xmm3,xmm1 paddw xmm6,xmm4 psrlw xmm3,2 ; xmm3=OutLO=( 1 3 5 7 9 11 13 15) psrlw xmm6,2 ; xmm6=OutHO=(17 19 21 23 25 27 29 31) psllw xmm3,BYTE_BIT psllw xmm6,BYTE_BIT por xmm2,xmm3 ; xmm2=OutL=( 0 1 2 ... 13 14 15) por xmm5,xmm6 ; xmm5=OutH=(16 17 18 ... 29 30 31) movdqa XMMWORD [edi+0*SIZEOF_XMMWORD], xmm2 movdqa XMMWORD [edi+1*SIZEOF_XMMWORD], xmm5 sub eax, byte SIZEOF_XMMWORD add esi, byte 1*SIZEOF_XMMWORD ; inptr add edi, byte 2*SIZEOF_XMMWORD ; outptr cmp eax, byte SIZEOF_XMMWORD ja near .columnloop test eax,eax jnz near .columnloop_last pop esi pop edi pop eax add esi, byte SIZEOF_JSAMPROW ; input_data add edi, byte SIZEOF_JSAMPROW ; output_data dec ecx ; rowctr jg near .rowloop .return: pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; need not be preserved poppic ebx pop ebp ret ; -------------------------------------------------------------------------- ; ; Fancy processing for the common case of 2:1 horizontal and 2:1 vertical. ; Again a triangle filter; see comments for h2v1 case, above. ; ; GLOBAL(void) ; jsimd_h2v2_fancy_upsample_sse2 (int max_v_samp_factor, ; JDIMENSION downsampled_width, ; JSAMPARRAY input_data, ; JSAMPARRAY * output_data_ptr); ; %define max_v_samp(b) (b)+8 ; int max_v_samp_factor %define downsamp_width(b) (b)+12 ; JDIMENSION downsampled_width %define input_data(b) (b)+16 ; JSAMPARRAY input_data %define output_data_ptr(b) (b)+20 ; JSAMPARRAY * output_data_ptr %define original_ebp ebp+0 %define wk(i) ebp-(WK_NUM-(i))*SIZEOF_XMMWORD ; xmmword wk[WK_NUM] %define WK_NUM 4 %define gotptr wk(0)-SIZEOF_POINTER ; void * gotptr align 16 global EXTN(jsimd_h2v2_fancy_upsample_sse2) EXTN(jsimd_h2v2_fancy_upsample_sse2): push ebp mov eax,esp ; eax = original ebp sub esp, byte 4 and esp, byte (-SIZEOF_XMMWORD) ; align to 128 bits mov [esp],eax mov ebp,esp ; ebp = aligned ebp lea esp, [wk(0)] pushpic eax ; make a room for GOT address push ebx ; push ecx ; need not be preserved ; push edx ; need not be preserved push esi push edi get_GOT ebx ; get GOT address movpic POINTER [gotptr], ebx ; save GOT address mov edx,eax ; edx = original ebp mov eax, JDIMENSION [downsamp_width(edx)] ; colctr test eax,eax jz near .return mov ecx, INT [max_v_samp(edx)] ; rowctr test ecx,ecx jz near .return mov esi, JSAMPARRAY [input_data(edx)] ; input_data mov edi, POINTER [output_data_ptr(edx)] mov edi, JSAMPARRAY [edi] ; output_data alignx 16,7 .rowloop: push eax ; colctr push ecx push edi push esi mov ecx, JSAMPROW [esi-1*SIZEOF_JSAMPROW] ; inptr1(above) mov ebx, JSAMPROW [esi+0*SIZEOF_JSAMPROW] ; inptr0 mov esi, JSAMPROW [esi+1*SIZEOF_JSAMPROW] ; inptr1(below) mov edx, JSAMPROW [edi+0*SIZEOF_JSAMPROW] ; outptr0 mov edi, JSAMPROW [edi+1*SIZEOF_JSAMPROW] ; outptr1 test eax, SIZEOF_XMMWORD-1 jz short .skip push edx mov dl, JSAMPLE [ecx+(eax-1)*SIZEOF_JSAMPLE] mov JSAMPLE [ecx+eax*SIZEOF_JSAMPLE], dl mov dl, JSAMPLE [ebx+(eax-1)*SIZEOF_JSAMPLE] mov JSAMPLE [ebx+eax*SIZEOF_JSAMPLE], dl mov dl, JSAMPLE [esi+(eax-1)*SIZEOF_JSAMPLE] mov JSAMPLE [esi+eax*SIZEOF_JSAMPLE], dl ; insert a dummy sample pop edx .skip: ; -- process the first column block movdqa xmm0, XMMWORD [ebx+0*SIZEOF_XMMWORD] ; xmm0=row[ 0][0] movdqa xmm1, XMMWORD [ecx+0*SIZEOF_XMMWORD] ; xmm1=row[-1][0] movdqa xmm2, XMMWORD [esi+0*SIZEOF_XMMWORD] ; xmm2=row[+1][0] pushpic ebx movpic ebx, POINTER [gotptr] ; load GOT address pxor xmm3,xmm3 ; xmm3=(all 0's) movdqa xmm4,xmm0 punpcklbw xmm0,xmm3 ; xmm0=row[ 0]( 0 1 2 3 4 5 6 7) punpckhbw xmm4,xmm3 ; xmm4=row[ 0]( 8 9 10 11 12 13 14 15) movdqa xmm5,xmm1 punpcklbw xmm1,xmm3 ; xmm1=row[-1]( 0 1 2 3 4 5 6 7) punpckhbw xmm5,xmm3 ; xmm5=row[-1]( 8 9 10 11 12 13 14 15) movdqa xmm6,xmm2 punpcklbw xmm2,xmm3 ; xmm2=row[+1]( 0 1 2 3 4 5 6 7) punpckhbw xmm6,xmm3 ; xmm6=row[+1]( 8 9 10 11 12 13 14 15) pmullw xmm0,[GOTOFF(ebx,PW_THREE)] pmullw xmm4,[GOTOFF(ebx,PW_THREE)] pcmpeqb xmm7,xmm7 psrldq xmm7,(SIZEOF_XMMWORD-2) paddw xmm1,xmm0 ; xmm1=Int0L=( 0 1 2 3 4 5 6 7) paddw xmm5,xmm4 ; xmm5=Int0H=( 8 9 10 11 12 13 14 15) paddw xmm2,xmm0 ; xmm2=Int1L=( 0 1 2 3 4 5 6 7) paddw xmm6,xmm4 ; xmm6=Int1H=( 8 9 10 11 12 13 14 15) movdqa XMMWORD [edx+0*SIZEOF_XMMWORD], xmm1 ; temporarily save movdqa XMMWORD [edx+1*SIZEOF_XMMWORD], xmm5 ; the intermediate data movdqa XMMWORD [edi+0*SIZEOF_XMMWORD], xmm2 movdqa XMMWORD [edi+1*SIZEOF_XMMWORD], xmm6 pand xmm1,xmm7 ; xmm1=( 0 -- -- -- -- -- -- --) pand xmm2,xmm7 ; xmm2=( 0 -- -- -- -- -- -- --) movdqa XMMWORD [wk(0)], xmm1 movdqa XMMWORD [wk(1)], xmm2 poppic ebx add eax, byte SIZEOF_XMMWORD-1 and eax, byte -SIZEOF_XMMWORD cmp eax, byte SIZEOF_XMMWORD ja short .columnloop alignx 16,7 .columnloop_last: ; -- process the last column block pushpic ebx movpic ebx, POINTER [gotptr] ; load GOT address pcmpeqb xmm1,xmm1 pslldq xmm1,(SIZEOF_XMMWORD-2) movdqa xmm2,xmm1 pand xmm1, XMMWORD [edx+1*SIZEOF_XMMWORD] pand xmm2, XMMWORD [edi+1*SIZEOF_XMMWORD] movdqa XMMWORD [wk(2)], xmm1 ; xmm1=(-- -- -- -- -- -- -- 15) movdqa XMMWORD [wk(3)], xmm2 ; xmm2=(-- -- -- -- -- -- -- 15) jmp near .upsample alignx 16,7 .columnloop: ; -- process the next column block movdqa xmm0, XMMWORD [ebx+1*SIZEOF_XMMWORD] ; xmm0=row[ 0][1] movdqa xmm1, XMMWORD [ecx+1*SIZEOF_XMMWORD] ; xmm1=row[-1][1] movdqa xmm2, XMMWORD [esi+1*SIZEOF_XMMWORD] ; xmm2=row[+1][1] pushpic ebx movpic ebx, POINTER [gotptr] ; load GOT address pxor xmm3,xmm3 ; xmm3=(all 0's) movdqa xmm4,xmm0 punpcklbw xmm0,xmm3 ; xmm0=row[ 0]( 0 1 2 3 4 5 6 7) punpckhbw xmm4,xmm3 ; xmm4=row[ 0]( 8 9 10 11 12 13 14 15) movdqa xmm5,xmm1 punpcklbw xmm1,xmm3 ; xmm1=row[-1]( 0 1 2 3 4 5 6 7) punpckhbw xmm5,xmm3 ; xmm5=row[-1]( 8 9 10 11 12 13 14 15) movdqa xmm6,xmm2 punpcklbw xmm2,xmm3 ; xmm2=row[+1]( 0 1 2 3 4 5 6 7) punpckhbw xmm6,xmm3 ; xmm6=row[+1]( 8 9 10 11 12 13 14 15) pmullw xmm0,[GOTOFF(ebx,PW_THREE)] pmullw xmm4,[GOTOFF(ebx,PW_THREE)] paddw xmm1,xmm0 ; xmm1=Int0L=( 0 1 2 3 4 5 6 7) paddw xmm5,xmm4 ; xmm5=Int0H=( 8 9 10 11 12 13 14 15) paddw xmm2,xmm0 ; xmm2=Int1L=( 0 1 2 3 4 5 6 7) paddw xmm6,xmm4 ; xmm6=Int1H=( 8 9 10 11 12 13 14 15) movdqa XMMWORD [edx+2*SIZEOF_XMMWORD], xmm1 ; temporarily save movdqa XMMWORD [edx+3*SIZEOF_XMMWORD], xmm5 ; the intermediate data movdqa XMMWORD [edi+2*SIZEOF_XMMWORD], xmm2 movdqa XMMWORD [edi+3*SIZEOF_XMMWORD], xmm6 pslldq xmm1,(SIZEOF_XMMWORD-2) ; xmm1=(-- -- -- -- -- -- -- 0) pslldq xmm2,(SIZEOF_XMMWORD-2) ; xmm2=(-- -- -- -- -- -- -- 0) movdqa XMMWORD [wk(2)], xmm1 movdqa XMMWORD [wk(3)], xmm2 .upsample: ; -- process the upper row movdqa xmm7, XMMWORD [edx+0*SIZEOF_XMMWORD] movdqa xmm3, XMMWORD [edx+1*SIZEOF_XMMWORD] movdqa xmm0,xmm7 ; xmm7=Int0L=( 0 1 2 3 4 5 6 7) movdqa xmm4,xmm3 ; xmm3=Int0H=( 8 9 10 11 12 13 14 15) psrldq xmm0,2 ; xmm0=( 1 2 3 4 5 6 7 --) pslldq xmm4,(SIZEOF_XMMWORD-2) ; xmm4=(-- -- -- -- -- -- -- 8) movdqa xmm5,xmm7 movdqa xmm6,xmm3 psrldq xmm5,(SIZEOF_XMMWORD-2) ; xmm5=( 7 -- -- -- -- -- -- --) pslldq xmm6,2 ; xmm6=(-- 8 9 10 11 12 13 14) por xmm0,xmm4 ; xmm0=( 1 2 3 4 5 6 7 8) por xmm5,xmm6 ; xmm5=( 7 8 9 10 11 12 13 14) movdqa xmm1,xmm7 movdqa xmm2,xmm3 pslldq xmm1,2 ; xmm1=(-- 0 1 2 3 4 5 6) psrldq xmm2,2 ; xmm2=( 9 10 11 12 13 14 15 --) movdqa xmm4,xmm3 psrldq xmm4,(SIZEOF_XMMWORD-2) ; xmm4=(15 -- -- -- -- -- -- --) por xmm1, XMMWORD [wk(0)] ; xmm1=(-1 0 1 2 3 4 5 6) por xmm2, XMMWORD [wk(2)] ; xmm2=( 9 10 11 12 13 14 15 16) movdqa XMMWORD [wk(0)], xmm4 pmullw xmm7,[GOTOFF(ebx,PW_THREE)] pmullw xmm3,[GOTOFF(ebx,PW_THREE)] paddw xmm1,[GOTOFF(ebx,PW_EIGHT)] paddw xmm5,[GOTOFF(ebx,PW_EIGHT)] paddw xmm0,[GOTOFF(ebx,PW_SEVEN)] paddw xmm2,[GOTOFF(ebx,PW_SEVEN)] paddw xmm1,xmm7 paddw xmm5,xmm3 psrlw xmm1,4 ; xmm1=Out0LE=( 0 2 4 6 8 10 12 14) psrlw xmm5,4 ; xmm5=Out0HE=(16 18 20 22 24 26 28 30) paddw xmm0,xmm7 paddw xmm2,xmm3 psrlw xmm0,4 ; xmm0=Out0LO=( 1 3 5 7 9 11 13 15) psrlw xmm2,4 ; xmm2=Out0HO=(17 19 21 23 25 27 29 31) psllw xmm0,BYTE_BIT psllw xmm2,BYTE_BIT por xmm1,xmm0 ; xmm1=Out0L=( 0 1 2 ... 13 14 15) por xmm5,xmm2 ; xmm5=Out0H=(16 17 18 ... 29 30 31) movdqa XMMWORD [edx+0*SIZEOF_XMMWORD], xmm1 movdqa XMMWORD [edx+1*SIZEOF_XMMWORD], xmm5 ; -- process the lower row movdqa xmm6, XMMWORD [edi+0*SIZEOF_XMMWORD] movdqa xmm4, XMMWORD [edi+1*SIZEOF_XMMWORD] movdqa xmm7,xmm6 ; xmm6=Int1L=( 0 1 2 3 4 5 6 7) movdqa xmm3,xmm4 ; xmm4=Int1H=( 8 9 10 11 12 13 14 15) psrldq xmm7,2 ; xmm7=( 1 2 3 4 5 6 7 --) pslldq xmm3,(SIZEOF_XMMWORD-2) ; xmm3=(-- -- -- -- -- -- -- 8) movdqa xmm0,xmm6 movdqa xmm2,xmm4 psrldq xmm0,(SIZEOF_XMMWORD-2) ; xmm0=( 7 -- -- -- -- -- -- --) pslldq xmm2,2 ; xmm2=(-- 8 9 10 11 12 13 14) por xmm7,xmm3 ; xmm7=( 1 2 3 4 5 6 7 8) por xmm0,xmm2 ; xmm0=( 7 8 9 10 11 12 13 14) movdqa xmm1,xmm6 movdqa xmm5,xmm4 pslldq xmm1,2 ; xmm1=(-- 0 1 2 3 4 5 6) psrldq xmm5,2 ; xmm5=( 9 10 11 12 13 14 15 --) movdqa xmm3,xmm4 psrldq xmm3,(SIZEOF_XMMWORD-2) ; xmm3=(15 -- -- -- -- -- -- --) por xmm1, XMMWORD [wk(1)] ; xmm1=(-1 0 1 2 3 4 5 6) por xmm5, XMMWORD [wk(3)] ; xmm5=( 9 10 11 12 13 14 15 16) movdqa XMMWORD [wk(1)], xmm3 pmullw xmm6,[GOTOFF(ebx,PW_THREE)] pmullw xmm4,[GOTOFF(ebx,PW_THREE)] paddw xmm1,[GOTOFF(ebx,PW_EIGHT)] paddw xmm0,[GOTOFF(ebx,PW_EIGHT)] paddw xmm7,[GOTOFF(ebx,PW_SEVEN)] paddw xmm5,[GOTOFF(ebx,PW_SEVEN)] paddw xmm1,xmm6 paddw xmm0,xmm4 psrlw xmm1,4 ; xmm1=Out1LE=( 0 2 4 6 8 10 12 14) psrlw xmm0,4 ; xmm0=Out1HE=(16 18 20 22 24 26 28 30) paddw xmm7,xmm6 paddw xmm5,xmm4 psrlw xmm7,4 ; xmm7=Out1LO=( 1 3 5 7 9 11 13 15) psrlw xmm5,4 ; xmm5=Out1HO=(17 19 21 23 25 27 29 31) psllw xmm7,BYTE_BIT psllw xmm5,BYTE_BIT por xmm1,xmm7 ; xmm1=Out1L=( 0 1 2 ... 13 14 15) por xmm0,xmm5 ; xmm0=Out1H=(16 17 18 ... 29 30 31) movdqa XMMWORD [edi+0*SIZEOF_XMMWORD], xmm1 movdqa XMMWORD [edi+1*SIZEOF_XMMWORD], xmm0 poppic ebx sub eax, byte SIZEOF_XMMWORD add ecx, byte 1*SIZEOF_XMMWORD ; inptr1(above) add ebx, byte 1*SIZEOF_XMMWORD ; inptr0 add esi, byte 1*SIZEOF_XMMWORD ; inptr1(below) add edx, byte 2*SIZEOF_XMMWORD ; outptr0 add edi, byte 2*SIZEOF_XMMWORD ; outptr1 cmp eax, byte SIZEOF_XMMWORD ja near .columnloop test eax,eax jnz near .columnloop_last pop esi pop edi pop ecx pop eax add esi, byte 1*SIZEOF_JSAMPROW ; input_data add edi, byte 2*SIZEOF_JSAMPROW ; output_data sub ecx, byte 2 ; rowctr jg near .rowloop .return: pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; need not be preserved pop ebx mov esp,ebp ; esp <- aligned ebp pop esp ; esp <- original ebp pop ebp ret ; -------------------------------------------------------------------------- ; ; Fast processing for the common case of 2:1 horizontal and 1:1 vertical. ; It's still a box filter. ; ; GLOBAL(void) ; jsimd_h2v1_upsample_sse2 (int max_v_samp_factor, ; JDIMENSION output_width, ; JSAMPARRAY input_data, ; JSAMPARRAY * output_data_ptr); ; %define max_v_samp(b) (b)+8 ; int max_v_samp_factor %define output_width(b) (b)+12 ; JDIMENSION output_width %define input_data(b) (b)+16 ; JSAMPARRAY input_data %define output_data_ptr(b) (b)+20 ; JSAMPARRAY * output_data_ptr align 16 global EXTN(jsimd_h2v1_upsample_sse2) EXTN(jsimd_h2v1_upsample_sse2): push ebp mov ebp,esp ; push ebx ; unused ; push ecx ; need not be preserved ; push edx ; need not be preserved push esi push edi mov edx, JDIMENSION [output_width(ebp)] add edx, byte (2*SIZEOF_XMMWORD)-1 and edx, byte -(2*SIZEOF_XMMWORD) jz short .return mov ecx, INT [max_v_samp(ebp)] ; rowctr test ecx,ecx jz short .return mov esi, JSAMPARRAY [input_data(ebp)] ; input_data mov edi, POINTER [output_data_ptr(ebp)] mov edi, JSAMPARRAY [edi] ; output_data alignx 16,7 .rowloop: push edi push esi mov esi, JSAMPROW [esi] ; inptr mov edi, JSAMPROW [edi] ; outptr mov eax,edx ; colctr alignx 16,7 .columnloop: movdqa xmm0, XMMWORD [esi+0*SIZEOF_XMMWORD] movdqa xmm1,xmm0 punpcklbw xmm0,xmm0 punpckhbw xmm1,xmm1 movdqa XMMWORD [edi+0*SIZEOF_XMMWORD], xmm0 movdqa XMMWORD [edi+1*SIZEOF_XMMWORD], xmm1 sub eax, byte 2*SIZEOF_XMMWORD jz short .nextrow movdqa xmm2, XMMWORD [esi+1*SIZEOF_XMMWORD] movdqa xmm3,xmm2 punpcklbw xmm2,xmm2 punpckhbw xmm3,xmm3 movdqa XMMWORD [edi+2*SIZEOF_XMMWORD], xmm2 movdqa XMMWORD [edi+3*SIZEOF_XMMWORD], xmm3 sub eax, byte 2*SIZEOF_XMMWORD jz short .nextrow add esi, byte 2*SIZEOF_XMMWORD ; inptr add edi, byte 4*SIZEOF_XMMWORD ; outptr jmp short .columnloop alignx 16,7 .nextrow: pop esi pop edi add esi, byte SIZEOF_JSAMPROW ; input_data add edi, byte SIZEOF_JSAMPROW ; output_data dec ecx ; rowctr jg short .rowloop .return: pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; need not be preserved ; pop ebx ; unused pop ebp ret ; -------------------------------------------------------------------------- ; ; Fast processing for the common case of 2:1 horizontal and 2:1 vertical. ; It's still a box filter. ; ; GLOBAL(void) ; jsimd_h2v2_upsample_sse2 (nt max_v_samp_factor, ; JDIMENSION output_width, ; JSAMPARRAY input_data, ; JSAMPARRAY * output_data_ptr); ; %define max_v_samp(b) (b)+8 ; int max_v_samp_factor %define output_width(b) (b)+12 ; JDIMENSION output_width %define input_data(b) (b)+16 ; JSAMPARRAY input_data %define output_data_ptr(b) (b)+20 ; JSAMPARRAY * output_data_ptr align 16 global EXTN(jsimd_h2v2_upsample_sse2) EXTN(jsimd_h2v2_upsample_sse2): push ebp mov ebp,esp push ebx ; push ecx ; need not be preserved ; push edx ; need not be preserved push esi push edi mov edx, JDIMENSION [output_width(ebp)] add edx, byte (2*SIZEOF_XMMWORD)-1 and edx, byte -(2*SIZEOF_XMMWORD) jz near .return mov ecx, INT [max_v_samp(ebp)] ; rowctr test ecx,ecx jz near .return mov esi, JSAMPARRAY [input_data(ebp)] ; input_data mov edi, POINTER [output_data_ptr(ebp)] mov edi, JSAMPARRAY [edi] ; output_data alignx 16,7 .rowloop: push edi push esi mov esi, JSAMPROW [esi] ; inptr mov ebx, JSAMPROW [edi+0*SIZEOF_JSAMPROW] ; outptr0 mov edi, JSAMPROW [edi+1*SIZEOF_JSAMPROW] ; outptr1 mov eax,edx ; colctr alignx 16,7 .columnloop: movdqa xmm0, XMMWORD [esi+0*SIZEOF_XMMWORD] movdqa xmm1,xmm0 punpcklbw xmm0,xmm0 punpckhbw xmm1,xmm1 movdqa XMMWORD [ebx+0*SIZEOF_XMMWORD], xmm0 movdqa XMMWORD [ebx+1*SIZEOF_XMMWORD], xmm1 movdqa XMMWORD [edi+0*SIZEOF_XMMWORD], xmm0 movdqa XMMWORD [edi+1*SIZEOF_XMMWORD], xmm1 sub eax, byte 2*SIZEOF_XMMWORD jz short .nextrow movdqa xmm2, XMMWORD [esi+1*SIZEOF_XMMWORD] movdqa xmm3,xmm2 punpcklbw xmm2,xmm2 punpckhbw xmm3,xmm3 movdqa XMMWORD [ebx+2*SIZEOF_XMMWORD], xmm2 movdqa XMMWORD [ebx+3*SIZEOF_XMMWORD], xmm3 movdqa XMMWORD [edi+2*SIZEOF_XMMWORD], xmm2 movdqa XMMWORD [edi+3*SIZEOF_XMMWORD], xmm3 sub eax, byte 2*SIZEOF_XMMWORD jz short .nextrow add esi, byte 2*SIZEOF_XMMWORD ; inptr add ebx, byte 4*SIZEOF_XMMWORD ; outptr0 add edi, byte 4*SIZEOF_XMMWORD ; outptr1 jmp short .columnloop alignx 16,7 .nextrow: pop esi pop edi add esi, byte 1*SIZEOF_JSAMPROW ; input_data add edi, byte 2*SIZEOF_JSAMPROW ; output_data sub ecx, byte 2 ; rowctr jg short .rowloop .return: pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; need not be preserved pop ebx pop ebp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 16 libjpeg-turbo-1.4.2/simd/jccolext-sse2-64.asm0000644000076500007650000004351112600050400015557 00000000000000; ; jccolext.asm - colorspace conversion (64-bit SSE2) ; ; x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; Copyright (C) 2009, D. R. Commander. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; [TAB8] %include "jcolsamp.inc" ; -------------------------------------------------------------------------- ; ; Convert some rows of samples to the output colorspace. ; ; GLOBAL(void) ; jsimd_rgb_ycc_convert_sse2 (JDIMENSION img_width, ; JSAMPARRAY input_buf, JSAMPIMAGE output_buf, ; JDIMENSION output_row, int num_rows); ; ; r10 = JDIMENSION img_width ; r11 = JSAMPARRAY input_buf ; r12 = JSAMPIMAGE output_buf ; r13 = JDIMENSION output_row ; r14 = int num_rows %define wk(i) rbp-(WK_NUM-(i))*SIZEOF_XMMWORD ; xmmword wk[WK_NUM] %define WK_NUM 8 align 16 global EXTN(jsimd_rgb_ycc_convert_sse2) EXTN(jsimd_rgb_ycc_convert_sse2): push rbp mov rax,rsp ; rax = original rbp sub rsp, byte 4 and rsp, byte (-SIZEOF_XMMWORD) ; align to 128 bits mov [rsp],rax mov rbp,rsp ; rbp = aligned rbp lea rsp, [wk(0)] collect_args push rbx mov ecx, r10d test rcx,rcx jz near .return push rcx mov rsi, r12 mov ecx, r13d mov rdi, JSAMPARRAY [rsi+0*SIZEOF_JSAMPARRAY] mov rbx, JSAMPARRAY [rsi+1*SIZEOF_JSAMPARRAY] mov rdx, JSAMPARRAY [rsi+2*SIZEOF_JSAMPARRAY] lea rdi, [rdi+rcx*SIZEOF_JSAMPROW] lea rbx, [rbx+rcx*SIZEOF_JSAMPROW] lea rdx, [rdx+rcx*SIZEOF_JSAMPROW] pop rcx mov rsi, r11 mov eax, r14d test rax,rax jle near .return .rowloop: push rdx push rbx push rdi push rsi push rcx ; col mov rsi, JSAMPROW [rsi] ; inptr mov rdi, JSAMPROW [rdi] ; outptr0 mov rbx, JSAMPROW [rbx] ; outptr1 mov rdx, JSAMPROW [rdx] ; outptr2 cmp rcx, byte SIZEOF_XMMWORD jae near .columnloop %if RGB_PIXELSIZE == 3 ; --------------- .column_ld1: push rax push rdx lea rcx,[rcx+rcx*2] ; imul ecx,RGB_PIXELSIZE test cl, SIZEOF_BYTE jz short .column_ld2 sub rcx, byte SIZEOF_BYTE movzx rax, BYTE [rsi+rcx] .column_ld2: test cl, SIZEOF_WORD jz short .column_ld4 sub rcx, byte SIZEOF_WORD movzx rdx, WORD [rsi+rcx] shl rax, WORD_BIT or rax,rdx .column_ld4: movd xmmA,eax pop rdx pop rax test cl, SIZEOF_DWORD jz short .column_ld8 sub rcx, byte SIZEOF_DWORD movd xmmF, XMM_DWORD [rsi+rcx] pslldq xmmA, SIZEOF_DWORD por xmmA,xmmF .column_ld8: test cl, SIZEOF_MMWORD jz short .column_ld16 sub rcx, byte SIZEOF_MMWORD movq xmmB, XMM_MMWORD [rsi+rcx] pslldq xmmA, SIZEOF_MMWORD por xmmA,xmmB .column_ld16: test cl, SIZEOF_XMMWORD jz short .column_ld32 movdqa xmmF,xmmA movdqu xmmA, XMMWORD [rsi+0*SIZEOF_XMMWORD] mov rcx, SIZEOF_XMMWORD jmp short .rgb_ycc_cnv .column_ld32: test cl, 2*SIZEOF_XMMWORD mov rcx, SIZEOF_XMMWORD jz short .rgb_ycc_cnv movdqa xmmB,xmmA movdqu xmmA, XMMWORD [rsi+0*SIZEOF_XMMWORD] movdqu xmmF, XMMWORD [rsi+1*SIZEOF_XMMWORD] jmp short .rgb_ycc_cnv .columnloop: movdqu xmmA, XMMWORD [rsi+0*SIZEOF_XMMWORD] movdqu xmmF, XMMWORD [rsi+1*SIZEOF_XMMWORD] movdqu xmmB, XMMWORD [rsi+2*SIZEOF_XMMWORD] .rgb_ycc_cnv: ; xmmA=(00 10 20 01 11 21 02 12 22 03 13 23 04 14 24 05) ; xmmF=(15 25 06 16 26 07 17 27 08 18 28 09 19 29 0A 1A) ; xmmB=(2A 0B 1B 2B 0C 1C 2C 0D 1D 2D 0E 1E 2E 0F 1F 2F) movdqa xmmG,xmmA pslldq xmmA,8 ; xmmA=(-- -- -- -- -- -- -- -- 00 10 20 01 11 21 02 12) psrldq xmmG,8 ; xmmG=(22 03 13 23 04 14 24 05 -- -- -- -- -- -- -- --) punpckhbw xmmA,xmmF ; xmmA=(00 08 10 18 20 28 01 09 11 19 21 29 02 0A 12 1A) pslldq xmmF,8 ; xmmF=(-- -- -- -- -- -- -- -- 15 25 06 16 26 07 17 27) punpcklbw xmmG,xmmB ; xmmG=(22 2A 03 0B 13 1B 23 2B 04 0C 14 1C 24 2C 05 0D) punpckhbw xmmF,xmmB ; xmmF=(15 1D 25 2D 06 0E 16 1E 26 2E 07 0F 17 1F 27 2F) movdqa xmmD,xmmA pslldq xmmA,8 ; xmmA=(-- -- -- -- -- -- -- -- 00 08 10 18 20 28 01 09) psrldq xmmD,8 ; xmmD=(11 19 21 29 02 0A 12 1A -- -- -- -- -- -- -- --) punpckhbw xmmA,xmmG ; xmmA=(00 04 08 0C 10 14 18 1C 20 24 28 2C 01 05 09 0D) pslldq xmmG,8 ; xmmG=(-- -- -- -- -- -- -- -- 22 2A 03 0B 13 1B 23 2B) punpcklbw xmmD,xmmF ; xmmD=(11 15 19 1D 21 25 29 2D 02 06 0A 0E 12 16 1A 1E) punpckhbw xmmG,xmmF ; xmmG=(22 26 2A 2E 03 07 0B 0F 13 17 1B 1F 23 27 2B 2F) movdqa xmmE,xmmA pslldq xmmA,8 ; xmmA=(-- -- -- -- -- -- -- -- 00 04 08 0C 10 14 18 1C) psrldq xmmE,8 ; xmmE=(20 24 28 2C 01 05 09 0D -- -- -- -- -- -- -- --) punpckhbw xmmA,xmmD ; xmmA=(00 02 04 06 08 0A 0C 0E 10 12 14 16 18 1A 1C 1E) pslldq xmmD,8 ; xmmD=(-- -- -- -- -- -- -- -- 11 15 19 1D 21 25 29 2D) punpcklbw xmmE,xmmG ; xmmE=(20 22 24 26 28 2A 2C 2E 01 03 05 07 09 0B 0D 0F) punpckhbw xmmD,xmmG ; xmmD=(11 13 15 17 19 1B 1D 1F 21 23 25 27 29 2B 2D 2F) pxor xmmH,xmmH movdqa xmmC,xmmA punpcklbw xmmA,xmmH ; xmmA=(00 02 04 06 08 0A 0C 0E) punpckhbw xmmC,xmmH ; xmmC=(10 12 14 16 18 1A 1C 1E) movdqa xmmB,xmmE punpcklbw xmmE,xmmH ; xmmE=(20 22 24 26 28 2A 2C 2E) punpckhbw xmmB,xmmH ; xmmB=(01 03 05 07 09 0B 0D 0F) movdqa xmmF,xmmD punpcklbw xmmD,xmmH ; xmmD=(11 13 15 17 19 1B 1D 1F) punpckhbw xmmF,xmmH ; xmmF=(21 23 25 27 29 2B 2D 2F) %else ; RGB_PIXELSIZE == 4 ; ----------- .column_ld1: test cl, SIZEOF_XMMWORD/16 jz short .column_ld2 sub rcx, byte SIZEOF_XMMWORD/16 movd xmmA, XMM_DWORD [rsi+rcx*RGB_PIXELSIZE] .column_ld2: test cl, SIZEOF_XMMWORD/8 jz short .column_ld4 sub rcx, byte SIZEOF_XMMWORD/8 movq xmmE, XMM_MMWORD [rsi+rcx*RGB_PIXELSIZE] pslldq xmmA, SIZEOF_MMWORD por xmmA,xmmE .column_ld4: test cl, SIZEOF_XMMWORD/4 jz short .column_ld8 sub rcx, byte SIZEOF_XMMWORD/4 movdqa xmmE,xmmA movdqu xmmA, XMMWORD [rsi+rcx*RGB_PIXELSIZE] .column_ld8: test cl, SIZEOF_XMMWORD/2 mov rcx, SIZEOF_XMMWORD jz short .rgb_ycc_cnv movdqa xmmF,xmmA movdqa xmmH,xmmE movdqu xmmA, XMMWORD [rsi+0*SIZEOF_XMMWORD] movdqu xmmE, XMMWORD [rsi+1*SIZEOF_XMMWORD] jmp short .rgb_ycc_cnv .columnloop: movdqu xmmA, XMMWORD [rsi+0*SIZEOF_XMMWORD] movdqu xmmE, XMMWORD [rsi+1*SIZEOF_XMMWORD] movdqu xmmF, XMMWORD [rsi+2*SIZEOF_XMMWORD] movdqu xmmH, XMMWORD [rsi+3*SIZEOF_XMMWORD] .rgb_ycc_cnv: ; xmmA=(00 10 20 30 01 11 21 31 02 12 22 32 03 13 23 33) ; xmmE=(04 14 24 34 05 15 25 35 06 16 26 36 07 17 27 37) ; xmmF=(08 18 28 38 09 19 29 39 0A 1A 2A 3A 0B 1B 2B 3B) ; xmmH=(0C 1C 2C 3C 0D 1D 2D 3D 0E 1E 2E 3E 0F 1F 2F 3F) movdqa xmmD,xmmA punpcklbw xmmA,xmmE ; xmmA=(00 04 10 14 20 24 30 34 01 05 11 15 21 25 31 35) punpckhbw xmmD,xmmE ; xmmD=(02 06 12 16 22 26 32 36 03 07 13 17 23 27 33 37) movdqa xmmC,xmmF punpcklbw xmmF,xmmH ; xmmF=(08 0C 18 1C 28 2C 38 3C 09 0D 19 1D 29 2D 39 3D) punpckhbw xmmC,xmmH ; xmmC=(0A 0E 1A 1E 2A 2E 3A 3E 0B 0F 1B 1F 2B 2F 3B 3F) movdqa xmmB,xmmA punpcklwd xmmA,xmmF ; xmmA=(00 04 08 0C 10 14 18 1C 20 24 28 2C 30 34 38 3C) punpckhwd xmmB,xmmF ; xmmB=(01 05 09 0D 11 15 19 1D 21 25 29 2D 31 35 39 3D) movdqa xmmG,xmmD punpcklwd xmmD,xmmC ; xmmD=(02 06 0A 0E 12 16 1A 1E 22 26 2A 2E 32 36 3A 3E) punpckhwd xmmG,xmmC ; xmmG=(03 07 0B 0F 13 17 1B 1F 23 27 2B 2F 33 37 3B 3F) movdqa xmmE,xmmA punpcklbw xmmA,xmmD ; xmmA=(00 02 04 06 08 0A 0C 0E 10 12 14 16 18 1A 1C 1E) punpckhbw xmmE,xmmD ; xmmE=(20 22 24 26 28 2A 2C 2E 30 32 34 36 38 3A 3C 3E) movdqa xmmH,xmmB punpcklbw xmmB,xmmG ; xmmB=(01 03 05 07 09 0B 0D 0F 11 13 15 17 19 1B 1D 1F) punpckhbw xmmH,xmmG ; xmmH=(21 23 25 27 29 2B 2D 2F 31 33 35 37 39 3B 3D 3F) pxor xmmF,xmmF movdqa xmmC,xmmA punpcklbw xmmA,xmmF ; xmmA=(00 02 04 06 08 0A 0C 0E) punpckhbw xmmC,xmmF ; xmmC=(10 12 14 16 18 1A 1C 1E) movdqa xmmD,xmmB punpcklbw xmmB,xmmF ; xmmB=(01 03 05 07 09 0B 0D 0F) punpckhbw xmmD,xmmF ; xmmD=(11 13 15 17 19 1B 1D 1F) movdqa xmmG,xmmE punpcklbw xmmE,xmmF ; xmmE=(20 22 24 26 28 2A 2C 2E) punpckhbw xmmG,xmmF ; xmmG=(30 32 34 36 38 3A 3C 3E) punpcklbw xmmF,xmmH punpckhbw xmmH,xmmH psrlw xmmF,BYTE_BIT ; xmmF=(21 23 25 27 29 2B 2D 2F) psrlw xmmH,BYTE_BIT ; xmmH=(31 33 35 37 39 3B 3D 3F) %endif ; RGB_PIXELSIZE ; --------------- ; xmm0=R(02468ACE)=RE, xmm2=G(02468ACE)=GE, xmm4=B(02468ACE)=BE ; xmm1=R(13579BDF)=RO, xmm3=G(13579BDF)=GO, xmm5=B(13579BDF)=BO ; (Original) ; Y = 0.29900 * R + 0.58700 * G + 0.11400 * B ; Cb = -0.16874 * R - 0.33126 * G + 0.50000 * B + CENTERJSAMPLE ; Cr = 0.50000 * R - 0.41869 * G - 0.08131 * B + CENTERJSAMPLE ; ; (This implementation) ; Y = 0.29900 * R + 0.33700 * G + 0.11400 * B + 0.25000 * G ; Cb = -0.16874 * R - 0.33126 * G + 0.50000 * B + CENTERJSAMPLE ; Cr = 0.50000 * R - 0.41869 * G - 0.08131 * B + CENTERJSAMPLE movdqa XMMWORD [wk(0)], xmm0 ; wk(0)=RE movdqa XMMWORD [wk(1)], xmm1 ; wk(1)=RO movdqa XMMWORD [wk(2)], xmm4 ; wk(2)=BE movdqa XMMWORD [wk(3)], xmm5 ; wk(3)=BO movdqa xmm6,xmm1 punpcklwd xmm1,xmm3 punpckhwd xmm6,xmm3 movdqa xmm7,xmm1 movdqa xmm4,xmm6 pmaddwd xmm1,[rel PW_F0299_F0337] ; xmm1=ROL*FIX(0.299)+GOL*FIX(0.337) pmaddwd xmm6,[rel PW_F0299_F0337] ; xmm6=ROH*FIX(0.299)+GOH*FIX(0.337) pmaddwd xmm7,[rel PW_MF016_MF033] ; xmm7=ROL*-FIX(0.168)+GOL*-FIX(0.331) pmaddwd xmm4,[rel PW_MF016_MF033] ; xmm4=ROH*-FIX(0.168)+GOH*-FIX(0.331) movdqa XMMWORD [wk(4)], xmm1 ; wk(4)=ROL*FIX(0.299)+GOL*FIX(0.337) movdqa XMMWORD [wk(5)], xmm6 ; wk(5)=ROH*FIX(0.299)+GOH*FIX(0.337) pxor xmm1,xmm1 pxor xmm6,xmm6 punpcklwd xmm1,xmm5 ; xmm1=BOL punpckhwd xmm6,xmm5 ; xmm6=BOH psrld xmm1,1 ; xmm1=BOL*FIX(0.500) psrld xmm6,1 ; xmm6=BOH*FIX(0.500) movdqa xmm5,[rel PD_ONEHALFM1_CJ] ; xmm5=[PD_ONEHALFM1_CJ] paddd xmm7,xmm1 paddd xmm4,xmm6 paddd xmm7,xmm5 paddd xmm4,xmm5 psrld xmm7,SCALEBITS ; xmm7=CbOL psrld xmm4,SCALEBITS ; xmm4=CbOH packssdw xmm7,xmm4 ; xmm7=CbO movdqa xmm1, XMMWORD [wk(2)] ; xmm1=BE movdqa xmm6,xmm0 punpcklwd xmm0,xmm2 punpckhwd xmm6,xmm2 movdqa xmm5,xmm0 movdqa xmm4,xmm6 pmaddwd xmm0,[rel PW_F0299_F0337] ; xmm0=REL*FIX(0.299)+GEL*FIX(0.337) pmaddwd xmm6,[rel PW_F0299_F0337] ; xmm6=REH*FIX(0.299)+GEH*FIX(0.337) pmaddwd xmm5,[rel PW_MF016_MF033] ; xmm5=REL*-FIX(0.168)+GEL*-FIX(0.331) pmaddwd xmm4,[rel PW_MF016_MF033] ; xmm4=REH*-FIX(0.168)+GEH*-FIX(0.331) movdqa XMMWORD [wk(6)], xmm0 ; wk(6)=REL*FIX(0.299)+GEL*FIX(0.337) movdqa XMMWORD [wk(7)], xmm6 ; wk(7)=REH*FIX(0.299)+GEH*FIX(0.337) pxor xmm0,xmm0 pxor xmm6,xmm6 punpcklwd xmm0,xmm1 ; xmm0=BEL punpckhwd xmm6,xmm1 ; xmm6=BEH psrld xmm0,1 ; xmm0=BEL*FIX(0.500) psrld xmm6,1 ; xmm6=BEH*FIX(0.500) movdqa xmm1,[rel PD_ONEHALFM1_CJ] ; xmm1=[PD_ONEHALFM1_CJ] paddd xmm5,xmm0 paddd xmm4,xmm6 paddd xmm5,xmm1 paddd xmm4,xmm1 psrld xmm5,SCALEBITS ; xmm5=CbEL psrld xmm4,SCALEBITS ; xmm4=CbEH packssdw xmm5,xmm4 ; xmm5=CbE psllw xmm7,BYTE_BIT por xmm5,xmm7 ; xmm5=Cb movdqa XMMWORD [rbx], xmm5 ; Save Cb movdqa xmm0, XMMWORD [wk(3)] ; xmm0=BO movdqa xmm6, XMMWORD [wk(2)] ; xmm6=BE movdqa xmm1, XMMWORD [wk(1)] ; xmm1=RO movdqa xmm4,xmm0 punpcklwd xmm0,xmm3 punpckhwd xmm4,xmm3 movdqa xmm7,xmm0 movdqa xmm5,xmm4 pmaddwd xmm0,[rel PW_F0114_F0250] ; xmm0=BOL*FIX(0.114)+GOL*FIX(0.250) pmaddwd xmm4,[rel PW_F0114_F0250] ; xmm4=BOH*FIX(0.114)+GOH*FIX(0.250) pmaddwd xmm7,[rel PW_MF008_MF041] ; xmm7=BOL*-FIX(0.081)+GOL*-FIX(0.418) pmaddwd xmm5,[rel PW_MF008_MF041] ; xmm5=BOH*-FIX(0.081)+GOH*-FIX(0.418) movdqa xmm3,[rel PD_ONEHALF] ; xmm3=[PD_ONEHALF] paddd xmm0, XMMWORD [wk(4)] paddd xmm4, XMMWORD [wk(5)] paddd xmm0,xmm3 paddd xmm4,xmm3 psrld xmm0,SCALEBITS ; xmm0=YOL psrld xmm4,SCALEBITS ; xmm4=YOH packssdw xmm0,xmm4 ; xmm0=YO pxor xmm3,xmm3 pxor xmm4,xmm4 punpcklwd xmm3,xmm1 ; xmm3=ROL punpckhwd xmm4,xmm1 ; xmm4=ROH psrld xmm3,1 ; xmm3=ROL*FIX(0.500) psrld xmm4,1 ; xmm4=ROH*FIX(0.500) movdqa xmm1,[rel PD_ONEHALFM1_CJ] ; xmm1=[PD_ONEHALFM1_CJ] paddd xmm7,xmm3 paddd xmm5,xmm4 paddd xmm7,xmm1 paddd xmm5,xmm1 psrld xmm7,SCALEBITS ; xmm7=CrOL psrld xmm5,SCALEBITS ; xmm5=CrOH packssdw xmm7,xmm5 ; xmm7=CrO movdqa xmm3, XMMWORD [wk(0)] ; xmm3=RE movdqa xmm4,xmm6 punpcklwd xmm6,xmm2 punpckhwd xmm4,xmm2 movdqa xmm1,xmm6 movdqa xmm5,xmm4 pmaddwd xmm6,[rel PW_F0114_F0250] ; xmm6=BEL*FIX(0.114)+GEL*FIX(0.250) pmaddwd xmm4,[rel PW_F0114_F0250] ; xmm4=BEH*FIX(0.114)+GEH*FIX(0.250) pmaddwd xmm1,[rel PW_MF008_MF041] ; xmm1=BEL*-FIX(0.081)+GEL*-FIX(0.418) pmaddwd xmm5,[rel PW_MF008_MF041] ; xmm5=BEH*-FIX(0.081)+GEH*-FIX(0.418) movdqa xmm2,[rel PD_ONEHALF] ; xmm2=[PD_ONEHALF] paddd xmm6, XMMWORD [wk(6)] paddd xmm4, XMMWORD [wk(7)] paddd xmm6,xmm2 paddd xmm4,xmm2 psrld xmm6,SCALEBITS ; xmm6=YEL psrld xmm4,SCALEBITS ; xmm4=YEH packssdw xmm6,xmm4 ; xmm6=YE psllw xmm0,BYTE_BIT por xmm6,xmm0 ; xmm6=Y movdqa XMMWORD [rdi], xmm6 ; Save Y pxor xmm2,xmm2 pxor xmm4,xmm4 punpcklwd xmm2,xmm3 ; xmm2=REL punpckhwd xmm4,xmm3 ; xmm4=REH psrld xmm2,1 ; xmm2=REL*FIX(0.500) psrld xmm4,1 ; xmm4=REH*FIX(0.500) movdqa xmm0,[rel PD_ONEHALFM1_CJ] ; xmm0=[PD_ONEHALFM1_CJ] paddd xmm1,xmm2 paddd xmm5,xmm4 paddd xmm1,xmm0 paddd xmm5,xmm0 psrld xmm1,SCALEBITS ; xmm1=CrEL psrld xmm5,SCALEBITS ; xmm5=CrEH packssdw xmm1,xmm5 ; xmm1=CrE psllw xmm7,BYTE_BIT por xmm1,xmm7 ; xmm1=Cr movdqa XMMWORD [rdx], xmm1 ; Save Cr sub rcx, byte SIZEOF_XMMWORD add rsi, byte RGB_PIXELSIZE*SIZEOF_XMMWORD ; inptr add rdi, byte SIZEOF_XMMWORD ; outptr0 add rbx, byte SIZEOF_XMMWORD ; outptr1 add rdx, byte SIZEOF_XMMWORD ; outptr2 cmp rcx, byte SIZEOF_XMMWORD jae near .columnloop test rcx,rcx jnz near .column_ld1 pop rcx ; col pop rsi pop rdi pop rbx pop rdx add rsi, byte SIZEOF_JSAMPROW ; input_buf add rdi, byte SIZEOF_JSAMPROW add rbx, byte SIZEOF_JSAMPROW add rdx, byte SIZEOF_JSAMPROW dec rax ; num_rows jg near .rowloop .return: pop rbx uncollect_args mov rsp,rbp ; rsp <- aligned rbp pop rsp ; rsp <- original rbp pop rbp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 16 libjpeg-turbo-1.4.2/simd/jcsample-sse2.asm0000644000076500007650000002436712600050400015323 00000000000000; ; jcsample.asm - downsampling (SSE2) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; ; Based on ; x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; [TAB8] %include "jsimdext.inc" ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 32 ; ; Downsample pixel values of a single component. ; This version handles the common case of 2:1 horizontal and 1:1 vertical, ; without smoothing. ; ; GLOBAL(void) ; jsimd_h2v1_downsample_sse2 (JDIMENSION image_width, int max_v_samp_factor, ; JDIMENSION v_samp_factor, JDIMENSION width_blocks, ; JSAMPARRAY input_data, JSAMPARRAY output_data); ; %define img_width(b) (b)+8 ; JDIMENSION image_width %define max_v_samp(b) (b)+12 ; int max_v_samp_factor %define v_samp(b) (b)+16 ; JDIMENSION v_samp_factor %define width_blks(b) (b)+20 ; JDIMENSION width_blocks %define input_data(b) (b)+24 ; JSAMPARRAY input_data %define output_data(b) (b)+28 ; JSAMPARRAY output_data align 16 global EXTN(jsimd_h2v1_downsample_sse2) EXTN(jsimd_h2v1_downsample_sse2): push ebp mov ebp,esp ; push ebx ; unused ; push ecx ; need not be preserved ; push edx ; need not be preserved push esi push edi mov ecx, JDIMENSION [width_blks(ebp)] shl ecx,3 ; imul ecx,DCTSIZE (ecx = output_cols) jz near .return mov edx, JDIMENSION [img_width(ebp)] ; -- expand_right_edge push ecx shl ecx,1 ; output_cols * 2 sub ecx,edx jle short .expand_end mov eax, INT [max_v_samp(ebp)] test eax,eax jle short .expand_end cld mov esi, JSAMPARRAY [input_data(ebp)] ; input_data alignx 16,7 .expandloop: push eax push ecx mov edi, JSAMPROW [esi] add edi,edx mov al, JSAMPLE [edi-1] rep stosb pop ecx pop eax add esi, byte SIZEOF_JSAMPROW dec eax jg short .expandloop .expand_end: pop ecx ; output_cols ; -- h2v1_downsample mov eax, JDIMENSION [v_samp(ebp)] ; rowctr test eax,eax jle near .return mov edx, 0x00010000 ; bias pattern movd xmm7,edx pcmpeqw xmm6,xmm6 pshufd xmm7,xmm7,0x00 ; xmm7={0, 1, 0, 1, 0, 1, 0, 1} psrlw xmm6,BYTE_BIT ; xmm6={0xFF 0x00 0xFF 0x00 ..} mov esi, JSAMPARRAY [input_data(ebp)] ; input_data mov edi, JSAMPARRAY [output_data(ebp)] ; output_data alignx 16,7 .rowloop: push ecx push edi push esi mov esi, JSAMPROW [esi] ; inptr mov edi, JSAMPROW [edi] ; outptr cmp ecx, byte SIZEOF_XMMWORD jae short .columnloop alignx 16,7 .columnloop_r8: movdqa xmm0, XMMWORD [esi+0*SIZEOF_XMMWORD] pxor xmm1,xmm1 mov ecx, SIZEOF_XMMWORD jmp short .downsample alignx 16,7 .columnloop: movdqa xmm0, XMMWORD [esi+0*SIZEOF_XMMWORD] movdqa xmm1, XMMWORD [esi+1*SIZEOF_XMMWORD] .downsample: movdqa xmm2,xmm0 movdqa xmm3,xmm1 pand xmm0,xmm6 psrlw xmm2,BYTE_BIT pand xmm1,xmm6 psrlw xmm3,BYTE_BIT paddw xmm0,xmm2 paddw xmm1,xmm3 paddw xmm0,xmm7 paddw xmm1,xmm7 psrlw xmm0,1 psrlw xmm1,1 packuswb xmm0,xmm1 movdqa XMMWORD [edi+0*SIZEOF_XMMWORD], xmm0 sub ecx, byte SIZEOF_XMMWORD ; outcol add esi, byte 2*SIZEOF_XMMWORD ; inptr add edi, byte 1*SIZEOF_XMMWORD ; outptr cmp ecx, byte SIZEOF_XMMWORD jae short .columnloop test ecx,ecx jnz short .columnloop_r8 pop esi pop edi pop ecx add esi, byte SIZEOF_JSAMPROW ; input_data add edi, byte SIZEOF_JSAMPROW ; output_data dec eax ; rowctr jg near .rowloop .return: pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; need not be preserved ; pop ebx ; unused pop ebp ret ; -------------------------------------------------------------------------- ; ; Downsample pixel values of a single component. ; This version handles the standard case of 2:1 horizontal and 2:1 vertical, ; without smoothing. ; ; GLOBAL(void) ; jsimd_h2v2_downsample_sse2 (JDIMENSION image_width, int max_v_samp_factor, ; JDIMENSION v_samp_factor, JDIMENSION width_blocks, ; JSAMPARRAY input_data, JSAMPARRAY output_data); ; %define img_width(b) (b)+8 ; JDIMENSION image_width %define max_v_samp(b) (b)+12 ; int max_v_samp_factor %define v_samp(b) (b)+16 ; JDIMENSION v_samp_factor %define width_blks(b) (b)+20 ; JDIMENSION width_blocks %define input_data(b) (b)+24 ; JSAMPARRAY input_data %define output_data(b) (b)+28 ; JSAMPARRAY output_data align 16 global EXTN(jsimd_h2v2_downsample_sse2) EXTN(jsimd_h2v2_downsample_sse2): push ebp mov ebp,esp ; push ebx ; unused ; push ecx ; need not be preserved ; push edx ; need not be preserved push esi push edi mov ecx, JDIMENSION [width_blks(ebp)] shl ecx,3 ; imul ecx,DCTSIZE (ecx = output_cols) jz near .return mov edx, JDIMENSION [img_width(ebp)] ; -- expand_right_edge push ecx shl ecx,1 ; output_cols * 2 sub ecx,edx jle short .expand_end mov eax, INT [max_v_samp(ebp)] test eax,eax jle short .expand_end cld mov esi, JSAMPARRAY [input_data(ebp)] ; input_data alignx 16,7 .expandloop: push eax push ecx mov edi, JSAMPROW [esi] add edi,edx mov al, JSAMPLE [edi-1] rep stosb pop ecx pop eax add esi, byte SIZEOF_JSAMPROW dec eax jg short .expandloop .expand_end: pop ecx ; output_cols ; -- h2v2_downsample mov eax, JDIMENSION [v_samp(ebp)] ; rowctr test eax,eax jle near .return mov edx, 0x00020001 ; bias pattern movd xmm7,edx pcmpeqw xmm6,xmm6 pshufd xmm7,xmm7,0x00 ; xmm7={1, 2, 1, 2, 1, 2, 1, 2} psrlw xmm6,BYTE_BIT ; xmm6={0xFF 0x00 0xFF 0x00 ..} mov esi, JSAMPARRAY [input_data(ebp)] ; input_data mov edi, JSAMPARRAY [output_data(ebp)] ; output_data alignx 16,7 .rowloop: push ecx push edi push esi mov edx, JSAMPROW [esi+0*SIZEOF_JSAMPROW] ; inptr0 mov esi, JSAMPROW [esi+1*SIZEOF_JSAMPROW] ; inptr1 mov edi, JSAMPROW [edi] ; outptr cmp ecx, byte SIZEOF_XMMWORD jae short .columnloop alignx 16,7 .columnloop_r8: movdqa xmm0, XMMWORD [edx+0*SIZEOF_XMMWORD] movdqa xmm1, XMMWORD [esi+0*SIZEOF_XMMWORD] pxor xmm2,xmm2 pxor xmm3,xmm3 mov ecx, SIZEOF_XMMWORD jmp short .downsample alignx 16,7 .columnloop: movdqa xmm0, XMMWORD [edx+0*SIZEOF_XMMWORD] movdqa xmm1, XMMWORD [esi+0*SIZEOF_XMMWORD] movdqa xmm2, XMMWORD [edx+1*SIZEOF_XMMWORD] movdqa xmm3, XMMWORD [esi+1*SIZEOF_XMMWORD] .downsample: movdqa xmm4,xmm0 movdqa xmm5,xmm1 pand xmm0,xmm6 psrlw xmm4,BYTE_BIT pand xmm1,xmm6 psrlw xmm5,BYTE_BIT paddw xmm0,xmm4 paddw xmm1,xmm5 movdqa xmm4,xmm2 movdqa xmm5,xmm3 pand xmm2,xmm6 psrlw xmm4,BYTE_BIT pand xmm3,xmm6 psrlw xmm5,BYTE_BIT paddw xmm2,xmm4 paddw xmm3,xmm5 paddw xmm0,xmm1 paddw xmm2,xmm3 paddw xmm0,xmm7 paddw xmm2,xmm7 psrlw xmm0,2 psrlw xmm2,2 packuswb xmm0,xmm2 movdqa XMMWORD [edi+0*SIZEOF_XMMWORD], xmm0 sub ecx, byte SIZEOF_XMMWORD ; outcol add edx, byte 2*SIZEOF_XMMWORD ; inptr0 add esi, byte 2*SIZEOF_XMMWORD ; inptr1 add edi, byte 1*SIZEOF_XMMWORD ; outptr cmp ecx, byte SIZEOF_XMMWORD jae near .columnloop test ecx,ecx jnz near .columnloop_r8 pop esi pop edi pop ecx add esi, byte 2*SIZEOF_JSAMPROW ; input_data add edi, byte 1*SIZEOF_JSAMPROW ; output_data dec eax ; rowctr jg near .rowloop .return: pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; need not be preserved ; pop ebx ; unused pop ebp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 16 libjpeg-turbo-1.4.2/simd/jidctred-mmx.asm0000644000076500007650000006614012600050400015235 00000000000000; ; jidctred.asm - reduced-size IDCT (MMX) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; ; Based on ; x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; This file contains inverse-DCT routines that produce reduced-size ; output: either 4x4 or 2x2 pixels from an 8x8 DCT block. ; The following code is based directly on the IJG's original jidctred.c; ; see the jidctred.c for more details. ; ; [TAB8] %include "jsimdext.inc" %include "jdct.inc" ; -------------------------------------------------------------------------- %define CONST_BITS 13 %define PASS1_BITS 2 %define DESCALE_P1_4 (CONST_BITS-PASS1_BITS+1) %define DESCALE_P2_4 (CONST_BITS+PASS1_BITS+3+1) %define DESCALE_P1_2 (CONST_BITS-PASS1_BITS+2) %define DESCALE_P2_2 (CONST_BITS+PASS1_BITS+3+2) %if CONST_BITS == 13 F_0_211 equ 1730 ; FIX(0.211164243) F_0_509 equ 4176 ; FIX(0.509795579) F_0_601 equ 4926 ; FIX(0.601344887) F_0_720 equ 5906 ; FIX(0.720959822) F_0_765 equ 6270 ; FIX(0.765366865) F_0_850 equ 6967 ; FIX(0.850430095) F_0_899 equ 7373 ; FIX(0.899976223) F_1_061 equ 8697 ; FIX(1.061594337) F_1_272 equ 10426 ; FIX(1.272758580) F_1_451 equ 11893 ; FIX(1.451774981) F_1_847 equ 15137 ; FIX(1.847759065) F_2_172 equ 17799 ; FIX(2.172734803) F_2_562 equ 20995 ; FIX(2.562915447) F_3_624 equ 29692 ; FIX(3.624509785) %else ; NASM cannot do compile-time arithmetic on floating-point constants. %define DESCALE(x,n) (((x)+(1<<((n)-1)))>>(n)) F_0_211 equ DESCALE( 226735879,30-CONST_BITS) ; FIX(0.211164243) F_0_509 equ DESCALE( 547388834,30-CONST_BITS) ; FIX(0.509795579) F_0_601 equ DESCALE( 645689155,30-CONST_BITS) ; FIX(0.601344887) F_0_720 equ DESCALE( 774124714,30-CONST_BITS) ; FIX(0.720959822) F_0_765 equ DESCALE( 821806413,30-CONST_BITS) ; FIX(0.765366865) F_0_850 equ DESCALE( 913142361,30-CONST_BITS) ; FIX(0.850430095) F_0_899 equ DESCALE( 966342111,30-CONST_BITS) ; FIX(0.899976223) F_1_061 equ DESCALE(1139878239,30-CONST_BITS) ; FIX(1.061594337) F_1_272 equ DESCALE(1366614119,30-CONST_BITS) ; FIX(1.272758580) F_1_451 equ DESCALE(1558831516,30-CONST_BITS) ; FIX(1.451774981) F_1_847 equ DESCALE(1984016188,30-CONST_BITS) ; FIX(1.847759065) F_2_172 equ DESCALE(2332956230,30-CONST_BITS) ; FIX(2.172734803) F_2_562 equ DESCALE(2751909506,30-CONST_BITS) ; FIX(2.562915447) F_3_624 equ DESCALE(3891787747,30-CONST_BITS) ; FIX(3.624509785) %endif ; -------------------------------------------------------------------------- SECTION SEG_CONST alignz 16 global EXTN(jconst_idct_red_mmx) EXTN(jconst_idct_red_mmx): PW_F184_MF076 times 2 dw F_1_847,-F_0_765 PW_F256_F089 times 2 dw F_2_562, F_0_899 PW_F106_MF217 times 2 dw F_1_061,-F_2_172 PW_MF060_MF050 times 2 dw -F_0_601,-F_0_509 PW_F145_MF021 times 2 dw F_1_451,-F_0_211 PW_F362_MF127 times 2 dw F_3_624,-F_1_272 PW_F085_MF072 times 2 dw F_0_850,-F_0_720 PD_DESCALE_P1_4 times 2 dd 1 << (DESCALE_P1_4-1) PD_DESCALE_P2_4 times 2 dd 1 << (DESCALE_P2_4-1) PD_DESCALE_P1_2 times 2 dd 1 << (DESCALE_P1_2-1) PD_DESCALE_P2_2 times 2 dd 1 << (DESCALE_P2_2-1) PB_CENTERJSAMP times 8 db CENTERJSAMPLE alignz 16 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 32 ; ; Perform dequantization and inverse DCT on one block of coefficients, ; producing a reduced-size 4x4 output block. ; ; GLOBAL(void) ; jsimd_idct_4x4_mmx (void * dct_table, JCOEFPTR coef_block, ; JSAMPARRAY output_buf, JDIMENSION output_col) ; %define dct_table(b) (b)+8 ; void * dct_table %define coef_block(b) (b)+12 ; JCOEFPTR coef_block %define output_buf(b) (b)+16 ; JSAMPARRAY output_buf %define output_col(b) (b)+20 ; JDIMENSION output_col %define original_ebp ebp+0 %define wk(i) ebp-(WK_NUM-(i))*SIZEOF_MMWORD ; mmword wk[WK_NUM] %define WK_NUM 2 %define workspace wk(0)-DCTSIZE2*SIZEOF_JCOEF ; JCOEF workspace[DCTSIZE2] align 16 global EXTN(jsimd_idct_4x4_mmx) EXTN(jsimd_idct_4x4_mmx): push ebp mov eax,esp ; eax = original ebp sub esp, byte 4 and esp, byte (-SIZEOF_MMWORD) ; align to 64 bits mov [esp],eax mov ebp,esp ; ebp = aligned ebp lea esp, [workspace] pushpic ebx ; push ecx ; need not be preserved ; push edx ; need not be preserved push esi push edi get_GOT ebx ; get GOT address ; ---- Pass 1: process columns from input, store into work array. ; mov eax, [original_ebp] mov edx, POINTER [dct_table(eax)] ; quantptr mov esi, JCOEFPTR [coef_block(eax)] ; inptr lea edi, [workspace] ; JCOEF * wsptr mov ecx, DCTSIZE/4 ; ctr alignx 16,7 .columnloop: %ifndef NO_ZERO_COLUMN_TEST_4X4_MMX mov eax, DWORD [DWBLOCK(1,0,esi,SIZEOF_JCOEF)] or eax, DWORD [DWBLOCK(2,0,esi,SIZEOF_JCOEF)] jnz short .columnDCT movq mm0, MMWORD [MMBLOCK(1,0,esi,SIZEOF_JCOEF)] movq mm1, MMWORD [MMBLOCK(2,0,esi,SIZEOF_JCOEF)] por mm0, MMWORD [MMBLOCK(3,0,esi,SIZEOF_JCOEF)] por mm1, MMWORD [MMBLOCK(5,0,esi,SIZEOF_JCOEF)] por mm0, MMWORD [MMBLOCK(6,0,esi,SIZEOF_JCOEF)] por mm1, MMWORD [MMBLOCK(7,0,esi,SIZEOF_JCOEF)] por mm0,mm1 packsswb mm0,mm0 movd eax,mm0 test eax,eax jnz short .columnDCT ; -- AC terms all zero movq mm0, MMWORD [MMBLOCK(0,0,esi,SIZEOF_JCOEF)] pmullw mm0, MMWORD [MMBLOCK(0,0,edx,SIZEOF_ISLOW_MULT_TYPE)] psllw mm0,PASS1_BITS movq mm2,mm0 ; mm0=in0=(00 01 02 03) punpcklwd mm0,mm0 ; mm0=(00 00 01 01) punpckhwd mm2,mm2 ; mm2=(02 02 03 03) movq mm1,mm0 punpckldq mm0,mm0 ; mm0=(00 00 00 00) punpckhdq mm1,mm1 ; mm1=(01 01 01 01) movq mm3,mm2 punpckldq mm2,mm2 ; mm2=(02 02 02 02) punpckhdq mm3,mm3 ; mm3=(03 03 03 03) movq MMWORD [MMBLOCK(0,0,edi,SIZEOF_JCOEF)], mm0 movq MMWORD [MMBLOCK(1,0,edi,SIZEOF_JCOEF)], mm1 movq MMWORD [MMBLOCK(2,0,edi,SIZEOF_JCOEF)], mm2 movq MMWORD [MMBLOCK(3,0,edi,SIZEOF_JCOEF)], mm3 jmp near .nextcolumn alignx 16,7 %endif .columnDCT: ; -- Odd part movq mm0, MMWORD [MMBLOCK(1,0,esi,SIZEOF_JCOEF)] movq mm1, MMWORD [MMBLOCK(3,0,esi,SIZEOF_JCOEF)] pmullw mm0, MMWORD [MMBLOCK(1,0,edx,SIZEOF_ISLOW_MULT_TYPE)] pmullw mm1, MMWORD [MMBLOCK(3,0,edx,SIZEOF_ISLOW_MULT_TYPE)] movq mm2, MMWORD [MMBLOCK(5,0,esi,SIZEOF_JCOEF)] movq mm3, MMWORD [MMBLOCK(7,0,esi,SIZEOF_JCOEF)] pmullw mm2, MMWORD [MMBLOCK(5,0,edx,SIZEOF_ISLOW_MULT_TYPE)] pmullw mm3, MMWORD [MMBLOCK(7,0,edx,SIZEOF_ISLOW_MULT_TYPE)] movq mm4,mm0 movq mm5,mm0 punpcklwd mm4,mm1 punpckhwd mm5,mm1 movq mm0,mm4 movq mm1,mm5 pmaddwd mm4,[GOTOFF(ebx,PW_F256_F089)] ; mm4=(tmp2L) pmaddwd mm5,[GOTOFF(ebx,PW_F256_F089)] ; mm5=(tmp2H) pmaddwd mm0,[GOTOFF(ebx,PW_F106_MF217)] ; mm0=(tmp0L) pmaddwd mm1,[GOTOFF(ebx,PW_F106_MF217)] ; mm1=(tmp0H) movq mm6,mm2 movq mm7,mm2 punpcklwd mm6,mm3 punpckhwd mm7,mm3 movq mm2,mm6 movq mm3,mm7 pmaddwd mm6,[GOTOFF(ebx,PW_MF060_MF050)] ; mm6=(tmp2L) pmaddwd mm7,[GOTOFF(ebx,PW_MF060_MF050)] ; mm7=(tmp2H) pmaddwd mm2,[GOTOFF(ebx,PW_F145_MF021)] ; mm2=(tmp0L) pmaddwd mm3,[GOTOFF(ebx,PW_F145_MF021)] ; mm3=(tmp0H) paddd mm6,mm4 ; mm6=tmp2L paddd mm7,mm5 ; mm7=tmp2H paddd mm2,mm0 ; mm2=tmp0L paddd mm3,mm1 ; mm3=tmp0H movq MMWORD [wk(0)], mm2 ; wk(0)=tmp0L movq MMWORD [wk(1)], mm3 ; wk(1)=tmp0H ; -- Even part movq mm4, MMWORD [MMBLOCK(0,0,esi,SIZEOF_JCOEF)] movq mm5, MMWORD [MMBLOCK(2,0,esi,SIZEOF_JCOEF)] movq mm0, MMWORD [MMBLOCK(6,0,esi,SIZEOF_JCOEF)] pmullw mm4, MMWORD [MMBLOCK(0,0,edx,SIZEOF_ISLOW_MULT_TYPE)] pmullw mm5, MMWORD [MMBLOCK(2,0,edx,SIZEOF_ISLOW_MULT_TYPE)] pmullw mm0, MMWORD [MMBLOCK(6,0,edx,SIZEOF_ISLOW_MULT_TYPE)] pxor mm1,mm1 pxor mm2,mm2 punpcklwd mm1,mm4 ; mm1=tmp0L punpckhwd mm2,mm4 ; mm2=tmp0H psrad mm1,(16-CONST_BITS-1) ; psrad mm1,16 & pslld mm1,CONST_BITS+1 psrad mm2,(16-CONST_BITS-1) ; psrad mm2,16 & pslld mm2,CONST_BITS+1 movq mm3,mm5 ; mm5=in2=z2 punpcklwd mm5,mm0 ; mm0=in6=z3 punpckhwd mm3,mm0 pmaddwd mm5,[GOTOFF(ebx,PW_F184_MF076)] ; mm5=tmp2L pmaddwd mm3,[GOTOFF(ebx,PW_F184_MF076)] ; mm3=tmp2H movq mm4,mm1 movq mm0,mm2 paddd mm1,mm5 ; mm1=tmp10L paddd mm2,mm3 ; mm2=tmp10H psubd mm4,mm5 ; mm4=tmp12L psubd mm0,mm3 ; mm0=tmp12H ; -- Final output stage movq mm5,mm1 movq mm3,mm2 paddd mm1,mm6 ; mm1=data0L paddd mm2,mm7 ; mm2=data0H psubd mm5,mm6 ; mm5=data3L psubd mm3,mm7 ; mm3=data3H movq mm6,[GOTOFF(ebx,PD_DESCALE_P1_4)] ; mm6=[PD_DESCALE_P1_4] paddd mm1,mm6 paddd mm2,mm6 psrad mm1,DESCALE_P1_4 psrad mm2,DESCALE_P1_4 paddd mm5,mm6 paddd mm3,mm6 psrad mm5,DESCALE_P1_4 psrad mm3,DESCALE_P1_4 packssdw mm1,mm2 ; mm1=data0=(00 01 02 03) packssdw mm5,mm3 ; mm5=data3=(30 31 32 33) movq mm7, MMWORD [wk(0)] ; mm7=tmp0L movq mm6, MMWORD [wk(1)] ; mm6=tmp0H movq mm2,mm4 movq mm3,mm0 paddd mm4,mm7 ; mm4=data1L paddd mm0,mm6 ; mm0=data1H psubd mm2,mm7 ; mm2=data2L psubd mm3,mm6 ; mm3=data2H movq mm7,[GOTOFF(ebx,PD_DESCALE_P1_4)] ; mm7=[PD_DESCALE_P1_4] paddd mm4,mm7 paddd mm0,mm7 psrad mm4,DESCALE_P1_4 psrad mm0,DESCALE_P1_4 paddd mm2,mm7 paddd mm3,mm7 psrad mm2,DESCALE_P1_4 psrad mm3,DESCALE_P1_4 packssdw mm4,mm0 ; mm4=data1=(10 11 12 13) packssdw mm2,mm3 ; mm2=data2=(20 21 22 23) movq mm6,mm1 ; transpose coefficients(phase 1) punpcklwd mm1,mm4 ; mm1=(00 10 01 11) punpckhwd mm6,mm4 ; mm6=(02 12 03 13) movq mm7,mm2 ; transpose coefficients(phase 1) punpcklwd mm2,mm5 ; mm2=(20 30 21 31) punpckhwd mm7,mm5 ; mm7=(22 32 23 33) movq mm0,mm1 ; transpose coefficients(phase 2) punpckldq mm1,mm2 ; mm1=(00 10 20 30) punpckhdq mm0,mm2 ; mm0=(01 11 21 31) movq mm3,mm6 ; transpose coefficients(phase 2) punpckldq mm6,mm7 ; mm6=(02 12 22 32) punpckhdq mm3,mm7 ; mm3=(03 13 23 33) movq MMWORD [MMBLOCK(0,0,edi,SIZEOF_JCOEF)], mm1 movq MMWORD [MMBLOCK(1,0,edi,SIZEOF_JCOEF)], mm0 movq MMWORD [MMBLOCK(2,0,edi,SIZEOF_JCOEF)], mm6 movq MMWORD [MMBLOCK(3,0,edi,SIZEOF_JCOEF)], mm3 .nextcolumn: add esi, byte 4*SIZEOF_JCOEF ; coef_block add edx, byte 4*SIZEOF_ISLOW_MULT_TYPE ; quantptr add edi, byte 4*DCTSIZE*SIZEOF_JCOEF ; wsptr dec ecx ; ctr jnz near .columnloop ; ---- Pass 2: process rows from work array, store into output array. mov eax, [original_ebp] lea esi, [workspace] ; JCOEF * wsptr mov edi, JSAMPARRAY [output_buf(eax)] ; (JSAMPROW *) mov eax, JDIMENSION [output_col(eax)] ; -- Odd part movq mm0, MMWORD [MMBLOCK(1,0,esi,SIZEOF_JCOEF)] movq mm1, MMWORD [MMBLOCK(3,0,esi,SIZEOF_JCOEF)] movq mm2, MMWORD [MMBLOCK(5,0,esi,SIZEOF_JCOEF)] movq mm3, MMWORD [MMBLOCK(7,0,esi,SIZEOF_JCOEF)] movq mm4,mm0 movq mm5,mm0 punpcklwd mm4,mm1 punpckhwd mm5,mm1 movq mm0,mm4 movq mm1,mm5 pmaddwd mm4,[GOTOFF(ebx,PW_F256_F089)] ; mm4=(tmp2L) pmaddwd mm5,[GOTOFF(ebx,PW_F256_F089)] ; mm5=(tmp2H) pmaddwd mm0,[GOTOFF(ebx,PW_F106_MF217)] ; mm0=(tmp0L) pmaddwd mm1,[GOTOFF(ebx,PW_F106_MF217)] ; mm1=(tmp0H) movq mm6,mm2 movq mm7,mm2 punpcklwd mm6,mm3 punpckhwd mm7,mm3 movq mm2,mm6 movq mm3,mm7 pmaddwd mm6,[GOTOFF(ebx,PW_MF060_MF050)] ; mm6=(tmp2L) pmaddwd mm7,[GOTOFF(ebx,PW_MF060_MF050)] ; mm7=(tmp2H) pmaddwd mm2,[GOTOFF(ebx,PW_F145_MF021)] ; mm2=(tmp0L) pmaddwd mm3,[GOTOFF(ebx,PW_F145_MF021)] ; mm3=(tmp0H) paddd mm6,mm4 ; mm6=tmp2L paddd mm7,mm5 ; mm7=tmp2H paddd mm2,mm0 ; mm2=tmp0L paddd mm3,mm1 ; mm3=tmp0H movq MMWORD [wk(0)], mm2 ; wk(0)=tmp0L movq MMWORD [wk(1)], mm3 ; wk(1)=tmp0H ; -- Even part movq mm4, MMWORD [MMBLOCK(0,0,esi,SIZEOF_JCOEF)] movq mm5, MMWORD [MMBLOCK(2,0,esi,SIZEOF_JCOEF)] movq mm0, MMWORD [MMBLOCK(6,0,esi,SIZEOF_JCOEF)] pxor mm1,mm1 pxor mm2,mm2 punpcklwd mm1,mm4 ; mm1=tmp0L punpckhwd mm2,mm4 ; mm2=tmp0H psrad mm1,(16-CONST_BITS-1) ; psrad mm1,16 & pslld mm1,CONST_BITS+1 psrad mm2,(16-CONST_BITS-1) ; psrad mm2,16 & pslld mm2,CONST_BITS+1 movq mm3,mm5 ; mm5=in2=z2 punpcklwd mm5,mm0 ; mm0=in6=z3 punpckhwd mm3,mm0 pmaddwd mm5,[GOTOFF(ebx,PW_F184_MF076)] ; mm5=tmp2L pmaddwd mm3,[GOTOFF(ebx,PW_F184_MF076)] ; mm3=tmp2H movq mm4,mm1 movq mm0,mm2 paddd mm1,mm5 ; mm1=tmp10L paddd mm2,mm3 ; mm2=tmp10H psubd mm4,mm5 ; mm4=tmp12L psubd mm0,mm3 ; mm0=tmp12H ; -- Final output stage movq mm5,mm1 movq mm3,mm2 paddd mm1,mm6 ; mm1=data0L paddd mm2,mm7 ; mm2=data0H psubd mm5,mm6 ; mm5=data3L psubd mm3,mm7 ; mm3=data3H movq mm6,[GOTOFF(ebx,PD_DESCALE_P2_4)] ; mm6=[PD_DESCALE_P2_4] paddd mm1,mm6 paddd mm2,mm6 psrad mm1,DESCALE_P2_4 psrad mm2,DESCALE_P2_4 paddd mm5,mm6 paddd mm3,mm6 psrad mm5,DESCALE_P2_4 psrad mm3,DESCALE_P2_4 packssdw mm1,mm2 ; mm1=data0=(00 10 20 30) packssdw mm5,mm3 ; mm5=data3=(03 13 23 33) movq mm7, MMWORD [wk(0)] ; mm7=tmp0L movq mm6, MMWORD [wk(1)] ; mm6=tmp0H movq mm2,mm4 movq mm3,mm0 paddd mm4,mm7 ; mm4=data1L paddd mm0,mm6 ; mm0=data1H psubd mm2,mm7 ; mm2=data2L psubd mm3,mm6 ; mm3=data2H movq mm7,[GOTOFF(ebx,PD_DESCALE_P2_4)] ; mm7=[PD_DESCALE_P2_4] paddd mm4,mm7 paddd mm0,mm7 psrad mm4,DESCALE_P2_4 psrad mm0,DESCALE_P2_4 paddd mm2,mm7 paddd mm3,mm7 psrad mm2,DESCALE_P2_4 psrad mm3,DESCALE_P2_4 packssdw mm4,mm0 ; mm4=data1=(01 11 21 31) packssdw mm2,mm3 ; mm2=data2=(02 12 22 32) movq mm6,[GOTOFF(ebx,PB_CENTERJSAMP)] ; mm6=[PB_CENTERJSAMP] packsswb mm1,mm2 ; mm1=(00 10 20 30 02 12 22 32) packsswb mm4,mm5 ; mm4=(01 11 21 31 03 13 23 33) paddb mm1,mm6 paddb mm4,mm6 movq mm7,mm1 ; transpose coefficients(phase 1) punpcklbw mm1,mm4 ; mm1=(00 01 10 11 20 21 30 31) punpckhbw mm7,mm4 ; mm7=(02 03 12 13 22 23 32 33) movq mm0,mm1 ; transpose coefficients(phase 2) punpcklwd mm1,mm7 ; mm1=(00 01 02 03 10 11 12 13) punpckhwd mm0,mm7 ; mm0=(20 21 22 23 30 31 32 33) mov edx, JSAMPROW [edi+0*SIZEOF_JSAMPROW] mov esi, JSAMPROW [edi+2*SIZEOF_JSAMPROW] movd DWORD [edx+eax*SIZEOF_JSAMPLE], mm1 movd DWORD [esi+eax*SIZEOF_JSAMPLE], mm0 psrlq mm1,4*BYTE_BIT psrlq mm0,4*BYTE_BIT mov edx, JSAMPROW [edi+1*SIZEOF_JSAMPROW] mov esi, JSAMPROW [edi+3*SIZEOF_JSAMPROW] movd DWORD [edx+eax*SIZEOF_JSAMPLE], mm1 movd DWORD [esi+eax*SIZEOF_JSAMPLE], mm0 emms ; empty MMX state pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; need not be preserved poppic ebx mov esp,ebp ; esp <- aligned ebp pop esp ; esp <- original ebp pop ebp ret ; -------------------------------------------------------------------------- ; ; Perform dequantization and inverse DCT on one block of coefficients, ; producing a reduced-size 2x2 output block. ; ; GLOBAL(void) ; jsimd_idct_2x2_mmx (void * dct_table, JCOEFPTR coef_block, ; JSAMPARRAY output_buf, JDIMENSION output_col) ; %define dct_table(b) (b)+8 ; void * dct_table %define coef_block(b) (b)+12 ; JCOEFPTR coef_block %define output_buf(b) (b)+16 ; JSAMPARRAY output_buf %define output_col(b) (b)+20 ; JDIMENSION output_col align 16 global EXTN(jsimd_idct_2x2_mmx) EXTN(jsimd_idct_2x2_mmx): push ebp mov ebp,esp push ebx ; push ecx ; need not be preserved ; push edx ; need not be preserved push esi push edi get_GOT ebx ; get GOT address ; ---- Pass 1: process columns from input. mov edx, POINTER [dct_table(ebp)] ; quantptr mov esi, JCOEFPTR [coef_block(ebp)] ; inptr ; | input: | result: | ; | 00 01 ** 03 ** 05 ** 07 | | ; | 10 11 ** 13 ** 15 ** 17 | | ; | ** ** ** ** ** ** ** ** | | ; | 30 31 ** 33 ** 35 ** 37 | A0 A1 A3 A5 A7 | ; | ** ** ** ** ** ** ** ** | B0 B1 B3 B5 B7 | ; | 50 51 ** 53 ** 55 ** 57 | | ; | ** ** ** ** ** ** ** ** | | ; | 70 71 ** 73 ** 75 ** 77 | | ; -- Odd part movq mm0, MMWORD [MMBLOCK(1,0,esi,SIZEOF_JCOEF)] movq mm1, MMWORD [MMBLOCK(3,0,esi,SIZEOF_JCOEF)] pmullw mm0, MMWORD [MMBLOCK(1,0,edx,SIZEOF_ISLOW_MULT_TYPE)] pmullw mm1, MMWORD [MMBLOCK(3,0,edx,SIZEOF_ISLOW_MULT_TYPE)] movq mm2, MMWORD [MMBLOCK(5,0,esi,SIZEOF_JCOEF)] movq mm3, MMWORD [MMBLOCK(7,0,esi,SIZEOF_JCOEF)] pmullw mm2, MMWORD [MMBLOCK(5,0,edx,SIZEOF_ISLOW_MULT_TYPE)] pmullw mm3, MMWORD [MMBLOCK(7,0,edx,SIZEOF_ISLOW_MULT_TYPE)] ; mm0=(10 11 ** 13), mm1=(30 31 ** 33) ; mm2=(50 51 ** 53), mm3=(70 71 ** 73) pcmpeqd mm7,mm7 pslld mm7,WORD_BIT ; mm7={0x0000 0xFFFF 0x0000 0xFFFF} movq mm4,mm0 ; mm4=(10 11 ** 13) movq mm5,mm2 ; mm5=(50 51 ** 53) punpcklwd mm4,mm1 ; mm4=(10 30 11 31) punpcklwd mm5,mm3 ; mm5=(50 70 51 71) pmaddwd mm4,[GOTOFF(ebx,PW_F362_MF127)] pmaddwd mm5,[GOTOFF(ebx,PW_F085_MF072)] psrld mm0,WORD_BIT ; mm0=(11 -- 13 --) pand mm1,mm7 ; mm1=(-- 31 -- 33) psrld mm2,WORD_BIT ; mm2=(51 -- 53 --) pand mm3,mm7 ; mm3=(-- 71 -- 73) por mm0,mm1 ; mm0=(11 31 13 33) por mm2,mm3 ; mm2=(51 71 53 73) pmaddwd mm0,[GOTOFF(ebx,PW_F362_MF127)] pmaddwd mm2,[GOTOFF(ebx,PW_F085_MF072)] paddd mm4,mm5 ; mm4=tmp0[col0 col1] movq mm6, MMWORD [MMBLOCK(1,1,esi,SIZEOF_JCOEF)] movq mm1, MMWORD [MMBLOCK(3,1,esi,SIZEOF_JCOEF)] pmullw mm6, MMWORD [MMBLOCK(1,1,edx,SIZEOF_ISLOW_MULT_TYPE)] pmullw mm1, MMWORD [MMBLOCK(3,1,edx,SIZEOF_ISLOW_MULT_TYPE)] movq mm3, MMWORD [MMBLOCK(5,1,esi,SIZEOF_JCOEF)] movq mm5, MMWORD [MMBLOCK(7,1,esi,SIZEOF_JCOEF)] pmullw mm3, MMWORD [MMBLOCK(5,1,edx,SIZEOF_ISLOW_MULT_TYPE)] pmullw mm5, MMWORD [MMBLOCK(7,1,edx,SIZEOF_ISLOW_MULT_TYPE)] ; mm6=(** 15 ** 17), mm1=(** 35 ** 37) ; mm3=(** 55 ** 57), mm5=(** 75 ** 77) psrld mm6,WORD_BIT ; mm6=(15 -- 17 --) pand mm1,mm7 ; mm1=(-- 35 -- 37) psrld mm3,WORD_BIT ; mm3=(55 -- 57 --) pand mm5,mm7 ; mm5=(-- 75 -- 77) por mm6,mm1 ; mm6=(15 35 17 37) por mm3,mm5 ; mm3=(55 75 57 77) pmaddwd mm6,[GOTOFF(ebx,PW_F362_MF127)] pmaddwd mm3,[GOTOFF(ebx,PW_F085_MF072)] paddd mm0,mm2 ; mm0=tmp0[col1 col3] paddd mm6,mm3 ; mm6=tmp0[col5 col7] ; -- Even part movq mm1, MMWORD [MMBLOCK(0,0,esi,SIZEOF_JCOEF)] movq mm5, MMWORD [MMBLOCK(0,1,esi,SIZEOF_JCOEF)] pmullw mm1, MMWORD [MMBLOCK(0,0,edx,SIZEOF_ISLOW_MULT_TYPE)] pmullw mm5, MMWORD [MMBLOCK(0,1,edx,SIZEOF_ISLOW_MULT_TYPE)] ; mm1=(00 01 ** 03), mm5=(** 05 ** 07) movq mm2,mm1 ; mm2=(00 01 ** 03) pslld mm1,WORD_BIT ; mm1=(-- 00 -- **) psrad mm1,(WORD_BIT-CONST_BITS-2) ; mm1=tmp10[col0 ****] pand mm2,mm7 ; mm2=(-- 01 -- 03) pand mm5,mm7 ; mm5=(-- 05 -- 07) psrad mm2,(WORD_BIT-CONST_BITS-2) ; mm2=tmp10[col1 col3] psrad mm5,(WORD_BIT-CONST_BITS-2) ; mm5=tmp10[col5 col7] ; -- Final output stage movq mm3,mm1 paddd mm1,mm4 ; mm1=data0[col0 ****]=(A0 **) psubd mm3,mm4 ; mm3=data1[col0 ****]=(B0 **) punpckldq mm1,mm3 ; mm1=(A0 B0) movq mm7,[GOTOFF(ebx,PD_DESCALE_P1_2)] ; mm7=[PD_DESCALE_P1_2] movq mm4,mm2 movq mm3,mm5 paddd mm2,mm0 ; mm2=data0[col1 col3]=(A1 A3) paddd mm5,mm6 ; mm5=data0[col5 col7]=(A5 A7) psubd mm4,mm0 ; mm4=data1[col1 col3]=(B1 B3) psubd mm3,mm6 ; mm3=data1[col5 col7]=(B5 B7) paddd mm1,mm7 psrad mm1,DESCALE_P1_2 paddd mm2,mm7 paddd mm5,mm7 psrad mm2,DESCALE_P1_2 psrad mm5,DESCALE_P1_2 paddd mm4,mm7 paddd mm3,mm7 psrad mm4,DESCALE_P1_2 psrad mm3,DESCALE_P1_2 ; ---- Pass 2: process rows, store into output array. mov edi, JSAMPARRAY [output_buf(ebp)] ; (JSAMPROW *) mov eax, JDIMENSION [output_col(ebp)] ; | input:| result:| ; | A0 B0 | | ; | A1 B1 | C0 C1 | ; | A3 B3 | D0 D1 | ; | A5 B5 | | ; | A7 B7 | | ; -- Odd part packssdw mm2,mm4 ; mm2=(A1 A3 B1 B3) packssdw mm5,mm3 ; mm5=(A5 A7 B5 B7) pmaddwd mm2,[GOTOFF(ebx,PW_F362_MF127)] pmaddwd mm5,[GOTOFF(ebx,PW_F085_MF072)] paddd mm2,mm5 ; mm2=tmp0[row0 row1] ; -- Even part pslld mm1,(CONST_BITS+2) ; mm1=tmp10[row0 row1] ; -- Final output stage movq mm0,[GOTOFF(ebx,PD_DESCALE_P2_2)] ; mm0=[PD_DESCALE_P2_2] movq mm6,mm1 paddd mm1,mm2 ; mm1=data0[row0 row1]=(C0 C1) psubd mm6,mm2 ; mm6=data1[row0 row1]=(D0 D1) paddd mm1,mm0 paddd mm6,mm0 psrad mm1,DESCALE_P2_2 psrad mm6,DESCALE_P2_2 movq mm7,mm1 ; transpose coefficients punpckldq mm1,mm6 ; mm1=(C0 D0) punpckhdq mm7,mm6 ; mm7=(C1 D1) packssdw mm1,mm7 ; mm1=(C0 D0 C1 D1) packsswb mm1,mm1 ; mm1=(C0 D0 C1 D1 C0 D0 C1 D1) paddb mm1,[GOTOFF(ebx,PB_CENTERJSAMP)] movd ecx,mm1 movd ebx,mm1 ; ebx=(C0 D0 C1 D1) shr ecx,2*BYTE_BIT ; ecx=(C1 D1 -- --) mov edx, JSAMPROW [edi+0*SIZEOF_JSAMPROW] mov esi, JSAMPROW [edi+1*SIZEOF_JSAMPROW] mov WORD [edx+eax*SIZEOF_JSAMPLE], bx mov WORD [esi+eax*SIZEOF_JSAMPLE], cx emms ; empty MMX state pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; need not be preserved pop ebx pop ebp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 16 libjpeg-turbo-1.4.2/simd/jcgryext-mmx.asm0000644000076500007650000003001312600050400015272 00000000000000; ; jcgryext.asm - grayscale colorspace conversion (MMX) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; Copyright 2011 D. R. Commander ; ; Based on ; x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; [TAB8] %include "jcolsamp.inc" ; -------------------------------------------------------------------------- ; ; Convert some rows of samples to the output colorspace. ; ; GLOBAL(void) ; jsimd_rgb_gray_convert_mmx (JDIMENSION img_width, ; JSAMPARRAY input_buf, JSAMPIMAGE output_buf, ; JDIMENSION output_row, int num_rows); ; %define img_width(b) (b)+8 ; JDIMENSION img_width %define input_buf(b) (b)+12 ; JSAMPARRAY input_buf %define output_buf(b) (b)+16 ; JSAMPIMAGE output_buf %define output_row(b) (b)+20 ; JDIMENSION output_row %define num_rows(b) (b)+24 ; int num_rows %define original_ebp ebp+0 %define wk(i) ebp-(WK_NUM-(i))*SIZEOF_MMWORD ; mmword wk[WK_NUM] %define WK_NUM 2 %define gotptr wk(0)-SIZEOF_POINTER ; void * gotptr align 16 global EXTN(jsimd_rgb_gray_convert_mmx) EXTN(jsimd_rgb_gray_convert_mmx): push ebp mov eax,esp ; eax = original ebp sub esp, byte 4 and esp, byte (-SIZEOF_MMWORD) ; align to 64 bits mov [esp],eax mov ebp,esp ; ebp = aligned ebp lea esp, [wk(0)] pushpic eax ; make a room for GOT address push ebx ; push ecx ; need not be preserved ; push edx ; need not be preserved push esi push edi get_GOT ebx ; get GOT address movpic POINTER [gotptr], ebx ; save GOT address mov ecx, JDIMENSION [img_width(eax)] ; num_cols test ecx,ecx jz near .return push ecx mov esi, JSAMPIMAGE [output_buf(eax)] mov ecx, JDIMENSION [output_row(eax)] mov edi, JSAMPARRAY [esi+0*SIZEOF_JSAMPARRAY] lea edi, [edi+ecx*SIZEOF_JSAMPROW] pop ecx mov esi, JSAMPARRAY [input_buf(eax)] mov eax, INT [num_rows(eax)] test eax,eax jle near .return alignx 16,7 .rowloop: pushpic eax push edi push esi push ecx ; col mov esi, JSAMPROW [esi] ; inptr mov edi, JSAMPROW [edi] ; outptr0 movpic eax, POINTER [gotptr] ; load GOT address (eax) cmp ecx, byte SIZEOF_MMWORD jae short .columnloop alignx 16,7 %if RGB_PIXELSIZE == 3 ; --------------- .column_ld1: push eax push edx lea ecx,[ecx+ecx*2] ; imul ecx,RGB_PIXELSIZE test cl, SIZEOF_BYTE jz short .column_ld2 sub ecx, byte SIZEOF_BYTE xor eax,eax mov al, BYTE [esi+ecx] .column_ld2: test cl, SIZEOF_WORD jz short .column_ld4 sub ecx, byte SIZEOF_WORD xor edx,edx mov dx, WORD [esi+ecx] shl eax, WORD_BIT or eax,edx .column_ld4: movd mmA,eax pop edx pop eax test cl, SIZEOF_DWORD jz short .column_ld8 sub ecx, byte SIZEOF_DWORD movd mmG, DWORD [esi+ecx] psllq mmA, DWORD_BIT por mmA,mmG .column_ld8: test cl, SIZEOF_MMWORD jz short .column_ld16 movq mmG,mmA movq mmA, MMWORD [esi+0*SIZEOF_MMWORD] mov ecx, SIZEOF_MMWORD jmp short .rgb_gray_cnv .column_ld16: test cl, 2*SIZEOF_MMWORD mov ecx, SIZEOF_MMWORD jz short .rgb_gray_cnv movq mmF,mmA movq mmA, MMWORD [esi+0*SIZEOF_MMWORD] movq mmG, MMWORD [esi+1*SIZEOF_MMWORD] jmp short .rgb_gray_cnv alignx 16,7 .columnloop: movq mmA, MMWORD [esi+0*SIZEOF_MMWORD] movq mmG, MMWORD [esi+1*SIZEOF_MMWORD] movq mmF, MMWORD [esi+2*SIZEOF_MMWORD] .rgb_gray_cnv: ; mmA=(00 10 20 01 11 21 02 12) ; mmG=(22 03 13 23 04 14 24 05) ; mmF=(15 25 06 16 26 07 17 27) movq mmD,mmA psllq mmA,4*BYTE_BIT ; mmA=(-- -- -- -- 00 10 20 01) psrlq mmD,4*BYTE_BIT ; mmD=(11 21 02 12 -- -- -- --) punpckhbw mmA,mmG ; mmA=(00 04 10 14 20 24 01 05) psllq mmG,4*BYTE_BIT ; mmG=(-- -- -- -- 22 03 13 23) punpcklbw mmD,mmF ; mmD=(11 15 21 25 02 06 12 16) punpckhbw mmG,mmF ; mmG=(22 26 03 07 13 17 23 27) movq mmE,mmA psllq mmA,4*BYTE_BIT ; mmA=(-- -- -- -- 00 04 10 14) psrlq mmE,4*BYTE_BIT ; mmE=(20 24 01 05 -- -- -- --) punpckhbw mmA,mmD ; mmA=(00 02 04 06 10 12 14 16) psllq mmD,4*BYTE_BIT ; mmD=(-- -- -- -- 11 15 21 25) punpcklbw mmE,mmG ; mmE=(20 22 24 26 01 03 05 07) punpckhbw mmD,mmG ; mmD=(11 13 15 17 21 23 25 27) pxor mmH,mmH movq mmC,mmA punpcklbw mmA,mmH ; mmA=(00 02 04 06) punpckhbw mmC,mmH ; mmC=(10 12 14 16) movq mmB,mmE punpcklbw mmE,mmH ; mmE=(20 22 24 26) punpckhbw mmB,mmH ; mmB=(01 03 05 07) movq mmF,mmD punpcklbw mmD,mmH ; mmD=(11 13 15 17) punpckhbw mmF,mmH ; mmF=(21 23 25 27) %else ; RGB_PIXELSIZE == 4 ; ----------- .column_ld1: test cl, SIZEOF_MMWORD/8 jz short .column_ld2 sub ecx, byte SIZEOF_MMWORD/8 movd mmA, DWORD [esi+ecx*RGB_PIXELSIZE] .column_ld2: test cl, SIZEOF_MMWORD/4 jz short .column_ld4 sub ecx, byte SIZEOF_MMWORD/4 movq mmF,mmA movq mmA, MMWORD [esi+ecx*RGB_PIXELSIZE] .column_ld4: test cl, SIZEOF_MMWORD/2 mov ecx, SIZEOF_MMWORD jz short .rgb_gray_cnv movq mmD,mmA movq mmC,mmF movq mmA, MMWORD [esi+0*SIZEOF_MMWORD] movq mmF, MMWORD [esi+1*SIZEOF_MMWORD] jmp short .rgb_gray_cnv alignx 16,7 .columnloop: movq mmA, MMWORD [esi+0*SIZEOF_MMWORD] movq mmF, MMWORD [esi+1*SIZEOF_MMWORD] movq mmD, MMWORD [esi+2*SIZEOF_MMWORD] movq mmC, MMWORD [esi+3*SIZEOF_MMWORD] .rgb_gray_cnv: ; mmA=(00 10 20 30 01 11 21 31) ; mmF=(02 12 22 32 03 13 23 33) ; mmD=(04 14 24 34 05 15 25 35) ; mmC=(06 16 26 36 07 17 27 37) movq mmB,mmA punpcklbw mmA,mmF ; mmA=(00 02 10 12 20 22 30 32) punpckhbw mmB,mmF ; mmB=(01 03 11 13 21 23 31 33) movq mmG,mmD punpcklbw mmD,mmC ; mmD=(04 06 14 16 24 26 34 36) punpckhbw mmG,mmC ; mmG=(05 07 15 17 25 27 35 37) movq mmE,mmA punpcklwd mmA,mmD ; mmA=(00 02 04 06 10 12 14 16) punpckhwd mmE,mmD ; mmE=(20 22 24 26 30 32 34 36) movq mmH,mmB punpcklwd mmB,mmG ; mmB=(01 03 05 07 11 13 15 17) punpckhwd mmH,mmG ; mmH=(21 23 25 27 31 33 35 37) pxor mmF,mmF movq mmC,mmA punpcklbw mmA,mmF ; mmA=(00 02 04 06) punpckhbw mmC,mmF ; mmC=(10 12 14 16) movq mmD,mmB punpcklbw mmB,mmF ; mmB=(01 03 05 07) punpckhbw mmD,mmF ; mmD=(11 13 15 17) movq mmG,mmE punpcklbw mmE,mmF ; mmE=(20 22 24 26) punpckhbw mmG,mmF ; mmG=(30 32 34 36) punpcklbw mmF,mmH punpckhbw mmH,mmH psrlw mmF,BYTE_BIT ; mmF=(21 23 25 27) psrlw mmH,BYTE_BIT ; mmH=(31 33 35 37) %endif ; RGB_PIXELSIZE ; --------------- ; mm0=(R0 R2 R4 R6)=RE, mm2=(G0 G2 G4 G6)=GE, mm4=(B0 B2 B4 B6)=BE ; mm1=(R1 R3 R5 R7)=RO, mm3=(G1 G3 G5 G7)=GO, mm5=(B1 B3 B5 B7)=BO ; (Original) ; Y = 0.29900 * R + 0.58700 * G + 0.11400 * B ; ; (This implementation) ; Y = 0.29900 * R + 0.33700 * G + 0.11400 * B + 0.25000 * G movq mm6,mm1 punpcklwd mm1,mm3 punpckhwd mm6,mm3 pmaddwd mm1,[GOTOFF(eax,PW_F0299_F0337)] ; mm1=ROL*FIX(0.299)+GOL*FIX(0.337) pmaddwd mm6,[GOTOFF(eax,PW_F0299_F0337)] ; mm6=ROH*FIX(0.299)+GOH*FIX(0.337) movq mm7, mm6 ; mm7=ROH*FIX(0.299)+GOH*FIX(0.337) movq mm6,mm0 punpcklwd mm0,mm2 punpckhwd mm6,mm2 pmaddwd mm0,[GOTOFF(eax,PW_F0299_F0337)] ; mm0=REL*FIX(0.299)+GEL*FIX(0.337) pmaddwd mm6,[GOTOFF(eax,PW_F0299_F0337)] ; mm6=REH*FIX(0.299)+GEH*FIX(0.337) movq MMWORD [wk(0)], mm0 ; wk(0)=REL*FIX(0.299)+GEL*FIX(0.337) movq MMWORD [wk(1)], mm6 ; wk(1)=REH*FIX(0.299)+GEH*FIX(0.337) movq mm0, mm5 ; mm0=BO movq mm6, mm4 ; mm6=BE movq mm4,mm0 punpcklwd mm0,mm3 punpckhwd mm4,mm3 pmaddwd mm0,[GOTOFF(eax,PW_F0114_F0250)] ; mm0=BOL*FIX(0.114)+GOL*FIX(0.250) pmaddwd mm4,[GOTOFF(eax,PW_F0114_F0250)] ; mm4=BOH*FIX(0.114)+GOH*FIX(0.250) movq mm3,[GOTOFF(eax,PD_ONEHALF)] ; mm3=[PD_ONEHALF] paddd mm0, mm1 paddd mm4, mm7 paddd mm0,mm3 paddd mm4,mm3 psrld mm0,SCALEBITS ; mm0=YOL psrld mm4,SCALEBITS ; mm4=YOH packssdw mm0,mm4 ; mm0=YO movq mm4,mm6 punpcklwd mm6,mm2 punpckhwd mm4,mm2 pmaddwd mm6,[GOTOFF(eax,PW_F0114_F0250)] ; mm6=BEL*FIX(0.114)+GEL*FIX(0.250) pmaddwd mm4,[GOTOFF(eax,PW_F0114_F0250)] ; mm4=BEH*FIX(0.114)+GEH*FIX(0.250) movq mm2,[GOTOFF(eax,PD_ONEHALF)] ; mm2=[PD_ONEHALF] paddd mm6, MMWORD [wk(0)] paddd mm4, MMWORD [wk(1)] paddd mm6,mm2 paddd mm4,mm2 psrld mm6,SCALEBITS ; mm6=YEL psrld mm4,SCALEBITS ; mm4=YEH packssdw mm6,mm4 ; mm6=YE psllw mm0,BYTE_BIT por mm6,mm0 ; mm6=Y movq MMWORD [edi], mm6 ; Save Y sub ecx, byte SIZEOF_MMWORD add esi, byte RGB_PIXELSIZE*SIZEOF_MMWORD ; inptr add edi, byte SIZEOF_MMWORD ; outptr0 cmp ecx, byte SIZEOF_MMWORD jae near .columnloop test ecx,ecx jnz near .column_ld1 pop ecx ; col pop esi pop edi poppic eax add esi, byte SIZEOF_JSAMPROW ; input_buf add edi, byte SIZEOF_JSAMPROW dec eax ; num_rows jg near .rowloop emms ; empty MMX state .return: pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; need not be preserved pop ebx mov esp,ebp ; esp <- aligned ebp pop esp ; esp <- original ebp pop ebp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 16 libjpeg-turbo-1.4.2/simd/jdcolext-sse2.asm0000644000076500007650000004461012600050400015332 00000000000000; ; jdcolext.asm - colorspace conversion (SSE2) ; ; Copyright 2009, 2012 Pierre Ossman for Cendio AB ; Copyright 2012 D. R. Commander ; ; Based on ; x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; [TAB8] %include "jcolsamp.inc" ; -------------------------------------------------------------------------- ; ; Convert some rows of samples to the output colorspace. ; ; GLOBAL(void) ; jsimd_ycc_rgb_convert_sse2 (JDIMENSION out_width, ; JSAMPIMAGE input_buf, JDIMENSION input_row, ; JSAMPARRAY output_buf, int num_rows) ; %define out_width(b) (b)+8 ; JDIMENSION out_width %define input_buf(b) (b)+12 ; JSAMPIMAGE input_buf %define input_row(b) (b)+16 ; JDIMENSION input_row %define output_buf(b) (b)+20 ; JSAMPARRAY output_buf %define num_rows(b) (b)+24 ; int num_rows %define original_ebp ebp+0 %define wk(i) ebp-(WK_NUM-(i))*SIZEOF_XMMWORD ; xmmword wk[WK_NUM] %define WK_NUM 2 %define gotptr wk(0)-SIZEOF_POINTER ; void * gotptr align 16 global EXTN(jsimd_ycc_rgb_convert_sse2) EXTN(jsimd_ycc_rgb_convert_sse2): push ebp mov eax,esp ; eax = original ebp sub esp, byte 4 and esp, byte (-SIZEOF_XMMWORD) ; align to 128 bits mov [esp],eax mov ebp,esp ; ebp = aligned ebp lea esp, [wk(0)] pushpic eax ; make a room for GOT address push ebx ; push ecx ; need not be preserved ; push edx ; need not be preserved push esi push edi get_GOT ebx ; get GOT address movpic POINTER [gotptr], ebx ; save GOT address mov ecx, JDIMENSION [out_width(eax)] ; num_cols test ecx,ecx jz near .return push ecx mov edi, JSAMPIMAGE [input_buf(eax)] mov ecx, JDIMENSION [input_row(eax)] mov esi, JSAMPARRAY [edi+0*SIZEOF_JSAMPARRAY] mov ebx, JSAMPARRAY [edi+1*SIZEOF_JSAMPARRAY] mov edx, JSAMPARRAY [edi+2*SIZEOF_JSAMPARRAY] lea esi, [esi+ecx*SIZEOF_JSAMPROW] lea ebx, [ebx+ecx*SIZEOF_JSAMPROW] lea edx, [edx+ecx*SIZEOF_JSAMPROW] pop ecx mov edi, JSAMPARRAY [output_buf(eax)] mov eax, INT [num_rows(eax)] test eax,eax jle near .return alignx 16,7 .rowloop: push eax push edi push edx push ebx push esi push ecx ; col mov esi, JSAMPROW [esi] ; inptr0 mov ebx, JSAMPROW [ebx] ; inptr1 mov edx, JSAMPROW [edx] ; inptr2 mov edi, JSAMPROW [edi] ; outptr movpic eax, POINTER [gotptr] ; load GOT address (eax) alignx 16,7 .columnloop: movdqa xmm5, XMMWORD [ebx] ; xmm5=Cb(0123456789ABCDEF) movdqa xmm1, XMMWORD [edx] ; xmm1=Cr(0123456789ABCDEF) pcmpeqw xmm4,xmm4 pcmpeqw xmm7,xmm7 psrlw xmm4,BYTE_BIT psllw xmm7,7 ; xmm7={0xFF80 0xFF80 0xFF80 0xFF80 ..} movdqa xmm0,xmm4 ; xmm0=xmm4={0xFF 0x00 0xFF 0x00 ..} pand xmm4,xmm5 ; xmm4=Cb(02468ACE)=CbE psrlw xmm5,BYTE_BIT ; xmm5=Cb(13579BDF)=CbO pand xmm0,xmm1 ; xmm0=Cr(02468ACE)=CrE psrlw xmm1,BYTE_BIT ; xmm1=Cr(13579BDF)=CrO paddw xmm4,xmm7 paddw xmm5,xmm7 paddw xmm0,xmm7 paddw xmm1,xmm7 ; (Original) ; R = Y + 1.40200 * Cr ; G = Y - 0.34414 * Cb - 0.71414 * Cr ; B = Y + 1.77200 * Cb ; ; (This implementation) ; R = Y + 0.40200 * Cr + Cr ; G = Y - 0.34414 * Cb + 0.28586 * Cr - Cr ; B = Y - 0.22800 * Cb + Cb + Cb movdqa xmm2,xmm4 ; xmm2=CbE movdqa xmm3,xmm5 ; xmm3=CbO paddw xmm4,xmm4 ; xmm4=2*CbE paddw xmm5,xmm5 ; xmm5=2*CbO movdqa xmm6,xmm0 ; xmm6=CrE movdqa xmm7,xmm1 ; xmm7=CrO paddw xmm0,xmm0 ; xmm0=2*CrE paddw xmm1,xmm1 ; xmm1=2*CrO pmulhw xmm4,[GOTOFF(eax,PW_MF0228)] ; xmm4=(2*CbE * -FIX(0.22800)) pmulhw xmm5,[GOTOFF(eax,PW_MF0228)] ; xmm5=(2*CbO * -FIX(0.22800)) pmulhw xmm0,[GOTOFF(eax,PW_F0402)] ; xmm0=(2*CrE * FIX(0.40200)) pmulhw xmm1,[GOTOFF(eax,PW_F0402)] ; xmm1=(2*CrO * FIX(0.40200)) paddw xmm4,[GOTOFF(eax,PW_ONE)] paddw xmm5,[GOTOFF(eax,PW_ONE)] psraw xmm4,1 ; xmm4=(CbE * -FIX(0.22800)) psraw xmm5,1 ; xmm5=(CbO * -FIX(0.22800)) paddw xmm0,[GOTOFF(eax,PW_ONE)] paddw xmm1,[GOTOFF(eax,PW_ONE)] psraw xmm0,1 ; xmm0=(CrE * FIX(0.40200)) psraw xmm1,1 ; xmm1=(CrO * FIX(0.40200)) paddw xmm4,xmm2 paddw xmm5,xmm3 paddw xmm4,xmm2 ; xmm4=(CbE * FIX(1.77200))=(B-Y)E paddw xmm5,xmm3 ; xmm5=(CbO * FIX(1.77200))=(B-Y)O paddw xmm0,xmm6 ; xmm0=(CrE * FIX(1.40200))=(R-Y)E paddw xmm1,xmm7 ; xmm1=(CrO * FIX(1.40200))=(R-Y)O movdqa XMMWORD [wk(0)], xmm4 ; wk(0)=(B-Y)E movdqa XMMWORD [wk(1)], xmm5 ; wk(1)=(B-Y)O movdqa xmm4,xmm2 movdqa xmm5,xmm3 punpcklwd xmm2,xmm6 punpckhwd xmm4,xmm6 pmaddwd xmm2,[GOTOFF(eax,PW_MF0344_F0285)] pmaddwd xmm4,[GOTOFF(eax,PW_MF0344_F0285)] punpcklwd xmm3,xmm7 punpckhwd xmm5,xmm7 pmaddwd xmm3,[GOTOFF(eax,PW_MF0344_F0285)] pmaddwd xmm5,[GOTOFF(eax,PW_MF0344_F0285)] paddd xmm2,[GOTOFF(eax,PD_ONEHALF)] paddd xmm4,[GOTOFF(eax,PD_ONEHALF)] psrad xmm2,SCALEBITS psrad xmm4,SCALEBITS paddd xmm3,[GOTOFF(eax,PD_ONEHALF)] paddd xmm5,[GOTOFF(eax,PD_ONEHALF)] psrad xmm3,SCALEBITS psrad xmm5,SCALEBITS packssdw xmm2,xmm4 ; xmm2=CbE*-FIX(0.344)+CrE*FIX(0.285) packssdw xmm3,xmm5 ; xmm3=CbO*-FIX(0.344)+CrO*FIX(0.285) psubw xmm2,xmm6 ; xmm2=CbE*-FIX(0.344)+CrE*-FIX(0.714)=(G-Y)E psubw xmm3,xmm7 ; xmm3=CbO*-FIX(0.344)+CrO*-FIX(0.714)=(G-Y)O movdqa xmm5, XMMWORD [esi] ; xmm5=Y(0123456789ABCDEF) pcmpeqw xmm4,xmm4 psrlw xmm4,BYTE_BIT ; xmm4={0xFF 0x00 0xFF 0x00 ..} pand xmm4,xmm5 ; xmm4=Y(02468ACE)=YE psrlw xmm5,BYTE_BIT ; xmm5=Y(13579BDF)=YO paddw xmm0,xmm4 ; xmm0=((R-Y)E+YE)=RE=R(02468ACE) paddw xmm1,xmm5 ; xmm1=((R-Y)O+YO)=RO=R(13579BDF) packuswb xmm0,xmm0 ; xmm0=R(02468ACE********) packuswb xmm1,xmm1 ; xmm1=R(13579BDF********) paddw xmm2,xmm4 ; xmm2=((G-Y)E+YE)=GE=G(02468ACE) paddw xmm3,xmm5 ; xmm3=((G-Y)O+YO)=GO=G(13579BDF) packuswb xmm2,xmm2 ; xmm2=G(02468ACE********) packuswb xmm3,xmm3 ; xmm3=G(13579BDF********) paddw xmm4, XMMWORD [wk(0)] ; xmm4=(YE+(B-Y)E)=BE=B(02468ACE) paddw xmm5, XMMWORD [wk(1)] ; xmm5=(YO+(B-Y)O)=BO=B(13579BDF) packuswb xmm4,xmm4 ; xmm4=B(02468ACE********) packuswb xmm5,xmm5 ; xmm5=B(13579BDF********) %if RGB_PIXELSIZE == 3 ; --------------- ; xmmA=(00 02 04 06 08 0A 0C 0E **), xmmB=(01 03 05 07 09 0B 0D 0F **) ; xmmC=(10 12 14 16 18 1A 1C 1E **), xmmD=(11 13 15 17 19 1B 1D 1F **) ; xmmE=(20 22 24 26 28 2A 2C 2E **), xmmF=(21 23 25 27 29 2B 2D 2F **) ; xmmG=(** ** ** ** ** ** ** ** **), xmmH=(** ** ** ** ** ** ** ** **) punpcklbw xmmA,xmmC ; xmmA=(00 10 02 12 04 14 06 16 08 18 0A 1A 0C 1C 0E 1E) punpcklbw xmmE,xmmB ; xmmE=(20 01 22 03 24 05 26 07 28 09 2A 0B 2C 0D 2E 0F) punpcklbw xmmD,xmmF ; xmmD=(11 21 13 23 15 25 17 27 19 29 1B 2B 1D 2D 1F 2F) movdqa xmmG,xmmA movdqa xmmH,xmmA punpcklwd xmmA,xmmE ; xmmA=(00 10 20 01 02 12 22 03 04 14 24 05 06 16 26 07) punpckhwd xmmG,xmmE ; xmmG=(08 18 28 09 0A 1A 2A 0B 0C 1C 2C 0D 0E 1E 2E 0F) psrldq xmmH,2 ; xmmH=(02 12 04 14 06 16 08 18 0A 1A 0C 1C 0E 1E -- --) psrldq xmmE,2 ; xmmE=(22 03 24 05 26 07 28 09 2A 0B 2C 0D 2E 0F -- --) movdqa xmmC,xmmD movdqa xmmB,xmmD punpcklwd xmmD,xmmH ; xmmD=(11 21 02 12 13 23 04 14 15 25 06 16 17 27 08 18) punpckhwd xmmC,xmmH ; xmmC=(19 29 0A 1A 1B 2B 0C 1C 1D 2D 0E 1E 1F 2F -- --) psrldq xmmB,2 ; xmmB=(13 23 15 25 17 27 19 29 1B 2B 1D 2D 1F 2F -- --) movdqa xmmF,xmmE punpcklwd xmmE,xmmB ; xmmE=(22 03 13 23 24 05 15 25 26 07 17 27 28 09 19 29) punpckhwd xmmF,xmmB ; xmmF=(2A 0B 1B 2B 2C 0D 1D 2D 2E 0F 1F 2F -- -- -- --) pshufd xmmH,xmmA,0x4E; xmmH=(04 14 24 05 06 16 26 07 00 10 20 01 02 12 22 03) movdqa xmmB,xmmE punpckldq xmmA,xmmD ; xmmA=(00 10 20 01 11 21 02 12 02 12 22 03 13 23 04 14) punpckldq xmmE,xmmH ; xmmE=(22 03 13 23 04 14 24 05 24 05 15 25 06 16 26 07) punpckhdq xmmD,xmmB ; xmmD=(15 25 06 16 26 07 17 27 17 27 08 18 28 09 19 29) pshufd xmmH,xmmG,0x4E; xmmH=(0C 1C 2C 0D 0E 1E 2E 0F 08 18 28 09 0A 1A 2A 0B) movdqa xmmB,xmmF punpckldq xmmG,xmmC ; xmmG=(08 18 28 09 19 29 0A 1A 0A 1A 2A 0B 1B 2B 0C 1C) punpckldq xmmF,xmmH ; xmmF=(2A 0B 1B 2B 0C 1C 2C 0D 2C 0D 1D 2D 0E 1E 2E 0F) punpckhdq xmmC,xmmB ; xmmC=(1D 2D 0E 1E 2E 0F 1F 2F 1F 2F -- -- -- -- -- --) punpcklqdq xmmA,xmmE ; xmmA=(00 10 20 01 11 21 02 12 22 03 13 23 04 14 24 05) punpcklqdq xmmD,xmmG ; xmmD=(15 25 06 16 26 07 17 27 08 18 28 09 19 29 0A 1A) punpcklqdq xmmF,xmmC ; xmmF=(2A 0B 1B 2B 0C 1C 2C 0D 1D 2D 0E 1E 2E 0F 1F 2F) cmp ecx, byte SIZEOF_XMMWORD jb short .column_st32 test edi, SIZEOF_XMMWORD-1 jnz short .out1 ; --(aligned)------------------- movntdq XMMWORD [edi+0*SIZEOF_XMMWORD], xmmA movntdq XMMWORD [edi+1*SIZEOF_XMMWORD], xmmD movntdq XMMWORD [edi+2*SIZEOF_XMMWORD], xmmF jmp short .out0 .out1: ; --(unaligned)----------------- movdqu XMMWORD [edi+0*SIZEOF_XMMWORD], xmmA movdqu XMMWORD [edi+1*SIZEOF_XMMWORD], xmmD movdqu XMMWORD [edi+2*SIZEOF_XMMWORD], xmmF .out0: add edi, byte RGB_PIXELSIZE*SIZEOF_XMMWORD ; outptr sub ecx, byte SIZEOF_XMMWORD jz near .nextrow add esi, byte SIZEOF_XMMWORD ; inptr0 add ebx, byte SIZEOF_XMMWORD ; inptr1 add edx, byte SIZEOF_XMMWORD ; inptr2 jmp near .columnloop alignx 16,7 .column_st32: lea ecx, [ecx+ecx*2] ; imul ecx, RGB_PIXELSIZE cmp ecx, byte 2*SIZEOF_XMMWORD jb short .column_st16 movdqu XMMWORD [edi+0*SIZEOF_XMMWORD], xmmA movdqu XMMWORD [edi+1*SIZEOF_XMMWORD], xmmD add edi, byte 2*SIZEOF_XMMWORD ; outptr movdqa xmmA,xmmF sub ecx, byte 2*SIZEOF_XMMWORD jmp short .column_st15 .column_st16: cmp ecx, byte SIZEOF_XMMWORD jb short .column_st15 movdqu XMMWORD [edi+0*SIZEOF_XMMWORD], xmmA add edi, byte SIZEOF_XMMWORD ; outptr movdqa xmmA,xmmD sub ecx, byte SIZEOF_XMMWORD .column_st15: ; Store the lower 8 bytes of xmmA to the output when it has enough ; space. cmp ecx, byte SIZEOF_MMWORD jb short .column_st7 movq XMM_MMWORD [edi], xmmA add edi, byte SIZEOF_MMWORD sub ecx, byte SIZEOF_MMWORD psrldq xmmA, SIZEOF_MMWORD .column_st7: ; Store the lower 4 bytes of xmmA to the output when it has enough ; space. cmp ecx, byte SIZEOF_DWORD jb short .column_st3 movd XMM_DWORD [edi], xmmA add edi, byte SIZEOF_DWORD sub ecx, byte SIZEOF_DWORD psrldq xmmA, SIZEOF_DWORD .column_st3: ; Store the lower 2 bytes of eax to the output when it has enough ; space. movd eax, xmmA cmp ecx, byte SIZEOF_WORD jb short .column_st1 mov WORD [edi], ax add edi, byte SIZEOF_WORD sub ecx, byte SIZEOF_WORD shr eax, 16 .column_st1: ; Store the lower 1 byte of eax to the output when it has enough ; space. test ecx, ecx jz short .nextrow mov BYTE [edi], al %else ; RGB_PIXELSIZE == 4 ; ----------- %ifdef RGBX_FILLER_0XFF pcmpeqb xmm6,xmm6 ; xmm6=XE=X(02468ACE********) pcmpeqb xmm7,xmm7 ; xmm7=XO=X(13579BDF********) %else pxor xmm6,xmm6 ; xmm6=XE=X(02468ACE********) pxor xmm7,xmm7 ; xmm7=XO=X(13579BDF********) %endif ; xmmA=(00 02 04 06 08 0A 0C 0E **), xmmB=(01 03 05 07 09 0B 0D 0F **) ; xmmC=(10 12 14 16 18 1A 1C 1E **), xmmD=(11 13 15 17 19 1B 1D 1F **) ; xmmE=(20 22 24 26 28 2A 2C 2E **), xmmF=(21 23 25 27 29 2B 2D 2F **) ; xmmG=(30 32 34 36 38 3A 3C 3E **), xmmH=(31 33 35 37 39 3B 3D 3F **) punpcklbw xmmA,xmmC ; xmmA=(00 10 02 12 04 14 06 16 08 18 0A 1A 0C 1C 0E 1E) punpcklbw xmmE,xmmG ; xmmE=(20 30 22 32 24 34 26 36 28 38 2A 3A 2C 3C 2E 3E) punpcklbw xmmB,xmmD ; xmmB=(01 11 03 13 05 15 07 17 09 19 0B 1B 0D 1D 0F 1F) punpcklbw xmmF,xmmH ; xmmF=(21 31 23 33 25 35 27 37 29 39 2B 3B 2D 3D 2F 3F) movdqa xmmC,xmmA punpcklwd xmmA,xmmE ; xmmA=(00 10 20 30 02 12 22 32 04 14 24 34 06 16 26 36) punpckhwd xmmC,xmmE ; xmmC=(08 18 28 38 0A 1A 2A 3A 0C 1C 2C 3C 0E 1E 2E 3E) movdqa xmmG,xmmB punpcklwd xmmB,xmmF ; xmmB=(01 11 21 31 03 13 23 33 05 15 25 35 07 17 27 37) punpckhwd xmmG,xmmF ; xmmG=(09 19 29 39 0B 1B 2B 3B 0D 1D 2D 3D 0F 1F 2F 3F) movdqa xmmD,xmmA punpckldq xmmA,xmmB ; xmmA=(00 10 20 30 01 11 21 31 02 12 22 32 03 13 23 33) punpckhdq xmmD,xmmB ; xmmD=(04 14 24 34 05 15 25 35 06 16 26 36 07 17 27 37) movdqa xmmH,xmmC punpckldq xmmC,xmmG ; xmmC=(08 18 28 38 09 19 29 39 0A 1A 2A 3A 0B 1B 2B 3B) punpckhdq xmmH,xmmG ; xmmH=(0C 1C 2C 3C 0D 1D 2D 3D 0E 1E 2E 3E 0F 1F 2F 3F) cmp ecx, byte SIZEOF_XMMWORD jb short .column_st32 test edi, SIZEOF_XMMWORD-1 jnz short .out1 ; --(aligned)------------------- movntdq XMMWORD [edi+0*SIZEOF_XMMWORD], xmmA movntdq XMMWORD [edi+1*SIZEOF_XMMWORD], xmmD movntdq XMMWORD [edi+2*SIZEOF_XMMWORD], xmmC movntdq XMMWORD [edi+3*SIZEOF_XMMWORD], xmmH jmp short .out0 .out1: ; --(unaligned)----------------- movdqu XMMWORD [edi+0*SIZEOF_XMMWORD], xmmA movdqu XMMWORD [edi+1*SIZEOF_XMMWORD], xmmD movdqu XMMWORD [edi+2*SIZEOF_XMMWORD], xmmC movdqu XMMWORD [edi+3*SIZEOF_XMMWORD], xmmH .out0: add edi, byte RGB_PIXELSIZE*SIZEOF_XMMWORD ; outptr sub ecx, byte SIZEOF_XMMWORD jz near .nextrow add esi, byte SIZEOF_XMMWORD ; inptr0 add ebx, byte SIZEOF_XMMWORD ; inptr1 add edx, byte SIZEOF_XMMWORD ; inptr2 jmp near .columnloop alignx 16,7 .column_st32: cmp ecx, byte SIZEOF_XMMWORD/2 jb short .column_st16 movdqu XMMWORD [edi+0*SIZEOF_XMMWORD], xmmA movdqu XMMWORD [edi+1*SIZEOF_XMMWORD], xmmD add edi, byte 2*SIZEOF_XMMWORD ; outptr movdqa xmmA,xmmC movdqa xmmD,xmmH sub ecx, byte SIZEOF_XMMWORD/2 .column_st16: cmp ecx, byte SIZEOF_XMMWORD/4 jb short .column_st15 movdqu XMMWORD [edi+0*SIZEOF_XMMWORD], xmmA add edi, byte SIZEOF_XMMWORD ; outptr movdqa xmmA,xmmD sub ecx, byte SIZEOF_XMMWORD/4 .column_st15: ; Store two pixels (8 bytes) of xmmA to the output when it has enough ; space. cmp ecx, byte SIZEOF_XMMWORD/8 jb short .column_st7 movq XMM_MMWORD [edi], xmmA add edi, byte SIZEOF_XMMWORD/8*4 sub ecx, byte SIZEOF_XMMWORD/8 psrldq xmmA, SIZEOF_XMMWORD/8*4 .column_st7: ; Store one pixel (4 bytes) of xmmA to the output when it has enough ; space. test ecx, ecx jz short .nextrow movd XMM_DWORD [edi], xmmA %endif ; RGB_PIXELSIZE ; --------------- alignx 16,7 .nextrow: pop ecx pop esi pop ebx pop edx pop edi pop eax add esi, byte SIZEOF_JSAMPROW add ebx, byte SIZEOF_JSAMPROW add edx, byte SIZEOF_JSAMPROW add edi, byte SIZEOF_JSAMPROW ; output_buf dec eax ; num_rows jg near .rowloop sfence ; flush the write buffer .return: pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; need not be preserved pop ebx mov esp,ebp ; esp <- aligned ebp pop esp ; esp <- original ebp pop ebp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 16 libjpeg-turbo-1.4.2/simd/jsimd.h0000644000076500007650000007661512600050400013433 00000000000000/* * simd/jsimd.h * * Copyright 2009 Pierre Ossman for Cendio AB * Copyright 2011 D. R. Commander * Copyright (C) 2013-2014, MIPS Technologies, Inc., California * Copyright (C) 2014 Linaro Limited * * Based on the x86 SIMD extension for IJG JPEG library, * Copyright (C) 1999-2006, MIYASAKA Masaru. * For conditions of distribution and use, see copyright notice in jsimdext.inc * */ /* Bitmask for supported acceleration methods */ #define JSIMD_NONE 0x00 #define JSIMD_MMX 0x01 #define JSIMD_3DNOW 0x02 #define JSIMD_SSE 0x04 #define JSIMD_SSE2 0x08 #define JSIMD_ARM_NEON 0x10 #define JSIMD_MIPS_DSPR2 0x20 /* SIMD Ext: retrieve SIMD/CPU information */ EXTERN(unsigned int) jpeg_simd_cpu_support (void); /* RGB & extended RGB --> YCC Colorspace Conversion */ EXTERN(void) jsimd_rgb_ycc_convert_mmx (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extrgb_ycc_convert_mmx (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extrgbx_ycc_convert_mmx (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extbgr_ycc_convert_mmx (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extbgrx_ycc_convert_mmx (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extxbgr_ycc_convert_mmx (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extxrgb_ycc_convert_mmx (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); extern const int jconst_rgb_ycc_convert_sse2[]; EXTERN(void) jsimd_rgb_ycc_convert_sse2 (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extrgb_ycc_convert_sse2 (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extrgbx_ycc_convert_sse2 (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extbgr_ycc_convert_sse2 (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extbgrx_ycc_convert_sse2 (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extxbgr_ycc_convert_sse2 (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extxrgb_ycc_convert_sse2 (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_rgb_ycc_convert_neon (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extrgb_ycc_convert_neon (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extrgbx_ycc_convert_neon (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extbgr_ycc_convert_neon (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extbgrx_ycc_convert_neon (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extxbgr_ycc_convert_neon (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extxrgb_ycc_convert_neon (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_rgb_ycc_convert_mips_dspr2 (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extrgb_ycc_convert_mips_dspr2 (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extrgbx_ycc_convert_mips_dspr2 (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extbgr_ycc_convert_mips_dspr2 (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extbgrx_ycc_convert_mips_dspr2 (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extxbgr_ycc_convert_mips_dspr2 (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extxrgb_ycc_convert_mips_dspr2 (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); /* RGB & extended RGB --> Grayscale Colorspace Conversion */ EXTERN(void) jsimd_rgb_gray_convert_mmx (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extrgb_gray_convert_mmx (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extrgbx_gray_convert_mmx (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extbgr_gray_convert_mmx (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extbgrx_gray_convert_mmx (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extxbgr_gray_convert_mmx (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extxrgb_gray_convert_mmx (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); extern const int jconst_rgb_gray_convert_sse2[]; EXTERN(void) jsimd_rgb_gray_convert_sse2 (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extrgb_gray_convert_sse2 (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extrgbx_gray_convert_sse2 (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extbgr_gray_convert_sse2 (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extbgrx_gray_convert_sse2 (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extxbgr_gray_convert_sse2 (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extxrgb_gray_convert_sse2 (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_rgb_gray_convert_mips_dspr2 (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extrgb_gray_convert_mips_dspr2 (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extrgbx_gray_convert_mips_dspr2 (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extbgr_gray_convert_mips_dspr2 (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extbgrx_gray_convert_mips_dspr2 (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extxbgr_gray_convert_mips_dspr2 (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extxrgb_gray_convert_mips_dspr2 (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); /* YCC --> RGB & extended RGB Colorspace Conversion */ EXTERN(void) jsimd_ycc_rgb_convert_mmx (JDIMENSION out_width, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows); EXTERN(void) jsimd_ycc_extrgb_convert_mmx (JDIMENSION out_width, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows); EXTERN(void) jsimd_ycc_extrgbx_convert_mmx (JDIMENSION out_width, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows); EXTERN(void) jsimd_ycc_extbgr_convert_mmx (JDIMENSION out_width, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows); EXTERN(void) jsimd_ycc_extbgrx_convert_mmx (JDIMENSION out_width, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows); EXTERN(void) jsimd_ycc_extxbgr_convert_mmx (JDIMENSION out_width, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows); EXTERN(void) jsimd_ycc_extxrgb_convert_mmx (JDIMENSION out_width, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows); extern const int jconst_ycc_rgb_convert_sse2[]; EXTERN(void) jsimd_ycc_rgb_convert_sse2 (JDIMENSION out_width, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows); EXTERN(void) jsimd_ycc_extrgb_convert_sse2 (JDIMENSION out_width, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows); EXTERN(void) jsimd_ycc_extrgbx_convert_sse2 (JDIMENSION out_width, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows); EXTERN(void) jsimd_ycc_extbgr_convert_sse2 (JDIMENSION out_width, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows); EXTERN(void) jsimd_ycc_extbgrx_convert_sse2 (JDIMENSION out_width, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows); EXTERN(void) jsimd_ycc_extxbgr_convert_sse2 (JDIMENSION out_width, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows); EXTERN(void) jsimd_ycc_extxrgb_convert_sse2 (JDIMENSION out_width, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows); EXTERN(void) jsimd_ycc_rgb_convert_neon (JDIMENSION out_width, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows); EXTERN(void) jsimd_ycc_extrgb_convert_neon (JDIMENSION out_width, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows); EXTERN(void) jsimd_ycc_extrgbx_convert_neon (JDIMENSION out_width, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows); EXTERN(void) jsimd_ycc_extbgr_convert_neon (JDIMENSION out_width, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows); EXTERN(void) jsimd_ycc_extbgrx_convert_neon (JDIMENSION out_width, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows); EXTERN(void) jsimd_ycc_extxbgr_convert_neon (JDIMENSION out_width, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows); EXTERN(void) jsimd_ycc_extxrgb_convert_neon (JDIMENSION out_width, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows); EXTERN(void) jsimd_ycc_rgb565_convert_neon (JDIMENSION out_width, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows); EXTERN(void) jsimd_ycc_rgb_convert_mips_dspr2 (JDIMENSION out_width, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows); EXTERN(void) jsimd_ycc_extrgb_convert_mips_dspr2 (JDIMENSION out_width, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows); EXTERN(void) jsimd_ycc_extrgbx_convert_mips_dspr2 (JDIMENSION out_width, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows); EXTERN(void) jsimd_ycc_extbgr_convert_mips_dspr2 (JDIMENSION out_width, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows); EXTERN(void) jsimd_ycc_extbgrx_convert_mips_dspr2 (JDIMENSION out_width, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows); EXTERN(void) jsimd_ycc_extxbgr_convert_mips_dspr2 (JDIMENSION out_width, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows); EXTERN(void) jsimd_ycc_extxrgb_convert_mips_dspr2 (JDIMENSION out_width, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows); /* NULL Colorspace Conversion */ EXTERN(void) jsimd_c_null_convert_mips_dspr2 (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows, int num_components); /* h2v1 Downsampling */ EXTERN(void) jsimd_h2v1_downsample_mmx (JDIMENSION image_width, int max_v_samp_factor, JDIMENSION v_samp_factor, JDIMENSION width_blocks, JSAMPARRAY input_data, JSAMPARRAY output_data); EXTERN(void) jsimd_h2v1_downsample_sse2 (JDIMENSION image_width, int max_v_samp_factor, JDIMENSION v_samp_factor, JDIMENSION width_blocks, JSAMPARRAY input_data, JSAMPARRAY output_data); EXTERN(void) jsimd_h2v1_downsample_mips_dspr2 (JDIMENSION image_width, int max_v_samp_factor, JDIMENSION v_samp_factor, JDIMENSION width_blocks, JSAMPARRAY input_data, JSAMPARRAY output_data); /* h2v2 Downsampling */ EXTERN(void) jsimd_h2v2_downsample_mmx (JDIMENSION image_width, int max_v_samp_factor, JDIMENSION v_samp_factor, JDIMENSION width_blocks, JSAMPARRAY input_data, JSAMPARRAY output_data); EXTERN(void) jsimd_h2v2_downsample_sse2 (JDIMENSION image_width, int max_v_samp_factor, JDIMENSION v_samp_factor, JDIMENSION width_blocks, JSAMPARRAY input_data, JSAMPARRAY output_data); EXTERN(void) jsimd_h2v2_downsample_mips_dspr2 (JDIMENSION image_width, int max_v_samp_factor, JDIMENSION v_samp_factor, JDIMENSION width_blocks, JSAMPARRAY input_data, JSAMPARRAY output_data); /* h2v2 Smooth Downsampling */ EXTERN(void) jsimd_h2v2_smooth_downsample_mips_dspr2 (JSAMPARRAY input_data, JSAMPARRAY output_data, JDIMENSION v_samp_factor, int max_v_samp_factor, int smoothing_factor, JDIMENSION width_blocks, JDIMENSION image_width); /* Upsampling */ EXTERN(void) jsimd_h2v1_upsample_mmx (int max_v_samp_factor, JDIMENSION output_width, JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr); EXTERN(void) jsimd_h2v2_upsample_mmx (int max_v_samp_factor, JDIMENSION output_width, JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr); EXTERN(void) jsimd_h2v1_upsample_sse2 (int max_v_samp_factor, JDIMENSION output_width, JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr); EXTERN(void) jsimd_h2v2_upsample_sse2 (int max_v_samp_factor, JDIMENSION output_width, JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr); EXTERN(void) jsimd_h2v1_upsample_mips_dspr2 (int max_v_samp_factor, JDIMENSION output_width, JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr); EXTERN(void) jsimd_h2v2_upsample_mips_dspr2 (int max_v_samp_factor, JDIMENSION output_width, JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr); EXTERN(void) jsimd_int_upsample_mips_dspr2 (UINT8 h_expand, UINT8 v_expand, JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr, JDIMENSION output_width, int max_v_samp_factor); /* Fancy Upsampling */ EXTERN(void) jsimd_h2v1_fancy_upsample_mmx (int max_v_samp_factor, JDIMENSION downsampled_width, JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr); EXTERN(void) jsimd_h2v2_fancy_upsample_mmx (int max_v_samp_factor, JDIMENSION downsampled_width, JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr); extern const int jconst_fancy_upsample_sse2[]; EXTERN(void) jsimd_h2v1_fancy_upsample_sse2 (int max_v_samp_factor, JDIMENSION downsampled_width, JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr); EXTERN(void) jsimd_h2v2_fancy_upsample_sse2 (int max_v_samp_factor, JDIMENSION downsampled_width, JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr); EXTERN(void) jsimd_h2v1_fancy_upsample_neon (int max_v_samp_factor, JDIMENSION downsampled_width, JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr); EXTERN(void) jsimd_h2v1_fancy_upsample_mips_dspr2 (int max_v_samp_factor, JDIMENSION downsampled_width, JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr); EXTERN(void) jsimd_h2v2_fancy_upsample_mips_dspr2 (int max_v_samp_factor, JDIMENSION downsampled_width, JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr); /* Merged Upsampling */ EXTERN(void) jsimd_h2v1_merged_upsample_mmx (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v1_extrgb_merged_upsample_mmx (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v1_extrgbx_merged_upsample_mmx (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v1_extbgr_merged_upsample_mmx (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v1_extbgrx_merged_upsample_mmx (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v1_extxbgr_merged_upsample_mmx (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v1_extxrgb_merged_upsample_mmx (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v2_merged_upsample_mmx (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v2_extrgb_merged_upsample_mmx (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v2_extrgbx_merged_upsample_mmx (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v2_extbgr_merged_upsample_mmx (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v2_extbgrx_merged_upsample_mmx (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v2_extxbgr_merged_upsample_mmx (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v2_extxrgb_merged_upsample_mmx (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); extern const int jconst_merged_upsample_sse2[]; EXTERN(void) jsimd_h2v1_merged_upsample_sse2 (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v1_extrgb_merged_upsample_sse2 (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v1_extrgbx_merged_upsample_sse2 (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v1_extbgr_merged_upsample_sse2 (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v1_extbgrx_merged_upsample_sse2 (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v1_extxbgr_merged_upsample_sse2 (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v1_extxrgb_merged_upsample_sse2 (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v2_merged_upsample_sse2 (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v2_extrgb_merged_upsample_sse2 (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v2_extrgbx_merged_upsample_sse2 (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v2_extbgr_merged_upsample_sse2 (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v2_extbgrx_merged_upsample_sse2 (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v2_extxbgr_merged_upsample_sse2 (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v2_extxrgb_merged_upsample_sse2 (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v1_merged_upsample_mips_dspr2 (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf, JSAMPLE* range); EXTERN(void) jsimd_h2v1_extrgb_merged_upsample_mips_dspr2 (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf, JSAMPLE* range); EXTERN(void) jsimd_h2v1_extrgbx_merged_upsample_mips_dspr2 (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf, JSAMPLE* range); EXTERN(void) jsimd_h2v1_extbgr_merged_upsample_mips_dspr2 (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf, JSAMPLE* range); EXTERN(void) jsimd_h2v1_extbgrx_merged_upsample_mips_dspr2 (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf, JSAMPLE* range); EXTERN(void) jsimd_h2v1_extxbgr_merged_upsample_mips_dspr2 (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf, JSAMPLE* range); EXTERN(void) jsimd_h2v1_extxrgb_merged_upsample_mips_dspr2 (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf, JSAMPLE* range); EXTERN(void) jsimd_h2v2_merged_upsample_mips_dspr2 (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf, JSAMPLE* range); EXTERN(void) jsimd_h2v2_extrgb_merged_upsample_mips_dspr2 (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf, JSAMPLE* range); EXTERN(void) jsimd_h2v2_extrgbx_merged_upsample_mips_dspr2 (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf, JSAMPLE* range); EXTERN(void) jsimd_h2v2_extbgr_merged_upsample_mips_dspr2 (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf, JSAMPLE* range); EXTERN(void) jsimd_h2v2_extbgrx_merged_upsample_mips_dspr2 (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf, JSAMPLE* range); EXTERN(void) jsimd_h2v2_extxbgr_merged_upsample_mips_dspr2 (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf, JSAMPLE* range); EXTERN(void) jsimd_h2v2_extxrgb_merged_upsample_mips_dspr2 (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf, JSAMPLE* range); /* Sample Conversion */ EXTERN(void) jsimd_convsamp_mmx (JSAMPARRAY sample_data, JDIMENSION start_col, DCTELEM * workspace); EXTERN(void) jsimd_convsamp_sse2 (JSAMPARRAY sample_data, JDIMENSION start_col, DCTELEM * workspace); EXTERN(void) jsimd_convsamp_neon (JSAMPARRAY sample_data, JDIMENSION start_col, DCTELEM * workspace); EXTERN(void) jsimd_convsamp_mips_dspr2 (JSAMPARRAY sample_data, JDIMENSION start_col, DCTELEM * workspace); /* Floating Point Sample Conversion */ EXTERN(void) jsimd_convsamp_float_3dnow (JSAMPARRAY sample_data, JDIMENSION start_col, FAST_FLOAT * workspace); EXTERN(void) jsimd_convsamp_float_sse (JSAMPARRAY sample_data, JDIMENSION start_col, FAST_FLOAT * workspace); EXTERN(void) jsimd_convsamp_float_sse2 (JSAMPARRAY sample_data, JDIMENSION start_col, FAST_FLOAT * workspace); EXTERN(void) jsimd_convsamp_float_mips_dspr2 (JSAMPARRAY sample_data, JDIMENSION start_col, FAST_FLOAT * workspace); /* Slow Integer Forward DCT */ EXTERN(void) jsimd_fdct_islow_mmx (DCTELEM * data); extern const int jconst_fdct_islow_sse2[]; EXTERN(void) jsimd_fdct_islow_sse2 (DCTELEM * data); EXTERN(void) jsimd_fdct_islow_mips_dspr2 (DCTELEM * data); /* Fast Integer Forward DCT */ EXTERN(void) jsimd_fdct_ifast_mmx (DCTELEM * data); extern const int jconst_fdct_ifast_sse2[]; EXTERN(void) jsimd_fdct_ifast_sse2 (DCTELEM * data); EXTERN(void) jsimd_fdct_ifast_neon (DCTELEM * data); EXTERN(void) jsimd_fdct_ifast_mips_dspr2 (DCTELEM * data); /* Floating Point Forward DCT */ EXTERN(void) jsimd_fdct_float_3dnow (FAST_FLOAT * data); extern const int jconst_fdct_float_sse[]; EXTERN(void) jsimd_fdct_float_sse (FAST_FLOAT * data); /* Quantization */ EXTERN(void) jsimd_quantize_mmx (JCOEFPTR coef_block, DCTELEM * divisors, DCTELEM * workspace); EXTERN(void) jsimd_quantize_sse2 (JCOEFPTR coef_block, DCTELEM * divisors, DCTELEM * workspace); EXTERN(void) jsimd_quantize_neon (JCOEFPTR coef_block, DCTELEM * divisors, DCTELEM * workspace); EXTERN(void) jsimd_quantize_mips_dspr2 (JCOEFPTR coef_block, DCTELEM * divisors, DCTELEM * workspace); /* Floating Point Quantization */ EXTERN(void) jsimd_quantize_float_3dnow (JCOEFPTR coef_block, FAST_FLOAT * divisors, FAST_FLOAT * workspace); EXTERN(void) jsimd_quantize_float_sse (JCOEFPTR coef_block, FAST_FLOAT * divisors, FAST_FLOAT * workspace); EXTERN(void) jsimd_quantize_float_sse2 (JCOEFPTR coef_block, FAST_FLOAT * divisors, FAST_FLOAT * workspace); EXTERN(void) jsimd_quantize_float_mips_dspr2 (JCOEFPTR coef_block, FAST_FLOAT * divisors, FAST_FLOAT * workspace); /* Scaled Inverse DCT */ EXTERN(void) jsimd_idct_2x2_mmx (void * dct_table, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); EXTERN(void) jsimd_idct_4x4_mmx (void * dct_table, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); extern const int jconst_idct_red_sse2[]; EXTERN(void) jsimd_idct_2x2_sse2 (void * dct_table, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); EXTERN(void) jsimd_idct_4x4_sse2 (void * dct_table, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); EXTERN(void) jsimd_idct_2x2_neon (void * dct_table, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); EXTERN(void) jsimd_idct_4x4_neon (void * dct_table, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); EXTERN(void) jsimd_idct_2x2_mips_dspr2 (void * dct_table, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); EXTERN(void) jsimd_idct_4x4_mips_dspr2 (void * dct_table, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col, int * workspace); EXTERN(void) jsimd_idct_6x6_mips_dspr2 (void * dct_table, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); EXTERN(void) jsimd_idct_12x12_pass1_mips_dspr2 (JCOEFPTR coef_block, void * dct_table, int * workspace); EXTERN(void) jsimd_idct_12x12_pass2_mips_dspr2 (int * workspace, int * output); /* Slow Integer Inverse DCT */ EXTERN(void) jsimd_idct_islow_mmx (void * dct_table, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); extern const int jconst_idct_islow_sse2[]; EXTERN(void) jsimd_idct_islow_sse2 (void * dct_table, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); EXTERN(void) jsimd_idct_islow_neon (void * dct_table, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); EXTERN(void) jsimd_idct_islow_mips_dspr2 (void * dct_table, JCOEFPTR coef_block, int * output_buf, JSAMPLE * output_col); /* Fast Integer Inverse DCT */ EXTERN(void) jsimd_idct_ifast_mmx (void * dct_table, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); extern const int jconst_idct_ifast_sse2[]; EXTERN(void) jsimd_idct_ifast_sse2 (void * dct_table, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); EXTERN(void) jsimd_idct_ifast_neon (void * dct_table, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); EXTERN(void) jsimd_idct_ifast_cols_mips_dspr2 (JCOEF * inptr, IFAST_MULT_TYPE * quantptr, DCTELEM * wsptr, const int * idct_coefs); EXTERN(void) jsimd_idct_ifast_rows_mips_dspr2 (DCTELEM * wsptr, JSAMPARRAY output_buf, JDIMENSION output_col, const int * idct_coefs); /* Floating Point Inverse DCT */ EXTERN(void) jsimd_idct_float_3dnow (void * dct_table, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); extern const int jconst_idct_float_sse[]; EXTERN(void) jsimd_idct_float_sse (void * dct_table, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); extern const int jconst_idct_float_sse2[]; EXTERN(void) jsimd_idct_float_sse2 (void * dct_table, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); libjpeg-turbo-1.4.2/simd/jquantf-sse2.asm0000644000076500007650000001406712600050400015171 00000000000000; ; jquantf.asm - sample data conversion and quantization (SSE & SSE2) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; ; Based on ; x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; [TAB8] %include "jsimdext.inc" %include "jdct.inc" ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 32 ; ; Load data into workspace, applying unsigned->signed conversion ; ; GLOBAL(void) ; jsimd_convsamp_float_sse2 (JSAMPARRAY sample_data, JDIMENSION start_col, ; FAST_FLOAT * workspace); ; %define sample_data ebp+8 ; JSAMPARRAY sample_data %define start_col ebp+12 ; JDIMENSION start_col %define workspace ebp+16 ; FAST_FLOAT * workspace align 16 global EXTN(jsimd_convsamp_float_sse2) EXTN(jsimd_convsamp_float_sse2): push ebp mov ebp,esp push ebx ; push ecx ; need not be preserved ; push edx ; need not be preserved push esi push edi pcmpeqw xmm7,xmm7 psllw xmm7,7 packsswb xmm7,xmm7 ; xmm7 = PB_CENTERJSAMPLE (0x808080..) mov esi, JSAMPARRAY [sample_data] ; (JSAMPROW *) mov eax, JDIMENSION [start_col] mov edi, POINTER [workspace] ; (DCTELEM *) mov ecx, DCTSIZE/2 alignx 16,7 .convloop: mov ebx, JSAMPROW [esi+0*SIZEOF_JSAMPROW] ; (JSAMPLE *) mov edx, JSAMPROW [esi+1*SIZEOF_JSAMPROW] ; (JSAMPLE *) movq xmm0, XMM_MMWORD [ebx+eax*SIZEOF_JSAMPLE] movq xmm1, XMM_MMWORD [edx+eax*SIZEOF_JSAMPLE] psubb xmm0,xmm7 ; xmm0=(01234567) psubb xmm1,xmm7 ; xmm1=(89ABCDEF) punpcklbw xmm0,xmm0 ; xmm0=(*0*1*2*3*4*5*6*7) punpcklbw xmm1,xmm1 ; xmm1=(*8*9*A*B*C*D*E*F) punpcklwd xmm2,xmm0 ; xmm2=(***0***1***2***3) punpckhwd xmm0,xmm0 ; xmm0=(***4***5***6***7) punpcklwd xmm3,xmm1 ; xmm3=(***8***9***A***B) punpckhwd xmm1,xmm1 ; xmm1=(***C***D***E***F) psrad xmm2,(DWORD_BIT-BYTE_BIT) ; xmm2=(0123) psrad xmm0,(DWORD_BIT-BYTE_BIT) ; xmm0=(4567) cvtdq2ps xmm2,xmm2 ; xmm2=(0123) cvtdq2ps xmm0,xmm0 ; xmm0=(4567) psrad xmm3,(DWORD_BIT-BYTE_BIT) ; xmm3=(89AB) psrad xmm1,(DWORD_BIT-BYTE_BIT) ; xmm1=(CDEF) cvtdq2ps xmm3,xmm3 ; xmm3=(89AB) cvtdq2ps xmm1,xmm1 ; xmm1=(CDEF) movaps XMMWORD [XMMBLOCK(0,0,edi,SIZEOF_FAST_FLOAT)], xmm2 movaps XMMWORD [XMMBLOCK(0,1,edi,SIZEOF_FAST_FLOAT)], xmm0 movaps XMMWORD [XMMBLOCK(1,0,edi,SIZEOF_FAST_FLOAT)], xmm3 movaps XMMWORD [XMMBLOCK(1,1,edi,SIZEOF_FAST_FLOAT)], xmm1 add esi, byte 2*SIZEOF_JSAMPROW add edi, byte 2*DCTSIZE*SIZEOF_FAST_FLOAT dec ecx jnz short .convloop pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; need not be preserved pop ebx pop ebp ret ; -------------------------------------------------------------------------- ; ; Quantize/descale the coefficients, and store into coef_block ; ; GLOBAL(void) ; jsimd_quantize_float_sse2 (JCOEFPTR coef_block, FAST_FLOAT * divisors, ; FAST_FLOAT * workspace); ; %define coef_block ebp+8 ; JCOEFPTR coef_block %define divisors ebp+12 ; FAST_FLOAT * divisors %define workspace ebp+16 ; FAST_FLOAT * workspace align 16 global EXTN(jsimd_quantize_float_sse2) EXTN(jsimd_quantize_float_sse2): push ebp mov ebp,esp ; push ebx ; unused ; push ecx ; unused ; push edx ; need not be preserved push esi push edi mov esi, POINTER [workspace] mov edx, POINTER [divisors] mov edi, JCOEFPTR [coef_block] mov eax, DCTSIZE2/16 alignx 16,7 .quantloop: movaps xmm0, XMMWORD [XMMBLOCK(0,0,esi,SIZEOF_FAST_FLOAT)] movaps xmm1, XMMWORD [XMMBLOCK(0,1,esi,SIZEOF_FAST_FLOAT)] mulps xmm0, XMMWORD [XMMBLOCK(0,0,edx,SIZEOF_FAST_FLOAT)] mulps xmm1, XMMWORD [XMMBLOCK(0,1,edx,SIZEOF_FAST_FLOAT)] movaps xmm2, XMMWORD [XMMBLOCK(1,0,esi,SIZEOF_FAST_FLOAT)] movaps xmm3, XMMWORD [XMMBLOCK(1,1,esi,SIZEOF_FAST_FLOAT)] mulps xmm2, XMMWORD [XMMBLOCK(1,0,edx,SIZEOF_FAST_FLOAT)] mulps xmm3, XMMWORD [XMMBLOCK(1,1,edx,SIZEOF_FAST_FLOAT)] cvtps2dq xmm0,xmm0 cvtps2dq xmm1,xmm1 cvtps2dq xmm2,xmm2 cvtps2dq xmm3,xmm3 packssdw xmm0,xmm1 packssdw xmm2,xmm3 movdqa XMMWORD [XMMBLOCK(0,0,edi,SIZEOF_JCOEF)], xmm0 movdqa XMMWORD [XMMBLOCK(1,0,edi,SIZEOF_JCOEF)], xmm2 add esi, byte 16*SIZEOF_FAST_FLOAT add edx, byte 16*SIZEOF_FAST_FLOAT add edi, byte 16*SIZEOF_JCOEF dec eax jnz short .quantloop pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; unused ; pop ebx ; unused pop ebp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 16 libjpeg-turbo-1.4.2/simd/jsimd_arm64.c0000644000076500007650000002465412600050400014433 00000000000000/* * jsimd_arm64.c * * Copyright 2009 Pierre Ossman for Cendio AB * Copyright 2009-2011, 2013-2014 D. R. Commander * * Based on the x86 SIMD extension for IJG JPEG library, * Copyright (C) 1999-2006, MIYASAKA Masaru. * For conditions of distribution and use, see copyright notice in jsimdext.inc * * This file contains the interface between the "normal" portions * of the library and the SIMD implementations when running on a * 64-bit ARM architecture. */ #define JPEG_INTERNALS #include "../jinclude.h" #include "../jpeglib.h" #include "../jsimd.h" #include "../jdct.h" #include "../jsimddct.h" #include "jsimd.h" #include #include #include static unsigned int simd_support = ~0; /* * Check what SIMD accelerations are supported. * * FIXME: This code is racy under a multi-threaded environment. */ /* * ARMv8 architectures support NEON extensions by default. * It is no longer optional as it was with ARMv7. */ LOCAL(void) init_simd (void) { char *env = NULL; if (simd_support != ~0U) return; simd_support = 0; simd_support |= JSIMD_ARM_NEON; /* Force different settings through environment variables */ env = getenv("JSIMD_FORCENEON"); if ((env != NULL) && (strcmp(env, "1") == 0)) simd_support &= JSIMD_ARM_NEON; env = getenv("JSIMD_FORCENONE"); if ((env != NULL) && (strcmp(env, "1") == 0)) simd_support = 0; } GLOBAL(int) jsimd_can_rgb_ycc (void) { init_simd(); return 0; } GLOBAL(int) jsimd_can_rgb_gray (void) { init_simd(); return 0; } GLOBAL(int) jsimd_can_ycc_rgb (void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if ((RGB_PIXELSIZE != 3) && (RGB_PIXELSIZE != 4)) return 0; if (simd_support & JSIMD_ARM_NEON) return 1; return 0; } GLOBAL(int) jsimd_can_ycc_rgb565 (void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (simd_support & JSIMD_ARM_NEON) return 1; return 0; } GLOBAL(void) jsimd_rgb_ycc_convert (j_compress_ptr cinfo, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows) { } GLOBAL(void) jsimd_rgb_gray_convert (j_compress_ptr cinfo, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows) { } GLOBAL(void) jsimd_ycc_rgb_convert (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) { void (*neonfct)(JDIMENSION, JSAMPIMAGE, JDIMENSION, JSAMPARRAY, int); switch(cinfo->out_color_space) { case JCS_EXT_RGB: neonfct=jsimd_ycc_extrgb_convert_neon; break; case JCS_EXT_RGBX: case JCS_EXT_RGBA: neonfct=jsimd_ycc_extrgbx_convert_neon; break; case JCS_EXT_BGR: neonfct=jsimd_ycc_extbgr_convert_neon; break; case JCS_EXT_BGRX: case JCS_EXT_BGRA: neonfct=jsimd_ycc_extbgrx_convert_neon; break; case JCS_EXT_XBGR: case JCS_EXT_ABGR: neonfct=jsimd_ycc_extxbgr_convert_neon; break; case JCS_EXT_XRGB: case JCS_EXT_ARGB: neonfct=jsimd_ycc_extxrgb_convert_neon; break; default: neonfct=jsimd_ycc_extrgb_convert_neon; break; } if (simd_support & JSIMD_ARM_NEON) neonfct(cinfo->output_width, input_buf, input_row, output_buf, num_rows); } GLOBAL(void) jsimd_ycc_rgb565_convert (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) { if (simd_support & JSIMD_ARM_NEON) jsimd_ycc_rgb565_convert_neon(cinfo->output_width, input_buf, input_row, output_buf, num_rows); } GLOBAL(int) jsimd_can_h2v2_downsample (void) { init_simd(); return 0; } GLOBAL(int) jsimd_can_h2v1_downsample (void) { init_simd(); return 0; } GLOBAL(void) jsimd_h2v2_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, JSAMPARRAY input_data, JSAMPARRAY output_data) { } GLOBAL(void) jsimd_h2v1_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, JSAMPARRAY input_data, JSAMPARRAY output_data) { } GLOBAL(int) jsimd_can_h2v2_upsample (void) { init_simd(); return 0; } GLOBAL(int) jsimd_can_h2v1_upsample (void) { init_simd(); return 0; } GLOBAL(void) jsimd_h2v2_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) { } GLOBAL(void) jsimd_h2v1_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) { } GLOBAL(int) jsimd_can_h2v2_fancy_upsample (void) { init_simd(); return 0; } GLOBAL(int) jsimd_can_h2v1_fancy_upsample (void) { init_simd(); return 0; } GLOBAL(void) jsimd_h2v2_fancy_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) { } GLOBAL(void) jsimd_h2v1_fancy_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) { } GLOBAL(int) jsimd_can_h2v2_merged_upsample (void) { init_simd(); return 0; } GLOBAL(int) jsimd_can_h2v1_merged_upsample (void) { init_simd(); return 0; } GLOBAL(void) jsimd_h2v2_merged_upsample (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf) { } GLOBAL(void) jsimd_h2v1_merged_upsample (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf) { } GLOBAL(int) jsimd_can_convsamp (void) { init_simd(); return 0; } GLOBAL(int) jsimd_can_convsamp_float (void) { init_simd(); return 0; } GLOBAL(void) jsimd_convsamp (JSAMPARRAY sample_data, JDIMENSION start_col, DCTELEM * workspace) { } GLOBAL(void) jsimd_convsamp_float (JSAMPARRAY sample_data, JDIMENSION start_col, FAST_FLOAT * workspace) { } GLOBAL(int) jsimd_can_fdct_islow (void) { init_simd(); return 0; } GLOBAL(int) jsimd_can_fdct_ifast (void) { init_simd(); return 0; } GLOBAL(int) jsimd_can_fdct_float (void) { init_simd(); return 0; } GLOBAL(void) jsimd_fdct_islow (DCTELEM * data) { } GLOBAL(void) jsimd_fdct_ifast (DCTELEM * data) { } GLOBAL(void) jsimd_fdct_float (FAST_FLOAT * data) { } GLOBAL(int) jsimd_can_quantize (void) { init_simd(); return 0; } GLOBAL(int) jsimd_can_quantize_float (void) { init_simd(); return 0; } GLOBAL(void) jsimd_quantize (JCOEFPTR coef_block, DCTELEM * divisors, DCTELEM * workspace) { } GLOBAL(void) jsimd_quantize_float (JCOEFPTR coef_block, FAST_FLOAT * divisors, FAST_FLOAT * workspace) { } GLOBAL(int) jsimd_can_idct_2x2 (void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (sizeof(JCOEF) != 2) return 0; if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (sizeof(ISLOW_MULT_TYPE) != 2) return 0; if (simd_support & JSIMD_ARM_NEON) return 1; return 0; } GLOBAL(int) jsimd_can_idct_4x4 (void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (sizeof(JCOEF) != 2) return 0; if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (sizeof(ISLOW_MULT_TYPE) != 2) return 0; if (simd_support & JSIMD_ARM_NEON) return 1; return 0; } GLOBAL(void) jsimd_idct_2x2 (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { if (simd_support & JSIMD_ARM_NEON) jsimd_idct_2x2_neon(compptr->dct_table, coef_block, output_buf, output_col); } GLOBAL(void) jsimd_idct_4x4 (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { if (simd_support & JSIMD_ARM_NEON) jsimd_idct_4x4_neon(compptr->dct_table, coef_block, output_buf, output_col); } GLOBAL(int) jsimd_can_idct_islow (void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (sizeof(JCOEF) != 2) return 0; if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (sizeof(ISLOW_MULT_TYPE) != 2) return 0; if (simd_support & JSIMD_ARM_NEON) return 1; return 0; } GLOBAL(int) jsimd_can_idct_ifast (void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (sizeof(JCOEF) != 2) return 0; if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (sizeof(IFAST_MULT_TYPE) != 2) return 0; if (IFAST_SCALE_BITS != 2) return 0; if (simd_support & JSIMD_ARM_NEON) return 1; return 0; } GLOBAL(int) jsimd_can_idct_float (void) { init_simd(); return 0; } GLOBAL(void) jsimd_idct_islow (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { if (simd_support & JSIMD_ARM_NEON) jsimd_idct_islow_neon(compptr->dct_table, coef_block, output_buf, output_col); } GLOBAL(void) jsimd_idct_ifast (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { if (simd_support & JSIMD_ARM_NEON) jsimd_idct_ifast_neon(compptr->dct_table, coef_block, output_buf, output_col); } GLOBAL(void) jsimd_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { } libjpeg-turbo-1.4.2/simd/jfdctfst-mmx.asm0000644000076500007650000003661112600050400015254 00000000000000; ; jfdctfst.asm - fast integer FDCT (MMX) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; ; Based on ; x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; This file contains a fast, not so accurate integer implementation of ; the forward DCT (Discrete Cosine Transform). The following code is ; based directly on the IJG's original jfdctfst.c; see the jfdctfst.c ; for more details. ; ; [TAB8] %include "jsimdext.inc" %include "jdct.inc" ; -------------------------------------------------------------------------- %define CONST_BITS 8 ; 14 is also OK. %if CONST_BITS == 8 F_0_382 equ 98 ; FIX(0.382683433) F_0_541 equ 139 ; FIX(0.541196100) F_0_707 equ 181 ; FIX(0.707106781) F_1_306 equ 334 ; FIX(1.306562965) %else ; NASM cannot do compile-time arithmetic on floating-point constants. %define DESCALE(x,n) (((x)+(1<<((n)-1)))>>(n)) F_0_382 equ DESCALE( 410903207,30-CONST_BITS) ; FIX(0.382683433) F_0_541 equ DESCALE( 581104887,30-CONST_BITS) ; FIX(0.541196100) F_0_707 equ DESCALE( 759250124,30-CONST_BITS) ; FIX(0.707106781) F_1_306 equ DESCALE(1402911301,30-CONST_BITS) ; FIX(1.306562965) %endif ; -------------------------------------------------------------------------- SECTION SEG_CONST ; PRE_MULTIPLY_SCALE_BITS <= 2 (to avoid overflow) ; CONST_BITS + CONST_SHIFT + PRE_MULTIPLY_SCALE_BITS == 16 (for pmulhw) %define PRE_MULTIPLY_SCALE_BITS 2 %define CONST_SHIFT (16 - PRE_MULTIPLY_SCALE_BITS - CONST_BITS) alignz 16 global EXTN(jconst_fdct_ifast_mmx) EXTN(jconst_fdct_ifast_mmx): PW_F0707 times 4 dw F_0_707 << CONST_SHIFT PW_F0382 times 4 dw F_0_382 << CONST_SHIFT PW_F0541 times 4 dw F_0_541 << CONST_SHIFT PW_F1306 times 4 dw F_1_306 << CONST_SHIFT alignz 16 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 32 ; ; Perform the forward DCT on one block of samples. ; ; GLOBAL(void) ; jsimd_fdct_ifast_mmx (DCTELEM * data) ; %define data(b) (b)+8 ; DCTELEM * data %define original_ebp ebp+0 %define wk(i) ebp-(WK_NUM-(i))*SIZEOF_MMWORD ; mmword wk[WK_NUM] %define WK_NUM 2 align 16 global EXTN(jsimd_fdct_ifast_mmx) EXTN(jsimd_fdct_ifast_mmx): push ebp mov eax,esp ; eax = original ebp sub esp, byte 4 and esp, byte (-SIZEOF_MMWORD) ; align to 64 bits mov [esp],eax mov ebp,esp ; ebp = aligned ebp lea esp, [wk(0)] pushpic ebx ; push ecx ; need not be preserved ; push edx ; need not be preserved ; push esi ; unused ; push edi ; unused get_GOT ebx ; get GOT address ; ---- Pass 1: process rows. mov edx, POINTER [data(eax)] ; (DCTELEM *) mov ecx, DCTSIZE/4 alignx 16,7 .rowloop: movq mm0, MMWORD [MMBLOCK(2,0,edx,SIZEOF_DCTELEM)] movq mm1, MMWORD [MMBLOCK(3,0,edx,SIZEOF_DCTELEM)] movq mm2, MMWORD [MMBLOCK(2,1,edx,SIZEOF_DCTELEM)] movq mm3, MMWORD [MMBLOCK(3,1,edx,SIZEOF_DCTELEM)] ; mm0=(20 21 22 23), mm2=(24 25 26 27) ; mm1=(30 31 32 33), mm3=(34 35 36 37) movq mm4,mm0 ; transpose coefficients(phase 1) punpcklwd mm0,mm1 ; mm0=(20 30 21 31) punpckhwd mm4,mm1 ; mm4=(22 32 23 33) movq mm5,mm2 ; transpose coefficients(phase 1) punpcklwd mm2,mm3 ; mm2=(24 34 25 35) punpckhwd mm5,mm3 ; mm5=(26 36 27 37) movq mm6, MMWORD [MMBLOCK(0,0,edx,SIZEOF_DCTELEM)] movq mm7, MMWORD [MMBLOCK(1,0,edx,SIZEOF_DCTELEM)] movq mm1, MMWORD [MMBLOCK(0,1,edx,SIZEOF_DCTELEM)] movq mm3, MMWORD [MMBLOCK(1,1,edx,SIZEOF_DCTELEM)] ; mm6=(00 01 02 03), mm1=(04 05 06 07) ; mm7=(10 11 12 13), mm3=(14 15 16 17) movq MMWORD [wk(0)], mm4 ; wk(0)=(22 32 23 33) movq MMWORD [wk(1)], mm2 ; wk(1)=(24 34 25 35) movq mm4,mm6 ; transpose coefficients(phase 1) punpcklwd mm6,mm7 ; mm6=(00 10 01 11) punpckhwd mm4,mm7 ; mm4=(02 12 03 13) movq mm2,mm1 ; transpose coefficients(phase 1) punpcklwd mm1,mm3 ; mm1=(04 14 05 15) punpckhwd mm2,mm3 ; mm2=(06 16 07 17) movq mm7,mm6 ; transpose coefficients(phase 2) punpckldq mm6,mm0 ; mm6=(00 10 20 30)=data0 punpckhdq mm7,mm0 ; mm7=(01 11 21 31)=data1 movq mm3,mm2 ; transpose coefficients(phase 2) punpckldq mm2,mm5 ; mm2=(06 16 26 36)=data6 punpckhdq mm3,mm5 ; mm3=(07 17 27 37)=data7 movq mm0,mm7 movq mm5,mm6 psubw mm7,mm2 ; mm7=data1-data6=tmp6 psubw mm6,mm3 ; mm6=data0-data7=tmp7 paddw mm0,mm2 ; mm0=data1+data6=tmp1 paddw mm5,mm3 ; mm5=data0+data7=tmp0 movq mm2, MMWORD [wk(0)] ; mm2=(22 32 23 33) movq mm3, MMWORD [wk(1)] ; mm3=(24 34 25 35) movq MMWORD [wk(0)], mm7 ; wk(0)=tmp6 movq MMWORD [wk(1)], mm6 ; wk(1)=tmp7 movq mm7,mm4 ; transpose coefficients(phase 2) punpckldq mm4,mm2 ; mm4=(02 12 22 32)=data2 punpckhdq mm7,mm2 ; mm7=(03 13 23 33)=data3 movq mm6,mm1 ; transpose coefficients(phase 2) punpckldq mm1,mm3 ; mm1=(04 14 24 34)=data4 punpckhdq mm6,mm3 ; mm6=(05 15 25 35)=data5 movq mm2,mm7 movq mm3,mm4 paddw mm7,mm1 ; mm7=data3+data4=tmp3 paddw mm4,mm6 ; mm4=data2+data5=tmp2 psubw mm2,mm1 ; mm2=data3-data4=tmp4 psubw mm3,mm6 ; mm3=data2-data5=tmp5 ; -- Even part movq mm1,mm5 movq mm6,mm0 psubw mm5,mm7 ; mm5=tmp13 psubw mm0,mm4 ; mm0=tmp12 paddw mm1,mm7 ; mm1=tmp10 paddw mm6,mm4 ; mm6=tmp11 paddw mm0,mm5 psllw mm0,PRE_MULTIPLY_SCALE_BITS pmulhw mm0,[GOTOFF(ebx,PW_F0707)] ; mm0=z1 movq mm7,mm1 movq mm4,mm5 psubw mm1,mm6 ; mm1=data4 psubw mm5,mm0 ; mm5=data6 paddw mm7,mm6 ; mm7=data0 paddw mm4,mm0 ; mm4=data2 movq MMWORD [MMBLOCK(0,1,edx,SIZEOF_DCTELEM)], mm1 movq MMWORD [MMBLOCK(2,1,edx,SIZEOF_DCTELEM)], mm5 movq MMWORD [MMBLOCK(0,0,edx,SIZEOF_DCTELEM)], mm7 movq MMWORD [MMBLOCK(2,0,edx,SIZEOF_DCTELEM)], mm4 ; -- Odd part movq mm6, MMWORD [wk(0)] ; mm6=tmp6 movq mm0, MMWORD [wk(1)] ; mm0=tmp7 paddw mm2,mm3 ; mm2=tmp10 paddw mm3,mm6 ; mm3=tmp11 paddw mm6,mm0 ; mm6=tmp12, mm0=tmp7 psllw mm2,PRE_MULTIPLY_SCALE_BITS psllw mm6,PRE_MULTIPLY_SCALE_BITS psllw mm3,PRE_MULTIPLY_SCALE_BITS pmulhw mm3,[GOTOFF(ebx,PW_F0707)] ; mm3=z3 movq mm1,mm2 ; mm1=tmp10 psubw mm2,mm6 pmulhw mm2,[GOTOFF(ebx,PW_F0382)] ; mm2=z5 pmulhw mm1,[GOTOFF(ebx,PW_F0541)] ; mm1=MULTIPLY(tmp10,FIX_0_54119610) pmulhw mm6,[GOTOFF(ebx,PW_F1306)] ; mm6=MULTIPLY(tmp12,FIX_1_30656296) paddw mm1,mm2 ; mm1=z2 paddw mm6,mm2 ; mm6=z4 movq mm5,mm0 psubw mm0,mm3 ; mm0=z13 paddw mm5,mm3 ; mm5=z11 movq mm7,mm0 movq mm4,mm5 psubw mm0,mm1 ; mm0=data3 psubw mm5,mm6 ; mm5=data7 paddw mm7,mm1 ; mm7=data5 paddw mm4,mm6 ; mm4=data1 movq MMWORD [MMBLOCK(3,0,edx,SIZEOF_DCTELEM)], mm0 movq MMWORD [MMBLOCK(3,1,edx,SIZEOF_DCTELEM)], mm5 movq MMWORD [MMBLOCK(1,1,edx,SIZEOF_DCTELEM)], mm7 movq MMWORD [MMBLOCK(1,0,edx,SIZEOF_DCTELEM)], mm4 add edx, byte 4*DCTSIZE*SIZEOF_DCTELEM dec ecx jnz near .rowloop ; ---- Pass 2: process columns. mov edx, POINTER [data(eax)] ; (DCTELEM *) mov ecx, DCTSIZE/4 alignx 16,7 .columnloop: movq mm0, MMWORD [MMBLOCK(2,0,edx,SIZEOF_DCTELEM)] movq mm1, MMWORD [MMBLOCK(3,0,edx,SIZEOF_DCTELEM)] movq mm2, MMWORD [MMBLOCK(6,0,edx,SIZEOF_DCTELEM)] movq mm3, MMWORD [MMBLOCK(7,0,edx,SIZEOF_DCTELEM)] ; mm0=(02 12 22 32), mm2=(42 52 62 72) ; mm1=(03 13 23 33), mm3=(43 53 63 73) movq mm4,mm0 ; transpose coefficients(phase 1) punpcklwd mm0,mm1 ; mm0=(02 03 12 13) punpckhwd mm4,mm1 ; mm4=(22 23 32 33) movq mm5,mm2 ; transpose coefficients(phase 1) punpcklwd mm2,mm3 ; mm2=(42 43 52 53) punpckhwd mm5,mm3 ; mm5=(62 63 72 73) movq mm6, MMWORD [MMBLOCK(0,0,edx,SIZEOF_DCTELEM)] movq mm7, MMWORD [MMBLOCK(1,0,edx,SIZEOF_DCTELEM)] movq mm1, MMWORD [MMBLOCK(4,0,edx,SIZEOF_DCTELEM)] movq mm3, MMWORD [MMBLOCK(5,0,edx,SIZEOF_DCTELEM)] ; mm6=(00 10 20 30), mm1=(40 50 60 70) ; mm7=(01 11 21 31), mm3=(41 51 61 71) movq MMWORD [wk(0)], mm4 ; wk(0)=(22 23 32 33) movq MMWORD [wk(1)], mm2 ; wk(1)=(42 43 52 53) movq mm4,mm6 ; transpose coefficients(phase 1) punpcklwd mm6,mm7 ; mm6=(00 01 10 11) punpckhwd mm4,mm7 ; mm4=(20 21 30 31) movq mm2,mm1 ; transpose coefficients(phase 1) punpcklwd mm1,mm3 ; mm1=(40 41 50 51) punpckhwd mm2,mm3 ; mm2=(60 61 70 71) movq mm7,mm6 ; transpose coefficients(phase 2) punpckldq mm6,mm0 ; mm6=(00 01 02 03)=data0 punpckhdq mm7,mm0 ; mm7=(10 11 12 13)=data1 movq mm3,mm2 ; transpose coefficients(phase 2) punpckldq mm2,mm5 ; mm2=(60 61 62 63)=data6 punpckhdq mm3,mm5 ; mm3=(70 71 72 73)=data7 movq mm0,mm7 movq mm5,mm6 psubw mm7,mm2 ; mm7=data1-data6=tmp6 psubw mm6,mm3 ; mm6=data0-data7=tmp7 paddw mm0,mm2 ; mm0=data1+data6=tmp1 paddw mm5,mm3 ; mm5=data0+data7=tmp0 movq mm2, MMWORD [wk(0)] ; mm2=(22 23 32 33) movq mm3, MMWORD [wk(1)] ; mm3=(42 43 52 53) movq MMWORD [wk(0)], mm7 ; wk(0)=tmp6 movq MMWORD [wk(1)], mm6 ; wk(1)=tmp7 movq mm7,mm4 ; transpose coefficients(phase 2) punpckldq mm4,mm2 ; mm4=(20 21 22 23)=data2 punpckhdq mm7,mm2 ; mm7=(30 31 32 33)=data3 movq mm6,mm1 ; transpose coefficients(phase 2) punpckldq mm1,mm3 ; mm1=(40 41 42 43)=data4 punpckhdq mm6,mm3 ; mm6=(50 51 52 53)=data5 movq mm2,mm7 movq mm3,mm4 paddw mm7,mm1 ; mm7=data3+data4=tmp3 paddw mm4,mm6 ; mm4=data2+data5=tmp2 psubw mm2,mm1 ; mm2=data3-data4=tmp4 psubw mm3,mm6 ; mm3=data2-data5=tmp5 ; -- Even part movq mm1,mm5 movq mm6,mm0 psubw mm5,mm7 ; mm5=tmp13 psubw mm0,mm4 ; mm0=tmp12 paddw mm1,mm7 ; mm1=tmp10 paddw mm6,mm4 ; mm6=tmp11 paddw mm0,mm5 psllw mm0,PRE_MULTIPLY_SCALE_BITS pmulhw mm0,[GOTOFF(ebx,PW_F0707)] ; mm0=z1 movq mm7,mm1 movq mm4,mm5 psubw mm1,mm6 ; mm1=data4 psubw mm5,mm0 ; mm5=data6 paddw mm7,mm6 ; mm7=data0 paddw mm4,mm0 ; mm4=data2 movq MMWORD [MMBLOCK(4,0,edx,SIZEOF_DCTELEM)], mm1 movq MMWORD [MMBLOCK(6,0,edx,SIZEOF_DCTELEM)], mm5 movq MMWORD [MMBLOCK(0,0,edx,SIZEOF_DCTELEM)], mm7 movq MMWORD [MMBLOCK(2,0,edx,SIZEOF_DCTELEM)], mm4 ; -- Odd part movq mm6, MMWORD [wk(0)] ; mm6=tmp6 movq mm0, MMWORD [wk(1)] ; mm0=tmp7 paddw mm2,mm3 ; mm2=tmp10 paddw mm3,mm6 ; mm3=tmp11 paddw mm6,mm0 ; mm6=tmp12, mm0=tmp7 psllw mm2,PRE_MULTIPLY_SCALE_BITS psllw mm6,PRE_MULTIPLY_SCALE_BITS psllw mm3,PRE_MULTIPLY_SCALE_BITS pmulhw mm3,[GOTOFF(ebx,PW_F0707)] ; mm3=z3 movq mm1,mm2 ; mm1=tmp10 psubw mm2,mm6 pmulhw mm2,[GOTOFF(ebx,PW_F0382)] ; mm2=z5 pmulhw mm1,[GOTOFF(ebx,PW_F0541)] ; mm1=MULTIPLY(tmp10,FIX_0_54119610) pmulhw mm6,[GOTOFF(ebx,PW_F1306)] ; mm6=MULTIPLY(tmp12,FIX_1_30656296) paddw mm1,mm2 ; mm1=z2 paddw mm6,mm2 ; mm6=z4 movq mm5,mm0 psubw mm0,mm3 ; mm0=z13 paddw mm5,mm3 ; mm5=z11 movq mm7,mm0 movq mm4,mm5 psubw mm0,mm1 ; mm0=data3 psubw mm5,mm6 ; mm5=data7 paddw mm7,mm1 ; mm7=data5 paddw mm4,mm6 ; mm4=data1 movq MMWORD [MMBLOCK(3,0,edx,SIZEOF_DCTELEM)], mm0 movq MMWORD [MMBLOCK(7,0,edx,SIZEOF_DCTELEM)], mm5 movq MMWORD [MMBLOCK(5,0,edx,SIZEOF_DCTELEM)], mm7 movq MMWORD [MMBLOCK(1,0,edx,SIZEOF_DCTELEM)], mm4 add edx, byte 4*SIZEOF_DCTELEM dec ecx jnz near .columnloop emms ; empty MMX state ; pop edi ; unused ; pop esi ; unused ; pop edx ; need not be preserved ; pop ecx ; need not be preserved poppic ebx mov esp,ebp ; esp <- aligned ebp pop esp ; esp <- original ebp pop ebp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 16 libjpeg-turbo-1.4.2/simd/jsimd_x86_64.c0000644000076500007650000004255012600050400014433 00000000000000/* * jsimd_x86_64.c * * Copyright 2009 Pierre Ossman for Cendio AB * Copyright 2009-2011, 2014 D. R. Commander * * Based on the x86 SIMD extension for IJG JPEG library, * Copyright (C) 1999-2006, MIYASAKA Masaru. * For conditions of distribution and use, see copyright notice in jsimdext.inc * * This file contains the interface between the "normal" portions * of the library and the SIMD implementations when running on a * 64-bit x86 architecture. */ #define JPEG_INTERNALS #include "../jinclude.h" #include "../jpeglib.h" #include "../jsimd.h" #include "../jdct.h" #include "../jsimddct.h" #include "jsimd.h" /* * In the PIC cases, we have no guarantee that constants will keep * their alignment. This macro allows us to verify it at runtime. */ #define IS_ALIGNED(ptr, order) (((size_t)ptr & ((1 << order) - 1)) == 0) #define IS_ALIGNED_SSE(ptr) (IS_ALIGNED(ptr, 4)) /* 16 byte alignment */ GLOBAL(int) jsimd_can_rgb_ycc (void) { /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if ((RGB_PIXELSIZE != 3) && (RGB_PIXELSIZE != 4)) return 0; if (!IS_ALIGNED_SSE(jconst_rgb_ycc_convert_sse2)) return 0; return 1; } GLOBAL(int) jsimd_can_rgb_gray (void) { /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if ((RGB_PIXELSIZE != 3) && (RGB_PIXELSIZE != 4)) return 0; if (!IS_ALIGNED_SSE(jconst_rgb_gray_convert_sse2)) return 0; return 1; } GLOBAL(int) jsimd_can_ycc_rgb (void) { /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if ((RGB_PIXELSIZE != 3) && (RGB_PIXELSIZE != 4)) return 0; if (!IS_ALIGNED_SSE(jconst_ycc_rgb_convert_sse2)) return 0; return 1; } GLOBAL(int) jsimd_can_ycc_rgb565 (void) { return 0; } GLOBAL(void) jsimd_rgb_ycc_convert (j_compress_ptr cinfo, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows) { void (*sse2fct)(JDIMENSION, JSAMPARRAY, JSAMPIMAGE, JDIMENSION, int); switch(cinfo->in_color_space) { case JCS_EXT_RGB: sse2fct=jsimd_extrgb_ycc_convert_sse2; break; case JCS_EXT_RGBX: case JCS_EXT_RGBA: sse2fct=jsimd_extrgbx_ycc_convert_sse2; break; case JCS_EXT_BGR: sse2fct=jsimd_extbgr_ycc_convert_sse2; break; case JCS_EXT_BGRX: case JCS_EXT_BGRA: sse2fct=jsimd_extbgrx_ycc_convert_sse2; break; case JCS_EXT_XBGR: case JCS_EXT_ABGR: sse2fct=jsimd_extxbgr_ycc_convert_sse2; break; case JCS_EXT_XRGB: case JCS_EXT_ARGB: sse2fct=jsimd_extxrgb_ycc_convert_sse2; break; default: sse2fct=jsimd_rgb_ycc_convert_sse2; break; } sse2fct(cinfo->image_width, input_buf, output_buf, output_row, num_rows); } GLOBAL(void) jsimd_rgb_gray_convert (j_compress_ptr cinfo, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows) { void (*sse2fct)(JDIMENSION, JSAMPARRAY, JSAMPIMAGE, JDIMENSION, int); switch(cinfo->in_color_space) { case JCS_EXT_RGB: sse2fct=jsimd_extrgb_gray_convert_sse2; break; case JCS_EXT_RGBX: case JCS_EXT_RGBA: sse2fct=jsimd_extrgbx_gray_convert_sse2; break; case JCS_EXT_BGR: sse2fct=jsimd_extbgr_gray_convert_sse2; break; case JCS_EXT_BGRX: case JCS_EXT_BGRA: sse2fct=jsimd_extbgrx_gray_convert_sse2; break; case JCS_EXT_XBGR: case JCS_EXT_ABGR: sse2fct=jsimd_extxbgr_gray_convert_sse2; break; case JCS_EXT_XRGB: case JCS_EXT_ARGB: sse2fct=jsimd_extxrgb_gray_convert_sse2; break; default: sse2fct=jsimd_rgb_gray_convert_sse2; break; } sse2fct(cinfo->image_width, input_buf, output_buf, output_row, num_rows); } GLOBAL(void) jsimd_ycc_rgb_convert (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) { void (*sse2fct)(JDIMENSION, JSAMPIMAGE, JDIMENSION, JSAMPARRAY, int); switch(cinfo->out_color_space) { case JCS_EXT_RGB: sse2fct=jsimd_ycc_extrgb_convert_sse2; break; case JCS_EXT_RGBX: case JCS_EXT_RGBA: sse2fct=jsimd_ycc_extrgbx_convert_sse2; break; case JCS_EXT_BGR: sse2fct=jsimd_ycc_extbgr_convert_sse2; break; case JCS_EXT_BGRX: case JCS_EXT_BGRA: sse2fct=jsimd_ycc_extbgrx_convert_sse2; break; case JCS_EXT_XBGR: case JCS_EXT_ABGR: sse2fct=jsimd_ycc_extxbgr_convert_sse2; break; case JCS_EXT_XRGB: case JCS_EXT_ARGB: sse2fct=jsimd_ycc_extxrgb_convert_sse2; break; default: sse2fct=jsimd_ycc_rgb_convert_sse2; break; } sse2fct(cinfo->output_width, input_buf, input_row, output_buf, num_rows); } GLOBAL(void) jsimd_ycc_rgb565_convert (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) { } GLOBAL(int) jsimd_can_h2v2_downsample (void) { /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; return 1; } GLOBAL(int) jsimd_can_h2v1_downsample (void) { /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; return 1; } GLOBAL(void) jsimd_h2v2_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, JSAMPARRAY input_data, JSAMPARRAY output_data) { jsimd_h2v2_downsample_sse2(cinfo->image_width, cinfo->max_v_samp_factor, compptr->v_samp_factor, compptr->width_in_blocks, input_data, output_data); } GLOBAL(void) jsimd_h2v1_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, JSAMPARRAY input_data, JSAMPARRAY output_data) { jsimd_h2v1_downsample_sse2(cinfo->image_width, cinfo->max_v_samp_factor, compptr->v_samp_factor, compptr->width_in_blocks, input_data, output_data); } GLOBAL(int) jsimd_can_h2v2_upsample (void) { /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; return 1; } GLOBAL(int) jsimd_can_h2v1_upsample (void) { /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; return 1; } GLOBAL(void) jsimd_h2v2_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) { jsimd_h2v2_upsample_sse2(cinfo->max_v_samp_factor, cinfo->output_width, input_data, output_data_ptr); } GLOBAL(void) jsimd_h2v1_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) { jsimd_h2v1_upsample_sse2(cinfo->max_v_samp_factor, cinfo->output_width, input_data, output_data_ptr); } GLOBAL(int) jsimd_can_h2v2_fancy_upsample (void) { /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (!IS_ALIGNED_SSE(jconst_fancy_upsample_sse2)) return 0; return 1; } GLOBAL(int) jsimd_can_h2v1_fancy_upsample (void) { /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (!IS_ALIGNED_SSE(jconst_fancy_upsample_sse2)) return 0; return 1; } GLOBAL(void) jsimd_h2v2_fancy_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) { jsimd_h2v2_fancy_upsample_sse2(cinfo->max_v_samp_factor, compptr->downsampled_width, input_data, output_data_ptr); } GLOBAL(void) jsimd_h2v1_fancy_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) { jsimd_h2v1_fancy_upsample_sse2(cinfo->max_v_samp_factor, compptr->downsampled_width, input_data, output_data_ptr); } GLOBAL(int) jsimd_can_h2v2_merged_upsample (void) { /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (!IS_ALIGNED_SSE(jconst_merged_upsample_sse2)) return 0; return 1; } GLOBAL(int) jsimd_can_h2v1_merged_upsample (void) { /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (!IS_ALIGNED_SSE(jconst_merged_upsample_sse2)) return 0; return 1; } GLOBAL(void) jsimd_h2v2_merged_upsample (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf) { void (*sse2fct)(JDIMENSION, JSAMPIMAGE, JDIMENSION, JSAMPARRAY); switch(cinfo->out_color_space) { case JCS_EXT_RGB: sse2fct=jsimd_h2v2_extrgb_merged_upsample_sse2; break; case JCS_EXT_RGBX: case JCS_EXT_RGBA: sse2fct=jsimd_h2v2_extrgbx_merged_upsample_sse2; break; case JCS_EXT_BGR: sse2fct=jsimd_h2v2_extbgr_merged_upsample_sse2; break; case JCS_EXT_BGRX: case JCS_EXT_BGRA: sse2fct=jsimd_h2v2_extbgrx_merged_upsample_sse2; break; case JCS_EXT_XBGR: case JCS_EXT_ABGR: sse2fct=jsimd_h2v2_extxbgr_merged_upsample_sse2; break; case JCS_EXT_XRGB: case JCS_EXT_ARGB: sse2fct=jsimd_h2v2_extxrgb_merged_upsample_sse2; break; default: sse2fct=jsimd_h2v2_merged_upsample_sse2; break; } sse2fct(cinfo->output_width, input_buf, in_row_group_ctr, output_buf); } GLOBAL(void) jsimd_h2v1_merged_upsample (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf) { void (*sse2fct)(JDIMENSION, JSAMPIMAGE, JDIMENSION, JSAMPARRAY); switch(cinfo->out_color_space) { case JCS_EXT_RGB: sse2fct=jsimd_h2v1_extrgb_merged_upsample_sse2; break; case JCS_EXT_RGBX: case JCS_EXT_RGBA: sse2fct=jsimd_h2v1_extrgbx_merged_upsample_sse2; break; case JCS_EXT_BGR: sse2fct=jsimd_h2v1_extbgr_merged_upsample_sse2; break; case JCS_EXT_BGRX: case JCS_EXT_BGRA: sse2fct=jsimd_h2v1_extbgrx_merged_upsample_sse2; break; case JCS_EXT_XBGR: case JCS_EXT_ABGR: sse2fct=jsimd_h2v1_extxbgr_merged_upsample_sse2; break; case JCS_EXT_XRGB: case JCS_EXT_ARGB: sse2fct=jsimd_h2v1_extxrgb_merged_upsample_sse2; break; default: sse2fct=jsimd_h2v1_merged_upsample_sse2; break; } sse2fct(cinfo->output_width, input_buf, in_row_group_ctr, output_buf); } GLOBAL(int) jsimd_can_convsamp (void) { /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (sizeof(DCTELEM) != 2) return 0; return 1; } GLOBAL(int) jsimd_can_convsamp_float (void) { /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (sizeof(FAST_FLOAT) != 4) return 0; return 1; } GLOBAL(void) jsimd_convsamp (JSAMPARRAY sample_data, JDIMENSION start_col, DCTELEM * workspace) { jsimd_convsamp_sse2(sample_data, start_col, workspace); } GLOBAL(void) jsimd_convsamp_float (JSAMPARRAY sample_data, JDIMENSION start_col, FAST_FLOAT * workspace) { jsimd_convsamp_float_sse2(sample_data, start_col, workspace); } GLOBAL(int) jsimd_can_fdct_islow (void) { /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (sizeof(DCTELEM) != 2) return 0; if (!IS_ALIGNED_SSE(jconst_fdct_islow_sse2)) return 0; return 1; } GLOBAL(int) jsimd_can_fdct_ifast (void) { /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (sizeof(DCTELEM) != 2) return 0; if (!IS_ALIGNED_SSE(jconst_fdct_ifast_sse2)) return 0; return 1; } GLOBAL(int) jsimd_can_fdct_float (void) { /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (sizeof(FAST_FLOAT) != 4) return 0; if (!IS_ALIGNED_SSE(jconst_fdct_float_sse)) return 0; return 1; } GLOBAL(void) jsimd_fdct_islow (DCTELEM * data) { jsimd_fdct_islow_sse2(data); } GLOBAL(void) jsimd_fdct_ifast (DCTELEM * data) { jsimd_fdct_ifast_sse2(data); } GLOBAL(void) jsimd_fdct_float (FAST_FLOAT * data) { jsimd_fdct_float_sse(data); } GLOBAL(int) jsimd_can_quantize (void) { /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (sizeof(JCOEF) != 2) return 0; if (sizeof(DCTELEM) != 2) return 0; return 1; } GLOBAL(int) jsimd_can_quantize_float (void) { /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (sizeof(JCOEF) != 2) return 0; if (sizeof(FAST_FLOAT) != 4) return 0; return 1; } GLOBAL(void) jsimd_quantize (JCOEFPTR coef_block, DCTELEM * divisors, DCTELEM * workspace) { jsimd_quantize_sse2(coef_block, divisors, workspace); } GLOBAL(void) jsimd_quantize_float (JCOEFPTR coef_block, FAST_FLOAT * divisors, FAST_FLOAT * workspace) { jsimd_quantize_float_sse2(coef_block, divisors, workspace); } GLOBAL(int) jsimd_can_idct_2x2 (void) { /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (sizeof(JCOEF) != 2) return 0; if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (sizeof(ISLOW_MULT_TYPE) != 2) return 0; if (!IS_ALIGNED_SSE(jconst_idct_red_sse2)) return 0; return 1; } GLOBAL(int) jsimd_can_idct_4x4 (void) { /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (sizeof(JCOEF) != 2) return 0; if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (sizeof(ISLOW_MULT_TYPE) != 2) return 0; if (!IS_ALIGNED_SSE(jconst_idct_red_sse2)) return 0; return 1; } GLOBAL(void) jsimd_idct_2x2 (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { jsimd_idct_2x2_sse2(compptr->dct_table, coef_block, output_buf, output_col); } GLOBAL(void) jsimd_idct_4x4 (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { jsimd_idct_4x4_sse2(compptr->dct_table, coef_block, output_buf, output_col); } GLOBAL(int) jsimd_can_idct_islow (void) { /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (sizeof(JCOEF) != 2) return 0; if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (sizeof(ISLOW_MULT_TYPE) != 2) return 0; if (!IS_ALIGNED_SSE(jconst_idct_islow_sse2)) return 0; return 1; } GLOBAL(int) jsimd_can_idct_ifast (void) { /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (sizeof(JCOEF) != 2) return 0; if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (sizeof(IFAST_MULT_TYPE) != 2) return 0; if (IFAST_SCALE_BITS != 2) return 0; if (!IS_ALIGNED_SSE(jconst_idct_ifast_sse2)) return 0; return 1; } GLOBAL(int) jsimd_can_idct_float (void) { if (DCTSIZE != 8) return 0; if (sizeof(JCOEF) != 2) return 0; if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (sizeof(FAST_FLOAT) != 4) return 0; if (sizeof(FLOAT_MULT_TYPE) != 4) return 0; if (!IS_ALIGNED_SSE(jconst_idct_float_sse2)) return 0; return 1; } GLOBAL(void) jsimd_idct_islow (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { jsimd_idct_islow_sse2(compptr->dct_table, coef_block, output_buf, output_col); } GLOBAL(void) jsimd_idct_ifast (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { jsimd_idct_ifast_sse2(compptr->dct_table, coef_block, output_buf, output_col); } GLOBAL(void) jsimd_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { jsimd_idct_float_sse2(compptr->dct_table, coef_block, output_buf, output_col); } libjpeg-turbo-1.4.2/simd/jdmerge-mmx.asm0000644000076500007650000000776012600050400015065 00000000000000; ; jdmerge.asm - merged upsampling/color conversion (MMX) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; Copyright 2009 D. R. Commander ; ; Based on ; x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; [TAB8] %include "jsimdext.inc" ; -------------------------------------------------------------------------- %define SCALEBITS 16 F_0_344 equ 22554 ; FIX(0.34414) F_0_714 equ 46802 ; FIX(0.71414) F_1_402 equ 91881 ; FIX(1.40200) F_1_772 equ 116130 ; FIX(1.77200) F_0_402 equ (F_1_402 - 65536) ; FIX(1.40200) - FIX(1) F_0_285 equ ( 65536 - F_0_714) ; FIX(1) - FIX(0.71414) F_0_228 equ (131072 - F_1_772) ; FIX(2) - FIX(1.77200) ; -------------------------------------------------------------------------- SECTION SEG_CONST alignz 16 global EXTN(jconst_merged_upsample_mmx) EXTN(jconst_merged_upsample_mmx): PW_F0402 times 4 dw F_0_402 PW_MF0228 times 4 dw -F_0_228 PW_MF0344_F0285 times 2 dw -F_0_344, F_0_285 PW_ONE times 4 dw 1 PD_ONEHALF times 2 dd 1 << (SCALEBITS-1) alignz 16 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 32 %include "jdmrgext-mmx.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_RGB_RED %define RGB_GREEN EXT_RGB_GREEN %define RGB_BLUE EXT_RGB_BLUE %define RGB_PIXELSIZE EXT_RGB_PIXELSIZE %define jsimd_h2v1_merged_upsample_mmx jsimd_h2v1_extrgb_merged_upsample_mmx %define jsimd_h2v2_merged_upsample_mmx jsimd_h2v2_extrgb_merged_upsample_mmx %include "jdmrgext-mmx.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_RGBX_RED %define RGB_GREEN EXT_RGBX_GREEN %define RGB_BLUE EXT_RGBX_BLUE %define RGB_PIXELSIZE EXT_RGBX_PIXELSIZE %define jsimd_h2v1_merged_upsample_mmx jsimd_h2v1_extrgbx_merged_upsample_mmx %define jsimd_h2v2_merged_upsample_mmx jsimd_h2v2_extrgbx_merged_upsample_mmx %include "jdmrgext-mmx.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_BGR_RED %define RGB_GREEN EXT_BGR_GREEN %define RGB_BLUE EXT_BGR_BLUE %define RGB_PIXELSIZE EXT_BGR_PIXELSIZE %define jsimd_h2v1_merged_upsample_mmx jsimd_h2v1_extbgr_merged_upsample_mmx %define jsimd_h2v2_merged_upsample_mmx jsimd_h2v2_extbgr_merged_upsample_mmx %include "jdmrgext-mmx.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_BGRX_RED %define RGB_GREEN EXT_BGRX_GREEN %define RGB_BLUE EXT_BGRX_BLUE %define RGB_PIXELSIZE EXT_BGRX_PIXELSIZE %define jsimd_h2v1_merged_upsample_mmx jsimd_h2v1_extbgrx_merged_upsample_mmx %define jsimd_h2v2_merged_upsample_mmx jsimd_h2v2_extbgrx_merged_upsample_mmx %include "jdmrgext-mmx.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_XBGR_RED %define RGB_GREEN EXT_XBGR_GREEN %define RGB_BLUE EXT_XBGR_BLUE %define RGB_PIXELSIZE EXT_XBGR_PIXELSIZE %define jsimd_h2v1_merged_upsample_mmx jsimd_h2v1_extxbgr_merged_upsample_mmx %define jsimd_h2v2_merged_upsample_mmx jsimd_h2v2_extxbgr_merged_upsample_mmx %include "jdmrgext-mmx.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_XRGB_RED %define RGB_GREEN EXT_XRGB_GREEN %define RGB_BLUE EXT_XRGB_BLUE %define RGB_PIXELSIZE EXT_XRGB_PIXELSIZE %define jsimd_h2v1_merged_upsample_mmx jsimd_h2v1_extxrgb_merged_upsample_mmx %define jsimd_h2v2_merged_upsample_mmx jsimd_h2v2_extxrgb_merged_upsample_mmx %include "jdmrgext-mmx.asm" libjpeg-turbo-1.4.2/simd/jdmerge-sse2-64.asm0000644000076500007650000001005612600050400015357 00000000000000; ; jdmerge.asm - merged upsampling/color conversion (64-bit SSE2) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; Copyright 2009 D. R. Commander ; ; Based on ; x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; [TAB8] %include "jsimdext.inc" ; -------------------------------------------------------------------------- %define SCALEBITS 16 F_0_344 equ 22554 ; FIX(0.34414) F_0_714 equ 46802 ; FIX(0.71414) F_1_402 equ 91881 ; FIX(1.40200) F_1_772 equ 116130 ; FIX(1.77200) F_0_402 equ (F_1_402 - 65536) ; FIX(1.40200) - FIX(1) F_0_285 equ ( 65536 - F_0_714) ; FIX(1) - FIX(0.71414) F_0_228 equ (131072 - F_1_772) ; FIX(2) - FIX(1.77200) ; -------------------------------------------------------------------------- SECTION SEG_CONST alignz 16 global EXTN(jconst_merged_upsample_sse2) EXTN(jconst_merged_upsample_sse2): PW_F0402 times 8 dw F_0_402 PW_MF0228 times 8 dw -F_0_228 PW_MF0344_F0285 times 4 dw -F_0_344, F_0_285 PW_ONE times 8 dw 1 PD_ONEHALF times 4 dd 1 << (SCALEBITS-1) alignz 16 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 64 %include "jdmrgext-sse2-64.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_RGB_RED %define RGB_GREEN EXT_RGB_GREEN %define RGB_BLUE EXT_RGB_BLUE %define RGB_PIXELSIZE EXT_RGB_PIXELSIZE %define jsimd_h2v1_merged_upsample_sse2 jsimd_h2v1_extrgb_merged_upsample_sse2 %define jsimd_h2v2_merged_upsample_sse2 jsimd_h2v2_extrgb_merged_upsample_sse2 %include "jdmrgext-sse2-64.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_RGBX_RED %define RGB_GREEN EXT_RGBX_GREEN %define RGB_BLUE EXT_RGBX_BLUE %define RGB_PIXELSIZE EXT_RGBX_PIXELSIZE %define jsimd_h2v1_merged_upsample_sse2 jsimd_h2v1_extrgbx_merged_upsample_sse2 %define jsimd_h2v2_merged_upsample_sse2 jsimd_h2v2_extrgbx_merged_upsample_sse2 %include "jdmrgext-sse2-64.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_BGR_RED %define RGB_GREEN EXT_BGR_GREEN %define RGB_BLUE EXT_BGR_BLUE %define RGB_PIXELSIZE EXT_BGR_PIXELSIZE %define jsimd_h2v1_merged_upsample_sse2 jsimd_h2v1_extbgr_merged_upsample_sse2 %define jsimd_h2v2_merged_upsample_sse2 jsimd_h2v2_extbgr_merged_upsample_sse2 %include "jdmrgext-sse2-64.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_BGRX_RED %define RGB_GREEN EXT_BGRX_GREEN %define RGB_BLUE EXT_BGRX_BLUE %define RGB_PIXELSIZE EXT_BGRX_PIXELSIZE %define jsimd_h2v1_merged_upsample_sse2 jsimd_h2v1_extbgrx_merged_upsample_sse2 %define jsimd_h2v2_merged_upsample_sse2 jsimd_h2v2_extbgrx_merged_upsample_sse2 %include "jdmrgext-sse2-64.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_XBGR_RED %define RGB_GREEN EXT_XBGR_GREEN %define RGB_BLUE EXT_XBGR_BLUE %define RGB_PIXELSIZE EXT_XBGR_PIXELSIZE %define jsimd_h2v1_merged_upsample_sse2 jsimd_h2v1_extxbgr_merged_upsample_sse2 %define jsimd_h2v2_merged_upsample_sse2 jsimd_h2v2_extxbgr_merged_upsample_sse2 %include "jdmrgext-sse2-64.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_XRGB_RED %define RGB_GREEN EXT_XRGB_GREEN %define RGB_BLUE EXT_XRGB_BLUE %define RGB_PIXELSIZE EXT_XRGB_PIXELSIZE %define jsimd_h2v1_merged_upsample_sse2 jsimd_h2v1_extxrgb_merged_upsample_sse2 %define jsimd_h2v2_merged_upsample_sse2 jsimd_h2v2_extxrgb_merged_upsample_sse2 %include "jdmrgext-sse2-64.asm" libjpeg-turbo-1.4.2/simd/jidctred-sse2-64.asm0000644000076500007650000005375412600050400015546 00000000000000; ; jidctred.asm - reduced-size IDCT (64-bit SSE2) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; Copyright 2009 D. R. Commander ; ; Based on ; x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; This file contains inverse-DCT routines that produce reduced-size ; output: either 4x4 or 2x2 pixels from an 8x8 DCT block. ; The following code is based directly on the IJG's original jidctred.c; ; see the jidctred.c for more details. ; ; [TAB8] %include "jsimdext.inc" %include "jdct.inc" ; -------------------------------------------------------------------------- %define CONST_BITS 13 %define PASS1_BITS 2 %define DESCALE_P1_4 (CONST_BITS-PASS1_BITS+1) %define DESCALE_P2_4 (CONST_BITS+PASS1_BITS+3+1) %define DESCALE_P1_2 (CONST_BITS-PASS1_BITS+2) %define DESCALE_P2_2 (CONST_BITS+PASS1_BITS+3+2) %if CONST_BITS == 13 F_0_211 equ 1730 ; FIX(0.211164243) F_0_509 equ 4176 ; FIX(0.509795579) F_0_601 equ 4926 ; FIX(0.601344887) F_0_720 equ 5906 ; FIX(0.720959822) F_0_765 equ 6270 ; FIX(0.765366865) F_0_850 equ 6967 ; FIX(0.850430095) F_0_899 equ 7373 ; FIX(0.899976223) F_1_061 equ 8697 ; FIX(1.061594337) F_1_272 equ 10426 ; FIX(1.272758580) F_1_451 equ 11893 ; FIX(1.451774981) F_1_847 equ 15137 ; FIX(1.847759065) F_2_172 equ 17799 ; FIX(2.172734803) F_2_562 equ 20995 ; FIX(2.562915447) F_3_624 equ 29692 ; FIX(3.624509785) %else ; NASM cannot do compile-time arithmetic on floating-point constants. %define DESCALE(x,n) (((x)+(1<<((n)-1)))>>(n)) F_0_211 equ DESCALE( 226735879,30-CONST_BITS) ; FIX(0.211164243) F_0_509 equ DESCALE( 547388834,30-CONST_BITS) ; FIX(0.509795579) F_0_601 equ DESCALE( 645689155,30-CONST_BITS) ; FIX(0.601344887) F_0_720 equ DESCALE( 774124714,30-CONST_BITS) ; FIX(0.720959822) F_0_765 equ DESCALE( 821806413,30-CONST_BITS) ; FIX(0.765366865) F_0_850 equ DESCALE( 913142361,30-CONST_BITS) ; FIX(0.850430095) F_0_899 equ DESCALE( 966342111,30-CONST_BITS) ; FIX(0.899976223) F_1_061 equ DESCALE(1139878239,30-CONST_BITS) ; FIX(1.061594337) F_1_272 equ DESCALE(1366614119,30-CONST_BITS) ; FIX(1.272758580) F_1_451 equ DESCALE(1558831516,30-CONST_BITS) ; FIX(1.451774981) F_1_847 equ DESCALE(1984016188,30-CONST_BITS) ; FIX(1.847759065) F_2_172 equ DESCALE(2332956230,30-CONST_BITS) ; FIX(2.172734803) F_2_562 equ DESCALE(2751909506,30-CONST_BITS) ; FIX(2.562915447) F_3_624 equ DESCALE(3891787747,30-CONST_BITS) ; FIX(3.624509785) %endif ; -------------------------------------------------------------------------- SECTION SEG_CONST alignz 16 global EXTN(jconst_idct_red_sse2) EXTN(jconst_idct_red_sse2): PW_F184_MF076 times 4 dw F_1_847,-F_0_765 PW_F256_F089 times 4 dw F_2_562, F_0_899 PW_F106_MF217 times 4 dw F_1_061,-F_2_172 PW_MF060_MF050 times 4 dw -F_0_601,-F_0_509 PW_F145_MF021 times 4 dw F_1_451,-F_0_211 PW_F362_MF127 times 4 dw F_3_624,-F_1_272 PW_F085_MF072 times 4 dw F_0_850,-F_0_720 PD_DESCALE_P1_4 times 4 dd 1 << (DESCALE_P1_4-1) PD_DESCALE_P2_4 times 4 dd 1 << (DESCALE_P2_4-1) PD_DESCALE_P1_2 times 4 dd 1 << (DESCALE_P1_2-1) PD_DESCALE_P2_2 times 4 dd 1 << (DESCALE_P2_2-1) PB_CENTERJSAMP times 16 db CENTERJSAMPLE alignz 16 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 64 ; ; Perform dequantization and inverse DCT on one block of coefficients, ; producing a reduced-size 4x4 output block. ; ; GLOBAL(void) ; jsimd_idct_4x4_sse2 (void * dct_table, JCOEFPTR coef_block, ; JSAMPARRAY output_buf, JDIMENSION output_col) ; ; r10 = void * dct_table ; r11 = JCOEFPTR coef_block ; r12 = JSAMPARRAY output_buf ; r13 = JDIMENSION output_col %define original_rbp rbp+0 %define wk(i) rbp-(WK_NUM-(i))*SIZEOF_XMMWORD ; xmmword wk[WK_NUM] %define WK_NUM 2 align 16 global EXTN(jsimd_idct_4x4_sse2) EXTN(jsimd_idct_4x4_sse2): push rbp mov rax,rsp ; rax = original rbp sub rsp, byte 4 and rsp, byte (-SIZEOF_XMMWORD) ; align to 128 bits mov [rsp],rax mov rbp,rsp ; rbp = aligned rbp lea rsp, [wk(0)] collect_args ; ---- Pass 1: process columns from input. mov rdx, r10 ; quantptr mov rsi, r11 ; inptr %ifndef NO_ZERO_COLUMN_TEST_4X4_SSE2 mov eax, DWORD [DWBLOCK(1,0,rsi,SIZEOF_JCOEF)] or eax, DWORD [DWBLOCK(2,0,rsi,SIZEOF_JCOEF)] jnz short .columnDCT movdqa xmm0, XMMWORD [XMMBLOCK(1,0,rsi,SIZEOF_JCOEF)] movdqa xmm1, XMMWORD [XMMBLOCK(2,0,rsi,SIZEOF_JCOEF)] por xmm0, XMMWORD [XMMBLOCK(3,0,rsi,SIZEOF_JCOEF)] por xmm1, XMMWORD [XMMBLOCK(5,0,rsi,SIZEOF_JCOEF)] por xmm0, XMMWORD [XMMBLOCK(6,0,rsi,SIZEOF_JCOEF)] por xmm1, XMMWORD [XMMBLOCK(7,0,rsi,SIZEOF_JCOEF)] por xmm0,xmm1 packsswb xmm0,xmm0 packsswb xmm0,xmm0 movd eax,xmm0 test rax,rax jnz short .columnDCT ; -- AC terms all zero movdqa xmm0, XMMWORD [XMMBLOCK(0,0,rsi,SIZEOF_JCOEF)] pmullw xmm0, XMMWORD [XMMBLOCK(0,0,rdx,SIZEOF_ISLOW_MULT_TYPE)] psllw xmm0,PASS1_BITS movdqa xmm3,xmm0 ; xmm0=in0=(00 01 02 03 04 05 06 07) punpcklwd xmm0,xmm0 ; xmm0=(00 00 01 01 02 02 03 03) punpckhwd xmm3,xmm3 ; xmm3=(04 04 05 05 06 06 07 07) pshufd xmm1,xmm0,0x50 ; xmm1=[col0 col1]=(00 00 00 00 01 01 01 01) pshufd xmm0,xmm0,0xFA ; xmm0=[col2 col3]=(02 02 02 02 03 03 03 03) pshufd xmm6,xmm3,0x50 ; xmm6=[col4 col5]=(04 04 04 04 05 05 05 05) pshufd xmm3,xmm3,0xFA ; xmm3=[col6 col7]=(06 06 06 06 07 07 07 07) jmp near .column_end %endif .columnDCT: ; -- Odd part movdqa xmm0, XMMWORD [XMMBLOCK(1,0,rsi,SIZEOF_JCOEF)] movdqa xmm1, XMMWORD [XMMBLOCK(3,0,rsi,SIZEOF_JCOEF)] pmullw xmm0, XMMWORD [XMMBLOCK(1,0,rdx,SIZEOF_ISLOW_MULT_TYPE)] pmullw xmm1, XMMWORD [XMMBLOCK(3,0,rdx,SIZEOF_ISLOW_MULT_TYPE)] movdqa xmm2, XMMWORD [XMMBLOCK(5,0,rsi,SIZEOF_JCOEF)] movdqa xmm3, XMMWORD [XMMBLOCK(7,0,rsi,SIZEOF_JCOEF)] pmullw xmm2, XMMWORD [XMMBLOCK(5,0,rdx,SIZEOF_ISLOW_MULT_TYPE)] pmullw xmm3, XMMWORD [XMMBLOCK(7,0,rdx,SIZEOF_ISLOW_MULT_TYPE)] movdqa xmm4,xmm0 movdqa xmm5,xmm0 punpcklwd xmm4,xmm1 punpckhwd xmm5,xmm1 movdqa xmm0,xmm4 movdqa xmm1,xmm5 pmaddwd xmm4,[rel PW_F256_F089] ; xmm4=(tmp2L) pmaddwd xmm5,[rel PW_F256_F089] ; xmm5=(tmp2H) pmaddwd xmm0,[rel PW_F106_MF217] ; xmm0=(tmp0L) pmaddwd xmm1,[rel PW_F106_MF217] ; xmm1=(tmp0H) movdqa xmm6,xmm2 movdqa xmm7,xmm2 punpcklwd xmm6,xmm3 punpckhwd xmm7,xmm3 movdqa xmm2,xmm6 movdqa xmm3,xmm7 pmaddwd xmm6,[rel PW_MF060_MF050] ; xmm6=(tmp2L) pmaddwd xmm7,[rel PW_MF060_MF050] ; xmm7=(tmp2H) pmaddwd xmm2,[rel PW_F145_MF021] ; xmm2=(tmp0L) pmaddwd xmm3,[rel PW_F145_MF021] ; xmm3=(tmp0H) paddd xmm6,xmm4 ; xmm6=tmp2L paddd xmm7,xmm5 ; xmm7=tmp2H paddd xmm2,xmm0 ; xmm2=tmp0L paddd xmm3,xmm1 ; xmm3=tmp0H movdqa XMMWORD [wk(0)], xmm2 ; wk(0)=tmp0L movdqa XMMWORD [wk(1)], xmm3 ; wk(1)=tmp0H ; -- Even part movdqa xmm4, XMMWORD [XMMBLOCK(0,0,rsi,SIZEOF_JCOEF)] movdqa xmm5, XMMWORD [XMMBLOCK(2,0,rsi,SIZEOF_JCOEF)] movdqa xmm0, XMMWORD [XMMBLOCK(6,0,rsi,SIZEOF_JCOEF)] pmullw xmm4, XMMWORD [XMMBLOCK(0,0,rdx,SIZEOF_ISLOW_MULT_TYPE)] pmullw xmm5, XMMWORD [XMMBLOCK(2,0,rdx,SIZEOF_ISLOW_MULT_TYPE)] pmullw xmm0, XMMWORD [XMMBLOCK(6,0,rdx,SIZEOF_ISLOW_MULT_TYPE)] pxor xmm1,xmm1 pxor xmm2,xmm2 punpcklwd xmm1,xmm4 ; xmm1=tmp0L punpckhwd xmm2,xmm4 ; xmm2=tmp0H psrad xmm1,(16-CONST_BITS-1) ; psrad xmm1,16 & pslld xmm1,CONST_BITS+1 psrad xmm2,(16-CONST_BITS-1) ; psrad xmm2,16 & pslld xmm2,CONST_BITS+1 movdqa xmm3,xmm5 ; xmm5=in2=z2 punpcklwd xmm5,xmm0 ; xmm0=in6=z3 punpckhwd xmm3,xmm0 pmaddwd xmm5,[rel PW_F184_MF076] ; xmm5=tmp2L pmaddwd xmm3,[rel PW_F184_MF076] ; xmm3=tmp2H movdqa xmm4,xmm1 movdqa xmm0,xmm2 paddd xmm1,xmm5 ; xmm1=tmp10L paddd xmm2,xmm3 ; xmm2=tmp10H psubd xmm4,xmm5 ; xmm4=tmp12L psubd xmm0,xmm3 ; xmm0=tmp12H ; -- Final output stage movdqa xmm5,xmm1 movdqa xmm3,xmm2 paddd xmm1,xmm6 ; xmm1=data0L paddd xmm2,xmm7 ; xmm2=data0H psubd xmm5,xmm6 ; xmm5=data3L psubd xmm3,xmm7 ; xmm3=data3H movdqa xmm6,[rel PD_DESCALE_P1_4] ; xmm6=[rel PD_DESCALE_P1_4] paddd xmm1,xmm6 paddd xmm2,xmm6 psrad xmm1,DESCALE_P1_4 psrad xmm2,DESCALE_P1_4 paddd xmm5,xmm6 paddd xmm3,xmm6 psrad xmm5,DESCALE_P1_4 psrad xmm3,DESCALE_P1_4 packssdw xmm1,xmm2 ; xmm1=data0=(00 01 02 03 04 05 06 07) packssdw xmm5,xmm3 ; xmm5=data3=(30 31 32 33 34 35 36 37) movdqa xmm7, XMMWORD [wk(0)] ; xmm7=tmp0L movdqa xmm6, XMMWORD [wk(1)] ; xmm6=tmp0H movdqa xmm2,xmm4 movdqa xmm3,xmm0 paddd xmm4,xmm7 ; xmm4=data1L paddd xmm0,xmm6 ; xmm0=data1H psubd xmm2,xmm7 ; xmm2=data2L psubd xmm3,xmm6 ; xmm3=data2H movdqa xmm7,[rel PD_DESCALE_P1_4] ; xmm7=[rel PD_DESCALE_P1_4] paddd xmm4,xmm7 paddd xmm0,xmm7 psrad xmm4,DESCALE_P1_4 psrad xmm0,DESCALE_P1_4 paddd xmm2,xmm7 paddd xmm3,xmm7 psrad xmm2,DESCALE_P1_4 psrad xmm3,DESCALE_P1_4 packssdw xmm4,xmm0 ; xmm4=data1=(10 11 12 13 14 15 16 17) packssdw xmm2,xmm3 ; xmm2=data2=(20 21 22 23 24 25 26 27) movdqa xmm6,xmm1 ; transpose coefficients(phase 1) punpcklwd xmm1,xmm4 ; xmm1=(00 10 01 11 02 12 03 13) punpckhwd xmm6,xmm4 ; xmm6=(04 14 05 15 06 16 07 17) movdqa xmm7,xmm2 ; transpose coefficients(phase 1) punpcklwd xmm2,xmm5 ; xmm2=(20 30 21 31 22 32 23 33) punpckhwd xmm7,xmm5 ; xmm7=(24 34 25 35 26 36 27 37) movdqa xmm0,xmm1 ; transpose coefficients(phase 2) punpckldq xmm1,xmm2 ; xmm1=[col0 col1]=(00 10 20 30 01 11 21 31) punpckhdq xmm0,xmm2 ; xmm0=[col2 col3]=(02 12 22 32 03 13 23 33) movdqa xmm3,xmm6 ; transpose coefficients(phase 2) punpckldq xmm6,xmm7 ; xmm6=[col4 col5]=(04 14 24 34 05 15 25 35) punpckhdq xmm3,xmm7 ; xmm3=[col6 col7]=(06 16 26 36 07 17 27 37) .column_end: ; -- Prefetch the next coefficient block prefetchnta [rsi + DCTSIZE2*SIZEOF_JCOEF + 0*32] prefetchnta [rsi + DCTSIZE2*SIZEOF_JCOEF + 1*32] prefetchnta [rsi + DCTSIZE2*SIZEOF_JCOEF + 2*32] prefetchnta [rsi + DCTSIZE2*SIZEOF_JCOEF + 3*32] ; ---- Pass 2: process rows, store into output array. mov rax, [original_rbp] mov rdi, r12 ; (JSAMPROW *) mov eax, r13d ; -- Even part pxor xmm4,xmm4 punpcklwd xmm4,xmm1 ; xmm4=tmp0 psrad xmm4,(16-CONST_BITS-1) ; psrad xmm4,16 & pslld xmm4,CONST_BITS+1 ; -- Odd part punpckhwd xmm1,xmm0 punpckhwd xmm6,xmm3 movdqa xmm5,xmm1 movdqa xmm2,xmm6 pmaddwd xmm1,[rel PW_F256_F089] ; xmm1=(tmp2) pmaddwd xmm6,[rel PW_MF060_MF050] ; xmm6=(tmp2) pmaddwd xmm5,[rel PW_F106_MF217] ; xmm5=(tmp0) pmaddwd xmm2,[rel PW_F145_MF021] ; xmm2=(tmp0) paddd xmm6,xmm1 ; xmm6=tmp2 paddd xmm2,xmm5 ; xmm2=tmp0 ; -- Even part punpcklwd xmm0,xmm3 pmaddwd xmm0,[rel PW_F184_MF076] ; xmm0=tmp2 movdqa xmm7,xmm4 paddd xmm4,xmm0 ; xmm4=tmp10 psubd xmm7,xmm0 ; xmm7=tmp12 ; -- Final output stage movdqa xmm1,[rel PD_DESCALE_P2_4] ; xmm1=[rel PD_DESCALE_P2_4] movdqa xmm5,xmm4 movdqa xmm3,xmm7 paddd xmm4,xmm6 ; xmm4=data0=(00 10 20 30) paddd xmm7,xmm2 ; xmm7=data1=(01 11 21 31) psubd xmm5,xmm6 ; xmm5=data3=(03 13 23 33) psubd xmm3,xmm2 ; xmm3=data2=(02 12 22 32) paddd xmm4,xmm1 paddd xmm7,xmm1 psrad xmm4,DESCALE_P2_4 psrad xmm7,DESCALE_P2_4 paddd xmm5,xmm1 paddd xmm3,xmm1 psrad xmm5,DESCALE_P2_4 psrad xmm3,DESCALE_P2_4 packssdw xmm4,xmm3 ; xmm4=(00 10 20 30 02 12 22 32) packssdw xmm7,xmm5 ; xmm7=(01 11 21 31 03 13 23 33) movdqa xmm0,xmm4 ; transpose coefficients(phase 1) punpcklwd xmm4,xmm7 ; xmm4=(00 01 10 11 20 21 30 31) punpckhwd xmm0,xmm7 ; xmm0=(02 03 12 13 22 23 32 33) movdqa xmm6,xmm4 ; transpose coefficients(phase 2) punpckldq xmm4,xmm0 ; xmm4=(00 01 02 03 10 11 12 13) punpckhdq xmm6,xmm0 ; xmm6=(20 21 22 23 30 31 32 33) packsswb xmm4,xmm6 ; xmm4=(00 01 02 03 10 11 12 13 20 ..) paddb xmm4,[rel PB_CENTERJSAMP] pshufd xmm2,xmm4,0x39 ; xmm2=(10 11 12 13 20 21 22 23 30 ..) pshufd xmm1,xmm4,0x4E ; xmm1=(20 21 22 23 30 31 32 33 00 ..) pshufd xmm3,xmm4,0x93 ; xmm3=(30 31 32 33 00 01 02 03 10 ..) mov rdx, JSAMPROW [rdi+0*SIZEOF_JSAMPROW] mov rsi, JSAMPROW [rdi+1*SIZEOF_JSAMPROW] movd XMM_DWORD [rdx+rax*SIZEOF_JSAMPLE], xmm4 movd XMM_DWORD [rsi+rax*SIZEOF_JSAMPLE], xmm2 mov rdx, JSAMPROW [rdi+2*SIZEOF_JSAMPROW] mov rsi, JSAMPROW [rdi+3*SIZEOF_JSAMPROW] movd XMM_DWORD [rdx+rax*SIZEOF_JSAMPLE], xmm1 movd XMM_DWORD [rsi+rax*SIZEOF_JSAMPLE], xmm3 uncollect_args mov rsp,rbp ; rsp <- aligned rbp pop rsp ; rsp <- original rbp pop rbp ret ; -------------------------------------------------------------------------- ; ; Perform dequantization and inverse DCT on one block of coefficients, ; producing a reduced-size 2x2 output block. ; ; GLOBAL(void) ; jsimd_idct_2x2_sse2 (void * dct_table, JCOEFPTR coef_block, ; JSAMPARRAY output_buf, JDIMENSION output_col) ; ; r10 = void * dct_table ; r11 = JCOEFPTR coef_block ; r12 = JSAMPARRAY output_buf ; r13 = JDIMENSION output_col align 16 global EXTN(jsimd_idct_2x2_sse2) EXTN(jsimd_idct_2x2_sse2): push rbp mov rax,rsp mov rbp,rsp collect_args push rbx ; ---- Pass 1: process columns from input. mov rdx, r10 ; quantptr mov rsi, r11 ; inptr ; | input: | result: | ; | 00 01 ** 03 ** 05 ** 07 | | ; | 10 11 ** 13 ** 15 ** 17 | | ; | ** ** ** ** ** ** ** ** | | ; | 30 31 ** 33 ** 35 ** 37 | A0 A1 A3 A5 A7 | ; | ** ** ** ** ** ** ** ** | B0 B1 B3 B5 B7 | ; | 50 51 ** 53 ** 55 ** 57 | | ; | ** ** ** ** ** ** ** ** | | ; | 70 71 ** 73 ** 75 ** 77 | | ; -- Odd part movdqa xmm0, XMMWORD [XMMBLOCK(1,0,rsi,SIZEOF_JCOEF)] movdqa xmm1, XMMWORD [XMMBLOCK(3,0,rsi,SIZEOF_JCOEF)] pmullw xmm0, XMMWORD [XMMBLOCK(1,0,rdx,SIZEOF_ISLOW_MULT_TYPE)] pmullw xmm1, XMMWORD [XMMBLOCK(3,0,rdx,SIZEOF_ISLOW_MULT_TYPE)] movdqa xmm2, XMMWORD [XMMBLOCK(5,0,rsi,SIZEOF_JCOEF)] movdqa xmm3, XMMWORD [XMMBLOCK(7,0,rsi,SIZEOF_JCOEF)] pmullw xmm2, XMMWORD [XMMBLOCK(5,0,rdx,SIZEOF_ISLOW_MULT_TYPE)] pmullw xmm3, XMMWORD [XMMBLOCK(7,0,rdx,SIZEOF_ISLOW_MULT_TYPE)] ; xmm0=(10 11 ** 13 ** 15 ** 17), xmm1=(30 31 ** 33 ** 35 ** 37) ; xmm2=(50 51 ** 53 ** 55 ** 57), xmm3=(70 71 ** 73 ** 75 ** 77) pcmpeqd xmm7,xmm7 pslld xmm7,WORD_BIT ; xmm7={0x0000 0xFFFF 0x0000 0xFFFF ..} movdqa xmm4,xmm0 ; xmm4=(10 11 ** 13 ** 15 ** 17) movdqa xmm5,xmm2 ; xmm5=(50 51 ** 53 ** 55 ** 57) punpcklwd xmm4,xmm1 ; xmm4=(10 30 11 31 ** ** 13 33) punpcklwd xmm5,xmm3 ; xmm5=(50 70 51 71 ** ** 53 73) pmaddwd xmm4,[rel PW_F362_MF127] pmaddwd xmm5,[rel PW_F085_MF072] psrld xmm0,WORD_BIT ; xmm0=(11 -- 13 -- 15 -- 17 --) pand xmm1,xmm7 ; xmm1=(-- 31 -- 33 -- 35 -- 37) psrld xmm2,WORD_BIT ; xmm2=(51 -- 53 -- 55 -- 57 --) pand xmm3,xmm7 ; xmm3=(-- 71 -- 73 -- 75 -- 77) por xmm0,xmm1 ; xmm0=(11 31 13 33 15 35 17 37) por xmm2,xmm3 ; xmm2=(51 71 53 73 55 75 57 77) pmaddwd xmm0,[rel PW_F362_MF127] pmaddwd xmm2,[rel PW_F085_MF072] paddd xmm4,xmm5 ; xmm4=tmp0[col0 col1 **** col3] paddd xmm0,xmm2 ; xmm0=tmp0[col1 col3 col5 col7] ; -- Even part movdqa xmm6, XMMWORD [XMMBLOCK(0,0,rsi,SIZEOF_JCOEF)] pmullw xmm6, XMMWORD [XMMBLOCK(0,0,rdx,SIZEOF_ISLOW_MULT_TYPE)] ; xmm6=(00 01 ** 03 ** 05 ** 07) movdqa xmm1,xmm6 ; xmm1=(00 01 ** 03 ** 05 ** 07) pslld xmm6,WORD_BIT ; xmm6=(-- 00 -- ** -- ** -- **) pand xmm1,xmm7 ; xmm1=(-- 01 -- 03 -- 05 -- 07) psrad xmm6,(WORD_BIT-CONST_BITS-2) ; xmm6=tmp10[col0 **** **** ****] psrad xmm1,(WORD_BIT-CONST_BITS-2) ; xmm1=tmp10[col1 col3 col5 col7] ; -- Final output stage movdqa xmm3,xmm6 movdqa xmm5,xmm1 paddd xmm6,xmm4 ; xmm6=data0[col0 **** **** ****]=(A0 ** ** **) paddd xmm1,xmm0 ; xmm1=data0[col1 col3 col5 col7]=(A1 A3 A5 A7) psubd xmm3,xmm4 ; xmm3=data1[col0 **** **** ****]=(B0 ** ** **) psubd xmm5,xmm0 ; xmm5=data1[col1 col3 col5 col7]=(B1 B3 B5 B7) movdqa xmm2,[rel PD_DESCALE_P1_2] ; xmm2=[rel PD_DESCALE_P1_2] punpckldq xmm6,xmm3 ; xmm6=(A0 B0 ** **) movdqa xmm7,xmm1 punpcklqdq xmm1,xmm5 ; xmm1=(A1 A3 B1 B3) punpckhqdq xmm7,xmm5 ; xmm7=(A5 A7 B5 B7) paddd xmm6,xmm2 psrad xmm6,DESCALE_P1_2 paddd xmm1,xmm2 paddd xmm7,xmm2 psrad xmm1,DESCALE_P1_2 psrad xmm7,DESCALE_P1_2 ; -- Prefetch the next coefficient block prefetchnta [rsi + DCTSIZE2*SIZEOF_JCOEF + 0*32] prefetchnta [rsi + DCTSIZE2*SIZEOF_JCOEF + 1*32] prefetchnta [rsi + DCTSIZE2*SIZEOF_JCOEF + 2*32] prefetchnta [rsi + DCTSIZE2*SIZEOF_JCOEF + 3*32] ; ---- Pass 2: process rows, store into output array. mov rdi, r12 ; (JSAMPROW *) mov eax, r13d ; | input:| result:| ; | A0 B0 | | ; | A1 B1 | C0 C1 | ; | A3 B3 | D0 D1 | ; | A5 B5 | | ; | A7 B7 | | ; -- Odd part packssdw xmm1,xmm1 ; xmm1=(A1 A3 B1 B3 A1 A3 B1 B3) packssdw xmm7,xmm7 ; xmm7=(A5 A7 B5 B7 A5 A7 B5 B7) pmaddwd xmm1,[rel PW_F362_MF127] pmaddwd xmm7,[rel PW_F085_MF072] paddd xmm1,xmm7 ; xmm1=tmp0[row0 row1 row0 row1] ; -- Even part pslld xmm6,(CONST_BITS+2) ; xmm6=tmp10[row0 row1 **** ****] ; -- Final output stage movdqa xmm4,xmm6 paddd xmm6,xmm1 ; xmm6=data0[row0 row1 **** ****]=(C0 C1 ** **) psubd xmm4,xmm1 ; xmm4=data1[row0 row1 **** ****]=(D0 D1 ** **) punpckldq xmm6,xmm4 ; xmm6=(C0 D0 C1 D1) paddd xmm6,[rel PD_DESCALE_P2_2] psrad xmm6,DESCALE_P2_2 packssdw xmm6,xmm6 ; xmm6=(C0 D0 C1 D1 C0 D0 C1 D1) packsswb xmm6,xmm6 ; xmm6=(C0 D0 C1 D1 C0 D0 C1 D1 ..) paddb xmm6,[rel PB_CENTERJSAMP] pextrw ebx,xmm6,0x00 ; ebx=(C0 D0 -- --) pextrw ecx,xmm6,0x01 ; ecx=(C1 D1 -- --) mov rdx, JSAMPROW [rdi+0*SIZEOF_JSAMPROW] mov rsi, JSAMPROW [rdi+1*SIZEOF_JSAMPROW] mov WORD [rdx+rax*SIZEOF_JSAMPLE], bx mov WORD [rsi+rax*SIZEOF_JSAMPLE], cx pop rbx uncollect_args pop rbp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 16 libjpeg-turbo-1.4.2/simd/jquant-mmx.asm0000644000076500007650000002214012600050400014737 00000000000000; ; jquant.asm - sample data conversion and quantization (MMX) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; ; Based on ; x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; [TAB8] %include "jsimdext.inc" %include "jdct.inc" ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 32 ; ; Load data into workspace, applying unsigned->signed conversion ; ; GLOBAL(void) ; jsimd_convsamp_mmx (JSAMPARRAY sample_data, JDIMENSION start_col, ; DCTELEM * workspace); ; %define sample_data ebp+8 ; JSAMPARRAY sample_data %define start_col ebp+12 ; JDIMENSION start_col %define workspace ebp+16 ; DCTELEM * workspace align 16 global EXTN(jsimd_convsamp_mmx) EXTN(jsimd_convsamp_mmx): push ebp mov ebp,esp push ebx ; push ecx ; need not be preserved ; push edx ; need not be preserved push esi push edi pxor mm6,mm6 ; mm6=(all 0's) pcmpeqw mm7,mm7 psllw mm7,7 ; mm7={0xFF80 0xFF80 0xFF80 0xFF80} mov esi, JSAMPARRAY [sample_data] ; (JSAMPROW *) mov eax, JDIMENSION [start_col] mov edi, POINTER [workspace] ; (DCTELEM *) mov ecx, DCTSIZE/4 alignx 16,7 .convloop: mov ebx, JSAMPROW [esi+0*SIZEOF_JSAMPROW] ; (JSAMPLE *) mov edx, JSAMPROW [esi+1*SIZEOF_JSAMPROW] ; (JSAMPLE *) movq mm0, MMWORD [ebx+eax*SIZEOF_JSAMPLE] ; mm0=(01234567) movq mm1, MMWORD [edx+eax*SIZEOF_JSAMPLE] ; mm1=(89ABCDEF) mov ebx, JSAMPROW [esi+2*SIZEOF_JSAMPROW] ; (JSAMPLE *) mov edx, JSAMPROW [esi+3*SIZEOF_JSAMPROW] ; (JSAMPLE *) movq mm2, MMWORD [ebx+eax*SIZEOF_JSAMPLE] ; mm2=(GHIJKLMN) movq mm3, MMWORD [edx+eax*SIZEOF_JSAMPLE] ; mm3=(OPQRSTUV) movq mm4,mm0 punpcklbw mm0,mm6 ; mm0=(0123) punpckhbw mm4,mm6 ; mm4=(4567) movq mm5,mm1 punpcklbw mm1,mm6 ; mm1=(89AB) punpckhbw mm5,mm6 ; mm5=(CDEF) paddw mm0,mm7 paddw mm4,mm7 paddw mm1,mm7 paddw mm5,mm7 movq MMWORD [MMBLOCK(0,0,edi,SIZEOF_DCTELEM)], mm0 movq MMWORD [MMBLOCK(0,1,edi,SIZEOF_DCTELEM)], mm4 movq MMWORD [MMBLOCK(1,0,edi,SIZEOF_DCTELEM)], mm1 movq MMWORD [MMBLOCK(1,1,edi,SIZEOF_DCTELEM)], mm5 movq mm0,mm2 punpcklbw mm2,mm6 ; mm2=(GHIJ) punpckhbw mm0,mm6 ; mm0=(KLMN) movq mm4,mm3 punpcklbw mm3,mm6 ; mm3=(OPQR) punpckhbw mm4,mm6 ; mm4=(STUV) paddw mm2,mm7 paddw mm0,mm7 paddw mm3,mm7 paddw mm4,mm7 movq MMWORD [MMBLOCK(2,0,edi,SIZEOF_DCTELEM)], mm2 movq MMWORD [MMBLOCK(2,1,edi,SIZEOF_DCTELEM)], mm0 movq MMWORD [MMBLOCK(3,0,edi,SIZEOF_DCTELEM)], mm3 movq MMWORD [MMBLOCK(3,1,edi,SIZEOF_DCTELEM)], mm4 add esi, byte 4*SIZEOF_JSAMPROW add edi, byte 4*DCTSIZE*SIZEOF_DCTELEM dec ecx jnz short .convloop emms ; empty MMX state pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; need not be preserved pop ebx pop ebp ret ; -------------------------------------------------------------------------- ; ; Quantize/descale the coefficients, and store into coef_block ; ; This implementation is based on an algorithm described in ; "How to optimize for the Pentium family of microprocessors" ; (http://www.agner.org/assem/). ; ; GLOBAL(void) ; jsimd_quantize_mmx (JCOEFPTR coef_block, DCTELEM * divisors, ; DCTELEM * workspace); ; %define RECIPROCAL(m,n,b) MMBLOCK(DCTSIZE*0+(m),(n),(b),SIZEOF_DCTELEM) %define CORRECTION(m,n,b) MMBLOCK(DCTSIZE*1+(m),(n),(b),SIZEOF_DCTELEM) %define SCALE(m,n,b) MMBLOCK(DCTSIZE*2+(m),(n),(b),SIZEOF_DCTELEM) %define SHIFT(m,n,b) MMBLOCK(DCTSIZE*3+(m),(n),(b),SIZEOF_DCTELEM) %define coef_block ebp+8 ; JCOEFPTR coef_block %define divisors ebp+12 ; DCTELEM * divisors %define workspace ebp+16 ; DCTELEM * workspace align 16 global EXTN(jsimd_quantize_mmx) EXTN(jsimd_quantize_mmx): push ebp mov ebp,esp ; push ebx ; unused ; push ecx ; unused ; push edx ; need not be preserved push esi push edi mov esi, POINTER [workspace] mov edx, POINTER [divisors] mov edi, JCOEFPTR [coef_block] mov ah, 2 alignx 16,7 .quantloop1: mov al, DCTSIZE2/8/2 alignx 16,7 .quantloop2: movq mm2, MMWORD [MMBLOCK(0,0,esi,SIZEOF_DCTELEM)] movq mm3, MMWORD [MMBLOCK(0,1,esi,SIZEOF_DCTELEM)] movq mm0,mm2 movq mm1,mm3 psraw mm2,(WORD_BIT-1) ; -1 if value < 0, 0 otherwise psraw mm3,(WORD_BIT-1) pxor mm0,mm2 ; val = -val pxor mm1,mm3 psubw mm0,mm2 psubw mm1,mm3 ; ; MMX is an annoyingly crappy instruction set. It has two ; misfeatures that are causing problems here: ; ; - All multiplications are signed. ; ; - The second operand for the shifts is not treated as packed. ; ; ; We work around the first problem by implementing this algorithm: ; ; unsigned long unsigned_multiply(unsigned short x, unsigned short y) ; { ; enum { SHORT_BIT = 16 }; ; signed short sx = (signed short) x; ; signed short sy = (signed short) y; ; signed long sz; ; ; sz = (long) sx * (long) sy; /* signed multiply */ ; ; if (sx < 0) sz += (long) sy << SHORT_BIT; ; if (sy < 0) sz += (long) sx << SHORT_BIT; ; ; return (unsigned long) sz; ; } ; ; (note that a negative sx adds _sy_ and vice versa) ; ; For the second problem, we replace the shift by a multiplication. ; Unfortunately that means we have to deal with the signed issue again. ; paddw mm0, MMWORD [CORRECTION(0,0,edx)] ; correction + roundfactor paddw mm1, MMWORD [CORRECTION(0,1,edx)] movq mm4,mm0 ; store current value for later movq mm5,mm1 pmulhw mm0, MMWORD [RECIPROCAL(0,0,edx)] ; reciprocal pmulhw mm1, MMWORD [RECIPROCAL(0,1,edx)] paddw mm0,mm4 ; reciprocal is always negative (MSB=1), paddw mm1,mm5 ; so we always need to add the initial value ; (input value is never negative as we ; inverted it at the start of this routine) ; here it gets a bit tricky as both scale ; and mm0/mm1 can be negative movq mm6, MMWORD [SCALE(0,0,edx)] ; scale movq mm7, MMWORD [SCALE(0,1,edx)] movq mm4,mm0 movq mm5,mm1 pmulhw mm0,mm6 pmulhw mm1,mm7 psraw mm6,(WORD_BIT-1) ; determine if scale is negative psraw mm7,(WORD_BIT-1) pand mm6,mm4 ; and add input if it is pand mm7,mm5 paddw mm0,mm6 paddw mm1,mm7 psraw mm4,(WORD_BIT-1) ; then check if negative input psraw mm5,(WORD_BIT-1) pand mm4, MMWORD [SCALE(0,0,edx)] ; and add scale if it is pand mm5, MMWORD [SCALE(0,1,edx)] paddw mm0,mm4 paddw mm1,mm5 pxor mm0,mm2 ; val = -val pxor mm1,mm3 psubw mm0,mm2 psubw mm1,mm3 movq MMWORD [MMBLOCK(0,0,edi,SIZEOF_DCTELEM)], mm0 movq MMWORD [MMBLOCK(0,1,edi,SIZEOF_DCTELEM)], mm1 add esi, byte 8*SIZEOF_DCTELEM add edx, byte 8*SIZEOF_DCTELEM add edi, byte 8*SIZEOF_JCOEF dec al jnz near .quantloop2 dec ah jnz near .quantloop1 ; to avoid branch misprediction emms ; empty MMX state pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; unused ; pop ebx ; unused pop ebp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 16 libjpeg-turbo-1.4.2/simd/jsimd_arm.c0000644000076500007650000003503612600050400014255 00000000000000/* * jsimd_arm.c * * Copyright 2009 Pierre Ossman for Cendio AB * Copyright 2009-2011, 2013-2014 D. R. Commander * * Based on the x86 SIMD extension for IJG JPEG library, * Copyright (C) 1999-2006, MIYASAKA Masaru. * For conditions of distribution and use, see copyright notice in jsimdext.inc * * This file contains the interface between the "normal" portions * of the library and the SIMD implementations when running on a * 32-bit ARM architecture. */ #define JPEG_INTERNALS #include "../jinclude.h" #include "../jpeglib.h" #include "../jsimd.h" #include "../jdct.h" #include "../jsimddct.h" #include "jsimd.h" #include #include #include static unsigned int simd_support = ~0; #if defined(__linux__) || defined(ANDROID) || defined(__ANDROID__) #define SOMEWHAT_SANE_PROC_CPUINFO_SIZE_LIMIT (1024 * 1024) LOCAL(int) check_feature (char *buffer, char *feature) { char *p; if (*feature == 0) return 0; if (strncmp(buffer, "Features", 8) != 0) return 0; buffer += 8; while (isspace(*buffer)) buffer++; /* Check if 'feature' is present in the buffer as a separate word */ while ((p = strstr(buffer, feature))) { if (p > buffer && !isspace(*(p - 1))) { buffer++; continue; } p += strlen(feature); if (*p != 0 && !isspace(*p)) { buffer++; continue; } return 1; } return 0; } LOCAL(int) parse_proc_cpuinfo (int bufsize) { char *buffer = (char *)malloc(bufsize); FILE *fd; simd_support = 0; if (!buffer) return 0; fd = fopen("/proc/cpuinfo", "r"); if (fd) { while (fgets(buffer, bufsize, fd)) { if (!strchr(buffer, '\n') && !feof(fd)) { /* "impossible" happened - insufficient size of the buffer! */ fclose(fd); free(buffer); return 0; } if (check_feature(buffer, "neon")) simd_support |= JSIMD_ARM_NEON; } fclose(fd); } free(buffer); return 1; } #endif /* * Check what SIMD accelerations are supported. * * FIXME: This code is racy under a multi-threaded environment. */ LOCAL(void) init_simd (void) { char *env = NULL; #if !defined(__ARM_NEON__) && defined(__linux__) || defined(ANDROID) || defined(__ANDROID__) int bufsize = 1024; /* an initial guess for the line buffer size limit */ #endif if (simd_support != ~0U) return; simd_support = 0; #if defined(__ARM_NEON__) simd_support |= JSIMD_ARM_NEON; #elif defined(__linux__) || defined(ANDROID) || defined(__ANDROID__) /* We still have a chance to use NEON regardless of globally used * -mcpu/-mfpu options passed to gcc by performing runtime detection via * /proc/cpuinfo parsing on linux/android */ while (!parse_proc_cpuinfo(bufsize)) { bufsize *= 2; if (bufsize > SOMEWHAT_SANE_PROC_CPUINFO_SIZE_LIMIT) break; } #endif /* Force different settings through environment variables */ env = getenv("JSIMD_FORCENEON"); if ((env != NULL) && (strcmp(env, "1") == 0)) simd_support &= JSIMD_ARM_NEON; env = getenv("JSIMD_FORCENONE"); if ((env != NULL) && (strcmp(env, "1") == 0)) simd_support = 0; } GLOBAL(int) jsimd_can_rgb_ycc (void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if ((RGB_PIXELSIZE != 3) && (RGB_PIXELSIZE != 4)) return 0; if (simd_support & JSIMD_ARM_NEON) return 1; return 0; } GLOBAL(int) jsimd_can_rgb_gray (void) { init_simd(); return 0; } GLOBAL(int) jsimd_can_ycc_rgb (void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if ((RGB_PIXELSIZE != 3) && (RGB_PIXELSIZE != 4)) return 0; if (simd_support & JSIMD_ARM_NEON) return 1; return 0; } GLOBAL(int) jsimd_can_ycc_rgb565 (void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (simd_support & JSIMD_ARM_NEON) return 1; return 0; } GLOBAL(void) jsimd_rgb_ycc_convert (j_compress_ptr cinfo, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows) { void (*neonfct)(JDIMENSION, JSAMPARRAY, JSAMPIMAGE, JDIMENSION, int); switch(cinfo->in_color_space) { case JCS_EXT_RGB: neonfct=jsimd_extrgb_ycc_convert_neon; break; case JCS_EXT_RGBX: case JCS_EXT_RGBA: neonfct=jsimd_extrgbx_ycc_convert_neon; break; case JCS_EXT_BGR: neonfct=jsimd_extbgr_ycc_convert_neon; break; case JCS_EXT_BGRX: case JCS_EXT_BGRA: neonfct=jsimd_extbgrx_ycc_convert_neon; break; case JCS_EXT_XBGR: case JCS_EXT_ABGR: neonfct=jsimd_extxbgr_ycc_convert_neon; break; case JCS_EXT_XRGB: case JCS_EXT_ARGB: neonfct=jsimd_extxrgb_ycc_convert_neon; break; default: neonfct=jsimd_extrgb_ycc_convert_neon; break; } if (simd_support & JSIMD_ARM_NEON) neonfct(cinfo->image_width, input_buf, output_buf, output_row, num_rows); } GLOBAL(void) jsimd_rgb_gray_convert (j_compress_ptr cinfo, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows) { } GLOBAL(void) jsimd_ycc_rgb_convert (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) { void (*neonfct)(JDIMENSION, JSAMPIMAGE, JDIMENSION, JSAMPARRAY, int); switch(cinfo->out_color_space) { case JCS_EXT_RGB: neonfct=jsimd_ycc_extrgb_convert_neon; break; case JCS_EXT_RGBX: case JCS_EXT_RGBA: neonfct=jsimd_ycc_extrgbx_convert_neon; break; case JCS_EXT_BGR: neonfct=jsimd_ycc_extbgr_convert_neon; break; case JCS_EXT_BGRX: case JCS_EXT_BGRA: neonfct=jsimd_ycc_extbgrx_convert_neon; break; case JCS_EXT_XBGR: case JCS_EXT_ABGR: neonfct=jsimd_ycc_extxbgr_convert_neon; break; case JCS_EXT_XRGB: case JCS_EXT_ARGB: neonfct=jsimd_ycc_extxrgb_convert_neon; break; default: neonfct=jsimd_ycc_extrgb_convert_neon; break; } if (simd_support & JSIMD_ARM_NEON) neonfct(cinfo->output_width, input_buf, input_row, output_buf, num_rows); } GLOBAL(void) jsimd_ycc_rgb565_convert (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) { if (simd_support & JSIMD_ARM_NEON) jsimd_ycc_rgb565_convert_neon(cinfo->output_width, input_buf, input_row, output_buf, num_rows); } GLOBAL(int) jsimd_can_h2v2_downsample (void) { init_simd(); return 0; } GLOBAL(int) jsimd_can_h2v1_downsample (void) { init_simd(); return 0; } GLOBAL(void) jsimd_h2v2_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, JSAMPARRAY input_data, JSAMPARRAY output_data) { } GLOBAL(void) jsimd_h2v1_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, JSAMPARRAY input_data, JSAMPARRAY output_data) { } GLOBAL(int) jsimd_can_h2v2_upsample (void) { init_simd(); return 0; } GLOBAL(int) jsimd_can_h2v1_upsample (void) { init_simd(); return 0; } GLOBAL(void) jsimd_h2v2_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) { } GLOBAL(void) jsimd_h2v1_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) { } GLOBAL(int) jsimd_can_h2v2_fancy_upsample (void) { init_simd(); return 0; } GLOBAL(int) jsimd_can_h2v1_fancy_upsample (void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (simd_support & JSIMD_ARM_NEON) return 1; return 0; } GLOBAL(void) jsimd_h2v2_fancy_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) { } GLOBAL(void) jsimd_h2v1_fancy_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) { if (simd_support & JSIMD_ARM_NEON) jsimd_h2v1_fancy_upsample_neon(cinfo->max_v_samp_factor, compptr->downsampled_width, input_data, output_data_ptr); } GLOBAL(int) jsimd_can_h2v2_merged_upsample (void) { init_simd(); return 0; } GLOBAL(int) jsimd_can_h2v1_merged_upsample (void) { init_simd(); return 0; } GLOBAL(void) jsimd_h2v2_merged_upsample (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf) { } GLOBAL(void) jsimd_h2v1_merged_upsample (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf) { } GLOBAL(int) jsimd_can_convsamp (void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (sizeof(DCTELEM) != 2) return 0; if (simd_support & JSIMD_ARM_NEON) return 1; return 0; } GLOBAL(int) jsimd_can_convsamp_float (void) { init_simd(); return 0; } GLOBAL(void) jsimd_convsamp (JSAMPARRAY sample_data, JDIMENSION start_col, DCTELEM * workspace) { if (simd_support & JSIMD_ARM_NEON) jsimd_convsamp_neon(sample_data, start_col, workspace); } GLOBAL(void) jsimd_convsamp_float (JSAMPARRAY sample_data, JDIMENSION start_col, FAST_FLOAT * workspace) { } GLOBAL(int) jsimd_can_fdct_islow (void) { init_simd(); return 0; } GLOBAL(int) jsimd_can_fdct_ifast (void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (sizeof(DCTELEM) != 2) return 0; if (simd_support & JSIMD_ARM_NEON) return 1; return 0; } GLOBAL(int) jsimd_can_fdct_float (void) { init_simd(); return 0; } GLOBAL(void) jsimd_fdct_islow (DCTELEM * data) { } GLOBAL(void) jsimd_fdct_ifast (DCTELEM * data) { if (simd_support & JSIMD_ARM_NEON) jsimd_fdct_ifast_neon(data); } GLOBAL(void) jsimd_fdct_float (FAST_FLOAT * data) { } GLOBAL(int) jsimd_can_quantize (void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (sizeof(JCOEF) != 2) return 0; if (sizeof(DCTELEM) != 2) return 0; if (simd_support & JSIMD_ARM_NEON) return 1; return 0; } GLOBAL(int) jsimd_can_quantize_float (void) { init_simd(); return 0; } GLOBAL(void) jsimd_quantize (JCOEFPTR coef_block, DCTELEM * divisors, DCTELEM * workspace) { if (simd_support & JSIMD_ARM_NEON) jsimd_quantize_neon(coef_block, divisors, workspace); } GLOBAL(void) jsimd_quantize_float (JCOEFPTR coef_block, FAST_FLOAT * divisors, FAST_FLOAT * workspace) { } GLOBAL(int) jsimd_can_idct_2x2 (void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (sizeof(JCOEF) != 2) return 0; if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (sizeof(ISLOW_MULT_TYPE) != 2) return 0; if (simd_support & JSIMD_ARM_NEON) return 1; return 0; } GLOBAL(int) jsimd_can_idct_4x4 (void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (sizeof(JCOEF) != 2) return 0; if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (sizeof(ISLOW_MULT_TYPE) != 2) return 0; if (simd_support & JSIMD_ARM_NEON) return 1; return 0; } GLOBAL(void) jsimd_idct_2x2 (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { if (simd_support & JSIMD_ARM_NEON) jsimd_idct_2x2_neon(compptr->dct_table, coef_block, output_buf, output_col); } GLOBAL(void) jsimd_idct_4x4 (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { if (simd_support & JSIMD_ARM_NEON) jsimd_idct_4x4_neon(compptr->dct_table, coef_block, output_buf, output_col); } GLOBAL(int) jsimd_can_idct_islow (void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (sizeof(JCOEF) != 2) return 0; if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (sizeof(ISLOW_MULT_TYPE) != 2) return 0; if (simd_support & JSIMD_ARM_NEON) return 1; return 0; } GLOBAL(int) jsimd_can_idct_ifast (void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (sizeof(JCOEF) != 2) return 0; if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (sizeof(IFAST_MULT_TYPE) != 2) return 0; if (IFAST_SCALE_BITS != 2) return 0; if (simd_support & JSIMD_ARM_NEON) return 1; return 0; } GLOBAL(int) jsimd_can_idct_float (void) { init_simd(); return 0; } GLOBAL(void) jsimd_idct_islow (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { if (simd_support & JSIMD_ARM_NEON) jsimd_idct_islow_neon(compptr->dct_table, coef_block, output_buf, output_col); } GLOBAL(void) jsimd_idct_ifast (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { if (simd_support & JSIMD_ARM_NEON) jsimd_idct_ifast_neon(compptr->dct_table, coef_block, output_buf, output_col); } GLOBAL(void) jsimd_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { } libjpeg-turbo-1.4.2/cjpeg.c0000644000076500007650000005237212600050400012446 00000000000000/* * cjpeg.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1991-1998, Thomas G. Lane. * Modified 2003-2011 by Guido Vollbeding. * libjpeg-turbo Modifications: * Copyright (C) 2010, 2013-2014, D. R. Commander. * For conditions of distribution and use, see the accompanying README file. * * This file contains a command-line user interface for the JPEG compressor. * It should work on any system with Unix- or MS-DOS-style command lines. * * Two different command line styles are permitted, depending on the * compile-time switch TWO_FILE_COMMANDLINE: * cjpeg [options] inputfile outputfile * cjpeg [options] [inputfile] * In the second style, output is always to standard output, which you'd * normally redirect to a file or pipe to some other program. Input is * either from a named file or from standard input (typically redirected). * The second style is convenient on Unix but is unhelpful on systems that * don't support pipes. Also, you MUST use the first style if your system * doesn't do binary I/O to stdin/stdout. * To simplify script writing, the "-outfile" switch is provided. The syntax * cjpeg [options] -outfile outputfile inputfile * works regardless of which command line style is used. */ #include "cdjpeg.h" /* Common decls for cjpeg/djpeg applications */ #include "jversion.h" /* for version message */ #include "jconfigint.h" #ifdef USE_CCOMMAND /* command-line reader for Macintosh */ #ifdef __MWERKS__ #include /* Metrowerks needs this */ #include /* ... and this */ #endif #ifdef THINK_C #include /* Think declares it here */ #endif #endif /* Create the add-on message string table. */ #define JMESSAGE(code,string) string , static const char * const cdjpeg_message_table[] = { #include "cderror.h" NULL }; /* * This routine determines what format the input file is, * and selects the appropriate input-reading module. * * To determine which family of input formats the file belongs to, * we may look only at the first byte of the file, since C does not * guarantee that more than one character can be pushed back with ungetc. * Looking at additional bytes would require one of these approaches: * 1) assume we can fseek() the input file (fails for piped input); * 2) assume we can push back more than one character (works in * some C implementations, but unportable); * 3) provide our own buffering (breaks input readers that want to use * stdio directly, such as the RLE library); * or 4) don't put back the data, and modify the input_init methods to assume * they start reading after the start of file (also breaks RLE library). * #1 is attractive for MS-DOS but is untenable on Unix. * * The most portable solution for file types that can't be identified by their * first byte is to make the user tell us what they are. This is also the * only approach for "raw" file types that contain only arbitrary values. * We presently apply this method for Targa files. Most of the time Targa * files start with 0x00, so we recognize that case. Potentially, however, * a Targa file could start with any byte value (byte 0 is the length of the * seldom-used ID field), so we provide a switch to force Targa input mode. */ static boolean is_targa; /* records user -targa switch */ LOCAL(cjpeg_source_ptr) select_file_type (j_compress_ptr cinfo, FILE * infile) { int c; if (is_targa) { #ifdef TARGA_SUPPORTED return jinit_read_targa(cinfo); #else ERREXIT(cinfo, JERR_TGA_NOTCOMP); #endif } if ((c = getc(infile)) == EOF) ERREXIT(cinfo, JERR_INPUT_EMPTY); if (ungetc(c, infile) == EOF) ERREXIT(cinfo, JERR_UNGETC_FAILED); switch (c) { #ifdef BMP_SUPPORTED case 'B': return jinit_read_bmp(cinfo); #endif #ifdef GIF_SUPPORTED case 'G': return jinit_read_gif(cinfo); #endif #ifdef PPM_SUPPORTED case 'P': return jinit_read_ppm(cinfo); #endif #ifdef RLE_SUPPORTED case 'R': return jinit_read_rle(cinfo); #endif #ifdef TARGA_SUPPORTED case 0x00: return jinit_read_targa(cinfo); #endif default: ERREXIT(cinfo, JERR_UNKNOWN_FORMAT); break; } return NULL; /* suppress compiler warnings */ } /* * Argument-parsing code. * The switch parser is designed to be useful with DOS-style command line * syntax, ie, intermixed switches and file names, where only the switches * to the left of a given file name affect processing of that file. * The main program in this file doesn't actually use this capability... */ static const char * progname; /* program name for error messages */ static char * outfilename; /* for -outfile switch */ boolean memdst; /* for -memdst switch */ LOCAL(void) usage (void) /* complain about bad command line */ { fprintf(stderr, "usage: %s [switches] ", progname); #ifdef TWO_FILE_COMMANDLINE fprintf(stderr, "inputfile outputfile\n"); #else fprintf(stderr, "[inputfile]\n"); #endif fprintf(stderr, "Switches (names may be abbreviated):\n"); fprintf(stderr, " -quality N[,...] Compression quality (0..100; 5-95 is useful range)\n"); fprintf(stderr, " -grayscale Create monochrome JPEG file\n"); fprintf(stderr, " -rgb Create RGB JPEG file\n"); #ifdef ENTROPY_OPT_SUPPORTED fprintf(stderr, " -optimize Optimize Huffman table (smaller file, but slow compression)\n"); #endif #ifdef C_PROGRESSIVE_SUPPORTED fprintf(stderr, " -progressive Create progressive JPEG file\n"); #endif #ifdef TARGA_SUPPORTED fprintf(stderr, " -targa Input file is Targa format (usually not needed)\n"); #endif fprintf(stderr, "Switches for advanced users:\n"); #ifdef C_ARITH_CODING_SUPPORTED fprintf(stderr, " -arithmetic Use arithmetic coding\n"); #endif #ifdef DCT_ISLOW_SUPPORTED fprintf(stderr, " -dct int Use integer DCT method%s\n", (JDCT_DEFAULT == JDCT_ISLOW ? " (default)" : "")); #endif #ifdef DCT_IFAST_SUPPORTED fprintf(stderr, " -dct fast Use fast integer DCT (less accurate)%s\n", (JDCT_DEFAULT == JDCT_IFAST ? " (default)" : "")); #endif #ifdef DCT_FLOAT_SUPPORTED fprintf(stderr, " -dct float Use floating-point DCT method%s\n", (JDCT_DEFAULT == JDCT_FLOAT ? " (default)" : "")); #endif fprintf(stderr, " -restart N Set restart interval in rows, or in blocks with B\n"); #ifdef INPUT_SMOOTHING_SUPPORTED fprintf(stderr, " -smooth N Smooth dithered input (N=1..100 is strength)\n"); #endif fprintf(stderr, " -maxmemory N Maximum memory to use (in kbytes)\n"); fprintf(stderr, " -outfile name Specify name for output file\n"); #if JPEG_LIB_VERSION >= 80 || defined(MEM_SRCDST_SUPPORTED) fprintf(stderr, " -memdst Compress to memory instead of file (useful for benchmarking)\n"); #endif fprintf(stderr, " -verbose or -debug Emit debug output\n"); fprintf(stderr, " -version Print version information and exit\n"); fprintf(stderr, "Switches for wizards:\n"); fprintf(stderr, " -baseline Force baseline quantization tables\n"); fprintf(stderr, " -qtables file Use quantization tables given in file\n"); fprintf(stderr, " -qslots N[,...] Set component quantization tables\n"); fprintf(stderr, " -sample HxV[,...] Set component sampling factors\n"); #ifdef C_MULTISCAN_FILES_SUPPORTED fprintf(stderr, " -scans file Create multi-scan JPEG per script file\n"); #endif exit(EXIT_FAILURE); } LOCAL(int) parse_switches (j_compress_ptr cinfo, int argc, char **argv, int last_file_arg_seen, boolean for_real) /* Parse optional switches. * Returns argv[] index of first file-name argument (== argc if none). * Any file names with indexes <= last_file_arg_seen are ignored; * they have presumably been processed in a previous iteration. * (Pass 0 for last_file_arg_seen on the first or only iteration.) * for_real is FALSE on the first (dummy) pass; we may skip any expensive * processing. */ { int argn; char * arg; boolean force_baseline; boolean simple_progressive; char * qualityarg = NULL; /* saves -quality parm if any */ char * qtablefile = NULL; /* saves -qtables filename if any */ char * qslotsarg = NULL; /* saves -qslots parm if any */ char * samplearg = NULL; /* saves -sample parm if any */ char * scansarg = NULL; /* saves -scans parm if any */ /* Set up default JPEG parameters. */ force_baseline = FALSE; /* by default, allow 16-bit quantizers */ simple_progressive = FALSE; is_targa = FALSE; outfilename = NULL; memdst = FALSE; cinfo->err->trace_level = 0; /* Scan command line options, adjust parameters */ for (argn = 1; argn < argc; argn++) { arg = argv[argn]; if (*arg != '-') { /* Not a switch, must be a file name argument */ if (argn <= last_file_arg_seen) { outfilename = NULL; /* -outfile applies to just one input file */ continue; /* ignore this name if previously processed */ } break; /* else done parsing switches */ } arg++; /* advance past switch marker character */ if (keymatch(arg, "arithmetic", 1)) { /* Use arithmetic coding. */ #ifdef C_ARITH_CODING_SUPPORTED cinfo->arith_code = TRUE; #else fprintf(stderr, "%s: sorry, arithmetic coding not supported\n", progname); exit(EXIT_FAILURE); #endif } else if (keymatch(arg, "baseline", 1)) { /* Force baseline-compatible output (8-bit quantizer values). */ force_baseline = TRUE; } else if (keymatch(arg, "dct", 2)) { /* Select DCT algorithm. */ if (++argn >= argc) /* advance to next argument */ usage(); if (keymatch(argv[argn], "int", 1)) { cinfo->dct_method = JDCT_ISLOW; } else if (keymatch(argv[argn], "fast", 2)) { cinfo->dct_method = JDCT_IFAST; } else if (keymatch(argv[argn], "float", 2)) { cinfo->dct_method = JDCT_FLOAT; } else usage(); } else if (keymatch(arg, "debug", 1) || keymatch(arg, "verbose", 1)) { /* Enable debug printouts. */ /* On first -d, print version identification */ static boolean printed_version = FALSE; if (! printed_version) { fprintf(stderr, "%s version %s (build %s)\n", PACKAGE_NAME, VERSION, BUILD); fprintf(stderr, "%s\n\n", JCOPYRIGHT); fprintf(stderr, "Emulating The Independent JPEG Group's software, version %s\n\n", JVERSION); printed_version = TRUE; } cinfo->err->trace_level++; } else if (keymatch(arg, "version", 4)) { fprintf(stderr, "%s version %s (build %s)\n", PACKAGE_NAME, VERSION, BUILD); exit(EXIT_SUCCESS); } else if (keymatch(arg, "grayscale", 2) || keymatch(arg, "greyscale",2)) { /* Force a monochrome JPEG file to be generated. */ jpeg_set_colorspace(cinfo, JCS_GRAYSCALE); } else if (keymatch(arg, "rgb", 3)) { /* Force an RGB JPEG file to be generated. */ jpeg_set_colorspace(cinfo, JCS_RGB); } else if (keymatch(arg, "maxmemory", 3)) { /* Maximum memory in Kb (or Mb with 'm'). */ long lval; char ch = 'x'; if (++argn >= argc) /* advance to next argument */ usage(); if (sscanf(argv[argn], "%ld%c", &lval, &ch) < 1) usage(); if (ch == 'm' || ch == 'M') lval *= 1000L; cinfo->mem->max_memory_to_use = lval * 1000L; } else if (keymatch(arg, "optimize", 1) || keymatch(arg, "optimise", 1)) { /* Enable entropy parm optimization. */ #ifdef ENTROPY_OPT_SUPPORTED cinfo->optimize_coding = TRUE; #else fprintf(stderr, "%s: sorry, entropy optimization was not compiled in\n", progname); exit(EXIT_FAILURE); #endif } else if (keymatch(arg, "outfile", 4)) { /* Set output file name. */ if (++argn >= argc) /* advance to next argument */ usage(); outfilename = argv[argn]; /* save it away for later use */ } else if (keymatch(arg, "progressive", 1)) { /* Select simple progressive mode. */ #ifdef C_PROGRESSIVE_SUPPORTED simple_progressive = TRUE; /* We must postpone execution until num_components is known. */ #else fprintf(stderr, "%s: sorry, progressive output was not compiled in\n", progname); exit(EXIT_FAILURE); #endif } else if (keymatch(arg, "memdst", 2)) { /* Use in-memory destination manager */ #if JPEG_LIB_VERSION >= 80 || defined(MEM_SRCDST_SUPPORTED) memdst = TRUE; #else fprintf(stderr, "%s: sorry, in-memory destination manager was not compiled in\n", progname); exit(EXIT_FAILURE); #endif } else if (keymatch(arg, "quality", 1)) { /* Quality ratings (quantization table scaling factors). */ if (++argn >= argc) /* advance to next argument */ usage(); qualityarg = argv[argn]; } else if (keymatch(arg, "qslots", 2)) { /* Quantization table slot numbers. */ if (++argn >= argc) /* advance to next argument */ usage(); qslotsarg = argv[argn]; /* Must delay setting qslots until after we have processed any * colorspace-determining switches, since jpeg_set_colorspace sets * default quant table numbers. */ } else if (keymatch(arg, "qtables", 2)) { /* Quantization tables fetched from file. */ if (++argn >= argc) /* advance to next argument */ usage(); qtablefile = argv[argn]; /* We postpone actually reading the file in case -quality comes later. */ } else if (keymatch(arg, "restart", 1)) { /* Restart interval in MCU rows (or in MCUs with 'b'). */ long lval; char ch = 'x'; if (++argn >= argc) /* advance to next argument */ usage(); if (sscanf(argv[argn], "%ld%c", &lval, &ch) < 1) usage(); if (lval < 0 || lval > 65535L) usage(); if (ch == 'b' || ch == 'B') { cinfo->restart_interval = (unsigned int) lval; cinfo->restart_in_rows = 0; /* else prior '-restart n' overrides me */ } else { cinfo->restart_in_rows = (int) lval; /* restart_interval will be computed during startup */ } } else if (keymatch(arg, "sample", 2)) { /* Set sampling factors. */ if (++argn >= argc) /* advance to next argument */ usage(); samplearg = argv[argn]; /* Must delay setting sample factors until after we have processed any * colorspace-determining switches, since jpeg_set_colorspace sets * default sampling factors. */ } else if (keymatch(arg, "scans", 4)) { /* Set scan script. */ #ifdef C_MULTISCAN_FILES_SUPPORTED if (++argn >= argc) /* advance to next argument */ usage(); scansarg = argv[argn]; /* We must postpone reading the file in case -progressive appears. */ #else fprintf(stderr, "%s: sorry, multi-scan output was not compiled in\n", progname); exit(EXIT_FAILURE); #endif } else if (keymatch(arg, "smooth", 2)) { /* Set input smoothing factor. */ int val; if (++argn >= argc) /* advance to next argument */ usage(); if (sscanf(argv[argn], "%d", &val) != 1) usage(); if (val < 0 || val > 100) usage(); cinfo->smoothing_factor = val; } else if (keymatch(arg, "targa", 1)) { /* Input file is Targa format. */ is_targa = TRUE; } else { usage(); /* bogus switch */ } } /* Post-switch-scanning cleanup */ if (for_real) { /* Set quantization tables for selected quality. */ /* Some or all may be overridden if -qtables is present. */ if (qualityarg != NULL) /* process -quality if it was present */ if (! set_quality_ratings(cinfo, qualityarg, force_baseline)) usage(); if (qtablefile != NULL) /* process -qtables if it was present */ if (! read_quant_tables(cinfo, qtablefile, force_baseline)) usage(); if (qslotsarg != NULL) /* process -qslots if it was present */ if (! set_quant_slots(cinfo, qslotsarg)) usage(); if (samplearg != NULL) /* process -sample if it was present */ if (! set_sample_factors(cinfo, samplearg)) usage(); #ifdef C_PROGRESSIVE_SUPPORTED if (simple_progressive) /* process -progressive; -scans can override */ jpeg_simple_progression(cinfo); #endif #ifdef C_MULTISCAN_FILES_SUPPORTED if (scansarg != NULL) /* process -scans if it was present */ if (! read_scan_script(cinfo, scansarg)) usage(); #endif } return argn; /* return index of next arg (file name) */ } /* * The main program. */ int main (int argc, char **argv) { struct jpeg_compress_struct cinfo; struct jpeg_error_mgr jerr; #ifdef PROGRESS_REPORT struct cdjpeg_progress_mgr progress; #endif int file_index; cjpeg_source_ptr src_mgr; FILE * input_file; FILE * output_file = NULL; unsigned char *outbuffer = NULL; unsigned long outsize = 0; JDIMENSION num_scanlines; /* On Mac, fetch a command line. */ #ifdef USE_CCOMMAND argc = ccommand(&argv); #endif progname = argv[0]; if (progname == NULL || progname[0] == 0) progname = "cjpeg"; /* in case C library doesn't provide it */ /* Initialize the JPEG compression object with default error handling. */ cinfo.err = jpeg_std_error(&jerr); jpeg_create_compress(&cinfo); /* Add some application-specific error messages (from cderror.h) */ jerr.addon_message_table = cdjpeg_message_table; jerr.first_addon_message = JMSG_FIRSTADDONCODE; jerr.last_addon_message = JMSG_LASTADDONCODE; /* Initialize JPEG parameters. * Much of this may be overridden later. * In particular, we don't yet know the input file's color space, * but we need to provide some value for jpeg_set_defaults() to work. */ cinfo.in_color_space = JCS_RGB; /* arbitrary guess */ jpeg_set_defaults(&cinfo); /* Scan command line to find file names. * It is convenient to use just one switch-parsing routine, but the switch * values read here are ignored; we will rescan the switches after opening * the input file. */ file_index = parse_switches(&cinfo, argc, argv, 0, FALSE); #ifdef TWO_FILE_COMMANDLINE if (!memdst) { /* Must have either -outfile switch or explicit output file name */ if (outfilename == NULL) { if (file_index != argc-2) { fprintf(stderr, "%s: must name one input and one output file\n", progname); usage(); } outfilename = argv[file_index+1]; } else { if (file_index != argc-1) { fprintf(stderr, "%s: must name one input and one output file\n", progname); usage(); } } } #else /* Unix style: expect zero or one file name */ if (file_index < argc-1) { fprintf(stderr, "%s: only one input file\n", progname); usage(); } #endif /* TWO_FILE_COMMANDLINE */ /* Open the input file. */ if (file_index < argc) { if ((input_file = fopen(argv[file_index], READ_BINARY)) == NULL) { fprintf(stderr, "%s: can't open %s\n", progname, argv[file_index]); exit(EXIT_FAILURE); } } else { /* default input file is stdin */ input_file = read_stdin(); } /* Open the output file. */ if (outfilename != NULL) { if ((output_file = fopen(outfilename, WRITE_BINARY)) == NULL) { fprintf(stderr, "%s: can't open %s\n", progname, outfilename); exit(EXIT_FAILURE); } } else if (!memdst) { /* default output file is stdout */ output_file = write_stdout(); } #ifdef PROGRESS_REPORT start_progress_monitor((j_common_ptr) &cinfo, &progress); #endif /* Figure out the input file format, and set up to read it. */ src_mgr = select_file_type(&cinfo, input_file); src_mgr->input_file = input_file; /* Read the input file header to obtain file size & colorspace. */ (*src_mgr->start_input) (&cinfo, src_mgr); /* Now that we know input colorspace, fix colorspace-dependent defaults */ jpeg_default_colorspace(&cinfo); /* Adjust default compression parameters by re-parsing the options */ file_index = parse_switches(&cinfo, argc, argv, 0, TRUE); /* Specify data destination for compression */ #if JPEG_LIB_VERSION >= 80 || defined(MEM_SRCDST_SUPPORTED) if (memdst) jpeg_mem_dest(&cinfo, &outbuffer, &outsize); else #endif jpeg_stdio_dest(&cinfo, output_file); /* Start compressor */ jpeg_start_compress(&cinfo, TRUE); /* Process data */ while (cinfo.next_scanline < cinfo.image_height) { num_scanlines = (*src_mgr->get_pixel_rows) (&cinfo, src_mgr); (void) jpeg_write_scanlines(&cinfo, src_mgr->buffer, num_scanlines); } /* Finish compression and release memory */ (*src_mgr->finish_input) (&cinfo, src_mgr); jpeg_finish_compress(&cinfo); jpeg_destroy_compress(&cinfo); /* Close files, if we opened them */ if (input_file != stdin) fclose(input_file); if (output_file != stdout && output_file != NULL) fclose(output_file); #ifdef PROGRESS_REPORT end_progress_monitor((j_common_ptr) &cinfo); #endif if (memdst) { fprintf(stderr, "Compressed size: %lu bytes\n", outsize); if (outbuffer != NULL) free(outbuffer); } /* All done. */ exit(jerr.num_warnings ? EXIT_WARNING : EXIT_SUCCESS); return 0; /* suppress no-return-value warnings */ } libjpeg-turbo-1.4.2/structure.txt0000644000076500007650000014133512600050400014011 00000000000000IJG JPEG LIBRARY: SYSTEM ARCHITECTURE This file was part of the Independent JPEG Group's software: Copyright (C) 1991-2012, Thomas G. Lane, Guido Vollbeding. It was modified by The libjpeg-turbo Project to include only information relevant to libjpeg-turbo. For conditions of distribution and use, see the accompanying README file. This file provides an overview of the architecture of the IJG JPEG software; that is, the functions of the various modules in the system and the interfaces between modules. For more precise details about any data structure or calling convention, see the include files and comments in the source code. We assume that the reader is already somewhat familiar with the JPEG standard. The README file includes references for learning about JPEG. The file libjpeg.txt describes the library from the viewpoint of an application programmer using the library; it's best to read that file before this one. Also, the file coderules.txt describes the coding style conventions we use. In this document, JPEG-specific terminology follows the JPEG standard: A "component" means a color channel, e.g., Red or Luminance. A "sample" is a single component value (i.e., one number in the image data). A "coefficient" is a frequency coefficient (a DCT transform output number). A "block" is an 8x8 group of samples or coefficients. An "MCU" (minimum coded unit) is an interleaved set of blocks of size determined by the sampling factors, or a single block in a noninterleaved scan. We do not use the terms "pixel" and "sample" interchangeably. When we say pixel, we mean an element of the full-size image, while a sample is an element of the downsampled image. Thus the number of samples may vary across components while the number of pixels does not. (This terminology is not used rigorously throughout the code, but it is used in places where confusion would otherwise result.) *** System features *** The IJG distribution contains two parts: * A subroutine library for JPEG compression and decompression. * cjpeg/djpeg, two sample applications that use the library to transform JFIF JPEG files to and from several other image formats. cjpeg/djpeg are of no great intellectual complexity: they merely add a simple command-line user interface and I/O routines for several uncompressed image formats. This document concentrates on the library itself. We desire the library to be capable of supporting all JPEG baseline, extended sequential, and progressive DCT processes. Hierarchical processes are not supported. The library does not support the lossless (spatial) JPEG process. Lossless JPEG shares little or no code with lossy JPEG, and would normally be used without the extensive pre- and post-processing provided by this library. We feel that lossless JPEG is better handled by a separate library. Within these limits, any set of compression parameters allowed by the JPEG spec should be readable for decompression. (We can be more restrictive about what formats we can generate.) Although the system design allows for all parameter values, some uncommon settings are not yet implemented and may never be; nonintegral sampling ratios are the prime example. Furthermore, we treat 8-bit vs. 12-bit data precision as a compile-time switch, not a run-time option, because most machines can store 8-bit pixels much more compactly than 12-bit. By itself, the library handles only interchange JPEG datastreams --- in particular the widely used JFIF file format. The library can be used by surrounding code to process interchange or abbreviated JPEG datastreams that are embedded in more complex file formats. (For example, libtiff uses this library to implement JPEG compression within the TIFF file format.) The library includes a substantial amount of code that is not covered by the JPEG standard but is necessary for typical applications of JPEG. These functions preprocess the image before JPEG compression or postprocess it after decompression. They include colorspace conversion, downsampling/upsampling, and color quantization. This code can be omitted if not needed. A wide range of quality vs. speed tradeoffs are possible in JPEG processing, and even more so in decompression postprocessing. The decompression library provides multiple implementations that cover most of the useful tradeoffs, ranging from very-high-quality down to fast-preview operation. On the compression side we have generally not provided low-quality choices, since compression is normally less time-critical. It should be understood that the low-quality modes may not meet the JPEG standard's accuracy requirements; nonetheless, they are useful for viewers. *** System overview *** The compressor and decompressor are each divided into two main sections: the JPEG compressor or decompressor proper, and the preprocessing or postprocessing functions. The interface between these two sections is the image data that the official JPEG spec regards as its input or output: this data is in the colorspace to be used for compression, and it is downsampled to the sampling factors to be used. The preprocessing and postprocessing steps are responsible for converting a normal image representation to or from this form. (Those few applications that want to deal with YCbCr downsampled data can skip the preprocessing or postprocessing step.) Looking more closely, the compressor library contains the following main elements: Preprocessing: * Color space conversion (e.g., RGB to YCbCr). * Edge expansion and downsampling. Optionally, this step can do simple smoothing --- this is often helpful for low-quality source data. JPEG proper: * MCU assembly, DCT, quantization. * Entropy coding (sequential or progressive, Huffman or arithmetic). In addition to these modules we need overall control, marker generation, and support code (memory management & error handling). There is also a module responsible for physically writing the output data --- typically this is just an interface to fwrite(), but some applications may need to do something else with the data. The decompressor library contains the following main elements: JPEG proper: * Entropy decoding (sequential or progressive, Huffman or arithmetic). * Dequantization, inverse DCT, MCU disassembly. Postprocessing: * Upsampling. Optionally, this step may be able to do more general rescaling of the image. * Color space conversion (e.g., YCbCr to RGB). This step may also provide gamma adjustment [ currently it does not ]. * Optional color quantization (e.g., reduction to 256 colors). * Optional color precision reduction (e.g., 24-bit to 15-bit color). [This feature is not currently implemented.] We also need overall control, marker parsing, and a data source module. The support code (memory management & error handling) can be shared with the compression half of the library. There may be several implementations of each of these elements, particularly in the decompressor, where a wide range of speed/quality tradeoffs is very useful. It must be understood that some of the best speedups involve merging adjacent steps in the pipeline. For example, upsampling, color space conversion, and color quantization might all be done at once when using a low-quality ordered-dither technique. The system architecture is designed to allow such merging where appropriate. Note: it is convenient to regard edge expansion (padding to block boundaries) as a preprocessing/postprocessing function, even though the JPEG spec includes it in compression/decompression. We do this because downsampling/upsampling can be simplified a little if they work on padded data: it's not necessary to have special cases at the right and bottom edges. Therefore the interface buffer is always an integral number of blocks wide and high, and we expect compression preprocessing to pad the source data properly. Padding will occur only to the next block (8-sample) boundary. In an interleaved-scan situation, additional dummy blocks may be used to fill out MCUs, but the MCU assembly and disassembly logic will create or discard these blocks internally. (This is advantageous for speed reasons, since we avoid DCTing the dummy blocks. It also permits a small reduction in file size, because the compressor can choose dummy block contents so as to minimize their size in compressed form. Finally, it makes the interface buffer specification independent of whether the file is actually interleaved or not.) Applications that wish to deal directly with the downsampled data must provide similar buffering and padding for odd-sized images. *** Poor man's object-oriented programming *** It should be clear by now that we have a lot of quasi-independent processing steps, many of which have several possible behaviors. To avoid cluttering the code with lots of switch statements, we use a simple form of object-style programming to separate out the different possibilities. For example, two different color quantization algorithms could be implemented as two separate modules that present the same external interface; at runtime, the calling code will access the proper module indirectly through an "object". We can get the limited features we need while staying within portable C. The basic tool is a function pointer. An "object" is just a struct containing one or more function pointer fields, each of which corresponds to a method name in real object-oriented languages. During initialization we fill in the function pointers with references to whichever module we have determined we need to use in this run. Then invocation of the module is done by indirecting through a function pointer; on most machines this is no more expensive than a switch statement, which would be the only other way of making the required run-time choice. The really significant benefit, of course, is keeping the source code clean and well structured. We can also arrange to have private storage that varies between different implementations of the same kind of object. We do this by making all the module-specific object structs be separately allocated entities, which will be accessed via pointers in the master compression or decompression struct. The "public" fields or methods for a given kind of object are specified by a commonly known struct. But a module's initialization code can allocate a larger struct that contains the common struct as its first member, plus additional private fields. With appropriate pointer casting, the module's internal functions can access these private fields. (For a simple example, see jdatadst.c, which implements the external interface specified by struct jpeg_destination_mgr, but adds extra fields.) (Of course this would all be a lot easier if we were using C++, but we are not yet prepared to assume that everyone has a C++ compiler.) An important benefit of this scheme is that it is easy to provide multiple versions of any method, each tuned to a particular case. While a lot of precalculation might be done to select an optimal implementation of a method, the cost per invocation is constant. For example, the upsampling step might have a "generic" method, plus one or more "hardwired" methods for the most popular sampling factors; the hardwired methods would be faster because they'd use straight-line code instead of for-loops. The cost to determine which method to use is paid only once, at startup, and the selection criteria are hidden from the callers of the method. This plan differs a little bit from usual object-oriented structures, in that only one instance of each object class will exist during execution. The reason for having the class structure is that on different runs we may create different instances (choose to execute different modules). You can think of the term "method" as denoting the common interface presented by a particular set of interchangeable functions, and "object" as denoting a group of related methods, or the total shared interface behavior of a group of modules. *** Overall control structure *** We previously mentioned the need for overall control logic in the compression and decompression libraries. In IJG implementations prior to v5, overall control was mostly provided by "pipeline control" modules, which proved to be large, unwieldy, and hard to understand. To improve the situation, the control logic has been subdivided into multiple modules. The control modules consist of: 1. Master control for module selection and initialization. This has two responsibilities: 1A. Startup initialization at the beginning of image processing. The individual processing modules to be used in this run are selected and given initialization calls. 1B. Per-pass control. This determines how many passes will be performed and calls each active processing module to configure itself appropriately at the beginning of each pass. End-of-pass processing, where necessary, is also invoked from the master control module. Method selection is partially distributed, in that a particular processing module may contain several possible implementations of a particular method, which it will select among when given its initialization call. The master control code need only be concerned with decisions that affect more than one module. 2. Data buffering control. A separate control module exists for each inter-processing-step data buffer. This module is responsible for invoking the processing steps that write or read that data buffer. Each buffer controller sees the world as follows: input data => processing step A => buffer => processing step B => output data | | | ------------------ controller ------------------ The controller knows the dataflow requirements of steps A and B: how much data they want to accept in one chunk and how much they output in one chunk. Its function is to manage its buffer and call A and B at the proper times. A data buffer control module may itself be viewed as a processing step by a higher-level control module; thus the control modules form a binary tree with elementary processing steps at the leaves of the tree. The control modules are objects. A considerable amount of flexibility can be had by replacing implementations of a control module. For example: * Merging of adjacent steps in the pipeline is done by replacing a control module and its pair of processing-step modules with a single processing- step module. (Hence the possible merges are determined by the tree of control modules.) * In some processing modes, a given interstep buffer need only be a "strip" buffer large enough to accommodate the desired data chunk sizes. In other modes, a full-image buffer is needed and several passes are required. The control module determines which kind of buffer is used and manipulates virtual array buffers as needed. One or both processing steps may be unaware of the multi-pass behavior. In theory, we might be able to make all of the data buffer controllers interchangeable and provide just one set of implementations for all. In practice, each one contains considerable special-case processing for its particular job. The buffer controller concept should be regarded as an overall system structuring principle, not as a complete description of the task performed by any one controller. *** Compression object structure *** Here is a sketch of the logical structure of the JPEG compression library: |-- Colorspace conversion |-- Preprocessing controller --| | |-- Downsampling Main controller --| | |-- Forward DCT, quantize |-- Coefficient controller --| |-- Entropy encoding This sketch also describes the flow of control (subroutine calls) during typical image data processing. Each of the components shown in the diagram is an "object" which may have several different implementations available. One or more source code files contain the actual implementation(s) of each object. The objects shown above are: * Main controller: buffer controller for the subsampled-data buffer, which holds the preprocessed input data. This controller invokes preprocessing to fill the subsampled-data buffer, and JPEG compression to empty it. There is usually no need for a full-image buffer here; a strip buffer is adequate. * Preprocessing controller: buffer controller for the downsampling input data buffer, which lies between colorspace conversion and downsampling. Note that a unified conversion/downsampling module would probably replace this controller entirely. * Colorspace conversion: converts application image data into the desired JPEG color space; also changes the data from pixel-interleaved layout to separate component planes. Processes one pixel row at a time. * Downsampling: performs reduction of chroma components as required. Optionally may perform pixel-level smoothing as well. Processes a "row group" at a time, where a row group is defined as Vmax pixel rows of each component before downsampling, and Vk sample rows afterwards (remember Vk differs across components). Some downsampling or smoothing algorithms may require context rows above and below the current row group; the preprocessing controller is responsible for supplying these rows via proper buffering. The downsampler is responsible for edge expansion at the right edge (i.e., extending each sample row to a multiple of 8 samples); but the preprocessing controller is responsible for vertical edge expansion (i.e., duplicating the bottom sample row as needed to make a multiple of 8 rows). * Coefficient controller: buffer controller for the DCT-coefficient data. This controller handles MCU assembly, including insertion of dummy DCT blocks when needed at the right or bottom edge. When performing Huffman-code optimization or emitting a multiscan JPEG file, this controller is responsible for buffering the full image. The equivalent of one fully interleaved MCU row of subsampled data is processed per call, even when the JPEG file is noninterleaved. * Forward DCT and quantization: Perform DCT, quantize, and emit coefficients. Works on one or more DCT blocks at a time. (Note: the coefficients are now emitted in normal array order, which the entropy encoder is expected to convert to zigzag order as necessary. Prior versions of the IJG code did the conversion to zigzag order within the quantization step.) * Entropy encoding: Perform Huffman or arithmetic entropy coding and emit the coded data to the data destination module. Works on one MCU per call. For progressive JPEG, the same DCT blocks are fed to the entropy coder during each pass, and the coder must emit the appropriate subset of coefficients. In addition to the above objects, the compression library includes these objects: * Master control: determines the number of passes required, controls overall and per-pass initialization of the other modules. * Marker writing: generates JPEG markers (except for RSTn, which is emitted by the entropy encoder when needed). * Data destination manager: writes the output JPEG datastream to its final destination (e.g., a file). The destination manager supplied with the library knows how to write to a stdio stream or to a memory buffer; for other behaviors, the surrounding application may provide its own destination manager. * Memory manager: allocates and releases memory, controls virtual arrays (with backing store management, where required). * Error handler: performs formatting and output of error and trace messages; determines handling of nonfatal errors. The surrounding application may override some or all of this object's methods to change error handling. * Progress monitor: supports output of "percent-done" progress reports. This object represents an optional callback to the surrounding application: if wanted, it must be supplied by the application. The error handler, destination manager, and progress monitor objects are defined as separate objects in order to simplify application-specific customization of the JPEG library. A surrounding application may override individual methods or supply its own all-new implementation of one of these objects. The object interfaces for these objects are therefore treated as part of the application interface of the library, whereas the other objects are internal to the library. The error handler and memory manager are shared by JPEG compression and decompression; the progress monitor, if used, may be shared as well. *** Decompression object structure *** Here is a sketch of the logical structure of the JPEG decompression library: |-- Entropy decoding |-- Coefficient controller --| | |-- Dequantize, Inverse DCT Main controller --| | |-- Upsampling |-- Postprocessing controller --| |-- Colorspace conversion |-- Color quantization |-- Color precision reduction As before, this diagram also represents typical control flow. The objects shown are: * Main controller: buffer controller for the subsampled-data buffer, which holds the output of JPEG decompression proper. This controller's primary task is to feed the postprocessing procedure. Some upsampling algorithms may require context rows above and below the current row group; when this is true, the main controller is responsible for managing its buffer so as to make context rows available. In the current design, the main buffer is always a strip buffer; a full-image buffer is never required. * Coefficient controller: buffer controller for the DCT-coefficient data. This controller handles MCU disassembly, including deletion of any dummy DCT blocks at the right or bottom edge. When reading a multiscan JPEG file, this controller is responsible for buffering the full image. (Buffering DCT coefficients, rather than samples, is necessary to support progressive JPEG.) The equivalent of one fully interleaved MCU row of subsampled data is processed per call, even when the source JPEG file is noninterleaved. * Entropy decoding: Read coded data from the data source module and perform Huffman or arithmetic entropy decoding. Works on one MCU per call. For progressive JPEG decoding, the coefficient controller supplies the prior coefficients of each MCU (initially all zeroes), which the entropy decoder modifies in each scan. * Dequantization and inverse DCT: like it says. Note that the coefficients buffered by the coefficient controller have NOT been dequantized; we merge dequantization and inverse DCT into a single step for speed reasons. When scaled-down output is asked for, simplified DCT algorithms may be used that emit fewer samples per DCT block, not the full 8x8. Works on one DCT block at a time. * Postprocessing controller: buffer controller for the color quantization input buffer, when quantization is in use. (Without quantization, this controller just calls the upsampler.) For two-pass quantization, this controller is responsible for buffering the full-image data. * Upsampling: restores chroma components to full size. (May support more general output rescaling, too. Note that if undersized DCT outputs have been emitted by the DCT module, this module must adjust so that properly sized outputs are created.) Works on one row group at a time. This module also calls the color conversion module, so its top level is effectively a buffer controller for the upsampling->color conversion buffer. However, in all but the highest-quality operating modes, upsampling and color conversion are likely to be merged into a single step. * Colorspace conversion: convert from JPEG color space to output color space, and change data layout from separate component planes to pixel-interleaved. Works on one pixel row at a time. * Color quantization: reduce the data to colormapped form, using either an externally specified colormap or an internally generated one. This module is not used for full-color output. Works on one pixel row at a time; may require two passes to generate a color map. Note that the output will always be a single component representing colormap indexes. In the current design, the output values are JSAMPLEs, so an 8-bit compilation cannot quantize to more than 256 colors. This is unlikely to be a problem in practice. * Color reduction: this module handles color precision reduction, e.g., generating 15-bit color (5 bits/primary) from JPEG's 24-bit output. Not quite clear yet how this should be handled... should we merge it with colorspace conversion??? Note that some high-speed operating modes might condense the entire postprocessing sequence to a single module (upsample, color convert, and quantize in one step). In addition to the above objects, the decompression library includes these objects: * Master control: determines the number of passes required, controls overall and per-pass initialization of the other modules. This is subdivided into input and output control: jdinput.c controls only input-side processing, while jdmaster.c handles overall initialization and output-side control. * Marker reading: decodes JPEG markers (except for RSTn). * Data source manager: supplies the input JPEG datastream. The source manager supplied with the library knows how to read from a stdio stream or from a memory buffer; for other behaviors, the surrounding application may provide its own source manager. * Memory manager: same as for compression library. * Error handler: same as for compression library. * Progress monitor: same as for compression library. As with compression, the data source manager, error handler, and progress monitor are candidates for replacement by a surrounding application. *** Decompression input and output separation *** To support efficient incremental display of progressive JPEG files, the decompressor is divided into two sections that can run independently: 1. Data input includes marker parsing, entropy decoding, and input into the coefficient controller's DCT coefficient buffer. Note that this processing is relatively cheap and fast. 2. Data output reads from the DCT coefficient buffer and performs the IDCT and all postprocessing steps. For a progressive JPEG file, the data input processing is allowed to get arbitrarily far ahead of the data output processing. (This occurs only if the application calls jpeg_consume_input(); otherwise input and output run in lockstep, since the input section is called only when the output section needs more data.) In this way the application can avoid making extra display passes when data is arriving faster than the display pass can run. Furthermore, it is possible to abort an output pass without losing anything, since the coefficient buffer is read-only as far as the output section is concerned. See libjpeg.txt for more detail. A full-image coefficient array is only created if the JPEG file has multiple scans (or if the application specifies buffered-image mode anyway). When reading a single-scan file, the coefficient controller normally creates only a one-MCU buffer, so input and output processing must run in lockstep in this case. jpeg_consume_input() is effectively a no-op in this situation. The main impact of dividing the decompressor in this fashion is that we must be very careful with shared variables in the cinfo data structure. Each variable that can change during the course of decompression must be classified as belonging to data input or data output, and each section must look only at its own variables. For example, the data output section may not depend on any of the variables that describe the current scan in the JPEG file, because these may change as the data input section advances into a new scan. The progress monitor is (somewhat arbitrarily) defined to treat input of the file as one pass when buffered-image mode is not used, and to ignore data input work completely when buffered-image mode is used. Note that the library has no reliable way to predict the number of passes when dealing with a progressive JPEG file, nor can it predict the number of output passes in buffered-image mode. So the work estimate is inherently bogus anyway. No comparable division is currently made in the compression library, because there isn't any real need for it. *** Data formats *** Arrays of pixel sample values use the following data structure: typedef something JSAMPLE; a pixel component value, 0..MAXJSAMPLE typedef JSAMPLE *JSAMPROW; ptr to a row of samples typedef JSAMPROW *JSAMPARRAY; ptr to a list of rows typedef JSAMPARRAY *JSAMPIMAGE; ptr to a list of color-component arrays The basic element type JSAMPLE will typically be one of unsigned char, (signed) char, or short. Short will be used if samples wider than 8 bits are to be supported (this is a compile-time option). Otherwise, unsigned char is used if possible. If the compiler only supports signed chars, then it is necessary to mask off the value when reading. Thus, all reads of JSAMPLE values must be coded as "GETJSAMPLE(value)", where the macro will be defined as "((value) & 0xFF)" on signed-char machines and "((int) (value))" elsewhere. With these conventions, JSAMPLE values can be assumed to be >= 0. This helps simplify correct rounding during downsampling, etc. The JPEG standard's specification that sample values run from -128..127 is accommodated by subtracting 128 from the sample value in the DCT step. Similarly, during decompression the output of the IDCT step will be immediately shifted back to 0..255. (NB: different values are required when 12-bit samples are in use. The code is written in terms of MAXJSAMPLE and CENTERJSAMPLE, which will be defined as 255 and 128 respectively in an 8-bit implementation, and as 4095 and 2048 in a 12-bit implementation.) We use a pointer per row, rather than a two-dimensional JSAMPLE array. This choice costs only a small amount of memory and has several benefits: * Code using the data structure doesn't need to know the allocated width of the rows. This simplifies edge expansion/compression, since we can work in an array that's wider than the logical picture width. * Indexing doesn't require multiplication; this is a performance win on many machines. * Arrays with more than 64K total elements can be supported even on machines where malloc() cannot allocate chunks larger than 64K. * The rows forming a component array may be allocated at different times without extra copying. This trick allows some speedups in smoothing steps that need access to the previous and next rows. Note that each color component is stored in a separate array; we don't use the traditional layout in which the components of a pixel are stored together. This simplifies coding of modules that work on each component independently, because they don't need to know how many components there are. Furthermore, we can read or write each component to a temporary file independently, which is helpful when dealing with noninterleaved JPEG files. In general, a specific sample value is accessed by code such as GETJSAMPLE(image[colorcomponent][row][col]) where col is measured from the image left edge, but row is measured from the first sample row currently in memory. Either of the first two indexings can be precomputed by copying the relevant pointer. Since most image-processing applications prefer to work on images in which the components of a pixel are stored together, the data passed to or from the surrounding application uses the traditional convention: a single pixel is represented by N consecutive JSAMPLE values, and an image row is an array of (# of color components)*(image width) JSAMPLEs. One or more rows of data can be represented by a pointer of type JSAMPARRAY in this scheme. This scheme is converted to component-wise storage inside the JPEG library. (Applications that want to skip JPEG preprocessing or postprocessing will have to contend with component-wise storage.) Arrays of DCT-coefficient values use the following data structure: typedef short JCOEF; a 16-bit signed integer typedef JCOEF JBLOCK[DCTSIZE2]; an 8x8 block of coefficients typedef JBLOCK *JBLOCKROW; ptr to one horizontal row of 8x8 blocks typedef JBLOCKROW *JBLOCKARRAY; ptr to a list of such rows typedef JBLOCKARRAY *JBLOCKIMAGE; ptr to a list of color component arrays The underlying type is at least a 16-bit signed integer; while "short" is big enough on all machines of interest, on some machines it is preferable to use "int" for speed reasons, despite the storage cost. Coefficients are grouped into 8x8 blocks (but we always use #defines DCTSIZE and DCTSIZE2 rather than "8" and "64"). The contents of a coefficient block may be in either "natural" or zigzagged order, and may be true values or divided by the quantization coefficients, depending on where the block is in the processing pipeline. In the current library, coefficient blocks are kept in natural order everywhere; the entropy codecs zigzag or dezigzag the data as it is written or read. The blocks contain quantized coefficients everywhere outside the DCT/IDCT subsystems. (This latter decision may need to be revisited to support variable quantization a la JPEG Part 3.) Notice that the allocation unit is now a row of 8x8 blocks, corresponding to eight rows of samples. Otherwise the structure is much the same as for samples, and for the same reasons. *** Suspendable processing *** In some applications it is desirable to use the JPEG library as an incremental, memory-to-memory filter. In this situation the data source or destination may be a limited-size buffer, and we can't rely on being able to empty or refill the buffer at arbitrary times. Instead the application would like to have control return from the library at buffer overflow/underrun, and then resume compression or decompression at a later time. This scenario is supported for simple cases. (For anything more complex, we recommend that the application "bite the bullet" and develop real multitasking capability.) The libjpeg.txt file goes into more detail about the usage and limitations of this capability; here we address the implications for library structure. The essence of the problem is that the entropy codec (coder or decoder) must be prepared to stop at arbitrary times. In turn, the controllers that call the entropy codec must be able to stop before having produced or consumed all the data that they normally would handle in one call. That part is reasonably straightforward: we make the controller call interfaces include "progress counters" which indicate the number of data chunks successfully processed, and we require callers to test the counter rather than just assume all of the data was processed. Rather than trying to restart at an arbitrary point, the current Huffman codecs are designed to restart at the beginning of the current MCU after a suspension due to buffer overflow/underrun. At the start of each call, the codec's internal state is loaded from permanent storage (in the JPEG object structures) into local variables. On successful completion of the MCU, the permanent state is updated. (This copying is not very expensive, and may even lead to *improved* performance if the local variables can be registerized.) If a suspension occurs, the codec simply returns without updating the state, thus effectively reverting to the start of the MCU. Note that this implies leaving some data unprocessed in the source/destination buffer (ie, the compressed partial MCU). The data source/destination module interfaces are specified so as to make this possible. This also implies that the data buffer must be large enough to hold a worst-case compressed MCU; a couple thousand bytes should be enough. In a successive-approximation AC refinement scan, the progressive Huffman decoder has to be able to undo assignments of newly nonzero coefficients if it suspends before the MCU is complete, since decoding requires distinguishing previously-zero and previously-nonzero coefficients. This is a bit tedious but probably won't have much effect on performance. Other variants of Huffman decoding need not worry about this, since they will just store the same values again if forced to repeat the MCU. This approach would probably not work for an arithmetic codec, since its modifiable state is quite large and couldn't be copied cheaply. Instead it would have to suspend and resume exactly at the point of the buffer end. The JPEG marker reader is designed to cope with suspension at an arbitrary point. It does so by backing up to the start of the marker parameter segment, so the data buffer must be big enough to hold the largest marker of interest. Again, a couple KB should be adequate. (A special "skip" convention is used to bypass COM and APPn markers, so these can be larger than the buffer size without causing problems; otherwise a 64K buffer would be needed in the worst case.) The JPEG marker writer currently does *not* cope with suspension. We feel that this is not necessary; it is much easier simply to require the application to ensure there is enough buffer space before starting. (An empty 2K buffer is more than sufficient for the header markers; and ensuring there are a dozen or two bytes available before calling jpeg_finish_compress() will suffice for the trailer.) This would not work for writing multi-scan JPEG files, but we simply do not intend to support that capability with suspension. *** Memory manager services *** The JPEG library's memory manager controls allocation and deallocation of memory, and it manages large "virtual" data arrays on machines where the operating system does not provide virtual memory. Note that the same memory manager serves both compression and decompression operations. In all cases, allocated objects are tied to a particular compression or decompression master record, and they will be released when that master record is destroyed. The memory manager does not provide explicit deallocation of objects. Instead, objects are created in "pools" of free storage, and a whole pool can be freed at once. This approach helps prevent storage-leak bugs, and it speeds up operations whenever malloc/free are slow (as they often are). The pools can be regarded as lifetime identifiers for objects. Two pools/lifetimes are defined: * JPOOL_PERMANENT lasts until master record is destroyed * JPOOL_IMAGE lasts until done with image (JPEG datastream) Permanent lifetime is used for parameters and tables that should be carried across from one datastream to another; this includes all application-visible parameters. Image lifetime is used for everything else. (A third lifetime, JPOOL_PASS = one processing pass, was originally planned. However it was dropped as not being worthwhile. The actual usage patterns are such that the peak memory usage would be about the same anyway; and having per-pass storage substantially complicates the virtual memory allocation rules --- see below.) The memory manager deals with three kinds of object: 1. "Small" objects. Typically these require no more than 10K-20K total. 2. "Large" objects. These may require tens to hundreds of K depending on image size. Semantically they behave the same as small objects, but we distinguish them because pool allocation heuristics may differ for large and small objects (historically, large objects were also referenced by far pointers on MS-DOS machines.) Note that individual "large" objects cannot exceed the size allowed by type size_t, which may be 64K or less on some machines. 3. "Virtual" objects. These are large 2-D arrays of JSAMPLEs or JBLOCKs (typically large enough for the entire image being processed). The memory manager provides stripwise access to these arrays. On machines without virtual memory, the rest of the array may be swapped out to a temporary file. (Note: JSAMPARRAY and JBLOCKARRAY data structures are a combination of large objects for the data proper and small objects for the row pointers. For convenience and speed, the memory manager provides single routines to create these structures. Similarly, virtual arrays include a small control block and a JSAMPARRAY or JBLOCKARRAY working buffer, all created with one call.) In the present implementation, virtual arrays are only permitted to have image lifespan. (Permanent lifespan would not be reasonable, and pass lifespan is not very useful since a virtual array's raison d'etre is to store data for multiple passes through the image.) We also expect that only "small" objects will be given permanent lifespan, though this restriction is not required by the memory manager. In a non-virtual-memory machine, some performance benefit can be gained by making the in-memory buffers for virtual arrays be as large as possible. (For small images, the buffers might fit entirely in memory, so blind swapping would be very wasteful.) The memory manager will adjust the height of the buffers to fit within a prespecified maximum memory usage. In order to do this in a reasonably optimal fashion, the manager needs to allocate all of the virtual arrays at once. Therefore, there isn't a one-step allocation routine for virtual arrays; instead, there is a "request" routine that simply allocates the control block, and a "realize" routine (called just once) that determines space allocation and creates all of the actual buffers. The realize routine must allow for space occupied by non-virtual large objects. (We don't bother to factor in the space needed for small objects, on the grounds that it isn't worth the trouble.) To support all this, we establish the following protocol for doing business with the memory manager: 1. Modules must request virtual arrays (which may have only image lifespan) during the initial setup phase, i.e., in their jinit_xxx routines. 2. All "large" objects (including JSAMPARRAYs and JBLOCKARRAYs) must also be allocated during initial setup. 3. realize_virt_arrays will be called at the completion of initial setup. The above conventions ensure that sufficient information is available for it to choose a good size for virtual array buffers. Small objects of any lifespan may be allocated at any time. We expect that the total space used for small objects will be small enough to be negligible in the realize_virt_arrays computation. In a virtual-memory machine, we simply pretend that the available space is infinite, thus causing realize_virt_arrays to decide that it can allocate all the virtual arrays as full-size in-memory buffers. The overhead of the virtual-array access protocol is very small when no swapping occurs. A virtual array can be specified to be "pre-zeroed"; when this flag is set, never-yet-written sections of the array are set to zero before being made available to the caller. If this flag is not set, never-written sections of the array contain garbage. (This feature exists primarily because the equivalent logic would otherwise be needed in jdcoefct.c for progressive JPEG mode; we may as well make it available for possible other uses.) The first write pass on a virtual array is required to occur in top-to-bottom order; read passes, as well as any write passes after the first one, may access the array in any order. This restriction exists partly to simplify the virtual array control logic, and partly because some file systems may not support seeking beyond the current end-of-file in a temporary file. The main implication of this restriction is that rearrangement of rows (such as converting top-to-bottom data order to bottom-to-top) must be handled while reading data out of the virtual array, not while putting it in. *** Memory manager internal structure *** To isolate system dependencies as much as possible, we have broken the memory manager into two parts. There is a reasonably system-independent "front end" (jmemmgr.c) and a "back end" that contains only the code likely to change across systems. All of the memory management methods outlined above are implemented by the front end. The back end provides the following routines for use by the front end (none of these routines are known to the rest of the JPEG code): jpeg_mem_init, jpeg_mem_term system-dependent initialization/shutdown jpeg_get_small, jpeg_free_small interface to malloc and free library routines (or their equivalents) jpeg_get_large, jpeg_free_large historically was used to interface with FAR malloc/free on MS-DOS machines; now the same as jpeg_get_small/jpeg_free_small jpeg_mem_available estimate available memory jpeg_open_backing_store create a backing-store object read_backing_store, manipulate a backing-store object write_backing_store, close_backing_store On some systems there will be more than one type of backing-store object (specifically, in MS-DOS a backing store file might be an area of extended memory as well as a disk file). jpeg_open_backing_store is responsible for choosing how to implement a given object. The read/write/close routines are method pointers in the structure that describes a given object; this lets them be different for different object types. It may be necessary to ensure that backing store objects are explicitly released upon abnormal program termination. For example, MS-DOS won't free extended memory by itself. To support this, we will expect the main program or surrounding application to arrange to call self_destruct (typically via jpeg_destroy) upon abnormal termination. This may require a SIGINT signal handler or equivalent. We don't want to have the back end module install its own signal handler, because that would pre-empt the surrounding application's ability to control signal handling. The IJG distribution includes several memory manager back end implementations. Usually the same back end should be suitable for all applications on a given system, but it is possible for an application to supply its own back end at need. *** Implications of DNL marker *** Some JPEG files may use a DNL marker to postpone definition of the image height (this would be useful for a fax-like scanner's output, for instance). In these files the SOF marker claims the image height is 0, and you only find out the true image height at the end of the first scan. We could read these files as follows: 1. Upon seeing zero image height, replace it by 65535 (the maximum allowed). 2. When the DNL is found, update the image height in the global image descriptor. This implies that control modules must avoid making copies of the image height, and must re-test for termination after each MCU row. This would be easy enough to do. In cases where image-size data structures are allocated, this approach will result in very inefficient use of virtual memory or much-larger-than-necessary temporary files. This seems acceptable for something that probably won't be a mainstream usage. People might have to forgo use of memory-hogging options (such as two-pass color quantization or noninterleaved JPEG files) if they want efficient conversion of such files. (One could improve efficiency by demanding a user-supplied upper bound for the height, less than 65536; in most cases it could be much less.) The standard also permits the SOF marker to overestimate the image height, with a DNL to give the true, smaller height at the end of the first scan. This would solve the space problems if the overestimate wasn't too great. However, it implies that you don't even know whether DNL will be used. This leads to a couple of very serious objections: 1. Testing for a DNL marker must occur in the inner loop of the decompressor's Huffman decoder; this implies a speed penalty whether the feature is used or not. 2. There is no way to hide the last-minute change in image height from an application using the decoder. Thus *every* application using the IJG library would suffer a complexity penalty whether it cared about DNL or not. We currently do not support DNL because of these problems. A different approach is to insist that DNL-using files be preprocessed by a separate program that reads ahead to the DNL, then goes back and fixes the SOF marker. This is a much simpler solution and is probably far more efficient. Even if one wants piped input, buffering the first scan of the JPEG file needs a lot smaller temp file than is implied by the maximum-height method. For this approach we'd simply treat DNL as a no-op in the decompressor (at most, check that it matches the SOF image height). We will not worry about making the compressor capable of outputting DNL. Something similar to the first scheme above could be applied if anyone ever wants to make that work. libjpeg-turbo-1.4.2/rdppm.c0000644000076500007650000003364012600050400012475 00000000000000/* * rdppm.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1991-1997, Thomas G. Lane. * Modified 2009 by Bill Allombert, Guido Vollbeding. * It was modified by The libjpeg-turbo Project to include only code and * information relevant to libjpeg-turbo. * For conditions of distribution and use, see the accompanying README file. * * This file contains routines to read input images in PPM/PGM format. * The extended 2-byte-per-sample raw PPM/PGM formats are supported. * The PBMPLUS library is NOT required to compile this software * (but it is highly useful as a set of PPM image manipulation programs). * * These routines may need modification for non-Unix environments or * specialized applications. As they stand, they assume input from * an ordinary stdio stream. They further assume that reading begins * at the start of the file; start_input may need work if the * user interface has already read some data (e.g., to determine that * the file is indeed PPM format). */ #include "cdjpeg.h" /* Common decls for cjpeg/djpeg applications */ #ifdef PPM_SUPPORTED /* Portions of this code are based on the PBMPLUS library, which is: ** ** Copyright (C) 1988 by Jef Poskanzer. ** ** Permission to use, copy, modify, and distribute this software and its ** documentation for any purpose and without fee is hereby granted, provided ** that the above copyright notice appear in all copies and that both that ** copyright notice and this permission notice appear in supporting ** documentation. This software is provided "as is" without express or ** implied warranty. */ /* Macros to deal with unsigned chars as efficiently as compiler allows */ #ifdef HAVE_UNSIGNED_CHAR typedef unsigned char U_CHAR; #define UCH(x) ((int) (x)) #else /* !HAVE_UNSIGNED_CHAR */ #ifdef __CHAR_UNSIGNED__ typedef char U_CHAR; #define UCH(x) ((int) (x)) #else typedef char U_CHAR; #define UCH(x) ((int) (x) & 0xFF) #endif #endif /* HAVE_UNSIGNED_CHAR */ #define ReadOK(file,buffer,len) (JFREAD(file,buffer,len) == ((size_t) (len))) /* Private version of data source object */ typedef struct { struct cjpeg_source_struct pub; /* public fields */ /* Usually these two pointers point to the same place: */ U_CHAR *iobuffer; /* fread's I/O buffer */ JSAMPROW pixrow; /* compressor input buffer */ size_t buffer_width; /* width of I/O buffer */ JSAMPLE *rescale; /* => maxval-remapping array, or NULL */ int maxval; } ppm_source_struct; typedef ppm_source_struct * ppm_source_ptr; LOCAL(int) pbm_getc (FILE * infile) /* Read next char, skipping over any comments */ /* A comment/newline sequence is returned as a newline */ { register int ch; ch = getc(infile); if (ch == '#') { do { ch = getc(infile); } while (ch != '\n' && ch != EOF); } return ch; } LOCAL(unsigned int) read_pbm_integer (j_compress_ptr cinfo, FILE * infile, int maxval) /* Read an unsigned decimal integer from the PPM file */ /* Swallows one trailing character after the integer */ /* Note that on a 16-bit-int machine, only values up to 64k can be read. */ /* This should not be a problem in practice. */ { register int ch; register unsigned int val; /* Skip any leading whitespace */ do { ch = pbm_getc(infile); if (ch == EOF) ERREXIT(cinfo, JERR_INPUT_EOF); } while (ch == ' ' || ch == '\t' || ch == '\n' || ch == '\r'); if (ch < '0' || ch > '9') ERREXIT(cinfo, JERR_PPM_NONNUMERIC); val = ch - '0'; while ((ch = pbm_getc(infile)) >= '0' && ch <= '9') { val *= 10; val += ch - '0'; } if (val > maxval) ERREXIT(cinfo, JERR_PPM_TOOLARGE); return val; } /* * Read one row of pixels. * * We provide several different versions depending on input file format. * In all cases, input is scaled to the size of JSAMPLE. * * A really fast path is provided for reading byte/sample raw files with * maxval = MAXJSAMPLE, which is the normal case for 8-bit data. */ METHODDEF(JDIMENSION) get_text_gray_row (j_compress_ptr cinfo, cjpeg_source_ptr sinfo) /* This version is for reading text-format PGM files with any maxval */ { ppm_source_ptr source = (ppm_source_ptr) sinfo; FILE * infile = source->pub.input_file; register JSAMPROW ptr; register JSAMPLE *rescale = source->rescale; JDIMENSION col; int maxval = source->maxval; ptr = source->pub.buffer[0]; for (col = cinfo->image_width; col > 0; col--) { *ptr++ = rescale[read_pbm_integer(cinfo, infile, maxval)]; } return 1; } METHODDEF(JDIMENSION) get_text_rgb_row (j_compress_ptr cinfo, cjpeg_source_ptr sinfo) /* This version is for reading text-format PPM files with any maxval */ { ppm_source_ptr source = (ppm_source_ptr) sinfo; FILE * infile = source->pub.input_file; register JSAMPROW ptr; register JSAMPLE *rescale = source->rescale; JDIMENSION col; int maxval = source->maxval; ptr = source->pub.buffer[0]; for (col = cinfo->image_width; col > 0; col--) { *ptr++ = rescale[read_pbm_integer(cinfo, infile, maxval)]; *ptr++ = rescale[read_pbm_integer(cinfo, infile, maxval)]; *ptr++ = rescale[read_pbm_integer(cinfo, infile, maxval)]; } return 1; } METHODDEF(JDIMENSION) get_scaled_gray_row (j_compress_ptr cinfo, cjpeg_source_ptr sinfo) /* This version is for reading raw-byte-format PGM files with any maxval */ { ppm_source_ptr source = (ppm_source_ptr) sinfo; register JSAMPROW ptr; register U_CHAR * bufferptr; register JSAMPLE *rescale = source->rescale; JDIMENSION col; if (! ReadOK(source->pub.input_file, source->iobuffer, source->buffer_width)) ERREXIT(cinfo, JERR_INPUT_EOF); ptr = source->pub.buffer[0]; bufferptr = source->iobuffer; for (col = cinfo->image_width; col > 0; col--) { *ptr++ = rescale[UCH(*bufferptr++)]; } return 1; } METHODDEF(JDIMENSION) get_scaled_rgb_row (j_compress_ptr cinfo, cjpeg_source_ptr sinfo) /* This version is for reading raw-byte-format PPM files with any maxval */ { ppm_source_ptr source = (ppm_source_ptr) sinfo; register JSAMPROW ptr; register U_CHAR * bufferptr; register JSAMPLE *rescale = source->rescale; JDIMENSION col; if (! ReadOK(source->pub.input_file, source->iobuffer, source->buffer_width)) ERREXIT(cinfo, JERR_INPUT_EOF); ptr = source->pub.buffer[0]; bufferptr = source->iobuffer; for (col = cinfo->image_width; col > 0; col--) { *ptr++ = rescale[UCH(*bufferptr++)]; *ptr++ = rescale[UCH(*bufferptr++)]; *ptr++ = rescale[UCH(*bufferptr++)]; } return 1; } METHODDEF(JDIMENSION) get_raw_row (j_compress_ptr cinfo, cjpeg_source_ptr sinfo) /* This version is for reading raw-byte-format files with maxval = MAXJSAMPLE. * In this case we just read right into the JSAMPLE buffer! * Note that same code works for PPM and PGM files. */ { ppm_source_ptr source = (ppm_source_ptr) sinfo; if (! ReadOK(source->pub.input_file, source->iobuffer, source->buffer_width)) ERREXIT(cinfo, JERR_INPUT_EOF); return 1; } METHODDEF(JDIMENSION) get_word_gray_row (j_compress_ptr cinfo, cjpeg_source_ptr sinfo) /* This version is for reading raw-word-format PGM files with any maxval */ { ppm_source_ptr source = (ppm_source_ptr) sinfo; register JSAMPROW ptr; register U_CHAR * bufferptr; register JSAMPLE *rescale = source->rescale; JDIMENSION col; if (! ReadOK(source->pub.input_file, source->iobuffer, source->buffer_width)) ERREXIT(cinfo, JERR_INPUT_EOF); ptr = source->pub.buffer[0]; bufferptr = source->iobuffer; for (col = cinfo->image_width; col > 0; col--) { register int temp; temp = UCH(*bufferptr++) << 8; temp |= UCH(*bufferptr++); *ptr++ = rescale[temp]; } return 1; } METHODDEF(JDIMENSION) get_word_rgb_row (j_compress_ptr cinfo, cjpeg_source_ptr sinfo) /* This version is for reading raw-word-format PPM files with any maxval */ { ppm_source_ptr source = (ppm_source_ptr) sinfo; register JSAMPROW ptr; register U_CHAR * bufferptr; register JSAMPLE *rescale = source->rescale; JDIMENSION col; if (! ReadOK(source->pub.input_file, source->iobuffer, source->buffer_width)) ERREXIT(cinfo, JERR_INPUT_EOF); ptr = source->pub.buffer[0]; bufferptr = source->iobuffer; for (col = cinfo->image_width; col > 0; col--) { register int temp; temp = UCH(*bufferptr++) << 8; temp |= UCH(*bufferptr++); *ptr++ = rescale[temp]; temp = UCH(*bufferptr++) << 8; temp |= UCH(*bufferptr++); *ptr++ = rescale[temp]; temp = UCH(*bufferptr++) << 8; temp |= UCH(*bufferptr++); *ptr++ = rescale[temp]; } return 1; } /* * Read the file header; return image size and component count. */ METHODDEF(void) start_input_ppm (j_compress_ptr cinfo, cjpeg_source_ptr sinfo) { ppm_source_ptr source = (ppm_source_ptr) sinfo; int c; unsigned int w, h, maxval; boolean need_iobuffer, use_raw_buffer, need_rescale; if (getc(source->pub.input_file) != 'P') ERREXIT(cinfo, JERR_PPM_NOT); c = getc(source->pub.input_file); /* subformat discriminator character */ /* detect unsupported variants (ie, PBM) before trying to read header */ switch (c) { case '2': /* it's a text-format PGM file */ case '3': /* it's a text-format PPM file */ case '5': /* it's a raw-format PGM file */ case '6': /* it's a raw-format PPM file */ break; default: ERREXIT(cinfo, JERR_PPM_NOT); break; } /* fetch the remaining header info */ w = read_pbm_integer(cinfo, source->pub.input_file, 65535); h = read_pbm_integer(cinfo, source->pub.input_file, 65535); maxval = read_pbm_integer(cinfo, source->pub.input_file, 65535); if (w <= 0 || h <= 0 || maxval <= 0) /* error check */ ERREXIT(cinfo, JERR_PPM_NOT); cinfo->data_precision = BITS_IN_JSAMPLE; /* we always rescale data to this */ cinfo->image_width = (JDIMENSION) w; cinfo->image_height = (JDIMENSION) h; source->maxval = maxval; /* initialize flags to most common settings */ need_iobuffer = TRUE; /* do we need an I/O buffer? */ use_raw_buffer = FALSE; /* do we map input buffer onto I/O buffer? */ need_rescale = TRUE; /* do we need a rescale array? */ switch (c) { case '2': /* it's a text-format PGM file */ cinfo->input_components = 1; cinfo->in_color_space = JCS_GRAYSCALE; TRACEMS2(cinfo, 1, JTRC_PGM_TEXT, w, h); source->pub.get_pixel_rows = get_text_gray_row; need_iobuffer = FALSE; break; case '3': /* it's a text-format PPM file */ cinfo->input_components = 3; cinfo->in_color_space = JCS_RGB; TRACEMS2(cinfo, 1, JTRC_PPM_TEXT, w, h); source->pub.get_pixel_rows = get_text_rgb_row; need_iobuffer = FALSE; break; case '5': /* it's a raw-format PGM file */ cinfo->input_components = 1; cinfo->in_color_space = JCS_GRAYSCALE; TRACEMS2(cinfo, 1, JTRC_PGM, w, h); if (maxval > 255) { source->pub.get_pixel_rows = get_word_gray_row; } else if (maxval == MAXJSAMPLE && sizeof(JSAMPLE) == sizeof(U_CHAR)) { source->pub.get_pixel_rows = get_raw_row; use_raw_buffer = TRUE; need_rescale = FALSE; } else { source->pub.get_pixel_rows = get_scaled_gray_row; } break; case '6': /* it's a raw-format PPM file */ cinfo->input_components = 3; cinfo->in_color_space = JCS_RGB; TRACEMS2(cinfo, 1, JTRC_PPM, w, h); if (maxval > 255) { source->pub.get_pixel_rows = get_word_rgb_row; } else if (maxval == MAXJSAMPLE && sizeof(JSAMPLE) == sizeof(U_CHAR)) { source->pub.get_pixel_rows = get_raw_row; use_raw_buffer = TRUE; need_rescale = FALSE; } else { source->pub.get_pixel_rows = get_scaled_rgb_row; } break; } /* Allocate space for I/O buffer: 1 or 3 bytes or words/pixel. */ if (need_iobuffer) { source->buffer_width = (size_t) w * cinfo->input_components * ((maxval<=255) ? sizeof(U_CHAR) : (2*sizeof(U_CHAR))); source->iobuffer = (U_CHAR *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, source->buffer_width); } /* Create compressor input buffer. */ if (use_raw_buffer) { /* For unscaled raw-input case, we can just map it onto the I/O buffer. */ /* Synthesize a JSAMPARRAY pointer structure */ source->pixrow = (JSAMPROW) source->iobuffer; source->pub.buffer = & source->pixrow; source->pub.buffer_height = 1; } else { /* Need to translate anyway, so make a separate sample buffer. */ source->pub.buffer = (*cinfo->mem->alloc_sarray) ((j_common_ptr) cinfo, JPOOL_IMAGE, (JDIMENSION) w * cinfo->input_components, (JDIMENSION) 1); source->pub.buffer_height = 1; } /* Compute the rescaling array if required. */ if (need_rescale) { INT32 val, half_maxval; /* On 16-bit-int machines we have to be careful of maxval = 65535 */ source->rescale = (JSAMPLE *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, (size_t) (((long) maxval + 1L) * sizeof(JSAMPLE))); half_maxval = maxval / 2; for (val = 0; val <= (INT32) maxval; val++) { /* The multiplication here must be done in 32 bits to avoid overflow */ source->rescale[val] = (JSAMPLE) ((val*MAXJSAMPLE + half_maxval)/maxval); } } } /* * Finish up at the end of the file. */ METHODDEF(void) finish_input_ppm (j_compress_ptr cinfo, cjpeg_source_ptr sinfo) { /* no work */ } /* * The module selection routine for PPM format input. */ GLOBAL(cjpeg_source_ptr) jinit_read_ppm (j_compress_ptr cinfo) { ppm_source_ptr source; /* Create module interface object */ source = (ppm_source_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, sizeof(ppm_source_struct)); /* Fill in method ptrs, except get_pixel_rows which start_input sets */ source->pub.start_input = start_input_ppm; source->pub.finish_input = finish_input_ppm; return (cjpeg_source_ptr) source; } #endif /* PPM_SUPPORTED */ libjpeg-turbo-1.4.2/jquant1.c0000644000076500007650000007731312600050400012743 00000000000000/* * jquant1.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1991-1996, Thomas G. Lane. * libjpeg-turbo Modifications: * Copyright (C) 2009, D. R. Commander * For conditions of distribution and use, see the accompanying README file. * * This file contains 1-pass color quantization (color mapping) routines. * These routines provide mapping to a fixed color map using equally spaced * color values. Optional Floyd-Steinberg or ordered dithering is available. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" #ifdef QUANT_1PASS_SUPPORTED /* * The main purpose of 1-pass quantization is to provide a fast, if not very * high quality, colormapped output capability. A 2-pass quantizer usually * gives better visual quality; however, for quantized grayscale output this * quantizer is perfectly adequate. Dithering is highly recommended with this * quantizer, though you can turn it off if you really want to. * * In 1-pass quantization the colormap must be chosen in advance of seeing the * image. We use a map consisting of all combinations of Ncolors[i] color * values for the i'th component. The Ncolors[] values are chosen so that * their product, the total number of colors, is no more than that requested. * (In most cases, the product will be somewhat less.) * * Since the colormap is orthogonal, the representative value for each color * component can be determined without considering the other components; * then these indexes can be combined into a colormap index by a standard * N-dimensional-array-subscript calculation. Most of the arithmetic involved * can be precalculated and stored in the lookup table colorindex[]. * colorindex[i][j] maps pixel value j in component i to the nearest * representative value (grid plane) for that component; this index is * multiplied by the array stride for component i, so that the * index of the colormap entry closest to a given pixel value is just * sum( colorindex[component-number][pixel-component-value] ) * Aside from being fast, this scheme allows for variable spacing between * representative values with no additional lookup cost. * * If gamma correction has been applied in color conversion, it might be wise * to adjust the color grid spacing so that the representative colors are * equidistant in linear space. At this writing, gamma correction is not * implemented by jdcolor, so nothing is done here. */ /* Declarations for ordered dithering. * * We use a standard 16x16 ordered dither array. The basic concept of ordered * dithering is described in many references, for instance Dale Schumacher's * chapter II.2 of Graphics Gems II (James Arvo, ed. Academic Press, 1991). * In place of Schumacher's comparisons against a "threshold" value, we add a * "dither" value to the input pixel and then round the result to the nearest * output value. The dither value is equivalent to (0.5 - threshold) times * the distance between output values. For ordered dithering, we assume that * the output colors are equally spaced; if not, results will probably be * worse, since the dither may be too much or too little at a given point. * * The normal calculation would be to form pixel value + dither, range-limit * this to 0..MAXJSAMPLE, and then index into the colorindex table as usual. * We can skip the separate range-limiting step by extending the colorindex * table in both directions. */ #define ODITHER_SIZE 16 /* dimension of dither matrix */ /* NB: if ODITHER_SIZE is not a power of 2, ODITHER_MASK uses will break */ #define ODITHER_CELLS (ODITHER_SIZE*ODITHER_SIZE) /* # cells in matrix */ #define ODITHER_MASK (ODITHER_SIZE-1) /* mask for wrapping around counters */ typedef int ODITHER_MATRIX[ODITHER_SIZE][ODITHER_SIZE]; typedef int (*ODITHER_MATRIX_PTR)[ODITHER_SIZE]; static const UINT8 base_dither_matrix[ODITHER_SIZE][ODITHER_SIZE] = { /* Bayer's order-4 dither array. Generated by the code given in * Stephen Hawley's article "Ordered Dithering" in Graphics Gems I. * The values in this array must range from 0 to ODITHER_CELLS-1. */ { 0,192, 48,240, 12,204, 60,252, 3,195, 51,243, 15,207, 63,255 }, { 128, 64,176,112,140, 76,188,124,131, 67,179,115,143, 79,191,127 }, { 32,224, 16,208, 44,236, 28,220, 35,227, 19,211, 47,239, 31,223 }, { 160, 96,144, 80,172,108,156, 92,163, 99,147, 83,175,111,159, 95 }, { 8,200, 56,248, 4,196, 52,244, 11,203, 59,251, 7,199, 55,247 }, { 136, 72,184,120,132, 68,180,116,139, 75,187,123,135, 71,183,119 }, { 40,232, 24,216, 36,228, 20,212, 43,235, 27,219, 39,231, 23,215 }, { 168,104,152, 88,164,100,148, 84,171,107,155, 91,167,103,151, 87 }, { 2,194, 50,242, 14,206, 62,254, 1,193, 49,241, 13,205, 61,253 }, { 130, 66,178,114,142, 78,190,126,129, 65,177,113,141, 77,189,125 }, { 34,226, 18,210, 46,238, 30,222, 33,225, 17,209, 45,237, 29,221 }, { 162, 98,146, 82,174,110,158, 94,161, 97,145, 81,173,109,157, 93 }, { 10,202, 58,250, 6,198, 54,246, 9,201, 57,249, 5,197, 53,245 }, { 138, 74,186,122,134, 70,182,118,137, 73,185,121,133, 69,181,117 }, { 42,234, 26,218, 38,230, 22,214, 41,233, 25,217, 37,229, 21,213 }, { 170,106,154, 90,166,102,150, 86,169,105,153, 89,165,101,149, 85 } }; /* Declarations for Floyd-Steinberg dithering. * * Errors are accumulated into the array fserrors[], at a resolution of * 1/16th of a pixel count. The error at a given pixel is propagated * to its not-yet-processed neighbors using the standard F-S fractions, * ... (here) 7/16 * 3/16 5/16 1/16 * We work left-to-right on even rows, right-to-left on odd rows. * * We can get away with a single array (holding one row's worth of errors) * by using it to store the current row's errors at pixel columns not yet * processed, but the next row's errors at columns already processed. We * need only a few extra variables to hold the errors immediately around the * current column. (If we are lucky, those variables are in registers, but * even if not, they're probably cheaper to access than array elements are.) * * The fserrors[] array is indexed [component#][position]. * We provide (#columns + 2) entries per component; the extra entry at each * end saves us from special-casing the first and last pixels. */ #if BITS_IN_JSAMPLE == 8 typedef INT16 FSERROR; /* 16 bits should be enough */ typedef int LOCFSERROR; /* use 'int' for calculation temps */ #else typedef INT32 FSERROR; /* may need more than 16 bits */ typedef INT32 LOCFSERROR; /* be sure calculation temps are big enough */ #endif typedef FSERROR *FSERRPTR; /* pointer to error array */ /* Private subobject */ #define MAX_Q_COMPS 4 /* max components I can handle */ typedef struct { struct jpeg_color_quantizer pub; /* public fields */ /* Initially allocated colormap is saved here */ JSAMPARRAY sv_colormap; /* The color map as a 2-D pixel array */ int sv_actual; /* number of entries in use */ JSAMPARRAY colorindex; /* Precomputed mapping for speed */ /* colorindex[i][j] = index of color closest to pixel value j in component i, * premultiplied as described above. Since colormap indexes must fit into * JSAMPLEs, the entries of this array will too. */ boolean is_padded; /* is the colorindex padded for odither? */ int Ncolors[MAX_Q_COMPS]; /* # of values alloced to each component */ /* Variables for ordered dithering */ int row_index; /* cur row's vertical index in dither matrix */ ODITHER_MATRIX_PTR odither[MAX_Q_COMPS]; /* one dither array per component */ /* Variables for Floyd-Steinberg dithering */ FSERRPTR fserrors[MAX_Q_COMPS]; /* accumulated errors */ boolean on_odd_row; /* flag to remember which row we are on */ } my_cquantizer; typedef my_cquantizer * my_cquantize_ptr; /* * Policy-making subroutines for create_colormap and create_colorindex. * These routines determine the colormap to be used. The rest of the module * only assumes that the colormap is orthogonal. * * * select_ncolors decides how to divvy up the available colors * among the components. * * output_value defines the set of representative values for a component. * * largest_input_value defines the mapping from input values to * representative values for a component. * Note that the latter two routines may impose different policies for * different components, though this is not currently done. */ LOCAL(int) select_ncolors (j_decompress_ptr cinfo, int Ncolors[]) /* Determine allocation of desired colors to components, */ /* and fill in Ncolors[] array to indicate choice. */ /* Return value is total number of colors (product of Ncolors[] values). */ { int nc = cinfo->out_color_components; /* number of color components */ int max_colors = cinfo->desired_number_of_colors; int total_colors, iroot, i, j; boolean changed; long temp; int RGB_order[3] = { RGB_GREEN, RGB_RED, RGB_BLUE }; RGB_order[0] = rgb_green[cinfo->out_color_space]; RGB_order[1] = rgb_red[cinfo->out_color_space]; RGB_order[2] = rgb_blue[cinfo->out_color_space]; /* We can allocate at least the nc'th root of max_colors per component. */ /* Compute floor(nc'th root of max_colors). */ iroot = 1; do { iroot++; temp = iroot; /* set temp = iroot ** nc */ for (i = 1; i < nc; i++) temp *= iroot; } while (temp <= (long) max_colors); /* repeat till iroot exceeds root */ iroot--; /* now iroot = floor(root) */ /* Must have at least 2 color values per component */ if (iroot < 2) ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, (int) temp); /* Initialize to iroot color values for each component */ total_colors = 1; for (i = 0; i < nc; i++) { Ncolors[i] = iroot; total_colors *= iroot; } /* We may be able to increment the count for one or more components without * exceeding max_colors, though we know not all can be incremented. * Sometimes, the first component can be incremented more than once! * (Example: for 16 colors, we start at 2*2*2, go to 3*2*2, then 4*2*2.) * In RGB colorspace, try to increment G first, then R, then B. */ do { changed = FALSE; for (i = 0; i < nc; i++) { j = (cinfo->out_color_space == JCS_RGB ? RGB_order[i] : i); /* calculate new total_colors if Ncolors[j] is incremented */ temp = total_colors / Ncolors[j]; temp *= Ncolors[j]+1; /* done in long arith to avoid oflo */ if (temp > (long) max_colors) break; /* won't fit, done with this pass */ Ncolors[j]++; /* OK, apply the increment */ total_colors = (int) temp; changed = TRUE; } } while (changed); return total_colors; } LOCAL(int) output_value (j_decompress_ptr cinfo, int ci, int j, int maxj) /* Return j'th output value, where j will range from 0 to maxj */ /* The output values must fall in 0..MAXJSAMPLE in increasing order */ { /* We always provide values 0 and MAXJSAMPLE for each component; * any additional values are equally spaced between these limits. * (Forcing the upper and lower values to the limits ensures that * dithering can't produce a color outside the selected gamut.) */ return (int) (((INT32) j * MAXJSAMPLE + maxj/2) / maxj); } LOCAL(int) largest_input_value (j_decompress_ptr cinfo, int ci, int j, int maxj) /* Return largest input value that should map to j'th output value */ /* Must have largest(j=0) >= 0, and largest(j=maxj) >= MAXJSAMPLE */ { /* Breakpoints are halfway between values returned by output_value */ return (int) (((INT32) (2*j + 1) * MAXJSAMPLE + maxj) / (2*maxj)); } /* * Create the colormap. */ LOCAL(void) create_colormap (j_decompress_ptr cinfo) { my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; JSAMPARRAY colormap; /* Created colormap */ int total_colors; /* Number of distinct output colors */ int i,j,k, nci, blksize, blkdist, ptr, val; /* Select number of colors for each component */ total_colors = select_ncolors(cinfo, cquantize->Ncolors); /* Report selected color counts */ if (cinfo->out_color_components == 3) TRACEMS4(cinfo, 1, JTRC_QUANT_3_NCOLORS, total_colors, cquantize->Ncolors[0], cquantize->Ncolors[1], cquantize->Ncolors[2]); else TRACEMS1(cinfo, 1, JTRC_QUANT_NCOLORS, total_colors); /* Allocate and fill in the colormap. */ /* The colors are ordered in the map in standard row-major order, */ /* i.e. rightmost (highest-indexed) color changes most rapidly. */ colormap = (*cinfo->mem->alloc_sarray) ((j_common_ptr) cinfo, JPOOL_IMAGE, (JDIMENSION) total_colors, (JDIMENSION) cinfo->out_color_components); /* blksize is number of adjacent repeated entries for a component */ /* blkdist is distance between groups of identical entries for a component */ blkdist = total_colors; for (i = 0; i < cinfo->out_color_components; i++) { /* fill in colormap entries for i'th color component */ nci = cquantize->Ncolors[i]; /* # of distinct values for this color */ blksize = blkdist / nci; for (j = 0; j < nci; j++) { /* Compute j'th output value (out of nci) for component */ val = output_value(cinfo, i, j, nci-1); /* Fill in all colormap entries that have this value of this component */ for (ptr = j * blksize; ptr < total_colors; ptr += blkdist) { /* fill in blksize entries beginning at ptr */ for (k = 0; k < blksize; k++) colormap[i][ptr+k] = (JSAMPLE) val; } } blkdist = blksize; /* blksize of this color is blkdist of next */ } /* Save the colormap in private storage, * where it will survive color quantization mode changes. */ cquantize->sv_colormap = colormap; cquantize->sv_actual = total_colors; } /* * Create the color index table. */ LOCAL(void) create_colorindex (j_decompress_ptr cinfo) { my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; JSAMPROW indexptr; int i,j,k, nci, blksize, val, pad; /* For ordered dither, we pad the color index tables by MAXJSAMPLE in * each direction (input index values can be -MAXJSAMPLE .. 2*MAXJSAMPLE). * This is not necessary in the other dithering modes. However, we * flag whether it was done in case user changes dithering mode. */ if (cinfo->dither_mode == JDITHER_ORDERED) { pad = MAXJSAMPLE*2; cquantize->is_padded = TRUE; } else { pad = 0; cquantize->is_padded = FALSE; } cquantize->colorindex = (*cinfo->mem->alloc_sarray) ((j_common_ptr) cinfo, JPOOL_IMAGE, (JDIMENSION) (MAXJSAMPLE+1 + pad), (JDIMENSION) cinfo->out_color_components); /* blksize is number of adjacent repeated entries for a component */ blksize = cquantize->sv_actual; for (i = 0; i < cinfo->out_color_components; i++) { /* fill in colorindex entries for i'th color component */ nci = cquantize->Ncolors[i]; /* # of distinct values for this color */ blksize = blksize / nci; /* adjust colorindex pointers to provide padding at negative indexes. */ if (pad) cquantize->colorindex[i] += MAXJSAMPLE; /* in loop, val = index of current output value, */ /* and k = largest j that maps to current val */ indexptr = cquantize->colorindex[i]; val = 0; k = largest_input_value(cinfo, i, 0, nci-1); for (j = 0; j <= MAXJSAMPLE; j++) { while (j > k) /* advance val if past boundary */ k = largest_input_value(cinfo, i, ++val, nci-1); /* premultiply so that no multiplication needed in main processing */ indexptr[j] = (JSAMPLE) (val * blksize); } /* Pad at both ends if necessary */ if (pad) for (j = 1; j <= MAXJSAMPLE; j++) { indexptr[-j] = indexptr[0]; indexptr[MAXJSAMPLE+j] = indexptr[MAXJSAMPLE]; } } } /* * Create an ordered-dither array for a component having ncolors * distinct output values. */ LOCAL(ODITHER_MATRIX_PTR) make_odither_array (j_decompress_ptr cinfo, int ncolors) { ODITHER_MATRIX_PTR odither; int j,k; INT32 num,den; odither = (ODITHER_MATRIX_PTR) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, sizeof(ODITHER_MATRIX)); /* The inter-value distance for this color is MAXJSAMPLE/(ncolors-1). * Hence the dither value for the matrix cell with fill order f * (f=0..N-1) should be (N-1-2*f)/(2*N) * MAXJSAMPLE/(ncolors-1). * On 16-bit-int machine, be careful to avoid overflow. */ den = 2 * ODITHER_CELLS * ((INT32) (ncolors - 1)); for (j = 0; j < ODITHER_SIZE; j++) { for (k = 0; k < ODITHER_SIZE; k++) { num = ((INT32) (ODITHER_CELLS-1 - 2*((int)base_dither_matrix[j][k]))) * MAXJSAMPLE; /* Ensure round towards zero despite C's lack of consistency * about rounding negative values in integer division... */ odither[j][k] = (int) (num<0 ? -((-num)/den) : num/den); } } return odither; } /* * Create the ordered-dither tables. * Components having the same number of representative colors may * share a dither table. */ LOCAL(void) create_odither_tables (j_decompress_ptr cinfo) { my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; ODITHER_MATRIX_PTR odither; int i, j, nci; for (i = 0; i < cinfo->out_color_components; i++) { nci = cquantize->Ncolors[i]; /* # of distinct values for this color */ odither = NULL; /* search for matching prior component */ for (j = 0; j < i; j++) { if (nci == cquantize->Ncolors[j]) { odither = cquantize->odither[j]; break; } } if (odither == NULL) /* need a new table? */ odither = make_odither_array(cinfo, nci); cquantize->odither[i] = odither; } } /* * Map some rows of pixels to the output colormapped representation. */ METHODDEF(void) color_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows) /* General case, no dithering */ { my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; JSAMPARRAY colorindex = cquantize->colorindex; register int pixcode, ci; register JSAMPROW ptrin, ptrout; int row; JDIMENSION col; JDIMENSION width = cinfo->output_width; register int nc = cinfo->out_color_components; for (row = 0; row < num_rows; row++) { ptrin = input_buf[row]; ptrout = output_buf[row]; for (col = width; col > 0; col--) { pixcode = 0; for (ci = 0; ci < nc; ci++) { pixcode += GETJSAMPLE(colorindex[ci][GETJSAMPLE(*ptrin++)]); } *ptrout++ = (JSAMPLE) pixcode; } } } METHODDEF(void) color_quantize3 (j_decompress_ptr cinfo, JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows) /* Fast path for out_color_components==3, no dithering */ { my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; register int pixcode; register JSAMPROW ptrin, ptrout; JSAMPROW colorindex0 = cquantize->colorindex[0]; JSAMPROW colorindex1 = cquantize->colorindex[1]; JSAMPROW colorindex2 = cquantize->colorindex[2]; int row; JDIMENSION col; JDIMENSION width = cinfo->output_width; for (row = 0; row < num_rows; row++) { ptrin = input_buf[row]; ptrout = output_buf[row]; for (col = width; col > 0; col--) { pixcode = GETJSAMPLE(colorindex0[GETJSAMPLE(*ptrin++)]); pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*ptrin++)]); pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*ptrin++)]); *ptrout++ = (JSAMPLE) pixcode; } } } METHODDEF(void) quantize_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows) /* General case, with ordered dithering */ { my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; register JSAMPROW input_ptr; register JSAMPROW output_ptr; JSAMPROW colorindex_ci; int * dither; /* points to active row of dither matrix */ int row_index, col_index; /* current indexes into dither matrix */ int nc = cinfo->out_color_components; int ci; int row; JDIMENSION col; JDIMENSION width = cinfo->output_width; for (row = 0; row < num_rows; row++) { /* Initialize output values to 0 so can process components separately */ jzero_far((void *) output_buf[row], (size_t) (width * sizeof(JSAMPLE))); row_index = cquantize->row_index; for (ci = 0; ci < nc; ci++) { input_ptr = input_buf[row] + ci; output_ptr = output_buf[row]; colorindex_ci = cquantize->colorindex[ci]; dither = cquantize->odither[ci][row_index]; col_index = 0; for (col = width; col > 0; col--) { /* Form pixel value + dither, range-limit to 0..MAXJSAMPLE, * select output value, accumulate into output code for this pixel. * Range-limiting need not be done explicitly, as we have extended * the colorindex table to produce the right answers for out-of-range * inputs. The maximum dither is +- MAXJSAMPLE; this sets the * required amount of padding. */ *output_ptr += colorindex_ci[GETJSAMPLE(*input_ptr)+dither[col_index]]; input_ptr += nc; output_ptr++; col_index = (col_index + 1) & ODITHER_MASK; } } /* Advance row index for next row */ row_index = (row_index + 1) & ODITHER_MASK; cquantize->row_index = row_index; } } METHODDEF(void) quantize3_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows) /* Fast path for out_color_components==3, with ordered dithering */ { my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; register int pixcode; register JSAMPROW input_ptr; register JSAMPROW output_ptr; JSAMPROW colorindex0 = cquantize->colorindex[0]; JSAMPROW colorindex1 = cquantize->colorindex[1]; JSAMPROW colorindex2 = cquantize->colorindex[2]; int * dither0; /* points to active row of dither matrix */ int * dither1; int * dither2; int row_index, col_index; /* current indexes into dither matrix */ int row; JDIMENSION col; JDIMENSION width = cinfo->output_width; for (row = 0; row < num_rows; row++) { row_index = cquantize->row_index; input_ptr = input_buf[row]; output_ptr = output_buf[row]; dither0 = cquantize->odither[0][row_index]; dither1 = cquantize->odither[1][row_index]; dither2 = cquantize->odither[2][row_index]; col_index = 0; for (col = width; col > 0; col--) { pixcode = GETJSAMPLE(colorindex0[GETJSAMPLE(*input_ptr++) + dither0[col_index]]); pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*input_ptr++) + dither1[col_index]]); pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*input_ptr++) + dither2[col_index]]); *output_ptr++ = (JSAMPLE) pixcode; col_index = (col_index + 1) & ODITHER_MASK; } row_index = (row_index + 1) & ODITHER_MASK; cquantize->row_index = row_index; } } METHODDEF(void) quantize_fs_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows) /* General case, with Floyd-Steinberg dithering */ { my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; register LOCFSERROR cur; /* current error or pixel value */ LOCFSERROR belowerr; /* error for pixel below cur */ LOCFSERROR bpreverr; /* error for below/prev col */ LOCFSERROR bnexterr; /* error for below/next col */ LOCFSERROR delta; register FSERRPTR errorptr; /* => fserrors[] at column before current */ register JSAMPROW input_ptr; register JSAMPROW output_ptr; JSAMPROW colorindex_ci; JSAMPROW colormap_ci; int pixcode; int nc = cinfo->out_color_components; int dir; /* 1 for left-to-right, -1 for right-to-left */ int dirnc; /* dir * nc */ int ci; int row; JDIMENSION col; JDIMENSION width = cinfo->output_width; JSAMPLE *range_limit = cinfo->sample_range_limit; SHIFT_TEMPS for (row = 0; row < num_rows; row++) { /* Initialize output values to 0 so can process components separately */ jzero_far((void *) output_buf[row], (size_t) (width * sizeof(JSAMPLE))); for (ci = 0; ci < nc; ci++) { input_ptr = input_buf[row] + ci; output_ptr = output_buf[row]; if (cquantize->on_odd_row) { /* work right to left in this row */ input_ptr += (width-1) * nc; /* so point to rightmost pixel */ output_ptr += width-1; dir = -1; dirnc = -nc; errorptr = cquantize->fserrors[ci] + (width+1); /* => entry after last column */ } else { /* work left to right in this row */ dir = 1; dirnc = nc; errorptr = cquantize->fserrors[ci]; /* => entry before first column */ } colorindex_ci = cquantize->colorindex[ci]; colormap_ci = cquantize->sv_colormap[ci]; /* Preset error values: no error propagated to first pixel from left */ cur = 0; /* and no error propagated to row below yet */ belowerr = bpreverr = 0; for (col = width; col > 0; col--) { /* cur holds the error propagated from the previous pixel on the * current line. Add the error propagated from the previous line * to form the complete error correction term for this pixel, and * round the error term (which is expressed * 16) to an integer. * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct * for either sign of the error value. * Note: errorptr points to *previous* column's array entry. */ cur = RIGHT_SHIFT(cur + errorptr[dir] + 8, 4); /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE. * The maximum error is +- MAXJSAMPLE; this sets the required size * of the range_limit array. */ cur += GETJSAMPLE(*input_ptr); cur = GETJSAMPLE(range_limit[cur]); /* Select output value, accumulate into output code for this pixel */ pixcode = GETJSAMPLE(colorindex_ci[cur]); *output_ptr += (JSAMPLE) pixcode; /* Compute actual representation error at this pixel */ /* Note: we can do this even though we don't have the final */ /* pixel code, because the colormap is orthogonal. */ cur -= GETJSAMPLE(colormap_ci[pixcode]); /* Compute error fractions to be propagated to adjacent pixels. * Add these into the running sums, and simultaneously shift the * next-line error sums left by 1 column. */ bnexterr = cur; delta = cur * 2; cur += delta; /* form error * 3 */ errorptr[0] = (FSERROR) (bpreverr + cur); cur += delta; /* form error * 5 */ bpreverr = belowerr + cur; belowerr = bnexterr; cur += delta; /* form error * 7 */ /* At this point cur contains the 7/16 error value to be propagated * to the next pixel on the current line, and all the errors for the * next line have been shifted over. We are therefore ready to move on. */ input_ptr += dirnc; /* advance input ptr to next column */ output_ptr += dir; /* advance output ptr to next column */ errorptr += dir; /* advance errorptr to current column */ } /* Post-loop cleanup: we must unload the final error value into the * final fserrors[] entry. Note we need not unload belowerr because * it is for the dummy column before or after the actual array. */ errorptr[0] = (FSERROR) bpreverr; /* unload prev err into array */ } cquantize->on_odd_row = (cquantize->on_odd_row ? FALSE : TRUE); } } /* * Allocate workspace for Floyd-Steinberg errors. */ LOCAL(void) alloc_fs_workspace (j_decompress_ptr cinfo) { my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; size_t arraysize; int i; arraysize = (size_t) ((cinfo->output_width + 2) * sizeof(FSERROR)); for (i = 0; i < cinfo->out_color_components; i++) { cquantize->fserrors[i] = (FSERRPTR) (*cinfo->mem->alloc_large)((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize); } } /* * Initialize for one-pass color quantization. */ METHODDEF(void) start_pass_1_quant (j_decompress_ptr cinfo, boolean is_pre_scan) { my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; size_t arraysize; int i; /* Install my colormap. */ cinfo->colormap = cquantize->sv_colormap; cinfo->actual_number_of_colors = cquantize->sv_actual; /* Initialize for desired dithering mode. */ switch (cinfo->dither_mode) { case JDITHER_NONE: if (cinfo->out_color_components == 3) cquantize->pub.color_quantize = color_quantize3; else cquantize->pub.color_quantize = color_quantize; break; case JDITHER_ORDERED: if (cinfo->out_color_components == 3) cquantize->pub.color_quantize = quantize3_ord_dither; else cquantize->pub.color_quantize = quantize_ord_dither; cquantize->row_index = 0; /* initialize state for ordered dither */ /* If user changed to ordered dither from another mode, * we must recreate the color index table with padding. * This will cost extra space, but probably isn't very likely. */ if (! cquantize->is_padded) create_colorindex(cinfo); /* Create ordered-dither tables if we didn't already. */ if (cquantize->odither[0] == NULL) create_odither_tables(cinfo); break; case JDITHER_FS: cquantize->pub.color_quantize = quantize_fs_dither; cquantize->on_odd_row = FALSE; /* initialize state for F-S dither */ /* Allocate Floyd-Steinberg workspace if didn't already. */ if (cquantize->fserrors[0] == NULL) alloc_fs_workspace(cinfo); /* Initialize the propagated errors to zero. */ arraysize = (size_t) ((cinfo->output_width + 2) * sizeof(FSERROR)); for (i = 0; i < cinfo->out_color_components; i++) jzero_far((void *) cquantize->fserrors[i], arraysize); break; default: ERREXIT(cinfo, JERR_NOT_COMPILED); break; } } /* * Finish up at the end of the pass. */ METHODDEF(void) finish_pass_1_quant (j_decompress_ptr cinfo) { /* no work in 1-pass case */ } /* * Switch to a new external colormap between output passes. * Shouldn't get to this module! */ METHODDEF(void) new_color_map_1_quant (j_decompress_ptr cinfo) { ERREXIT(cinfo, JERR_MODE_CHANGE); } /* * Module initialization routine for 1-pass color quantization. */ GLOBAL(void) jinit_1pass_quantizer (j_decompress_ptr cinfo) { my_cquantize_ptr cquantize; cquantize = (my_cquantize_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, sizeof(my_cquantizer)); cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize; cquantize->pub.start_pass = start_pass_1_quant; cquantize->pub.finish_pass = finish_pass_1_quant; cquantize->pub.new_color_map = new_color_map_1_quant; cquantize->fserrors[0] = NULL; /* Flag FS workspace not allocated */ cquantize->odither[0] = NULL; /* Also flag odither arrays not allocated */ /* Make sure my internal arrays won't overflow */ if (cinfo->out_color_components > MAX_Q_COMPS) ERREXIT1(cinfo, JERR_QUANT_COMPONENTS, MAX_Q_COMPS); /* Make sure colormap indexes can be represented by JSAMPLEs */ if (cinfo->desired_number_of_colors > (MAXJSAMPLE+1)) ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXJSAMPLE+1); /* Create the colormap and color index table. */ create_colormap(cinfo); create_colorindex(cinfo); /* Allocate Floyd-Steinberg workspace now if requested. * We do this now since it may affect the memory manager's space * calculations. If the user changes to FS dither mode in a later pass, we * will allocate the space then, and will possibly overrun the * max_memory_to_use setting. */ if (cinfo->dither_mode == JDITHER_FS) alloc_fs_workspace(cinfo); } #endif /* QUANT_1PASS_SUPPORTED */ libjpeg-turbo-1.4.2/turbojpeg-mapfile.jni0000755000076500007650000000557012600050400015331 00000000000000TURBOJPEG_1.0 { global: tjInitCompress; tjCompress; TJBUFSIZE; tjInitDecompress; tjDecompressHeader; tjDecompress; tjDestroy; tjGetErrorStr; local: *; }; TURBOJPEG_1.1 { global: TJBUFSIZEYUV; tjDecompressHeader2; tjDecompressToYUV; tjEncodeYUV; } TURBOJPEG_1.0; TURBOJPEG_1.2 { global: tjAlloc; tjBufSize; tjBufSizeYUV; tjCompress2; tjDecompress2; tjEncodeYUV2; tjFree; tjGetScalingFactors; tjInitTransform; tjTransform; Java_org_libjpegturbo_turbojpeg_TJ_bufSize; Java_org_libjpegturbo_turbojpeg_TJ_bufSizeYUV__III; Java_org_libjpegturbo_turbojpeg_TJ_getScalingFactors; Java_org_libjpegturbo_turbojpeg_TJCompressor_init; Java_org_libjpegturbo_turbojpeg_TJCompressor_compress___3BIIII_3BIII; Java_org_libjpegturbo_turbojpeg_TJCompressor_compress___3IIIII_3BIII; Java_org_libjpegturbo_turbojpeg_TJCompressor_encodeYUV___3BIIII_3BII; Java_org_libjpegturbo_turbojpeg_TJCompressor_encodeYUV___3IIIII_3BII; Java_org_libjpegturbo_turbojpeg_TJCompressor_destroy; Java_org_libjpegturbo_turbojpeg_TJDecompressor_init; Java_org_libjpegturbo_turbojpeg_TJDecompressor_decompressHeader; Java_org_libjpegturbo_turbojpeg_TJDecompressor_decompress___3BI_3BIIIII; Java_org_libjpegturbo_turbojpeg_TJDecompressor_decompress___3BI_3IIIIII; Java_org_libjpegturbo_turbojpeg_TJDecompressor_decompressToYUV___3BI_3BI; Java_org_libjpegturbo_turbojpeg_TJDecompressor_destroy; Java_org_libjpegturbo_turbojpeg_TJTransformer_init; Java_org_libjpegturbo_turbojpeg_TJTransformer_transform; } TURBOJPEG_1.1; TURBOJPEG_1.3 { global: Java_org_libjpegturbo_turbojpeg_TJCompressor_compress___3BIIIIII_3BIII; Java_org_libjpegturbo_turbojpeg_TJCompressor_compress___3IIIIIII_3BIII; Java_org_libjpegturbo_turbojpeg_TJDecompressor_decompress___3BI_3BIIIIIII; Java_org_libjpegturbo_turbojpeg_TJDecompressor_decompress___3BI_3IIIIIIII; } TURBOJPEG_1.2; TURBOJPEG_1.4 { global: tjBufSizeYUV2; tjCompressFromYUV; tjCompressFromYUVPlanes; tjDecodeYUV; tjDecodeYUVPlanes; tjDecompressHeader3; tjDecompressToYUV2; tjDecompressToYUVPlanes; tjEncodeYUV3; tjEncodeYUVPlanes; tjPlaneHeight; tjPlaneSizeYUV; tjPlaneWidth; Java_org_libjpegturbo_turbojpeg_TJ_bufSizeYUV__IIII; Java_org_libjpegturbo_turbojpeg_TJCompressor_compressFromYUV___3_3B_3II_3III_3BII; Java_org_libjpegturbo_turbojpeg_TJCompressor_encodeYUV___3BIIIIII_3_3B_3I_3III; Java_org_libjpegturbo_turbojpeg_TJCompressor_encodeYUV___3IIIIIII_3_3B_3I_3III; Java_org_libjpegturbo_turbojpeg_TJDecompressor_decompressToYUV___3BI_3_3B_3II_3III; Java_org_libjpegturbo_turbojpeg_TJDecompressor_decodeYUV___3_3B_3I_3II_3BIIIIIII; Java_org_libjpegturbo_turbojpeg_TJDecompressor_decodeYUV___3_3B_3I_3II_3IIIIIIII; Java_org_libjpegturbo_turbojpeg_TJ_planeHeight__III; Java_org_libjpegturbo_turbojpeg_TJ_planeSizeYUV__IIIII; Java_org_libjpegturbo_turbojpeg_TJ_planeWidth__III; } TURBOJPEG_1.3; libjpeg-turbo-1.4.2/rdtarga.c0000644000076500007650000003600112600050400012771 00000000000000/* * rdtarga.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1991-1996, Thomas G. Lane. * It was modified by The libjpeg-turbo Project to include only code relevant * to libjpeg-turbo. * For conditions of distribution and use, see the accompanying README file. * * This file contains routines to read input images in Targa format. * * These routines may need modification for non-Unix environments or * specialized applications. As they stand, they assume input from * an ordinary stdio stream. They further assume that reading begins * at the start of the file; start_input may need work if the * user interface has already read some data (e.g., to determine that * the file is indeed Targa format). * * Based on code contributed by Lee Daniel Crocker. */ #include "cdjpeg.h" /* Common decls for cjpeg/djpeg applications */ #ifdef TARGA_SUPPORTED /* Macros to deal with unsigned chars as efficiently as compiler allows */ #ifdef HAVE_UNSIGNED_CHAR typedef unsigned char U_CHAR; #define UCH(x) ((int) (x)) #else /* !HAVE_UNSIGNED_CHAR */ #ifdef __CHAR_UNSIGNED__ typedef char U_CHAR; #define UCH(x) ((int) (x)) #else typedef char U_CHAR; #define UCH(x) ((int) (x) & 0xFF) #endif #endif /* HAVE_UNSIGNED_CHAR */ #define ReadOK(file,buffer,len) (JFREAD(file,buffer,len) == ((size_t) (len))) /* Private version of data source object */ typedef struct _tga_source_struct * tga_source_ptr; typedef struct _tga_source_struct { struct cjpeg_source_struct pub; /* public fields */ j_compress_ptr cinfo; /* back link saves passing separate parm */ JSAMPARRAY colormap; /* Targa colormap (converted to my format) */ jvirt_sarray_ptr whole_image; /* Needed if funny input row order */ JDIMENSION current_row; /* Current logical row number to read */ /* Pointer to routine to extract next Targa pixel from input file */ void (*read_pixel) (tga_source_ptr sinfo); /* Result of read_pixel is delivered here: */ U_CHAR tga_pixel[4]; int pixel_size; /* Bytes per Targa pixel (1 to 4) */ /* State info for reading RLE-coded pixels; both counts must be init to 0 */ int block_count; /* # of pixels remaining in RLE block */ int dup_pixel_count; /* # of times to duplicate previous pixel */ /* This saves the correct pixel-row-expansion method for preload_image */ JDIMENSION (*get_pixel_rows) (j_compress_ptr cinfo, cjpeg_source_ptr sinfo); } tga_source_struct; /* For expanding 5-bit pixel values to 8-bit with best rounding */ static const UINT8 c5to8bits[32] = { 0, 8, 16, 25, 33, 41, 49, 58, 66, 74, 82, 90, 99, 107, 115, 123, 132, 140, 148, 156, 165, 173, 181, 189, 197, 206, 214, 222, 230, 239, 247, 255 }; LOCAL(int) read_byte (tga_source_ptr sinfo) /* Read next byte from Targa file */ { register FILE *infile = sinfo->pub.input_file; register int c; if ((c = getc(infile)) == EOF) ERREXIT(sinfo->cinfo, JERR_INPUT_EOF); return c; } LOCAL(void) read_colormap (tga_source_ptr sinfo, int cmaplen, int mapentrysize) /* Read the colormap from a Targa file */ { int i; /* Presently only handles 24-bit BGR format */ if (mapentrysize != 24) ERREXIT(sinfo->cinfo, JERR_TGA_BADCMAP); for (i = 0; i < cmaplen; i++) { sinfo->colormap[2][i] = (JSAMPLE) read_byte(sinfo); sinfo->colormap[1][i] = (JSAMPLE) read_byte(sinfo); sinfo->colormap[0][i] = (JSAMPLE) read_byte(sinfo); } } /* * read_pixel methods: get a single pixel from Targa file into tga_pixel[] */ METHODDEF(void) read_non_rle_pixel (tga_source_ptr sinfo) /* Read one Targa pixel from the input file; no RLE expansion */ { register FILE *infile = sinfo->pub.input_file; register int i; for (i = 0; i < sinfo->pixel_size; i++) { sinfo->tga_pixel[i] = (U_CHAR) getc(infile); } } METHODDEF(void) read_rle_pixel (tga_source_ptr sinfo) /* Read one Targa pixel from the input file, expanding RLE data as needed */ { register FILE *infile = sinfo->pub.input_file; register int i; /* Duplicate previously read pixel? */ if (sinfo->dup_pixel_count > 0) { sinfo->dup_pixel_count--; return; } /* Time to read RLE block header? */ if (--sinfo->block_count < 0) { /* decrement pixels remaining in block */ i = read_byte(sinfo); if (i & 0x80) { /* Start of duplicate-pixel block? */ sinfo->dup_pixel_count = i & 0x7F; /* number of dups after this one */ sinfo->block_count = 0; /* then read new block header */ } else { sinfo->block_count = i & 0x7F; /* number of pixels after this one */ } } /* Read next pixel */ for (i = 0; i < sinfo->pixel_size; i++) { sinfo->tga_pixel[i] = (U_CHAR) getc(infile); } } /* * Read one row of pixels. * * We provide several different versions depending on input file format. */ METHODDEF(JDIMENSION) get_8bit_gray_row (j_compress_ptr cinfo, cjpeg_source_ptr sinfo) /* This version is for reading 8-bit grayscale pixels */ { tga_source_ptr source = (tga_source_ptr) sinfo; register JSAMPROW ptr; register JDIMENSION col; ptr = source->pub.buffer[0]; for (col = cinfo->image_width; col > 0; col--) { (*source->read_pixel) (source); /* Load next pixel into tga_pixel */ *ptr++ = (JSAMPLE) UCH(source->tga_pixel[0]); } return 1; } METHODDEF(JDIMENSION) get_8bit_row (j_compress_ptr cinfo, cjpeg_source_ptr sinfo) /* This version is for reading 8-bit colormap indexes */ { tga_source_ptr source = (tga_source_ptr) sinfo; register int t; register JSAMPROW ptr; register JDIMENSION col; register JSAMPARRAY colormap = source->colormap; ptr = source->pub.buffer[0]; for (col = cinfo->image_width; col > 0; col--) { (*source->read_pixel) (source); /* Load next pixel into tga_pixel */ t = UCH(source->tga_pixel[0]); *ptr++ = colormap[0][t]; *ptr++ = colormap[1][t]; *ptr++ = colormap[2][t]; } return 1; } METHODDEF(JDIMENSION) get_16bit_row (j_compress_ptr cinfo, cjpeg_source_ptr sinfo) /* This version is for reading 16-bit pixels */ { tga_source_ptr source = (tga_source_ptr) sinfo; register int t; register JSAMPROW ptr; register JDIMENSION col; ptr = source->pub.buffer[0]; for (col = cinfo->image_width; col > 0; col--) { (*source->read_pixel) (source); /* Load next pixel into tga_pixel */ t = UCH(source->tga_pixel[0]); t += UCH(source->tga_pixel[1]) << 8; /* We expand 5 bit data to 8 bit sample width. * The format of the 16-bit (LSB first) input word is * xRRRRRGGGGGBBBBB */ ptr[2] = (JSAMPLE) c5to8bits[t & 0x1F]; t >>= 5; ptr[1] = (JSAMPLE) c5to8bits[t & 0x1F]; t >>= 5; ptr[0] = (JSAMPLE) c5to8bits[t & 0x1F]; ptr += 3; } return 1; } METHODDEF(JDIMENSION) get_24bit_row (j_compress_ptr cinfo, cjpeg_source_ptr sinfo) /* This version is for reading 24-bit pixels */ { tga_source_ptr source = (tga_source_ptr) sinfo; register JSAMPROW ptr; register JDIMENSION col; ptr = source->pub.buffer[0]; for (col = cinfo->image_width; col > 0; col--) { (*source->read_pixel) (source); /* Load next pixel into tga_pixel */ *ptr++ = (JSAMPLE) UCH(source->tga_pixel[2]); /* change BGR to RGB order */ *ptr++ = (JSAMPLE) UCH(source->tga_pixel[1]); *ptr++ = (JSAMPLE) UCH(source->tga_pixel[0]); } return 1; } /* * Targa also defines a 32-bit pixel format with order B,G,R,A. * We presently ignore the attribute byte, so the code for reading * these pixels is identical to the 24-bit routine above. * This works because the actual pixel length is only known to read_pixel. */ #define get_32bit_row get_24bit_row /* * This method is for re-reading the input data in standard top-down * row order. The entire image has already been read into whole_image * with proper conversion of pixel format, but it's in a funny row order. */ METHODDEF(JDIMENSION) get_memory_row (j_compress_ptr cinfo, cjpeg_source_ptr sinfo) { tga_source_ptr source = (tga_source_ptr) sinfo; JDIMENSION source_row; /* Compute row of source that maps to current_row of normal order */ /* For now, assume image is bottom-up and not interlaced. */ /* NEEDS WORK to support interlaced images! */ source_row = cinfo->image_height - source->current_row - 1; /* Fetch that row from virtual array */ source->pub.buffer = (*cinfo->mem->access_virt_sarray) ((j_common_ptr) cinfo, source->whole_image, source_row, (JDIMENSION) 1, FALSE); source->current_row++; return 1; } /* * This method loads the image into whole_image during the first call on * get_pixel_rows. The get_pixel_rows pointer is then adjusted to call * get_memory_row on subsequent calls. */ METHODDEF(JDIMENSION) preload_image (j_compress_ptr cinfo, cjpeg_source_ptr sinfo) { tga_source_ptr source = (tga_source_ptr) sinfo; JDIMENSION row; cd_progress_ptr progress = (cd_progress_ptr) cinfo->progress; /* Read the data into a virtual array in input-file row order. */ for (row = 0; row < cinfo->image_height; row++) { if (progress != NULL) { progress->pub.pass_counter = (long) row; progress->pub.pass_limit = (long) cinfo->image_height; (*progress->pub.progress_monitor) ((j_common_ptr) cinfo); } source->pub.buffer = (*cinfo->mem->access_virt_sarray) ((j_common_ptr) cinfo, source->whole_image, row, (JDIMENSION) 1, TRUE); (*source->get_pixel_rows) (cinfo, sinfo); } if (progress != NULL) progress->completed_extra_passes++; /* Set up to read from the virtual array in unscrambled order */ source->pub.get_pixel_rows = get_memory_row; source->current_row = 0; /* And read the first row */ return get_memory_row(cinfo, sinfo); } /* * Read the file header; return image size and component count. */ METHODDEF(void) start_input_tga (j_compress_ptr cinfo, cjpeg_source_ptr sinfo) { tga_source_ptr source = (tga_source_ptr) sinfo; U_CHAR targaheader[18]; int idlen, cmaptype, subtype, flags, interlace_type, components; unsigned int width, height, maplen; boolean is_bottom_up; #define GET_2B(offset) ((unsigned int) UCH(targaheader[offset]) + \ (((unsigned int) UCH(targaheader[offset+1])) << 8)) if (! ReadOK(source->pub.input_file, targaheader, 18)) ERREXIT(cinfo, JERR_INPUT_EOF); /* Pretend "15-bit" pixels are 16-bit --- we ignore attribute bit anyway */ if (targaheader[16] == 15) targaheader[16] = 16; idlen = UCH(targaheader[0]); cmaptype = UCH(targaheader[1]); subtype = UCH(targaheader[2]); maplen = GET_2B(5); width = GET_2B(12); height = GET_2B(14); source->pixel_size = UCH(targaheader[16]) >> 3; flags = UCH(targaheader[17]); /* Image Descriptor byte */ is_bottom_up = ((flags & 0x20) == 0); /* bit 5 set => top-down */ interlace_type = flags >> 6; /* bits 6/7 are interlace code */ if (cmaptype > 1 || /* cmaptype must be 0 or 1 */ source->pixel_size < 1 || source->pixel_size > 4 || (UCH(targaheader[16]) & 7) != 0 || /* bits/pixel must be multiple of 8 */ interlace_type != 0 || /* currently don't allow interlaced image */ width == 0 || height == 0) /* image width/height must be non-zero */ ERREXIT(cinfo, JERR_TGA_BADPARMS); if (subtype > 8) { /* It's an RLE-coded file */ source->read_pixel = read_rle_pixel; source->block_count = source->dup_pixel_count = 0; subtype -= 8; } else { /* Non-RLE file */ source->read_pixel = read_non_rle_pixel; } /* Now should have subtype 1, 2, or 3 */ components = 3; /* until proven different */ cinfo->in_color_space = JCS_RGB; switch (subtype) { case 1: /* Colormapped image */ if (source->pixel_size == 1 && cmaptype == 1) source->get_pixel_rows = get_8bit_row; else ERREXIT(cinfo, JERR_TGA_BADPARMS); TRACEMS2(cinfo, 1, JTRC_TGA_MAPPED, width, height); break; case 2: /* RGB image */ switch (source->pixel_size) { case 2: source->get_pixel_rows = get_16bit_row; break; case 3: source->get_pixel_rows = get_24bit_row; break; case 4: source->get_pixel_rows = get_32bit_row; break; default: ERREXIT(cinfo, JERR_TGA_BADPARMS); break; } TRACEMS2(cinfo, 1, JTRC_TGA, width, height); break; case 3: /* Grayscale image */ components = 1; cinfo->in_color_space = JCS_GRAYSCALE; if (source->pixel_size == 1) source->get_pixel_rows = get_8bit_gray_row; else ERREXIT(cinfo, JERR_TGA_BADPARMS); TRACEMS2(cinfo, 1, JTRC_TGA_GRAY, width, height); break; default: ERREXIT(cinfo, JERR_TGA_BADPARMS); break; } if (is_bottom_up) { /* Create a virtual array to buffer the upside-down image. */ source->whole_image = (*cinfo->mem->request_virt_sarray) ((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE, (JDIMENSION) width * components, (JDIMENSION) height, (JDIMENSION) 1); if (cinfo->progress != NULL) { cd_progress_ptr progress = (cd_progress_ptr) cinfo->progress; progress->total_extra_passes++; /* count file input as separate pass */ } /* source->pub.buffer will point to the virtual array. */ source->pub.buffer_height = 1; /* in case anyone looks at it */ source->pub.get_pixel_rows = preload_image; } else { /* Don't need a virtual array, but do need a one-row input buffer. */ source->whole_image = NULL; source->pub.buffer = (*cinfo->mem->alloc_sarray) ((j_common_ptr) cinfo, JPOOL_IMAGE, (JDIMENSION) width * components, (JDIMENSION) 1); source->pub.buffer_height = 1; source->pub.get_pixel_rows = source->get_pixel_rows; } while (idlen--) /* Throw away ID field */ (void) read_byte(source); if (maplen > 0) { if (maplen > 256 || GET_2B(3) != 0) ERREXIT(cinfo, JERR_TGA_BADCMAP); /* Allocate space to store the colormap */ source->colormap = (*cinfo->mem->alloc_sarray) ((j_common_ptr) cinfo, JPOOL_IMAGE, (JDIMENSION) maplen, (JDIMENSION) 3); /* and read it from the file */ read_colormap(source, (int) maplen, UCH(targaheader[7])); } else { if (cmaptype) /* but you promised a cmap! */ ERREXIT(cinfo, JERR_TGA_BADPARMS); source->colormap = NULL; } cinfo->input_components = components; cinfo->data_precision = 8; cinfo->image_width = width; cinfo->image_height = height; } /* * Finish up at the end of the file. */ METHODDEF(void) finish_input_tga (j_compress_ptr cinfo, cjpeg_source_ptr sinfo) { /* no work */ } /* * The module selection routine for Targa format input. */ GLOBAL(cjpeg_source_ptr) jinit_read_targa (j_compress_ptr cinfo) { tga_source_ptr source; /* Create module interface object */ source = (tga_source_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, sizeof(tga_source_struct)); source->cinfo = cinfo; /* make back link for subroutines */ /* Fill in method ptrs, except get_pixel_rows which start_input sets */ source->pub.start_input = start_input_tga; source->pub.finish_input = finish_input_tga; return (cjpeg_source_ptr) source; } #endif /* TARGA_SUPPORTED */ libjpeg-turbo-1.4.2/config.h.in0000644000076500007650000000714512600050412013236 00000000000000/* config.h.in. Generated from configure.ac by autoheader. */ /* use 8 or 12 */ #undef BITS_IN_JSAMPLE /* libjpeg-turbo build number */ #undef BUILD /* Support arithmetic encoding */ #undef C_ARITH_CODING_SUPPORTED /* Support arithmetic decoding */ #undef D_ARITH_CODING_SUPPORTED /* Define to 1 if you have the header file. */ #undef HAVE_DLFCN_H /* Define to 1 if you have the header file. */ #undef HAVE_INTTYPES_H /* Define to 1 if you have the header file. */ #undef HAVE_JNI_H /* Define to 1 if you have the header file. */ #undef HAVE_LOCALE_H /* Define to 1 if you have the `memcpy' function. */ #undef HAVE_MEMCPY /* Define to 1 if you have the header file. */ #undef HAVE_MEMORY_H /* Define to 1 if you have the `memset' function. */ #undef HAVE_MEMSET /* Define to 1 if you have the header file. */ #undef HAVE_STDDEF_H /* Define to 1 if you have the header file. */ #undef HAVE_STDINT_H /* Define to 1 if you have the header file. */ #undef HAVE_STDLIB_H /* Define to 1 if you have the header file. */ #undef HAVE_STRINGS_H /* Define to 1 if you have the header file. */ #undef HAVE_STRING_H /* Define to 1 if you have the header file. */ #undef HAVE_SYS_STAT_H /* Define to 1 if you have the header file. */ #undef HAVE_SYS_TYPES_H /* Define to 1 if you have the header file. */ #undef HAVE_UNISTD_H /* Define to 1 if the system has the type `unsigned char'. */ #undef HAVE_UNSIGNED_CHAR /* Define to 1 if the system has the type `unsigned short'. */ #undef HAVE_UNSIGNED_SHORT /* Compiler does not support pointers to undefined structures. */ #undef INCOMPLETE_TYPES_BROKEN /* How to obtain function inlining. */ #undef INLINE /* libjpeg API version */ #undef JPEG_LIB_VERSION /* libjpeg-turbo version */ #undef LIBJPEG_TURBO_VERSION /* Define to the sub-directory where libtool stores uninstalled libraries. */ #undef LT_OBJDIR /* Support in-memory source/destination managers */ #undef MEM_SRCDST_SUPPORTED /* Define if you have BSD-like bzero and bcopy in rather than memset/memcpy in . */ #undef NEED_BSD_STRINGS /* Define if you need to include to get size_t. */ #undef NEED_SYS_TYPES_H /* Name of package */ #undef PACKAGE /* Define to the address where bug reports for this package should be sent. */ #undef PACKAGE_BUGREPORT /* Define to the full name of this package. */ #undef PACKAGE_NAME /* Define to the full name and version of this package. */ #undef PACKAGE_STRING /* Define to the one symbol short name of this package. */ #undef PACKAGE_TARNAME /* Define to the home page for this package. */ #undef PACKAGE_URL /* Define to the version of this package. */ #undef PACKAGE_VERSION /* Define if your (broken) compiler shifts signed values as if they were unsigned. */ #undef RIGHT_SHIFT_IS_UNSIGNED /* The size of `size_t', as computed by sizeof. */ #undef SIZEOF_SIZE_T /* Define to 1 if you have the ANSI C header files. */ #undef STDC_HEADERS /* Version number of package */ #undef VERSION /* Use accelerated SIMD routines. */ #undef WITH_SIMD /* Define to 1 if type `char' is unsigned and you are not using gcc. */ #ifndef __CHAR_UNSIGNED__ # undef __CHAR_UNSIGNED__ #endif /* Define to empty if `const' does not conform to ANSI C. */ #undef const /* Define to `__inline__' or `__inline' if that's what the C compiler calls it, or to nothing if 'inline' is not supported under any name. */ #ifndef __cplusplus #undef inline #endif /* Define to `unsigned int' if does not define. */ #undef size_t libjpeg-turbo-1.4.2/testimages/0000755000076500007650000000000012600050400013426 500000000000000libjpeg-turbo-1.4.2/testimages/vgl_6434_0018a.bmp0000644000076500007650000010346612600050400016141 00000000000000BM66(w`kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkMHLMHLMHLMHLVQUVQUVQUkkkzzzƕzzzzzzVQUVQUVQU\W[\W[\W[ƕƕƕƕƕƕƕƕƕzzzƕzzzƕzzzzzzzzzzzzzzzzzzƕƕƕƕƕƕƕƕƕƕƕƕƕƕƕƕzzzƕzzzPPPPPPnPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPtXXXtttUtttXXX.i3.i3.i3.i3.i3.i3.i3œOOOttttttttttttttkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkMHLMHLMHLMHLVQUVQUVQUVQUzzzƕƕzzzVQUVQUVQUzzz\W[\W[\W[zzzzzzƕƕƕzzzzzzzzzzzzzzzzzzzzzƕƕzzzzzzzzzzzzzzzzzzzzzzzzƕƕƕƕƕƕƕƕƕƕƕƕƕƕPPPnnPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPXXXtUtXXXttXXX.i3.i3.i3.i3.i3.i3.i3.i3.i3tttttXXXtXXXtttttttkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkMHLMHLMHLMHLVQUVQUVQUVQUVQUVQUVQUVQUVQUVQUVQUƕ\W[\W[\W[zzzzzzzzzzzzzzzzzzƕƕƕzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzƕƕƕƕƕƕƕƕPPPnnPPPPPPnnnnnnnnnnnPPPPPPPPPPPPPPPPPPXXXXXXt.i3.i3.i3.i3.i3.i3.i3.i3.i3.i3ttttttttttttttkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkMHLMHLMHLVQUVQUVQUVQUVQUVQUVQUVQUVQUVQUVQUzzz\W[\W[\W[ƕƕzzzzzzzzzzzzzzzzzzƕƕƕƕƕƕzzzzzzzzzzzzzzzzzzƕƕƕƕzzzzzzzzzzzzzzzzzzƕƕnnPPPnnPPPnnnnnnnnnnnnnnnnnUnPPPttXXX.i3.i3.i3.i3.i3.i3.i3.i3ttttttXXXtttttttkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkMHLMHLMHLMHLMHL:7:958VQUVQUVQUVQUVQUVQUVQUVQU\W[\W[zzzzzzzzzƕƕƕƕƕƕzzzzzzzzzzzzƕƕƕƕƕƕzzzzzzzzzzzzzzzzzzƕƕƕƕƕƕzzzPPPPPPPPPPPPPPPnnnnnnPPPnn˲cccnUUnnnt}}}.i3.i3.i3.i3.i3.i3.i3tttttttttttttttkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkMHL:7::7::7:MHL:7:kkkkkkzzzzzzƕƕzzzzzzƕzzzƕƕzzzzzzzzzzzzzzzzzzƕƕƕƕƕƕzzzzzzzzzzzzƕƕƕƕƕƕzzzzzzzzzzzzƕƕƕPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPnnnUzPPPPPPPPPPPP.i3.i3.i3.i3.i3.i3.i3tttttttttttttttkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk:7::7::7::7::7:kkkkkkzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzƕƕƕƕƕƕzzzzzzzzzzzzƕƕƕƕƕƕzzzzzzzzzzzzƕƕƕƕƕƕzzzPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP˩LxbbbPPP.i3.i3.i3.i3.i3.i3tttttttttttttttkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk:7::7::7::7:kkkzzzzzzƕƕƕƕzzzzzzzzzzzzzzzzzzzzzzzzƕƕƕƕƕƕzzzzzzzzzzzzƕƕƕƕƕƕzzzzzzzzzzzzƕƕPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPņXXXXXXXXXXXX3jU͒ɾ.i3.i3.i3.i3PPP.i3ttttttttttttXXXtkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkMHL958:7:kkkzzzzzzzzzƕƕƕƕzzzƕƕƕƕƕƕzzzzzzƕƕƕƕƕƕƕƕzzzzzzzzzzzzƕƕƕƕƕƕPPPPPPPPPPPPPPPPPPPPPPPPPPPƈXXXY.i3.i3PPPPPPPPPXXXttttttXXXtttkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkMHLMHLMHLkkkkkkzzzzzzƕzzzzzzzzzzzzzzzzzzƕƕƕƕƕƕƕƕzzzzzzƕƕƕƕƕƕƕƕzzzzzzƕƕPPPPPPPPPPPPPPPPPPPPPPPPNjCrXXXnnVVV͓nPPPPPPPPPnnttttttttkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkMHLkkkkkkkkkkkkzzzzzzzzzƕƕzzzzzzƕƕƕƕzzzzzzƕƕƕƕƕƕƕƕzzzzzzƕƕƕƕƕƕzzzPPPPPPPPPPPPPPPPPPxxxȍxEXXXXXXnnnnn(((sssPPPPPPPPPPPPPPPPPPPPPPPPPPPtttXXXtkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkzzzzzzzzzƕƕƕzzzƕƕƕƕƕƕƕƕzzzzzzƕƕƕƕƕƕƕƕzzzzzzƕPPPPPPPPPPPPPPPPPPZZZɐPPPPPP{{XXXXXXXXXnnnnPPPPPPPPPPPPnPPPPPPPPPPPPPPPnnPPPttkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkzzzzzzzzzƕƕzzzƕƕƕzzzzzzƕƕƕƕƕƕƕƕzzzzzzƕƕƕƕƕPPPPPPPPPPPPPPPPPPPPPӕPPPPPPPPPPPPPPPUXXXXXXXXX{XXXXXXXXXXXXXXXXXXXXXnnnnnnPPPnPPPPPPPPPPPPPPPPPPPPPPPPkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkzzzzzzzzzƕƕƕƕƕƕƕƕƕƕƕƕƕƕƕƕƕƕƕzzzzzzPPPPPPPPPPPPPPPPPP̈zzzPPPGGGtttoookkkkkkXXX111kXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXnnnPPPPPPPPPnPPPPPPPPPPPPPPPPPPkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkzzzzzzƕƕƕƕƕƕƕƕƕƕƕƕƕƕƕƕƕƕƕƕPPPPPPPPPPPPPPPPPPpppנzzzzzzzzzPPPPPPFFFkkkkkkkkktXXXXXX}BXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXnnnnPPPPPPPPPPPPPPPPPPkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkzzzzzzzzzƕƕƕƕƕƕƕƕƕƕƕƕƕƕƕzzzzzzPPPPPPPPPPPPPPPPPPCCCṹzzzzzzzzzzzzzzzPPPPPPtkkkkkkkkktXXXXXX^YYYXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXPPPPPPnPPPPPPPPPkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkzzzzzzzzzƕƕƕzzzƕƕƕƕƕƕƕƕƕƕƕƕPPPPPPPPPPPPPPPPPPzzzzzzzzzzzzzzzzzzzzzPPPPPPPPPkkkkkkkkktXXXXXXXXXXXXXXXXXX||||||XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXPPPPPPnkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkzzzzzzzzzzzzƕƕƕƕƕƕƕƕƕƕƕƕzzzPPPPPPPPPPPPPPPPPPϏzzzzzzzzzzzzzzzzzzzzzzzzzzzPPPPPPPPPPPPPPPkkkkkkkkkkkkXXXXXXXXXXXXXXXXXX|||||||||XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkzzzzzzzzzƕƕƕƕƕƕƕƕƕƕƕPPPPPPPPPPPPPPPPPPhhhڨzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzPPPPPPPPPPPPPPP444›tkkkkkkkkktXXXXXXXXXXXXXXX|||||||||||||||555XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkzzzzzzzzzzzzƕzzzƕzzzƕƕƕzzzzzzPPPPPPPPPPPPPPP&&&㽽zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzPPPPPPPPPPPPPPPPPPKKK›tkkkkkkkkktXXXXXXXXXXXXXXX||||||||||||^^^JJJPPPPPPXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXPPPPPPPPPPPPXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkzzzzzzzzzzzzƕƕƕƕƕƕƕPPPPPPPPPPPPPPPPPP~~~zzzzzzzzzzzzzzzzzzzzzzzzzzzPPPPPPPPPPPPPPPPPPPPPPPP+++|||kkkkkkkkkXXXXXXXXXXXXXXXXXX|||MMMkkkeeeeeePPPPPPPPPPPPPPPPPPPPPPPPXXXPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPXXXXXXXXXXXXPPPXXXXXXkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkzzzzzzzzzƕƕƕƕƕƕPPPPPPPPPPPPPPPPPP~~~ӗzzzzzzzzzzzzzzzzzzzzzzzzzzzPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP999JJJPPP(((kkkkkkeeecccXXXXXXXXXXXXXXXXXXkkkkkkyyyUUUPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPXXXPPPPPPXXXkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkzzzzzzzzzzzzƕƕƕPPPPPPPPPPPPPPPZZZްzzzzzzzzzzzzzzzzzzzzzzzzzzzPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPjjj```PPPPPPPPPGGGhhh___UUUOOOXXXXXXXXXXXXXXXkkkkkkPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkzzzzzzzzzzzzPPPPPPPPPPPPPPPPPPzzzzzzzzzzzzzzzzzzzzzzzzPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPQQQmmmjjjPPPPPPPPPPPP>>>LLL===SSSXXXXXXXXX}}}tttkkk|||PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkzzzzzz|||PPPPPPPPPPPPPPP̆zzzzzzzzzzzzzzzzzzzzzPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPfffmmmUUUPPPPPPPPP@@@CCCwww]]]PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP (kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkdGGGGGGGGGdduuuמzzzzzzzzzzzzzzzzzzzzzPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP[[[mmm```QQQhhhwww|||PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP 0?kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkddddGGGGGGdd᷷zzzzzzzzzzzzzzzzzzzzzPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPlllrrr[[[PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP $6DYkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkddddddGGGzzzzzzzzzzzzzzzzzzzzzPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP+<I e*kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkddddddduuuύzzzzzzzzzzzzzzzzzzdGGGGGGGGGPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP 3AR$s,0kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkdddddd999צzzzzzzzzzzzzzzzzzzdGGGGGGGGGdXXXGGGGGGGGGPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP $7E](~-/0kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkdddddddͬzzzzzzzzzzzzzzzzzzGGGddGGGdGGGhhhGGGGGGGGGGGGPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP+;I!i*../0kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkddddddZZZκ{{{kkkzzzzzzzzzGGGGGGGGGGGGdddXXXdGGGGGGPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP 2?S$t+-.///kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkdddddddɢkkkkkkkkkzzzGGGGGGGGGGGGGGGGGGdGGGy|gPSCPSCXXXGGGGGGGGGPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP $7C^'},--.//0kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkdddddddzzzβeeekkkkkkkkkGGGGGGGGGGGGGGGGGGGGGd\ciXXXdGGGGGGPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP *;H h)---..//0kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkdddddd:::kkkkkkkkkkkkGGGGGGGGGGGGGGGGGGdmqPSCPSCPSCXXXGGGGGGGGGPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP0>O#p*,---..//0kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkdddddddͪkkkkkkkkkkkkGGGGGGGGGGGGGGGGGGGGGdhhhswxyPSCXXXdGGGGGGPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP 4BX&x+,,--...//0kkkkkkkkkkkkkkkkkkkkkkkkkkkdddddd___θvvvkkkkkkkkkkkkGGGGGGGGGGGGGGGGGGdʷyyxuXXXGGGGGGGGGPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP $7Ea(~,,,,--.../06kkkkkkkkkkkkkkkkkkkkkdddddddǝkkkkkkkkkkkkGGGGGGGGGGGGGGGGGGduuuʵxvtpmyyyXXXdGGGGGGPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP ):H!i)+,,,---..35/bkkkkkkkkkkkkkkkddddddd{{{ΰkkkkkkkkkkkkGGGGGGGGGGGGGGGGGGGGGdGGGtttŖ̳rnjg|||||||||||||||XXXGGGGGGGGGPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP.=P$q*++,,,--/53)T()kkkkkkkkkkkkdddddd@@@οkkkkkkkkkkkkGGGGGGGGGdGGGdGGGzzz'''eeeҘ˲hgktJ||||||||||||||||||||||||111111111GGGdGGGPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP 3@X&w++++,,,051 h(()))kkkkkkdddddddͩkkkkkkkkkkkkGGGGGGGGGGGGGGGGGGGGGdrrrzzzTTT{{{Лбiqt-||||||||||||||||||||||||||||||111111111XXXdGGGGGGPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP "5Ca'|++++,,/5/!j'|(())*.kkkdddddddddηqqqkkkkkkkkkkkkGGGGGGGGGGGGGGGGGGGGGfff:::nnnƛĸޱ|||||||||||||||||||||||||||||||||||||||111!!!%%%XXXGGGdGGGPPPPPPPPPPPPPPPPPPPPP &7F!j)+++++/50!j&y(())+049ddddddŘkkkkkkkkkkkkGGGGGGGGGGGGGGGGGGGGGtgggQQQ___Ⱦ}}}||||||{{{|||||||||||||||||||||||||||||||||||||||###'''+++///XXXdGGGGGGPPPPPP *9L#o)++++-51#n"n'((),16;?Bdddd}}}ίkkkkkkkkkkkkGGGGGGGGGGGGGGGGGGGGGGGGtXXXJJJvvvћjjjwwwqqqrrr||||||||||||||||||||||||||||||||||||||||||||||||||||||&&&***...222555888;;;XXXGGG-:R$s****+43#qY&{(().38<@BEGddEEEνkkkkkkkkkkkk;;;GGGGGGGGGGGGGGGGGGXXXXXX+++hhhyyyJJJpppkkk|||||||||||||||||||||||||||||||||||||||||||||||||||˙kkk000444777:::===@@@AAA/<Z&x****05(T$t((+/49>@CFGGGd˧kkkkkkkkkkkk GGGGGGGGGGGGGGGGGGGGGXXXXXXXXXWWW}}}Żxxx˗|||kkk||||||||||||||||||||||||||||||||||||||||||||||||˙kkkkkkkkkkkk999<<a'|****51$s!h'|(,06;>ADFGGFEDεlllkkkkkkkkkkkkGGGGGGdGGGGGGGGGGGGXXXXXX@@@pppȿYYY皚xxxeee||||||||||||||||||||||||||||||||||||||||||||||||kkkkkkkkkkkkkkkkkkkkkAAAAAA???>>><<<;;;999-B!h(***25%w d%w(,16<?BDEFFEDB@?ÒkkkkkkkkkkkkC,GGGGGGGGGGGGGGGXXX<<==kkkkkkkkkkkkH7GGGooGGGGGGGGGhhhXXXXXXNNNxxxƼ}}}===ttt||||||||||||||||||||||||||||||||||||˙kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk9997775553331118$t))),7*&y'|,28>ACDEFECA@>>=<kkkkkkkkkkkk?%LoooGGGXXXXXX000jjj```uuu||||||||||||||||||||||||||||||||||||kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk444222000...#n)))26'}'{,29?ADEEECB@?>=<kkkkkkE2LoooXXXGGGXXXXXXXXXZZZĹsssEk}}}||||||||||||||||||||||||||||||˙kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk///---+++%t))53(-3:?BDEDDBA?>=<;kkk;SLoooXXXXXXtXXXDDDsssǾJJJEjEjEk܎||||||||||||||||||||||||˙kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk((("l)7+,4;@BDDCCA@>=<<LLoooLtXXXcccµhhhttt~~~DiDjDj||||||||||||||||||||||||kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk"""7,4;@CDCBB@?>=<;LL_ooLLXXXQQQzzzŻxxxOOOffftttChChDiDi||||||||||||||||||˙kkkkkkkkkkkkkkkkkkkkkkkk  kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk4<ACDCBA?>=<<;LLLoL666lllȿYYYOOOffftttChChChCh||||||||||||˙kkkkkkkkkkkkkkkkkkkkkkkk!!!!!!kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkDDCB@?=<<;LLLLOO]]]÷ooo||NNNfffsssBgBgBgBhEjEkEk||||||||||||kkkkkkkkkkkkkkkkkkkkkkkkkkkkkk%%%''''''"""kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkBA?><<;:<4LGGGuuuǽ}}}???|||KKKeeesssAfAfAfAgDjDjDj||||||˙kkkkkkkkkkkkkkkkkkkkkkkkkkk  kkk///kkk+++))) kkkkkkkkkkkkkkkkkkkkkkkkkkkkkk?=<;::K'''fff```|||||IIIdddsssAfAfAfAfCiCiDj˙kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk***)))......%%%kkkkkkkkkkkkkkkkkkkkkkkkkkk1::TTT|||ĹtttXXX||||||FFFcccrrr@e@e@e@eBhChCikkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk!!!kkkkkkkkkkkk ***&&&111888)))kkkkkkkkkkkkkkkkkkkkkkkkǾIIIXXXXXX||||||***DDDbbbrrrKq@e@e@eBhBhBhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk"""kkkkkkkkkkkkkkk(((kkkkkk###111SSS+++kkkkkkkkkkkkkkkkkkkkk¶gggXXXtXXXXXX||||||###{{{aaarrr{{{?d?d?dAgAgBgkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk $$$kkkkkkkkkkkkkkkkkkkkkkkkkkk 111***kkkkkkkkkkkkkkkkkkƼxxxXXXXXXXXXXXXXXXXXX||||||zzz```qqq{{{?d?d?dAfAfAgkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk &&&kkkkkkkkkkkkkkkkkkkkkkkkkkkkkk777)))kkkkkkkkkkkkkkkkkk9ȿXXXXXXXXXXXXXXXXXXXXXXXX|||||||HHH^^^pppzzz?c?c?c@eAfAfkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk((("""kkkkkkkkkkkkkkkkkkkkkkkkkkkkkk"""AAA^^^%%%kkkkkkkkkkkkkkk(øoooXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX||||||FFFoooyyy?c?c?c@e@e@ekkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk(((&&&kkkkkkkkkkkkkkkkkkkkkkkk%%%YYY888kkkkkkkkkkkkkkkǽ}}}>>>XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX||||||CCCWWWnnnyyy>c>c>c?d@e@ekkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk(((***kkkkkkkkkkkkkkkkkkkkkkkk)))TTT+++kkkkkkkkkkkkkkk```XXXXXXXXXXXXXXXXXXtttXXXXXXXXXXXX||||||@@@VVVxxx>b>c>c>c?d?d@dkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk%%%,,,%%%kkkkkkkkkkkk---777$$$kkkkkkkkkkkksssXXXXXXXXXXXXtttXXXXXXttttXXXXXX|||||<<b>b>b>c?d?d?dkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk---+++kkkkkkkkkkkk"""000+++kkkkkkkkk2IIIXXXttXXXXXXttttXXXttXXXXXXXXXXXXXXXXXX||||888RRRaaa=a=b>b>b?d?d?ckkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk)))333&&&kkkkkkkkkkkkkkk---$$$kkkkkkkkk\gggtXXXttttXXXttXXXXXXXXXXXXtXXXXXXXXXXXXXXXXXXXXXXXX||444QQQ___ttt<`c>c?ckkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk 666///kkkkkkkkkkkkkkkkkk((( kkkkkkkkktXXXtXXXXXXXXXXXXXXXXXXXXXtXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX---PPP___hhh;_;`;`<`>c>c>ckkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk)))UUU+++kkkkkkkkkkkkkkk***kkkkkk((()))kkkkkktXXXtXXXXXXttttXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXttXXXXXXXXX###NNN^^^hhh:]:^:^򋋋>c>b>b¾kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk333UUU&&&kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk$$$,,, '''"""9XXXXXXXXXXXXXXXXXXXXXttXXXXXXXXXXXXXXXXXXXXXXXXXXXtXXXXXXXXXXXXXXXXXXLLL]]]ggg8Z8[9\=b>b>bkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk$$$YYYAAA"""kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk###+kkkXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXtXXXXXXXXXXXXHHHZZZeeelll5W6X6Yꊊ>>444&&&kkkkkk  GGGGGGtXXXtXXXttttttttttttttttttXXXXXXtt111JJJSSS)I*J*J+Kч2U3U3V䭭kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk'''///111+++"""kkkkkkkkkdkkkkkktttttttttttttttttttttttXXXtXXX***FFFNNN(H(H)I)I͆/Q0R1Sޫ½HHHkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk ***---+++((("""dkkkkkkkkkkkkttttttttttttttXXXXXXXXXXXXtttttXXXtXXX!!!@@@FFFttt(G'G'G˅-M.N.O/Pڰÿkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk!!!(((***)))&&&$$$""" kkkkkkkkkkkkkkkkkk'{ttttXXXtXXXXXXttttXXXXXXXXXXXXXXXXXXXXXXXXtttXXXtXXX999hhhqqq'F'F'Fʄ+K,L,Mծkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk!!!""""""kkkkkkkkkkkkkkkkkkkkkj9tttttXXXtttttXXXXXXXXXXXXtXXXXXXXXXXXXXXXXXXXXXXXXtXXXt333eeeooo'F'F/1FI)J*J*KѬÿkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkGGGGGGkkkkkkkkkkkkkkkkkkkkkkkkj9j:tXXXtXXXttttttXXXXXXXXXXXXXXXXXXXXXtXXXXXXXXXXXXtXXXttt+++RRRbbblll'F()?BSW(H(H)Iͪ¾fffkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkddkkkkkkkkkkkkkkkkkkkkkkkkj:j:j:j:9XXXXXXtXXXtXXXttttttttttttXXXttttttXXXtOOO___ 9;NQaeqv'G'G'G˨¾jjjkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkGGGkkkkkkkkkkkkkkkkkkkkkj:j:j:j:j:j:%vj:ddGGGGGGXXXXXXtXXXtXXXtttttttttXXXttXXXtXXXtt(((25HK\_mq|'G'G'Gʭ¾kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkGGGdddkkkkkkkkkj:j:j:j:j:j:j:j:3GGGdddddGGGGGGXXXXXXtXXXtttttttttXXXtttt,.BEVZhlw| 'F'F'Fȫ¾kkkkkkkkkkkkkkkkkkkkkkkkkkkdGGGGGGkkkkkkkkkkkkkkkkkkkkkj:j:j:j:j:36XXXXXXGGGGGGGGGddddddGGGXXXXXXtttttttttXXXt$%#:? :@5=2<6G7M 8H ,:'3 "+)' & &#"## #!!!!%' )* ( ) ", #. #. + + ) )"*"* ' % & $ " ! ! " % & '% $ $ $$ $ & '!*(4,9/?1A2B 2C1C -:-;.>0B0A/A.@,=+=+=,<-= .= .> /?2C5I6J5H4G4I6L:T>Z=ZZ ;P 2A'2$-!+) ( ( $"$#"##" "&!,#0"/"/ #/$0%0 %1"/ #1 "."+!) !( ' %% %"""!"##### $ &$ $ % %"+&0*7 -;.< /< /= .= -< .> -= -< -<.>0A/@-?-?-> -> .> /? 0@1B 2B3D5E 4E 4F5I 6K 7M 8P:T8P7L0;-0&&&%"!$%&&$%"$ "!""#!!!"! %%!,+ ,+)'#"   !    "#"#!# "$####$# $ % %% %) , !, "+$. %-%. %- %- %/'4,:8LFdBY9I)5&0"+!,)( &$#%& $ $ # $& *#/$0$/ #. $.$/&2 &2#/",", ( ' ( ''&&&&'%$ %%$% ' % $ & & &", %0*7 ,; -< /> /> />/? /A/? /@0A0B/B0C0D0D0D 1B 1B 2E2E3E4G5H4H6I6J6L 8P :S ;U;W9R8P9E'=?$32)("!#$$&#$!#"!!"#!  !!" "!!"*)*850>:"/,&% ! !    !! ('.,"      # $$""#$$ $ # % % $ & )!)!)"* "+"+ *( *",)49LHeH`;K -9&1$. *)*(%& (&$ $ $$ % ( !,!*!*!*"+#,$-%.#,!*!)!* "*!) ) ((&&''% & ( (' ( ( % % ' ( ( ", '2 *8.= 0@0@ 0@0@0A1C3E 3E2E3G3G2F1G3J4G3E 6I5J 3G4H6J6L 7N 6N 5N 7Q9T;V;W(=<)(#"%%&'&'$'"& #!! " !  !!!!" "##)'0>:,92$0,$!"!!!     !  !!! %#*61'60(&!"!!  " " " " " #$#" " ## "%!)#* %. %- $- "*(#-$0'1)3:OIfH_;K ,9(2'3 %2 %3%1#1 !, )(&$$ $$$ ( )!*$-%. &.'/'.'. )4&, #)#,#,"*!+( ' & & && ' ) ) ' ' ( ' && ( ) "* ",(4 +8/?0@ 1A 0@1A1C1C2D4G5I 5J 4H 3G3H4H5J 6H 6J 6J7K6K6K7L6N6M6M7M8O;V;WPOg$^{^xZqTkG]*5#+ (&%#"""( .8/>+8*6-;1A3G4J0D/A/A.@/@/@/?/>0@3C5G5I 5G2C/>0>4F7O9Q:R9R8Q1?(.%)(.)+#"       "! "# #" ! !"!!""!!!  ! !!    " #$" !-4&ER7Wj,J\9H*3'.3=!6B6D .9;NKgH_ ;K6D APPe#\r#d/m.d$Pi1> #* '% # " !%(!?G-PY3]h6r}Q_c_i;y"HO+1'/#- )%     !& ' && $ % $ $#% ' #-(4+:.? .> /? />/@+8)5+9/?2D2G.> *8)8)7*7+9+8*8,;1A4G5J 4G1C-=0=4F6M8O9P9Q8Q0=)-08 ;D6;..   !  !"!#"#    !%+'.!# !       !#$#" "    !%+7B&@P:I0<*3$+$*%,'.(18KHfH_ 7F /9 4>=IBML^'^{0aJb/; #) & $ #! "$,/!8< @D!KN3_eEsz@u~?t;m|%QX9<+0$,#, * %"! !  # &'( %$ % % %%' ' $-'4*;-?.>.> /?/@,9)5*8.>2C1D +: (3 (3 '3 '2 '2*6 )5)5/>3F5J 4G0C,</=3E7M8N8O8N7M/;),/5%=H%=H04 $ ! ! !"%&%(!# *. /6'-! #    " # #! ! ! ! " $ "(*4-9,6(2&.#+#+$+%-&04BAX?Q 2> -7-6,5.6:I!H^FX;K)/"(## "! "%!'&++/16 9@&>D'@F%@J!-=->->+9)6,<.?1C1C ,9 (5*6+8 (6 '4+9+9*7 .>1D3I2G0C+</>3E6L 7L7L6J4J-9),),+1*1&)  ! !!%%%( " &* /6(.! %$&34,:;%$    !#"!  !" " %' "+$-$. %.$. #-#-#+#,'1)3 1>0B2G1F/B,= .> 1C 3G3G3G2F0E+6%'!# " # ! ! #$"#!! !   !!  &'.:=.:=*-!  " # "##""#$# $ "& )$/ $/ $. $- $. #-#-#-$-(3 -9 7IAX 0C/B/@/B/B .? /@0B/C.B.C-A)3#%!#"     !  ""#$##"!   !     #$*34!-.''!#!!   !" !! % $ $$###$$$ % #% (". ". "-"-"- "-#.$. %/ (3.<>TIgE] 2B )4#,"* ' '!( '$$#$$##&!+#/%0 &3 (7 )7 )6 *7 *7 *7 )6(5 &5#. !+ !)%" # ! !"### $ % $##$##$& )%/ )4 *6*6*6+8*8 )7 *9 )7*8 ,; +:*:+=,= -=->.>.?.? .>/?0A/@ 0@ 0B /A1C 1D0B0C/D-A,@'1$'$'$) #   ! #!##$))0/55530-(%$# ! "!!!!   !! !! "###!# ""#!        !!""!"$ $ $####" # # $% %' * * *!,!+"+#, %. &.'/,7@VLkF] 3D )5%- #* ") !( &% & &%#$##% ) * #- $/ $0 $1$0$/%0&0 &0$/ "- ", ", !+'$%$$$% % %(( ' &&' & & &' "+'2*7,:-;-<-=-<,;-< -= -< -=->-?-?/B1C 1B 3F 3F 3F 2C 2D2D2C 3D 5H 2E 2E3F2E2G1G0C-@(3%)(++,%'   ""$$%"%#(%/)E=0gc?H"bV :2.-')"" !# "  !          !! #   !"! # # # #""" # ! !! "$' ) )!+$,(/+3,3*1*0,31: ATNkD[ 4E (2&-&. %,$*#*#*"( & &% $ %$"%& ) !* )!* ",!+ ) (!) "* !* "+ #- ",!*%''$ $& & &))' & ( (( ( ) * ",(3 +9.=/>/?.>.>.= .= />0@0B/B.@0B1C1C1C 2F 4G 4G 4G 4H3F4E5H 5H 2E2D3G4G4H4I3G1B*4%(*,+,))%$"# #!!&&,,/,,&2+A5H{lȽvî(jZF>;=,/'(%&##"" "!!       ! " ! !""## "  !!"%")$*18?IR]&_e"bg^eX`JN-2!&& % %#$"# %&&&'% %$# & ( ( !* #- #- !* % %& $ % $ & & ' ) ( &((' ( ( !) #+)4 ,:.>/?/? .? .> .> -< .> 0@ 0A 0A 0B 0B0B0A1C 3F2F3F 3G 4H6J6J 4G 2E 1B 0A2E4G4H5I4F4E-5%())-*0,0-((#%" " !!#!"$$**/-/-0-82-OA`X0j^/b`JI:70.)'%%#$!# "!#"!     $#''!   ! ! !!# % $ !    !$#))06<#LR;pyFFAGB}OUHX!QoE\ 3B)3,45>7>;C%EN%EN/7 #*& # #"""" $ $ # # "   !" % ' )", #- !* '%#$ "  " % ()( '''' ' ' ' #,)5 -;/@0@/@.?->,< *9+9/? 0@ /A/A.A -? .?0B0C1D 2E 2E 3F 5I5I 2D 0A .? .>1C4G4F4F4D4D1:0/"72(@7.F>$75--$&"$ #"!#!"$%****(&1.;24TC`}ǺoM~Ewp5^W)KD"=7.+('%%#$ " " "!     #"#&"+66579.87"     !!"$% $ "  !$ #*+059!LOB|~B}G5=+1"('$" ! "$ $##!"   ! # & )!+ #, !) &$"" !  "%!) ) ) '' ' ' ' ' '#. )6 -;/A0A0@/?+:*8 )6+60? 0@.@.?.@.?-=,<.>.?.?0B2D 3D 3E 1C .?,=,<1C3F4G5G5F3C1821)C=.FB.FB&74++&'"$ " " " ! !"#%%&%/,90+O?OjǯΪؒռbB~jArd8^V5SJ&=9/.('&'#% # # #! !!!!"!" !    !!,()% -)078553279&#   !  %$  !" " # $ $! $#(*./1B>6d\.^U0\O/A0A0?/>+8 (3 *4 ,80?0A.@+;*6*8*9*7*7*7 *7,:/> 3D3F 1C ->,;-=1B5G4F5G5G2B06-+21#65$54 -+&&$&"$ " !!"##*)5.$A28]HQ~dai`{Fv[0^H,P>+H;%>5!3.+*&&$&"%!# #!   "!"!#!#!""""$ "! ""!)%,(*&-4.371.41&#     !!!!!!#!   !'&   !" " #" "    $#)(,+.880UQ$LG C>)EB)EG"=?69CSLjAV .=&0&.%-$*"(!'!'% %%# !! !!!### #%%#"! "% )$. ", )& $ # ! "   % (!* !* !*( ' & ' ( ") #.'6,<.@/@0?/>,;'3,8.;0@0A.@,;'4'4'5'5'3 '4 (5 *8.>2B3F 0A,=+;.=1A5G3D3G4F2C-4))''&&&&%&#%!$ #"!"""!! !%$+'3)%@33OA>[H?]L5TA+H7"=/ 6* 0)+'('%&"$ ! ""! " # #!#!#"#"$"$ $" #"#%%%$%"($)&'%$# !"!!! "!"# # # " " # # # ""#%&  !" ! " ## " !   "##)&+ ',.0:<<>6614/3-2 -2 =MDa>U,: "+ "*"* ") !( & % # $$ ! ! !# $!!!#% % $!!&& !*$. "+ (% #  ! ! !% ' (!) ( ' && ( ' )#.'6*:.>/>/? /=,:(4,8/=0@/@.?+:(4'4'6 '4 '3 (5 )6 )7.?1B1C/@->,;.=1A2C1C2G2E1C*3#&!# !""!  !""""! !# (#-'3,7.8+7,4)/'("$ " !!!"!  "#""" #!#!# ##"" ""     ! !!" ! "   !"! !! " " "!$ ! !"$" " $# # " !  & !)$-&-&,*2.7.4,1*2*2*2 ,6=R =W ;O*5"+!' '&%$ # "$# ! """$& ' ) ( ' )!, !,!, + '' "* !* !+ )&# " ! " ! !" $ % & '''&'(& '"-&5)9.>/>/? -: +7*7,9.<.>.>,= *9+:+:+;+;+: *8 *8 *8-=.>/=/?.?/>0@/@.?/A1D0A.>&.#!     ! ! %"*&0+3/4-.('"#   !!" #" !!  !"" " $$"#$% $ $ # !&"+%0&/ &/ (3(5'2'2)6*7+8 2B >TB^8J*3#* % %%$$ $ # """!!$( ". %2 $2"/ #/$1&4 &4%2 $1$1 %1 $/ ", )' % "$ " "## $ %% % %%%&&' !*%2(4*6*7 ,; +8 *6 *6 *6*7 +8 +: *:*:*: *: *9*9*8 *7)7*7+9,9,9.=-?.= -< -< -= -= .? .=+9$-$      "!*(30:7<:73)%%##" !    !" "!"! & % %$$"$# # # "# & ",$. %. &/$,%.&0&/(1*4*6 3A AWJh;L -8#,"(!( ( ( & % % $##$$ % % ",%/ %2$/#- #. (6)6(5'3 '3'3&1 "+ * ((%# "" # $ $& %%% &%%&&& !*$0(6*7 +8+9+8+8+9 *8*8 +:,:+; +; +; +:+:,;+: (6 (6(8*:,:-;-=-=/?0@ /? /A0C/B .?,<$-#    #"0. <:)CC"B?&=:*(&%$$!"   '(&&**('"" && & &&#" # "## #)"+$- %. %.$, $, %+%+'. (0+3 3>EYNk @S/;$. #*#, ", * ' ' '%%&$%%%'"* "*!( ( !+ #/ #/ #/ "- #-$.", !*",#, ) % $&&&& % ' '( ' ( ( '( )( '!* &1+7,9 ,:,;,;,<,<,<,<->.>.= -< -< -< -< -;,<-=,>,=-?/A/A/@/A0B0B 1D2F1F2F0C-?%/#   $#/.'?>)CC%@@"88**&%&'#'    "#&''(,,,,$& ### # #" # " "" " "'"*&+).,0/223211//0/11358GROkAT0<$.#+"+ * (('&%&%%$%%&( ( ( & ) *))!+!* ) *!+"-"-!) ' (( ((( ' ( * +) ' ' ( ( ( ) (!* (3,90> /=/?.>-=-=-=.?.?/@0@ .> .?.=.= .> .>.? /A /@ /@ 0A1B0B0A0B 0A 0B2E3H4H1E,>%/#  ! "")(/0 4221--%$##"# "  ""$%'(*%& "      ! "    ##&00)GG1[Z9id@tiGse5bQ+YN8^X8^XMIKV!Pk AS0;#-"+ !* (' '%#%&$#""#$ %('&&' &%%&!* **!,#, ( ''' ( '%% ' (!+ ' ' '((( ) !) ",(4-:0?/?/@ /@ .?-=,<->/@0@ /> .>.? .? .? /@ /@.@.A/@/@0A0B0A/@/? /@ 1B2E3G4G1C-?%/"   !""#!%##"     !   " #"   %''>>Gibj^qrelm>oj"Q[!Rk@P/:$.!* ( ' %# $#$% $! !   !' ( ('%&&$$"'()!+ !* (%$$&%#$ ' (!+ ' &&&% $ )!)"+(5 ,:/?/@ /@ /@ .>+;+9-</? /@ /@ .> .> /? /? /? .@ ->-?.?/?1A1B/? -< -< .= 0A2D3E3F2D.@&0# !!      $$  &',CA\vzxɲȲɬ̳мƶQ{)U_#Qi @O-8#-)'% #!! # % $ #  $( !) (&% %$"#%()", !* (%"#$!!# ' !( '& $ $ $ # #' ( !+(6-<.?/?/@ /?/> )6 )7 *7 .; />/@ +: +9,: ,: ,< ,= +<+<,;-<1@1@.=+:*8 +8/>3E3E3F3E/@'2$ ! !      " $#" %&'?>NofmvȰèȲмO{u,U^%Qi >L,5 #, ''$ "!! " % %$ ! ) !) )'(& & &$%( )",!* ( % " " " " " $ ' '&$#"$ " $ & '!*'3->.?/@/@ />/>)6 )5 *61>/>.@*9)6 )6 *7)8 )7 )7 *8*9,; 0?1@ .=+:)8+9/@3E2D3E2C/@&1 #!     ! !   ! !     " $# " !   $%106PJE`UNm]hr|{|r|ar8ZU(OX(Mf.@)8 '3 &3%2%2 &3 (4 '3 '3+: .=0@.=+: )8*:.=2C1A2C1A.>&0 %#     !!!!    !!  !  !!  !"""!! !!  "      !   ! " " " !  !#'')"32+;94E@BPFJUKLVHNWMGRL:JG#@> ER#G]8F*2")(%$"  "% '"    &(( ) ) ) * ) ('&& ("+"+ (#!  ! " &%' ( $""$## % '"**5,:.?/@0@ .>-=*9*8+9/= />-?)8 '5&4 $2 %2&4(6(6(6+: .>.>-=+:)9 *:/?2B1A2B1A.?&0!&"!     !!!!!   !!             !" ""!""! "#"!!!!  """!"""!" %%##"!"!!   ! " # "!" % "(%+'+*,.. 31(85(84&65"453457 (. !) )' % #  #% '#  " !)#.",#,$.#,",!,!+ +* !+ "+ !)"+ ' $"# $! $ &% ' '& % % $$# % ' #,)5+:->-=-<-=,=+:+9,:-<.>-=*:(8'7'6(6(5(6)8)8*; .>-<,;*: *9+;/@1A0A1A0A,=&0#        !!    !  !! ! # %$#""" !!!!!!""""!"$%$#"#! " " ! ! " # $ ##%' "+&/&-',),+/-0.1/3/4074<>KAW 3@'."* )(& $"! # %%"!! $ %. +7 0?0@0?0@2B1B0A-=*: )8(7%3 !*!) &$ # $ #!" $ $$ $ $ $ $"!# # % )&1)6*9,<+;*9*:*9*9+9+:+;+<*:)8(7)9)8)6 )7)8*: *9 +:,;,;+: *9 +;-<.>/>.>,;)7$-"   !! !"&&,./2&'    !!     !!" ## ### # %% % ' ) ",%/%/$+$-&/&/&.(1)3,75DAVFa 6F(/ "* !* ' '&%## $$$#"") '4-=0B1D2F3I5M5M3I/E/D.D,@'5"+ (% # #   ""$#!!""!!" " # %$/(4)7)8*:)9)8)8*8+9*9*9+<*: )9)9 )9 (5 (5*8 *8*9 +< +; +; +;*:*9 ,; -< ,: ,:,:+7'4$- $ "     ! !!!#  $"31&GF+HH96(%  !"#$%##% & ' !' % %")%/ #-!)"+"+") !("*&0'23@AUGc 6F(0!*!+!) )&&% & % $ %&%%% * $/ '4(5 (6 )8 +; +: +9)7 )7(6 '4#, #, !* '$ #"% %$$$$%###&% %$% (%1)6)8*9+;*:)8)8*9,:-<-<,=+;+:+;+;,<-<-=+; ,<.?/? .? .? /? .> -< />0@0?.=,:(7$,"&&'('   !! !!#$$$!  ! "!)'"C@.d`H}z2VQ"63" "" $%$# $ $ "( %+).,0*/*0'/#* ('(' %'",#.1> BVGc7G'0 "+ ) (&&&&&&$%& $ $$ $ ' !* "+"+#,#-#,"+"+ #, "+ !) !*#, ", !* ' $ $ % %% %%' *(%((& '& (#,'3)7+9,<,<,<*:*9+:,;.<.=.?->->-=-= -<,<-=->-=.>/?/@/@/@ .> .> 0@1@ 0@/>.=+;$,!$('$##"  !$$$#  !"! !    .*.KFN{sN|zCd^$:7%$!!  "!" % %,0.?AG_\<^\G`\/BE.4")&%$ " #%&"+/>@VD_6E &.!+%#$$%%$$%#"#  #&' ( ('' + ", !+ ) ('!* !, "+ !* ' # $ $ % %%& (!*'% % ' '' & (#,'2(4,;-=->,>*9*8+9,;-<.=.?/?.> .> .> .>.=->-?.?/?/?0B/@-< ,: -=/? 0@ 0@ 0@.=-;%- "!"  #!  " "!!"""! ""  !"!*#0C:=YTEda.LI 40%" !  "!  ! """  "%"'$05KVY]ki\oi\oiGUV#04$ #    ! " ""+.>=RA[4C&. ) & !$##$ $ #!!  !" $ & &%$%(& %&& )", ",!*% "   ! #% ' (!)&$ # " " # & ' "*'1*6,<->.>-=*9)7)6*8,: .=.>/?.> ,<-=.>-<->-?-?.?/?0B.= +7 )7 -< />0A1B1C.=,8%,"   !  !!!""!!"!!""""! #)#.*.++(&##" "!""""!!   # $!!"    "%!$#./9A@HSMJ[VK\W6FE./ !  ! ! ! !!),:;O?W2@'.'$" !! " %%$   !"# # # $$"" #' !*"+"+ (#$&' !)#"!" !! $ & #*(3+8-;-=-> ->*:'4&1)5,:.= -< -< -< ,;+:,;+9 +8 +: ,;.?/?/@-;*7)5 ,: .>0A1B1C/?+8&,!    ! !! ! ""! !  #!#"###"     "##!!"!   !!%!% ""   !!%##$'& +' /, .+*)##    " "   ')69K>U0<%+%#  !%& "! ! ##  "'#+"+ "*& #  " &' ("!"!  # & $,'3*7,:-<.=.>*:&2%/(5-= -< -;+9 )7 '5(7)6 (3 (3 (4+:.?/@/?+:*7)5 *7-</?/?0A/=,8&-!     !! !         !"!       !!$#!$"###"$!# #"   ! ! #!%'16F,9*7(5*7.=/?/? 0@.=-: %,!  !  !" !#""#  ! " "  ! $ #"!"%- 3B7N-: !'#    "# $ !! !#$ $"!" %)!*"*!* ) $  !" $&& #!! !# $ ' #+'3+:-=-=,<*8)6'2 &/)5,<-=+:(4 &0 &0 &1 &2 &1 &1&2'4+;/>.=,:*7)6*8-=/?/? 0@0?-<&.! $"&$ !    !"" # #   !% ' ' ' ( '( & ' !( ")&02A2F+8%# "! "!# # ! "! & !* #-#,",", #-#-!+() * ,"+#,!*' # !!# $&&& " !"" # $% &"+'2*7,<,<,<+:*8 )6 (4 )6+;,=,<(6 '3'5(5(5(5(4(5)7+:-;.<,:*7*8+9,;-=.=.=,9+8&/!  $ ->6%73'' &'*+!  !! !#!!!!""! !" $"+",", !, !* ( ) "+ ", #, &0+73C2E )5 ' # $ #""!!!" !" ! "$ ++<3F4G 3F 4H6K7L5I2E0@ />/?-=&1"* ( &"!!"#$## % %"! " # $&& &!+%/)6*:*9*9*9*9)8)9 *:+;+<+<*:(8(7(6(6(6)7 )7*8*8 +8+8 ,9+8 *8*:*9+9,9,9 *6(3$,"  !  "'$+90->6'&""  "#",-",-%%   !     #!! "!!"""##"% * ", ", ", !+ )!*"+"+$- (3 -9 5F5I )4 ' % & %## $$#$ #""# % '0=5D=P=Q=Q?TAVAV?R'2 #- "+' $" #$#$ %$$ %% & % % $ $ % ' ) $/ (5)8*9*; )9 )7)8 +:,: ,9,:,;+:+; +:,:-; -:,; -;,;,; -< -=-=-= .= -;,<,=,<-<,;*:$-#  !"  "!$!$#""""!"  !!    !"" !!  ""# # ! # $###"!#"  !%% ###!"#$ '"-$0$0 #- ", ) (#+ &2)2.7 5D4G*4#) ' ' ' &$%& & & ' '&%$$' !*%/%.%0&1 '3 &2&2&1%1%2 %0$- #."+ !)& # $%& '''(&& ' ' %&& % ( ) $/ (6*:+;+< +:+9,: ,:,9 -:-<.= -< ,< .< 0> 0> 0>0>0?/?/>.= ->.> -= -< -< .<.>.>.<-<*9#,"    !         ""!!"!##"""!!     # $ $# !$" $)31?6H2@ )2#*)/9D CY>L7@ 5B3D)4"( (% """# $ % % ( (&&$"% ( !(!(!(") ") !)!)!* !*!)!*", #/ "- ) & # $ % $ % '()) ( ( '%% & % & "*'3)8,=,=,< ,:+9,9,9 -9,9-<-=-=-= .= .< .< .< /= /= .< /= />.?-= -< ,;,;-=.>/>.=-:(5"*!  !  "    !" %% "  %0= EX/Vo M`;K1= 9F3Uf=de+ZUBO 6A3B(1"(("! ! ""#%$(!+$1 !,#"#& ' ' ' ' & ' ("*"* ) ( "-#/#. )$" # " "#%'( )'%&%# % $ % "+*7*9,<,<,< ,9+9*7 )4+:-<-;,=,=,=-<.<.<.<.=.< .</>.?-=,;+9*8+:->.?/?0?-<)8",!       "$% % # &1?'L`/Vo)QkAW2@">P=d`5aH6`ZAQ7E1?(2 "* (#   ##("-*9 $. " !" # % & & % %% ' ' ( ( ' ", #/"-!)#!    !"% ( ) $" "" # ##,)5+9,;,:,:,;)8 $/ $-)6->->,=+; +; +: +8+9 +9+9 +9 ,;.=.>-<+9(4(5*9->/@/?0?-=*:",   !  "#% "  ! #% $! #,55?;H@RAU4A8E&EA,JE A<6?2>/='1"*'#! "$(%00> (1 $" " # $ # " $ $% & $ %' (!* #. #."*#!  !  ! ' ()$  ! !%&#,'5,9-<,;-;,;&4#/$-(4,=-=+; )6 )5(4 (3(4(4)4)5+7,:.=.=+8(4'4(6,=/@.=/>.=)8!*     !"#% "  ! #$ #   #$+)0,22<4B/:2=5@09+3*2-8.;%/"* %#!   "$ ''12@+5 %" # $ # " $$ $ & %## % ' "*$- $-"*%  " "%'( #     !& ("-(6,:-<,;-; +8(5#-$.'4+;,<+;)5 &/ %/ %/ %/ &/(2(2)4+7-;-<+9(5&4)8,<.?.=.<.<(7"+"     "!%#      ! #$ # "  " #!("("''.+6*4+4*2'/%,$+ )2+6#-!( $ #!    "$ '%.2@ )3 !(&' &&'()!) * ('$& '"*$,#+ !) $ ! "  #%(( #     %'"-(6+9.<-<-< +8*6%0%/'4+:-<+8)5&0&0&1&0&0'2(3)5+9-=,=+:(6'4+:-<.>.=.=-;)8#-$! !       "   ! """ " ! $#% !' & &#+$, $*#)%% "* '0(2"*% $ $ "!   " $% !) $- #+' ' "*#,"+#,$.%0&1%0$.#+#* %,$,$+#*$, )! ! #!#&(( $   !$'",(6+:,;-;-<,9*5)4'1(5*:,; *6 (3 '2'2'2'2(3)5)6)6+9,=,=*:*7)7+8-<-=-=,>,<*:#.%""!       !   !  "## " " ""!! " ! ! $# (' ' ( ( ( ' ' !( ( #, &/&0#, % % $ "! ! ! " $ $ &'%$ %/3D8I ;M R:N7G 4D3D1C+6#*"* ("  ### # &(& &"  "#&!+'4)6)7 *7+:+8*7)6)6*9*8,:*6 (4 )5*6)5(4(4 )5*7+8+9*8+9*8+8 )7 *8+:,;,;+: )6(5"+##!!       !   !!! "## # $ # ##" " " " # ( )) ) ) ( ( ) !)!)!(#, %/&0 #+& % $ #""! " # # ""###(59QDaEbEbJfPqTwSwKlCbA`A`?]2D&, ( ( $!! " $ % % ' & %$#### # "$!*&3'4(4 )6*8)7)7)8*9)8 *8 *8+8 *8 *8 *7 *7 *7 *8 *8+8,9+:*7*7*7*7 )7 )8 )8 *8+:+9 (4'1#+$!!!"! !! # !"#### $$$# $ " " $ %()) ( ((& ' !( !)!* ",$.&1"* !( % $ % & & %$ $ $#$ # $$$-3D6J 7I :M@T LgTt Po F` ?R;N 4@.6)0&.#+!(%'( ('& ' () '&& % % & & &!*&2*7-<.=.?->,;+<-? /?.> />.=.= .< .= .> -<-<-=-=-=-;-<-<-<,<->->->.?.?-=,9)5%,!$!"%$1./>83A:&$    " !! ,')9-6E9.9.("! " " ! ! "! ! ! " ## !#&' "!"# ##!$' !+#-#.#.!*' $ "!" " $ $ % %$#$$ %'/-72;7A=EISScR`JRAE9?5715-6)0'/#+ ( ' ( '% &' '( ) ($%& % % & '#,(3+8.=.= /? .>-<,< .=-;/>/? /> /> /= 0= 0> /=.=-<,<.=.<-<-<-<,;-=->.>.>.=-<,8*5&,$("#%% 1-3A<1>='' !"!"#""""! %&(2.3A4:J::J:*# "!!    $!$!#! "    ! $ $"  "$    "% *",#, "+ *& !   ! $$%"  "&,5;+NV9ci9il7quBLMVP9_`:8-0+3'.$+%'%$ #" % '((%"# $ $ %& !( $-(4,:.< .; -;-;,;+9 +8-; />/>/? /=.;.; .; .;-<,;,=-=/> .=.=+9(5(6+:-<.=.<,:+7*5'/%*"%##&'+-+-%&!" ## $ #!! " $ ##"!"# #!$&$/*)7)3>0%4&(#!$!$ # #" !"""!!!" $!$!$ #!!"! !!"!    " $ #  "% "     "&)",#-!) (&!  ! $# % $   &)$@CW~jz{ԟҟ̡ѡ_,JD34,2(/$+ $#" # # "% ((($" "" # %&!)$-(4,:,; -;-<,;)7'2 &/ *7/?/?/> /=.;,9,9-:,;,; +9-</>/>/>*8%0%1)7-<-=.=-;,9+7&.#)"$"%$($'"%"$!# #"#!%!% " " # $"#!!" #  !$$'""($% "" # " # " #"!!  ""!"""""## # $ $#"$$""" $ $!!!! !" # "! #& " ! " %)",#-!* ' % " "$ &%  ((3NKpżƷ܁8XN 86.2).$+ & "" # " !$( ))$ ! ""! $ ' "* %/(3+8,<,;-<,9'4","+ (3 .= /> 0?0?3B-:+7 +8 *7 (5 )6+8,: .=-<(4#-#-(5,:-=.>->,:+7%/ & $ $ % $"!! !#"" !!"   ! "! ""          ""!!!"#"#$#$$#"!"#    !!    !!! # !   # # !   # '"*#- "+ ' $! $&# ,,>VT˹⌶AbV!:714)/$+ ' "  ! !!%()) # ! !"! $ ' !*%/'3+9,;-<-<+9'4!,"+(4-= />1?4E7H .; *6 (4 '3'4(4)6 )7 .=,;(4$-#-(5,:.=.=-<,9*7$/"!""    !      !   !"" # " ! # "     "% ) !+!* &! $ &$   **;VSwޑE_S!;701*.$+ ' " !" %()) $ ! """ # ' !) $.(4+8+9,;,<+:(6 "-"- (5-=0?1?7H6H/< )4 '3 &2 &1 '1 )5,: .= -<(5%/$/(4-;.=-<,;+9(6"+" !! !!!! !!##" " ! !# "!" " ! !" # $ $& ( '%    ! !! &# !" #%-25ROpҽ}?XO :8/1'-#+%$" !! # $&(' #"##$ $ ( !) $-(3)6+9,;,<+;)8 %1 $0)8,</=0?2C1B-; )6)6 (6 )5 *6 +8 ,9 -:-< )5 (3 )6 +9,<.=-<,;)7'5"+#  " !$$%%%% !! ! !!###""   #"##$$ #% #"#$ ' ( % $"!! ! !!""!" !!""'-:D+LOCcaWvqj|w~lHmg-QK 88,0%*!(%&#" $ $ $%'& $$$%%& & !) $-&0(4*8+:,;+:)8(6 )7 +9,;-;-=.>-=,;*:)8)8 *8 *8 *6 *6 ,9,;*9 )7*8 +; +:+:+:*9)7'5"*"! "   "$#%%#$ !# ! !" ##$## "!"""%&&%% &&'%#&)'& % # " # #" ! " $ " "" ! "$ '.#AN#GV/V`8_gDhoPqxWw}[z~VwxQs{@ip,[e,OX7@*0%,('% &'& %% % % % %$$%%%% ' ")%.(4)6 *7 *8 )7 )7)9 +:+: ,;-;-;,;+:+;+:*9 )8 *9+9,;,: +8+:+:*8)7*9)8)8)8)7*9&2")"! "!$!# " " !!"!! !!#!"" !$"!## $ % % % $ """# & &''' & &'''))((& % $ $$## $ # "$# "# % &-8EAP&G[$I\.Qe3\q9dz9cw:^p3Xj0Rb$Ma DZ2>*1$, *(&'&## $% && &'&%##$ $ '&0(3)6 *7 *7*8 *9*9 ,;-; -<-; ,9+:+:+:+:,:-;-<,<+; -=-=-=,<+;+:+:+;+;+:+:,:&2"*#!!! $!%!$#%%%'&*(+**(&#$"#!!!      """! "!!"" $ % % $# #" $%% &''&& & &'(*)(& % $ $$$# #" $%% $% ( $-.=4C7F9FAML[#XlRc!M[AK.?/?/?0@0@/@ -> -=.>.>-=,;-<.=-<,;,=-<,:(5#+$""   !    !$!$#%%&)).-81$A:%DF?68//*($'$&($%#$!" !!  "$$$!!" !    ! #% $ $ #"  $ $ $ $#$&% $ $ %&( *'$ # # # # "## # # $ $%' ) !,)7.< /; /8:DHW"SgL\FQ3:293;0;+4'.#,",) )'%'( ( ( & ( ( & & % % ) ( !(#,(4 +8 ,:-;-<,;+;+:-= />/>/>.< -<.?.?/@/@/@/? .> -=.>.>.= .= -< +9,9.=.=-<-=,:)6$- %"!  !!!"!  !!$%)&(&&(&3.@4?fSr]*`KA56/4135//,*)($% !  ! !!        !! !  ""!    !# $ " "   # %## ###" ""% & '!,)%#"!!"" !" $& #" # ( %/ *3 -83==B%OY0[c*X^'NQ'GL=@49-4 )/&-$,!) (& % $% % % ' & ' % %$ $ $ % &!(#- (3 +7.<-;.<,; *7+8,: -<.=/>.= -<.>.=-=-=-= .=/?/> .=/>/>-9+7*5 ,7-;.<.=.=,:)7$-!%!  !!!  !!#*-$5801+*2.*F=5XGm1z`%aQ6vn@!b]D>3/)(%$!"  !!       ! # #"  % # """ "!!$% % )!,)% ##!!   ! #& !!!( )1/:[U]vvrfu^tKjf)CE.2).&-#*!'#    "$ %$!!!  " #!($-(4 +8/> -;/= ,9*6'4 %1*:,; -=-;-;,7+6*7*5)5)6 *5 +7-< .< .<,8 *3)3)5,8-;-<-;,;)6%."% $"  "!! ! !!"&')(*).*3/&?74RECj[wе]swd@ic ?:0-.+.,))))()((&&$$"#""! !!"##$$$$$%%!"    "$ % %""% # ##$ #"#" $ ())( %$$!!  " #$$ #!% %+-3+DBD_RapvzrvboKf[+B?,/(,%+#*!'"   !#%%   !   #!(#-'4 +8.=/>.=,9 *6'4 %1)8,=.=-:-8+4*4)5)3(3)5(2'4+;-<-< +7 )3 )2*5,8-;-;-;,9*8&.#&!$ "!$ ###"! ""##$%&&%'%*&0+"91*F98ZJYrյܤvYvgjT{5XQ ;7-+.,*)'''(%'$&#%"$!"     !##(& *)('&&$&!" ""##""#$#! %# "#$ ##"# # &'( & $#$!!!""$&%""!""# %+-3+A@F]Rbo{zlr]yjNd\,?@*.',%,$,!(# !!  "#$& '"     "&#-&2*7,;-<-<,9*6 (5 '3*8,=-<-:-:-7*4*5)5(4(4'3)7*9-<,<+7 )3 )4 +6 ,8-;-;-;+7*7'/$'"&!$!$!$!$!$ $ #!##$#$$%$%&%(%,(1,91&E5=bM_sqrhIm?kPCgS@`W4OG&=71,(%&&$%#%"% # $!# !!   !"#"*) ))%%##"$!"!!   !!!""""" ! !%# "# $$ %% $ # $%$$#!!!!"$$%&& $ $ ###$ $**1"895JBRdW_raduaZkXPcZ6LI$78(,&-%-#, (&&"  ## %& ' $     !%#-&2)7+;,;,;+9 *6 )4 (3*8-=-;-: -9,7*4*6*6)5(4(4)7,:,;-<+8 *5*6+7 ,9-;-:-:+7)5&.#'!& %$ $!$ $ #!$!$!$ #"$#%$%$$'$+'/*5*%A.5R;;[@7^D/W?#L8$C0#<. 7.1),&'## !  "!!!"   !!!" ! " "!#%"  ""## # "#" " " !!!#" #%#$# # # # $%&%# " ! !! "$ % &$ %&$% $% '"(&--1%525@=?GCBHA29.4+/)*''$#!!      !  !""#%"""  !!  !" ! "!$ $ $&% $ # ! " ""$ $#"# % $" "## # # %''$# ! ! " #$%%&$ %&%%' ' ' ") %+'*(*+--/.1-0+0).%*#) #)")!(&""## " ###"#$$ ## " #$ # ($-'2(5(4 (4 )5 )6 )6*6 )5*6*7 +7 +7+7+7*7)7*8*7*6 +7+7 ,9,9+7*6 )5+8 *6 *6 +6*7(3'/$+!%"#"!!! ! ! !!#$&&(&(%'"#$$'%0+5.2*/)-)+'*&)&%#"" " !#!   ! !!""   !"$ $ $ && % $ "!# "$% # $##$$##& %$ # % &'$#" " $ % %''&%' ' & & ' ' )#+%, &.(- (,(-)/)/(0(/&- $, ") "*!)%$$%$ $ $ %%$%%&& % # % % &!)$. '3(5)6(5 (5)6*8*7)5*6*8+:+8+8,;,;+9+9+8+9,:-;.;-;,: +9 *8,;,<,;+9+9*5(1$+ %"#!!""" ""$$%+,13*+%&!"$%*( <6"C=!B:@:<830,(&$!   !"$!-+" # % $ $ # " #" #%# # $# % %$ $%$$ $&'&%# " " $ % &' ' % %( ( ' ' ( !* #- $-&/ '1(1 (0 (0 (0 (1 (1 '0 %/ %/$-#+!*&&''%& & & '&& ' ( & % $&(!+#-&1)4*7*8*7)7*8*8)6*7+9,;-=,;-:.=.>.=-<-=.=.<.</>.=-<-<+:+:+<-=,<-<,9(2#+ &"####"" ##&(,$58$58,-$% !%&-*"?82UM7^V6]V)LH961,(&!!!  !"'%%0+1C;!"$''## #! ! " $ % % #"# #" # #&'& $ # " " ##$ %'%& ( ) ( ( !* "+ %. '1 (2 (2 (2 (2 (3(3)2'0 '0 '1&1%0$.!+!) ('' ''' & )!) ( ( ( & % % ' )"+$/'3)6,:,:,:*8)7)7*8+:-<-=-<.=0@ 0@0@/?/@0@0@0@0?0@/?.=.=+:+:,<,<-=-<+8(3#*%"!"##"" #!$),!03#35)*## %%,-">:-QK7^V0XQ)LI!86"61'% !!#"")'5=7BLE  #'' # # "  "$  "  " " $&% $ # " " """ # $ $& ( ) ) ) )"+ %. (2*5*5*4)4)5)4 )4 *4 (0 '1'3&2$0!+!) '' ' &'' '( * * ( ('%& '!)"+%/'3*6,:,:,:+:*8)7*8+:-=.=.</?1C 1B0A/?1A0A1B1C1B/@0@.=,:*8+:,<,<,<-;*8(5#+$!!"!!""" "#%'*')$$ "!)(31*@;0GA1HC#<81.+)$#  &#(2-7D; !# %%$ # !  !$     ! " "&% #  !     !" $' )(('(#, '0 (3*5,9 .9.9/< /< /< ,7 )3(3(5(5%0#,!)' & % $ %$&' ))%%%$%$ &"+ $-'3*7,9,9-:,8)6(5)6+8-=.>0?0A1B 2C2C 1B1C1B0B1B1C1A1@-;*7*8*8,:,;-<,;+9'4#, &#!#!!"!!"!"!  """%%(' ))'&%%"" !# $($ #"" #" # # ! !#!  # #   ! " %& & "     " % (* )'("+%. *4 .:1?4@6A8E7E5C3A1= /;.:,9*6'2$- ") &$ "#!! $'(* %" " !! $"* $-(3+7+9,9-9 ,8)5'2(4+9->/?0@0@ 1@1A 2B2B2C 2C1B1B2E2D0@-;+7*7+7.<.=.=-;,:(5$.!'%###!!!!!! !!    #!$ #!! !     !  ( $ ## ## #!  !#"! # $ # "  "& % $    !   #%& )!+!*#,%0(3 1?8H =LAP HYK^L^HX BR =L 8F4B 1> -8 )4 %/ #+ '#" "! ## ( '( $!!! !#"+$.)5*6,9-:.: ,8+7'2(3+8.>1B1C 0A2B4G5G 5G 6F 5E 4E5H5I4G2B0@.=,9-8.;/=.=-<+9(5$- %%$!#!! !!!     ! !      !!  !!  !! ! ") %& $ $$ $   ! # "!" $ $# !% $# !  !#$& )!( "*$,'1(4,98IGYSf)^u1h9l3m0g~]pQbEU 0@.;.<*7'3$- &#! " *:$2!. -)&$#!!   !!!" !" "   ! !   !$""%'!)$-(2 +8/< 7IF[ [v5޺9!b CW;H -7+6 #-"+'$ %&% & '% " " #$  !' +%0'3*8+<,<-=-<.</=3A9ID_Tw'k@W䈯[@+pYIe @W:N5F2A0?1@.=-;+8(4$-!'$!""   *8%2!. ,(&&$#""! ! " " "!"!! !"  ! " # ""#% $& ' !( %. &/ )4-97F=NNe!_{=SѶmK%a|"Nc9G5C*6'2!+ )( ( ) ( % $ " "$% %$%!)$-'1 )4+9,;-<.<1B6GBWPj&s5g^5!oUrH`@T:L5E1A.<,9*7(5%.")#   !    ! *6&2!.!-)('#####"" ! ! """"!  " "$$%%$ $ & !) "*&0(4,81@;LDY$Up1nHkN1r RlBV8H/=*7#.#- ( ( ) & $ # ##$% %&& '"*%.'1(4(5+9.>3E:QHd&\6~X܍P1#fTpIb?S8J3D.=-:+7)6'1#+# "    !""  ,9(5#0".*(($#$$$ # # # # $# "## ! " ## $#$#%$ % !($,&.)2+6/:8E@QPg*g>]رV6%fK`?P7F0<*5%/%/$-"* "(!( (&%$%&& ' (!(#+%. %.'1)5*7,:1@9KC[Ro.jEiߐS:+r&cQmDY;L6F/=-9+7)5'1$, &"!"" !!         !   "#$##" #!$!#!# !.; *7&3".( &&&# # #$ $$%$ $$"""" " " # #!!# $ % &")&,(/*2+3-54=9FJ\!Yp4rKE,_sK] ?N8F1;+4&/&.$+ "' !'!( '"(!& $ $ !'#)#)#)#)$, &0 '/ (0)4+6,81=8G@SKb[y#sEerd_E(e}#WoEX:I1=-7,6*5'1$,!) &%###""!    !!! !!!""!"       !! !"# $ $ $## # # # "  "!"     2@,; )7$0 ())'$# #$$$$ % $$"##" ! ! " #"!"#!&#)%*)/-4-5-6-4068AGZQc%[o8u`Ėf?!rXoNdH^:H/:,7,8)2'.'/'.+2/?+4'.*3.=,6*3*2*3,8.>.:,7.<0A4F;OG`Vw k-4Oo\=z&\sH[8D/9+5*4'/") & %%##"      ""!"! !! ! !"!"## $##""! ! #!##  !!!!! 4E0@,;'6$1#/"/ + % $$$&&&(%%&&& $ # # # ##" !"&&+&,)-,1/41708-3 /29BI\"PaQ\%[lHt_1"jXuOlBV5A1?5F4B-6)0-4#;N*A^6J-81C)@\)@\#9H0</:6G(=V%$8E*?V*?U!9I4C;OBWVvf-~9PXj^=0}$cNe7C-8&,"&""##"!!    4F.>+:)7'5%3$1", ' & %' ( * , * + !+ * * + + + *!+ !*")$)&**-.121A='MJIEDE GL"IJ&RP+df<{=1tt1nsE`Q;-i"UqAQ:D;C AI>C5:.3.42=2E,7(/)3/<1<.6,3,1/7$6E'8H!5D2A6E?TNk*_5sAS`mhL>:i*Sp =P/:&-"%!%#"##! !  !!## !    " /?+9)7'5&3$0 !+ +'' ) ) ) !+".". "-!, ", ", "- "-"-!, !, "+&-,2162636 >>?kjOIz7hg=ksC8;78(?C1KP'BE"8923/2-0+/)-)- +0+0+/+-+.+.,/-0-2+0(-$+$,$/'3+70<6B$?K,KY>bquuRM}ItDoAk{>gu.`j"YZ PP#RR&UT#PLKEMFNLIFEBA<?9A;C>D?EBEBD@>99698:9;:=:=;>:!?; ?<<9955/1,3.50627361422-/*.(.*0-30403/1-/+-,-,,++*-+/*.*.+..-.-..-/-/,/.-,+)+)-*.+,)+(*))))&)&)')')&)(*(,*+)*)*)# "  " ! !! #( * !, #.$/ %0 $.$. #/ #/ $0 #. #. $/ $/ #-%,(.+--/24%:45PDOd\Hb]7VR2NK+IE3SLCidX~\KyFtsFw{Kz~M~Zim_ZO@p}1Ye"HQ CL#BJ#>E7<35233356 6744200002/1/204$37%48#46 4533"34#46#46"46"48 27,1%+$,$-'1(4.93=!;E&CM3S]Pp|l`XO|yG|yRWLD~JQUVJvH|JEA|@{qA|lItHwH|KIH}D|s?rf=nf;kg3hb;ogF{qKwMxKvF~sAqh5dY7cU>j[>o_@seCtgCtjFqk@f\3WK-RH0WO5`W8g];j`=i^;f\6_V2ZT*TR'PM)QO(RM.TL/XQ*VQ,SP.WW1ZW6_X:cY;dX9c[0[V&OJ%LF(NH,UN2[T5YR2VQ1TR-NH*I@(IB%F@#EA&LJ(QO*QN)PL+OK,NK" !  %( &%%(*!,#. #/$/$0 &1&1%0%1 %1 $/$/$. %0 $/$-$)%'),0244(;53@=0?>+>>'=<%?;*EB1NL9VV:WU8TQ7SQ1PS1RW4V[9]d>co?ep=dk9`i4Yd,P\%GQ>G:B":B"8?25-/-.00!23"44 32!21"200123#78&;=)>>,@?)@?$><(><->;+=;,?<.@?.@A);@15',%,&/&0(3,71:7>"=F(EO8T^RowʕƇumliZZlxʽ̿Ȓ΁˻jmvĺtǿvǽqnmlmmig_^d[OT_giiigXVYXUZ_aTEtIzRX[Y\\YYRJNMOPHGMPUZXUODELSUSSSIArBsDzILJLMMK$! # &+ -+*!,"-$/%0$0 %1&1'3'3 '1 &2&1 %1 &2 %1 %0%0$/!'"%&(/11121"34!67 77";:!AA&GH#MN(PS&NO!GEB@"ABAE"DJ$GN'JS&IQ#GM$GO$FP BL5:26-0-.0/32 77#99!87 5321 74'B@*KH-OJ+PK(PK'OJ'PK,PJ+PI*SL-VP2VT(KK78),%+%-%.(2,4/53:6> ;C'EN5Q_HhNoPq{UsyUyy\ac{gqñ̩שٯݸیѼ̹ƔϟءҙȘƒČČƅ˽ȷŵ~ƵĶo_kxƳʶѽɟБʶɶŵy³zsnjfpy{´x÷t}²ŴIJ²{³wĸ|Ǿ|ƹ{yj`gqx´{uoqy¶~ķĶ}voddnsxvrstv{"-%" % (!, "/ #1#0$0%2$0&2 &2 &2 '2 &3&2'2&2 &2&2&3 %1 %0$.#,!'!$%'-///01112343>=3^\GDK?ys0]X@:===?BG"FL#GL!CI@E!BH!CI?E:?3:4<4:38"49"47!35 2366'CC,HF*EC :842%=90TN0`Y2h_/i`0ja1kc0ld.lb+lb,rh;~tAB >B7:163:3938$69$69!47"36#793LL9RM9RM$>;"75(A<5_T9si:zl7yl7zl8zn7zn5zn6{o8uJI?sk$MK/0',$+%,'0+0.10427498>!?E"AI"@H$>E&!>B ;?59052838"48#48 3613 24!43/GF9NK2JF&=9":6&A=7cY1rh7~p6~p5}p7r6u6u5t7zFF}=tk LI12&*$+%,(1,2141525387<9?49 27)8;/B?=SNRod`xıѽDzѱϷ̰ÜʴѾǢʨΦǧϼпč̺ɲ͵һĝŊǴϺɵŭȱ͸ħ̟ŠԾҺи”оůƬտǖȖȖѾϹϹϹҾƚɛɛÚӽϻ˷œÜÕ̵ʴɴ͹ĖȟǞğտÝƛʛʖ›ջâƘƗǑ̼̽ηҽ$/ #/ $2 #0 ". $1 '6 (6 (6 (7)9(7 '5&3'4'4'5(5'4'4 '5 '4'4'4&2%0%."'"$%'*--0-1-..-1-'<68PKIc`Fg` 89358:"?A#@A"<=8956686:27-205 16!2603-0+-.0 00&:82A?*=9#62"83(@9/WO7i_:na8oc8nb8mc:ne9ne7oe8qg@tk?qh5bY!FC/0%)#*%-(1/4030413265: 6;5:2716/4,0+-#33.C@=UOJf\bo}xs|ir«éĮȱȵijµưĬ¯´õŸƲǭɱĺı÷ͼ͵ι͹ʻȽñʹƪ™̽ȾöŵȲȬ˶$1 %3 $3 $1%3&6 '7 (8 *9 *;*:): (7(6(7(6(6 (6 (5 (4 '5 '5'4'4&3&1%."&"#%'*.-0-2 -//.10#52+=91B@1C>*@;$<;#::"7847354657685747 46 4625/4-2.3 04 13.0*,()-/#03'34)44&41$42$72&:5+HC1RK4YP/WO/UM2WP5YS6YQ5XP6ZS7[T6YV0PM>=./%)#*&.'--1031312 14!15!15 0504/3+0',%)()!22+>=1G@@SGS_OYgU_p_`wc]yc`zd]sYUkSVnUXt`Xxe\}k\|ga{edxaXq]Rq`RtcNs_Tub[xd_{eb{dUudIp_Or`Tr]Ws^\u^Ywa[}g_q_sfujqelemesaq^oW|g^|`qpoxj}mizmvtwnumyompmp{qudpgqlnxsvmtpypq{xzzy{q|ymtvx&3 &5 &5&5 &7 '8 (9 ): ); ): *:*;)9)8)9 *9 *9 *8 )7 (6 (5(5(5(5(4'1%."'!#%)*0-2-2!-0 ./ 0021!43"54"655434251403/20213132526141414/3-1-2.1/1-.))()-0"14"47"34"32"32"63#51';9*B?(D@'E@'E@*FA,GC-GA,HA,IC-GB+DB'?@67+-$)%,(.,1.1/1111124140303/3-1(,$)"%#&'),-0-%5./:02>14B36D44F56E4/D3-B3.B2/C3-E6/E7/E64F67E50C3,B2,A2+B4-B50B52E75F7.E5*C4*C3.D40E63E54E43H76J:6L;4M<8M;8N:7N:4M94K73J62J55L6>P:?R=;SA;SB6Q@9R@?S@AT?>U@BWBAYC?XB>WACVAEU@?R=9Q>=SA>UABT>AT@BUAAWCDZEC_JGbNIcMMcLOdMLcMGbNB_M?\HFaKUhORhOMgQFfRBcPEaNHbNKdPQfR '6 '6'6&6'7(8 (: ): ); *; *; +; +;*9 +: +: *9 *8*8)8(6(6 )6 )6 )6'2&/"'"#%)*0,1 -1",.++,+-../00/000/1.1,/,0-0-1-1023647"58 37/4+0+/,//3 03.0,,,, /0$23%7:6642"52#51$42+;91@>.B>+C?/FA2GB3GB6IC5JC1IB2GA2B?)<=35+-'+'*-/4598!;:!:88585!8: 5612/2,/(+#&!$!$"%#$%%(% *&!,%!-&".&$0' 0)/(0(0)/(0(1)0)"1)%1("/( .' .& .&!.'#/&".&"/' /&/' 1' 0' 0&!0%#0'$1'%1(&2*#2)!2)!2)1(!1'#2'"2(!2'#3'%2'%4)%6-"6,#6,#6($5'&5'(6(+6))6((6(,7+-5*(2'&3()5+,6-*6+(6*(6+(7+*9-*9.,:/.;1/<00<2.<2-<3.<4.<20=14>21>1/>3->2*<0,;./?!:: 53"63"41#42):9+>'<>35+/*+./65B>2NJ'QM#KE%H?'JG3U\'EE%9600-/(*"% # # #!#!"##$"%!&#%#%$'''&&#%#&%%#%"%#&#&$'&'$'$'$'$&"&"'#&#$!%!'"% $ &#'$&"'#'$'$(%(%(#($(%'$($($'#'"&"'"(#(!(* *"*!) )")$(#(#)$)$($(%($(#(#)#*$*$)$)$(%(&(%(&(%)$*%*$*$*$*#+"",#!,#!,# $0 %1 %2 %2 %3 &6 '7 (8 ); *; +;*8 )7 )6 )6 )5)6(5'3'2'4'3'2'1'2%0%."'!$%',0,/+.()&%$$$$&')++,+-+-,/+-*-'+&)'*2467"=B<>46')'*)+,..1 04!24!2421!32"33*>?:975 42 41"54'<:)?=/GE2MH7XO9c]@qjAwpDvo'<<34,1-/;6&VLY|>p4k\PrJv}0IH#53./()"$!"# # "!"""#"$"#######"#"$$$$###"$#$"$"#"$#$##"""#"#!#!$!$"#!" !!! #!%#&#&$$#$"$"$!#!$"$"#"#"$"" " #$ $$% %!%!% %"%#%#%#%!$ $!$!#!#!$!$!$!%"%"$!$!$"$"$"$"$!%#&#%"%"$ #$##!*!*!* ",",#.#0#0#1$2%4&3&3 '3'1'1 &1 &1&1&0 %/ %. $- $-#-#+"+"'!%$'*-,0,0)*''''%%%&)++-,/,/+.*-*,),)+*.1469"=BaU/GA&=;!46.3/.C:lg}uBUU&8800))"#!"!!"!#"####$#$#$####%%'(&'#$$%&%%$%$$#$#$$$%#%""##$##!#!#"""""""####$#%$%$%$%$$##!"!"""#"$"#"##"" " " #"$####""!"!#"$%#$##"!" $!$!$"#!"!""#"###"#!#!" " " "!"!"!"""""#""#"#"#!" ",#-#-#. #-#. $0%3&3'4'4 (4*5+7+5 *3 *3*4 )2&/%. %. %. %.$.#-","("%%(+..2-1+-*+*,)+(**,+.,0,0+/+.+.*-+--0/237 6:4813+-),(*+-/2/2./+*+) //#10!332121 21 21#65'<:*@>/HE6RKHhYq|Ik[0KD*?=$57.01-2G:{uy`=SO%84 10))&'$'$'#%""%$'''&'&)(**+*++*(*(+)+++*,+,**&(%)&)())(('('&'%'%&$&$&%&&&%&&'&(&(&'&(&(&(&(&'%'&'%%#%$&%&%'$'%'$'$'$'$&%&%&$&$&$%%%#$"$ %"&#&#%#%#%#$"#"#"$"%#$"# $!%"$#$#$"%$$#$$%$%#$"%$$#$0%0%0%0%/ %0(4)4)4)6*7+7/: 2< 3:4; 08 ,4 )1(0 '1'0'1'1&1%0&0$+#'&*+..2.1-0-/-0-1,0+.+.+.,0,0+/,.,/-/-0-1.1/304/3,/*/),+,/1/0--(&''.0 001221 32"32#42%65'97+>;.D@7PFRfUTo[9OF-@>&54003-2F8wkƳᚯYuRG^JBXU4LI-@:#50!0.)*,. /0#2232 4296=;@=A=B?EBFD EDA>?9@<A?B?B?A=A;A<>:<9<;=<==;8736252535554667473736242423141525140303/0+.*/+1-1.1.2/3/1.0-/-.,.,/,0-/,.*/+/-/,/-0-.+-*,)+)*()'+(,',%.(,')'))('(%(&)(('(&)(****)2'/%, $* $+'0*3*2*2+2-43:?C!QS(_`Z\PRCC66.2).(0(1(2(2(0'/&*&**.-0-1-0-0,.-0-1,0+.*-*.*.*/+/,..00202/203 03 03.1,/)-(,+/.102,,(&'&-/#35%8:"88"53%41%52&73*990?=2C?9ODO`NυUkU)45!22/,0B7O[Ky}ixWpTDYC6H@-?;*95%52!20 /,"0/(621>95HB0LH1WR5e^>tmA|t>v<}CHJAz9vi?zq@{?@;y;~r?}q<|r=w;|8|:z9zr6ti6pf0le,kf,lg,nh3sl9wn5ul.pg/me1ld1le1kc2lc4md5nf4le4ib.^W'VK*XN)\U)aZ,f_,ga-h`+e[,bY-^W+[T,[T+[V)[T*ZS*YR&WN#UN&VQ)VR)XQ._W/bZ)]U&VP%RL%PK'PJ%OH%PH$QF#QJ&QL#KBD>!C<"D=$E?#FA#F@#GB$IC#JF"JG-2).$)#($))/.5184;4926">?9gccg`XBy%RL;:*-(,&,'-(1)0+1-1.2/3.2-1,1+.*+*+*+)+(+'+',(,)-*-+-01344534244513-.*,(*&*,1.2/2--(&''.2'8:0GG&A?$84%40%50$75+>@/CB5JF6OD@VDOgPm}`opgVlTFXC6F=-<=&22!..,* 3-/=3AM?QUD@P<5J:.C8'<4$72"3/ 1.0- /,#2,-91=I?>RFB]SIqhO{ankgpvyqfhjllkouoidceggiXLU`ilicc_`efhe^\TOvTWY[Y[]\_YXYXYZKDMWYa^\PMQWUUQQQGtDyiI{kIpMvNzN}M~M|L}K~%39+0$($(#(*/ 376:!7;!78"99,FDW¨ߝb9jc"DB./)-(-(.)0*0/358#::!35.2-2*.),()()'*'($'#'"&$(&)()*+./454545444500+,&&&(&)*0.2/2-.(&'&.0&780GG"@>#:6%50$72%:8-GG5RP=ZX;XR:VIB[NQbSYaQKXI@QE9J>/?<)88$10,.)+**#10.:51=4+;0$91"836331100-0- 1."2..<6=I@AUHFdXUt_v°dz̻ČĎϾ®tz˽ǎǓėĎѿͽʽȺǷƴŰŴ}s{ķ˼нĎƈ̹ʵȳȵǷóznjxó}ȹ˼|ʹ}ɶ}dz}ưȴɷ̼|̻|ȵvjj~ŀͻɶ}î|upu³wòw¯tqoj_\fjlnklmih(5:.1')%(&)*-!22 2245!31$845IBdϵ߶ߡtja=e^@_Z@VP8LE-D?+B>$:9 67 15-1(*)--0 35!33"0,0-1/2256644141#2/$2.,838B:VF[{kiȲҼȢțȘӾ˳¤˳Ûǣ̬ͦͪͣǜřÒллһӼÛÐŢѭЪīĨɫҫԧ͟œսҹҿϿ̴˰׾ʡʟʙӽԽսĤͤϨϤ̠śѻҫҪРÔ͵ιϾѾѽкоνʻǺ{íĩʲθӿnjʷɵɴ̻2;=&46-/+--1!03#02#/2".2"-/#0.*8/?SE]rba}jXweEcT2OE'=8 20$/0"-/%/3'05'/3#.1.0+,)))),--/,-*,*,+.+/*-*-),)+)+*,*-+.+-+--/-0-0.1/2-0+.*-)-+..1.2,-&'$&,/!021201 21"30&:46LFOureyucYIlh8TQ0GD0FD3LLAWXBTR66*,+.$8;+?B+?B%56"/.,>1A=0A>.?>,:8 21+***12"34"34"23!1.*;27F:SjWRle,@5#2'$6*8I;CZM?]L:^J9bO@o]N}eQmRuW{U}W{SpTmXlYxW~XXY`~WzU{R|R{V{\{azh}[{S|T|\ehe]\Z_begd[\Zyeu|uhd\epvxvpro{wfkejggfe_inuzlf\mzosu{1:=(45//+,,/-1 ,1 +.)+&)%)'*')&(&'(((('*() )+$,0(/2+02,13(15!/3,1&)!#$')-+/*-()'''(')'+%)%(%)%(%)%)$((+,-343232"775511)*'*(),."04"04+-$%#%+-/1!00!//"0/$10&40+837C;AJDEMGGNJCMH=JF9GC4B?3@<4@=4@<5?>0<;(52.,+*()**+, 0000 1-&80+=57J;P]OBUO3OC%<3#2)0@3KYF^xcNueCp]H{hTzZ[Z]bf\Uz]a_cc`_^^^]ba]`XPV^cd`\YX[]`dcdfWxZp[pZ|[^\_\w]n]n\tZx\~^fjYxYxUYdhni^UXZ_c_][TuTscqctd}c^^^ch2:=&23..*,+/*/*/),%'!$ #"!!! "!$"$$$')$+0).2+02-13)24 /3+1&) #$(*/+/*.&'%%$$%'%(%)"&"&#'#'#'%)'),, 56 5533"77"770/()')(*,/".2!03,.%'$&+-/0!0/!0/!0/"1/$20$30+521860:81:8/;90<:/;9+:8.<9.?:0A<1C@.@?&65,+))()+,/00/103-#92$C<1KC=NE4I>%B8#:2"3)2B4RaK^x\RwbTp[n{zw{ñȷɹ}v~ŵʻ̾ʸȲư}Į|®y¯y°z±|}n_m|ijƳƱİ~®}®Ųȳʴ͹͹ɷ~kbjqrrqnkgiebhox|g]csıĐ͕В}лm¬jpw{rkdZ]ilopjlkos29<&24..*,,/.1.2-/+,()&(%(#&#&#%#&$'$&%'),$+1(-1+/2-13)35/1*/%' #%*+/+/*-((%%%%%'&)'+'*&*&*&*'+(+)+--43 5623 34 34//*,(*(*+.".0!13+-&'$%+-/1!11$33#32!1/ 0."00'0/,21)11(21)32)32&32(76(;8*?:1GA2IE3HF(:9--))++89">@6543&;5*M?;iW]awEi]-J?$:1#3,1@5KZITmVSuc]whDz̶ϺҾ‡ʲæͶĘ̛ΖǑտҼϻͺ˹˷͹θζ˶ƲzƵ̼ϻкѼվŞɠ̡΢ЫӶݵߢӓ|q}ȴ˸̺ʸǵ~{zwx{¯dz˶pp|ű}оȑ͔ДЉ}}ֿվԻϸ|ɲxðskkv~ǭ̴̹|ɷzDz{Ưǯʴ29:'34..-./0#13$46%56$34"13 /2"-1"-1,0*.),),), *,",0$,1%+1+/3-14*35 /2+.$)!%%)*/,0+.*-*,),)+*-+.*.*-*-*.+.,/-/./01 0302 0101/0,/*-),+. -0!13*,&&$%+,/0!35#55!43!10 /.!0//0././!00"11"22!44#76'<:*A=2KF5OK7NL*>=00**33.KM2MR)@A&971E>Wv`B]T+A7"3*-91BL@G\KKjW\njζӼҽӿӿӿϵͰؾ̛̝Πʜ™ԿѾμ˺˷ηҺԺսѻ~˶ϼԻԺռɩЬӱԴڡǍͳƦʰϹѼнͺ̸˶ɳdzŲűȴ̷Һ̳xȱ|ɳͳззкҾҽӾӼҹϷʲ{ïtkwζҺӾ‡λ˵ɲзֿ499&22 ./ .0#02'46)68*89,99+8:)69*8;'7;25 .2"-0!,/!,/",/!,0#,2%,1*/3-03)14!/1 +/%)!$%)*.-0,/*-+/.0.0,0-0-0-0-0-/-/.00101/1.1!/2/1/203-0+.*-,. .1!02**%&$& +- /1 33 55 43!10!1//.01//12"57"898999!;;&A@)DC2MJ0LK7OL'<<11,*"85+GG2MR.BA*=:7KBvuTla3G<"3,#1*2;17I?-BC.FG0II2HH3GF(:9!00,)!0,':9)?A';9(<76J>dy_埲Pj_-C62)+% +#'5)1H;D`PQwflîƸƶȶǯȩůɜп̴̹̳ƭ©˰ӷ›ѽǵ;кͯβγѻĠ¨òĵºǯɞÚʲͰ§”ͼʾǵ̴θͰʳɷƴɷ˳̰ͲȪȲ‘к̯ˮɬ̴мѽӿӻеѹκʷȸɲչʮʨ̡Ζ–к϶ѵ688+12$.0 --$01(35-59-79-68+7:,8:+69+57*36(04&-2$,0#,/#,1#-1$-2%.1)/2-03'/2!.1),#'!"%(*,+/+/,0,0,1-1/3.3././.1/1/0/0//// /1 00 /2!/2!/2.3-2*/)-*-,0+-('$#$%*,-. 31!43"42"20"1/$1/(32-57/792:;2;<2<;2==3??2AA0AA2BB3BB.>>'76 0.+)+("/-"11"30&93/B7HYD{]pd9RD%;1-&&!%)!)>64O@@bOSr_imjulsouszup{z|spojq{v}x|zy{ʺ­~İDzê®ʷɱͱеϴι̺ɶǰë366)/0",-+,"//)36*49*47*59,7:,79+69+47*26(/3#,0#,/"-1$.4$-4%-3%.2(03,03&/3 -0*."$!"%'*,+/+0+0,0-2-2+0,0-1-0-0.1./..!//!///./.00!02!.2.3.3+1(,*.,0,0(*$#$%*+-- 31#65!42 1/ 1/#43*88-;:.=<0?=0@=0B@0CB0CB0A@-@?-@>,?=,;9%32 .,*(+)+).-40!81#;0/C2@O>HUEESC4I;)>32+)###)&$:26P@8ZGAiWJp]Ip[?mX?jU+;9'31!.-+*,+/.97*B<-GJ$A9#<0)=3+>6*<5&93!40.+'%#!$"+))@7?\LBkZKpJoD{g0P>3QB7UF<[L=\O7VF7R@@ZFAaLHr^RvQxWy^\VY\_aacm¤˵pSfFlS<^L>ZJ_LDcQA_J:WB7RB7PB8PB8OD7OB8O@8M?5K<7N>;REZHGbRGj[Dn\OvbZjXlVvY~U~T|VxVw[v*13&.0-/+-+."+-#,-%,.$,-#+,!+,"+,%-.'01+79+=@*9=!24 ,.)+ *,'.0-46/58&14 ,/(*%&""%&)**+(*()&(%(&)&)&)%'&''((*)*()()())++-+-+-*-(+')&)(+*--/02!66%9853/- 21+@>(B@#99 72#;3.KF9WT8UR4TP2TN9^VEmcJsiGtjDme@b[3PM,DB(<:$31"/.,+"0/':9MhiFin&D;'<5(=:#:9!5601--&&##$# /-1G@FeXLyjV}\Ot@tdbPSo``ekonmpuvrxŮɨ̐ȲZ{@iY9_R9_R7[O7[O=bV=bS4UD+I='C:'C:(C='G?+I?-JA'D=#=4&@5*B7,F9/K?1MD.H=)D7(C7'B9&B9+F;.K=0OA9[M=dX@l^Qnahhfddcfo*01)14 .1*-*-&%$#"$ "!#"$$%&$#-,-CG2RZ:T](>?*+%&'''./079-58'14!-0(+%&""%&*,)+)+%'"%"$!#!# " ! !!#!#"#"#"###%%&''()*&'#&#&#'(+,.!/2"48)@A.DF973220+B@&?=!:972"@:4ZVCgg:^[:c\>lbIoVZPMtBn_3VQ(DA&<9"21!//+*#422GFqܫ^z4JC,@;-EA#>>8965-,%%""#!!/+0F=JgWQ|j\YNqDwg;o`9m`@m`4`S+MB2RG2YT.[W2_W4\T/XN,XM2]S5]T5]S1XO.RI,NC.OC4SF?eSZvsolnrz~±}{˴Ǩ̎ȳ`Cl[@i]9dZ7e[:i`-KD)F>$C9"B:#C=%F>)IA,J?.NB0TD,DB/JHe];c\7`Z8`Y9^U8ZP6VO2QM0NJ-OK.TR7]]7]],JP77!94%=6'@:%B<&C>&B<#@:"@<#B?#C>&GA+KC+LC.PB:_KP{dj}zvuqs|­156,57".1,.+.)+(+%($($(#&$$&# -(2CBNbgWp|5HN$22('**&113;<29:+56"/2*-%&##'(+.+-,.'*$&%($& #$$%%&$%$&%(&)&'&'&''('(((()()(+'*&))*../1 34#64!421/0/10220/0.!3/(?95PL7VS8XREdXnx|Lra[NAeWDo`KxfJxgAqb:m_>g\3TH*F9/H=2OI2SN1UQ-TP-SN-RL.RJ/RJ/QI,NG(JC&IA+KB2PBEgTrz{|ıǵ{Rn>bV;]S8ZS5XS4XR4XR1TN0OH/KD*GB*HD*KH*OM2RP/JI#>?8665 :7#?:#?;$?:&?<$?;$@<$B?$D@&F?'G@)IA-LB;]LV~jijy|ɳ157+46#/0,.,/,0,0*/*0!). *.!*++*/,':54HH/HM&<=%54"..&/0-664;:4;<,67"13,.%%##''+-,.,.*,*,+.),(*(*(*(*(+(+(+(+)+),*,*,*,+.,/+.*,),*+.-/001-,*&+)-,.- ...-.-!0-$70+@:-FA1NE;A]]Ha_5JH#2/&"!!*$ 4-&C9&I=-OA/WH2[K3\M-ZL*UI,PE&J>#C7 B8 B< C=!D? D?E@E>B;A:A9@9B;C;!C:'I9;aJd{}~|{{w}}xqzjDk]4SI-KC.HB,FB)C>(A;&>9'<7&;6#94"73!6462 83$851/+)-+20 51 61 50"62!6364!97"<7$=6'A9(B<-G?:RFVudųƩs{ɰ066,56$01+.-0 .2 .3.2!.3$05%15'13#21%74*>6+A;/AA+<;'63(43+433985<<6=>,8:!13-/$%$"'' ,.-.-.-0.0,.+-+-+-+-*,*,(,)+)-+.,.-.,.,.-/-/-/+.*-+-///0.0)(%#('+,!,/!,. ,-!-,#0,$40&:7)?;5OF=XK[xdռV{dA]O5KC4E?-;9%2/-,*()',)"/-$1. 0,1,3-!2-#4,*>8)><%960.(%)$ /)%80&?7$E<#M@,TG0YH2ZJ1ZK2ZM3[N3YN.SG'N?(PC*TL*VO.XP.UK)QF'OC'OD(OD+QF.RH*PG&MB(M@.PE6[HM|db_|_qcn_newfbfdwbogs_u[}cP{g6XG,G:"=4$:5"63!42!30 0-.*.,-,,+++-,.,*)&$'&)(**+*+,,,,,,+-,/.0.2.3/"51&:20D8KcSy{zpjqq}166.67$//+-+/-2.3-1!.1%25%68(78)=;)F?9`TM{p@mf-PG*?7'72*640886=>6=?,8;13,/$%$#'( -0-/.0.0-/+,+,+-+,)+***,),),*.,..0/0/0,-+++,***+*-*,--./,.''%#''+/ +/*-)*** .-"42#;8+FB7WODg[HjYUrWz`a|^OpX?aN4WJ9UO1LK-@A!43/.-,..103243201-40837152"420.-, +'#/*/:21D:4OE8[Q:i]FzlOtJpKsKyM{M{JqIhMuQQSTQwOuOuOxM{Q}P}ItImLoF}mC|kMtRz\z^{ZvTtNrNrOtPsSqWpToInJ{j@iS4U@$A3!=49352/...-++(('&'&&&''('''&%$$$&''(%'$'%($%$$%%''''('*(,+.)$4+-C8DXLSjZUlXPkYIhZEeUJfUNjTToUav\166.46$/1+-*.+0,/,-..$21'88';8-FA7XLfʻ˾Ft`,J<$82&52,755>?6=@*8:02+-&&&&), -0-//1/1./-.,-*()'(&'(())*))*+*+....-/*,)*)*()&(&**,,-.0,.'(%$&(+.),&)%&((-,52(D@5WSBneQyJwmGo^Ml\JhYFeY;bUAmgIvp4:M?>\MNvfRxdjidgii]Wdnqu²rpokmmllijh]WajpqnmjggccfcabN~h:^I*I;(H?%C>">; ;8741..*+((''&&%)&!**((%$$$$%$%#$$$"$!"!!""#$$$$#$"$#'%*&!/)+6/4<33>21>51?50>41?/3@/7B.JjZŬw4VA#:/$3/-656>?6=?-8; 14+-'*&(+-.0-//2/1/1.0//+)('('()(((*))*)+**)))')')')')%'%'(,+..//0,/&($$')+.(*&(%&((.,"854QMKtmV[VXUS~QTZfkPxz4ML%83"75,MO;ghFtuGuy5\b&FG+XXKyySL~=]b,=?$..")&+2-3<29K;GbQYje~x|}ï{Ʋ|űsjry~İ˼͹˳ʲȰDzǴ~Ʋȵ˵ηͷbp¬ūƭɰͶѻҽιDZª}xu`}BjS4WH2SK/OI*HC#A;!<5824.0,,)*&0*&>;.HH*DE00$$%$%$%%$$""!!!!      "!#!%!&!)"+$(!&$0!1;*+4"",134/25%.2+.*/*-*+*+**.-$32)82/D:IeVǮ񇪒A]G$=1$30-646=>6=>-89#25,.&($&*,/1/1/202132312/-.*.,.././..--*-+-+../../-/-.-.,,+.,./0.0+.'($$'(+.)+)+()**/-%<9<\Y]_a_\YYj|xſõze:VS(<6+95=WWAooK}K}Djm5KL:d`O}SMFhl-?@$/.#(%'.(.5.6E:E^MZ}hh{}©Ƭ̲ϸи̵|n{ů˷ѻѻϵε͵ιμͻʹӻŎ̹{ȷ˹̱ʭʯ̴ȤȞđиǭŮífFs\9\L6ZL1TM,LF&D?$@:#<7!835/2.0,$;6.KHB^`0TU'<>$#%%%$%%%%#$"!!! ! !!"#""$%&!135-25%.2*.+0!,0 ,/-.,- .."0/%1/,<2@VGp}רo9R=(?5%43-555;<6<=,67 12+.$&%'*,/11313132333434230538675747485:6;7;8:7988867563400-.././+-'(%%'(*-+.+-*,,,0.*;8E^[Z~|dgd^^hzÃxX;VP(;4*723MKCdcMpnNpq9Z\,GE1UPJmiQztNts9YZ*<<"-,%" & %+%+81%%%#$#$%#$#%"#!     ! " $"#"!!libjpeg-turbo-1.4.2/testimages/vgl_5674_0098.bmp0000644000076500007650000010346612600050400016015 00000000000000BM66(x` kS eE0eE0̙ fE0fE0fF0 fF0fF0fF0 gF0gF0gF0gF0hF0hF0hF0hF0hG0hG0iG0ôζ~qZbs`r,';bR>?hpZCEu¨p\y̙{kSu^B.̙cL_B._B._B._B._B.`B.`B.`B.`B.`C.`C.aC.aC.aC.aC/aC/aC/aC/aC/l^˻~dƨ˨qZ`Hbs`r`r,';mUڨbR>?h>?hpZCEu¨̙ԏ_Py̙{kS ̙̙ucLuu Y?,Z?-Z?-Z?-Z@-Z@-Z@-Z@-˨`s`s,';mUڨȔbR>?h>?hpZ¨̙ԍ^Oy̙q[ׁh̙lY˨qZ`Hbs`s`s,';݃lȔbR>?h>?hCEupZ¨̙̙ܚaOaOy̙q[kS̙ cL   lYqZbtas,';mU݃lȔbR>?hCEuCEuy̙q[WCWCmTlYlYYAbtasas,';mU݃lȔIR>?h>?hCEuCEupZy̙̙q[ cL cK  lYnY`HqZasas,';݃lbR>?h>?hCEupZ̙ǰ̙{q[cLlYgOݛqZgYgYë|kSL=ctasas,';mU݃lbRIR>?h>?hCEu¨̙ǰ̙"kS     `HЏ}ëkSctas,';˸݃lbRIR>?hп¨pZ|||ǰ̙{kSq[ϾȨݛ`HqZ_Or^ë|qXS>ctatat,';q[ڨbRIS>?h>?hCEvpZܿlSlSlSlSǰ̙ðkS$ ! O@ϾȨ̙qZ`P`Pë|ZEatat,';䨍bRIS>?hпpZ̙ǰ̙ðcLq[ШyL;Ȩ`HؕԦiUëݨ׎zctatat,';bJjSˇXIڨȔbRIS>?hCEvCEvpZǰ̙ð    V>  "   "   !   !       lY j`⨍  qZZKëkS     ctat,';    jS݃lbRISпCEvCEvt]pZʹǰ̙kSðq[                       lY j``H_K  I9      qZUEkS     S> ctatat,';  bJ     ڡ݃l ȔbRIS>?hCEvCEv   pZ          ܃j  ǰ̙cLsZðð        #   "   "   ! ! lY ȨZDW>  _K      qZ|kS   ۡ atat,';     jS׆n  Ȕ >?hCEv         pW߃j   ̙sZkSððq[                        lY    ̙      qZɳkS    ׎zkacubtbt,';bJ        ݃lȲbR >?h>?hCEvCEv  t]  xhU     `JV>      ̙sZkSXCðq[  YH$##""!Ͼ!`H ݛ ZI     ܠ ^Nɳv    ׎zcubt,';qaqaqaqaqaqaqaqaqaqaqaqaqaqaqaqaqaqaqaqaqaqaqaqatyQDyQDyQDyQD̙sZkSXCV>ðq[VH                 qbqbqbqbqbqbqbqbqbqbqbqbqbqbqbqbqbqbqbqbqbqbîgP|N@IS>?h>?hCEvCEvlbt]|      êêêêêêêêêqZqZqZqZqZqZqZ˸ۅmqbqbqb̙")ZFʴqZɳv   ۡ  bubugE9gOpZpZpZpZpZpZpZpZpZpZpZ«pZ܄QApZpZpZpZ ̙yvvYIWAlY`HZDݛ̙gE9ɲqZڡbRIS>?h>?hCEvCEvז_N«xxxxxxxxxxxxxxpZpZpZpZpZpZsZkSXCįYI'0'0&/&.gE9%.%-$,$,#+#*ŵX@vkSWC׎zbJ׆nȔIS>?hCEvCEv«t]ʹ̙ygE9gE9įYIUG`H_KkSܠŵɲqZvkSWCdu¿ygU,';]KȔbRIS>?h>?hCEvCEv«ʹ̙įį(1(1'0'/&/&.{{{%-{{{%-{{{$,{{{ɲ{{{{qZ{{{{{{qZqZqZqZqZqZqZqZqZqZȔbR«y{kSįį˵Ͼ_Kٕŵɲë|tZkSkSdujReN,';׆nȔU=ZAIS>?h>?hxxxxu]X@u]xxmUmUmUmUmUmUmUmUmUmUmUmUmUmUmUmU̙mUkSĭĭįį)2(1(1'0'/&/&.%-%-ɲëqZWCS>ñbu,';bRIS>?hCEvCEvȲ«dK۠ư̙y{kSĭĭĭĭĭĭĭĭĭĭįį̹kSX@ZDŵɲë|kSqZۡjRbveN]K׆nbRIS>?h>?hCEvCEv«nZt]gZgZ̙Ʈs[s[s[s[s[s[s[s[s[s[s[s[s[įįs[ )3s[s[s[s[s[s[(2kS(0}J:'/ɲ̙ë|kS׎zñbvbv׆nbRIS>?h>?hCEv«dKnZfX̙֕y{kSoVįxx̹kSxxxK:K:K:P@ŵɲë|kSŮqZŮŮŮñjRdvcvcvڡbRIS>?h>?hCEvCEv«ˇXInZ̙ˊxˊx̙yzoVoVoVoVoVį *4 *3)2kS)2һ\F(1褓(1X@X@wNA'0ɲ̙®ëkSqZdvcveN׆nbRIS>?hCEvCEv«dKȲ^N]Nt]U=̙_O̙y{jRvį̹mY褓X@ŵX@XB{RD{RD̙eYɳ|kSpV|H8qZñjRdvcvcv,';׆nȔbRIS>?h>?hCEvCEv«dK̙_P_P̙{jR~sZ~~~~~~~~~į!+5 *4̹kS *3)3)2XIXI(1XIXIŵɲ堏~TF~TFۛۛë{Ȱ{RDzRDzRDqZñzRD~TFcvcv,';坊ȔbR>?h>?hCEv«s\s\s\s\җ̙ˏ_Py{jRt]t]t]t]t]bLt]t]t]t]t]t]t]t]t]t]YAt\į̹mY}J:褓ɲ堏}I:X?cT͌yë{jR_I_IvmbqZmbmbdvcvcv,';eN}}uuuuuuuȔbRumbIS>?h>?hCEv«sdKiX?̙i݊\M̙yjRȬsbsb|sbįtd!,6tdtd̹!+5tdtdtd +4tdmY *4褓td *3tdtdŵɲ堏td_PëjRtdᜉtdñqZdvcw,';ەȔIS>?hCEv«ޑ{yyyyyyyם̙t\t\t\t\YJ̙yjRU?|į̹ɲ_K`PnZë{jR[GñjRqZdvcwcw,';UAbRIS>?h>?h«dKQARC̙yyL<|[It\į",6kS!+5 *4ŵɲ_K׍^Oë{jR[GjRqZcwcw,';eNYB﫚M>bRIS>?h>?h«̙DZDZDZDZDZDZDZ̙yy{ʹʹ˴˴˴˴ʯƷʯʯţţţ|ɤV>ɤɤƞƞƞįkSοοdzzdzzdzzdzzɵ{ɵ{ɵ{θ~θ~ȴzȴzɲȴzͼ_K^LÓYJë{jRç[GñèèèqZcwcw,';稛﫚bRIS>?h«dK܄QAy̙yL<ϺѼѼѼѾѾѾӻӻYAϺϺϺͬt\̹ͬįYI"-7˷˷˷"-7ȲxȲx!,6̳{!,5ŵɲ_KSCëjRʾʾèèèɰcw,';ʱەǪ﫚ȧ˿˿bRğğIS>?hCEvǾǾɾɾƺƺ羍̙{jRϺѼѼܣѾѾѾѾӻӻ|ϺϺϺϺͬ[Iͬt\ͬkSͿįYI˷˷˷˷ȲxȲxmY\F̳{̳{̳{ɲʳʳʳ_Kʳʳë{jRʾñʾŨqZcw,';YBeNŠ̿̿WGȿȿbR   IS«dKɾɾɾʿʿʿ̙ĻŵrYrYrYyӾ̙jRӾϼιιιҽ|ҽʮʮʮβ̹şşįYI#.8ҿҿξ"-7mYW@̺"-7̺ŵɲ˻ɹ_KɹʺƯ{jRjRǺᥗʾʾͿqZ,';ʸʸɳɳȔbR«>?hƻƻƸ̙ŲůۇoŮ|Ӿ̙nϼϼϼϼιιιιҽ|V>ҽʮʮʮʮββ̹kSşşşşįYIҿҿξξmYW@̺̺aNɲ˻˻ɹɹ_Kɹ^LʺƯoñʾʾʾͿewdw,';˺ʸʸʸcPɳȔbR«>?hdKCEvƻƻƻƸ̙ƸםŲŲn\ůyӾ̙n~͵͵͵ɮɮɮV>ƥƥξξξğ[I̹t\ħħįYI#/9#.8̽̽aNɲV>˿ʿʿ_KʾƯñjRƷùùǷewdxqZĴɽUAeNǷƶϿȔbRʾ«>?hCEvCEv̙n\±XG±y̙~~иεεεȫȫȫȫYA£££̹kS !ţţţââįYIŨ[FƣŵɲƿƿǾǾ_KǾǼʾƯñpWƷƷùùù}K;ǷewdxdxqZɽǷƹǷ﫚ƶƶϿȔϿʾʾ«IS>?hCEvCEv̙n\ᾲ±ۇo}}Ӿ̙~εεεȫȫ|££££̹  !!âââįYI$/:ƣɲƣƿƿǾǾ_KǾO<ƯñjRUAŹĸĸĸdxdx,';oەɹŵ﫚µbRȺ«ISdK>?hCFv̙̙؝n\娚nV|bXGyӾӾ̙ììUAɰɰåå|ååååå¡¡¡¡Ħ̹kS[IĦ  !!!ģģģįYIȥŵɲ¤¤¤_K~e^LɽƯñopWUAŻǺǺǺǸewdxdxqZb d d eNd Ĵ` bR` «Ĵ>?h>?hCFvCEv̙n\gPiQy̙iɰɰå|åååå¡¡¡kSĦŤ  !ȥįį$0;ɲ褓¤_KɽɽñopWUAǺǺexex,';b d ` ĴbRdK>?hCFvCEvn\\Hۇoy̙yniQUAŪŪæ|ææ¡¡¡¡ĦĦĦĦ̹ĦĦĦĦ¥¥¥ ![ [ įįŵɲ褓ģ¡¡ȿY@_KȿɿɿɿjR{opWUAƾexexex,';qZd ` ` ` ` ` bR«IS>?h>?hCFvCEv؝n\娚y̙y{UAc ĩĩYA¥äääŨĦĦkSĦĦ[I¥¥ ^K褓ģ¡ȿȿȿɿɿɿjR{UA̙YBex,';b qZd eN` ` ` bRdK>?i>?iCFv؝n\ѻ̙y] c h iQ_I¥¥ääääŨŨŨ̹ŪŪŪŪŪŪŪŪ ɲ­X Ũååģģģģ^LjRë{޻iQ_Iexex,';ŸʿqZd ` ` ȔbR«\ \ \ >?i>?iCFvCFvn\ȸۇoy±±̙jRh h èh^æææåååè̹kSũũũƯ#Ư[ ­X īīƭƭñëjRUA̙äexey稛qZ` ` ` ȔbR\ \ ^ >?iCFvCFvõõõƷP@ƷŶŶŶŶT ̙^ h h лs[èV>L<æææååååèè̹èũũũƯƯ![ ­XIīīƭƭƷƭjRë{jRккŬä̙YBäfyeyەh ` eN` ` ȔbR\ dK\ ^ ^ c c CFvCFv؝õõõƷƷƷŶŶyU T h g |çææħħħħũ̹ũçççççççȰȰt\` X ­­W ƯƯdzñë{jRt]ȰYBȰȰ«fyeyqZǽ` Ȕ\ dK^ ^ c c c CFvøøøĹĹŵµn\P@yQA{jR\ L<æħħħħũ̹ũũçççççççççȰȰt\` [ ­­V dzñjRë{jRڀfʶcRȰ̙Ȱ«fyfyeyqZǽbR\ dK^ ^ c c c X CFvCFvøøøøĹĹĹŵµᾍyU ̙MGBMGBMGBMGBMGBMGBMGBMGBMGBMGBMGBkSMGBMGBMGBMGBMGBMGBMGBMGBMGBMGBMGBMGBMGB_ ­ñMGBMGBMGBMGBMGBMGBMGByMGBMGBfyfy,';MGBtMA«bR^ ^ c c X \ CFvMGBMGBMGBMGBMGCMGBMGBMGBMFBMFB֌wwOB܄QANGCNGCNGCNGCNGCNGCNGCuuwuuwuuwuuwuuwuuwuuwuuwuuwuuwuuwuuwuuwuuwuuwuuwuuwuuwuuwuuwNGCNGCNGCNGCNGCNGCNGCNGCNGCNGCNGCNGCNGCNGCNGCNGCNGCNGC­k^_ONGCNGCNGCNGCNGCNGCNGCNGCNGCNGCNGCNGCNGCNGCNGCNGCNGCNGCNGCoJ>oJ>oJ>oJ>oJ>oJ>ŲŲŲŲƶmNE^ONGCNGCNGCNGCNGCNGCNGCNGCNGCNGCNGCNGCNGCNGCNGCNGCNGCNGCNGCNGCNGCNGCNGCNGCNGCNGCNGCNGCNGCNGCNGCNGCNGCNGCNGC̙NGCNGCqZqZqZqZqZqZqZqZqZqZqZqZqZqZqZqZqZqZqZqZqZqZqZqZqZqZqZqZqZqZqZqZqZqZqZqZqZqZqZqZqZqZqZqZqZqZtoWpYpYpYpYpYpYpYpYpYpYpYpYpYpYpYpYpYpYpYpYpYpYpYpYpYpYpYpYpYpYpYpYpYpYpYpYpYpYwwwwwwwtdt]tdtdtdtdtdkStdtdtdtdtdtdtdĄrīīYAtetetetetete] |¬ñjRV aI~euuu|||yyyyyvS ܕbRT<c ^O^O^O^OrZʱʱʱ{RD{RDW iQ̙P O jRǰǰpVhRŨŨ̹ħħħϸīxīƱƱӽ\ ¬WIu|||yyy\M\M\Ms\qȔbRrZrZrZ\ \ U U U U ſſʱʱʱ{RDP !{jRȰȰU@_It]è§̹kS§ĨĨĨĨ«««««ëëëyDzDzDz̸̸̸t]K Z μ[ ñjR¬WI\M\M\M\M\Mqqqqqqqqqy˹ȔbRmX X \ \ U U U U U U ĥĥĥĥĥĥS iQʱʱʱ̙{jR娚èUA̹§§ĨĨĨ«««««ë_MxDzDzʵӾӾӾt]YKYKYKYKYKYKևp\M¬¬qqqqqqr|yyyyyys\˹ȔbR}\ U U U U U U KKKkaĨĨ¡iQP ̙!yʱs[¬WIu|yyyyyyqqq˹kSȔQ=}}\ U U U U U U U KKKV=S S S S S Q P ̙yyjR¥ޏyħħħ̼īt]dMƳƳʸʸʸоооϼ  ѿѿ  a lU¬WIo|yyyqs\kSnbRǭU U U U KKKR S S iQP y{jR¥]KħħħħīīnWƳƳʸʸʸʸоооV>оϼϼx    T   O |G8¬¬vyqqs\n˹llbRPAU U U U U KKKK:R R R Q Q P ̙y{jRȰȰnW˴›_M   T Q ¬yqqlkSlbR([(UU K` R iQQ  ̙lVjRޏyȰȰȰ˴t]˴xU      ¬WIqqns\l˹llibRipF!^nc c ` R W Q ̙lVyۀgĩ§§§ĭnWĭ̺yU   L S lUJ H ¬snnllkSiibRc c ` Q cyۀggOĩ§§§ĭĭĭ̺̺V>xôμ"  T S ¬¬xs\l˹liiȔbR` Z_ _ ^ ^ nnnnn̙ιۀgŬĩĩĩnWŬнннxǛ_M lU¬WIh xx˹ippȔbRp_ _ T ^ ^ ^ ` iQW W W ̙ιۀggOS?Ǫ]KǪǪìììʳʳʳнннưYAѿ_MѿѿlUE ¬WIxf s\˹pL pȔbRc O_ _ ^ ^ ^ s` W W W W W ^ gPgPgPgPgPf\̙ϹĐۀggOS?Ǫìììʳʳннxѿѿѿ¬xs\kSkpȔQ=PAc _ _ 6^ ` iQW T R ϹugOS?ŪŪnWŮŮŮŮǰǰǰǰt]̸̸yϼϼϼôϼϼιιlUL E ¬xx˹kkke bRE_ M^ ` ` ` ^ cbbbbbvvmlV̙ϹĐۀgS?ŪŪŪŮŮŮǰǰǰ}I9̸ϼϼϼɴ O L N x¬ogU˹kSke ke bR^ ` ` ^ iQX  V t[mlV̙ιĐvfbڷgOS?ŬŬnWŬʵʵʵʵɵɵɵʳʳ̹x̹̹̹ʵʵʵʵɴɴ  X lUN K ~xxkkSkkkke e bRU ![` ` ^ ^ [ Y X U U U U iVgOj̙uS?nUnUʵʵ̳ɲɲƫt]YA¤¤ȭȭȭ§§ X S P L L ~~~xWHkke e bRe T L` ` ^ [ T U U U bPU m̙u{nW\G\G̳ɲɲV>ɲƫoZXIXIXIXIll_ XI lUX    R M ~~J D wkSWHe e e e bRe U ` ^ [ [ Y W T T _ _ U lV̙uT {jRȯȯɱɱɱĩV>ĩĩs]s]åX ħħħ lUS S S  X  S xP J I }˹kke e e ȔbRe U [ Y Y iQT _ U _ ŪW ģè̙Q {jRnWȯȯɱɱɱs]s]iiĩå}I9KX W ħħV>"U S W ̴S    W S uqO E ˹kSke e e WHȔbRU U N V EPAY Y iQT Ǯ_ _ lVĐ̙S jRys]s]iåøøøKX §ʮlUW W T W  V  I S wN T I K H H e ȔbRmmU Y Y _Z ŪlV̙y{jRnWyyyyyyys\s\i|xxxxxxxxxʲW W W W W I H ˹kSw_ _ K H me ȔQ=WHS R S \ P U,-}iQ?_ ̙yy{jRdB7dB7lTlTĶiY iY N X ŨŨƫX lUX ʲW V W ˹ss^ _ K bRWH5|6wY DU _̙yЬtctcY Y Y tcW W ldyY Y Y X ¥¥¥¥_P͵͵V W ˹kSsssmsbRsms5|.f0U U lV] ̙yynWY Y Y Y Y X ¥¥¥͵̷W W kSW sswT wbRU U X =f\b̙yyнjRY Y Y nUnWoluiY Y Y X ååͺͺͺͶͶллллW }I L ˹N ssswwwqbRqqqY X X (UiQ_PK:cbL̙bLbLbLbLnWjRdLZGjiiY Y N åɴɴɴ˷˷˷ͺͺͺͺ̙] W W K L kSsswwwqqbRqqqd X X WH GT PALKlV_PgOgO˷̙{jRS?kjiidyèèèɴ˷lU˷˷ͺͺͺ̙ϽgOϽcB7^ W ϽͺW K L I ˹sswwqqqȔbRqqX d X d d iiQLLLKlVgOgOcLs̙H jRnwjjiiN s]ßeRƩ˳˳̙gOƲƲ͸͸͸[ [ [ P ˹sBBjqqȔbRqd X d d [ LL_PgOgOL˷s̙{jRO njjjjjiǾY ǾulUƩƩ̙̙˳ƉxƲƲƲƲ͸͸͸˲ии] ǯW ˹˸L wwwBjjG qȔbR` d pd d d i[ iQWHLL_P_PgOgOlV˷cLs̙F {jR` Y knnjjjO b s]̹̹̙˾˾gOnVnVnVnV] ] kS~N jj` ȔbRd d d i[ [ gOL˷s̙{jRppkyyQ nnjjjٖelU̹̹̙ıƽƽƉxƽŻŻŻŻêêƯƯ˹] rQ R N {jjjbR` d I d d i[ [ X iQ_PgOgOgOWHKL˷̙F jRkmppyyQ njes]̙eRƽƉxƽŻŻP ê˹kSnnS G bR` G d i[ ]N]N݀gLLlVL˷cLH ̙hE:hE:ppyyeW?lU̙̙eRgOS !ȸ|G8kSE sP P P Q Q bR]N]N]N݀g݀g݀g݀gR bRlVK˷H M S ̙\ D zhE:hE:mW?yhlU̙Ɖx!ȸ˹BE ss]N]N݀gbR݀gQ i ]N]N]N]N]N]N]N]N]N]N]N]N~f~f~f~fcMVHK˷U ̙D zy_lTppY Y hE:hE:hE:gOS R R ]N]N]N]N]N]N]N]N]N]N]N]N]N]N~f~f~f~f~f~f~fbR~f~f~f~f~f~f~f~f~f~f~f~fL ѸVHVH̙y_lTYDY Y Y X X X hphj]N]N]N]N]N]N]N]N]N]N]N]N]NhE:hE:hE:~f~f~f~f~f~f~f~f~f~f݁h݁h{iBooN ȔbRi P Z e e jb Y L L ѸVH]N]N]N]N]N]Nzx_lTYD]N]N]N]N]N]N]N]N]N]N]N]N]N]N]N~f~f~f~f~f~f~f~f~f~f~f~f~f~f~f~f~f~f~f~f~fhE:hE:hE:J ppiE Bd d ` tNAVHZ Z e e jjȽfO2Z Z vg]N]N]N]N]N]N]N]N]N]N]N]N]N]N}e}e}e}e}e}e}e}e}e̙}e}e}e}e}e~f~f~f~f~f~f~f~f~f~f~f~f~f~fY X X X X lUYKhMFBMFBMFBMFB[L[L[L||||||R S T R ³Ӆn]N]N]N]N]N}e}e}e}e}e}e}e}e}e}e}e}e}e}e}e}e}e}e}ecLT T Ѹ̙dB7dB7dB7Y X MFBX Y iV[L[L[L[L||||||||MFBMFBllqb b  T T ppppipȔ}e}ejb b N N N K v^ ^ ^ ^ E ˷VHlTZ ̙Ѹlibjpeg-turbo-1.4.2/testimages/nightshot_iso_100.txt0000644000076500007650000000415312600050400017353 00000000000000libjpeg-turbo note: This image was extracted from the 8-bit nightshot_iso_100 image. The original can be downloaded at the link below. The New Image Compression Test Set - Jan 2008 http://www.imagecompression.info/test_images The images historically used for compression research (lena, barbra, pepper etc...) have outlived their useful life and its about time they become a part of history only. They are too small, come from data sources too old and are available in only 8-bit precision. These images have been carefully selected to aid in image compression algorithm research and evaluation. These are photographic images chosen to come from a wide variety of sources and each one picked to stress different aspects of algorithms. Images are available in 8-bit, 16-bit and 16-bit linear variations, RGB and gray. Images are available without any prohibitive copyright restrictions. These images are (c) there respective owners. You are granted full redistribution and publication rights on these images provided: 1. The origin of the pictures must not be misrepresented; you must not claim that you took the original pictures. If you use, publish or redistribute them, an acknowledgment would be appreciated but is not required. 2. Altered versions must be plainly marked as such, and must not be misinterpreted as being the originals. 3. No payment is required for distribution this material, it must be available freely under the conditions stated here. That is, it is prohibited to sell the material. 4. This notice may not be removed or altered from any distribution. Acknowledgments: A lot of people contributed a lot of time and effort in making this test set possible. Thanks to everyone who voiced their opinion in any of the discussions online. Thanks to Axel Becker, Thomas Richter and Niels Fröhling for their extensive help in picking images, running all the various tests etc... Thanks to Pete Fraser, Tony Story, Wayne J. Cosshall, David Coffin, Bruce Lindbloom and raw.fotosite.pl for the images which make up this set. Sachin Garg [India] sachingarg@c10n.info www.sachingarg.com | www.c10n.info | www.imagecompression.info libjpeg-turbo-1.4.2/testimages/testorig.jpg0000644000076500007650000001321212600050400015707 00000000000000JFIFC    $.' ",#(7),01444'9=82<.342C  2!!22222222222222222222222222222222222222222222222222" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?jvf)4cFQ3EqQ8`)NiX .JjSjKF} iZ8f|K]VS}۝BIzsXɬnJTH+EN]HTNlO:u.&EXnsعnMVqn04 3[ZY8z(kvyQԬZ&<~5ĆxN )wU:Pf#^IuŘـF7RT]ݺW-zmoJ2"-JK ,|Ke8Z&WS/YV@I=:]jh,bⰫRz{Tއ%QQ Eeth`VE9g@=*E6ٚkG(VpJSEDG5=*TRQGQ9.ihLoB?,: ѶEtV%y8ܨI@!&KtXδV &ҿRycT*v d89.r3܁X9tpW)1Mj h|U?Mwo4RKͿ 4}JO[X1 lT.p xd:IglJ 5sNM^7!w`S[RrYcy  Y扶+cMU6 Ʋ5gV\^Qw u6p_lhШ'\3^I|.1E[ҽ&mrUF`pS=sWՌ1FAVɋᵖȏ֓x \t#9~{_5#+nbBYJwnB:$*\$t|DT;E;nAE]wC/TaBOҭSm-ːcjQwٔ%s3zَ>I1S/?rG U'M\MHtpjx6[5P4|ֵx]qpkuƺqqjtL~۽LqvNO\H#`2q֒nhH'zC*R(zu0^h zDG+m% Y>M[UkfC4qOE׼BDd'VTVFz4prJ4Wq53>:)VgLL 4 M"`WEĶbXBⵣWϘBǤé9nuńrUӖ VmP ,=+؞21asSk2]@ʘ$Vnza`1{Sp5Uδ} O K٥f!$ '9Y U2pjEb,~t9JJMZBG{SU'$pqOm\.z{VmJ. ׌B$qR,Бy@={V#.FTvlփEj^bD@g:,=Nwd#F9$cnWO*23|O t?%gnw&qQoorDX)1[k\`Sf6@hԂă+h#6t>IBzxM:S#B8J $.I3T q$ƇxvDI./ ԍkua*ZGc,#^uXک[+9nMUmeٽ\jeQzl%8jeYM isO+^fވTvaNliEҊs7h`*`ɮ[\T֜ZLw8jbY=+B%^̯3 ճv8$x.R6m^H/_Vމgin>jv[ Tcd}8]w4U9D_#ʱyQynw\t5 ܧOqSgl%E7!r~ct5fY`QTy?>[ ާ$|R3# V臈eUhf) ц|p" ,6rjrvRnhMn¥jS[x-13̝sQ f#4>d4`b=զh-?m$rG$JdMvrONܑg5Q[;kX=kJmBZQ\)+3Md9&x-[ck&[-dd`Ɣ/qEjAq縑rNzP>H|ϩմaJԝ#;,8uT>|rrE' [یbY.W!\8>$aޜN9T%vmb TƠvjT;*ckĵqvڇjTm'5;jy525^(e82E]C(WnX3G yubZ=^}Ljl{FHiqɛjLOS=Ygy垲.RR% pZ>rfH+@m^nq2مz B=++n'"u+Q!2щx\J%=j~c"D[q3wk8F.ڑ-AVh$h:ݡdO==Mh7X'>TGZʭ%?S AN̗ :skχZV[\79A'? \W^i:(hӫўxFikk:N6KܣzGk3 j1uWr( {ԥp;Sd~3" JYRDbOln ս_/pQ} sue4s4V {Rln`V&jɈTmTUŻƊ>⬧ԑJclqX܊esZi Ec "85-5V+%r,3QSEtsv ʀhPcO\VLJ[fQZCASc#OF8]OQQ:QE:tHID#[n=th-Hr&D=i,{m[3f: L|#ٳOѡ2O_S&P;oWMn'Lw :;p۠1.W,t8ONXE?y9B[~j_"A0uH2kd;O  4[JZgLoGϛSo(pc_I0Rٶ3I>d-Q2p'뀓<lSap%Nb33Qz0J,IXI!Y1V(7h #mRJTg<7M^VBpF Hn!qIC5v(7aJz7;TEU3~S3?DV}VżS)[S-CtNwH&2&qȃztQPع}_>~kFzJNW)mG]C!8À"*c`M1(}HܧjE<#)d@4Rmוnf;IdJ rm$/_4 E:/a,5߆ 6Eg筚xQ|1bG/,U.$πZ~r{yٚ$',sJ1lkp'=LM4W?]0RD-ngP^qǦ_9^7s.ͲYq<;եwZNg /v%}UO_iO[*AXc"Qov&(jOWF04\C>9ӔL3yڵ%;Pͦ\ .t rlJ0*K~. 5 w}# m<,OG&y"s'?g("B/(R>ϸXmj%!# Bd+1dh5.d˔Zt#Nԟr!?3fE.|Č,$6Ci7b&Yxe)ф2^f &h#B97`)(M i-E\sT)m𦧽/p)OIs= g8?:#auU7bf ;tN 0)pYJMLeAx%{8hu>aȰznP,*Jcܱ=YGr򭫠[>JHULTd24le>4TPw90a`)AOUb}~T=9ܷ>i<{=*wԡ(eo\>G/\kgĶ#j<Z%v3𳐎Se:S/qq¾X3Y:u?>YOyH:ר:#hj2w+"rʺ}}+}&JVf*,eJ?Fq6ۡgO&ZGӎ+Ǝ%z}1 J .g 19v(sJ$I-TرciDBj Q3/a(D٨CFf_ϽVgV@o.#+H!P] Y|B#jpAm?uz,0hTO̺/[TۭO).+ xA3S3_V$ĽyU6"6Z7kr[ZbB#WD|캘^v돺 ~ {;-|㡳LY 5m%%y{m=$6]n4216_7cZM86)( e\='f&į{-`OEѽE%/a(kB&uȷu:&pv6|F98S=߅`Ē\%˶ə`'K1rۼ]9KfV/`ιKsw qi?57x|PYxr1T>uGH5$ G))1R\)3Q4Z( ^DAiY+ij(Čl]PJA#g *lty;YUfXwN!7޴@q& ~}T܍}  a zM2;)-PcS\C wTνKѺN]b\Jv\<:T:C@ "XaWuV<|9&0uNM -caNw V?k~[݁>(plPPCD1 鏷KMt*:<8eCRaGMSxpxLâ+T3^\-zq`4 ;ϯfHFn4QzJJ4Ry͠;lF>5T/3XzqƎz=`+P|m:|hnP/u ]n܀0[϶hJjgDU*ނs+z>Jl7:`xdǖo̊R43Eay{% hY egRUr"!P{"%TNT.Y   lL ^nwB1@f*ΏOeb.ZlE Xkkb(9iy*9:ݗ{E 5e/LaO|'U[&\D^V )Sý̜{}Q/8 H'8NyRobW9W:f]͍pJzٗ( :V*RqdgF(BwKny2@EM%U3V7M4?]kC nW],o8%q7 f;mH ..R)Ud BNstHM"QYT ,&L}6'll tw~FƢF=N|a-K')j'i7iQKtYy}`55?EH$dҚayEDoHv{`/xI+-wqCxD {U-Gx\K_D< !~KHz#r=z=QԽ͹Y0w6`H AG7{J6'厝Q(9Q\~pawůB̳ؠhϭUIV LaҍfS'"MK#RU#tt]Tu] fK4`[\6vWh * @,<1c"Hzx]dHgsf"m+lwa+Ma—xK7 7s鼩}!4^~hiĊeeODn3w OۤEYX[ͧ;~.SLo ^,Z0(t*7%^gI%:SGB,SշyX. OBXf#+ͯ hrZ3\oQW+@libjpeg-turbo-1.4.2/testimages/testorig.ppm0000644000076500007650000030615412600050400015735 00000000000000P6 227 149 255 0/-0/-10.21/51.51.62/62/83/83/:2/:2/:3-:3-:3-:3-:2/:2/91.80-80-91.:2/:2/80-80-80-80-80-80-80-80-6.+6.+6.+5-*5-*5-*4,)4,)4,)4,)4,)4,)4,)4,)4,)2-)/*$/,%0-&0-&1.'2/(30)30)63,63,74-85.96/96/:70:7.A:0B<0D>2F@4IA4JB5KC6KC6NE6MD5OC3NB2OC3OC3PD4RE5R?1Y?2b@4nB5}E6H8G9F7H;F;F;F=G>H@H@EBFLCLEMEICIBD?C=A;A:@:?-?/?/>.>,>,<+<+>->-=*=*>+>+?,@/?6>5=4?3B3D3D4D4?0B3F:H;G;oA2U9+C3&=52:659548437116005//5//72/72/72/61.61-61-50,41,//-.0-//-//-0/-0/-2.-2.-5,-4+,4*+3)*7(+=.1E69P:0U?1^A3jC4xD6F5E5C3C4A4@6B7D:E/@.?-?-?-?,?-@-?.A.A-B,@,@+@*A,>-?/?/>.>,=+<+<+>-=,=*=*=*>+?,@1A6?6>5?4A3D4C4D5A2C6F:H=G:l@3S9*B4)>63:65:6584382271160060072/72/72/61.61-61-50,41,//-.0-//-//-0/-0/-2.-2.-4..5,-5+,3)*5)+<-0C47N8:d=>vDCJIMNTVajl}r{{ou[[RIvOCiOFePH`PH_RN_[Yfnot~qjk[][LVSJXSZVRaXQa/.,0/-0/-10.40/40/51.51.72.72.72.72.92,92,92,92,91.80.80.7/-7/-80.80.91/80.80.80.80.80.80.80.80.6.,6.,5-+5-+5-+4,*4,*4,*6.,6.,6.,6.,6.,6.,6.,4/+2-)1.)2/*30+30+41,52-52-63.63.74/74/850961961:70?8.@:.B<0D>2G?4H@5H@3H@3J@4I@1K?1K?1K?1L@2MA1NB2MA3QA2YB4dC4qC4|C2B2A0<-;,;.=2@6D:F=D>CE@FBGCGDFCEAD?D;@:?;@=@@@B>@;@5=.@-@-@-?-?->,@,?-@-@.@-A,@+@*@+>-?/>.>.>.=-=+=+>,>,<+<+=,>-?.?0A6?5>3?3A4C5D5C5D8G24I56[97l?:}FAIDOM[`fvnw}}u~glUUMEvLAkMAeOFcQHcNI_NK\[[esty|xzlfhZZ[MVSLZU[ZT`[S`.-+/.,/.,0/-3/.40/40-51.61-61-61-61-81+81+81+80-80.7/-6.,6.,6.,6.,7/-80.80.80.80.80.80.80.80.80.5-+5-+5-+5-+4,*4,*3+)3+)6.,6.,6.,6.,6.,6.,6.,4/,30+30+30+41,41,52-52-52-52-63.63.74/85096196196/>7-?9-A;/B<0E=2E=2F>3F>1G=1G=1H<.I=/I=/J>0L@0JA0LE5NE4VE5^D3iD2sB1~A/?-9)9'9*=.@3E8HDCACBEDEDEBC@C?A;@:?@A@B=@9@3>.@,@,@,>,?,?,?+@-?,@-?,@+@*@)?*>,>.>.>.=-=-<*<*=+=+=+=+<+>,>-?/A6@6>2@4B6C8C7B7F88=77<66:5294183083062/62/62/32.52-32-21,12--2.-2./1./1.00.00.10.10.5106005//5,-4+,6,-:01D22T71c;3rB8{E;IERU_lis}yx}owaeSRMDyL@pL@hPEgQFfLC^HCWNLZ^^fjnquyxy~xzvwzokoa`bUWYLTTL]WY]V]]V^------/.,/.,0/-10.3/,40-40-40-50,50,50,50,7/,7/,4/,4/,3.+3.+3.+3.+4/,4/,50-50-50-50-50-50-50-50-3.+3.+3.+2-*2-*1,)1,)1,)4/,4/,4/,4/,4/,4/,4/,4/,41,41,41,41,52-52-52-52-52-52-63.74/74/85096196/<5-=6,?8.@9/B90C;0C;0C;0E;/D:.F:.G;/H<.I=/J>0I@1JG6MH5RG5YF5bE3jD1uB/|?,;):):*=,B2F8J=J@GBDCDDEDCCAA=@<>:?;=<>?>B>C:A5?0?-@-?,?,?.>->-?->.?-?,?+?,?+>*?+>,?.?.>->-=,=,=,=,=,=,=,<,>->.@/B4A4@4@3A7C9B:A9C;H?LCKCtE;Z>2E9-=6,A96@86?75>64=53<4294183062/43/43/23.32.23.12-02--2.,2.-2.-2./1./1.00.10.3205105104..2,,5,-7./>0/N5.Y9.e=1oA4tC0HA1JG6JI7NG5VF6\E3dC2lA0t?-|=,<*;*=,@1F5J:J=H@EAFAE@CAA?>?;=;<:;<=@=C=C8@2?-?,@,@,?+?->,>,?,>-@-?,?-?+>*>)?*?,>->->-=,=,=,<+=,<+<+<+<-=,>/?0B4B3A3B5C9C:B:BT@5A;/96-@85A75?75>63=5394194173043/43/34/23.23.13.02-.3--3/-3/.3/.3/02/02/11/11/21/32032040/2.-1-,4..8.,G4-O4)X8+`<0e?6mGFyYdku||w|nudh[[SLLB~OArL@hI=cH>`HB^ECX@BO2H@3HE6GE6KE5QD4YD3_B2g@/n=,v=,|:*9+:,=.B2F7F8G=F>F>E>D@C?@@>>::;:<.>.=->-=.?.?-?-?,?+?*>)>+>->-=,=.=.<-<-<-=-;,<,.>1?/C4B3A3B6C:D=C=C=GBQKYSXQsRIWI>CC793@72>63=60:5194083/63.43.43.34/23.13.13.02-.3--3/-3/.3/.3/.3/.3/02/02/00.11/22021/10./.,2.-4/,?0+D0)K3)T8-Z<4eGGu]js~tzmpeeVSLCK?qJ=hG;cE>_FB]DBW?AN;?H:BE>HGDMHGQIGQHJRGNVKUXM^ZOaYNaXO++++++,,,---.,-/-.0/-0/-1-,1-*1-*1-*2-)2-)2-)2-*2,,1++1++0**0**1++1++2,,0**0**0**0**0**0**0**0**2,,2,,2,,1++1++0**0**0**2,,2,,2,,2,,2,,2,,2,,2,,3/,3/,3/,3/,3/,3/,3/,3/,40-40-51.62/62/73084185092,:3+;4,<5->5.>5.>5.>5,B8/B8/E80F90G:1I<3J=4I?5FB6FB6JB5OA4UB3\@2c?1j<-q<.w9*}8)7*:,>0B4B5F:E;F>G?G@FACAB@;;;;>;B;D:D4A.>(A-A-A-@.@.?-?->/>.@.?.?->+?*>)>+>->->-=,=.<-<-=-=-=/<.<.1?1D4C3B4C6C;D>D@EAPL[Tf]f]u_T[UIHNBCI?<92?82>71;6094.74-63.43.43.43.34/23.13.13..3-.3-.3/-3/.3/.3/.3/.3/02/02///-11/22022010.0/-0/-3/,8,,<-*C0*K70S<6^HJtbnzƄztwjlYWIDE=nG^CAY@CV@DP>EKGQRKWUQ^WU`XT`VS]TT^SY_S^[LaZJaZJ,-/,-/--/--/------.,-.-+/.,/.,1-*0,)0,)0,)/+(/+(/+*/+*/+*/+*/+*/+*0,+0,+/+*/+*/+*/+*/+*/+*/+*/+*/+*/+*/+*0,+0,+1-,1-,2.-2.-2.-1-,1-,1-,1-,1-,1-,0,)1-*2.+3/,3/,3/,3/,3/,3/,3/,3/,3/,40-51.62/73080-92,:3-;4.=4/>5.>5.>5.@5/@6-B5-C6.D7/F91H;3G=4G>5H@5J@6P?5T>3X<1^90c7,m9.t8-|8-9.;/=0?1>0A3A4C8E:G=G>E?C@@?BADAE>D8B1A.B,A.@-?,>.=-=->.?/<,=,<->-=,=+=*=,<+<+=-<,<,<,:-;-=/=0=0=0>3@4A5A4E5D4E9I>G@D>EAMG[Sf_qfsh~rdjj^V^SJRGLLBJF=B>5=90:6-74+63,33+54/34.34/23.02-/1,.0-,1--2.-2.-2.-2./1./1./1./1.02/02/11/11/11/11/11/40/4+0;/3A32C41J;8]NQym{ϐكtzjn`cZ[LItHBdA>]>>X?BUAIVLU\U`bbqno~yv|svlyohth_k_W_P^]Ib\Fc]G,-/,-/--/--/------.,-.,-/.,/.,0,+0,)0,)/+(/+(/+(.*).*).*)/+*/+*/+*/+*/+*/+*/+*/+*/+*/+*/+*/+*/+*/+*/+*/+*0,+0,+1-,1-,1-,1-,1-,1-,1-,1-,1-,1-,1-,0,+1-*2.+2.+3/,3/,3/,2.+2.+2.+2.+2.+3/,40-62/62/80.91.:2/;4.=4/>50>50>5.?4.?4.B5/B5-D7/E80G:2H;3H>5H>5L=6O>6R>5V;2Z90_7/i81p7.x8.8/:/<1<1=1@3A3C6D8E:FD@EAGBG>F:D3B/B-C.A/@.?-?-?->.?/=,>,=-=,=+>+=,=,<+=+<,<,<,;+;-<-5=:188.44,11)23-23-12-01,/1,/1,.0-.0-/1.-2./1./1./1./1./1./1.02/02/11/11/11/11/11/2015+49-7<15?54I?=^UVys}ʐԄyqykthn]`XZqSUjRWjT^hZgmfvvrt~~wzrqftgZeT[ZE`ZBb\D-.0-.0-.0-.0-.0-.0.......,-.-+.-+-,*/+*.*).*'.*',+),*+,*+,*+,*+,*++)*+)*-+,-+,-+,-+,-+,-+,-+,-+,,*+-+,-+,-+,-+,.,-.,-.,-.,-/-./-./-./-./-./-./.,0,+0,+1-,2.-2.-2.-2.-1-,1-,1-,1-,1-,2.-3/.40/51.80.91/:20<41=31>42=31=4/?40?4.A4.A4.C60D71F93G:4H;5J;6K<7N=6P;6S:5W83[6.c60k6.t5,}7/9/;0<2=2@6@4@3@3C6D8E->->->/?0<-=-<.=.>-=,=.=-<,<,<,<,;-<-:-;-<0<0<2>3?4A8C:D9J=H;H>KDKFLGSM`Vsgqz{wsocqbXcUNRDMN@HI;DD8@@4:_[@-.0-.0-.0-.0-.0-.0.......,-.,--,*-,*/+*.*).*'.*),*+,*++)*+)*+)*+)**()*(),*+,*+,*+,*+,*+,*+,*+,*+,*+,*+,*+,*+-+,-+,-+,-+,.,-.,-.,-.,-.,-/-./-./-./+*0,+1-,1-,1-,1-,0,+0,+0,+0,+0,+0,+1-,2.-3/.40/91/:20;31<42=31=31=31=31>3/>3/@2/@3-A4.C60D71E82F93H94I:5J;6L:6N94Q83T50^72e60o6/x8/90;2<2=3@7?4?2?1A2B5C9E:H?H@JAH@F:B5A0@.A/@.?->,>,>,=.?/=-=,=.=-=,=+=-<,<,;+;+;+;,;,;-;,;/<1=2>5@7C:DG@JELIQL]Vj^oyzxm{lbm_SZJQUFKO@EI:@D6;=057,13(01)/0(./*.-).-)/.*0/-0/-0/-0/-0/-0/-0/-//-0/-//-10.00.10.00.00.00.00.3.27,:6*83-1961HJ?bfX{z}~}k|iXfOSU=ZV;^Z?+/2+/2-.2-.2-.0-.0..0..0------.-+-,*-,*-,*,+),+),*+,*+,*++)*+)**()*()*(),*+,*+,*+,*+,*+,*+,*+,*+,*+,*+,*+,*+,*+,*++)*+)*-+,-+,-+,.,-.,-/-./-./-./+*0,+0,+1-,0,+0,+/+*/+*0,+/+*/+*0,+0,+2.-3/.40/:12:12;31<42=32=32<20<20>31=2.?1.?1.@2/A30B41C52D63C84D95E:6G96H94K84N50X72_60i70s80}:1<1>2>2@6?5?5?3@3C5C6E8E;G=H>G=D8A5@1@/@-@-?.>-=,=-=/=/<.;-0->0-?1.@2/A30?40@51@72@93A:4B94C84F74H5/Q51X5/a6/l8-v:/0=1?5>5?5?4B4B4C4D4B5D8E:E;B7@5>1>0?.@,>-=,<+<+<.<.;-<-<.;-<-<,;-;-:*:*:*:):+9+9-9-<1<3?6A8CE5<@29<134,22*1-*/+(/))0**1++2,,1++1++1++1++1++0,+0,+0,+1-,1-,1-,1-,/.,/.,/.,2,.8*75(13+(56&EK1\gGudyťέɭɰ˱Ȭ{wrdx]R`FNR7QQ5SR6,03,03,03,03./1./1./1./1000//////////.,/.,/.,.-+/-./-..,--+,,*++)*+)**()+)*+)*+)*+)*+)*+)*+)*+)*,*++)*+)*+)**()*())'()'(+)*+)*,*+-+,.,-/-./-.0.//+*/+*/+*/+*/+*.*)-)(,('0,+0,+0,+0,+1-,3/.40/510:12;23<34<34=34<21<21;10<1/<1/>0/=/.>0-?1.@2/>3/=52;62;83<94=:5>93@72C60G4.O4-Y4,d5+n8,x:-;.;.<4<5>3@3A2B1A2A1>1@4B7B9A7>5>3?2?-?->,=+;,<-<-<-;.;.<.;-;.:-;-;,9)9):):)9*9+~8,~8,=2=4@7B9E>HCKFMFICGAJHSO]Zhb{ny~wxnjwcdr[ZgSQ]IKTCEL<@D60-?1.=2.=4/=60;81::29:49:4;81?61C2+J1,T1+^3,g7-o9-u=.{=0=4=3?2@2@3@1?1=/2B6C7B7?4>2?2>/=.=-<,<.=.=.>/<.<.2>5@7C:G?KCOHOGHEHFOL[Vg`uiu~|ytoj~ccz^]qXWfOO\HIRAAH8>@399/85.7/,3+)2()2()3)*4*+0*,/+*0*,0**0*,0*,2),2),3*-1+-1+-1+-0,-0,-0,-1+/5*05+,4-%46!?F%T`8n}Rgtz~z{Ĉːəǝƚ~xvolfZnSJZ@GM3FJ1DF./0+.0+/0+01,01,12-12-21-43/43/43/62/51.41,3/,4/,50-50-4/,3.+3--1-,0,+0,+.,-.,-..0--/,,.++-*).))+.)/.)-/(/.)-/)-.)-.*+.*+/+*/+*-,*.-)--+./*./*./*------.,-/-./.,0/-2.+2.+2-*4,)5-*6.+90+:1,;2+;2+=4-=4->50>50>50=4/<3.<3.=2.<1-<1/;0.=/.>0/>0/@1.A0)@1*;4*77-39/39/560:3-?-+F*'L)'S*&Z/(`5,d<0k@0yA2A0A2B3@3=0;/8-;/>/A1B2C2A0>.;.:2:2;1>1?0?/?.>.@1?0>1<0;/:.:-;-{9+~@3w<.q7)w=/w=/v;-}?2{;/@4ECH4?B/01+01+01+01+12,12,21,32-43.43.74/74/63.52-50,50,7/,7/,6.,6.,3.+2-*1-,0,+/-./-./-0..0-,1+*/)*.)(-.)//(//(//(//)-/)-.*+.*+/+*0,+.-).-)./*./*./)/0+.....0....../.,/.,2.+3.+5-*5-*7.)8/(:/)<1+<2)=3*>5,>5,>5.?6/>5.=4-=4/<3.=2.<1-<1/;0.=/.>0/>00@1.C0*C0)A2+>3-:5/94.:2/<1/?-+D*)I*(N+'T/)Z5-`;2e=1pA1x@/A0@2?4>4;3;19./=0<.;.;,;-;,x8,x<1t:.n9+t?/s>.r8*u:,}=1A5E4+?5,?6-@7.@7.@7.?6/>5.=4/=4/=2.<1-<1/;0.;0.<1/<1/?1.C2+E0+H/+K--L,/K+.I*/E+.A-,@.*A.(F/)N/*X1*b3-g5.j:,o;-x<1=4<6<5:4:4;4=2>2?3@4B6B5C6?2=/>1>.>/?-=.<,;.<,:-;+;,<)~=+{<+}=1z<1v:/v<0x@1x@1v<.v;-?5C9F=H?JALBNENFKITQf\whnt{}yximae\a\`^a[|]UrVQgPHYGBPA:D93:2.3,+0**,)**(1(+1&*1&*1&*0'*1(+2).1+//*.-+.,+0+,0)-0(-0(-1)-01/23/./+(**"57*QVBmu]|ik~jloo~mqx|zxvvuwyy}}ywtpmh{eYkUN[IDH9>@399-23-23-34.34.45/45/54/54/761761:72:72:72961:51940:2/:2/91.80-50-50-3/.3/.3/03/01/01/20.1..0--/-+.0)02).0*.0*.0*.0*,/+,/+*1-,2.-0/+0/+10+10+01+12-11/1111/010.10.2.+3.+3.*91.92,;2+<3,?5,@6-A7.A7.B8/A8/B90A8/A81@70>50>50=2.=2.<1/<1/<1/<1/=20=2.B3.E2.M//R+0W(0U&.P'/I).C/.<1+;2+?2)H1)S0*_.*d/)i9/k;/u<3}<6<9;9;7:6>9?9B9B9B9B9A7B6@1A/A/@.>-<,<,:+9+9*:*:)<){=(x>(x>*>3{7.z7.z<1v;-w=/|A3{@2B7E:H=I@KAMBOFQHSK\Qh[tbgm~v|~}yqojifgfeggde_~_\v[PhRK^KBPA8D62:/.4*,/(+*%2&(5%(4%(2&(1&*/)+/+,.,-++-*+-*+-(,-(,/',/',/*+-/+,1++0+(/,%99-PTCiqYve{hyh|kn}oyk{mrtq}p}p~s~v~x}x|x}zzwuqnje|bXlSN[GDF9?=1:8,45/45/45/560560671761761872983;83<94<94<94<73<73<41<41;30;3083072/61.61.5106216213123121/00./1-.2,04+.4+.4+.2,.2,,2,,2,,3/.3/,3/,40-21,21,32-32.22022032032051051.61.61-;30<5/>5.?6-A7.B8/E8/C9/E;2E;2E;2D:1C90B8/A60@5/>3/>3/=2.=2.=20=20>31>31@51F42M02T,4X)3W(2R)1K,1B30:6-77-:6*B4)M2)X/)^/)f:1j;3s<7z=:<:<;;;::;7>8@:C/<.:-9-8,8+9+:+~=+x>*v?*x=+9-|/'8/>4w4+t6+}A6}C7E:GKBKBMDRHWJ}`N{iQpYu]|biu|~{}zwzp{lylwkumsmmgkd`rZ[hTR[JIM>@@4;7,70&5*$6('5''3''1'&.((,+)++)+-*(,+(,+*,+*,+++-,*-,*-.*+,#$3+(50*85,BC5UZFfpWn}^teqbuexivjshtiwkznxlwmxn{s{u{w|wyuzwwtsomhd{_WkPN[GCC7>:195,560671671671782782872983983:94=:5>;6>;6>;6>95>95?74?74>63>63;63:5294194184195495484384343151240/6-06-.6-06-.4..4..4..4/,40-40-40-51.32-32-43.43.43/442542540841850:51:5/>71>7/@7.A8/C90D:0G:1H;2G=4G=4F<3F<3E;2C90B71A60@51@51?40?40?42?42@53?53@72D63I35P16T/6S.5P05J22C52=90<:.=9-C7)I6(Q3)W2)]2+d3,l50v64}77877777~75}:4}<6~?8?9@8?;A8C4C1B1@0=/;.:.9-9,9,:,<,|=,y>,x?,|=,4,2,LEXQA8|90F;K=yH:zJ<{M@|NA}OBQEUJ_LrkOptS|uXw]ybiszz|~{y~vpoppr{pwmtlj~cfv\_hSV[GOM>GA3A7+=0';,'9+(6+)3+(/,',-'+-().().(+-(-,*/+*3)*4(*7'*7'(3($<3,E>4IG:QR@^cMgqVjyZo^k\l]pbqeodoerfumrjqitnxrzvyvyvvtwvurokkfc|^UlON\ECC7@91;4,782782782782893893:94:94:94;:5>;6?<7@=8@=8@;7@;7B:7B:7A96@85=84=84<73<73<73<74<74<74;639529338308/09/.8/080.80.80.61.61-61-61-52-63.63.63.74/54/540651841952;74<94=84@93@70A8/C90D:0G:1H<0I=1J>2J=4J=4J=4I<3F<3D:1C90B8/A81A81@72?61?61@72A83A83?74@85B86E:8G96I:7H96H94E80E8/E9-E9+G9,I9*K9+Q7*Z/&d/'n3-z6398;9;:=;A>@:>7<4:3<4=8@9A5B3@2?2=1<0;//|>/|>/|>/}>/=/9/1+;8kf~yZTD=LAN@tJpQ?qR@tSB{WG[J~eOmsOpzUy[u_ocmfqkwowz~~yvrrrrt}sxptpmiiedx]]kRV^GMP;ED0B;+@3+?2,;0,70*30)00(./)./)01+30+7-,;+,?),D',F%,D'+F5-LC4VP@[XE`bLgmSjxWj{Wl[gWgZl^ocnanbrfskpjoirnvsyxxwvvssuvsrnlkdb{[UmMN\CGH:E<5@707827828938938939:4:94:94;:5<;6?<7@=8@=8@=8A<8A<8D<9C;8C;8B:7?:6>95>95=84>95>95>95>95=85<73:52<41:0/:0.91/91.91/91.91.72.61-61-63.63.63.74/74/74/540651952;83<94?:4B;5C<4A8/B:/D:0E;/H<0I=1J>2J>2K>5K>5K>5J=4F<3E;2C90B8/B92B92A83A83A83A83B94A:4@85A96B;5D=7F=8G<6K<5N;4M6.O7-Q6+Q6+R8+P9+P9)W7(f6*r6,~;3@9D@HDJGLFQJLDD;<17-8.91=6>5>7=6<5<5=4}=3z>3x@3vA3x@3z>3<3:38442(&=;{zhcG@K@xH:nMhV@lWBt[E`LhP{rQvUt\l^__V\Q[T\ouzx̆~}xvrtuuuusr|nyju{anpZgbN_TBUE5R/(9/&7.'6/'92*;0*>/,B-,G*,I),L'.I)*TB6YQ9B?:D?;D?;E@8E>8E>8B;5B;5B;5B;5B:7B;5B:7A:4A75A83A75@72@64>71>71>71<71<71;60:5/96185074/74/961961961:72<73>93A:2B;1C:1D<1F<2J>2L@4L@2N@3N@5N@7N@7L?6K>5J=4H;2F<3E;2B90B90@91?80?82?82@93@93<5/MD?M@:K:3T?:S73O0+a<6\3-`5.`4+^/'^/%f6,m=1q=0J>G;I?KAF>>7>7D;NDQFWKYKOBA5;0>698:9655284?8|@6r>1rB4oA2q=0w;17243-1',HIbaEDWUyvVOFi[AibFjeHj`En^D|dLjTbLl]nhX];L-E+H0L@YI\[enr{|ۀ}ۃ؉~wwxxxyyxo~mxiocbYUM{IBxA>u:=8?>9>=8>=8A>9A>9B?:C@;D?;D?;FA=FA=E@8E>8E>8E>8E>8D=5D=7C<4D;4C:3B92B92B92B92B94A83@93@93>71<71<71;6096185085074/961961961:70<71>:1A:0B<0C;0E;/I=1J>0L@2L@2N@3N@3N@5N@7M?6K>5I<3H;2E;2E;2C:1B90A:2@91@93@93A:4B94E:4J71L.,V..j68u9;{;;ECE@IAIAH?IBNHPLOGD7B4B6D9>37-7-=2C5@1@0D5G6F6H:NELMHL@D9;98>:@8x>3o>0zI;LA?8-,).9DLWKNMM>=@?`\YQ@5UEyaIe[@_^@ihIslOvgJ~dKcNdX_[UZAN,E&E&H'I.N3N7UE8[O7cZ;hbBifEnrO{^zbt^r_p_p`r`udwdwdwfskxt|x{x}z|rqmjhd`y[TmMP`ERSCVPDUOC8938938939:4;<6=>8?>9@?:@?:@?:C@;C@;C@;C@;E@7/@9/C:1C;0E;1F<0I=1K?1M?2NA1P@1P@3P?5M?4L>3K=2I<3H;2E;1E;1D;2C:1B;1A:0?;2@<3A=4D;4VE>U4/j25AGLWUb]f_cB>I?LANDQLUROSLM@6B0@0?1;.7+8+=/E6=-7$:'>-A1C2E;02:BDLLRMRKLA>71{8/v6,x2*1-37=GGWM[FI53:931NKc]K@[J}cLk`DgdEtoOpSgLhNhYbbQZDQ7I2K2N/M+I2O0K1J5N5N2K3L8Q@ZC[F_IaNcQfTjVkSjRiPjNiNlPoSsVug`}[uUlZmdrR]r-2^&'Y0,W:4Q?5C;.:8)>B3LN9VO3aV6e_?heDquTeixdxiuetdrcveyhzizjvzypmhc_vYTmMPcGTWDYVGYVG7827828939:4;<6=>8@?:A@;BA5G=3F<2E;1D:0D:0E;1E;2D;2E<3E<5E<5@91?80=82<71;60;60:5/:5/:70:70;7.;7.?8.@9/C;0D/J>0K?/M@0NA1P@1O?0O?2O>4L>3K=2J<3H;2E;1D:0D;2D;2B;1@<1@<3A=4B>5G=4S81[*&;@T`TeTgUcJO41;0?1A3F=IGBH?CB7F5B3@3?3>3B4E7G7B1<);(;*:*6&3(979=7>7<`@aCfAg?e?g?hCmErIsOwQuUvSqTpaxfvWb~17j0/Y2+P8,G>/>A.;D/?G/QL/_T8g`CokN||`rv~q|q|t|szqzm}ou|sqh|c]tXSlNQdHRZCWYDYZH671671782893:;5<=7?>9@?:BA5I=1H<0H<0E;/E;/E;/E;1E;1E;1D;2D;2A:2@91@91?80<71;60;60:5/;7.;7.;7.<8/?8.A:0C;0D/K?1M@0NA1NA0P@0O?0O?2O>4N=3K=2I;0G;/D:0D:0D<1D<1B;1@<1A=2A?3B?6K=4\50w32LS]iM_?S6E&+1+7(;'<)@3D=>?;3@5C9G=I>>/?/=+;)9):,;/<1FAEB>?797LDTLSMKJ@C5>274.7.1+:484@9[PTD{N9bIkPaG[FgUrdmhEK:D9C=8@?:@?:C@;DAGB>GD=GD=HC=ID>IE2J>2G=1G=1F<0F<0E;1E;1D;2C:1A:2A:2@91@91=82<71<71;60;7.;7.<8/<8-@9/A;/D0L?/M@0NA0NA0O?/O?/O?2N=3M<2L;1I;0G;/F90C9/C;0B<0B;1@<1@>2A?3B?6N;4n95FEY_WbCQ8F3;++1'8%:!9 ;&>.:2717,:-9/7,:1A9E2?0<,6'6)>0D;G=8-@6E@BB=A9>27.075GBSLNG=910/2671(A>GDOMWWNSDM9G5F1F.D1G7N8S8T9W:X;\>aAeCkj?m>n>o=m:jHr;a?dJpKnNmUoYpr`jINt:8\6-P9+PC2UM:^QAreU|nʿ~m~kau\XoSVjNS`FV`EX`H560560560671782893:94;:5>=8>=8A>9C@;DAHC?HC?HE>HE>ID>JE?JF=JF=MF2@@4Q:2r1/KLRX>D0603//1)2"9#>";< =#;%6%6)8-6/4,92@:C<@6B7A4@7>->-5+*&"%%++2.4)*.+3,4,3,3-0-2+2%6&2&7,6.>7`UqeSVBM:WIf[d_RTCIFMAE??@<@8?9FAMLJP@K9H7H5H3E6G;M9Q7R6R6U6X9];ak?m@qBtBuBuBtBpFmAaEeJlKkVt_z]vj~p~mx]aCAg6/hB7sUJye\}vž˺tqexb\sY[oS[jM\iK]gL561561561560561671983983<;6=<7@=8B?:DAHE>HE>HE2G=1E=2D;2C:1C:3A:2A:4@93?74<73<71>7/>7/<8/=90>:1B;3C<2D=3H@5I?3L@2MA1NA1P@0O@-O@-L?/L>1M<2L;1J91I81E80C90@9/>:/;;/<<0=>0>?1A?0S8-<7\[ZY86.*1+/&2#9&B*F,D)A&A&=$9#:+;0:07.<4CD;=<<@9>48,6.94HH@E:F;I:I8G;I?NAU?Vi?m>o>p?r@r@tAqCjMmSsJhAaTsge]w_xg{pqxgg^X{ZQ~wļ«zxlzibu_`rZcqWcpTcmT21/320542651875984984984;:5<;6==5??7AA9CC9EE=EE=HH@HH>HHENE>LC4J@4KA5MC9LB8F=4B90E<5C:5@93@85@85@86<74<42C97B94A96>95?:7>:7?;8@<9B?:D@7G@6J@4L@0O@-O@+L?,G@.G@0I;0K81M53L76J88F;9C@;6904.=.<,=/D7G;?22&9+8*8+8-8.5.3/1-/-.-0,1,5,8,:):(9&33"8'7'6(B5SIMETL[X\\PR>C9??GAFCDBB?9<3;/?HH9H?:F=8B;5D:8A96?74?74@85@85=85<73=31=31=52=85=96>:9>=;>=9B?:D?9G@6J@4M@0O@-P?+L@*B?,B?.F<0H:1J65I56F35@65A=::=6;>5@@4E<-J9)^B4L>QB;-2#6&:'7$9%>*;%<(?,@.=,9*7)8*9):*:*<,?/A1B/@.?.:*=,F7H:?28+6)7+7,9.;-8;1:-<-=.E5L?NEGC@A?B@I@JDMCLDPFTCT?T>XBaGiCi?i@jBpFvJzK|JzHtKpQs\z_{WvNqEkDlEjKi^rnukLI~t̲Ŵ~/.,0/-10.21/43/651762761:94:94<<4>>6@@6BB8CC9DD:IF=JHGG=EE93>:1>:194.:5/;60<92>;4?<5?<5@<3E>4G?4I?3L@2O?0P?/P?-L?,<;&:=(?<+A;-B71A62>42;30=84B;5H94N2.Y,)l/.<>GF;02$1"9)<)8%7$;(;&>*A-A/>.=.:-->-<,?-8(>/K>G:6*2&9.6,6+8,:.:/9/6/4-0-.+.+0+2'6&7$7#8%5#9'>/=.6)9,A7<5?9EAKIJJCC@BCCCAD?B==4:.8*:*;+8)D8NHJH?B=ABKHR@I@ICOGTEU@U?XA_EgCiCkFpIwK{L|JzFxHwKtOuZ|aUvCdIkTv?\I`{||aC;{pճξ/.,/.,0/-10,21-43/54/650983983;;3==5??5AA7BB8CC9IF=JF;LI:MJ9PK8OL9QL9OL=LJ>QPL^]bmlzzz{urke_{YSmTLdMEZG@PB;2?=1@<1?;/A;-F?/H?0K?1M@0O?0O?/P>0L?/@=*?>,@=.?;/?;2>93=:5:94<94E:6M51V-+j)-188C=C8/7(:*?/?,9&8%;&:&<)?-@/?0=0=1>2?3=29.8*9+:,:,9*;,<.B5E9>32(2(9/5+5+6-7-7.7-4-1*0,/,.+0(2&4$5"5!204&<.=/:/=2D:5-60;5EANJKIC?=8@9A8?5=09-9+9+;-4&?3HBHEAB@DGMNU?G?GBMHUHWBW@XA^AcCfFmIrMyO|L{IyDvN~R}KrMoVuUuMjGdLg>Vdtӏd92lJ@ypХº10,10,0/+0/+10,21,43.54/77/880::2;;3>>4??5AA7DA8IE:LF:NH:PJ:RK9RM:SL5M@7K>5F<3B92=82:946;47<59<5>:1H4-Y2-x89?D>E8<;0=,@.A/@-<);'>*8%;(=,=.<-;.<0=3?6>3:/7,8-8+8+8+7+A5C89/1(3)8.5+4+3)4-6,6-4-2-/*/,/*/)1(3&4!542/2$6)9-;1?6E=F>@7<5@9KDNGE>;1=1=1EBLIUJYFXCYC]@_BdElJsNzO|LyIvJwTT}JqImStVtNiD^F]Xk󝞎HFk.)ke͖ɿȾȿ¹65154/32.21,10+21,32-43.66.77/880::2<<2>>4@@6CA5JD8ME8OH8RK;TK:TM=SK>RKAQLIZW^li|~ؚ̙ޙڔԌɆ~xvnkfe^[xWTiMKYDAJ>*F@*G?*H@+IA.IB0IA4HB6HA9G@:K=?52<0<+?-?-?->*?+?-8%9(:+9-9,:.:0<4>5;4918.8.9/8.6,8.C9A80&,#7/<42*3,1*2+3,3-2+/*-*/*/*/)1(4$5"6 57#3#3$3&5)8,<1?6YQRJIBC;F=J@E;>1:*;+:*:)9*;,>0A3A6=4=7A=EEGHIMMQBF@CBKKTN[JZF\F_A_BaEiJpNwOzNxLvQ{R{OvOtVy]{SoD^TlQddt`dMMjgΏX=:5;8185063,41*41*52+63,74-85.:70;81>;2?<3A>5C?4KC8MC7PG8SJ;WK;UL=UK?SJCSJK]Wcomśڟꢩ뙛啘ݔ֐ʉzyrqfc~ZWlPN\IGRFCNCAL??K==G;:@;9:=:5?;/C=-E@,F@*FA+EB/EC4CC7BC;AC>@ACBLD@NEEOCHNAIL?IJ?HECHAA=2L:.gF7OAJ=?48+>/>,=,>-@,@-?-=+8'8)9*9,8-8.91;5:4:3818192:2706/=6>5912(4*<3<34+1*1)1*1+0+/)-(,(.*/*0)2(5'6%6#7"9%8%6%5&4(7+8.7/NGXPZSQIG>D9@7>/<*<(<(:'9(;*>0A4D;@7@:FCIHHGGJIKFHBDDKLSP\O]L]K`D^DaFfIlNuOxOxPyUzUxTvYx]{ZwQkI`WkUgM^^mKZTaTcXcefȃ~嫧@=6>;4:7074-52+52+52+63,74-85.96/;81=:1?<3@=4B>3JB7MC7SG9VJWK?TICSJM^Xfpm˜㤬ꝡᙛ֕̒ĉzxji`]|XUpRPhOMeOKdKG^FBS@=H?:>?:6@<1A>/C@/CB0BC3BD7?D=>D@CVDHaMRhV[n\br`dobbje`dfXWaJDlG>TFXFJ7@->+A0@/@/@-A.A/=+8'7(8+8+8-6-7/81;4728372939494836/A:8/3*8/>5=5916.2+0)/*0+/)-),(,(-)/)1)4)5'7&7$8#7"8%8'6&7)9+7+5+5,NGd\`YOFA7;29->)>'=';%9&9*2D;A9E?KHMJGDEEHGIICDFIMSSZR\O^OaH^G`GdIiNrQxRyTzUuZx^}^|TrMgOiYn[mctM^UfO`UgL_R_^_vqלB>5A=4@<3>:1<8/:6-84+84+62)62)72,83-;60>93A<6E>6I@7MC7RF8UI;WJ:XK;ZLA[NHTIMXR`gd|~ʗ㠩쩫蟡ڙҍurhe]ZXR~XQ{YQxVOpNI`C?M?:@?;:B?8>>4AC6BE:?D=:CB>FH?LUEWoSfbqistvxo_m[cXZWUVMM?@.:%:$=)=*?,@.@.?-=,;,6'7)6*7-7-8/91838495:693616183;4D==670@7[Rlc]T?63)2)2*/)*&(%((**-+0,2+1'0#1"4$:(;&<(<)<*:,9+8,7-@881GAc^XQB2>6C;PJXTNK?;?:HDIHGEJKPTRWNVLYL\RfOfJfJhMnQuRvRvWvXuXw[w\xZsWnVkbuVg\m[lFXDXQeVefgieʏ網C?6B>3A=4?;2=90;7.:6-95,73*73*72,83-:5/>93A<6D=5H?6LB8OE9TH8VI8WJ:YK@ZMGUJNXP_fay{ɔ⛦뢣㘘،ɀuqjfd_`W`V]TVPtMIbFCTBAIAAC<<:AB=FEACD?A?@DBEOMRWVdchqu}}||p`uYiVaQUHF@4;)<&>(8$7%9'9(9(9(7(6(3%4(7-:2<3=5<5<5>9<7<7>9B=C=C=A;@:B9@78/1(5,H?ZQ@66,,$)#-)//,-((0.4/616.3)2&2%6&:';'<(:(9*7)5)5):05-=6PJTQLHB?1(;(=&<';'9(9+:.:/>4B:NHXQRLD=C;HCLHJFMLSRTWPVNVOZVfUhSkRlQoRsStRuMmUt\|_}\vUoRiReUgRbZjZjN^ScYiS^`_^W}٩FB7EA5C?4A=2?;0=9.<8-;7,84+84+83-83-:5/=82?:4A=4F?5JB7ND8RF6TG6WG7WIB[FKpW]cus{{vpcSpF^K\HR<<5.9*<'<%;);*:);*<,<-<-<.6*8.<1?5A8>7=4:484404093B@64--),*-/+.*,*)/+3/5.4+2)1'3'7(:):(:);*:*8+8,4+<4:5<7ONYWEE3/<-<(;*;*9+9+8,8,=3A6JAUKSJG>D:G>KDJDLISPSTPSMSNWXdZh[pZrUoQnPnQrGmPvZ}[{VrSmVm\mXiZh`n`l]gfnfm\_]W{OFmfݺIE9HD8FB6EA5B>3A=2?;0>:/:6-:6-94.94.:5/<71?:4@;5C?6HA7LD7OF5SF5UE5UH8VJ>YNLXNW^Zqppԕ革ꗖ⌋׃}yumpgf`_ZYXQQuGGcB?R=5DH8BT=C`@EnCJOU^ggxknoi`WxIg;U2HAPDO;=82?0@,:$5$5%6%5&7(9,;-25&.F7I/?0@3@36*LBJE50GFZ\IKA?2F9OBPDH7/=60=60=60?82@85?:4C>8EA8LD9NE6RE4RE2VF6VH;ZMGVMR[Whlk~Δ㜦铕⌋نу|vmkde_aY[RQsNHbWFY_CQmBLFPLVU^[dZhRpRuTuPlJbBW8J.?8ECMGL>>>8F:H6@,>-=-<->/?0B4D7E:E9B7>5;26-5,3+2*0*4-6090807/6.6-/&6,8,2#2#9)>-;+<-D8JADA56*-*-/26755411,0*/,0-1.8191;2;2=1=0?0>17+WLaZ;6;:PQFHPQ<4:/8,9,:-<.<0:.:-<.A3H9I;D6@2>0F1E6E6F7E8F8G:G3;18/5-3*4+4,7.81;4=4<3905-5,7-.$;0=.1".7&<+:(8'8):1=9@@<>37,/,.+**)+(/,44889;887573717-6*5(5&5(PEmcHA42CC?CVVA<>4807,:-6D=5B;5A:4@93A:4B:7@;7A@;CC;IE:MG7OG4RF0VG2UH5WJASIHXR^jg}Ēژ礧ퟤ蝢晞┙ۋ҆ʃ„ymczXiQ_NZIRAI=A=;?9C9H:I8G4C0@1TIG?;76488;<9874:/<.;.:.8+7*3)2(5+3*3(3)3*5,6.8/>4<2;18/7.6-4*3)3&3%4%7'=)>*9$2:&4%1(51<<=@8>37-1-.--0/439:;=9=2603011/2+2(1%3$1$=1j_TL95@?:=RSJHC=946.9/;0<0=/;*?-A/?-;*;(;+<,>0>2D:LBPHNFLINL`dahhro{hxZkUjZrYs]tarjt}wy_dgtm|eulw좟Ĕ|ikVHQSK>PJF>DF@D8=65B;E9C8A5>29.5+2'2(3(4*5,5.4.4.4,A8>27,6,8/:.5)1%8(2 1!9(9(4"7%C07&8*7-5.4053:9?>LKHFBB>?<=8;26+2+1)/,./.1+4*5)7(0!.dY]S@:DC;;MMRQHE<96/8.9/;/:+<,@-A.=*8%9&<)?.7)8,>3GRJ=RH4G?4H>4F?5GC:GE9JF:NI6RJ5UJ4VK5VK9XNEULMZTbkh{~Ñט磤쥨ﭩ▟֦ζgzL]ER>M;G?<=EB:4D;E<1)KFJICE>B<@<=<;B;?7D;MAK>=06)9,7+6,5-2*/*0,2/50@79-2%3&9+;-8(2245!4"4"4%5(5)0&3)5)6*5)3&3'4)2)3.5233/2-2-4.5-3+/+,0.5.9,7(4%-3"XHYN;3NI41HHOPJJBB<7808.:.<-=+;(9&;(<)>,=+<,8,;0=1?3?3@4@5A7japic_mjqqadgmpylzhxdobidjlnqoqoy{}Zlcwbp}u]rQJY:LR8snZ˷YOCYOCXNBVL@UK?TJ>SI=RH31OPDG@E;B8?8;9::8;7E?=5=5G>LAD6:,9+7*7+6-5.3/3/5584>5;-6)5&6(5'6#49$9"9%:&<+<,8.4,4.5-6-7)5&5#4!4"2$2(0+.,,-,/-2/4+.,-0/2.5+5'8'9'?.*D5?2F>VPB?BAUVRRJJC@>6:/8-8*<+;(:'<)>-?-@/>.:,;0=0>1>2?1A4C5i\mdb[kfolbakltxq~o|ht]fY`bfqpzxvwx~Rd[p]njk[sOO_;SZ;us\ĺ\PB[OA[OAZN@XL>WK=WK=VJD=?==C=DB;A8>686696<7HA;15+A5K>H:=/8)6)7)7,6.507187=93*5*6,6*5*7):*>,4!44!7#8)9*4*-%?=>8>6<.8)7$7"8$7%3&/&.'/+/.//./,)0+5.5,3&4%9&>*A/1 SE;0A;C?KJTUTVTTOMIEC<<27-6(8'7%7&:'=+>-=-=,:,;/<1=/=0?0C4E7\Qg]aYlgpoabfgjqR^^kgsem`gfjqqxwtunuJ]Rh[m񜡣b`VoHRd>W`Axx^\PB\PB[OA[OAZN@YM?XL>XL>UI;TH:SG9RF8RF8RF8RF8QG;LE;KG?@EDA<61>:ZYAB@C=B:?8997<8A8E;:.2(/9(8)9)9/:/9191;7>82,2*3,5,5-7.:/=/7(:)<+<,;/;0<695CBA=@7<19*8%:&;%=)7'1%1%1(3,1,/*2*5,7+6*5'7%;(>*;(<,^PF<3//-@@WXturqjg^YPIA75(. 8'8(8&;)<,=-=,<-;.=/0B3F9MA`Wa[plst_c]a]dHTYegrgoelkpsvvvpsenDXKbXk뒖_zYRkCSh?\gEy|_\PB\PB[OA[OAZN@YM?YM?YM?WK=VJOGA@?IE?93-C??=@0=-;+<):*;*;/;/8/9083:5:663202143402+0'2(7-;18/3/40;1;-8'8':(<)<);)>-:*>2C:/-::246753;7C?KFQITITHUG?0?.<,=-=.>0?/>0<.<0=/<.<,=.A3D6MBbZc]olrr`c`e`gkvozkv`h_flqy|y|ms^jAWD^Uh懍h^[tJ_vJhwPfǻ伺޺޼[OA[OA[OAZN@ZN@YM?YM?YM?XL>XL>WK=VJQI>RJ?SK>UL;XM;YN:ZM:YL;XL@ULGYSWe^nnjut~}ȎώԏՏӐӋʄ|u|ovioljkdzYvPoBd7V4L9I@EFBJCJEGGCJ=N>NCIBDA>ID<54,JALFBA>?;;=E?G:D0602213,5)7'9(<(8$6$7);->2A5@7B7G8A1<):'<)=*<*8&:+8*0'C<2/?A.3*,1/6/83928.5*2&1#E5A2=.:+9+9+:,:,<0=0>/<.<+=-?0A4SIg_d_kinochjqoxp}s}mwbkdnrzx~quipWfAY@[Qf}zkn]oZy`rկӦЧӫԮֱں[N>[N>[N>[N>ZM=ZM=ZM=ZM=ZM=YLUL=XLNAEFDA=HB:/7,PGC=>9642153>8E3>4=4>6A6J0/..59583/7.82:1;1;0:0;/L?F:@19*6)6*7*8*;-=/>0=/=,<+<.=0LBc[c^kiosinrzvfroyq{jslvwu|hocnRbB[[N>ZM=ZM=ZM=ZM=YLVJ>XL>YN783/,*(/*;4C9C6>/<-;+<):';(<);'8%5$7%8)7*6+3*3)3+33588<4:-2(-(/+1-3)0&1)6,?*A!:/"1'0,10/2-3+4+6*6+90=6>7:4715192H=K1=.;,9*9,:-<2YQb]ppvymrq|r}zxhqepq|ukv^jOaA^8WG^ntn}fgqͭܽٻԴ̩ŸÑřȡΪѵνȷZM=ZM=ZM=ZM=ZM=ZM=ZM=ZM=XK;XK;YLYM=YLCXMIXNO[QY]Ub`Yia\rjfokspvq{u}ɌLj~yrstl\GNB9@<>=?@@CBICMANAL??@9?6>3,6%:'<);(9%9&;(:(:'9(6(2$."0&7.=582400-**&(%'%'$)&,!)".'7(>!;71'8#.#++---+(.*416464776523./,,/,92:191SK#+#F@.&.*<7E@:7/*.*51<7>4;/5)3&5*;.;08.bXZOC:6,:/8-3'6*1&2&2&5&6':*<.=1:0C;\Wppsvx|yq||wt}s{r~r~mygt`nI\>\>]@Xel|m}f~cjw|vzqyo|rvuwy§̹Կ̺ZM=ZM=ZM=ZM=ZM=ZM=ZM=ZM=XK;XK;YL]M=]N;^O<\O<\O>]P@[OC[NFYNJZPQ\SX_U^_Wfd\tibngqjxpyċď~tnqukW}8?:A==;;<;@>D@IAI@KBG<9=4<1;/:,:-A5JAFBA=6351A:C8:,5#8';(=*=*;(;(;):)9(6&2%2%5*8.91911&0&.%,&+'+),+-.)/$,$0'7$;8300.93<+2(,.002+.:>7=4:26050325872-;582E?EA/+2."51?\>\DZdjyqzdu\x]ckppmr`m]i]g^lbqeyizktv|}ƷǿϼƷ\L<\L<\L<\L<\L<\L<\L<\L]M=]N;^O<^O<\O<_RA]QA\PD[NFZOK[PN]QS]RZ_SgcXvh]kbskv|}vpuviRv:A=E@GAH@E@B;6908-9,9)9*?3F>D>:775;7C=PFH<3#9(:';)=+=,<+:)9)7)3$/#5+=5@9:24+4&5&2%/$-%+%+(,)+-(+&/(6%:733%70;5A8C6;3=6=8<7>7=3<2:.7*6);/@6TMgeorz~||yxwsn}gv`p[mG^\FZ`c~gy]iQhOmRtX|^}`x\qXazP_PaUfZnaug}j~mrtxyyz~ǹ˸ȶ[K;[K;[K;[K;[K;[K;[K;[K;ZJ:ZJ:[K;[K;[K;\L<\L<\L<]K=]K=^M=^M=^M;^O<^O<^O<^Q@^Q@]OB[OC\NE\OG]PJ]OO^P_bTmdY{i^pg}u{{zxudMlFRA@A=E;H;G;E9A:@A2D:<731;9A?D?SLUJ:+:*8%7%;)=,=,9*8)5'2&2)9/>7>850/&5+6)4*1'.)-)+)++),','1)9'="<>%A6H(6.9=9?9@8?5<2:.9-9,<3OIc_no|~yyyxtn}et^nVhE\8V^N>\O?_OB]OB^PE^OJbNYcRecTqdZ}lexrwv}‰΂wlXwD_CUEQJPIHF?EEACC@C@GBHDICDA?@8@7=/:+:*9)8*;.?6FB=;BBAA;6KCXLK>A38(3#8(<-:*7)8+0%3)8/;4:562/-,)0,1-10312537486;-5,6.=0C-F)H+N3R9L3?@M_lkyWfCS>P3D3A3@7=99834*/$2*.(72YT\ZXVAAHFB@<7706-9.9+7'5#8%8&:(>.;-6+7.>6NGEA501->9@:815120215283:2:/9.:.5+7-IB_Ynl}v}w~yxsk}dv^pRgF_8V=ZL]TR{`CWhCAEBEFBDAECFDGDCB<@5?3;-8(:)9)8*:-;3IE@@=>782/B;ZPh[QDA34'6':,9+7+8,0&6-;4;440/,-+--493;3=3=1>1>1=1>0A1D4K5N/P-Q2Y>_3HO\an_nWfP`DX8JAQ:G2;/22-8-;+;+:/2(JBkcLGPK;9;9LJ@<817--9+3':1C=GAD>722.;7:62.2-,-,,/03171:1<1>26,4)B:YSjh|}v}xzxqi{bt]oPeIb:X@\O_QNqX:Sf8]uEa|InSvY{]~`gll}m|o}ponllqqrroprtvtwï̫ZK8ZK8ZK8ZK8ZK8ZK8ZK8ZK8ZK8ZK8[L9[L9[L9\M:\M:]L:^K<`J<_L=_L=^M=_N>^O<^O<^O<_P=aP>aP>aP>aP>aP>bOAeMMdMW`O_aUmgbuq|vsuΆ~qyclP[;M*F2Q@8>3>19+7':)<*<,=1?7>;9903/24294NFlah]QCD>63;7UQF@918-;-:)9(=)>)<&;'=*7(3(=4LFGAE@963073620+1-,/+-./1/4/81;1>29.3(;2NHa^yzz|{xn~ew^pZlL`Ia9W=YM]KHhQ1Qd6\tDf~Nv[chjnsttr}pnmllnnoolknrttwƯο̻ʤ[J8ZK8[J8ZK8[J8ZK8[J8ZK8[J8ZK8\K9[L9\K9\M:]L:]L:^K<^K<_L=^M=^M=^N>^N>\OaN=bL?hOKgNRbP\cWkjfwv}|xzƄ}uzklY[DL0J5T4=0?1;+8(<,?.@1A7C=7485//30;70'5)UGvl[PC7<0;08+6+:0708263320112364<&7#9"9"9!886649%B)H&J'M3^Ehbu`lWcQ]P]MZ@M2==F7;/./(5';(@'>%9'8+VJ;2?8412/C@WSHA916,7)5%5$:(<(:&7%9*4&1%?5RJIDHC;62.411/-+22,/+.+-++-*1*4,8,=12(7.IB\Xww}vj|_sXlTiE]D^6U:VLZHC^K-Mc5Wo?b}Ju\glnrvzwr~m|i}ghikmmlh~ijosrxũʵ¶Ş]K7\K7]K7\K7]K7\K7]K7\K7^L8]L8^L8]L8^L8]L8^L8]L:]J<]K=^L>]M>\L=[N=]P?^SA`SB_RA`P@bQAcRBdQBdNAdLBjMIhKMdPYf[lnkx{Ђy~sqjba^JW>Q:L?PCQ@M=H>F=C9=4;0;-7'A0<,6(A5F=>67285715.6-8*<*:'6%;2SLYQE98*>.B3:-3+GB//5:6=,7BM'3&2)2(2'!+'0(0')+7 .&7-C#;Xs.E]l_iZcU\PWHM?@95>7A7?17&3"6#;'<)8-80E?;7317554DCLHKED;:04)5(5*5*1=3_Ysqxh}_w[uUoLfEc:Y;[?Y]i@;VF-L^6ZuBhNw]}cgjpqnm~l}i}hfff~kmnk~gfgimrv|z]K7]K7]K7]K7]K7]K7]K7]K7^L8^L8^L8^L8^L8^L8^L8^K:]K=^L>`N@^N?[N>[N>\P@^RB_SC]QC]OB_NDaOEbPFcOHeNHiMJgNQeS_h_tony~ʣxy|{vji`]aOZFRHUJYFS?J;E9A:>::=8?7?568,D5H6>,/)((-%;7TRHG5456==WUGBGAA99/3)6,7/81=3915.3.4.83?9F@JBA86-0*/-120303041202/00.2.4-9-=13$aP@`P@]P?\O?\P@[RC\RF[QG\OG\OI_PMcQOfTTgUUhVVhW]h]nmhsv|ˊԘנʪ}π䄆vsjfhS\GQFQGTEQ@L=G8>7:99<7@7A4?0>->-<+:,B6H?;21*:26/6.7,8,7(8&9&:*4-4.A9OCH:5%3$@2>5HD135;7@4@ES2?)0#&$'13-/''&'12)*8:+1)14@R^=M\i^fV\OTNSEI:;74?96,?2B5=17-3),%' %0+EC::--35AB^]@;C=A9=39/=4A9@;@<=;==@A>>::?=JGA;<45,2+1-311202040202/00.2.4-9->24%8+;0[Tzw~rdy[tTqNmFg=a<^FcTgAHp;3SH2Qa<^yFhNrZu^t_xc{g|hyfyfycxbyb{b}b|czh{j{h{e{a{`}`bjnstwuynpmTdYCOM4@>^M;^M;^M;^M;^M;^M;^M;^M;^M;^M;^M;^M;^M;^M;^M;^M;^L8`N:aP<`Q>]P?ZN>YOCXPEXOH[QO_UTbXYeX_iYcl\fk^glaimeroktty~ʆڍᎇןӭijy{ށzwsrcgU\MTGQCM>I;D6;8897<7@6B5A1?.:*>-=0F:SHH?5.1)9181<1=1;-6'6&8+5-2+>5NBL>:,8*B67.>:/0164<8BNZLU>E38$&/1,,22**/.::37,28BENXcNW=CBEBG>C:>8<88978391:2A:NHVSNNCB7295KIMLRSYZSRYV51>6B9@7?5B9C?@8=9??C;@58>?MJ93603+3,4.41210102/2/2/0/.1.4-8-?36'5(:/VO|yzocwXqOlFh@c9^?`KdZh35g;0WO8XhDa{KjPsYt\u^wbyezfwdvawav`xaxa{a|czfzg|fzdz`z]|]~_gntsuqtiidRbUFSL:G@_N<_N<_N<_N<_N<_N<_N<_N<^M;^M;^M;^M;^M;^M;^M;^M9]K5_M5`P9_P;\O?ZNBXOFXQKYPQ`W\g`hnfsshysg{sg}ri~pm~pqsvx||҅敍㝌ڠulnqvlvismllgi^`RYFM;D7=6<8998=7A7B5B0@/7)A4;1;1RH\SME;2907-9/?4=16*4'6*3,70=5E9F9B3A2>20&720/.1.47?PX]dZ_OS.103,/DG66,,-.>@3637bhE@^[hgopjjKK=;40>7E=C;>5<493436<-9,6.8,6,39>JK3/3.3+3,5.404/2102/2/2.0/.1.3-7-?38*2%8-NG|ywl|atTnHg>b:_6\BbNeWaq0,_?0[W>^lIf~NkSt\u_v_xcyexdv`v`u_v_w_x`{a|bzd{e|d|by^y\{\}^agmpsr{nrjfwe[k^RbU_N<_N<_N<_N<_N<_N<_N<_N<_N<_N<_N<_N<_N<_N<_N<_N:^L4_N4`N8^O<[N>YOEZSMZTT_Zahbprmzu}t{qzpvpqtrxu|y{φڍޖܙ͛~yl[R?MBQIWRWUSTKO>C5;9<9;;9>9@8B6B1?/:-A65+.$I?g\dZUK=35+3):0;06,3)6-1*82;29/>0F7B59-1(5.31./*.17EJV[]b\a9<9<+.JM890057()'+W\>C:>7=#),<>BF49,21716(.37KNaehncl_k`lbkLLNJ\ZVTMMHF423/ACJL1.3,3,5,4-4/4/4202/2.2-0..0.2-7-=1;-2%7,D>yv|qhx_rRlDc9^6]8]GdN`IMe5+VD0[Y@^lIe|NkRt[w_x`{dzev`s]s\s\t]v^w_{azbzb{b|b{_x[xYzY{Z~_ekmsuu|rvpnlfwe_O?_O?_O?_O?_O?_O?_O?_O?^N>^N>^N>^N>^N>^N>^N>_N:aO7aP6aO9^O<[OC[RK\VV_Zakgvso}z~|}w{uxvsys}z}ąɍΔ͚ǠɭŦmfJE2A4A5C:IEOOJK?C=?;=<;=:@:@7>1=0:2@84,1'J@bWg\eYOB>24)7.905,2+601-507/8/>1D7>04'4*0+3/..-.1478BEMRY^FKQW48FJ88;;>0>*8.:;ECHAD1/4-4-5,4-3,4/5302/2.2-0..0.2-7-:/>01%7,;5sqvi}at[pPjCb8`8a;aLhO[~86]=0NF1VX@ZeEcxMjRr[v^ya{dxat]pZpYqZqXt\u]y_x`y_y^z^y\xYxWyV{X_dhloqoxjril~ddv^_O?_O?_O?_O?_O?_O?_O?_O?^N>^N>^N>^N>^N>^N>^N>_N0G?WQWVNO@C=?<=><=:=8:19080<7:3>5PFXM]PeXcUM?9/8.914-2,60403.5.<3C7B6:-3'5,.&0-0-3154-.35BFX]W\ouDJHM=D[`ou>C}mqQT>@02:=IL9@8@=F7B-8>J]hmwjrcn]g^kap]nYe\]OKJG7401540.95D?JDJB@86/4/7177'/0<2>,70:>E>C443.5.6-4,3*3,4/43/2/2.2-0..0.2-7-9.?20%6,61onpcx\pXnOiBb9a`P@`P@_O?_O?`P@aQAbRB_O?]M=^N>aQAcSCbRB`Q>dS?aP>]P@^QI[QPZSZeapsqyxz|~~~yysrnntwv{̀ʋƖäƳ̰ϬϧϣУ˜˜Ѩg_IzgtgH?QNccKL?A89:;:97553;67350B;=3I?XKOAdVcTXIG;:/6-7/6/4/0-2,70=4=17+5(7,0'/(/+1-2040517579JNY]OT8=6=IS_`igrepbmbp`o]gSSFA854111/.3194D=B:?7<4908193667<5<4<4<5=59351/3,5.7.6.3+2,2,310303/3.1//1/3.7.?58,6,/&;7XW{me|\tPjHfCe;d9`NlRd=?R,!C;&CG.KM5Z`DZjEcxMqZxbx`t\rYqYlSmRnSoTrXtZu]u[tXtWvXwWvWvUuTtS{[{]z^u[mUb~MXrCSj>AW0?U/`P@aQA`P@_O?`P@aQAcSC`P@_O?`P@bRBcSCbRB`P@fVG_QF]PH^TSaZad`omkvwxz{}}x|rvlompoquv|~ՉӘΨǹźαתۥޥݢۤأѠǛӼ|eŋw}mVJa[rpZ[KL?@>?>@<<6655=883?86.>3LAH;]Mo``QH:5)1'6-5-0)5195=7<38.5)4*5*7.5-2-0+0,2,4.5287>@JNW[]d\d]eaiS[NVQ[_gjqflZ`NT4:,5*6-9'5!/'67DO\Zdbldmencm[hQZEE<7646355302/62>9>7<5:3818295:68;7:6:6;7957312,4-6-7.6,2+1,1,200303/3.1//1/3.7.<3=28.1*74Z[s}fz^vVqNkGg@c^QA^QA^QA^QA_RB`SCaTD`SC_RB`SCbUEbUE`SC^PCbUM\QM[QRcYbkdtqmvuz|y{y~x|oteibfjnru}}ׇݗ۩ػؿۧϡÞlpo`RG]Umiuu__JLAEAD>@8;68=;;6A:817,>3=/G9j\i[\NB63)4+6-2,52A>GC=62)1'3(0'4-1+.)/)2,80=4B9-(43CEVX^bZaS[Q[GRHSO[\fmvntY_>D.5-42<2>+9'66EKWISPWW_^fck`iRYBI977175<8<<955160:3;290907194;7<8999987888866402+6-7-7.6,2+0)0,10131303/1//1/3.6.:1D9914./._blwbxWsPmLlBh:`<`IfSgDJm<5O>,=<':?(ED/FH0Q\U'D[/E_2Ic6WJ:ZM=]P@^QA^QA^QA_RBaTD`SC`SCaTDaTDaTDaTD_RB]QEZOM[RWbXcjcsqmvuxzz|w|symrdh]daglrx{ʉߕ夡䷴۪ө¡vqrcbWi`rmut[]LNDH@D;A;=:8<8F@C;:0:/6)1#I;aRj]SG:/4)6+4-42MKZXKF914+4+2(.&-&,%-%1)6,;0?4/'4,:8CBFHEIGNMVQ]VbXd\ggrmuYa;@28.4.7*4%2)5@?=;957282918080718496;8:7;9:7:898845.3+6,8.8,6,2)0)/+0/232303010/1/3.6.8/F<914/,,fjygtbyTqKkGj=e6\=^QhXeBBgC7[N;GF1AC-JH3EE-LU6Sc>btLlUpXoTmPiKiIhJhKjMlRnToXpXtXsUqSoQkNhKeHdG`D]AWy=Rq8Mi6Lf6Oe7Of8Ne7Oi9Sm>UH8XK;[N>\O?]P@]P@_RBaTD_RB`SCaTDaTD`SC`SC_RB^QIVMR_Xhnf{uqxtxwxzy{txlqbf\c`fkqv|ƀΓ䮭罼߹׶еƱy|qvksimeoi扄~sredWYMNDG?A:7;7B=E?<3=3B52$0"J;3;2804-2,1+0)0'/$/$0#9,4'2*;6CAEGBG@HDOP[VcVa^igoYaBG:<5728282=9CHUVa7@4;6;ADJOIMg9c8^EdZmV[wE>dJ=aYFTO;KI4PI7GE0GP3M]9ZlFf{PmSmRlMhJiIgHgJiLkRlSnWoWtXsUnRkOfKcHaF_F[CY}@St;Pn8Ok:Rl=Xn@ZqCWo?Vq>WqARE5UH8XK;ZM=[N>\O?^QA`SC`SCaTDaTDaTD`SC`SCbUEbWQ^Vckf}yu~zzyxyvytxlqcj\c^diow}ǁшәݣల㼾þŹyztyvqulelepha[`[smyu~}|yrqccSTHHDB>:<6B<:3C:UK>26)9,=.?/B4C5@17-30LM_]WSD?:48181939292:1:09,8+9*)3"@2I>D@;:7;:@8BHRUaXd^g`iU[AE@>?;@CGJLTQYT]V`3B;?4804429697532020404.<4=4<5;4837343439998889997755/3,8.9-9-7*3)1)0(1,334323111/2/3.6.91<3710-@CnukubqRiHf;c5a6b?eNi]jGFjF:^M=^WDYR?RJ7OF5ID0DJ.GU2Sc>^sHgMjOjKgGgFfGfIhKiNkRmVmUqUpRkOgKcH`E_F_G^E[~DYwAVr?Uo@YpB]rG^uG[sCYtAXs@NB2QE5UI9WK;XL\P@^RBaUEbVFbVFaUE`TDaUEfZJi^Zngwup|x{ywxvwpujoch`g`femqx~͉؏ؙ֪֡۴ߺºɼĻqqquqppfewhenj_Yd_ZTf`sozv{yvuhhZXRNHB=8E><5G=\R;0<07+7)>.C5B3A1B486>>CCB@=7817/7/:393:3;3>5B6E8G6-;%J8L==50+009>AJLWU`Ze]eYaLT>@4/7/;9@@CHDJBI?F5;26368<8:14/2142095850.,*0,3/4.=5>5=4<3:59565655757576866542.1+7.9-9-7*3(1&1(1,435333211/2/3.6.;34+:520VYpxcnZiI`Ef8b0^5bBhLePYk60^G7XK:UN;[O?VI9M@0JC0@F,AO.L\7Xj@bxGfJhIfFeDcBdFeHgLhOjSkSnRmQhNeKbHaG`H`HaH_H_}I]yH]wH`wKcxOczN]uC[vA[vAJC3MF6RI:TK-2"7'E7E?973.61;5=5<4=4;4925.4+5)8+<,?-T?G2<);.=2;57435KPMRPUTYY]VXMQCB5+7+8052242618/94>3;5?9B4>+5(30:-35959./*+1/4351<6=4=4=4;6:687774635253455411-0(8,:+:+8(4&3$3&4,5253423/2/3-3.6.=4/&>935bgoy[iNcC]Eh:e0]6aFjJ]BHS-$WJ9SL:OH6[O?UI9F?/HF1>B'@J(IU1Sd:_rEe}KgJeHcCaBcDcEeJgMhPiQlPkMfJcIaGbFbHcJ_G^H_}I`|Ka{Kd{Mf|Nf~N]xC]z@^{CDB6FD8KGRH>XJ?]M>`P@`Q>aR?`SB_VGcZSgb_ojnso~wqzt~xywppgg`a\_`bfhopyz̄֎ߖ眙栞ݡף٤ڦئץԦӥѤ͢ɢȟÙ|rn}igld^`g[[kYUrWP}WNWORI[QXPZSkdyr|uqus_]QMECZT712*7+7(7'7&9(;+=/?18.<2@5<15(4(:/A690907.7+7):*?,A/=.@4E:G,@*?)?(?&?%=%=#:':+<,9,6.545;984:3;4;5:595735435465454535/5,5)8,9*9(9&8&7%6%4&5/41504.4.5+6-7,907/:6?BmwbsSjIcKj6[6_cNjIV^$#E-!?:'HE4PMB1?G/BH&EK%KS.S]8[kDavKd~NdJcF`Ba@cBeFjJlPnRlLjIgGfHfJfIcHaGeKdIbIdJgKgIe~Ga}C\|=\=_B=?4@B7FC[K>^N>aP>`Q<^SA^VIc[Xhcinlysouovptppmgfaa]^]]edkjus}{φَ易囖ٜ՝֞מ֝՞ԝўќ͜ʛǚēxtk|mdif]^f[YiZSoWM{UJVKVK]SZSXRfaqjvo~wuugdUSZU2,/%7)7&8&8&8';*;-=/9,9,:,:,9+9+8+8,;1908.8,9*9(:&9&6*80=5@8A9?7<4:24->6IAOGQINFC;7*8&8$7)4,//+3)7);+B*A)A'B#@!<=;: ;%;);-9197:;;94:5;4;5:595735446466564716/5,5)9*9*9(9&9&8%8%6&5+3-4,4,5*5*7)8+<23.54TYes[pHcIhAd;`4\]P?\SD^WMc]]ifmom{sqsoqkjfc`\[ZZ\]\_hjnowxʁ҇؋ܐݓӓГГДѓГϒΕ͓ǔĔzr|ewu^fi[[e\Wd[RgYLrVHTHZQ`Y\YZXcbkiokvq}ynhaX5,2&9*:'9&9%9':):+:,:-6*5'8*>/>/7)/":.8-7,8,:+:)9&7$6*6,8.;1=3@6A7B8:1A7E;FG=@67+6%6&7,5003-7+9*<'='=%=#;!:77686$8*;2<6=8;::94:5;6;79585755436475565726/5,5)8)9)9'8%8%7$7$6%5)4)5*6(7)7(7*7+<21+88kr]nPi<[Hl7]>e5[>bVq?Qa#(L/+;7+18(37&:;)B=*A<(@>)BB&?FXa4s~Tdw`iTb|MaI`E`@a@dAhGjJkMlNnMkHiIgGhKhKhLgKfKeJcHdIfHfHeFbBcDeEhH25*69.;<4A>7G@:KB=SF>VJ>XL>YM?YQD^WOc^bigronrormjga_WWTUWX\_aclnrs{|΂Ոًی܍אҏΏώΏώЎύΏʎƏxo_p|Y`lXYd[T^_Q_\IjWF}SEUL\YZ\X\cgkkplxs|xzu~{ka<28);(;(;&:%:'9(9)8*;/6*5'9*>.>.8(/!6)5)5)7*9+<+=*;):-:/909/:1;1<3=3E=E;A9=3=5A7@8;16(5)6/31/5+6*:)<&9&;'<'<&<%:$:#:#8#7&8,;5>9?8:8794:5;6;79585755447586665726/5,5*9+9)9)9'8'8%7%7%5%6(7'9(9(:(9):+:14/ILoyVjE`<_Ag3\8b>cMlOe0=J C1-11'/7(5<,>A.B@+B<$E>$IF%U\0p~Mr|mjW_{J]~E_CaAcBfCkJmMmOmOoNlKiIhHiLiLjNiMgLeJdIeHgIhIgHdDgHiIlL.4(36+891<;6B=9H@=MD=QG=SI=SK>UNDZUQa^eigumklkkib`XVPPQQXY`cfjorux|Ѓֆى؊ً֌ϋ͉̊ЉшъщЌϋȍ~wmYjSZnVTc\RZaOZ_HeZDxUBMETRSWRY^dejkluqunoh~v{~l`?28(;(<(='<';':'9)7):/8.8,9+:+:*9)7(9+7+8,7+7*8*<,>-<0=0<2;/:09-7-5*@7@5=49.80;1:25,/%0)2025/8-9+;+>-?/@/@/@/A/?.@.@)9)8,80:6=8=774386:7;6:79777654448486776746/6,5*8*9(9(9&9&8&7&8&8%:&;'=(=(=*=,<.7/<9^eaqPi<[Ai4_5a1YKlYq>NZ%-C),:20.1*08-8A0=B,<<"A<UH(`[5|Tnwo[aK^F`DcBgDlGoNpPoSoSoOlKiIgGiLiLiOhNgKeIdHeIhJhHgGeFiKiKlN+1%.4*470894>:7B=:HA;KD18*5'8)<,:,:,;/<.:/9+5+5(6,;/>4?3?6>37.,#+%-*02391;0>0A1B1A1@1@0=/<-9,9*708IE4>2?0@0@.6389+6<"9CSZ.QqŊˎ˔Í}{ehR_E^@c@iDoJsPsSqUoSoNlJhGfEgJiLiNiNfKdIdIeJiJjIiHfEjLlNoQ&.!)/%-2+13.333764:97=<7GD=DD/;+:*8(7'6'6(8*8+;.;/9-6*7,<1<271888=;B9B4A0=,;,:/;192:4849483657376;9<69454476;986979899877767465:5:7:8995827/7+8+9+9+;*:*:(:*;(9";#=$>'?(?,<.92<89?48F37C41=:)>D(GV-bs?aˌɋËz{efPZ|@^?a>iDoJrOrRpTnRoNlJgFeDfIhKiNiNfKeJdIeHgHhGjGgEkLmOpR)/#)/%(-&+-(///3317759:4==5?@8DE@KKKQQYVXe[[s^]}YX[Y^]eennwx؄⌌솇䂂܀ւӃ΂ȃǃ˄ΆЈӋҌϊŊ}xwozkegf]Xm[Qm[Mi\Lf^Kd_IeaHh`Io_FoP;UA^PbZYXQTS[\`ggYRD<707/:1<0;-9*:(:):)8+8,5,5-/%3)8,>/@/A.=*:(9)0"WJL@/#=12<07,8->4CC?7CD>IIGOPTSUaXYk[[u\Z^]dbkjut~·ߋ鍍년 ؀~Ҁρ˅Ɇȇˉ΋ό΍̎Ȋ|x{stknlb`e]Re_Oe^Lf^Kf^Kh]Ij^Hk_Io_Fw_G[CYFZLVPRSQXX_USKF>9606/909.9*7(8(9)8)7+5,4,4-0'5)9+>.A/@-<*9(8)<.REH<4(:-:,4&=,<+;*;*:)9)8)7)7*8,7,4*1'1(7.<5DG8>/9/:0=.;1<6?6=3624:8DDIIDC?>:7989796778798988788999:9;9<9<8<6:596888;8:59/7+8*:*:*;*<+<)<+<)9$@*:%5;(;/94dIe?L?>`;3G;/:>08>2F<:R>=N0.S8/VK7ciEx[p}Ɓ}xr^YuETp=\{B_@b@iEmHlKkMjPiOgGeCcBdEgJiLiNhMiOiMiKhHgGhGlImLpSqTtW-1#-1#,/&,.)//-11/34/56.:<1<>1@B7FGAKMLQRWVVbXWi\Yt^]fdpnzx΍ߐꐎ튉燄߁|}ȀņLjƊʌɎɍŌ|v{pujpoeci_Vc]M_aL_aKc^Jg\Jl[In\Ho]Ir^FwaIxX?S=VDXOUSOTMS>=<784716/7/7+7(7&8&9'8'6)5*3,4-3(6*8+<->/>/<-8*5)I?F84627274748596::::77888:9<8<9=8<8;58585777:7:48/7,8+:+;+<+<+<)<+<)9&@*9$6$;+0'40PT[iJ`:U7V@]HfHdNa89e?6R@2DA09=,57)?7,L:0F.$R=,g]B_t{z{zm]vLHb5Nh8\wB_}?c@hDlGkJiJgLgNdDdCcDeFhKkNkOkOkOkOiMhJgHiHlKoMuVtWvY24&04&12*01+12-23.34.46+9;-;>-?A3DF9JKENPORQWTT^XVd\Zoda~nlzwÌ֑㔑ꓐ뎋≅ق||~Ì}{vyn~rgmmaak^Vi[Pc\J^aL]aJc^Jh[JmZKqZJtZIv[FsWAxR;Q=ZG[PTPFI>A2/5/51605.5+6)8)6&8&9'9'6)6*3,6-7*8*7(9*=->/;-8+3)UK=48.A64'<-<-8(8'9(:)9)7)6(3'6*3)2)5-:3>7?9=:45596<5;2:397=<@UVbbmjidVQA<635061716374859699::78898;9<8<8<8<7<6;686797<7<49/9,9*;*<*<)<+=)<+<(:'@,8&8';-+"54`iTdG]-=@-@C.DG4IK>MNFQPNRRRVUSYX]a_lkius}njӕᔑ␍܋ӄā}||~zxtznzrfjm_^j[Ti[PjZKfZJb_Lb_Le^Li\Kn[Lr[Kw\K|[HVBS>RAVFSIG@88331-3/514/3,3)6)9(8$9$;':'8)7*5,7-:+9)6%8';+>/;.7,90\T=55+A54%:(?-;*:*:+:,;-:-8-7-3*1)1+71<7>:<87477;<8>7=7;8<7;7:::=:=7;2;/8*:*;*<)<*<(;);)<)>+9(9*8-/)@ChrM^H[EZH[O^T]TWXUdM?PM:LG4KF2FD-@C(>E$?I$KV.\gb{BeBiCkEiHfHbHcGbBfCgHiJkNmPnRoSkOkOkMiKiIkIoMrQvYvZw[?=.=>0==3==5=<7<=7;=2;=/?B/@D-CG.FJ3KL:NOAQQIRRHYWJZZN`_]gerqn{yďяӍϊǃ~yzwyv{v|y|}}x|tzrvksrffn`]j\Sk[NlZLl[Kk[Ki]Mg^Mi]Mj]Mo^Ns^Mz]M[J`OVGN@J=@7601+1+51705/4-2)4'6&;(9$;$<';':)9*7,9-=,:(5#6$9)<.;/7-?7[TIA:0@36&3 <):(7'7'7(7)7*7,7-<3;3:4<7>:>:854196;;::8:>@ORbeppheUQ=61+40;7=;;9;5;5948375655566697:7;8<8>8>7=7=8=8;8:;:>:>7=38TXepK\I]J^M[QZVVZR`RPI7IN:NI5H@+;578>O%Lf6lTw\edflt|mn}\Q`C,F7B5@5?2@4A7E7@;>9;8;;==9696968695:699::88888;8;9<8;6<6<6:6889:8=8>6<1;-8*;*;);(;'<);(;'?-5"=.8*/&\Xy|X_XdQ^KTLOVR`UhVnVPW8?J*<;C=UQ+lvDf~vs|bnMvR^u}V[b@;D)4<%5=(=D2XQ?YR@[TD\UE\UEc\Ib[IaYLbYRe][kaiqftuj{zn|pss|puj{mbrf^kc`k`_g_\c_Z^^ZY^YUaZRbZOe[Og[Ki\Kk\Il]Hm]Fm\Hj^HibOqfTqZJuOBWJ\PZMZLM?E5<,7(8-80411-6/7.7.7.7.7+7*7)8)8)9)9)9+9+8+;,;+>-9(1 2!:+H9=,2#PFKAE=E=;7487;;::777585=7F>B9:03)1&6*;/@4:0=4@8@;=;;;8;9<7:8:8:999797959551516576899:9;9;;>9;9;=:A=B;A6?19+<+=*<(:&9'8&9&A0<-/#0'LJmoloVZLNNOPOUOXP]RaTjSWZ/:M7FTa)~Poyys~ahN\mCYdBT]BHP9?D0:=,@C2=A2;?1]sBgHpKoKlGjIiKgLlPmSoSnPmMkJmJmIqMqNrNrPtRvVzY{^ycmZcPWN?WN?WN?WN?WN?WN?WN?WN?XO@YPAZQB[RC\SD]TE^UF_VGd[Jd[LcYMcYOf[Uj_]nbdpdhreltgpvirvirsfmm`gg[_bXY^[VZZRZWPXULXTIXTH\VH^WGcZKcZIf[Ig\Hi]Gj^Fk_IiaJcbMngTv\MSFWNVORJRFG:B2=,9)8,8062406.8.8.8.8.8-7,7+7+7+7+7+8+8+8+:,<.>.9(1 2 :)>.<.:-5+4+;2E:OBQCOCF?@;;6:5=7=886448:7879787797=9BB4:C0@M3Rd>^tEhIqMpLnHmJkLjNmSnToSoQlMkHlHmHpJpJpLsQuTxXxXx^mXbQYH]TE]TE]TE]TE]TE]TE]TE]TE\SD\SD]TE^UF_VG`WHaXIaXGe]Je]Jd[Je[Oe[Qf[Uh]Yi^\j^^j^`k_ak__i^\f[YbWU_VQZUOWTKUQHRNCQMBSOCWQCXRB^WG_XFaYFc[Fg\Hi^Hk`LicMbaMngUy_PXN[UVQIEE@@8>3;/8+8+9.;/:/8.7-8.9.8-8-7,7+7+7+7+8+8+8+9+;,>0?/:(2 2 9'>,?/?08+2(4*<0F9N@ND:643204297=<<=;<9<5:27375899<:@:8-:+6'4%5%8(<+=.D7C9B8>8966666796;7;7:8888:6:6;4:3;4;6<6;8:999889:<<@>B=?9;27+7(;,<+<+;):(9&8%9&z6#y6%9,F=SOWTPOIFMHSLZQ^SaWaW_VePsrFzVn{|[[o<@S%AS+BQ0?L2:C06<.69058/9;.@A3=?4:=2=A3:C0@M3Qc=`vGiJsOrNpJoLmNlPpTqUoSnPlMlIlHnIpLpLpNuSxXy[uWqX_JVGOx@aXIaXIaXIaXIaXIaXIaXIaXI_VG`WH`WHaXIbYJcZKd[Ld[Je]Hf^If^Kg^Mg^Of\Pf\Rf\Sh]Wh]Wh]Wh]Wg]Tf\RdZPc[P]YNZVKVRFRNBPL@PM>TN@UO?XRBYTA[VC]XDaZGd]Jf_LfaMdcQleUv\O[Qb\ZXFD<:<9;6928-8,;+?.?/9-7,8-9-8-9-8,7+7+8+8+8+8+8+9+;,?1?/:(3 37#=)@.?-:+7*5*7+:.4C&:F.=F3;A3:=2:=4<=5::.?@2<>39<1<@29B/?L2Qc=awHjKtPsOrLqNoPnPrTsUpRoPmLmJnJpKqMrOtSyX|]w[mSeM[HS|DNw?d[Ld[Ld[Ld[Ld[Ld[Ld[Ld[LcZKcZKd[Ld[Le\Mf]Nf]Ng^Mf^Ig_Hh`IiaLiaNi`Oh_Ph_Pj`Tj`Ti`Qh_Ph_Nh_Nh`MhaOd^N`ZL[UGVPBPM>NK:NK:NK:QN=RO>TQ@VS@XWC[ZF]\H^]Kb`Qf^QmWJ[Rjdc`MMBC;=8984709-=+B-B+;+7)8*:+9+9*9*8)8)8)8)9)9)9)9);,?1>0:(6"47 =&B-;*;,:,9-8.:0=3;59<4<3928385938176<494:7:9<7621/*6*9*:(:(:(:(9&7&:+;/>3?7>9;896876866667484:3:3<3:2;2<5=7=:><=;>=@67-5(7(:*;)<);*:(9&8%7$8%@-u4"{3%G:RJNFNGWNVMYMZN]O]R`U`YhWh|j]kHDS42@&$2-:&0;*5=.9?36;<4::099-?@2;=28;0;?18A.>K1Pb8783;.?-C*A(;*8)8)9*:+9*9*9*8)9)9)9)9)9)9);,?1>0<):%65;#A*B.@/;,7*2(4+;2=:5:3<6=8>:>;>:=9<587:9>=>=>962/0'9+=,=,>*=)<(:'8%6%7);0=3<5<7;8:787757585:4;4<4=4>5?7A:BA?A>B?@:@8=38-5(5'9)<*;*<)<(;'9'7%6$7&}:)t3!~9*OAYNRGOEWKYN[MZM[M\Q_T`YgY~wZy`r|ZVaC;E,/;%0;*0<.3=25=27=3?1:<17:/;?17@->K1Oa;bxIkLuQuQtNsPrSqRsRsPrOpMnLpNsOvTyX{\|]z]qWgO]EXBaOYISzCg^Og^Og^Og^Og^Og^Og^Og^Og^Og^Og^Oh_Ph_Ph_Pi`Qi`OjaPjbOjbOjbOi`Oi`OiaNiaNiaNh`Kh`Kh`Ih`IhaGhaGhaGg`Me^Kb[I\WDWR?PM:MJ9IH6IG8GH8GJ9GK:HL;IM>JN?KM?PPDXRF[OCiRDZNVLSLZYIJ?B9975;1@.B*<$:)7(8):*9*:*:*:*9):):):):):):);,=0=/=,<)8"49 A)C-A/=/6+/%0'6.:8596>;C?EAEBC@A@@1266:<=;;9824.4)<->+?,@,>+?)<(:'7%7'8+8.7094<9>;979595:4;4;4=4>4B7C9C9<3:/8+6(7'8):):(<+<*<):'9(7&6%}6$x3#x5%C3UEWKPCPDZLYMZN\Q\Q[T\U\WbUkbEWa>JS4=G,6?*3>-4>35?66=69@9=B;CF=EG/;9*78*=>0:<17:/:>07@-=J0N`:awHkLuQuQtNtQrSqRqOrNqMpLoKrNuTyX`~az^qWfL_G]E^IbPYKSzEh_Ph_Ph_Ph_Ph_Ph_Ph_Ph_Ph_Ph_Ph_Ph_Ph_Pi`Qi`Qi`QmdUlcTj`Ti`Qh_Pg^Oh_Nh`MiaNiaLiaLiaLiaJh`IhaGh`IgaKg`Me^Kb[H\WDUR?QN=ML:EF6EH7DH7DH7CJ:CJ:CI;EI;IK>SQDSPAYM=eK:tD6I?YSQQDE::86<4>/=)8":)9(:);*;*;*;*;*:):):):):):):);,;0:.<,>+9#37?'9$<)>0=28.7/<5?==B?DDHDE@?;7501./,51:6<6:28.8,;,=->+?,@-@-A+?+=*;*:(7(5)5+90>9C><7;5;5<4<5=4>5@5D9D:C;B:?:<785937-8(5'6':)<,:)8&=*<+<*<)~9)}9&{6&{6&z2$8*G8SCQCL=RE_SWLYN[R]T^W\VZU_RaX;EM(6@8A&>G2=F53=2-7.1817>6CF?GJ?HI;BC1?>*;:&78(=>09;069.:>06?,=J0N`:awHjKuQtPtNtQrSqRqMqLqLpKpLsQwV{\edx^jP]EYA^HePcSZLSzEi`Qi`Qi`Qi`Qi`Qi`Qi`Qi`Qi`Qi`Qi`Qi`Qi`Qi`Qi`Qi_Sj`Wj`Wj_Yj`Wj`Vj`Vj`TjaRjaRjaPjaPjbOjbOjbOjbMjbMg_Jg_Jf^Ie_Ib]IZXCSP=ML:HI9EH7AE6@D5?E7?G8?G:?E9GK=IK=BF5KJ6\Q;aE0J9j]g`USFEA@A=>5=0=-4%5&6'7(7(9*;,=.<-<-<-<-<-;,;,<-2(7.;/:+7"57!9"A-=,6)4*6/<7C?HEDEFICE9861808.4+9/9.9/8-9,:+<+<+=+=*>+?,@-@.A/@-;*:(7(6)7,8-;3<4=6=6?8A7A9B6@6@5H=E;A8;25/3-0,2+9-;*9+:*:);+;+<+:(~9)|9(|9(|9){8'y6&x3$w- A6PDMAMARFUJRG\R\RUMTLZUXSWTgZ]T5IQ*BL)BK,>H/7@+2=-4?14<1HPCZ]RX\MMO:DF.AA'==%:;)>?1;=2:=2<@24=*;H.PbF9=E6@F8>E5>F1HL5MI0U?(PA>?9:09-<-=.=.;-:,:,:,:,:,:,:,:,:,:,;.?5B:B7=/7$2125#7(:0A8F@IDJFKHCAEDB@;59/=0?1=0?1>2?1>/=/>.@.?,=*;*<+=,>-?,>,?-@.=-:,8,8+8-:09/;3;4?5B8C9C9D9E8B6A4=3:06/5.5/7.0:<1:=2<@25>+;H.PbD6.;+9*8+9-:/9/9090;0>3?4A5B4A4:.9.8-7+6+8-8/;1EI0?C(=@#:<$89';<.9;09<1=A36?,6>4=6>4>7?5>7>7@D>F=FM@QESJQJMGIEFCC@A=B=FBD??7=0?/C2H4I6G5E3C3B2A0~A/zA0}@.:,8,9+:,:,;-;+;+:+9+9*9+9,;/=1<0:/9/:0:.:.:.9+8*7)7*6)6*7+8-9/<0<.<-;,:+:+~9*~;+};+|:,z;,y;,w9,s8*q6(r7)u5)C:I>KAHCL1?E+?C*=A(;='78(:;-79.9<1=A37@-B1=I1?G/LG1S>+g=-ZL_S>63+?9XUigdeRUJNOQIDF<@7>4?7D:F>G>JBJAJCJBKDKCKEKESRTTSRSPSLSLTNUPLHIFEBC@B@C@EBGEIHDA?8=2?2B1E3G6E3D4B3A1?1~?0z?1|>/:.9.9.:/;-;-;-;-9*:+9+9,;,;-<.;/:19/9-:.9,9,8*8*8)8)8(8)9*:,:-;-:-:,9+8*}7+}7+|8+{9+{9-y9-x:-v8-q5*o5)q7+u:,H=J?I=I;L@RFWMXOQMUQSPVQ`YbWg[{enrQZi@JY0BS)IZ0WiAdvNj|VXiEL[:?L.:D)C-B47@-;H.L^8_uFiJtPtPtNtQsTqSnMmLpPwY|az`rXjRZC\EaIeMgMgKhJgMcPZ|JRtBi`Qi`Qi`Qi`Qi`Qi`Qi`Qi`QkbSkbSkbSkbSkbSkbSkbSkaUlbYlbYlbYlbVlbVlcRlcRldQldQldQlcRlcTlbVlbXlbXlbXocUnbRkbQlcRlcTkbSg`Pd]M^WGYSCTN@MJ;KH9GE6FC4@C0;H.@I.OC-a=-F;YSNJ,+:9=;SRpnvvehX^^_UQPFG@C:D=G>GAG?HCJBHDJCJFKDKGKGHHGIHHGGHDHDGDEDBAABBABBCBB@A>A?IIC@<6>3@3@2B3D3A2@1?1=1<2<1=1=1;1;1:3;1;1.9+:+:*:+;,;+;,:+:,9+8*~6(|6*{5){5){7*x6*x8,x:/s7,p4)o5)r:-w=1M@K>JN)?O(J\4_qGk}SewMXj@N`8@Q-6E&7D*=F1=D4:>07;-8:,:;-68-9<1?C57@-9F,I[5[qBeFrNsOtNtQsTqSmLoOsUx\z`s[iQ`HYB^GeMgMgKeGgGhLaNXzHQsAi`Qi`Qi`Qi`Qi`Qi`Qi`Qi`QkbSkbSkbSkbSkbSkbSkbSkbSlbXlbVlbVlcRlcRldOldOldMldMldMldOldQlcTlbVlbVlbVocUnbTkbSlcTmdUlcTjaRf_Ob[K^WGXQARLB>A:C?C=C@D?DBD@ECDCADADDFGHIHJIIIGHACADBEBEAA@>=:=:FF=<83<3@4?1>0A1=0<0;1:08193:4;4;3<3:4<3<3}=1}=3}=1|<0|=.|<0|=.};-{9)z8*{7*:.9.9-9.9.;.<.=-9+9+;+;*;+<*;+<+8*8,~6*}5)|3*z4*z4*y5*u2)v6,w9.s7,p4*o5*s:/x@3QCN?N=Q@VFXIUJSJPJSPTR\Ve\n[LPK7EK1AN0KZ9WgC`rLgyQdyNWm?G\1AV-7H$1@!6B*=F5PK8MH5ID1DC.@F*DD([B,TG\X>A/5HO?E;>;FBFBB>?8D?D?D@EAEBECDEDF@D@DBEEGGGFFBC>?BD@C>A=>>>A?C@ECCC9850;4?6>3=/?2)=C5@=A>C?B??;9370:0=2>3>2?4?3=2<493839292;0<.<.;-;/;/:.:.~:-~:-~:/~:/};/};/};/};/}90}90~80~8.7.7.8/9-7.~8,}9.|8-{9-z8,x8,x8,x8.x8.w7-v8-v6,t6+s4+q5+m1'r6,n4)m3(o6+m4)q8-I=SHSJRJQJQIQJQKRLTMTK[NcQo_HYU:MV7O_;j~YbxQZpIUjCRg@Pa=IY5DR17D&4>#2:#6;'<>0@B5@@6<>358-39-4:.7:/9=/;?.=B,=F)S_;arFoRtUtStSsSsUuZ~e~epYbK^G^H^G`IbKdMfNeMcK`H^G_LTvDKm;i`Qi`QjaRjaRjaRkbSkbSkbSjaRjaRjaRjaRjaRjaRjaRjaRkbSkbSkbSkbSkbSkbSkbSkbSlcTlcTlcTlcTlcTlcTlcTnbTrbSqaRrbUrdWrfZogZmeXjdVgcWliZmjYjgThcOc^H[U=RL4PJ0I?&Q?)kP=XINDE=EAWVTTQQPONMMMMKKJTTHI=>=:B@EAB;>4D9F:F=H?FBDDAEAEBFCDCDDEDEEFFDFDEAD@B?A>A=A=A=C?E?C<>6;190:/<0=1@4~@5~>4=4:3919290;.<-<-;,;-:,:,:,9-9-9/9/~:/~:/~:/~:/}90}90}90}90}90}90|90|90|90z:0z:0z:0y9/y9/x:/w9.w8/w8/t8.s7-r6,r6,p6+p6+l2'q7,m4)l3(o6+l3(p7,~H>SJSLQLQMQLPMQNSOOGSH[K{ePsiPilMfqQgxT^tMXnGPf@Ma>2;=04:04<15;16<0:A,>D*Q[9^mDnSsUrSsSsSsVx^|exakT`I]F]F\E`IaJdMeNeNbK`I^I]LRtBIk9i`Qi`QjaRjaRjaRkbSkbSkbSjaRjaRjaRjaRjaRjaRjaRjaRkbSkbSkbSkbSkbSkbSkbSkbSlcTlcTlcTlcTlcTlcTlcTnbTqcVo_Rm\Rm_Tqd[og\ldYhbVfbWqma{xi~{jzj{vcqjWe`JTT(MB.S@/U8*]7*m>4n70u91~;5@:IBPJXPZT^YROGEB?DBEDD@@:A;CG@GCFFEFDFCDCDCDDEDEEEECFDECDBD?C>C>C>C=C>E@F@B<>5:18-9.;/@2?3~>2>2:1919290;.<-:-:-;-:,:.:.9-9-~:/~:/~:/~:/~:/~:/}90}90}90}90|90|90|90{8/{;1{;1z:0y;0y;0x:/x:/x:/t8.t8.s7-s7-r6,q5+p6+o5*j1&p7,m4)k2'l6*i3'm7+}G=PIQJQKQLRMTOUPVPWO[P~^OtbNoiQorUlwYfwUQeBK_:EY6DU3EV6GV9GT8ER8@J2*7;*:<.<>0;=/9;.6<25=26<26<0:0=@-=C)MW5Zi@h{MnPpQsRuUtWz`w`nWcL\E\E\E[D_HaJcLdMcLaJ_H]H[}JPr@Gh9i`Qi`QjaRjaRjaRkbSkbSkbSjaRjaRjaRjaRjaRjaRjaRjaRkbSkbSkbSkbSkbSkbSkbSkbSlcTlcTlcTlcTlcTlcTlcTnbTrdWpbUm_Tl_VkaWlcZle[jf]jf]yujx~r}zg`cNOT>DG2GF2HC0F=,L<,VC4P9+R6*V4*Y4+\6+a9/e=3n>4KBRLUQOLFFABDCGG@>A?B>E@ECFDEDEDDDCDCDDDDDEDFCFCFBFBE?E>D=D=D=E>DA8;18,8-;.@0@1~?0>0:1:/:0:.:-;,:-:-:,:,9-9-9-9-~:/~:/~:/~:/~:/~:/}90|90}90{8/{8/{8/{8/y9/{;1z<1y;0y;0x:/x:/x:/v:/t8.s7-s7-r6,q5+o5*o5*m4)j1&o6+l3(h2&k5)h2&l6*|FM0=L/?M3DQ7FR:GS;BK6>G2:A/9=,9=.9=.8<-7;-7=36=56;47=3:<1;=/dwIlLpQuTwWxZ{ar[eN\EZC\E\EZC_H`IaJbKaJ`I^G]HZ|INp>Ef7haQhaQibRibRibRjcSjcSjcSibRibRibRibRibRibRibRibRkbSkbSkbSkbSkbSkbSkbSkbSlcTlcTlcTlcTlcTlcTlcTlcTrfZth\sf]ndZjaXle]snh{xq~wz{kdgTOR?GJ7EH5BE2BE2EH5KL0B:-A7+@6*G5)S5*qB8PHPKHIGIEIBE@B@BBADCEAFBEBDADDDFDFDFDDEDEDEDFBFAF>E=E=F=E=F>A:C;E=B9>3:.;.=0?0?/>.>.;/:-;.;.:-;-;-:,:,9+9-9-9/~:/~:/~:/}:1}:1}:1}:1|91z:1|91y90y90x8/x8/w8/y:1y:1x90v:0v:0u9/u9/t:/r7/q6.q6.p5-o4,o4,n3+m4+j1(m7-j4*h2(j4*f2'j6+}D;NGNHQJTLUOWPYR\R{YMw]PkZJ]UBYXDY^HOYA?K3:H/7E.5A+5A+8D.?H3CL7EN9BK8@I6.5<,4:,5<45<56;56;49;0:-;@)GP1Sb;buGkKqRwVyYy[x`nW`IZ}C\E^G^G]F`IaJbKbKbK`I_H^IY{INo@Ef9haQhaQibRibRibRjcSjcSjcSibRibRibRibRibRibRibRibRkbSkbSkbSkbSkbSkbSkbSkbSlcTlcTlcTlcTlcTlcTlcTlcTkaUoe[pf\lcZkd\rmg|ľrgdUPQ?FI8>E3;D1:F28E38E38C3:B34*P:/e?6EAPOX[RWCIFJEFFFFEFCDBE@CADDDFDFDFDCDCDCDCEAFAF@F=F=G=G=E=?8@9C:C9A7=0=/=.>/?/>.>.<-;-;.;.;-:,:,:,9+:+9-~8,~:/~:/~:/~:/}:1}:1}:1}:1z:1z:1z:1y90x8/v7.v7.t8.w8/u9/u9/t:/t8.s9.s9.r8-q6.q6.p5-o4,o4,m4+l3*j4*h2(m7-i3)f2'i5*e1&i5*{B9MGMHPJTLVOXNZP|\Qs\Nl\M`WFVSBQRBJQ?@I64@,3<+2;*09(09(2;*5>-9B1G6;F5:C25@/3>-1<,3:33954954928919;.;>-;@*CL/O^7`sEkMrSyYyYwYqYfOZ}CX{A\E^G^G^G`I`I`I`I`I_H^G^KXzHLm@Cd7haQhaQibRibRibRjcSjcSjcSibRibRibRibRibRibRibRibRkbSkbSkbSkbSkbSkbSkbSkbSlcTlcTlcTlcTlcTlcTlcTlbVj`VjaXkdZlh_uplμzym]_YIKL:AF2I8>F7;C6;>5:;3983872==3C<2N71a84HH]_`dWZQSNOMKKJHGFDDABBCFCGDFCECECEBBCBDCD@D?F?E>E>G=E=@:@:B:D;C:@4;/9+=/>.>->-<,;,<-<-:,:,:.9-9-9-~8.}9.~:/~:/}:1}:1}:1}:1}:2}:2{;2y:1y:1x90w8/t8.s7-r8-t8.s9.r8-q8-r8-p7,p7,p7,o6-o6-o6-n5,m4+l3*l3*i3)h2(k7,h4)f2'h4)b0%f4)zA8MGNIPJULXNYOxZOr\Nk^N_XHRPAKN=EI:9B13;,08)17+17-06,06,06*17+2:+4<-9D4;F5=H7-.800621622717829;0:<.:?)?H+LZ6]pCjLsVy[wYsVgP^IVyAX{C[~F[~F[~F]H_J_J_J_J_J^I]H]JUvIJk@Ab7haQhaQibRibRibRjcSjcSjcSibRibRibRibRibRibRibRibRkbSkbSkbSkbSkbSkbSkbSkbSlcTlcTlcTlcTlcTlcTlcTlbVqh_ng_mhbtqj}ub^\GKM7CH2AI2AH6@G7BD9BB:B=9C97?:6:=6>?7C82J.+e77QRhjnm\\ZWVSQNMLHHCDBEDGDGDFCECEBDBBBBDCCBC?D>E>E>G=E=C=A9B:D;E:A6:-6'-<,<,<-<-:,:,:.9-9-~8,}9.}9.~:/~:/}:1}:1}:1}:1}:2{;2z;2w;1x90v:0u9/s9.r8-r8-r8-q8-p7,n8,p7,m7+o6+o6+o6-o6-n5,m4+m4+j4*i3)h4)f2'k7,h4)c1&f4)b0%e3(xB8NHOIRMVNXOzZOq[Mj]MZTDIJ:@D5>D69A219,/7*6<247058157247025.06,08-2:-6A3:E5=J9>K9-,6..400511606718:/:<.:?+WzB[~FZ}EY|D\G_J_J_J^I^I]H]H]LStIHhA@^8icSicSicSicSicSicSicSicSicSicSicSicSicSicSicSjcSkbSkbSlcTlcTlcTmdUmdUmdUmdUmdUmdUmdUmdUmdUmdUldWjc[gd]vsnɷƵibbFEH-EI0CG0FE3GC7F<3C60G53I;:>=9>?:B:7I75cGFjjœ譩ҋtn]XSPONKMFKFKDHIKEG@GIDG:=@@@@A@B@C>C=A;A9C>A9@9A9B8@5:.8*=0>/>.>-=,=,<,<,:+9-9-~8,~8.}9.|8-|8-|90|90|90|90z:1z:1z:1z:1y=5w<4w;3u:2t91q8/p7.p7.o6-m7-m7-l8-m7-l8-m7-m7-i2+m6/p92p92l5.g2*g2*h3+e0(i7.d2)^.$`0&_/%b2(s>6OJQLQLRJ}XOx]RhXITN>DE5@D5:B37?24&ES2YkCjRu]y_rYkR[~DXyDTu@Tu@XyDZ{F[|GZ{F^JbNbN^J\}H_K`L_NTsJFd@4I:3L95K<9?:7CB@NIF]RPyjgβſ벩͂|c^VVRSHMADDEEEHHJKEF<><>AC????A@A@B>B=A/>.>-=,=,<,<-9-9-9-~8,}9.}9.|8-|8-|90|90|90|90{;2{;2{;2z;2w<4u<3u:2s:1r90n8.p7.m7-m7-l8-l8-l8-l8-j8-l8-l8-k6.n70p92n91l7/i4,g2*e3*c1(d4*_/%^.$b2(^.$`0&p>7KFRNXR~XOrVKdRFRI:A?0<@18@15@23>04<14<15:37:379677577557246116/07//7,.9+1<.5B19F59H58G44E24B1.8//6/.3--2+23+46+8:-9=,7?(DQ3YkEjUv`ybpZgQY|DWxCTtBTu@VvDYzEYyGYzE[{I_K`N\}H[{I^J^~L^{MSnKF_A9R5icSicSicSicSicSicSicSicSicSicSicSicSicSicSicSicSkbSkbSlcTlcTlcTmdUmdUmdUmdUmdUmdUmdUneVneVneVlfZed_y{xشŠl`gEQX9EH-DC.JD4LD9KA8J?;C;9SJKia_wvecBEDIRVUTMKDACAFEEFDDCD=?>@@?@?B@B?B?A=@;@:C;E/>.=-=-=-=-9-9/~:/}9.}9.}9.{8/{8/}:1}:1{;2{;2{;2{;2z;4x<4t;2q;1r90o9/n8.l8-l6,k7,l8-j8-j8-j8-j8-i9-j8-j8-n91m82m82m82m82i70f4-c1*e3,a0)],%_0(c4,\-%_0(sD<}PKVP~YQpSK^J?OC7@=.46(3:*1<,1<.2=/5=26<27:37:379679668368357227018008-.9+0;-2?.6C27E48G49H59F54>33:205.,2(/0(13(57*7;*6>'ER6[lJmZyfyflZ`NWwEWuCUrBUsAWtDXvDYvFYwEZwG^|J_|L]{I]zJ_}K^{KZwKPgJAW@3I2icSicSicSicSicSicSicSicSicSicSicSicSicSicSicSicSjcSkbSlcTlcTlcTmdUmdUmdUmdUmdUmdUneVneVneVofWmg[jkfڴefmLNR7FH0JI7KI>???>A?A?C@B?B=>9@:C=E?E>A9=5;2<1=0>/>.=/=-=-@>@?A@C?C?C?C??;A@9=7<4<1<2=1=0=1=/=/=/~:/~:/~:/}9.|90|90{8/{8/|<3|<3|<3{;2z;4y:3y:3w;3n70m80m80l7/k6.i7.h6-h6-i7.h8.h8.g8.g8.g8.g8.h8.k92h6/f4-g5.i70h70e4-b1*c2+c4,_0(]1(]1(W+"c7.{ULtXTaNHN?8A7.=6,;9-9;.9<139-3;.5;/6<06<07:/68-47.69049238139/39/2:/19.19,08+.9+/:,1<.3>.6C2:E5Qn>Qn>Qn>Qn>Ro?Sp@TqAWtD[xH]zJ]zJ_|L`}MZwGSmFCU?6D7(6)gdSgdSgdSgdSgdSgdSgdSgdSgdSgdSgdSgdSgdSgdSgdSicSjcSkbSlcTlcTlcTmdUmdUmdUmdUmdUneVneVofWpgXpgXoh^lnmz׹ĦrggONP;GK:FL>HPEKQG{{sžؓeSK;TFWIF;@8KEC>C?C@C@C>C>D>B=B6<5/:6-;8199/57,36+7:/5;/7:/7:/69.58-57,36+28,19,28.19,19.19,19,19,08+08+.9+/:,0;+3>.6A18C305;-57*35(13%04%18&HT>gw\wmvlh_RwKBh9KkWtDZwG]zJ^{K`}M_|LVsCNg@D=CNk=MjUrDYvH[xJ]zL^{M\yKQn@G_;6B4+4/#)%gdSgdSgdSgdSgdSgdSgdSgdSgdSgdSgdSgdSgdSgdSgdSicSjcSjcSkcVlbVlbVmcWmdUmdUmdUleUmfVngWogZoi]oh^mjekormtzη|ubb_NXZL^dXmwn|}̻pRESFTIC:IAH@F@F>F>E=C;C;G>G>G>C;>5;3;4>6=5=6=5=4<3<1;1;1~:/~:/~:1}90|90|90{80{80z:1z:1x92w81v70v70u6/q6.m80k90k90j8/i9/i9/i9/i9/g7-f7-g7-f7-f7-f7-f7-f7-f5.j81m;4k:3j92j:0m>4oC8mA6oD;e=3d>3zVJdZyWMbLA>:13814927<569214-25,9<336-25,24)03(13(25*46+47,/7*-8*/7*/7*/7*/7*/7*/7*19.08-08-/7,/7,/7,08-08+7?09B14*00!''heVheVheVheVheVheVheVheVheVheVheVheVheVheVheVheVjdVjdVkeYldYlcZmeZmeXmfVg`NkfSnkXol]he\feasqrԶ|qtY_dMdkYr}lا`XE>NGMCF>D9F=I@KAH@G3<2:19191:2~:1|91|91{80z7/w7.w7.w7.w7.w8/w8/v7.u6-q5+o4,l7/i81i81h70h70g6/g6/g6/f5.g6/i70i81i81g6/f5.e3,h3-j5/m80k90j:0i;.j>1kA3gB2jI:dH:v_O~k\xjoRJ=79.4:04:039/39/39/28.28.17-17-36-06,25,06,14+/5+/4-.5-/4-/4-/4-/4-/4-/4-05.05./4-.3,.3,/4-05./6.1;23=26@59C89D67B45@03>-4?.DQ=XfO[kQRbHEXKe>Ke>JeE9=4?6E9F7J7L:I9F6C4C6E7C7B8A7>5<4:39193:3}:2{;2z:1y90x8/v7.v7.v7.v7.u9/u9/t8.r6,p6+m4+l7/i81j81h70i70h70g6/g6/e3,f4-g5.h6/j81j81k92k92k60l71k90k;1l<0j>1j@0iD2gH6lQ>gRAvgTuesrKL<69.39/39/39/28.28.28.28.17-17-17-06,06,06,/5+/5+/4./4./4./4./4./4./4./4.05//4./4..3-.3-/4./4./6/.80/:22>44@66B66B66B45B16C1CP>P]IR`IIW@AO6BP7FV;Jb@Ke@LfAKe@Ic8~>5}=4<4}=4z;4x<4x<4w;3u:2t91t91t91r90r90r90r90o9/n8.l6,k5+m80j81l71j81k60i70i70h6/g5.g5.f5.g6/h70i81k:3l;4l;4j;3i:0h<1k?2jC4iD2fE2gJ8lVAjYGujVm{mDG658-39/28.28.17-17-17-17-17-17-17-06,06,06,/5+/5+/4./4./4./4./4./4./4./4./4./4..3--2,-2,.3-/4..5.+5-+6.-9//;12>25A56B47D38E3?L:ER>CQ:;I28F->L3DT9J_@Jb@LdBKc?Ia=G`9F_8G`9RkDXpL]uS^vVZqTPgK=T8.A.&1-',0%*.heVheVheVheVheVheVheVheVheVheVheVheVheVheVheVheVheVheVkdZkdZlc\md[meZmfVniVljUlkWlm]pqiؼǫ}ſ²pP@O?XJM?E9G@9;6=8B??;@<@<}@;z?9y@9y@9y@9v=4v=4v=4u<3s=3r<2r<2r<2o;0o;0o;0n:/k9.k9.j8-i7.m82n72n72l71l71k60i70i70l:3j92h70f7/f7/g80h91g;2j?6f>4e=1f>2hC3iE5fG3cG2cJ6hV@i\IskVozor_9=,28,28.28.17-17-06,06,06,17-17-17-06,06,06,/5+/5+.3-.3-.3-.3-.3-.3-.3-.3-.3-.3--2,-2,-2,-2,.3--4-*4,)4,*6,+7-.:01=14@46B46C2:G5N4DX@7C;F@D?>;:8::>==;?<@=}@=xA6s>6r=5r=5r=5p>5p>5n>4m=3l<2k;1j;1i:0i:0j:0n72p62p62n72m61l71i70i70l;4k:3h91e90e90e90f;2d<2fB6dB6cC4dD5dG5dI6bI3_I2^L6eV?jbMrmWor\aM3:(28,28.28.17-17-06,06,06,17-17-17-06,06,06,/5+/5+.3-.3-.3-.3-.3-.3-.3-.3-.3--2,,1+,1+,1+,1+-2,-4-,6.+5-*4,*4+,6-.8-0:/2=/2=-5@/7B15A-2>*1=)5A-8F/=O7@T9FX>H\@J]?I^=K^>K`?TgI[oScvZauZZlTJ]G6G4'5&$-*$),"'*heVheVheVheVheVheVheVheVheVheVheVheVheVheVheVheVheVheVkdZkdZlc\md[meZlfVjgTkjUlnYorasvmθκƶøͧkX[GWEL;D:DE?A>=::9:;=6k<2i=4h<1h<3l;4o83r73p62p62n72l71j81i81h70g80e90e:1d<2e?4f@5dB6_C5aG8cL:dM;cM8`K6^L4]M4^R:bX?mhRss[nv{eFO:4=*39-39/28.28.17-17-17-17-17-17-17-06,06,06,/5+/5+.3-.3-.3-.3-.3-.3-.3-.3--2,,1+,1++0*+0*,1+,1+,3,/6/,6.+5-*4,*4++5,-7,.8--8*0;+4?/5@/4?.3?+4?.3@,7F19K3@O8CU;GWJ=I>I@G@D>=::7=9>:?9A:yB;tD:pF:pE:q?8q>:q?8p?:p?8qB5j=7n=6o83r73q73p62n72l71j81i81d8/d90d<2d>3d@4cA5cA5_C5ZE4_NnlUtv^|kcmU2>(6B.3;.39/39/39/28.28.28.28.17-17-17-06,06,06,/5+/5+-2,-2,-2,-2,-2,-2,-2,-2,,1+,1++0*+0*+0*+0*,1++2+-4-+5-*4,*4,+5,+5,,6--7,,6+/:,2=/6A17B27B15@04?.2?-4C.:G3=L5AO8DT:JX?L\BTbI\kTcp\^mZUbQDRC2>0#/%'0-&,,$**heVheVheVheVheVheVheVheVheVheVheVheVheVheVheVheVjdVjdVkdZkdZlc\md[lfZlfVolYmlWjlWgkZgmcr{x׭oYWDQ@O>OAOBK@C<<5>7?6@9A7{B7uD6qE8qE:p?8q>:s>:q>:q>:q>:r?;q@;sB=qB8l=7k>8m>8o>9o83q73o83m82m82j92h91f:1f;2d>3d@4bB5`C5]A3\@2WB1TG4\T?f^Gj_IbX?ZS9ZS7\W:[W2=/x=/t?/sB3uE7r=7s>:t=:t?;u@:s@9o>9k92m82l:3l;4l;4h<3g<3d>3c?3^>1dG9cG9T=-N9(M8'@1XRieJeaDVU7XX<^aDpt[zfdlU>J2-9#2>*4-1=)3?+9E/BN8IU?O[GWcO]hWZeULWI/u@8t?9u>;u@:t?;p>7p=9tB;q>:p?8p?:o>7o>9m>6n=8m>6k<4l=5m>6k?6j?6gA6eA5bB5dG9[A2^G7_J9O>,F7$G8%?7"LL4HL3DG,CF+MM1[[?baC`aBZZ>dgJsw^sy_X`I:D,/;%7C/6>17=36<26<26<25;15;15;15;15;15;14:04:04:039/39/27127127116016016005/05/.3-.3--2,-2,,1+,1++0*+0**1**1*)0))0)*1**1*+2+,3,.5..5-.5-07/4;3:B7?F>BJ?;F8:E57B14?.3?+6B.)r>)tA,tD0vE6q?4n<3q<6tB9tB;o?5q@9xH>n=6m>4m>6m>4l=5j>3l=5j>5g?5gA6hB7gC7eC7cC6aD6^D5bK;UB1ZI7`S@RG3D<'E=(FA+BF-BH.AE*<@%?B%LO2_`AijKaaEnqTvzagmSJO95=&5=(=F39?38>48>48>47=37=37=37=38>48>48>47=37=37=36<26<25:45:449349338238238238205/05//4..3--2,,1++0*+0*).*).*).*).*).**/++0,,1-162/4.,1+,1+05/6;4=BK:4.8/-4--4-,2.gdUgdUheVheVheVifWifWifWifWifWifWifWifWifWifWifWkeWkeWmd[md[md]mf\mg[jiWkmXimVjoYjs`hthn}xڻּҽzyS>tJ4uH3vI4zM8~O;yL7nA.e7'{M@tE;qB8sD:oC8g;0d8-g=1i?3i?3i?3g?3g?3f>2f>2e?2cA5bB5`C5`D6_C5[D4ZE4WD3XI6OB/\T?oiSc^HMK4IG0IK3>D*?H-@F*B19?39?59?58>48>48>47=37=39?59?58>48>48>48>48>48>47<67<67<66;56;56;55:45:438238227105//4.-2,,1+,1++0,+0,+0,+0,+0,,1--2.-2.051.3/+0,+0*-2.3828=9;B:AL>@M;@M;=J68E14A-1?(1?(=J6BO;IVDJWFDPB;G;2>4.:0,6..5.-4-gdUgdUgdUheVheVifWifWifWifWifWifWifWifWifWifWifWkeWldWmd[md[md]mf\mg[jiWlnYinWiqZgs_drejytܿչйѾϴuawVClI6mH6rM=uP@mF7jC4gB2kF6nI9nJ:oK;pL-;>39?59?58>48>47=37=37=38>48>48>48>48>48>48>48>49>89>89>89>88=78=77<67<66;56;55:438227105//4./4.-2.-2.,1-,1-,1-,1--2.-2.-10,0/,0/-2..211623764;4;G9=L9@O<@O:8F71?2-9-,6--4,,3+fcTgdUgdUheVheVifWjgXjgXifWifWifWifWifWifWifWifWldWldWmd[md[md]mf\mg[jiWkmXinWiqZgs_bpcgxrڽѵ˴˺ҿԺurd|]K}^LtUCbE3X;)Y<*[>,X=*`E2`E2`E2`G3`G3`G3`G3^I4\K7\M:\M:ZM:XM9UM8SM7QL6NL5QQ9jlT|gmqXSY?FL2>G,48>48>48>47=37=38>48>48>49?59?59?5;@::?9:?9:?99>89>89>89>89>88=77<66;55:4493382382/40.3/-2.,1-+0,+0,+0,+0,+/.,0/-10.21/32/32/32.5.4@27F3=L7@O:?N7M:MJ9BC3>A6;A7;A7;A7:@6:@6:@69?58>48>48>49?59?5:@6:@6:@6;@:;@:;@::?9:?99>89>89>8:?9:?9:?99>88=78=78=77<6495384162/40-2.,1-,0/+/.,0/-10-10.21.23.23-12,2.+9*/@-6H2@I,A6>A6>A6=@7=@79?59?59?5:@6:@6:B7:B7;C8;@9;@9;@::?8:?9:?89>89>7;@:;@9;@:;@9:?9:?8:?9:?98?87=94;4382160/4..3/.3/.21.21-2.,2.,3,,3+,3+)6%$6*>"2F+8L3;O6>2??5>@5;>59?59?59A69A48C58C59C8:B79A69@88@58?79A69@8:B7:A9:B7:A9:B7;B:E=8B:8B:8B98@56>14O<>O<:L6@R8EW=FY=DX=@T;5H2+<*,6+-4,+2*ZfN[gO^hP_iQbjSckTglXhkXhiWghVifWifWkeWlfXmeZmgYmgYkhYkg[kg\je_jf]hfZfgWhiWglVfo\erajwnz˹ʿNjlRM0SN1RK.QK+UO/UO/TO1TO1SO2SO2QP4QO6QM2PO3PN5NQ6MO7JP6HM6EM5HQ6FO4BK.?H)CH(GM+JP,KQ-OS0PT1VZ9^aB_bCZ]@VVWU>XV=YW>YW>XW;WV:XT9QK3PJ4LG4ID1DA2B@3A?3>@5<=59?59?59A67B48C57C57C5:B7:B79A68@58@59A6:B7:B7:B7:B7:B7:B7;C876=63=52>04C,9L,BY/Ga1Qo;Mm;Li=Fa>BY?F;J@?I>?J:@H9>F7>D8=B;>E>ZT>XR6:@6:@69A67B47B46B46B4;C8:B7:B79A69A6:B7:B7;C8;C8:B7:B7;C8F;=G<=G?=I?>H=>I9?G8>F7>D8=B;=D=;B;6@85A3:I2DW7Ri?[uE\zFXxFTqEIdA>U;2H3/@0.?-6H2@R8L_CReGSgKOcH@W=6I51;007/-4,YgNZhO\hP^jRblTemVinZjo[mn\lm[mk\mj[oi[oi[oi]oi[liZkhYjfZieZid^ie\ig[ghXghVchRajWerao|s{ѿɸıþʾŸ̌oRL2TO2TM0UN1UO/UO/VQ3VQ3UQ4SO2ON2NM1PL1NM1NL3KN3LN6KQ7LQ:JR:LU:IR7JS6OX9TY9U[9]c?fnGcszpr{\\bFLP7LN6LK6LJ5LJ5QL8TM:VP:WQ;VP:SN;QL9MJ;IG:GE9CE:=>6:@6:@69A67B47B46B46B4;C8;C8:B7:B7:B7:B7;C8;C8;C8;C8;C8;C8F;=G<=G?=G<=H8?G8=E6=C7=B;:A:9@96@85A39H1BU5Ne;Vp@Vt@SsAPmAE`=9P6-C.+<,+<*1C-}m8vGHǀp##L0 I&>˽7^5L_>JK̪H@+DXx?Bwx bù8$ H@x~)BGz߶$+??\!}Шf0#v*GqLpް<\.ȼۅ\!?p88""B>9Ϫץ>bȏU!?e#u[OvF7Oz" -{rÑ;2DB$~d6T?/q 4(;? ?ԇ|GX-?1=7,OIXH/^u|ְq"zG=ؖ-Y?K1$[PHp!9|6ZNDȏqYژ !U !9Ԍu#U!EJ[vOP#L6`#HX [pxH8HnG*`U Ӹ$;e6:g]zYϧ`tddi@u4T`? / qR TADed`HHꆡZS8$B@rJ~f%-Zp944ֹGS?,M `y7 傗!XUwbw?E ^<#0jN}&zNpQ?U0mhg]ݖBBݞ,|dqJ )~{(F\gdz1_rOqTݾЗʉMݿy>r1GR Fؼd&JA|e[X_Yt ?OuU]@Fy Gߍȼ':zy|페✞M%ԝ|$$/ W>0R ~B1`Ld)}szfIXBg @|=C yo WY{[MI1s4eΌut}pP:}$im"ٿW <|~<CA=UPԮ<ה{e:Q7o>zEr m {aۛW~op?N_<\M!OG+ e Od$r,⛉HpOv?c q?.x$sȥ߄gW:ATq $LCO k-ty⬑^u"r?l?*m0AL Ҭd @C ۷r4dL6¥T2HoY.[*vAgsH :C ?_wv貎݁h~_ȸ 1Xb"

_<2 30;ffϸQA+9 ٲu@oyJ = P_R",6%Z'0~: $syF@! T_-IiCTT_ջ>?󄭸LjtR9Ao1 }=>q8p!!? >gpǍ"=`oR_0ySs8?KyP)jUo3Hz$? 0o!7~-gZ#[.?X"CR  dzS. .=!!嵴]c#=hX~{NBҝ3p@bOIO">| NwwY{?gL-Fz|3D~?NY̦ڡN v}O <| CEX8Ӊ;YR2Njlr@ЎؿةJȶ.q.N?\XuC My\ &)%tXkT*`kWNnD+0EURmص6 ! DӘ.ڵA$w$1E,ۄd1Nh&Qrg? ?r"/Zl1:ٟU=d{Ei%1Pq/oiY,G UK -Z6͑Y)\5U;] 3d>EpRƿ+!>:@x/=!>AlmKQ_|p5~NhpE\WUb^npp>@{ C Z%'f4(@r ڛBDC yJQM j >GGȐF8<8H (_s~ ps"8x&xL*^r 8R^r5AG5ÕMϪ{7Diey4*ѝlv~(PH&8GxR=?P?~@3D®NPUdʜ0j\[ zE;}#g#}L=uJw|&s \m_5n yh5A८y B'9"b ?zó2/v~=#4%-Q5je~_jYoȋ n,;3'ǐ駯g|ؿA7v]bSȁ4='?2_6T?`DjHy98*w2D!?:+t) <o=Pd a.e9>C~Zv9MadiUdv=q's5Y;l0 \iDS,K߻ti6P͕Oh+ p(_ϳ) T. A`Gu0fƝ1[3(oJ^s$ 3ˇ/n@g8Gu|iu_FÇ1{XQxi~}!vK|WB/1T=x2:vkYu9K͢k̅S5sBE1~n""Q`FʩG'u(H?@ W$'$R7"wc0P7|Ɯg;~(oO 7u]3aFO8>t7zf~e<87z|in{ S?Ȥ&$rCFxGyz>9H p = CO >~TyF}> |y57uXAzUd  :,ޱXm?e7b]Hv'FRR"Eg|(~IT\ᐝ[$4E^0ALRAHo}Pכ#~# ?t^G\Zn HMR|9du엺<8'fS~BlOOOnD+ 3BZp\ dz/GCæF~|Px8u2*=W댟%NnSZQ0]WI7w׶ t{J>Zb:$ [nD}/ l^w~ECQc/C)z> <0!!OꂣB@lp\x C1" Ay> Pt|[ղa)R Hh||8H>B HϻӡKpI!<; ~O^H2/`#[<ϟ%!EB#{ /b֖_$<BH3ʒ?a#ӽJ.3mp1dnJͥU=ȌUł*Z*!W~[}tP^ OϠ(D;xJ h\9o$\4-??P ް=Y* @j!}O?G숐Hfa5 rƜQ B//brl|/o/k[uBG♾`G 452;88 /w,V׋x"CDdʟzꇅ!មJ8Np*,*!Z"Z!89pf~|},O+gZv aY/j?4 A5R9 }"8zXy {7O[&v$< Ar8ylpH]>@v@q /zQsZ2'k?r([v) Gwn>$vBP*xD|^Fo ɾ}787 9xB>pj3}Á̋|?g|z ;?F]7·ؒ]#.ᐵ'GQ{|Qj`pΨ[ӡpg4!g>=lF)>Qr ¥OzHy g W?+rs55vw?< _l8voq!ir,sV;l Fw Ҽa˃{!$B/%9Cٛ̍> Ao7@|Q¨VyNa[] <}]ׄ|<!uawQpɟ?d367lߥGd7<zh+H"m,([$gxX#0KT}[uʧJ @xG! ^J}ppq"- @uv#1De%d9-@,b7dy IxܚYm>l T&gTMp6k.n2 7r_O v+eA>QxAT*o"+!}O9USԿtJ)%O p b5P) jHHb_:7rYoeeTix<o\iY*zxDXU"s#V~hzCSÕKHxo>A/#`2uDoh8ق7@xxΆO'W5<=# :ǒG=$ F;~Po =^xK;타}.\u-כNNn=CS|;*AP #GT"#T?Ǥ.,Ug?P!-{ebl.?݇dW"w:>oo7!@y +ꗄ{6/FߨDׄF :i~N@<'뇅GxO N~HnN`H!ݧGXWm$=?m_?? Gϋ(HzwjU*T?1t;A A^w 날ܰ"ȏ /nĆ|}E-`>v/^X_U}/|0$:?'gሕD/ :y#`}Tg? @zOpt p઱_qh3 cS{dv_̃@. yEj!gB p `CP\2o=rCa5 "8g2D4x`a͖̒^wZ jX{IZq-oH_e >ET]ѰO)ΟT|. ; OW)POu'TU_hbu A,8|d' O:D~y'XcYS=3:YRs.Q}{B]T(Ağ1}!LoY_I?-2x|;c! ܸAh՝ěS4xT)fC|AC3ݧy`k~GAߐ@GC|>xd]lS@RxO! G߄Xos !`ՙh|&uO[vO bY/ZY}K7_K|aao $Ѿ;d NTG?IN꽷ސ涚Nr(iRɑ^"=7)=! Qw2e!y\UHi쉦uK[Y2;n@WEX  w 犟WxQnX+~LJxvFWrxCxf19,!tK_->JqXbG_)o|00uOdU&K v_pIS|yw,GE>{_}??r.5>I÷#=@*ʯ 'վ >}C#w~hnN䦁zn D/t4my N[C:#6;L\joބ,@؏%! @=*!]ט?zڀYC P AtvoӣyWvBt|.40S;㐗WZl= Tr ui ]{'k?+ G;Tx8$:Wed:!A({=f=k `8:r@P E[vxHW%BHGB~x0ޱ_VEIc>IV+; ?r@>y{J"|d ,E>_iI=mc#ڃ_:ô<3)Lh|H,pZ6uQW -[(r)̓*|;> 1(UKm3ą1[x.܇0l?r^ '"OnGTNR!:3<)A'X^T< ڄ΃@Amu?憿-/p8Cb~(n6dÃ&N0g[aW=Eղh#'Tne{/Xt/ot9^1qxB=xiRxhg50/(Cs<:}|"%r^#RׄP{ac_\3Y(!ɦ)7rP"l8UQ#uL)Rc[Uc4&Py@%SUƗEKZoCY8-51jI~C˙!H~# ERjFyUTrdξǑ<%?oҟSHmbC?%^,ىnaKȫaӍ>bF3Sn}bꇳP{-{Ds>'6+dv\Zh~_ 70[!!?3pO{ Fߪ-lN̅@ ? UV1ΐ oCڒHӐwMR77o? B{*O@ ܫ[.vP =tB 6/4~@/#y!8|ݰH?qnur0A$%N%-~HA4v $" GT ]>vQp=X2= ؖ|p36-b-2-hLswπJzlLy9WtAחnJϦU}k+䊭 ^ cɧ~t\FwisBU }h, |?,2|ά/Qq>NEe |g_^{?u6KUc>k,K0]WL_1 $az F=b;?E e_'5$N6x3iI"KLp\%S[`DR(nT,yosLv| FtpOC*,3U s&#Khd Oxx@7U$g)V0 _PV:[c\r dVoO[D|@܂S8EqI=GDӧlibjpeg-turbo-1.4.2/testimages/testimgint.jpg0000644000076500007650000001317412600050400016245 00000000000000JFIFC    $.' ",#(7),01444'9=82<.342C  2!!22222222222222222222222222222222222222222222222222" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?jvf)4cFQ3EqQ8`)NiX .JjSjKF} iZ8f|K]VS}۝BIzsXɬnJTH+EN]HTNlO:u.&EXnsعnMVqn04 3[ZY8z(kvyQԬZ&<~5ĆxN )wU:Pf#^IuŘـF7RT]ݺW-zmoJ2zVCά),.ֵ/Uh{]LeY$Uumm­HIaSzED. ѡ#Yaju%LhN+KfiZgi*Lu-DDRrjŒ HqD G欹 1GFZZ[,)Lr$;Q-ӧmc:Z2J֥HNRj,朻Tsr`\ƘI5-qT`6+(b!ݼJ.xw6v֚>C-WLRB}*X8QZpyzxo ޷g ]okdex _;(U=})BsǏV-"]=+Z}}+O /q\_ZV 5M\:Τ2yEn}J*85f'eB"m85D] 28U-!T7Fvˈ #3yHVH{ȌkT3^L á8ަ+Լ39ϖ㡬Mː/a޼EdՇRi+F=@v\*z]-1[csp8rVM+AMe.jӦVv.KMIP,A~} Ja}y7wdQRv6c*`JDr3؎GQ`PKnO vgsQTޣT9ȫCe:UTrIUmBţr[85prMJ.2fqگ[1'֩urGrfKSwQ" f j|2Any֟4aiir%f!$ '9Y U2pjEb,~tvʧ)IIHYYHjtJDR.N)񍫜eOjͶiB{B;*R18t$^n8jABV#.FTvlփEl^bD@g:,=Nwd#F9$cnWO*23|O t?%gnw&qQoorDX)1[k\`Sf6@hԂă+h#6t>IBzxM:S#B8J $.I3T q$ƇxrFIn/ ԍku&*XZgU;NgeZjNgBހ׉w*nWCns,jU*E#`$O!6W*Ȍ66mkOKy]0B3 וO#ފdKJ+ߚmFဩp&lmr5RHsZqi24a={+ fN#zxl2'VAV lkmHEy#[z%֖An^܁QQ4u VT9db@mJ2ΕNӚ׻běrzSF̓!oq^-JrC;H b) }ji %PIN9*ܲʫ Oc+4tSR>W|ȗq9NޔY@$P;ql~>uCPg:vQXr.6>N?Zj[Fe 9%H+ǟN{xк~RG̿Zi&Ffbd9 ̸ֱ £/04oZdA%^YrrNM[]NCnW M Td)N繨ZL3i\0wdPrU[!a?80@;j`b=M9y:VkO4g?Y蠦-R" <U?dkW1=զh-?m$rG$JdMvrONܑR[;kX=kJmBZQ\9+3Md9&x-[ck&[-dd`Ɣ/qEjAp/ꇓTOLr >n`]tɭ:U,Xmm]NEiٗl軵^k`>̃}5|8 U&dӹlIUon@ۚ ǐFk UˉBlZBֺ*PYN@kU$ky~SGho^٬^?jr*y$ij1\2ʗ-b 9նЊ[%Ҭ\(m#߯Eo~]\BQIێ qS9cvT "! }iHT9-""Y Y%KUg~ATZʺh l{P:QWtuk3+1Jڌ,㉇+Qo_~伿L.cR.5+.yfs:2+sJ6[^&/!n<;CCe7f^$Qf&<#W"$B+jt_g ϭXiv\LlP_?=~S&+ز@斬Z$ͩB}Z7:UGD[YGƀ UX 2j=)JF2ۅ]GbV+G-<:޻q)o€-ge[QvknU(I3mZ6Ь'ڼľ Н}Ց 2^zu 2S:غ|r @qӭg8[wa͕sB}1\]ɵ{[srLm:=#4Sҵ Q'Hu%nQ[#55Z R Gi?xXҙ[Bj,i\@~ȶyV`pX7}jޯ8b(>慹:9i=6ڷ0+fw5d*6IH*cEq{VqVSjH1{zRqnEtVu94y" v+FOTFzQ]ŝC4(t\6I+劌+8(ls1+sSlibjpeg-turbo-1.4.2/testimages/vgl_6548_0026a.bmp0000644000076500007650000010726612600050400016150 00000000000000BM6(_libjpeg-turbo-1.4.2/jdcolor.c0000644000076500007650000007076512600050400013020 00000000000000/* * jdcolor.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1991-1997, Thomas G. Lane. * Modified 2011 by Guido Vollbeding. * libjpeg-turbo Modifications: * Copyright 2009 Pierre Ossman for Cendio AB * Copyright (C) 2009, 2011-2012, 2014-2015, D. R. Commander. * Copyright (C) 2013, Linaro Limited. * For conditions of distribution and use, see the accompanying README file. * * This file contains output colorspace conversion routines. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" #include "jsimd.h" #include "jconfigint.h" /* Private subobject */ typedef struct { struct jpeg_color_deconverter pub; /* public fields */ /* Private state for YCC->RGB conversion */ int * Cr_r_tab; /* => table for Cr to R conversion */ int * Cb_b_tab; /* => table for Cb to B conversion */ INT32 * Cr_g_tab; /* => table for Cr to G conversion */ INT32 * Cb_g_tab; /* => table for Cb to G conversion */ /* Private state for RGB->Y conversion */ INT32 * rgb_y_tab; /* => table for RGB to Y conversion */ } my_color_deconverter; typedef my_color_deconverter * my_cconvert_ptr; /**************** YCbCr -> RGB conversion: most common case **************/ /**************** RGB -> Y conversion: less common case **************/ /* * YCbCr is defined per CCIR 601-1, except that Cb and Cr are * normalized to the range 0..MAXJSAMPLE rather than -0.5 .. 0.5. * The conversion equations to be implemented are therefore * * R = Y + 1.40200 * Cr * G = Y - 0.34414 * Cb - 0.71414 * Cr * B = Y + 1.77200 * Cb * * Y = 0.29900 * R + 0.58700 * G + 0.11400 * B * * where Cb and Cr represent the incoming values less CENTERJSAMPLE. * (These numbers are derived from TIFF 6.0 section 21, dated 3-June-92.) * * To avoid floating-point arithmetic, we represent the fractional constants * as integers scaled up by 2^16 (about 4 digits precision); we have to divide * the products by 2^16, with appropriate rounding, to get the correct answer. * Notice that Y, being an integral input, does not contribute any fraction * so it need not participate in the rounding. * * For even more speed, we avoid doing any multiplications in the inner loop * by precalculating the constants times Cb and Cr for all possible values. * For 8-bit JSAMPLEs this is very reasonable (only 256 entries per table); * for 12-bit samples it is still acceptable. It's not very reasonable for * 16-bit samples, but if you want lossless storage you shouldn't be changing * colorspace anyway. * The Cr=>R and Cb=>B values can be rounded to integers in advance; the * values for the G calculation are left scaled up, since we must add them * together before rounding. */ #define SCALEBITS 16 /* speediest right-shift on some machines */ #define ONE_HALF ((INT32) 1 << (SCALEBITS-1)) #define FIX(x) ((INT32) ((x) * (1L<Y conversion and divide it up into * three parts, instead of doing three alloc_small requests. This lets us * use a single table base address, which can be held in a register in the * inner loops on many machines (more than can hold all three addresses, * anyway). */ #define R_Y_OFF 0 /* offset to R => Y section */ #define G_Y_OFF (1*(MAXJSAMPLE+1)) /* offset to G => Y section */ #define B_Y_OFF (2*(MAXJSAMPLE+1)) /* etc. */ #define TABLE_SIZE (3*(MAXJSAMPLE+1)) /* Include inline routines for colorspace extensions */ #include "jdcolext.c" #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_PIXELSIZE #define RGB_RED EXT_RGB_RED #define RGB_GREEN EXT_RGB_GREEN #define RGB_BLUE EXT_RGB_BLUE #define RGB_PIXELSIZE EXT_RGB_PIXELSIZE #define ycc_rgb_convert_internal ycc_extrgb_convert_internal #define gray_rgb_convert_internal gray_extrgb_convert_internal #define rgb_rgb_convert_internal rgb_extrgb_convert_internal #include "jdcolext.c" #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_PIXELSIZE #undef ycc_rgb_convert_internal #undef gray_rgb_convert_internal #undef rgb_rgb_convert_internal #define RGB_RED EXT_RGBX_RED #define RGB_GREEN EXT_RGBX_GREEN #define RGB_BLUE EXT_RGBX_BLUE #define RGB_ALPHA 3 #define RGB_PIXELSIZE EXT_RGBX_PIXELSIZE #define ycc_rgb_convert_internal ycc_extrgbx_convert_internal #define gray_rgb_convert_internal gray_extrgbx_convert_internal #define rgb_rgb_convert_internal rgb_extrgbx_convert_internal #include "jdcolext.c" #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_ALPHA #undef RGB_PIXELSIZE #undef ycc_rgb_convert_internal #undef gray_rgb_convert_internal #undef rgb_rgb_convert_internal #define RGB_RED EXT_BGR_RED #define RGB_GREEN EXT_BGR_GREEN #define RGB_BLUE EXT_BGR_BLUE #define RGB_PIXELSIZE EXT_BGR_PIXELSIZE #define ycc_rgb_convert_internal ycc_extbgr_convert_internal #define gray_rgb_convert_internal gray_extbgr_convert_internal #define rgb_rgb_convert_internal rgb_extbgr_convert_internal #include "jdcolext.c" #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_PIXELSIZE #undef ycc_rgb_convert_internal #undef gray_rgb_convert_internal #undef rgb_rgb_convert_internal #define RGB_RED EXT_BGRX_RED #define RGB_GREEN EXT_BGRX_GREEN #define RGB_BLUE EXT_BGRX_BLUE #define RGB_ALPHA 3 #define RGB_PIXELSIZE EXT_BGRX_PIXELSIZE #define ycc_rgb_convert_internal ycc_extbgrx_convert_internal #define gray_rgb_convert_internal gray_extbgrx_convert_internal #define rgb_rgb_convert_internal rgb_extbgrx_convert_internal #include "jdcolext.c" #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_ALPHA #undef RGB_PIXELSIZE #undef ycc_rgb_convert_internal #undef gray_rgb_convert_internal #undef rgb_rgb_convert_internal #define RGB_RED EXT_XBGR_RED #define RGB_GREEN EXT_XBGR_GREEN #define RGB_BLUE EXT_XBGR_BLUE #define RGB_ALPHA 0 #define RGB_PIXELSIZE EXT_XBGR_PIXELSIZE #define ycc_rgb_convert_internal ycc_extxbgr_convert_internal #define gray_rgb_convert_internal gray_extxbgr_convert_internal #define rgb_rgb_convert_internal rgb_extxbgr_convert_internal #include "jdcolext.c" #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_ALPHA #undef RGB_PIXELSIZE #undef ycc_rgb_convert_internal #undef gray_rgb_convert_internal #undef rgb_rgb_convert_internal #define RGB_RED EXT_XRGB_RED #define RGB_GREEN EXT_XRGB_GREEN #define RGB_BLUE EXT_XRGB_BLUE #define RGB_ALPHA 0 #define RGB_PIXELSIZE EXT_XRGB_PIXELSIZE #define ycc_rgb_convert_internal ycc_extxrgb_convert_internal #define gray_rgb_convert_internal gray_extxrgb_convert_internal #define rgb_rgb_convert_internal rgb_extxrgb_convert_internal #include "jdcolext.c" #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_ALPHA #undef RGB_PIXELSIZE #undef ycc_rgb_convert_internal #undef gray_rgb_convert_internal #undef rgb_rgb_convert_internal /* * Initialize tables for YCC->RGB colorspace conversion. */ LOCAL(void) build_ycc_rgb_table (j_decompress_ptr cinfo) { my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; int i; INT32 x; SHIFT_TEMPS cconvert->Cr_r_tab = (int *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * sizeof(int)); cconvert->Cb_b_tab = (int *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * sizeof(int)); cconvert->Cr_g_tab = (INT32 *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * sizeof(INT32)); cconvert->Cb_g_tab = (INT32 *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * sizeof(INT32)); for (i = 0, x = -CENTERJSAMPLE; i <= MAXJSAMPLE; i++, x++) { /* i is the actual input pixel value, in the range 0..MAXJSAMPLE */ /* The Cb or Cr value we are thinking of is x = i - CENTERJSAMPLE */ /* Cr=>R value is nearest int to 1.40200 * x */ cconvert->Cr_r_tab[i] = (int) RIGHT_SHIFT(FIX(1.40200) * x + ONE_HALF, SCALEBITS); /* Cb=>B value is nearest int to 1.77200 * x */ cconvert->Cb_b_tab[i] = (int) RIGHT_SHIFT(FIX(1.77200) * x + ONE_HALF, SCALEBITS); /* Cr=>G value is scaled-up -0.71414 * x */ cconvert->Cr_g_tab[i] = (- FIX(0.71414)) * x; /* Cb=>G value is scaled-up -0.34414 * x */ /* We also add in ONE_HALF so that need not do it in inner loop */ cconvert->Cb_g_tab[i] = (- FIX(0.34414)) * x + ONE_HALF; } } /* * Convert some rows of samples to the output colorspace. */ METHODDEF(void) ycc_rgb_convert (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) { switch (cinfo->out_color_space) { case JCS_EXT_RGB: ycc_extrgb_convert_internal(cinfo, input_buf, input_row, output_buf, num_rows); break; case JCS_EXT_RGBX: case JCS_EXT_RGBA: ycc_extrgbx_convert_internal(cinfo, input_buf, input_row, output_buf, num_rows); break; case JCS_EXT_BGR: ycc_extbgr_convert_internal(cinfo, input_buf, input_row, output_buf, num_rows); break; case JCS_EXT_BGRX: case JCS_EXT_BGRA: ycc_extbgrx_convert_internal(cinfo, input_buf, input_row, output_buf, num_rows); break; case JCS_EXT_XBGR: case JCS_EXT_ABGR: ycc_extxbgr_convert_internal(cinfo, input_buf, input_row, output_buf, num_rows); break; case JCS_EXT_XRGB: case JCS_EXT_ARGB: ycc_extxrgb_convert_internal(cinfo, input_buf, input_row, output_buf, num_rows); break; default: ycc_rgb_convert_internal(cinfo, input_buf, input_row, output_buf, num_rows); break; } } /**************** Cases other than YCbCr -> RGB **************/ /* * Initialize for RGB->grayscale colorspace conversion. */ LOCAL(void) build_rgb_y_table (j_decompress_ptr cinfo) { my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; INT32 * rgb_y_tab; INT32 i; /* Allocate and fill in the conversion tables. */ cconvert->rgb_y_tab = rgb_y_tab = (INT32 *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, (TABLE_SIZE * sizeof(INT32))); for (i = 0; i <= MAXJSAMPLE; i++) { rgb_y_tab[i+R_Y_OFF] = FIX(0.29900) * i; rgb_y_tab[i+G_Y_OFF] = FIX(0.58700) * i; rgb_y_tab[i+B_Y_OFF] = FIX(0.11400) * i + ONE_HALF; } } /* * Convert RGB to grayscale. */ METHODDEF(void) rgb_gray_convert (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) { my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; register int r, g, b; register INT32 * ctab = cconvert->rgb_y_tab; register JSAMPROW outptr; register JSAMPROW inptr0, inptr1, inptr2; register JDIMENSION col; JDIMENSION num_cols = cinfo->output_width; while (--num_rows >= 0) { inptr0 = input_buf[0][input_row]; inptr1 = input_buf[1][input_row]; inptr2 = input_buf[2][input_row]; input_row++; outptr = *output_buf++; for (col = 0; col < num_cols; col++) { r = GETJSAMPLE(inptr0[col]); g = GETJSAMPLE(inptr1[col]); b = GETJSAMPLE(inptr2[col]); /* Y */ outptr[col] = (JSAMPLE) ((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF]) >> SCALEBITS); } } } /* * Color conversion for no colorspace change: just copy the data, * converting from separate-planes to interleaved representation. */ METHODDEF(void) null_convert (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) { register JSAMPROW inptr, inptr0, inptr1, inptr2, inptr3, outptr; register JDIMENSION col; register int num_components = cinfo->num_components; JDIMENSION num_cols = cinfo->output_width; int ci; if (num_components == 3) { while (--num_rows >= 0) { inptr0 = input_buf[0][input_row]; inptr1 = input_buf[1][input_row]; inptr2 = input_buf[2][input_row]; input_row++; outptr = *output_buf++; for (col = 0; col < num_cols; col++) { *outptr++ = inptr0[col]; *outptr++ = inptr1[col]; *outptr++ = inptr2[col]; } } } else if (num_components == 4) { while (--num_rows >= 0) { inptr0 = input_buf[0][input_row]; inptr1 = input_buf[1][input_row]; inptr2 = input_buf[2][input_row]; inptr3 = input_buf[3][input_row]; input_row++; outptr = *output_buf++; for (col = 0; col < num_cols; col++) { *outptr++ = inptr0[col]; *outptr++ = inptr1[col]; *outptr++ = inptr2[col]; *outptr++ = inptr3[col]; } } } else { while (--num_rows >= 0) { for (ci = 0; ci < num_components; ci++) { inptr = input_buf[ci][input_row]; outptr = *output_buf; for (col = 0; col < num_cols; col++) { outptr[ci] = inptr[col]; outptr += num_components; } } output_buf++; input_row++; } } } /* * Color conversion for grayscale: just copy the data. * This also works for YCbCr -> grayscale conversion, in which * we just copy the Y (luminance) component and ignore chrominance. */ METHODDEF(void) grayscale_convert (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) { jcopy_sample_rows(input_buf[0], (int) input_row, output_buf, 0, num_rows, cinfo->output_width); } /* * Convert grayscale to RGB */ METHODDEF(void) gray_rgb_convert (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) { switch (cinfo->out_color_space) { case JCS_EXT_RGB: gray_extrgb_convert_internal(cinfo, input_buf, input_row, output_buf, num_rows); break; case JCS_EXT_RGBX: case JCS_EXT_RGBA: gray_extrgbx_convert_internal(cinfo, input_buf, input_row, output_buf, num_rows); break; case JCS_EXT_BGR: gray_extbgr_convert_internal(cinfo, input_buf, input_row, output_buf, num_rows); break; case JCS_EXT_BGRX: case JCS_EXT_BGRA: gray_extbgrx_convert_internal(cinfo, input_buf, input_row, output_buf, num_rows); break; case JCS_EXT_XBGR: case JCS_EXT_ABGR: gray_extxbgr_convert_internal(cinfo, input_buf, input_row, output_buf, num_rows); break; case JCS_EXT_XRGB: case JCS_EXT_ARGB: gray_extxrgb_convert_internal(cinfo, input_buf, input_row, output_buf, num_rows); break; default: gray_rgb_convert_internal(cinfo, input_buf, input_row, output_buf, num_rows); break; } } /* * Convert plain RGB to extended RGB */ METHODDEF(void) rgb_rgb_convert (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) { switch (cinfo->out_color_space) { case JCS_EXT_RGB: rgb_extrgb_convert_internal(cinfo, input_buf, input_row, output_buf, num_rows); break; case JCS_EXT_RGBX: case JCS_EXT_RGBA: rgb_extrgbx_convert_internal(cinfo, input_buf, input_row, output_buf, num_rows); break; case JCS_EXT_BGR: rgb_extbgr_convert_internal(cinfo, input_buf, input_row, output_buf, num_rows); break; case JCS_EXT_BGRX: case JCS_EXT_BGRA: rgb_extbgrx_convert_internal(cinfo, input_buf, input_row, output_buf, num_rows); break; case JCS_EXT_XBGR: case JCS_EXT_ABGR: rgb_extxbgr_convert_internal(cinfo, input_buf, input_row, output_buf, num_rows); break; case JCS_EXT_XRGB: case JCS_EXT_ARGB: rgb_extxrgb_convert_internal(cinfo, input_buf, input_row, output_buf, num_rows); break; default: rgb_rgb_convert_internal(cinfo, input_buf, input_row, output_buf, num_rows); break; } } /* * Adobe-style YCCK->CMYK conversion. * We convert YCbCr to R=1-C, G=1-M, and B=1-Y using the same * conversion as above, while passing K (black) unchanged. * We assume build_ycc_rgb_table has been called. */ METHODDEF(void) ycck_cmyk_convert (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) { my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; register int y, cb, cr; register JSAMPROW outptr; register JSAMPROW inptr0, inptr1, inptr2, inptr3; register JDIMENSION col; JDIMENSION num_cols = cinfo->output_width; /* copy these pointers into registers if possible */ register JSAMPLE * range_limit = cinfo->sample_range_limit; register int * Crrtab = cconvert->Cr_r_tab; register int * Cbbtab = cconvert->Cb_b_tab; register INT32 * Crgtab = cconvert->Cr_g_tab; register INT32 * Cbgtab = cconvert->Cb_g_tab; SHIFT_TEMPS while (--num_rows >= 0) { inptr0 = input_buf[0][input_row]; inptr1 = input_buf[1][input_row]; inptr2 = input_buf[2][input_row]; inptr3 = input_buf[3][input_row]; input_row++; outptr = *output_buf++; for (col = 0; col < num_cols; col++) { y = GETJSAMPLE(inptr0[col]); cb = GETJSAMPLE(inptr1[col]); cr = GETJSAMPLE(inptr2[col]); /* Range-limiting is essential due to noise introduced by DCT losses. */ outptr[0] = range_limit[MAXJSAMPLE - (y + Crrtab[cr])]; /* red */ outptr[1] = range_limit[MAXJSAMPLE - (y + /* green */ ((int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS)))]; outptr[2] = range_limit[MAXJSAMPLE - (y + Cbbtab[cb])]; /* blue */ /* K passes through unchanged */ outptr[3] = inptr3[col]; /* don't need GETJSAMPLE here */ outptr += 4; } } } /* * RGB565 conversion */ #define PACK_SHORT_565_LE(r, g, b) ((((r) << 8) & 0xF800) | \ (((g) << 3) & 0x7E0) | ((b) >> 3)) #define PACK_SHORT_565_BE(r, g, b) (((r) & 0xF8) | ((g) >> 5) | \ (((g) << 11) & 0xE000) | \ (((b) << 5) & 0x1F00)) #define PACK_TWO_PIXELS_LE(l, r) ((r << 16) | l) #define PACK_TWO_PIXELS_BE(l, r) ((l << 16) | r) #define PACK_NEED_ALIGNMENT(ptr) (((size_t)(ptr)) & 3) #define WRITE_TWO_ALIGNED_PIXELS(addr, pixels) ((*(int *)(addr)) = pixels) #define DITHER_565_R(r, dither) ((r) + ((dither) & 0xFF)) #define DITHER_565_G(g, dither) ((g) + (((dither) & 0xFF) >> 1)) #define DITHER_565_B(b, dither) ((b) + ((dither) & 0xFF)) /* Declarations for ordered dithering * * We use a 4x4 ordered dither array packed into 32 bits. This array is * sufficent for dithering RGB888 to RGB565. */ #define DITHER_MASK 0x3 #define DITHER_ROTATE(x) (((x) << 24) | (((x) >> 8) & 0x00FFFFFF)) static const INT32 dither_matrix[4] = { 0x0008020A, 0x0C040E06, 0x030B0109, 0x0F070D05 }; static INLINE boolean is_big_endian(void) { int test_value = 1; if(*(char *)&test_value != 1) return TRUE; return FALSE; } /* Include inline routines for RGB565 conversion */ #define PACK_SHORT_565 PACK_SHORT_565_LE #define PACK_TWO_PIXELS PACK_TWO_PIXELS_LE #define ycc_rgb565_convert_internal ycc_rgb565_convert_le #define ycc_rgb565D_convert_internal ycc_rgb565D_convert_le #define rgb_rgb565_convert_internal rgb_rgb565_convert_le #define rgb_rgb565D_convert_internal rgb_rgb565D_convert_le #define gray_rgb565_convert_internal gray_rgb565_convert_le #define gray_rgb565D_convert_internal gray_rgb565D_convert_le #include "jdcol565.c" #undef PACK_SHORT_565 #undef PACK_TWO_PIXELS #undef ycc_rgb565_convert_internal #undef ycc_rgb565D_convert_internal #undef rgb_rgb565_convert_internal #undef rgb_rgb565D_convert_internal #undef gray_rgb565_convert_internal #undef gray_rgb565D_convert_internal #define PACK_SHORT_565 PACK_SHORT_565_BE #define PACK_TWO_PIXELS PACK_TWO_PIXELS_BE #define ycc_rgb565_convert_internal ycc_rgb565_convert_be #define ycc_rgb565D_convert_internal ycc_rgb565D_convert_be #define rgb_rgb565_convert_internal rgb_rgb565_convert_be #define rgb_rgb565D_convert_internal rgb_rgb565D_convert_be #define gray_rgb565_convert_internal gray_rgb565_convert_be #define gray_rgb565D_convert_internal gray_rgb565D_convert_be #include "jdcol565.c" #undef PACK_SHORT_565 #undef PACK_TWO_PIXELS #undef ycc_rgb565_convert_internal #undef ycc_rgb565D_convert_internal #undef rgb_rgb565_convert_internal #undef rgb_rgb565D_convert_internal #undef gray_rgb565_convert_internal #undef gray_rgb565D_convert_internal METHODDEF(void) ycc_rgb565_convert (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) { if (is_big_endian()) ycc_rgb565_convert_be(cinfo, input_buf, input_row, output_buf, num_rows); else ycc_rgb565_convert_le(cinfo, input_buf, input_row, output_buf, num_rows); } METHODDEF(void) ycc_rgb565D_convert (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) { if (is_big_endian()) ycc_rgb565D_convert_be(cinfo, input_buf, input_row, output_buf, num_rows); else ycc_rgb565D_convert_le(cinfo, input_buf, input_row, output_buf, num_rows); } METHODDEF(void) rgb_rgb565_convert (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) { if (is_big_endian()) rgb_rgb565_convert_be(cinfo, input_buf, input_row, output_buf, num_rows); else rgb_rgb565_convert_le(cinfo, input_buf, input_row, output_buf, num_rows); } METHODDEF(void) rgb_rgb565D_convert (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) { if (is_big_endian()) rgb_rgb565D_convert_be(cinfo, input_buf, input_row, output_buf, num_rows); else rgb_rgb565D_convert_le(cinfo, input_buf, input_row, output_buf, num_rows); } METHODDEF(void) gray_rgb565_convert (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) { if (is_big_endian()) gray_rgb565_convert_be(cinfo, input_buf, input_row, output_buf, num_rows); else gray_rgb565_convert_le(cinfo, input_buf, input_row, output_buf, num_rows); } METHODDEF(void) gray_rgb565D_convert (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) { if (is_big_endian()) gray_rgb565D_convert_be(cinfo, input_buf, input_row, output_buf, num_rows); else gray_rgb565D_convert_le(cinfo, input_buf, input_row, output_buf, num_rows); } /* * Empty method for start_pass. */ METHODDEF(void) start_pass_dcolor (j_decompress_ptr cinfo) { /* no work needed */ } /* * Module initialization routine for output colorspace conversion. */ GLOBAL(void) jinit_color_deconverter (j_decompress_ptr cinfo) { my_cconvert_ptr cconvert; int ci; cconvert = (my_cconvert_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, sizeof(my_color_deconverter)); cinfo->cconvert = (struct jpeg_color_deconverter *) cconvert; cconvert->pub.start_pass = start_pass_dcolor; /* Make sure num_components agrees with jpeg_color_space */ switch (cinfo->jpeg_color_space) { case JCS_GRAYSCALE: if (cinfo->num_components != 1) ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); break; case JCS_RGB: case JCS_YCbCr: if (cinfo->num_components != 3) ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); break; case JCS_CMYK: case JCS_YCCK: if (cinfo->num_components != 4) ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); break; default: /* JCS_UNKNOWN can be anything */ if (cinfo->num_components < 1) ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); break; } /* Set out_color_components and conversion method based on requested space. * Also clear the component_needed flags for any unused components, * so that earlier pipeline stages can avoid useless computation. */ switch (cinfo->out_color_space) { case JCS_GRAYSCALE: cinfo->out_color_components = 1; if (cinfo->jpeg_color_space == JCS_GRAYSCALE || cinfo->jpeg_color_space == JCS_YCbCr) { cconvert->pub.color_convert = grayscale_convert; /* For color->grayscale conversion, only the Y (0) component is needed */ for (ci = 1; ci < cinfo->num_components; ci++) cinfo->comp_info[ci].component_needed = FALSE; } else if (cinfo->jpeg_color_space == JCS_RGB) { cconvert->pub.color_convert = rgb_gray_convert; build_rgb_y_table(cinfo); } else ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); break; case JCS_RGB: case JCS_EXT_RGB: case JCS_EXT_RGBX: case JCS_EXT_BGR: case JCS_EXT_BGRX: case JCS_EXT_XBGR: case JCS_EXT_XRGB: case JCS_EXT_RGBA: case JCS_EXT_BGRA: case JCS_EXT_ABGR: case JCS_EXT_ARGB: cinfo->out_color_components = rgb_pixelsize[cinfo->out_color_space]; if (cinfo->jpeg_color_space == JCS_YCbCr) { if (jsimd_can_ycc_rgb()) cconvert->pub.color_convert = jsimd_ycc_rgb_convert; else { cconvert->pub.color_convert = ycc_rgb_convert; build_ycc_rgb_table(cinfo); } } else if (cinfo->jpeg_color_space == JCS_GRAYSCALE) { cconvert->pub.color_convert = gray_rgb_convert; } else if (cinfo->jpeg_color_space == JCS_RGB) { if (rgb_red[cinfo->out_color_space] == 0 && rgb_green[cinfo->out_color_space] == 1 && rgb_blue[cinfo->out_color_space] == 2 && rgb_pixelsize[cinfo->out_color_space] == 3) cconvert->pub.color_convert = null_convert; else cconvert->pub.color_convert = rgb_rgb_convert; } else ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); break; case JCS_RGB565: cinfo->out_color_components = 3; if (cinfo->dither_mode == JDITHER_NONE) { if (cinfo->jpeg_color_space == JCS_YCbCr) { if (jsimd_can_ycc_rgb565()) cconvert->pub.color_convert = jsimd_ycc_rgb565_convert; else { cconvert->pub.color_convert = ycc_rgb565_convert; build_ycc_rgb_table(cinfo); } } else if (cinfo->jpeg_color_space == JCS_GRAYSCALE) { cconvert->pub.color_convert = gray_rgb565_convert; } else if (cinfo->jpeg_color_space == JCS_RGB) { cconvert->pub.color_convert = rgb_rgb565_convert; } else ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); } else { /* only ordered dithering is supported */ if (cinfo->jpeg_color_space == JCS_YCbCr) { cconvert->pub.color_convert = ycc_rgb565D_convert; build_ycc_rgb_table(cinfo); } else if (cinfo->jpeg_color_space == JCS_GRAYSCALE) { cconvert->pub.color_convert = gray_rgb565D_convert; } else if (cinfo->jpeg_color_space == JCS_RGB) { cconvert->pub.color_convert = rgb_rgb565D_convert; } else ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); } break; case JCS_CMYK: cinfo->out_color_components = 4; if (cinfo->jpeg_color_space == JCS_YCCK) { cconvert->pub.color_convert = ycck_cmyk_convert; build_ycc_rgb_table(cinfo); } else if (cinfo->jpeg_color_space == JCS_CMYK) { cconvert->pub.color_convert = null_convert; } else ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); break; default: /* Permit null conversion to same output space */ if (cinfo->out_color_space == cinfo->jpeg_color_space) { cinfo->out_color_components = cinfo->num_components; cconvert->pub.color_convert = null_convert; } else /* unsupported non-null conversion */ ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); break; } if (cinfo->quantize_colors) cinfo->output_components = 1; /* single colormapped output component */ else cinfo->output_components = cinfo->out_color_components; } libjpeg-turbo-1.4.2/jpegtran.c0000644000076500007650000004452712600050400013173 00000000000000/* * jpegtran.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1995-2010, Thomas G. Lane, Guido Vollbeding. * libjpeg-turbo Modifications: * Copyright (C) 2010, 2014, D. R. Commander. * For conditions of distribution and use, see the accompanying README file. * * This file contains a command-line user interface for JPEG transcoding. * It is very similar to cjpeg.c, and partly to djpeg.c, but provides * lossless transcoding between different JPEG file formats. It also * provides some lossless and sort-of-lossless transformations of JPEG data. */ #include "cdjpeg.h" /* Common decls for cjpeg/djpeg applications */ #include "transupp.h" /* Support routines for jpegtran */ #include "jversion.h" /* for version message */ #include "jconfigint.h" #ifdef USE_CCOMMAND /* command-line reader for Macintosh */ #ifdef __MWERKS__ #include /* Metrowerks needs this */ #include /* ... and this */ #endif #ifdef THINK_C #include /* Think declares it here */ #endif #endif /* * Argument-parsing code. * The switch parser is designed to be useful with DOS-style command line * syntax, ie, intermixed switches and file names, where only the switches * to the left of a given file name affect processing of that file. * The main program in this file doesn't actually use this capability... */ static const char * progname; /* program name for error messages */ static char * outfilename; /* for -outfile switch */ static JCOPY_OPTION copyoption; /* -copy switch */ static jpeg_transform_info transformoption; /* image transformation options */ LOCAL(void) usage (void) /* complain about bad command line */ { fprintf(stderr, "usage: %s [switches] ", progname); #ifdef TWO_FILE_COMMANDLINE fprintf(stderr, "inputfile outputfile\n"); #else fprintf(stderr, "[inputfile]\n"); #endif fprintf(stderr, "Switches (names may be abbreviated):\n"); fprintf(stderr, " -copy none Copy no extra markers from source file\n"); fprintf(stderr, " -copy comments Copy only comment markers (default)\n"); fprintf(stderr, " -copy all Copy all extra markers\n"); #ifdef ENTROPY_OPT_SUPPORTED fprintf(stderr, " -optimize Optimize Huffman table (smaller file, but slow compression)\n"); #endif #ifdef C_PROGRESSIVE_SUPPORTED fprintf(stderr, " -progressive Create progressive JPEG file\n"); #endif fprintf(stderr, "Switches for modifying the image:\n"); #if TRANSFORMS_SUPPORTED fprintf(stderr, " -crop WxH+X+Y Crop to a rectangular subarea\n"); fprintf(stderr, " -grayscale Reduce to grayscale (omit color data)\n"); fprintf(stderr, " -flip [horizontal|vertical] Mirror image (left-right or top-bottom)\n"); fprintf(stderr, " -perfect Fail if there is non-transformable edge blocks\n"); fprintf(stderr, " -rotate [90|180|270] Rotate image (degrees clockwise)\n"); #endif #if TRANSFORMS_SUPPORTED fprintf(stderr, " -transpose Transpose image\n"); fprintf(stderr, " -transverse Transverse transpose image\n"); fprintf(stderr, " -trim Drop non-transformable edge blocks\n"); #endif fprintf(stderr, "Switches for advanced users:\n"); #ifdef C_ARITH_CODING_SUPPORTED fprintf(stderr, " -arithmetic Use arithmetic coding\n"); #endif fprintf(stderr, " -restart N Set restart interval in rows, or in blocks with B\n"); fprintf(stderr, " -maxmemory N Maximum memory to use (in kbytes)\n"); fprintf(stderr, " -outfile name Specify name for output file\n"); fprintf(stderr, " -verbose or -debug Emit debug output\n"); fprintf(stderr, " -version Print version information and exit\n"); fprintf(stderr, "Switches for wizards:\n"); #ifdef C_MULTISCAN_FILES_SUPPORTED fprintf(stderr, " -scans file Create multi-scan JPEG per script file\n"); #endif exit(EXIT_FAILURE); } LOCAL(void) select_transform (JXFORM_CODE transform) /* Silly little routine to detect multiple transform options, * which we can't handle. */ { #if TRANSFORMS_SUPPORTED if (transformoption.transform == JXFORM_NONE || transformoption.transform == transform) { transformoption.transform = transform; } else { fprintf(stderr, "%s: can only do one image transformation at a time\n", progname); usage(); } #else fprintf(stderr, "%s: sorry, image transformation was not compiled\n", progname); exit(EXIT_FAILURE); #endif } LOCAL(int) parse_switches (j_compress_ptr cinfo, int argc, char **argv, int last_file_arg_seen, boolean for_real) /* Parse optional switches. * Returns argv[] index of first file-name argument (== argc if none). * Any file names with indexes <= last_file_arg_seen are ignored; * they have presumably been processed in a previous iteration. * (Pass 0 for last_file_arg_seen on the first or only iteration.) * for_real is FALSE on the first (dummy) pass; we may skip any expensive * processing. */ { int argn; char * arg; boolean simple_progressive; char * scansarg = NULL; /* saves -scans parm if any */ /* Set up default JPEG parameters. */ simple_progressive = FALSE; outfilename = NULL; copyoption = JCOPYOPT_DEFAULT; transformoption.transform = JXFORM_NONE; transformoption.perfect = FALSE; transformoption.trim = FALSE; transformoption.force_grayscale = FALSE; transformoption.crop = FALSE; transformoption.slow_hflip = FALSE; cinfo->err->trace_level = 0; /* Scan command line options, adjust parameters */ for (argn = 1; argn < argc; argn++) { arg = argv[argn]; if (*arg != '-') { /* Not a switch, must be a file name argument */ if (argn <= last_file_arg_seen) { outfilename = NULL; /* -outfile applies to just one input file */ continue; /* ignore this name if previously processed */ } break; /* else done parsing switches */ } arg++; /* advance past switch marker character */ if (keymatch(arg, "arithmetic", 1)) { /* Use arithmetic coding. */ #ifdef C_ARITH_CODING_SUPPORTED cinfo->arith_code = TRUE; #else fprintf(stderr, "%s: sorry, arithmetic coding not supported\n", progname); exit(EXIT_FAILURE); #endif } else if (keymatch(arg, "copy", 2)) { /* Select which extra markers to copy. */ if (++argn >= argc) /* advance to next argument */ usage(); if (keymatch(argv[argn], "none", 1)) { copyoption = JCOPYOPT_NONE; } else if (keymatch(argv[argn], "comments", 1)) { copyoption = JCOPYOPT_COMMENTS; } else if (keymatch(argv[argn], "all", 1)) { copyoption = JCOPYOPT_ALL; } else usage(); } else if (keymatch(arg, "crop", 2)) { /* Perform lossless cropping. */ #if TRANSFORMS_SUPPORTED if (++argn >= argc) /* advance to next argument */ usage(); if (! jtransform_parse_crop_spec(&transformoption, argv[argn])) { fprintf(stderr, "%s: bogus -crop argument '%s'\n", progname, argv[argn]); exit(EXIT_FAILURE); } #else select_transform(JXFORM_NONE); /* force an error */ #endif } else if (keymatch(arg, "debug", 1) || keymatch(arg, "verbose", 1)) { /* Enable debug printouts. */ /* On first -d, print version identification */ static boolean printed_version = FALSE; if (! printed_version) { fprintf(stderr, "%s version %s (build %s)\n", PACKAGE_NAME, VERSION, BUILD); fprintf(stderr, "%s\n\n", JCOPYRIGHT); fprintf(stderr, "Emulating The Independent JPEG Group's software, version %s\n\n", JVERSION); printed_version = TRUE; } cinfo->err->trace_level++; } else if (keymatch(arg, "version", 4)) { fprintf(stderr, "%s version %s (build %s)\n", PACKAGE_NAME, VERSION, BUILD); exit(EXIT_SUCCESS); } else if (keymatch(arg, "flip", 1)) { /* Mirror left-right or top-bottom. */ if (++argn >= argc) /* advance to next argument */ usage(); if (keymatch(argv[argn], "horizontal", 1)) select_transform(JXFORM_FLIP_H); else if (keymatch(argv[argn], "vertical", 1)) select_transform(JXFORM_FLIP_V); else usage(); } else if (keymatch(arg, "grayscale", 1) || keymatch(arg, "greyscale",1)) { /* Force to grayscale. */ #if TRANSFORMS_SUPPORTED transformoption.force_grayscale = TRUE; #else select_transform(JXFORM_NONE); /* force an error */ #endif } else if (keymatch(arg, "maxmemory", 3)) { /* Maximum memory in Kb (or Mb with 'm'). */ long lval; char ch = 'x'; if (++argn >= argc) /* advance to next argument */ usage(); if (sscanf(argv[argn], "%ld%c", &lval, &ch) < 1) usage(); if (ch == 'm' || ch == 'M') lval *= 1000L; cinfo->mem->max_memory_to_use = lval * 1000L; } else if (keymatch(arg, "optimize", 1) || keymatch(arg, "optimise", 1)) { /* Enable entropy parm optimization. */ #ifdef ENTROPY_OPT_SUPPORTED cinfo->optimize_coding = TRUE; #else fprintf(stderr, "%s: sorry, entropy optimization was not compiled\n", progname); exit(EXIT_FAILURE); #endif } else if (keymatch(arg, "outfile", 4)) { /* Set output file name. */ if (++argn >= argc) /* advance to next argument */ usage(); outfilename = argv[argn]; /* save it away for later use */ } else if (keymatch(arg, "perfect", 2)) { /* Fail if there is any partial edge MCUs that the transform can't * handle. */ transformoption.perfect = TRUE; } else if (keymatch(arg, "progressive", 2)) { /* Select simple progressive mode. */ #ifdef C_PROGRESSIVE_SUPPORTED simple_progressive = TRUE; /* We must postpone execution until num_components is known. */ #else fprintf(stderr, "%s: sorry, progressive output was not compiled\n", progname); exit(EXIT_FAILURE); #endif } else if (keymatch(arg, "restart", 1)) { /* Restart interval in MCU rows (or in MCUs with 'b'). */ long lval; char ch = 'x'; if (++argn >= argc) /* advance to next argument */ usage(); if (sscanf(argv[argn], "%ld%c", &lval, &ch) < 1) usage(); if (lval < 0 || lval > 65535L) usage(); if (ch == 'b' || ch == 'B') { cinfo->restart_interval = (unsigned int) lval; cinfo->restart_in_rows = 0; /* else prior '-restart n' overrides me */ } else { cinfo->restart_in_rows = (int) lval; /* restart_interval will be computed during startup */ } } else if (keymatch(arg, "rotate", 2)) { /* Rotate 90, 180, or 270 degrees (measured clockwise). */ if (++argn >= argc) /* advance to next argument */ usage(); if (keymatch(argv[argn], "90", 2)) select_transform(JXFORM_ROT_90); else if (keymatch(argv[argn], "180", 3)) select_transform(JXFORM_ROT_180); else if (keymatch(argv[argn], "270", 3)) select_transform(JXFORM_ROT_270); else usage(); } else if (keymatch(arg, "scans", 1)) { /* Set scan script. */ #ifdef C_MULTISCAN_FILES_SUPPORTED if (++argn >= argc) /* advance to next argument */ usage(); scansarg = argv[argn]; /* We must postpone reading the file in case -progressive appears. */ #else fprintf(stderr, "%s: sorry, multi-scan output was not compiled\n", progname); exit(EXIT_FAILURE); #endif } else if (keymatch(arg, "transpose", 1)) { /* Transpose (across UL-to-LR axis). */ select_transform(JXFORM_TRANSPOSE); } else if (keymatch(arg, "transverse", 6)) { /* Transverse transpose (across UR-to-LL axis). */ select_transform(JXFORM_TRANSVERSE); } else if (keymatch(arg, "trim", 3)) { /* Trim off any partial edge MCUs that the transform can't handle. */ transformoption.trim = TRUE; } else { usage(); /* bogus switch */ } } /* Post-switch-scanning cleanup */ if (for_real) { #ifdef C_PROGRESSIVE_SUPPORTED if (simple_progressive) /* process -progressive; -scans can override */ jpeg_simple_progression(cinfo); #endif #ifdef C_MULTISCAN_FILES_SUPPORTED if (scansarg != NULL) /* process -scans if it was present */ if (! read_scan_script(cinfo, scansarg)) usage(); #endif } return argn; /* return index of next arg (file name) */ } /* * The main program. */ int main (int argc, char **argv) { struct jpeg_decompress_struct srcinfo; struct jpeg_compress_struct dstinfo; struct jpeg_error_mgr jsrcerr, jdsterr; #ifdef PROGRESS_REPORT struct cdjpeg_progress_mgr progress; #endif jvirt_barray_ptr * src_coef_arrays; jvirt_barray_ptr * dst_coef_arrays; int file_index; /* We assume all-in-memory processing and can therefore use only a * single file pointer for sequential input and output operation. */ FILE * fp; /* On Mac, fetch a command line. */ #ifdef USE_CCOMMAND argc = ccommand(&argv); #endif progname = argv[0]; if (progname == NULL || progname[0] == 0) progname = "jpegtran"; /* in case C library doesn't provide it */ /* Initialize the JPEG decompression object with default error handling. */ srcinfo.err = jpeg_std_error(&jsrcerr); jpeg_create_decompress(&srcinfo); /* Initialize the JPEG compression object with default error handling. */ dstinfo.err = jpeg_std_error(&jdsterr); jpeg_create_compress(&dstinfo); /* Scan command line to find file names. * It is convenient to use just one switch-parsing routine, but the switch * values read here are mostly ignored; we will rescan the switches after * opening the input file. Also note that most of the switches affect the * destination JPEG object, so we parse into that and then copy over what * needs to affects the source too. */ file_index = parse_switches(&dstinfo, argc, argv, 0, FALSE); jsrcerr.trace_level = jdsterr.trace_level; srcinfo.mem->max_memory_to_use = dstinfo.mem->max_memory_to_use; #ifdef TWO_FILE_COMMANDLINE /* Must have either -outfile switch or explicit output file name */ if (outfilename == NULL) { if (file_index != argc-2) { fprintf(stderr, "%s: must name one input and one output file\n", progname); usage(); } outfilename = argv[file_index+1]; } else { if (file_index != argc-1) { fprintf(stderr, "%s: must name one input and one output file\n", progname); usage(); } } #else /* Unix style: expect zero or one file name */ if (file_index < argc-1) { fprintf(stderr, "%s: only one input file\n", progname); usage(); } #endif /* TWO_FILE_COMMANDLINE */ /* Open the input file. */ if (file_index < argc) { if ((fp = fopen(argv[file_index], READ_BINARY)) == NULL) { fprintf(stderr, "%s: can't open %s for reading\n", progname, argv[file_index]); exit(EXIT_FAILURE); } } else { /* default input file is stdin */ fp = read_stdin(); } #ifdef PROGRESS_REPORT start_progress_monitor((j_common_ptr) &dstinfo, &progress); #endif /* Specify data source for decompression */ jpeg_stdio_src(&srcinfo, fp); /* Enable saving of extra markers that we want to copy */ jcopy_markers_setup(&srcinfo, copyoption); /* Read file header */ (void) jpeg_read_header(&srcinfo, TRUE); /* Any space needed by a transform option must be requested before * jpeg_read_coefficients so that memory allocation will be done right. */ #if TRANSFORMS_SUPPORTED /* Fail right away if -perfect is given and transformation is not perfect. */ if (!jtransform_request_workspace(&srcinfo, &transformoption)) { fprintf(stderr, "%s: transformation is not perfect\n", progname); exit(EXIT_FAILURE); } #endif /* Read source file as DCT coefficients */ src_coef_arrays = jpeg_read_coefficients(&srcinfo); /* Initialize destination compression parameters from source values */ jpeg_copy_critical_parameters(&srcinfo, &dstinfo); /* Adjust destination parameters if required by transform options; * also find out which set of coefficient arrays will hold the output. */ #if TRANSFORMS_SUPPORTED dst_coef_arrays = jtransform_adjust_parameters(&srcinfo, &dstinfo, src_coef_arrays, &transformoption); #else dst_coef_arrays = src_coef_arrays; #endif /* Close input file, if we opened it. * Note: we assume that jpeg_read_coefficients consumed all input * until JPEG_REACHED_EOI, and that jpeg_finish_decompress will * only consume more while (! cinfo->inputctl->eoi_reached). * We cannot call jpeg_finish_decompress here since we still need the * virtual arrays allocated from the source object for processing. */ if (fp != stdin) fclose(fp); /* Open the output file. */ if (outfilename != NULL) { if ((fp = fopen(outfilename, WRITE_BINARY)) == NULL) { fprintf(stderr, "%s: can't open %s for writing\n", progname, outfilename); exit(EXIT_FAILURE); } } else { /* default output file is stdout */ fp = write_stdout(); } /* Adjust default compression parameters by re-parsing the options */ file_index = parse_switches(&dstinfo, argc, argv, 0, TRUE); /* Specify data destination for compression */ jpeg_stdio_dest(&dstinfo, fp); /* Start compressor (note no image data is actually written here) */ jpeg_write_coefficients(&dstinfo, dst_coef_arrays); /* Copy to the output file any extra markers that we want to preserve */ jcopy_markers_execute(&srcinfo, &dstinfo, copyoption); /* Execute image transformation, if any */ #if TRANSFORMS_SUPPORTED jtransform_execute_transformation(&srcinfo, &dstinfo, src_coef_arrays, &transformoption); #endif /* Finish compression and release memory */ jpeg_finish_compress(&dstinfo); jpeg_destroy_compress(&dstinfo); (void) jpeg_finish_decompress(&srcinfo); jpeg_destroy_decompress(&srcinfo); /* Close output file, if we opened it */ if (fp != stdout) fclose(fp); #ifdef PROGRESS_REPORT end_progress_monitor((j_common_ptr) &dstinfo); #endif /* All done. */ exit(jsrcerr.num_warnings + jdsterr.num_warnings ?EXIT_WARNING:EXIT_SUCCESS); return 0; /* suppress no-return-value warnings */ }